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Abstract

Many functions have to be written over and over again for di�erent datatypes,

either because datatypes change during the development of programs, or because

functions with similar functionality are needed on di�erent datatypes. Exam-

ples of such functions are pretty printers, pattern matchers, equality functions,

uni�ers, rewriting functions, etc. Such functions are called polytypic functions.

A polytypic function is a function that is de�ned by induction on the structure

of user-de�ned datatypes. This thesis introduces polytypic functions, shows how

to construct and reason about polytypic functions and describes the implemen-

tation of the polytypic programming system PolyP.

PolyP extends a functional language (a subset of Haskell) with a construct

for writing polytypic functions. The extended language type checks de�nitions

of polytypic functions, and infers the types of all other expressions. Programs in

the extended language are translated to Haskell.

Keywords: Programming languages, Functional programming, Algebraic data-

types, Polytypic programming, Generic programming
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Chapter 1

Introduction

The ability to name and reuse di�erent program components is at the heart of

the power of functional languages. Higher order functions like map and foldr

capture very general programming idioms that are useful in many contexts. This

kind of polymorphic functions enables us to abstract away from the unimportant

details of an algorithm and concentrate on its essential structure.

A polymorphic function has a type parametrised on types. The next step is

to parametrise a function de�nition on types. Functions that are parametrised

in this way are called polytypic functions [44]. The equality function in ML and

all the \derived" functions in Haskell are examples of polytypic functions. Other

examples are the Squiggol community's [2, 9, 27, 59, 63, 65, 67] catamorphisms

and maps. The functions foldr and map are instances of the polytypic functions

cata and map for the datatype of lists.

While a normal polymorphic function is an algorithm that is independent of

the type parameters, a polytypic function is a class of algorithms with related

structure. Any algorithm in the class can be obtained by instantiating a template

algorithm with (the structure of) a datatype. The possibility to de�ne polytypic

functions adds another level of 
exibility in the reusability of algorithms and in

the design of general purpose programming libraries.

Other terms used for polytypism in the literature are structural polymorphism

(Ruehr [77]), type parametric programming (Sheard [78]), generic programming

(Bird, de Moor and Hoogendijk [9]), polynomial polymorphism (Jay [41]) and

shape polymorphism (Jay [42]) .

1.1 What is polytypism?

To give an example of what polytypism is we show that the de�nitions of the

function sum on di�erent datatypes share a common structure. The normal sum

function for lists can be de�ned as follows in the functional language Haskell:

sum :: List Int -> Int
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sum Nil = 0

sum (Cons x xs) = x + sum xs

We will de�ne sum on the following datatypes:

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Bin (Tree a) (Tree a)

data Maybe a = Nothing | Just a

data Rose a = Fork a (List (Rose a))

We can de�ne the function sum for all of these datatypes (instantiated on integers)

using catamorphisms. A catamorphism is a function that recursively replaces con-

structors with functions. We write cata

D

f Ci 7! ei g for the catamorphism

on the type D that replaces the constructors Ci with the expressions ei.

sum

List

:: List Int -> Int

sum

List

= cata

List

f Nil 7! 0, Cons 7! (+) g

sum

Tree

:: Tree Int -> Int

sum

Tree

= cata

Tree

f Leaf 7! id, Bin 7! (+) g

sum

Maybe

:: Maybe Int -> Int

sum

Maybe

= cata

Maybe

f Nothing 7! 0, Just 7! id g

sum

Rose

:: Rose Int -> Int

sum

Rose

= cata

Rose

f Fork 7! na l-> a + sum

List

l g

All these de�nitions are instances of the polytypic de�nition:

sum

d

:: d Int -> Int

sum

d

= cata

d

fsum

d

where fsum

d

is de�ned by induction on the structure of the datatype d a. We

can already see some patterns in the parameters of the catamorphism: the two

nullary constructors Nil and Nothing are both replaced by 0 and the two unary

constructors Leaf and Just are replaced by the identity function id. The binary

constructors (Cons, Bin and Fork) are replaced by functions that sum the subex-

pressions. The complete de�nition of the polytypic sum function can be found in

appendix B.2.

Exactly the same structure can be used to de�ne the polytypic function conc

(a variant of flatten de�ned in �gure 2.1) if we replace 0 by Nil and (+) with

list concatenation ((++)) in the above de�nitions.

1

1

If we parametrise one step further we obtain crush :: (a->a->a) -> a -> d a -> a, where

sum = crush (+) 0 and conc = crush (++) Nil. See Meertens [64] and appendix B.4 for

de�nitions.
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conc

d

:: d (List a) -> List a

conc

d

= cata

d

fconc

d

The polymorphism of a polytypic function such as sum is somewhere in be-

tween parametric and ad hoc polymorphism (overloading). A parametric poly-

morphic function has one de�nition and all instances have the same structure. An

ad hoc polymorphic function has many di�erent (possibly unrelated) de�nitions

and di�erent instances are used in di�erent contexts.

For a polytypic function like sum one de�nition su�ces, but like ad hoc poly-

morphic functions, sum has di�erent instances in di�erent contexts. The compiler

generates the instances from the de�nition of the polytypic function and the type

in the context where it is used. A polytypic function can be parametric poly-

morphic, but it need not be: function sum :: d Int -> Int is polytypic but not

parametric polymorphic while function conc :: d (List a) -> List a is both

parametric polymorphic and polytypic.

1.2 Why polytypism?

Polytypism o�ers a number of bene�ts:

Reusability: Polytypism extends the power of polymorphic functions to allow

classes of related algorithms to be described in one de�nition. Thus poly-

typic functions are very well suited for building program libraries.

Stability: Polytypic programs often work without change when a datatype is

changed. This reduces the need for time consuming and boring rewrites of

trivial functions.

Closure and orthogonality: Currently some polytypic functions can be used

but not de�ned in ML (the equality function(s)) and Haskell (the members

of the derived classes). This asymmetry can be removed by extending these

languages with polytypic de�nitions.

Applications: Some problems are polytypic by nature: data compression (sec-

tion 2.2.6), term rewriting (section 3.4), uni�cation (chapter 4), ...

Provability: More general functions give more general proofs. If we consider

polytypic proofs, each of the bene�ts above obtains an additional inter-

pretation: we get reusable proofs, stable proofs, less ad hoc semantics of

programming languages and possibly new proofs of properties of rewriting,

uni�cation, etc.

Lambert Meertens [64] gives a nice example of the power of polymorphism: Sup-

pose we want a function to swap two integers: swap :: (Int, Int) -> (Int, Int).

This is not a very hard problem to solve, but there are in�nitely many type correct
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but wrong solutions. (Two are id and \(x,y)->(y+1,x).) If we generalise this

function to the polymorphic function swap :: (a,b) -> (b,a) we get a much

more useful program and we can't make it wrong while type correct.

2

Similarly,

even when a function may be needed only for one speci�c datatype, it may be

helpful to de�ne it polytypically to reduce the risk of making a mistake. Anyone

who doubts this is encouraged to try to write a catamorphism for the (mutually

recursive group of datatypes representing the) abstract syntax of Haskell!

1.3 Overview

The main part of this thesis consists of three papers about polytypism (with a

fair amount of overlap between them), one chapter about our implementation of

polytypism (called PolyP), and one chapter about related work.

Chapter 2 is a slightly extended version of the POPL'97 paper PolyP | a

polytypic programming language extension [39]. This chapter gives an overview

of what polytypism is and how polytypic functions can be expressed and imple-

mented in a type safe way. If you have time to read only one chapter, this should

be the one! The chapter describes the main features of PolyP: The polytypic

construct which is used for de�ning polytypic functions by induction over the

structure of user-de�ned datatypes, the type system that preserves type infer-

ence provided the polytypic construct is explicitly typed, and the translation of

PolyP-programs into Haskell.

Chapter 3 is a revised version of the paper Polytypic Programming [46]. This

chapter is the one you should read if you want to learn how to write and use

polytypic functions: it de�nes catamorphisms, the polytypic map function, the

polytypic sum function used in the example above and a number of other polytypic

functions. A larger example, polytypic term rewriting, is also included.

Chapter 4 is the paper Polytypic uni�cation [40] (submitted for publication).

It is a short self-contained paper that shows how to write a polytypic uni�cation

algorithm in PolyP.

Chapter 5 describes the implementation of PolyP. Read this if you want to

know how polytypic functions can be implemented and how the system PolyP

really works.

Chapter 6 gives an overview of polytypism in related work. It describes the

origins of polytypism, the di�erent approaches used to express, type check and

implement polytypism and gives many references to further reading about poly-

typism.

Appendix A shows the translation of a PolyP program, appendix B shows the

code for a small library of polytypic functions, and appendix C gives an example

of simulating polytypism in Gofer.

2

Strictly speaking this is true only in a language with strong normalisation.
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PolyP | a polytypic programming language

extension

1

Patrik Jansson and Johan Jeuring

Chalmers University of Technology and University of G�oteborg

S-412 96 G�oteborg, Sweden

fpatrikj,johanjg@cs.chalmers.se
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Abstract

Many functions have to be written over and over again for di�erent datatypes,

either because datatypes change during the development of programs, or because

functions with similar functionality are needed on di�erent datatypes. Examples

of such functions are pretty printers, equality functions, uni�ers, pattern match-

ers, rewriting functions, etc. Such functions are called polytypic functions. A

polytypic function is a function that is de�ned by induction on the structure of

user-de�ned datatypes. This paper extends a functional language (a subset of

Haskell) with a construct for writing polytypic functions. The extended language

type checks de�nitions of polytypic functions, and infers the types of all other

expressions using an extension of Jones' theories of quali�ed types and higher-

order polymorphism. The semantics of the programs in the extended language

is obtained by adding type arguments to functions in a dictionary passing style.

Programs in the extended language are translated to Haskell.

1

This is an extended version of a paper with the same title published in the 24th An-

nual SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Paris,

France, January 15{17, 1997.
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2.1 Introduction

Complex software systems usually contain many datatypes, which during the

development of the system change regularly. Developing innovative and complex

software is typically an evolutionary process. Furthermore, such systems contain

functions that have the same functionality on di�erent datatypes, such as equality

functions, print functions, parse functions, etc. Software should be written such

that the impact of changes to the software is as limited as possible. Polytypic

programs are programs that adapt automatically to changing structure, and thus

reduce the impact of changes. This e�ect is achieved by writing programs such

that they work for large classes of datatypes.

