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We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA) to access a
wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for
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be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived
packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the
proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated
scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule
with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling
algorithms.
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1. Introduction

One of the problems with many wireless networks today is
energy consumption, stemming from the fact that modern
radio transceivers are often battery powered, and, hence,
energy is a scarce resource that needs to be conserved as
much as possible. Complexity is another important issue,
since, many wireless network applications require the size
and cost of individual network nodes to be kept at a
minimum. One important example of the above is wireless
sensor networks (WSNs) [1, Chapter 1], that have lately
received considerable attention, both from industry and
academia.

In order to conserve energy, the number of packet
retransmissions in the network should be kept as low
as possible. High packet-loss probability is undesirable,
since it can potentially cause a high number of packet
retransmissions. Another important factor in preserving
energy is the duty cycle of individual nodes. For instance,
recent work on energy consumption in WSNs has shown
that most wireless sensor devices consume almost as much
energy when listening to the wireless channel, or even being

in idle mode, as they do when actively transmitting a packet
[1, Chapter 2]. From this perspective, a synchronized time
slotted medium access (MAC) scheme (TDMA) where nodes
can sleep for extended periods of time seems preferable both
from interference and duty-cycle points of view. However,
interference will still be present if two or more networks,
or “clusters” of nodes, are colocated in close vicinity of each
other.

In the Low-Energy Adaptive Clustering Hierarchy
(LEACH) protocol [2], a TDMA-type MAC scheme tailored
for WSNs is integrated with clustering and routing mecha-
nisms. In LEACH, each cluster chooses a random spreading
sequence that is used locally. This reduces intercluster
interference but also increases the complexity in each node.
Another WSN protocol that uses a TDMA-type MAC-
scheme is the Self-Organizing Medium Access Control for
Sensor Networks (SMACS) protocol [3]. SMACS imple-
ments both distributed neighborhood discovery and TDMA
scheduling. In SMACS, all nodes are assumed to know
the time duration of a so-called “superframe”. Many other
TDMA-based MAC mechanisms have been also proposed for
implementation in clusterized networks [4, 5].
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One frequently occurring drawback with MAC design
proposals is that overly simplistic propagation models are
used, for example, not accounting for Rayleigh fading effects.
For instance, channel assignment problem in wireless net-
work is often addressed by modelling the network as directed
graph [6], [7, Section III-A-1], and [8]. This assumption is
not suitable in fading channels where the link gains vary over
time, unless all the instantaneous link gains are frequently
measured and made available to the scheduler, resulting in
much added overhead and complexity.

In this work, we include Rayleigh fading and log-distance
path loss in the system model and propose a TDMA-
type MAC mechanism that jointly schedules transmissions
between nodes and cluster heads with the objective to
minimize the average packet error rate (PER), (The packet
error rate is assumed to be equal to the block error rate.
However, in general, they are not equal but closely related.)
that is, to maximize the total network throughput. We
make the assumption that all nodes have a fixed output
transmission power and formulate the scheduling problem
as an integer programming problem, more specifically an
assignment problem.

Similar approaches are taken in [9, 10], where joint
opportunistic power scheduling and rate control problems
are considered. Our work differs from [9, 10], and references
cited therein, on three main points (a) Instead of allowing a
smooth tuning of transmitter output powers, we impose an
on-off constraint on transmitters. One of the main reasons is
that power consumption is sometimes only weakly correlated
with transmit power [1, Chapter 2]. (b) Instead of the signal
to interference and noise ratio (SINR), we consider the PER
(a nonlinear function of SINR) to be the main optimization
objective. While the PER is a more relevant measure, the
SINR is often preferred in the literature due to the lack of
a tractable analytical solution for the PER for a wide range of
different modulations, coding methods, and fading channels
[11]. To overcome this, a closed-form formula for estimation
of the PER in block faded Rayleigh channels in presence
of interference is derived and shown to be highly accurate.
Finally, (c) in order to make the sleep time as long and
uninterrupted as possible, we do not schedule nodes on a
slot-by-slot basis. Instead, we schedule all slots in a frame in
one run of the algorithm such that no node receives more
than one slot.

The remainder of this paper is organized as follows. In
Section 2, we define the network and interference model
and state additional assumptions on the system. The utility
function based on our analytical approximation of PER is
introduced in Section 3. The interference model is later used
in the proposed MAC algorithm, that is derived in Section 4.
The proposed algorithm is analyzed and evaluated through
computer simulation in Section 5, and we conclude the paper
in Section 6.

