A stretched conformation of DNA with a biological role?
Journal article, 2017

We have discovered a well-defined extended conformation of double-stranded DNA, which we call Sigma-DNA, using laser-tweezers force-spectroscopy experiments. At a transition force corresponding to free energy change Delta G = 1.57 +/- 0.12 kcal (mol base pair)(-1) 60 or 122 base-pair long synthetic GC-rich sequences, when pulled by the 3'-3' strands, undergo a sharp transition to the 1.52 +/- 0.04 times longer Sigma-DNA. Intriguingly, the same degree of extension is also found in DNA complexes with recombinase proteins, such as bacterial RecA and eukaryotic Rad51. Despite vital importance to all biological organisms for survival, genome maintenance and evolution, the recombination reaction is not yet understood at atomic level. We here propose that the structural distortion represented by Sigma-DNA, which is thus physically inherent to the nucleic acid, is related to how recombination proteins mediate recognition of sequence homology and execute strand exchange. Our hypothesis is that a homogeneously stretched DNA undergoes a 'disproportionation' into an inhomogeneous Sigma-form consisting of triplets of locally B-like perpendicularly stacked bases. This structure may ensure improved fidelity of base-pair recognition and promote rejection in case of mismatch during homologous recombination reaction. Because a triplet is the length of a gene codon, we speculate that the structural physics of nucleic acids may have biased the evolution of recombinase proteins to exploit triplet base stacks and also the genetic code.


Niklas Bosaeus

Chalmers, Biology and Biological Engineering, Chemical Biology

Anna Reymer

University of Gothenburg

Tamas Beke-Somfai

Hungarian Academy of Sciences

T. Brown

University of Oxford

M. Takahashi

Tokyo Institute of Technology

Pernilla Wittung Stafshede

Chalmers, Biology and Biological Engineering, Chemical Biology

Sandra Rocha

Chalmers, Biology and Biological Engineering, Chemical Biology

Bengt Nordén

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Quarterly Reviews of Biophysics

0033-5835 (ISSN) 1469-8994 (eISSN)

Vol. 50 UNSP e11-e11

Subject Categories

Biochemistry and Molecular Biology







More information

Latest update