Influence of Surface Features for Increased Heat Dissipation on Tool Wear
Journal article, 2018

The critical problems faced during the machining process of heat resistant superalloys, (HRSA), is the concentration of heat in the cutting zone and the difficulty in dissipating it. The concentrated heat in the cutting zone has a negative influence on the tool life and surface quality of the machined surface, which in turn, contributes to higher manufacturing costs. This paper investigates improved heat dissipation from the cutting zone on the tool wear through surface features on the cutting tools. Firstly, the objective was to increase the available surface area in high temperature regions of the cutting tool. Secondly, multiple surface features were fabricated for the purpose of acting as channels in the rake face to create better access for the coolant to the proximity of the cutting edge. The purpose was thereby to improve the cooling of the cutting edge itself, which exhibits the highest temperature during machining. These modified inserts were experimentally investigated in face turning of Alloy 718 with high-pressure coolant. Overall results exhibited that surface featured inserts decreased flank wear, abrasion of the flank face, cutting edge deterioration and crater wear probably due to better heat dissipation from the cutting zone.

Carbide insert

Tool-chip contact area

Machining

Alloy 718

High-pressure coolant

Textured inserts

Author

Nageswaran Tamil Alagan

University West

Tomas Beno

University West

Philipp Hoier

Chalmers, Industrial and Materials Science, Materials and manufacture

Uta Klement

Chalmers, Industrial and Materials Science, Materials and manufacture

Anders Wretland

GKN Aerospace Sweden

Materials

1996-1944 (ISSN)

Vol. 11 5 664

Subject Categories

Tribology

Manufacturing, Surface and Joining Technology

Areas of Advance

Production

DOI

10.3390/ma11050664

More information

Latest update

5/14/2018