2. SystemModel

Let M transceiver nodes and K data sinks be deployed over a
bounded area. The nodes are indexed by integers 1, 2, . . . ,M,

and are clustered into K sets {Ci}Ki=1. Let a frame be an
interval of time divided into W slots, indexed by w ∈
{1, . . . ,W}, and let Sw be the set of nodes, one from each
cluster, scheduled for transmission in slot w. If there are
fewer nodes in a cluster than the number of slots in a frame,
“dummy” nodes at infinite distance from all sinks are added
to the cluster. It is worth noting that a very largeW may result
in a trivial interference-free schedule where in each time slot
only one real node is scheduled with dummy nodes from
all other clusters. However, setting W arbitrarily large is not
possible in a majority of practical systems as it also results
in a large network delay and a low network throughput. The
problem of how to adjust W and how to select a subset of
nodes when the number of nodes per cluster is larger than
W is not considered here.

Based on these assumptions, each cluster contains exactly
W nodes. In each frame, all W nodes in each cluster are to
be scheduled such that no more than one node from each
cluster is scheduled in a given slot w, and a node can only be
scheduled once per frame. A schedule {S1, S2, . . . , SW} that
satisfies these conditions is called a feasible schedule. Each
cluster is assumed to have a dedicated sink node, or cluster
head. Similar to a Bluetooth system [1, Chapter 5], the cluster
head is the receiver of all transmissions from all nodes in
a cluster. The scheduling is performed by a central entity
that is connected to all sinks. While these settings resemble
a cellular network architecture, the scheduling techniques
developed for cellular networks are not applicable here. This
is due to the fact that in cellular networks, power and rate
control are essential part of the scheduling problem. While
in wireless sensor networks, the on-off power control is
preferred, which results in a fundamentally different problem
formulation.

We assume the packet length is fixed, and that all cluster
heads are coarsely synchronized on a packet level, so that
transmissions in a given slot takes place at approximately the
same time in all clusters. However, synchronization errors
among clusters are considered in the numerical evaluations
of the proposed algorithm (Section 5).

2.1. Interference Model. The instantaneous received power
from the node i at sink k is represented by Pi,k and is defined
as

Pi,k = κi,kPi,k, (1)

where Pi,k denotes the average received power from the node i
at sink k and κi,k models the effect of small-scale fading on the
instantaneous received signal power. The level of mobility of
nodes and the environment are assumed to be such that the
small-scale fading can be modelled as block fading [12] over
a single time slot. The small-scale fading is assumed to be
Rayleigh distributed, hence κi,k is a unit mean, exponentially
distributed random variable. The effects of path loss and
shadowing are captured by Pi,k which is assumed to be
slowly varying and available to the MAC protocol either from
models or measurements.
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With these assumptions, the instantaneous SINR for the
packet from node Sw(k) ∈ {Ck∩Sw} to cluster head k in slot
w is given by

Γ(k, Sw) = κSw(k),kPSw(k),k

PNk +
∑

j∈Sw , j /=Sw(k) κj,kP j,k
, (2)

where PNk denotes the (known) thermal noise power at
cluster head k.

3. Utility Function

It is shown in [11] that in an interference free environment,
the PER of block coded packets in block faded Rayleigh
channels can be accurately approximated by a simple SNR
threshold. That is each received packet is considered to be
successful if the instantaneous SNR is above a given threshold
Θ, and lost otherwise. Hence, the PER in the block faded
Rayleigh channels is approximated by [11]

Ploss

(
Γ
)
= Pr{Γ < Θ} = 1− exp

(
Θ

Γ

)

, (3)

where Ploss(Γ) is the PER estimate based on SNR threshold
model and Γ is the average SNR. Similar results for turbo
coded packets are reported in [13].

In this section, we examine if applying a similar method
in presence of interference results in an accurate approxima-
tion of PER. In TDMA systems with block fading channels,
SINR is constant during one time slot (if the intercluster
synchronization error is small). Therefore, applying the
threshold method results in

Ploss(k, Sw)

= Pr{Γ(k, Sw) < Θ}

= Pr

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κSw(k),k < Θ
PNk

PSw(k),k
+

∑

j∈Sw ,

j /=Sw(k)

κj,kΘ
P j,k

PSw(k),k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(4)

Since all fading coefficients are i.i.d. unit-mean exponential
random variables, we have, as shown in the appendix,

Ploss(k, Sw) = 1−
exp
(
−Θ

(
PNk /PSw(k),k

))

∏
j∈Sw , j /=Sw(k)

(
1 + Θ

(
P j,k/PSw(k),k

)) .

(5)

The accuracy of this model is verified by comparing the PER
for the node-sink link of node m, denoted by Pe,m, with Ploss

for the same link. An analytical expression for Pe,m can be
obtained by integrating the instantaneous PER over the SINR
variations where the instantaneous PER for node m = Sw(k)
is given by

Pe,Sw(k) = 1−
t∑

i=0

⎛

⎝
n

i

⎞

⎠p(Γ(k, Sw))i
[
1− p(Γ(k, Sw))

]n−i,

(6)
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Figure 1: CDF of capture model error, η = Pe,m − Ploss.

where p(Γ) is the bit error rate at the given Γ and t is the error
correction capability (in number of bit errors). Interested
readers are referred to [14] and references cited therein, for
more information regarding the block error probability of
various coding and decoding methods.