Consider for example the function length :: List a -> Int, which counts

the number of values of type a in a list. There is a very similar function length

:: Tree a -> Int, which counts the number of occurrences of a's in a tree. We

now want to generalise these two functions into a single function which is not only

polymorphic in a, but also in the type constructor; something like length :: d a

-> Int, where d ranges over type constructors. We call such functions polytypic

functions [44]. Once we have a polytypic length function, function length can be

applied to values of any datatype. If a datatype is changed, length still behaves

as expected. For example, the datatype List a has two constructors with which

lists can be built: the empty list constructor, and the Cons constructor, which

prepends an element to a list. If we add a constructor with which we can append

an element to a list, function length still behaves as expected, and counts the

number of elements in a list.

The equality function in ML and Ada and the functions in the classes that can

be derived in Haskell are examples of widely used polytypic functions. Instances

of these functions are automatically generated by the compiler, but the de�nitions

of these functions cannot be given in the languages themselves. In this paper we

investigate a language extension with which such functions can be de�ned in the

language. Polytypic functions are useful in many situations; more examples are

given in Jeuring and Jansson [46].

A polytypic function can be applied to values of a large class of datatypes, but

some restrictions apply. We require that a polytypic function is applied to values

of regular datatypes. A datatype D a is regular if it contains no function spaces,

and if the arguments of the datatype constructor on the left- and right-hand

side in its de�nition are the same. The collection of regular datatypes contains

all conventional recursive datatypes, such as Nat, List a, and di�erent kinds of

trees. We introduce the class Regular of all regular datatypes, and we write:

length :: Regular d => d a -> Int

Polytypic functions can be de�ned on a larger class of datatypes, including

datatypes with function spaces [29, 66], but we will not discuss these extensions.
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2.1.1 Polymorphism and polytypism

Polytypism di�ers from both parametric polymorphism and ad hoc polymorphism

(overloading). This subsection explains how.

A traditional polymorphic function such as

head :: [a] -> a

can be seen as a family of functions - one for each instance of a as a monomorphic

type. There need only be one de�nition of head; the typing rules ensure that

values of type a are only moved around, never tampered with. A polymorphic

function can be implemented as a single function that works on boxed values.

An ad hoc polymorphic function such as

(+) :: Num a => a -> a -> a

is also a family of functions, one for each instance in the Num class. These instances

may be completely unrelated and each instance is de�ned separately. Helped by

type inference a compiler can almost always �nd the correct instance.

The polymorphism of a polytypic function such as

length :: Regular d => d a -> Int

is somewhere in between parametric and ad hoc polymorphism. A single de�nition

of length su�ces, but length has di�erent instances in di�erent contexts. Here

the compiler generates instances from the de�nition of the polytypic function

and the type in the context where it is used. A polytypic function may be

parametric polymorphic, but it need not be: function sum :: Regular d => d

Int -> Int, which returns the sum of the integers in a value of an arbitrary

datatype, is polytypic, but not parametric polymorphic.

2.1.2 Writing polytypic programs

There exist various ways to implement polytypic programs in a typed language.

Three possibilities are:

� using a universal datatype;

� using higher-order polymorphism and constructor classes;

� using a special syntactic construct.

Polytypic functions can be written by de�ning a universal datatype, on which we

de�ne the functions we want to have available for large classes of datatypes. These

polytypic functions can be used on a speci�c datatype by providing translation

functions to and from the universal datatype. However, using universal datatypes

has several disadvantages: the user has to write all the translation functions, type
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information is lost in the translation phase to the universal datatype, and type

errors can occur when programs are run. Furthermore, di�erent people will use

di�erent universal datatypes, which will make program reuse more di�cult.

If we use higher-order polymorphism and constructor classes for de�ning poly-

typic functions [49], type information is preserved, and we can use current func-

tional languages such as Gofer and Haskell for implementing polytypic functions.

In this style all datatypes are represented by the type

data Mu f a = In (f a (Mu f a))

and the class system is used to overload functions like map and cata. See ap-

pendix C for some code examples. However, writing such programs is rather

cumbersome: programs become cluttered with instance declarations, and type

declarations become cluttered with contexts. And the user still has to write

all translation functions. Furthermore, it is hard to deal with mutual recursive

datatypes.

Since the �rst two solutions to writing polytypic functions are unsatisfactory,

we have extended (a subset of) Haskell with a syntactic construct for de�ning

polytypic functions. Thus polytypic functions can be implemented and type

checked. We will use the name PolyP both for the extension and the resulting

language. Consult the page

http://www.cs.chalmers.se/~patrikj/poly/polyp/

to obtain a preliminary version of a compiler that compiles PolyP into Haskell

(which subsequently can be compiled with a Haskell compiler), and for the latest

developments on PolyP.

2.1.3 PolyP

PolyP is an extension of a functional language that allows the programmer to

de�ne and use polytypic functions. The underlying language in this article is

a subset of Haskell and hence lazy, but this is not essential for the polytypic

extension. The extension introduces a new kind of (top level) de�nition, the

polytypic construct, used to de�ne functions by induction over the structure of

datatypes. Since datatype de�nitions can express sum- , product-, parametric-

and recursive types, the polytypic construct must handle these cases.

PolyP type checks polytypic value de�nitions and when using polytypic values

types are automatically inferred

1

. The type inference algorithm is based upon

Jones' theories of quali�ed types [48] and higher-order polymorphism [51]. The

semantics of PolyP is de�ned by adding type arguments to polytypic functions

in a dictionary passing style. We give a type based translation from PolyP to

Haskell that uses partial evaluation to completely remove the dictionary values at

1

Just as in Haskell, sometimes explicit type annotations are needed to resolve overloading.
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compile time. Thus we avoid run time overhead for creating instances of polytypic

functions.

The compiler for PolyP is still under development, and has a number of limita-

tions. Polytypic functions can only be applied to values of non mutual recursive,

regular datatypes with one type argument. Multiple type arguments can be en-

coded in a single sum-type, but we are working on a more elegant treatment

of multiple type arguments. One of PolyP's predecessors (a preprocessor that

generated instances of polytypic functions [38]) could handle mutual recursive

datatypes, and we hope to port this part of the predecessor to PolyP in the near

future. In the future PolyP will be able to handle mutual recursive datatypes

with an arbitrary number of type arguments and in which function spaces may

occur.

2.1.4 Background and related work

Polytypic functions are standard in the Squiggol community, see [59, 63, 65].

Generating instances for speci�c polytypic functions, such as (==), map, cata,

hylo, etc. for a given type, is rather simple and has been demonstrated by several

authors [13, 21, 38, 41, 81].

Given a number of prede�ned polytypic functions many others can be de-

�ned, and amongst others Jay et al.'s type system [7, 41], and Jones' type system

based on quali�ed types and higher-order polymorphism [48, 51] can be used to

type check expressions in a language with prede�ned polytypic functions. Our

approach di�ers from these approaches in that we only give two prede�ned poly-

typic functions, and we supply a construct to de�ne new polytypic functions by

induction over the structure of datatype de�nitions. This di�erence is essential

for polytypic programming, and can be compared with the di�erence between

the �rst versions of ML that gave a number of prede�ned datatypes and the later

versions of ML that provided a few built in types and a construct for de�ning

user-de�ned datatypes.

Using a two level language, Sheard and Nelson [80] show how to write well-

typed polytypic programs. A polytypic program is obtained by embedding second

level type declarations as values in �rst level computations. The two level lan-

guage is more powerful than our language, but it is also a much larger extension

of common functional programming languages.

Adaptive object-oriented programming [57, 73] is a programming style simi-

lar to polytypic programming. In adaptive OOP methods (corresponding to our

polytypic functions) are attached to groups of classes (types) that usually sat-

isfy certain constraints (such as being regular). In adaptive OOP one abstracts

from constructor names instead of datatype structure. This results in a program-

ming style in which typing plays a much less prominent role than in polytypic

programming. However, the resulting programs have very similar behaviour.
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2.1.5 About this paper

We use Haskell syntax for programs and types in our examples but we sometimes

write b <- a as syntactic sugar for a -> b in types (and kinds).

Section 2.2 introduces polytypic programming. Section 2.3 discusses the type

inference and checking algorithms used in PolyP. Section 2.4 gives the seman-

tics of PolyP, and Section 2.5 shows how to generate code for PolyP programs.

Section 2.6 concludes the paper.

2.2 Polytypic programming

In this section we will show how to write polytypic programs using PolyP. For an

extensive introduction to polytypic programming see Jeuring and Jansson [46].

2.2.1 Functors for datatypes

To de�ne a polytypic function, we have to be able to de�ne functions by induction

over the structure of a datatype. The structure of a datatype is described by

means of the functor de�ning the datatype.

Consider the datatype List a de�ned by

data List a = Nil | Cons a (List a)

Values of this datatype are built by prepending values of type a to a list. This

datatype can be viewed as the �xed point with respect to the second argument

of the datatype FList a x de�ned by

data FList a x = FNil | FCons a x

The datatype FList a x describes the structure of the datatype List a. Since

we are only interested in the structure of List a, the names of the constructors

of FList are not important. We de�ne FList using a conventional notation by

removing FList's constructors (writing Empty for the empty space we obtain by

removing FNil), replacing | with +, and replacing juxtaposition with �.

FList a x = Empty+ a� x

We now abstract from the arguments a and x in FList. Constructor Par returns

the parameter a (the �rst argument), and Rec returns the recursive parameter x

(the second argument). Operators + and � and the empty product Empty are

lifted.

FList = Empty+ Par �Rec

FList is the functor

2

of List a.

The datatype Tree a is de�ned by

2

In fact, FList is a bifunctor: a functor that takes two arguments; we will use both terms

functor and bifunctor for bifunctors.
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data Tree a = Leaf a | Bin (Tree a) (Tree a)

Applying the same procedure as for the datatype List a, we obtain the following

de�nition.

FTree = Par+Rec�Rec

FTree is the functor of Tree a.

We have given functors that describe the structure of the datatypes List a

and Tree a. We have that for each regular datatype there exists a (bi)functor F

that describes the structure of the datatype

3

.

