Alkali Monitoring of Industrial Process Gas by Surface Ionization─Calibration, Assessment, and Comparison to in Situ Laser Diagnostics
Journal article, 2021

In this work, we present rigorous calibration and assessment of a surface ionization detector (SID) for alkali monitoring in industrial process gases and compare it to an in situ laser diagnostic method called collinear photofragmentation and atomic absorption spectroscopy (CPFAAS). The side-by-side comparison of the time-resolved alkali concentration was performed in a technical-scale gas burner seeded with selected alkali salts, corresponding to alkali molar fractions of 10-100 ppm in the flue gas. The SID operates at room temperature and relies on extraction, dilution, and conditioning of the sample gas, whereas CPFAAS provides in situ molecular data. During KCl addition, the instruments were in good agreement: 80.1 ppm (SID) and 88.5 ppm (CPFAAS). In addition to the field measurements, internal validation of SID performance parameters (flow, electric field strength, and filament temperature) and external parameters (particle size and salt composition) was performed. The difference in sensitivity toward different alkali salts was found to be considerable, which limits the quantitative assessment for a sample gas of unknown composition. The results demonstrate the capability and limitations of the SID and show that a SID can satisfactory monitor KCl levels in a process gas over several days of continuous measurements. However, for heterogeneous fuels with deficient characterization of the gas composition, the obtained SID signal is difficult to interpret without supportive diagnostics. The generic ability of the SID to detect Na and K in both gas and particle phases makes it a valuable complement to alkali diagnostics, such as spectroscopic techniques.

Author

Dan Gall

Chalmers, Space, Earth and Environment, Energy Technology

Jan Viljanen

University of Tampere

Ivan Gogolev

Chalmers, Space, Earth and Environment, Energy Technology

Thomas Allgurén

Chalmers, Space, Earth and Environment, Energy Technology

Klas Andersson

Chalmers, Space, Earth and Environment, Energy Technology

Energy & Fuels

0887-0624 (ISSN) 1520-5029 (eISSN)

Vol. 35 24 20160-20171

Subject Categories

Chemical Process Engineering

Atom and Molecular Physics and Optics

Other Chemical Engineering

Infrastructure

Chalmers Power Central

DOI

10.1021/acs.energyfuels.1c03205

More information

Latest update

5/20/2022