Since the closed-form analytical solution to Pe,m is
untractable [11], Monte-Carlo simulation is used in this
paper to estimate Pe,m. The required statistics were obtained
through simulations of 200 randomly generated networks.
For each the node-sink link, Pe,m is obtained by averaging
over 1000 Rayleigh fading realizations. The other simulation
parameters can be found in Section 5.

In Figure 1, we plot the cumulative distribution function
(CDF) of the difference η = Pe,m−Ploss evaluated for all links
in all networks. We see that, for a correctly chosen threshold,
in this case Θ = 4.82 dB, the error is quite small. We also note
that variations as large as±2 dB in the threshold increases the
error, but not significantly, and hence the packet-loss model
is not overly sensitive to the choice of threshold.

Finally, we note that the choice of Θ only depends on the
modulation format, that is, BPSK, the receiver architecture,
the packet length, and the properties of the code. The
threshold does not depend on the network configuration and
layout, that is, K , M, and so forth. Hence the threshold can
be decided prior to network deployment, and does not need
to be reconfigured if the network configuration changes. For
methods of finding Θ, interested readers are referred to [11].

To isolate the effect of the proposed Ploss formula, the
reliability, or “utility”, of a link from node Sw(k) to cluster
head k, is defined as Uk(Sw) = 1− Ploss(k, Sw). Adding more
terms to Uk(Sw) does not change the optimization algorithm
in Section 4 as long as utility of each schedule can be obtained
independently of other schedules.

The global utility of a schedule Sw in slot w is then given
by

U(Sw) =
K∑

k=1

Uk(Sw). (7)

Note that if Sw(k) is a dummy node, then Ploss(k, Sw) = 1,
and Uk(Sw) = 0, that is, dummy nodes are implicitly left
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out from the summation in (7). The inclusion of dummy
nodes in the analysis has some interesting implications. A
cluster will have dummy nodes if it has more time slots than
nodes. The schedule for the dummy nodes then indicates the
best time slots for radio silence in the cluster from a global
network perspective.

The utility function U(Sw) in (7) does not necessarily
need to consider all clusters. The throughput and its
subsequent optimization from a subset of clusters’ point of
view are obtained by simply removing appropriate terms
from the sum in (7). The implications of this are analyzed
in Section 5. We also emphasize that maximizing the utility
function in (7) is different from maximizing the average
SINR. With the utility in (7), increasing the SINR for a node
beyond the point where Ploss ≈ 0 does not increase the
utility significantly. Conversely, the cluster utility does not
change much if the SINR for a node with Ploss ≈ 1 is further
decreased.

4. Medium Access Control

The aim of the proposed Medium Access Control (MAC)
layer is to schedule node transmissions such that the average
probability of a successful packet delivery in the network is
maximized. Due to the assumed slotted MAC scheme, this
will also maximize the network throughput. We define A as
a set of all feasible slot schedules, that is, A = {{c1, . . . , cK} :
c1 ∈ C1, . . . , cK ∈ CK}. We also define Am as a set of
feasible schedules where node m has been scheduled, that is,
Am = {a ∈A : m ∈ a}.

The MAC problem for the K clusters {Ci}Ki=1 and W time
slots is then

max
{S1,...,SW}

W∑

w=1

∑

a∈A

U(a)ISw ,a

such that

(A)
∑

a∈A

ISw ,a = 1, ∀w ∈ {1, . . . ,W},

(B)
W∑

w=1

∑

a∈Am

ISw ,a = 1, ∀m ∈ {1, . . . ,M}.

(8)

Here, and throughout the rest of this work, Ia,b is an indicator
function that is unity when a = b and zero otherwise. The W
constraints in (A) ensures that Sw ∈A, for all w = 1, . . . ,W .
That is, Sw is a feasible slot schedule. The M constraints in
(B) ensure that all nodes are scheduled in exactly one slot.
Hence, (A) and (B) are satisfied if and only if {S1, . . . , SW} is
a feasible schedule.

As the number of nodes and clusters in the network
grows, the complexity of a brute-force solution to (8) quickly
becomes prohibitive. In fact, there are as many as (W !)K

different feasible schedules to choose from.