For our purposes, a functor is a value generated by the following grammar.

F ::= f j F + F j F � F j Empty j Par j Rec j D@F j Const �

where f is a functor variable, D generates datatype constructors and � in Const �

is a type. The alternative D@F is used to describe the structure of types that are

de�ned in terms of other user-de�ned types, such as the datatype of rose-trees:

data Rose a = Fork a (List (Rose a))

The functor we obtain for this datatype is

FRose = Par � (List @Rec)

The alternative Const � in the grammar is used in the description of the structure

of a datatype that contains constant types such as Bool, Char, etc.

2.2.2 The polytypic construct

We introduce a new construct polytypic for de�ning polytypic functions by

induction on the structure of a functor:

polytypic p :: t = case f of ffi -> eig

where p is the name of the value being de�ned, t is its type, f is a functor variable,

fi are functor patterns and ei are PolyP expressions. The explicit type in the

polytypic construct is needed since we cannot in general infer the type from the

cases.

The informal meaning is that we de�ne a function that takes a functor (a value

describing the structure of a datatype) as its �rst argument. This function selects

the expression in the �rst branch of the case matching the functor. Thus the

polytypic construct is a template for constructing instances of polytypic functions

given the functor of a datatype. The functor argument of the polytypic function

need not (and cannot) be supplied explicitly but is inserted by the compiler during

type inference.
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flatten :: Regular d => d a -> [a]

flatten = cata fl

polytypic fl :: f a [a] -> [a] =

case f of

g + h -> either fl fl

g * h -> \(x,y) -> fl x ++ fl y

Empty -> \x -> []

Par -> \x -> [x]

Rec -> \x -> x

d @ g -> concat . flatten . pmap fl

Const t -> \x -> []

data Either a b = Left a | Right b

either :: (a->c) -> (b->c) -> Either a b -> c

either f g (Left x) = f x

either f g (Right x) = g x

Figure 2.1: The de�nition of flatten

As a running example throughout the paper we take the function flatten

de�ned in �gure 2.1. When flatten is used on an element of type Tree a, the

compiler performs roughly the following rewrite steps to construct the actual

instance of flatten for Tree:

flatten

Tree

! cata

Tree

fl

FTree

It follows that we need an instance of cata on the datatype Tree a, and an

instance of function fl on the functor of Tree a. For the latter instance, we use

the de�nition of FTree and the de�nition of fl to transform fl

FTree

as follows.

fl

FTree

! fl

Par+Rec�Rec

! either fl

Par

fl

Rec�Rec

We transform the functions fl

Par

and fl

Rec�Rec

separately. For fl

Par

we have

fl

Par

! nx -> [x]

and for fl

Rec�Rec

we have

fl

Rec�Rec

! n(x,y) -> fl

Rec

x ++ fl

Rec

y

! n(x,y) -> (nx -> x) x ++ (nx -> x) y

3

A datatype can be modelled as the initial algebra in the category of F a-algebras [59],

where F is the the functor of the datatype.
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The last function can be rewritten into uncurry (++), and thus we obtain the

following function for 
attening a tree:

cata

Tree

(either (nx -> [x]) (uncurry (++)))

By expanding cata

Tree

in a similar way we obtain a Haskell function for the

instance of flatten on Tree.

The catamorphism, or generalised fold, on a datatype takes as many functions

as the datatype has constructors (combined into a single argument by means of

function either), and recursively replaces constructor functions with correspond-

ing argument functions. It is a generalisation to arbitrary regular datatypes of

function foldr de�ned on lists. We will give the de�nition of cata in the next

subsection.

2.2.3 Basic polytypic functions

In the de�nition of function flatten we used functions like cata and pmap. This

subsection de�nes these and other basic polytypic functions.

Since polytypic functions cannot refer to constructor names of speci�c data-

types, we introduce the prede�ned functions out and inn. Function out is used in

polytypic functions instead of pattern matching on the constructors of a datatype.

For example out on Tree is de�ned as follows:

out

Tree

(Leaf x) = Left x

out

Tree

(Bin l r) = Right (l,r)

Function inn is the inverse of function out. It collects the constructors of a

datatype into a single constructor function.

out :: Regular d => d a -> (FunctorOf d) a (d a)

inn :: Regular d => d a <- (FunctorOf d) a (d a)

The constructor FunctorOf is a special type constructor that takes a datatype

constructor, and returns its functor. With datatypes as �x-points of functors,

FunctorOf is the `un�x'. FunctorOf is our main means for expressing the relation

between datatypes and functors.

In category theory, a functor is a mapping between categories that preserves

the algebraic structure of the category. Since a category consists of objects (types)

and arrows (functions), a functor consists of two parts: a de�nition on types, and

a de�nition on functions. The functors we have seen until now are functions that

take two types and return a type. The part of the functor that takes two functions

and returns a function is called fmap, see �gure 2.2.

Using fmap we can de�ne the polytypic version of function map, pmap, as

follows:
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polytypic fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> fmap p r -+- fmap p r

g * h -> fmap p r -*- fmap p r

Empty -> id

Par -> p

Rec -> r

d @ g -> pmap (fmap p r)

Const t -> id

f -+- g = either (Left . f) (Right . g)

(f -*- g) (x,y) = (f x , g y)

Figure 2.2: De�nition of fmap.

pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

where out takes the argument apart, fmap applies f to parameters and (pmap f)

recursively to substructures and inn puts the parts back together again.

Function cata is also de�ned in terms of function fmap:

cata :: Regular d => (FunctorOf d a b -> b) -> (d a -> b)

cata f = f . fmap id (cata f) . out

This one-liner, together with the de�nition of fmap is all that is needed to obtain

a catamorphism for every regular datatype.

2.2.4 Catamorphisms on speci�c datatypes

Since catamorphisms are not only useful when de�ning polytypic functions, but

also when de�ning functions on speci�c datatypes, we provide a shorthand nota-

tion for creating the function argument to cata: fci -> eig. As an example,

consider the following datatype of simple expressions.

data Expr a = Con a

| Add (Expr a) (Expr a)

| Mul (Expr a) (Expr a)

Function eval evaluates an expression:

eval :: Num a => Expr a -> a

eval = cata { Con -> id

Add -> (+)

Mul -> (*) }
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Evaluating eval expr for some expr :: Expr a will result in replacing each

constructor in expr with its corresponding function.

2.2.5 More polytypic functions

We can de�ne a polytypic equality function using a polytypic zip function:

4

(==) :: (Regular d,Eq a) => d a -> d a -> Bool

a == b = maybe False

(all (uncurry (==)) . flatten)

(pzip (a,b))

pzip :: Regular d => (d a ,d b ) -> Maybe (d (a,b))

fzip :: Bifunctor f => (f a b,f c d) -> Maybe (f (a,c) (b,d))

where maybe, all and uncurry are prede�ned Haskell functions. Function pzip is

a generalisation of the Haskell function zip :: [a] -> [b] -> [(a,b)]. Function

zip takes a pair of lists to a list of pairs. If the lists are of unequal length (that is

their structures are di�erent) the longer list is truncated (replaced by the empty

structure). In pzip a pair of structures is mapped to Just a structure of pairs if

the structures are equal, and Nothing otherwise, since it is in general impossible

to know what `truncate' or an `empty structure' means for a type d a.

Function pzip is de�ned using the non-recursive variant fzip, which is de�ned

by means of the polytypic construct. The evaluation of a == b gives False if

pzip (a,b) gives Nothing and checks that all pairs in the zipped structure are

equal otherwise.

In the next subsection we will use function separate which separates a value

into its structure and its contents.

separate :: Regular d => d a -> (d (),[a])

separate x = (pmap (const ()) x, flatten x)

Function separate is the central function in Jay's [42] representation of values of

shapely types: a value of a shapely type is represented by its structure, obtained

by replacing all contents of the value with (), and its contents, obtained by


attening the value.

2.2.6 Polytypic data compression

A considerable amount of Internet tra�c consists of �les that possess structure |

examples are databases, html �les, and Java-Script programs | and it will pay

to compress these structured �les. Structure-speci�c compression methods give

4

This de�nition has other strictness properties than Haskell's zip. See section 3.3.4 for an

alternative de�nition.
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much better compression results than conventional compression methods such

as the Unix compress utility [6, 87, 88]. For example, Unix compress typically

requires four bits per byte of Pascal program code, whereas Cameron [14] reports

compression results of one bit per byte Pascal program code.

The basic idea of the structure-speci�c compression methods is simple: parse

the input �le into a structured value, separate structure from contents, com-

press the structure into a bit-string by representing constructors by numbers,

and compress the resulting string and the contents with a conventional compres-

sion method. For example, suppose we have the following datatype for trees:

data Tree a = Leaf a | Bin (Tree a) (Tree a)

and a �le containing the following tree t

Bin (Bin (Leaf "com") (Leaf "pre")) (Bin (Leaf "ssi")(Leaf "on"))

Separating structure from contents gives:

Bin (Bin (Leaf ()) (Leaf ())) (Bin (Leaf ()) (Leaf ()))

and a list containing the four words com, pre, ssi and on. Assigning 0 to Leaf

and 1 to Bin , the above structure can be represented by 1100100. This bit-string

equals 100 when read as a binary number, and hence this list can be represented

by the 100'th ASCII character `d'. So the tree t can be represented by the

list of words [d,com,pre,ssi,on]. The tree t is stored in 65 bytes, and its

compressed counterpart requires 18 bytes. This list can be further compressed

using a conventional compression method.

Most authors of program code compression programs [14, 16, 18, 52, 82] ob-

serve that this method works for arbitrary structured objects, but most results

are based on compressing Pascal programs. To compress Java-Script programs we

will have to write a new compression program. It is desirable to have a polytypic

data compression program.

The description of the basic idea behind polytypic data compression is trans-

lated into a polytypic program pcompress as follows. Function pcompress takes

as argument a description (concrete syntax) of how to print values of a datatype

(the abstract syntax).

pcompress :: (Regular d,Text a) => Syntax d -> String -> String

pcompress concrete_syntax = ccompress

. structure_compress -*- show

. separate

. parse concrete_syntax

We will describe each of the new functions above in turn. We will omit the precise

de�nitions of these functions.

� Function parse is a polytypic function of type
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parse :: Regular d => Syntax d -> String -> d a

It takes a description of the concrete syntax of a datatype, and returns a

parser for that concrete syntax. It is only de�ned if the grammar for the

concrete syntax satis�es certain properties. For a de�nition, see Huisman

[37] or Bj�ork [12].

� Function structure compress takes a structure, replaces its constructors

by numbers, and turns the resulting structure into a string.

structure compress :: d () -> String

� Function show :: Text a => a -> String prints the content list gener-

ated by separate and, �nally,

� Function ccompress uses a conventional compression program to compress

the pair of strings.

ccompress :: (String,String) -> String

2.3 Type inference

Polytypic value de�nitions can be type checked, and for all other expressions the

type can be inferred. This section discusses the type checking and type inference

algorithms.

The �rst subsection introduces the core language without the polytypic con-

struct, but with quali�ed and higher-order polymorphic types. The second sub-

section extends the core with PolyP in two steps. The third subsection discusses

uni�cation in the extended language, and the fourth subsection shows how to

type check a polytypic value de�nition.

2.3.1 The core language

Our core language is an extension of core-ML with quali�ed types and higher

order polymorphism [51], see �gure 2.3. Each constructor in this language has

a superscript denoting its kind. For example, a basic type has kind *, and a

datatype constructor such as List has kind * -> *. We call the resulting language

QML. The set of constructor constants contains:

->, (,), Either :: * -> * -> *

A program consists of a list of datatype declarations and a binding for main.

The typing rules and the type inference algorithm are based on the extensions

of the standard rules and algorithm [17] that handle quali�ed and higher-order
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E ::= x variable

j EE application

j �x:E abstraction

j let Q in E let-expression

Q ::= x = E variable binding
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�

::= �

�

constants

j �

�

variables

j C

�

0
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C

�
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applications
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�

types

� ::= P ) � quali�ed types

� ::= 8t

�

i

:� type schemes

Figure 2.3: The core language QML
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P j � ` e : �) � P k��

P j � ` e : �

()I)

P; � j � ` e : �

P j � ` e : �) �

Figure 2.4: Some of the typing rules for QML

polymorphic types, see Jones [48, 51]. Compared to the traditional Hindley-

Milner system the type judgements are extended with a set of predicates P . The

rules involving essential changes in the predicate set are shown in �gure 2.4. The

other rules and the algorithm are omitted. The entailment relation k� relates sets

of predicates and is used to reason about quali�ed types, see [48].

2.3.2 The polytypic language extension

The polytypic extension of QML consists of two parts - an extension of the type

system and an extension of the expression language. We call the extended QML

language polyQML.

Extending the type system

The type system is extended by generalising the uni�cation algorithm and by

adding new types, kinds and classes to the initial type environment. The initial
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typing environment of the language polyQML consists of four components: the

typings of the functions inn and out, the type classes Regular and Bifunctor,

two type constructors FunctorOf and Mu, and the collection of functor construc-

tors (+, *, @, Empty, Par, Rec and Const t).

� Functions inn and out were introduced in section 2.2.3.

out :: Regular d => d a -> (FunctorOf d) a (d a)

inn :: Regular d => d a <- (FunctorOf d) a (d a)

Note that these functions have quali�ed higher-order polymorphic types.

� The class Regular contains all regular datatypes and the class Bifunctor

contains the functors of all regular datatypes. To re
ect this the entailment

relation is extended as follows for polyQML:

k� Regular D, for all regular datatypes D a

Regular d k� Bifunctor (FunctorOf d)

� FunctorOf is a type constructor that takes a datatype constructor and

represents its functor. Type constructor Mu is the inverse of FunctorOf:

it takes a functor, and represents the datatype that has the functor as

structure. As there may be di�erent datatypes with the same structure, we

add a second argument of Mu to disambiguate types. The type constructor

Mu is useful when we want to relate similar but di�erent types. FunctorOf

and Mu have the following kinds:

FunctorOf :: 1 -> 2

Mu :: 1 <- (2,1)

where 1 abbreviates the kind of regular type constructors (*->*) and 2

abbreviates the kind of bifunctors (*->*->*).

� The functor constructors obtained from the nonterminal F are added to the

constructor constants, and have the following kinds:

* , + :: 2 -> 2 -> 2

@ :: 1 -> 2 -> 2

Empty,Par,Rec,Const t :: 2

Each of these constructors has one rule in the entailment relation of one of

the following forms:

Bifunctor f,Bifunctor g k� Bifunctor(f+g)

Regular d, Bifunctor g k� Bifunctor (d@g)

k� Bifunctor Par

The resulting type system is quite powerful; it can be used to type check many

polytypic programs in a context assigning types to a number of basic polytypic
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functions. But although we can use and combine polytypic functions, we cannot

de�ne new polytypic function by induction on the structure of datatypes.

At this point we could choose to add some basic polytypic functions that

really need an inductive de�nition to the typing environment. This would give

us roughly the same expressive power as the language given by Jay [41] extended

with quali�ed types. As a minimal example we could add fmap to the initial

environment:

fmap :: Bifunctor f => (a->b) -> (c->d) -> f a c -> f b d

letting us de�ne and type check polytypic functions like pmap and cata. The type

checking algorithm would for example derive pmap (+1) (Leaf 4) :: Regular

Tree => Tree Int. But it would, at best, be hard to write a polytypic version of

a function like zip. Adding the polytypic construct to our language will make

writing polytypic programs much simpler.

Adding the polytypic construct

To add the polytypic construct, the production for variable bindings in the

let-expression, Q, is extended with

polytypic x : � = case f

�!�!�

of fF

i

! E

i

g

where f is a functor variable

5

, and F is the nonterminal that describes the lan-

guage of functors de�ned in Section 2.2.1. The resulting language is polyQML.

To be able to do the case analysis over a functor, it must be built up using the

operators +, *, @ and the type constants Empty, Par, Rec and Const t. This is

equivalent to being in the class Bifunctor and thus the context Bifunctor f is

always included in the type � of a function de�ned by the polytypic construct.

(But it need not be given explicitly.)

The typing rules for polyQML are the rules from QML together with the rule

for typing the polytypic construct given in �gure 2.5. For the notation used,

see [48]. Note that the polytypic construct is not an expression but a binding,

and hence the typing rule returns a binding. The rule is not as simple as it looks

- the substitution ff 7! f

i

g replaces a functor variable with a functor interpreted

as a partially applied type synonym, see �gure 2.6.

2.3.3 Uni�cation

The (omitted) typing rule for application uses a uni�cation algorithm to unify

the argument type of a function with the type of its argument. The presence of

the equalities concerning Mu and FunctorOf complicate uni�cation.

5

Case analysis over more than one functor can be simulated by handling all but the �rst

functor in the E

i

by other polytypic constructs. In the future we might extend the syntax to

simplify this.
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n
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polytypic x : � = case f of ff

i

! e

i

g : 


Figure 2.5: The typing rule for polytypic

type (g + h) a b = Either (g a b) (h a b)

type (g * h) a b = (g a b , h a b)

type Empty a b = ()

type Par a b = a

type Rec a b = b

type (d @ g) a b = d (g a b)

type Const t a b = t

Figure 2.6: Interpreting functors as type synonyms

The uni�cation algorithm we use is an extension of the kind-preserving uni-

�cation algorithm of Jones [51], which in its turn is an extension of Robinson's

well-known uni�cation algorithm. We unify under the equalities

Mu (FunctorOf d,d) = d (2.1)

FunctorOf (Mu (f,d)) = f (2.2)

Mu(F

D

,D) = Mu(FunctorOf D,D) (2.3)

where F

D

is the functor corresponding to the datatype D a built with the functor

constructors. The last equality represents a set of equalities: one such equality

is generated for each regular datatype declared in the program. For example, if

a program declares the datatype List a, the equality

Mu (Empty + Par*Rec, List) = Mu (FunctorOf List, List)

is generated.

We will write C �

�

C

0

if C and C

0

are uni�ed under equalities (2.1), (2.2),

and (2.3) by substitution �. For example, we have

Tree a �

�

1

Mu (f,d) a

Mu (f + g,d) �

�

2

Mu (FunctorOf List,List)

where

(

�

1

= ff 7! FunctorOf Tree; d 7! Treeg

�

2

= ff 7! Empty; g 7! Par*Rec; d 7! Listg
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Uni�cation under equalities is known as semantic uni�cation, and is consid-

erably more complicated than syntactic uni�cation. In fact, for many sets of

equalities it is impossible to construct a (most general) uni�er. However, if we

can turn the set of equalities under which we want to unify into a complete

(normalising and con
uent) set of rewriting rules, we can use one of the two al-

gorithms (using narrowing or lazy term rewriting) from Martelli et al. [53, 61] to

obtain a most general uni�er for terms that are uni�able.

If we replace the equality symbol by! in our equalities, we obtain a complete

set of rewriting rules. We use the recursive path orderings technique as developed

by Dershowitz [19, 53] to prove that the rules are normalising, and we use the

Knuth-Bendix completion procedure [53, 55] to prove that the rules are con
uent.

Both proofs are simple.

Theorem. If there is a uni�er for two given types C, C

0

, then C �

�

C

0

using

Jones [51] for kind-preserving uni�cation and Martelli et al.'s [61] algorithm for

semantic uni�cation, and � is a most general uni�er for C and C

0

. Conversely, if

no uni�er exists, then the uni�cation algorithm fails.

2.3.4 Type checking the polytypic construct

Instances of polytypic functions generated by means of a function de�ned with

the polytypic construct should be type correct. For that purpose we type check

polytypic functions.

Type checking a polytypic value de�nition amounts to checking that the

inferred types for the case branches are more general than the corresponding

instances of the explicitly given type. So for each polytypic value de�nition

polytypic x : � = case f of ff

i

! e

i

g we have to do the following for each

branch of the case:

� Infer the type of e

i

: �

i

.

� Calculate the type the alternative should have according to the explicit

type: �

i

= ff 7! f

i

g�.

� Check that �

i

is an instance of �

i

.