4.1. MAC Problem for Two Clusters. Since we assume no
time dependence, the utility function U(Sw) only depends
on the coscheduled nodes in the slot schedule Sw and
not on the specific slot w. Hence, a permutation of slot
schedules in a global schedule {S1, . . . , SW} will not affect
the utility

∑W
w=1 U(Sw). We can therefore arbitrarily choose

any feasible schedule for nodes in, for example, cluster C1,
without loss in maximum achievable utility. After fixing
the schedule {Sw(1)}Ww=1 for nodes in C1 in a two-cluster
network, the MAC problem in (8) reduces to the two-
dimensional assignment problem:

max
{S1(2),...,SW (2)}

W∑

w=1

∑

c2∈C2

U({Sw(1), c2})ISw(2),c2

such that

(A)
∑

c2∈C2

ISw(2),c2 = 1, ∀w ∈ {1, . . . ,W},

(B2)
W∑

w=1

ISw(2),c2 = 1, ∀c2 ∈ C2.

(9)

Unlike the case of a multidimensional assignment problem,
efficient algorithms exist that solve (9) in polynomial time
such as maximum weight matching problem on bipartite
graph [15]. We use the auction algorithm, due to Bertsekas
[16], [17, Chapter 6], briefly described below.

Consider problem (9), where the schedule for nodes in
C1, that is, {Sw(1)}Ww=1, is fixed and known. The auction
algorithm for solving this problem is as follows. (a) Envision
the nodes in C2 as objects on sale at an auction, and envision
the slots as buyers at the auction. Initially, the asking prices
{pc2}c2∈C2 of the objects on sale are set to zero. (b) Let
each slot w successively “place a bid” on the node i =
arg maxc2∈C2{U({Sw(1), c2}) − pc2}, that is, the node that
yields the highest net value vi = U({Sw(1), i}) − pi for
slot w. (c) When a node is bid upon, its asking price pi is
raised by vi − zi + β, where β > 0 is a small number, and
zi = maxc2∈C2, c2 /= i{U({Sw(1), c2}) − pc2}, that is, the second
best net value for slot w. The reason for the additional small
increase in price, β, is to prevent ties among buyers, a topic
further discussed in [17]. In this paper we let β = 1/W . (d)
The auction continues until all nodes have received at least
one bid, at which point a solution to (9) has been found.

Although of little consequence for the development here,
it is interesting to note that the auction algorithm is actually
a dual method on its own. It can be shown that when the
auction algorithm terminates, the node asking prices solves

min
{pc2 }c2∈C2

W∑

w=1

sup
c2∈C2

(
U({Sw(1), c2})− pc2

)
+
∑

c2∈C2

pc2 , (10)

to within any ε > 0 of the optimal value (ε depends on the
choice of β). This is, in fact, the dual problem to (9), after
relaxation of constraints on nodes in C2.

For a complete derivation, additional discussions, and
results on the auction algorithm, the reader is referred to
[16], [17, Chapter 6], and references cited therein.
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4.2. MAC Problem for Arbitrary Number of Clusters. It was
noted above that the complexity of a brute-force solution
to (8) grows quickly with W and K . However, if a relaxed
problem, that is, the maximization of a Lagrangian, can be
easily solved, and we also have access to a good method
that converts a solution to the relaxed problem into one
that is primal feasible, then experience with similar types
of combinatorial optimization problems; see, for example,
[9, 10, 17–19], and references cited therein, gives that an
iterative solution of the dual problem often yields a near
optimal, or even an optimal solution to the primal problem.
Hence, the algorithm we propose is an iterative algorithm
similar to one in [18], where each iteration involves the
following three steps. (1) Given a vector of dual variables, a
relaxed version of (8) is solved. (2) A primal feasible schedule
is constructed from the solution to the relaxed problem
and the vector of dual variables. (3) If the obtained primal
solution is found to be unsatisfactory, then the dual variables
are updated, and we iterate again.

4.2.1. The Relaxation Step. We relax constraints on nodes
in C3, C4, . . . , CK in (8). Let μcp denote the dual variable
associated with node cp ∈ Cp. The dual function is then

q
(
µ
) =

∑

c3∈C3

μc3 + · · · +
∑

cK∈CK

μcK + sup
{S1,...,SW}

W∑

w=1

∑

c1∈C1

· · ·
∑

cK∈CK

(
U({c1, . . . , cK})− μc3 · · · − μcK

)
ISw ,{c1,...,cK}

such that

(A)
∑

a∈A

ISw ,a = 1, ∀w ∈ {1, . . . ,W},

(B12)
W∑

w=1

∑

a∈Am

ISw ,a = 1, ∀m ∈ {C1 ∪C2},

(11)

where µ ∈ R(K−2)W contains all dual variables. As for
the case of K = 2 in Section 4.1, we can use any
feasible schedule for the nodes in, for example, C1, without
loss in maximum achievable utility. Let V (2)(w, c2) =
supc3∈C3,...,cK∈CK

{U({Sw(1), c2, . . . , cK})−μc3 · · ·−μcK }, then
the problem in (11) is equivalent to

q
(
µ
) =

∑

c3∈C3

μc3 + · · · +
∑

cK∈CK

μcK

+ sup
{Sw(2)}Ww=1

W∑

w=1

∑

c2∈C2

V (2)(w, c2)ISw(2),c2

such that

(A)
∑

c2∈C2

ISw(2),c2 = 1, ∀w ∈ {1, . . . ,W},

(B2)
W∑

w=1

ISw(2),c2 = 1, ∀c2 ∈ C2.

(12)

Hence, for a given vector of dual variables µ, this problem
is a two-dimensional assignment problem which is easily
solved, as was shown in Section 4.1. We note that, to compute
V (2)(w, c2), a search over WK−2 slot assignments is necessary.
In the scenarios considered in this work, an exhaustive
search is feasible. However, larger networks may require the
addition of more advanced search methods, such as branch
and bound techniques, further discussed in Section 5.

4.2.2. A Method for Generating Feasible Schedules. When
solving (12), we implicitly obtain a feasible scheduling of
nodes from clusters C1 and C2. A feasible schedule that
also includes nodes from remaining clusters must now be
generated. In general, a schedule that is feasible for nodes in
C1, C2, . . . , Cr−1, for r = 3, 4, . . . ,K , can be extended into one
that is feasible also for Cr by fixing the schedule for nodes in
C1, C2, . . . , Cr−1 and then running an auction algorithm for
the nodes in Cr with modified utilities

V (r)(w, cr) = sup
cr+1,...,cK

{U({Sw(1), . . . , Sw(r − 1), cr , . . . , cK})

−μcr+1 − · · · − μcK
}
.

(13)

After enforcing primal constraints on nodes in all clusters up
to and including CK , a feasible schedule has been generated
from the solution to (11), and we can compute its primal
objective function value using (8).

4.2.3. Algorithm Termination Criteria. By the weak duality
theorem [19, Chapter 6], we have that, for any feasible
schedule {S1, S2, . . . , SW}, and any µ,

q
(
µ
) ≥

W∑

w=1

U(Sw). (14)

We denote the optimal primal objective function value by
f �, and the objective function value computed at iteration
ν by f (ν). Then, at iteration i,

min
ν∈{0,...,i}

q
(
µ(ν)
)
− max

ν∈{0,...,i}
f (ν) ≥ f � − max

ν∈{0,...,i}
f (ν). (15)

The difference minν∈{0,...,i}q(µ(ν)) − maxν∈{0,...,i} f (ν) is called
the duality gap of iteration i, and it upper bounds the
distance from the so far best found primal objective function
value to the supremum of the primal objective function.
A measure of the quality of the best found solution up to
iteration i is the relative duality gap, given by

Δ(i) =
minν∈{0,...,i}q

(
µ(ν)
)
−maxν∈{0,...,i} f (ν)

maxν∈{0,...,i} f (ν)
. (16)

If we find a primal feasible schedule with a zero, or small,
duality gap, then this schedule is guaranteed to be optimal,
or near-optimal, in (8). On the other hand, if the best found
schedule has a large relative duality gap, for example, Δ = 1,
then we know that a significant increase in the objective
function value could be possible if we continue iterations.
The proposed algorithm terminates when Δ(i) falls below a
threshold (or when a maximum number of iterations have
been exceeded).
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4.2.4. Dual Variable Update Step. If a satisfactory schedule
has not yet been obtained, we update dual variables in µ. We
use the heuristic “price-update” method proposed in [18],
which is loosely based on the subgradient method [19] and
has been shown to perform well for similar problems. We
only give a brief overview of the update method here, and
refer to [18] for the details.

After step (1) in iteration i, a node ck ∈ Ck will be
temporarily “scheduled” in gck slots. Clearly, the scheduling
constraint is only satisfied if and only if gck = 1. In step
(2), the constraints will be enforced, cluster by cluster, by
successive auctions. Let pck be the price of the node ck after

the auction. We form three vectors, µ(i)
k ∈ RW , g(i)

k ∈ ZW ,

and p(i)
k ∈ RW , whose elements are μ(i)

ck (the dual variable for

node ck at iteration i), g(i)
ck , and p(i)

ck , respectively. The update
rule for the dual variables at iteration i is then

µ(i+1)
k = µ(i)

k −
∣
∣
∣
∣
∣

min
ν∈{0,...,i}

q
(
µ(ν)
)
− q̃k

(
µ(i)
)
∣
∣
∣
∣
∣

p(i)
k

p(i)
k

� g(i)
k

∥
∥
∥g(i)

k

∥
∥
∥

2 ,

(17)

where k = 3, 4, . . . ,K , p is the average of elements in
p, ‖ · ‖ denotes Euclidean norm, � denotes element-wise
multiplication, and

q̃k
(
µ(i)
)
= max
{S1(k),...,SW (k)}

W∑

w=1

V (k)(w, Sw(k))

+
∑

ck+1∈Ck+1

μck+1 · · · +
∑

cK∈CK

μcK

such that

(Bk)
W∑

w=1

ISw(k),ck = 1, ∀ck ∈ Ck.