When calculating the types of the alternatives the functor constructors are treated

as type synonyms de�ned in �gure 2.6. The complete type inference/checking

algorithm W is obtained by extending Jones' type inference algorithm [51] with

the alternative for the polytypic construct. Some of the rules of the algorithm

are given in �gure 2.7. As an example we will sketch how the de�nition of fl in

�gure 2.1 is type checked:

In the g*h branch of the polytypic case, we �rst infer the type of the expression

e

�

= n(x,y) -> fl x ++ fl y. Using fresh instances of the explicit type � =

f a [a] -> [a] for the two occurrences of fl we get �

�

= (x b [b], y b [b]) ->



2.3. TYPE INFERENCE 25
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i
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polytypic x : � = case f of ff

i
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i
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Figure 2.7: Some parts of W

[b]. We then calculate the type �

�

= ff 7! g*hg� = (g*h) a [a] -> [a] = (g a

[a], h a [a]) -> [a]. Since �

�

= fx 7! f; y 7! g; b 7! ag�

�

we see that �

�

is an

instance of �

�

.

In the Rec branch of the polytypic case, we �rst infer the type of the expression

e

Rec

= nx -> x. The type of this expression is �

Rec

= b -> b. We then calculate

the type �

Rec

= ff 7! Recg� = Rec a [a] -> [a] = [a] -> [a]. Since �

Rec

=

fb 7! [a]g�

Rec

we see that �

Rec

is an instance of �

Rec

. The other branches are

handled similarly.

If a polytypic binding can be type checked using the typing rules, algorithm

W also manages to type check the binding. Conversely, if algorithm W can

type check a polytypic binding, then the binding can be type checked with the

typing rules too. Together with the results from Jones [48] we obtain the following

theorem.

Theorem. The type inference/checking algorithm is sound and complete.

Proof sketch. Both the proof of soundness and of completeness are by induction

on the structure of the expression. The only part of the inference algorithm

that is new is the handling of the polytypic construct. Because the polytypic

construct is explicitly typed, all that soundness and completeness states is that

the algorithm succeeds if and only if a type can be inferred for the case branches.

Using some lemmas about substitutions and type ordering (�) together with

the induction hypothesis we can show that the algorithm succeeds i� there is a
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derivation using the type rules.

2.4 Semantics

The meaning of a QML expression is obtained by translating the expression into

a version of the polymorphic �-calculus called QP that includes constructs for

evidence application and evidence abstraction. Evidence is needed in the code

generation process to construct code for functions with contexts. For example,

if the function (==) of type 8a . Eq a => a -> a -> Bool is used on integers

somewhere, we need evidence for the fact Eq Int, meaning that Int has an

equality. One way to give evidence in this case is simply to supply the function

primEqInt. Again, the results from this section are heavily based on Jones' work

on quali�ed types [48].

The language QP has the same expressions as QML plus three new construc-

tions:

E ::= � � � same as for QML expressions

j E

e

evidence application

j �v:E evidence abstraction

j case v of fe

i

! E

i

g dependent case over evidence

� ::= C

�

types

j P ) � quali�ed types

j 8t

�

i

:� polymorphic types

The special case-statement is used in the translation of the polytypic construct.

The typing rules for QP are omitted.

The translation rules for variables, let expressions, variable bindings and for

the the polytypic construct are given in �gure 2.8. The remaining rules are

simple and omitted. A translation rule of the form P j S(�) `

w

e ; e

0

: �

can be read as an attribute grammar. The inherited attributes (the input data)

consist of a type context � and an expression e and the synthesised attributes

(the output data) are the evidence context P , the substitution S, the translated

QP expression e

0

and the inferred type � .

For example, if we translate function fl :: Bifunctor f => f a [a] -> [a],

we obtain after simpli�cation the code in �gure 2.9. Note that the branches of

the case expression in the translated code have di�erent (but related) types. This

case expression is a restricted version of a dependent case.

In this translation we use a conversion function C, which transforms evidence

abstractions applied to evidence parameters into an application of the right type.

Function C is obtained from the expression � �

C

�

0

, which expresses that �

is more general than �

0

and that a witness for this statement is the conversion

function C : � ! �

0

. The inputs to function � are the two type schemes �
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Figure 2.8: Some translation rules

fl = �v:case v of

g + h ! either fl

g

fl

h

g � h ! n(x,y) -> fl

g

x ++ fl

h

y

Empty ! nx -> []

Par ! nx -> [x]

Rec ! nx -> x

d @ g ! concat : flatten

d

: pmap

d

fl

g

Const t ! nx -> []

Figure 2.9: The translation of function fl into QP
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and �

0

, and the output (if it succeeds) is the conversion function C. It succeeds

if the uni�cation algorithm succeeds on the types and the substitution is from

the left type to the right type only, and if the evidence for the contexts in �

can be constructed from the evidence for the contexts in �

0

. The function C is

constructed from the entailment relation extended with evidence values.

As evidence for the fact that a functor f is a bifunctor we take a symbolic rep-

resentation f of the functor (an element of the datatype described by nonterminal

F from Section 2.2.1). So f : Bifunctor f for all f for which k� Bifunctor f

holds. The evidence for regularity of a datatype D a is a dictionary with three

components: the de�nitions of inn and out on the datatype and evidence that

the corresponding functor is indeed a bifunctor.

Theorem. The translation from polyQML to QP preserves well-typedness and

succeeds for programs with unambiguous type schemes.

Proof sketch. The proofs are by induction on the structure of the expression.

The use of a special syntax for the dependent case expression and the fact that

this expression only is introduced by the translation of the polytypic construct

allows us to reuse most of the proofs from Jones' thesis for the other syntactic

constructs.

2.5 Code generation

To generate code for a polyQML program, we generate a QML expression from

a polyQML expression in two steps:

� A polyQML expression is translated to a QP expression with explicit evi-

dence parameters (dictionaries).

� The QP expression is partially evaluated with respect to the evidence pa-

rameters giving a program in QML.

When the program has been translated to QP all occurrences of the polytypic

construct and all references to the classes Regular and Bifunctor have been

removed and the program contains evidence parameters instead. We remove all

evidence parameters introduced by polytypism by partial evaluation [47]. The

partial evaluation is started at the main expression (which must have an unam-

biguous type) and is propagated through the program by generating requests

from the main expression and its subexpressions.

The evidence for regularity of a datatype D a (the entailment k� Regular D)

is a dictionary containing the functions inn, out and the bifunctor F

D

. PolyP

constructs these dictionaries with a number of straightforward inductive functions

over the abstract syntax of regular datatypes. Functions inn and out are now

obtained by selecting the correct component of the dictionary.
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In practice, a PolyP program (a program written in a subset of Haskell ex-

tended with the polytypic construct) is compiled to Haskell (Hugs). In the ap-

pendix we have given an example PolyP program and the code that is generated

for this program.

If the size of the original program is n, and the total number of subexpressions

of the bifunctors of the regular datatypes occurring in the program is m, then

the size of the generated code is at most n�m. Each request for an instance of

a function de�ned by means of the polytypic construct on a datatype D a results

in as many functions as there are subexpressions in the bifunctor f for datatype

D a (including the bifunctors of the datatypes used in f). The e�ciency of the

generated code is only a constant factor worse than hand-written instances of

polytypic functions. Most of the overhead is caused by the inn and out trans-

formations, which as they are isomorphisms, can be removed by a more clever

implementation.

2.6 Conclusions and future work

We have shown how to extend a functional language with the polytypic con-

struct. The polytypic construct considerably simpli�es writing programs that

have the same functionality on a large class of datatypes (polytypic programs).

The extension is a small but powerful extension of a language with quali�ed types

and higher-order polymorphism. We have developed a compiler that compiles

Haskell with the polytypic construct to plain Haskell.

A lot of work remains to be done. The compiler has to be extended to handle

mutual recursive datatypes with an arbitrary number of type arguments and in

which function spaces may occur. For example, for the purpose of multiple type

arguments we will introduce a class Functor n, with Regular = Functor 1,

and Bifunctor = Functor 2. The constructors Mu and FunctorOf have to be

extended in a similar fashion.

The partial evaluation approach to code generation implies that we cannot

compile a module containing a de�nition of a polytypic function separately from

a module in which it is used. A solution might be to translate polytypic pro-

grams into a language with intensional polymorphism [32] instead of translating

polytypic programs into QP.
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Abstract

Many functions have to be written over and over again for di�erent datatypes,

either because datatypes change during the development of programs, or because

functions with similar functionality are needed on di�erent datatypes. Examples

of such functions are pretty printers, equality functions, uni�ers, pattern match-

ers, rewriting functions, etc. Such functions are called polytypic functions. A

polytypic function is a function that is de�ned by induction on the structure

of user-de�ned datatypes. This paper introduces polytypic functions, and shows

how to construct and reason about polytypic functions. A larger example is stud-

ied in detail: polytypic functions for term rewriting and for determining whether

or not a collection of rewrite rules is normalising.

1

An earlier version of this paper (with the same title) is published in J. Launchbury,

E. Meijer, and T. Sheard, editors, Advanced Functional Programming, LNCS, Springer

Verlag, 1996.
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3.1 Introduction

Complex software systems contain many datatypes, which change during the de-

velopment of the system. Developing innovative and complex software is typically

an evolutionary process. Furthermore, such systems contain functions that have

the same functionality on di�erent datatypes, such as equality functions, print

functions, parse functions, etc. Software should be written so that the impact of

changes to the software is as limited as possible. Polytypic programs are programs

that adapt automatically to changing structure, and thus reduce the impact of

changes. This e�ect is achieved by writing programs such that they work for

large classes of datatypes.

Consider for example the function length :: List a -> Int, which counts

the number of values of type a in a list. There exists a very similar function

numOfNodes :: Tree a -> Int, which counts the number of occurrences of a's

in a tree. We can generalise these two functions into a single function, size :: d

a -> Int, which is not only polymorphic in a, but also in the type constructor d.

1

We call such functions polytypic functions [44]. Once we have a polytypic size

function, function size can be applied to values of any datatype. If a datatype is

changed, size still behaves as expected. For example, the datatype List a has

two constructors with which lists can be built: the empty list constructor, and

the cons constructor, which prepends an element to a list. If we add a constructor

with which we can append an element to a list, function size still behaves as

expected, and counts the number of elements in a list.

Polytypic functions are useful in many situations, for example in implementing

rewriting systems.