(18)

Note that q̃k(µ(i)) is implicitly obtained when using the
auction algorithm to enforce constraints on nodes in Ck.

Intuitively, this dual variable update approach can be
interpreted as follows. If, after fixing the schedule for clusters
C1 to Ck−1, two or more slots have a given node in Ck as
their preferred choice in terms of interference conditions,
then the “price” of this node is increased in future iterations
of the algorithm. If there exist a node that no slot has as
its preferred choice, then the price of this node is reduced.
This way, solutions to the relaxed problem (11) that violates
constraints in (8) are penalized.

For further examples of this dual method, although in
a different application, we refer to [18] and references cited
therein. A flowchart of the proposed algorithm is shown in
Figure 2.

Set μ = 0, choose

arbitrary feasible
schedule for C1

Relax constraints
on C3,· · · ,CK

Compute
modified

utilities V (3)

Compute q(μ) using

the auction algorithm.
Fix schedule for clusters

C1, C2

Compute modified

utilities V (2)

Fix schedule also for C3

using the auction
algorithm and modified

utilities V (3)

Remaining Cr ,
r = 4, · · · ,K ,

do: (a) compute V (r)

(b) fix schedule for Cr

Compute primal

Gaps small
enough?

No
Update multi-

pliers according
to (17)

Figure 2: Flowchart of the proposed algorithm.

5. Numerical Analysis and Discussion

5.1. System Setup. We consider a short-range clustered WSN,
where all transceiver nodes use BPSK signalling with a fixed
output power P. To simplify our simulations, shadow fading
is ignored and the average received power Pi,k is modelled by
the log-distance path-loss model as follow:

Pi,k = P0

(
d0

di,k

)α

, (19)

where di,k is the distance between node i and sink k and
P0 is the average received power at distance d0. In the
simulations, P0/PN = 10 dB at reference distance d0 = 1 m
and the path-loss exponent is α = 4. All links are affected
by Rayleigh fading with unit power gain, that is assumed
to be independent between links. We assume that thermal
receiver noise and interference are both Gaussian with zero
mean. A simple t = 5 bit error correcting block code
with block length L = 800 bits is used by all nodes. One
codeword is transmitted in each time slot, it occupies the
entire slot, and the cluster head uses hard-decision decoding
of codewords. All nodes are assigned one slot per frame, and
this slot assignment does not change between frames in the
simulation. We assume that the frame of cluster i starts at
global time T + ωi, where the synchronization errors {ωi}Ki=1
are i.i.d. zero-mean Gaussian with standard deviation σω. An
example network schedule with W = 3 slots and |Ck| = 3
nodes per cluster (k = 1, 2, 3) is shown in Figure 3, where sk,w

denotes the node in Ck scheduled in slot w, L is the number
of symbols per packet, and Ts is the symbol duration. We
remark that robustness to cluster synchronization errors
can of course be increased if guard intervals are introduced
between slots in the frame structure.

To emulate a network configuration where a clustering
algorithm, for example, LEACH [2], has been executed,
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ω2
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S3(3) S1(3) S2(3) S3(3) S1(3)

T

Figure 3: Example of cluster frames and synchronization errors.

we first manually deploy K cluster heads at coordinates
{(xi, yi)}Ki=1. The node coordinates in the kth cluster is drawn
as |Ck| realizations from a circular Gaussian distribution
with mean equal to the coordinates of the kth cluster head
and standard deviation σR. The distance between cluster
heads, σR, α, and P0/PN together determines the expected
SINR conditions in the network. For a fixed α and P0/PN ,
a network with sparsely deployed cluster heads and small
σR on the average experiences less intercluster interference
than a network with more dense cluster heads and/or higher
σR.

For notational convenience, we define a constant trans-
mission range R, which is the range where the packet
error rate (PER) goes above 10−2 in absence of fading
and interference. In all simulated scenarios discussed below,
cluster heads were deployed on the corners of a square with
side R, that is, at (0, 0), (R, 0), (0,R), and (R,R). Each of the
K = 4 clusters has 5 nodes, and there are W = 6 slots in a
frame, which implies that each cluster has one dummy node.
The proposed scheduling algorithm was run until the relative
duality gap Δ(i) ≤ 10−3, see (16), or until a maximum of 300
iterations.

5.2. Convergence Properties of the Proposed Algorithm
and Some Remarks on Complexity. The convergence of
Lagrangian relaxation method that is used in this work is
only guaranteed if a strong duality property can be proven.
Since strong duality of the general method used here is still
an open problem in the literature, the convergence of this
application of the optimization method is not proven either.
Nevertheless, the dual function, defined in (11), provides an
upper bound to the primal which implies that even if the
algorithm fails to converge in some scenarios, the maximum
potential gain of an unknown optimal solution over the
best known schedule is always obtained. This result has
significant practical importance as it can be used to trade
performance for complexity, especially when working with
iterative scheduling approaches.

In this section, the convergence properties of the pro-
posed algorithm are studied by extensive simulations. During
the simulations, the best achieved utilities U (1), U (5), and
U (300) after at most 1, 5, and 300 iterations, respectively,
were stored. An upper bound on achievable utility in each
network was also computed. This bound was computed
as (1 + Δ(300))U (300), where Δ is the relative duality gap
defined in (16). To investigate the convergence properties
of the proposed algorithm, we computed the relative utility
difference ε(i) = (1/M)((1 + Δ(300))U (300) − U (i))/U (i),

for i = 1, 5, 300. This difference indicates how close to
the optimal solution the algorithm is after i iterations. If
ε = 0, then the optimal schedule has been found, while,
if ε > 0, an average relative increase of ε in utility per
node could possibly be achieved by additional iterations of
the algorithm. We define ε(0) to be the relative difference
between a random scheduling (with utility U (0)) and the
upper bound.

The CDFs of ε(i), i = 0, 1, 5, 300, for cluster densities
σR = R/2 and σR = R/4, are plotted in Figure 4. We note
that the achieved objective function value is very close to
its upper bound after at most the maximum 300 iterations.
In fact, in our simulations, the ε(300) was almost always
less than 0.001. Hence, the algorithm performs well in
terms of convergence. Additionally, Figure 4 indicates that
convergence is quite fast, that is, the distance to the upper
bound is reasonably small already after only a few iterations.

The results obtained after a single iteration deserves
some special attention. It appears that a reduced complexity
“greedy” algorithm that only iterates once, that is, executes
K − 1 consecutive auction algorithms, can be used without
a significant degradation in performance. This conclusion
is of great importance in networks where complexity is
a limiting factor. The overall complexity of the proposed
algorithm mainly depends on W , K , and the number
of iterations the algorithm spends before termination. As
noted in Section 4.2, there are (W !)K different feasible
schedules to consider. However, the proposed algorithm
only investigates a small subset of all possible feasible
schedules.

Empirical tests on a personal computer have indicated
that networks of up to K = 10 clusters, each with W = 7
nodes (e.g., the maximum number of slaves in a Bluetooth
network), are manageable with the proposed algorithm. The
part of the algorithm that introduces most complexity is the
search for V (2)(w, c2) in (11), which is implemented here
as an exhaustive search over the WK−2 possible relaxed slot
w assignments. If larger networks than K = 10, W = 7
is required, then more advanced search methods must be
considered.

Since all the nodes in every clusters are scheduled after
a single run of the algorithm, the update frequency of the
schedules depends only on the mobility, that is, the rate that
average powers vary. In the low mobility sensor networks
considered in this paper, the frequency of schedule update
is substantially lower than the schedule usage time and
therefore, the communication overhead cost of the proposed
algorithm in these scenarios is negligible.

5.3. Throughput in a Perfectly Synchronized Scenario. If the
network layout is such that the intercluster interference is
low, or the distance between node and sink is too long
for communication even in the interference-free case, the
benefits of using the proposed algorithm compared to just
using an arbitrary schedule should intuitively be quite small
(as an extreme case, consider a network where σR approaches
zero, or goes to infinity). To quantify this, 200 networks with
ωi = 0, i = 1, . . . ,K , and R = 1.25 m were generated. The
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Figure 4: Algorithm convergence, ε(i) = (1/M)(((1 + Δ(300))U (300) −U (i))/U (i)).

threshold was again set to Θ = 4.82 dB. Two schedules were
generated for each network layout, one using the proposed
algorithm, and one random but feasible schedule. For each
network and schedule, in addition to Pe,m for all nodes, we
also compute the normalized network throughput T , given
by T =M−1

∑M
m=1(1− Pe,m).

The CDF of network throughput is plotted in Figure 5
for the two scheduling approaches and for three different
cluster densities. As expected, the increase in throughput is
the highest when interference is significant, but SINR is still
sufficient for communication. The increase in throughput is
slim for scenarios where the overall SINR conditions in the
network are either very good, or very bad, compare with the
results for σR = R/8 and σR = 2R.

To investigate the impact of the proposed scheduling
approach on individual nodes, we also plot the CDF of
Pe,m evaluated for all nodes in all networks (Figure 6). It is
interesting to note that the proposed algorithm reduces the
number of nodes with relatively high Pe,m, at the expense of
nodes that have a Pe,m closer to zero. Although this effect is
not significant, it is noticeable for the case of σR = R/2.