3.1.1 A problem

Suppose we want to write a term rewriting module. An example of a term

rewriting system is the algebra of numbers constructed with Zero, Succ, :+:,

and :*:, together with the following term rewrite rules [53].

x :+: Zero -> x

x :+: Succ y -> Succ (x :+: y)

x :*: Zero -> Zero

x :*: Succ y -> (x :*: y) :+: x

where x and y are variables. For con
uent and normalising term rewriting

systems, the relation

�

!, which rewrites a term to its normal form, is a func-

1

We will later see that d has to be restricted to regular datatype constructors.
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tion. For example Succ (Succ Zero) :*: Succ (Succ Zero)

�

! Succ (Succ

(Succ (Succ Zero))).

We want to implement function

�

! in a functional language such as Haskell [21],

that is, we want to de�ne a function rewrite that takes a list of rewrite rules

and a term, and reduces redeces until no further reduction is possible. For the

above example, we �rst de�ne two datatypes: the datatype of numbers, and the

datatype of numbers with variables, which is used for representing the rewrite

rules. Variables are represented by integers.

data Number = Zero

| Succ Number

| Number :+: Number

| Number :*: Number

data VNumber = Var Int

| VZero

| VSucc VNumber

| VNumber :++: VNumber

| VNumber :**: VNumber

A rewrite rule is represented by a pair of values of type VNumber.

We want to use function rewrite on di�erent datatypes: rewriting is independent

of the speci�c datatype. For example, we also want to be able to rewrite SKI

terms, where an SKI term is a term built with the constant constructors S, K, I,

and the application constructor :@:. We have the following rewrite rules for SKI

terms:

((S :@: x) :@: y) :@: z -> (x :@: z) :@: (y :@: z)

(K :@: x) :@: y -> x

I :@: x -> x

Since the type of function rewrite is independent of the speci�c datatype on

which it is going to be used, we want to de�ne function rewrite in a class.

class Rewrite a b where

rewrite :: [(b,b)] -> a -> a

rewrite rs = fp (rewrite_step rs)

rewrite_step :: [(b,b)] -> a -> a

fp f x | f x == x = x

| otherwise = fp f (f x)

Function rewrite step �nds a suitable redex (depending on the reduction strat-

egy used), and rewrites it.
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There are a number of problems with this solution. First, the solution is illegal

Haskell, because of the two type variables in the class declaration. More impor-

tant is that the relation between a datatype without and with variables is lost in

the above declaration. But most important: although the informal description of

rewrite step is independent of a speci�c datatype, we have to give an instance

of function rewrite step on each datatype we want to use it. We would like to

have a module that supplies a rewrite function for each conceivable datatype.

3.1.2 A solution

We have extended Haskell with the possibility to de�ne polytypic functions. A

polytypic function is a function parametrised on a type and can thus be viewed as

a family of functions: one function for each datatype. This parametrisation can

be implemented using constructor classes [51] (a higher order variant of so called

ad hoc polymorphism). But unlike ad hoc polymorphic functions which need one

instance declaration for every datatype they are used on, we de�ne polytypic

functions by induction on the structure of user-de�ned datatypes.

If we de�ne function rewrite step as a polytypic function, then each time we

use function rewrite step on a speci�c datatype, code for that instance of

rewrite step is automatically generated. Polytypic function de�nitions are type

checked, and the generated functions are guaranteed to be type correct. Polytypic

functions add the possibility to de�ne functions over large classes of datatypes in

a strongly typed language.

3.1.3 Why polytypic programming?

Polytypic functions are general and abstract functions which occur often in ev-

eryday programming; examples are equality == and map. Polytypic functions are

useful when building complex software systems, because they adapt automatically

to changing structure, and they are useful for:

� Implementing term rewriting systems, program transformation systems,

pretty printers, theorem provers, debuggers, and other general purpose sys-

tems that are used to reason about and manipulate di�erent datatypes in

a structured way.

� Generalising Haskell's [21] deriving construct. Haskell's deriving con-

struct can be used to generate code for for example the equality function

and the printing function on a lot of datatypes. A �xed set of prede�ned

Haskell classes can be used in the deriving construct, and programmers
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cannot add new classes to be used in it. The functions in these classes are

easily written as polytypic functions (see section 3.3.4 for some examples).

� Implementing Squiggol's [59, 63, 65, 67] general purpose datatype indepen-

dent functions such as cata, map, zip, para etc.

� Implementing general purpose, datatype independent programs for uni�ca-

tion [38, 40], pattern matching [44], data compression [39], etc.

3.1.4 Writing polytypic programs

There are various ways to implement polytypic programs in a typed language.

2

Three possibilities are:

� using a universal datatype;

� using higher-order polymorphism and constructor classes;

� using a special syntactic construct.

Polytypic functions can be written by de�ning a universal datatype, on which

we de�ne the functions we want to have available for large classes of datatypes.

These polytypic functions can be used on a speci�c datatype by providing trans-

lation functions to and from the universal datatype. An advantage of using a

universal datatype for implementing polytypic functions is that we do not need

a language extension for writing polytypic programs. However, using universal

datatypes has several disadvantages: type information is lost in the translation

phase to the universal datatype, and type errors can occur when programs are

run. Furthermore, di�erent people will use di�erent universal datatypes, which

will make program reuse more di�cult.

If we use higher-order polymorphismand constructor classes for de�ning polytypic

functions [49], type information is preserved, and we can use current functional

languages such as Gofer and Haskell for implementing polytypic functions. How-

ever, writing such programs is rather cumbersome: programs become cluttered

with instance declarations, and type declarations become cluttered with contexts.

Furthermore, it is hard to deal with mutual recursive datatypes.

Since the �rst two solutions to writing polytypic functions are dissatisfying, we

have extended Haskell with a syntactic construct for de�ning polytypic func-

tions [39]. Thus polytypic functions can be implemented and type checked. The

2

Polytypic programs can be written in untyped languages like lisp but, of course, without

any type safety. We will only consider strongly typed languages in this paper.
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resulting language is called PolyP. Consult the web site

http://www.cs.chalmers.se/~patrikj/poly/

to obtain a compiler that compiles PolyP into Haskell (which subsequently can

be compiled with a Haskell compiler), and for the latest developments on PolyP.

In order to be able to de�ne polytypic functions we need access to the structure

of a datatype D a. In this paper we will restrict D a to be a so-called regular

datatype. A datatype D a is regular if it contains no function spaces, and if the

arguments of the type constructor D on the left- and right-hand side in its de�ni-

tion are the same. The collection of regular datatypes contains all conventional

recursive datatypes, such as Nat, List a, and di�erent kinds of trees. Polytypic

functions can, with some e�ort, be de�ned on a larger class of datatypes, includ-

ing datatypes with function spaces [29, 66], but regular datatypes su�ce for our

purposes.

3.1.5 Background and related work

The basic idea behind polytypic programming is the idea of modelling datatypes

as initial functor-algebras. This is a relatively old idea, on which a large amount

of literature exists, see, amongst others, Lehmann and Smyth [56], Manes and

Arbib [60], and Hagino [31].

Polytypic functions are widely used in the Squiggol community, see [27, 59, 63,

64, 65, 67], where the `Theory of Lists' [10, 11, 43] is extended to datatypes that

can be de�ned by means of a regular functor. The polytypic functions used in

Squiggol are general recursive combinators such as catamorphisms (generalised

folds), paramorphisms, maps, etc. B�ohm and Berarducci [13], and Sheard [81]

give programs that automatically synthesise these functions. In the language

Charity [15] polytypic functions like the catamorphism and map are automat-

ically provided for each user-de�ned datatype. Polytypic functions for speci�c

problems, such as the maximum segment sum problem and the pattern match-

ing problem were �rst given by Bird et al. [9] and Jeuring [44]. Special purpose

polytypic functions such as the generalised version of function length and the

operator (==) can be found in [38, 63, 70, 71, 78]. Jay [42] has developed an

alternative theory for polytypic functions (in his terminology: shapely functions),

in which values are represented by their structure and their contents.

Type systems for languages with constructs for writing polytypic functions have

been developed by Jay [41], Ruehr [77], Sheard and Nelson [80], and Jansson

and Jeuring [39]. Our extension of Haskell is based on the type system described

in [39].

In object-oriented programming polytypic programming appears under the names
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`design patterns' [30], and `adaptive object-oriented programming' [57, 73]. In

adaptive object-oriented programming methods are attached to groups of classes

that usually satisfy certain constraints. The adaptive object-oriented program-

ming style is very di�erent from polytypic programming, but the resulting pro-

grams have very similar behaviour.

3.1.6 Overview

This paper is organised as follows. Section 3.2 explains the relation between

datatypes and functors, and de�nes some basic (structured recursion) operators

on some example datatypes. Section 3.3 introduces polytypic functions. Section

3.4 describes polytypic functions for rewriting terms, and for determining whether

a set of rewrite rules is normalising. Section 3.5 concludes the paper.

3.2 Datatypes and functors

A datatype can be modelled by an initial object in the category of F -algebras,

where F is the functor describing the structure of the datatype. The essence

of polytypic programming is that functions can be de�ned by induction on the

structure of datatypes. This section introduces functors, and shows how they

are used in describing the structure of datatypes. The �rst subsection presents

some notation and the second discusses a simple non-recursive datatype. The

next three subsections discuss recursive datatypes, and give the de�nitions of

basic structured recursion operators on these datatypes. The sixth subsection

introduces the type operators FunctorOf and Mu used to express the relationship

between a regular datatype and its functor and the last subsection de�nes the

polytypic Fusion law and gives examples of its use.

Just as in imperative languages where it is preferable to use structured iteration

constructs such as while-loops and for-loops instead of unstructured gotos, it is

advantageous to use structured recursion operators instead of unrestricted recur-

sion when using a functional language. Structured programs are easier to reason

about and more amenable to (possibly automatic) optimisations than their un-

structured counterparts. Furthermore, since polytypic functions are de�ned for

arbitrary datatypes, we cannot use traditional pattern matching in de�nitions of

polytypic functions, and the only resources for polytypic function de�nitions are

structured recursion operators. One of the most basic structured recursion oper-

ators is the catamorphism. This section de�nes catamorphisms on datatypes, and

shows how catamorphisms can be used in the de�nitions of many other functions.