As mentioned in Section 3, the utility measure in (7) does
not need to encompass all clusters. For instance, suppose we
control a number of node clusters that are deployed in the
vicinity of a number of “alien” clusters with a fixed TDMA
schedule that we have knowledge of, but cannot control.
We would like to maximize the packet delivery ratio in our
network, but we may not want to do so at the expense of the
“alien” clusters, that could for instance be a legacy system.
The impact on PER in clusters that are not accounted for
by the utility function was evaluated in 200 networks. The
parameters used in Figures 5 and 6, with σR = R/4, were
also used here. We assume that we can control the schedule
of clusters with cluster heads at (0,R) and (R,R), while
cluster heads at (0, 0) and (R, 0) choose a random feasible
schedule for the nodes in their corresponding clusters. In
Figure 7, the CDFs of Pe,m in the controlled and uncontrolled
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Figure 5: CDF of network throughput T for random and proposed
scheduling.

clusters are compared. The CDF of Pe,m in a network
where all cluster heads arbitrarily choose their schedule is
also shown. Somewhat surprisingly, we see that Pe,m in
uncontrolled clusters does not differ significantly from what
would be experienced if all four cluster heads would have
arbitrarily chosen feasible schedules. Hence, throughput in
the uncontrolled clusters is not significantly degraded by the
“smart” scheduling made in controlled clusters.

5.4. Packet-Error Rates with Cluster Synchronization Errors.
Up to now, we have assumed that clusters are perfectly
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synchronized in time, so that all slots begin and end
simultaneously. We have also neglected the propagation
delay between nodes in the network when computing
the instantaneous SINR. Obviously, these assumptions will
not hold in a real network. We therefore investigated the
impact of cluster synchronization errors on throughput
in 400 networks with the same setup as in Section 5.3.
To account for synchronization errors and varying propa-
gation delays, zero-mean Gaussian synchronization errors
{ωi}Ki=1 with standard deviation σω were introduced (see
Figure 3). The CDF of network throughput is plotted in
Figure 8 for σR = R/2. As expected, synchronization
errors reduce network throughput when using the proposed
algorithm, but also when using a random schedule. Note
that, even for relatively large errors, for example, σω =
40Ts (corresponding to a relative error standard deviation
between two clusters of 80Ts, which is 10 percent of the
packet duration), the degradation is not overly severe, and
we see a significant gain in throughput over a random
scheduling. Simulation results not shown here also indicated
that the robustness to synchronization errors is higher in
networks with better SINR conditions, for example, for σR =
R/4.

6. Conclusions

We have, by modelling interference as additive and Gaussian,
derived an expression for the packet-loss probability in
networks with mutually interfering clusters of transceivers
deployed in Rayleigh-fading environments. Computer sim-
ulations showed a good agreement between the model and
actual packet error-rates.

A scheduling algorithm for clustered wireless networks
that exploits the derived packet-loss model was then pre-
sented. Computer simulations of networks with transmis-
sions scheduled by the proposed algorithm showed that a
significant increase in network throughput is achievable as
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compared to the case where clusters choose schedules inde-
pendently without considering the schedules at interfering
clusters. Although the scheduling algorithm was derived
under the assumption of a perfectly synchronized network,
we have shown that a synchronization error on the order
of several symbol durations does not degrade the algorithm
performance significantly.

Numerical results indicate that convergence to the
optimal schedule almost always occur with a reasonable
number of iterations. Hence, the proposed algorithm can be
used as a tool for benchmarking the performance of other
(suboptimal) scheduling algorithms.

Appendix

Packet-Loss Probability

Without loss of generality, let the node Sw(1) transmit
to the sink in C1. For notational convenience, let γ0 =
Θ(PN1 /PSw(1),1), γj = Θ(PSw( j),1/PSw(1),1), and A = γ0 +
∑K

j=2 γjaj , where aj denotes the fading coefficient from the
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node Sw( j) to the sink in cluster 1, that is, κSw( j),1. Starting
from (2), we have

Ploss(k, Sw)

= Pr{Γ(k, Sw) < Θ} = Pr{a1 < A}

=
∫∞

aK=0
· · ·

∫∞

a2=0

∫ A

a1=0
exp

⎛

⎝−
K∑

i=1

ai

⎞

⎠da1 · · ·daK

=
∫∞

aK=0
· · ·

∫∞

a2=0
exp

⎛

⎝−
K∑

i=2

ai

⎞

⎠
(
1− exp(−A)

)
da2 · · ·daK

= 1− e−γ0

∫∞

aK=0
e−(1+γK )aK · · ·

∫∞

a2=0
e−(1+γ2)a2 da2 · · ·daK

= 1− e−γ0

∏K
j=2

(
1 + γj

) ,

(A.1)

where we have used the assumption that the fading coeffi-
cients are i.i.d. with unit mean. The last equality follows from
the identity

∫∞
0 e

−axdx = a−1, that holds for a > 0.
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