Furthermore, it brie
y discusses the fusion law for catamorphisms.
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3.2.1 Notation

We will use a Haskell inspired notation for types and functions. The datatype

Either a b is a labeled sum consisting of left-tagged elements of type a, and right-

tagged elements of type b, and has constructors Left and Right :

data Either a b = Left a j Right b

Left :: a! Either a b

Right :: b! Either a b

In category theory, a functor is a mapping between categories that preserves the

algebraic structure of the category. A bifunctor is a two-argument functor. Since

a category consists of objects (types) and arrows (functions), a functor consists

of two parts: a de�nition on types, and a de�nition on functions. The type

constructor Either is the part of a bifunctor that takes two types and returns a

type. The operator + is the part of this bifunctor that takes two functions and

returns a function.

(+) :: (a! c)! (b! d)! Either a b! Either c d

(f + g) (Left x) = Left (f x)

(f + g) (Right y) = Right (g y)

9

>

=

>

;

(3.1)

To combine functions to operate on sums we also use the operator either, which

takes a function f of type a ! c and a function g of type b ! c, and applies

f to left-tagged values, and g to right-tagged values, throwing away the tag

information:

3

either :: (a! c)! (b! c)! Either a b! c

(f `either` g) (Left x) = f x

(f `either` g) (Right y) = g y

9

>

=

>

;

(3.2)

We write () to denote the datatype containing one element, which is also denoted

by (). The product type (a; b) denotes the datatype of pairs (x; y) with the usual

destructors fst, and snd:

fst :: (a; b)! a

snd :: (a; b)! b

The pairing operator, ( ; ), together with the operator � form a bifunctor:

(�) :: (a! c)! (b! d)! (a; b)! (c; d)

(f � g) (x; y) = (f x; g y)

3

Function either is actually the catamorphism on the datatype Either a b. Both Either and

either are prede�ned in Haskell 1.3
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3.2.2 A datatype for computations that may fail

The datatype Maybe a is used to model computations that may fail to give a

result.

data Maybe a = Nothing j Just a

For example, we can de�ne the expression divide m n to be equal to Nothing if n

equals zero, and Just (m=n) otherwise.

We model datatypes as �x-points, even non-recursive ones likeMaybe, as we want

to use the same representation for all datatypes. To be able to use polytypic func-

tions on the datatype Maybe a we have to extract the structure of this datatype.

The datatype Maybe a can be modelled by the type Mu FMaybe a, where Mu is

the �x-point constructor, FMaybe is a functor which describes the structure of

the datatype Maybe a, and a is the parameter of the datatype. Since we are only

interested in the structure of Maybe a, the names of the constructors of Maybe a

are not important. We de�ne FMaybe by removingMaybe's constructors (writing

() for the empty space we obtain by removing Nothing), and replacing the in�x j

with a pre�x Either:

4

FMaybe a r = Either () a

We now abstract from the arguments a and r in FMaybe. Function Par returns

the parameter a (the �rst argument to the functor). The operators are lifted

to the function level: Either is lifted to + and the empty product () is lifted to

Empty.

FMaybe = Empty+ Par

The function inn

Maybe

injects values of type Either () a into the type Maybe a.

Function out

Maybe

is the inverse of function inn

Maybe

: it projects values out of the

type Maybe a.

inn

Maybe

:: FMaybe a! Maybe a

out

Maybe

:: Maybe a! FMaybe a

The de�nitions of these functions are simple and omitted; in the polytypic pro-

gramming system PolyP these functions are automatically supplied by the system

for each user-de�ned datatype.

A function that handles values of type Maybe a consists of two components: a

component that deals with the constructor Nothing, and a component that deals

4

FMaybe is only the type part of the functor, the function part is fmap

Maybe

a r = id + a.
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with values of the form Just x. Such functions are called catamorphisms (abbrevi-

ated to cata). In general, a catamorphism is a function that replaces constructors

by functions. The de�nition of a catamorphism on the datatype Maybe a is very

simple; de�nitions of catamorphisms on recursive types are more involved.

Function cata

Maybe

takes an argument n `either` j of type FMaybe a ! b, and

replaces the representation of Nothing inMaybe a by n (), and the representation

of Just in Maybe a by j.

cata

Maybe

:: (FMaybe a! b)! Maybe a! b

cata

Maybe

h = h � out

Maybe

For example, the function size

Maybe

that takes a Maybe a-value and returns 0 if

it is of the form Nothing, and 1 otherwise, is de�ned by

size

Maybe

= cata

Maybe

((nx! 0) `either` (nx! 1))

This might seem a complicated way to de�ne function size

Maybe

, but we will see

later that this de�nition easily generalises to other datatypes.

The prelude of Haskell 1.3 contains a function maybe de�ned by:

maybe :: a ! (a! b) ! Maybe a ! b

maybe n j Nothing = n

maybe n j (Just a) = j a

This function has the same functionality as function cata

Maybe

, and we will use it

in the rest of the paper whenever we need a catamorphism on Maybe a.

3.2.3 A datatype for lists

Consider the datatype List a de�ned by

data List a = Nil j Cons a (List a)

Values of this datatype are built by prepending values of type a to a list. Again,

since we are only interested in the structure of List a, the names of the construc-

tors are not important. As an element of List is either a nullary constructor or a

binary constructor with its two arguments we can represent it by the �x-point of

the functor FList:

FList a r = Either () (a; r)

Note that the arguments of Cons are replaced by a pair. We now abstract from

the arguments a and r in FList. Function Par returns the parameter a (the
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�rst argument), and function Rec returns the recursive parameter r (the second

argument). The operators are lifted to the function level: Either is lifted to +,

the pairing operator ( ; ) is lifted to � and the empty product () is lifted to

Empty. As usual, � binds stronger than +.

FList = Empty+ Par�Rec

The initial object in the category of FList a-algebras (i.e. the �xed point of FList

with respect to its second component) models the datatype List a. The initial

object consists of two parts: the datatype List a, and a constructor function

inn

List

, that constructs elements of the datatype List a. Function inn

List

combines

the constructors Nil and Cons in a single constructor function for the datatype

List a:

5

inn

List

:: FList a (List a)! List a

inn

List

= const Nil `either` uncurry Cons

For example, the list containing only the integer 3, Cons 3 Nil, can be constructed

as inn

List

(Right (3; inn

List

(Left ()))). Function out

List

is the inverse of function

inn

List

:

out

List

:: List a ! FList a (List a)

out

List

Nil = Left ()

out

List

(Cons a l) = Right (a; l)

(3.3)

FList takes two types and returns a type, and function fmap

List

takes two func-

tions and returns a function. Together they form a bifunctor.

fmap

List

:: (a! c)! (b! d) ! FList a b! FList c d

fmap

List

= nf g ! id+ g � f (3.4)

As examples of programs that can be de�ned using the combinators introduced

so far we take take n l, which returns a list containing the �rst n elements of the

list l, and map

List

f l, which applies function f on all elements of the list l:

take :: Int! List a! List a

take 0 = const Nil

take n = inn

List

� fmap

List

id (take (n� 1)) � out

List

map

List

:: (a! b)! List a! List b

map

List

f = inn

List

� fmap

List

f (map

List

f) � out

List

(3.5)

The type constructor List and the function map

List

form a functor, just as FList

and fmap

List

form a functor.

5

The de�nitions of inn and out are those generated by PolyP given the datatype of lists.
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3.2.4 Catamorphisms on lists

Function size

List

returns the number of elements in a List a (function length

in Haskell). Given an argument list, the value of function size

List

can be com-

puted by replacing the constructor Nil by 0, and the constructor Cons by 1+, for

example,

Cons 2 (Cons 5 (Cons 3 Nil ))

1+ (1+ (1+ 0 ))

So the size

List

of this list is 3. We use a higher-order function to describe functions

that replace constructors by functions: the catamorphism. The catamorphism

on List a is the equivalent of function foldr on lists in Haskell. It is the basic

structured recursion operator on List a. Function cata

List

takes an argument

e `either` f of type FList a b! b, and replaces Nil by e, and Cons by f :

Cons 2 (Cons 5 (Cons 3 Nil ))

f 2 (f 5 (f 3 e ))

Function cata

List

is de�ned using function out

List

to avoid a de�nition by pattern

matching. Function fmap

List

id (cata

List

f) applies cata

List

f recursively to the

rest of the list.

cata

List

:: (FList a b! b)! List a! b

cata

List

f = f � fmap

List

id (cata

List

f) � out

List

The theoretical justi�cation for this de�nition is that in the category of FList a-

algebras the FList a-algebra (List a; inn

List

) is an initial object This means that

there is a unique arrow from (List a; inn

List

) to every FList a-algebra (b; f). This

unique arrow is the function cata

List

f :: List a! b. The initiality of this algebra

also means that cata

List

inn

List

is the identity function on List a. See [56, 59] for

more information about the underlying theory.

We use function cata

List

to de�ne the function size

List

and to give an alternative

de�nition of map

List

.

size

List

:: List a! Int

size

List

= cata

List

((nx! 0) `either` (n(x; n)! n+ 1))

map

0

List

:: (a! b)! List a! List b

map

0

List

f = cata

List

(inn

List

� fmap

List

f id) (3.6)

3.2.5 A datatype for trees

The datatype Tree a is de�ned by

data Tree a = Leaf a j Bin (Tree a) (Tree a)
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Applying the same procedure as for the datatype List a, we obtain the following

functor that describes the structure of the datatype Tree a.

FTree = Par+ Rec� Rec

Functions inn

Tree

and out

Tree

are similar to functions inn and out on List a. The

functions cata

Tree

and map

Tree

on Tree a are de�ned in terms of functions inn

Tree

,

out

Tree

and fmap

Tree

:

fmap

Tree

:: (a! c)! (b! d)! FTree a b! FTree c d

fmap

Tree

= nf ! ng ! f + g � g (3.7)

map

Tree

:: (a! b)! Tree a! Tree b

map

Tree

f = inn

Tree

� fmap

Tree

f (map

Tree

f) � out

Tree

cata

Tree

:: (FTree a b! b)! Tree a! b

cata

Tree

f = f � fmap

Tree

id (cata

Tree

f) � out

Tree

Note that the the only di�erence between the de�nition of cata

Tree

and the de�-

nition of cata

List

are the indices.

Function size

Tree

is de�ned by

size

Tree

:: Tree a! Int

size

Tree

= cata

Tree

(nx! 1 `either` n(m;n)! m+ n)

3.2.6 Functors for datatypes

We have given functors that describe the structure of the datatypes Maybe a,

List a and Tree a. For each regular datatype D a there exists a bifunctor F such

that the datatype is the �xed point in the category of F a-algebras [59]. The

argument a of F encodes the parameters of the datatype D a. From the PolyP-

users point of view, a functor is a value generated by the following grammar.

F ::= F + F j F � F j Empty j Par j Rec j D @ F j Const t (3.8)

Here t is one of the basic types Bool, Int, etc., +, �, and @ are binary in�x

constructors, and Empty, Par, Rec and Const t are nullary constructor (for each

base type t). Using this grammar, it is impossible to di�erentiate between the

structure of datatypes such as:

data Point a = Point (a; a)

data Point' a = Point' a a

FPoint = Par� Par
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Functor FPoint describes the structure of both Point a and Point' a. This im-

plies that it is impossible to use the fact that a constructor is curried or not in

the de�nition of a polytypic function. (This is a design choice that simpli�es the

implementation of PolyP but restricts the expressiveness of the functor language.

We will try to remove this restriction in the future.) PolyP's internal represen-

tation of a functor is (of course) more involved. We note the following about the

datatype of functors:

� The operators + and � are right-associative, so f + g+ h is represented as

f +(g+h). Operator � binds stronger than +. The empty product Empty

is the unit of �. Operator + may only occur at top level, so f � (g + h) is

an illegal functor. This restriction corresponds to the syntactic restriction

in Haskell which says that the vertical bar | that separates constructors

may only occur at the top level of datatype de�nitions.

� The alternative D @ F in this grammar is used to describe the structure of

types that are de�ned in terms of other user-de�ned datatypes, such as the

datatype of rose-trees:

data Rose a = Fork a (List (Rose a))

FRose = Par � (List @ Rec)

� Datatypes with more than one type argument can not be directly repre-

sented by these functors

6

but we are working on extending the system to

allow an index in the parameter case, Par

i

, indicating which of the param-

eters is intended. Bell�e et al. [7] describe a type system that allows some

polytypic functions that handles multiple parameters.

� In this paper we will not discuss mutually recursive datatypes. However,

it will be possible to de�ne polytypic functions over mutually recursive

datatypes in PolyP. (Expressed in functors by indexing the Rec case.)

� For a datatype that is de�ned using a constant type such as Int or Char

we use the Const functor. As an example we give the functor the following

simple datatype of types:

data Type a = Con String j Var a j Fun (Type a) (Type a)

FType = Const String + Par+ Rec� Rec

The use of functors in the representation of datatypes is central to polytypic

programming: polytypic functions are de�ned by induction on functors.

6

But they can be simulated using a one parameter datatype over a sum of the parameter

types.
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To express the relationship between regular datatypes and the corresponding

functors we use the type operators FunctorOf and Mu satisfying the following

equalities:

Mu (FunctorOf d) = d

FunctorOf (Mu f) = f

For the types de�ned in this chapter we have:

FunctorOf Maybe = FMaybe = Empty+ Par

FunctorOf List = FList = Empty+ Par� Rec

FunctorOf Tree = FTree = Par+ Rec�Rec

FunctorOf Rose = FRose = Par � (List @ Rec)

FunctorOf Type = FType = Const String + Par+ Rec� Rec

3.2.7 Fusion

Function cata

D

satis�es the so-called Fusion law de�ned in �gure 3.1 where we

use the notation F

d

for FunctorOf d.

h � cata

D

f = cata

D

g

( (Fusion)

h � f = g � fmap

D

id h

where

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

f :: F

D

a b! b

g :: F

D

a c! c

h :: b! c

cata

D

f :: D a! b

cata

D

g :: D a! c

Figure 3.1: The Fusion law

The fusion law gives conditions under which intermediate values produced by

a catamorphism can be eliminated. The fusion law is a polytypic law: it is

parametrised on the datatype constructor D. For each regular datatype D a,

fusion is a direct consequence of the free theorem [86] of the functional cata

D

. It

can also be proved using induction over the datatype D. If we allow partial or

in�nite objects we get the extra requirement that h be strict.

We give two examples of the use of the fusion law: one proof for trees and one for

any datatype D a. As the example for trees we show that the size of a tree is the

same as the length of the list of all elements in the tree: # �
atten

Tree

= size

Tree

,

where # is an abbreviation for the function that computes the length of a list.

7

7

The theorem # � 
atten

D

= size

D

holds for any regular datatype D a but this particular

proof only holds for trees.
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The function flatten

Tree

returns a list containing the elements of the argument

tree:


atten

Tree

:: Tree a! [a]


atten

Tree

= cata

Tree

(nx! [x] `either` n(x; y)! x++y)

In the proof we use abbreviations for the arguments to the catamorphisms in the

de�nitions of 
atten

Tree

and size

Tree

.

# � 
atten

Tree

= size

Tree

, (by de�nition, introducing the abbreviations � and �)

# � cata

Tree

� = cata

Tree

�

( (Fusion)

# � � = � � (fmap

Tree

id #)

, (by de�nition of fmap

Tree

)

# � � = � � (id+ (#�#))

,

# � (�

1

`either` �

2

) = (�

1

`either` �

2

) � (id+ (#�#))

, (rules for either [27])

(# � �

1

) `either` (# � �

2

) = (�

1

� id) `either` (�

2

� (#�#))

, (split the eithers and simplify)

# � �

1

= �

1

V

# � �

2

= �

2

� (#�#)

, (introduce arguments, implicitly 8-quanti�ed (Leibniz))

#(�

1

x) = �

1

x

V

#(�

2

(l; l

0

)) = �

2

(#l;#l

0

)

, (de�nition of �

i

and �

j

)

#[x] = 1

V

#(l++l

0

) = #l+#l

0

, (properties of #)

True

V

True

As an example of a polytypic proof we we prove that the functions map

D

f and

map

0

D

f are equal, where map

D

and map

0

D

are generalised versions of map

List

and

map

0

List

from equations 3.5 and 3.6:

map

D

;map

0

D

:: (a! b)! D a! D b

map

D

f = inn

D

� fmap

D

f (map

D

f) � out

D

map

0

D

f = cata

D

(inn

D

� fmap

D

f id)

In the proof we assume that that id is a catamorphism and that fmap is a bifunc-

tor. This is true for all regular datatypes.
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map

D

f = map

0

D

f

, (identity)

map

D

f � id = map

0

D

f

, (id is a catamorphism, de�nition of map

0

D

)

map

D

f � cata

D

inn

D

= cata

D

(inn

D

� fmap

D

f id)

( (Fusion)

map

D

f � inn

D

= (inn

D

� fmap

D

f id) � fmap

D

id (map
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3.3 Polytypic functions

This section introduces polytypic functions and shows how they are expressed in

PolyP. We will de�ne the polytypic versions of functions fmap, cata, size and map.

We will brie
y discuss a type system that supports writing polytypic functions,

and we will show how some of the functions that can be derived in Haskell can

be de�ned as polytypic functions.

To express that a polytypic function is de�ned only for regular datatypes d we

prepend Regular d => to the type of the function.

3.3.1 Basic polytypic functions

Functions inn and out

Functions inn and out are the basic functions with which elements of datatypes

are constructed and decomposed in de�nitions of polytypic functions. These

two functions are the only functions that can be used to manipulate values of

datatypes in polytypic functions.

out :: Regular d => d a -> (FunctorOf d) a (d a)

inn :: Regular d => d a <- (FunctorOf d) a (d a)
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Function out is our main means for avoiding de�nitions by pattern matching.

Informally, instead of de�ning for example f (Pattern x) = foo x we now de�ne

f = foo . out. Function inn (the inverse of out) is the polytypic constructor of

all regular datatypes. Both inn and out are primitive functions built into PolyP.

Functions pmap and cata

A polytypic function is a function that is de�ned by induction on the structure

of user-de�ned datatypes, i.e., by induction on functors, or a function de�ned

in terms of such inductive functions. Except for the type declarations (and the

indices), the de�nitions of pmap

8

and cata are the same as their de�nitions on

List a and Tree a.

pmap :: Regular d => (a -> b) -> d a -> d b

pmap p = inn . fmap p (pmap p) . out

cata :: Regular d => ((FunctorOf d) a b -> b) -> d a -> b

cata h = h . fmap id (cata h) . out

The polytypicmap-function, pmap applies function p to all elements in a structure.

Function cata recursively replaces constructors by functions. Except for the

context part Regular d => that simply states that d amust be a regular datatype,

the typing of the de�nition of cata is shown in �gure 3.2 where we use the notation

F

d

for FunctorOf d.

cata

d

h = h � fmap

d

id (cata

d

h) � out

d

out

d

:: d a ! F

d

a (d a)

fmap

d

id (cata

d

h) :: F

d

a (d a) ! F

d

a b

h :: F

d

a b ! b

cata

d

h :: d a ! b

Figure 3.2: The typing of the catamorphism.

The polytypic function size is an example of a catamorphism. It takes a value

x of datatype d a and counts the number of occurrences of values of type a in x.

size :: Regular d => d a -> Int

size = cata fsize

8

We call the polytypic map function pmap to avoid a name clash with the normal Haskell

function map.
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The argument to cata must be de�ned by induction on the structure of the

datatype d a.

A de�nition of a polytypic function by induction on functors starts with the

keyword polytypic, followed by the name of the function and its type. The

type declaration and the inductive de�nition of the function are separated by

an equality sign. As a �rst example, consider the de�nition of fsize. We will

explain what we mean with this de�nition below.

polytypic fsize :: f a Int -> Int

= case f of

g + h -> fsize `either` fsize

g * h -> \(x,y) -> fsize x + fsize y

Empty -> \x -> 0

Par -> \x -> 1

Rec -> \x -> x

d @ g -> \x -> sum (pmap fsize x)

Const t -> \x -> 0

either :: (a -> c) -> (b -> c) -> Either a b -> c

where function sum sums the integers of a value of an arbitrary datatype. If func-

tion size is applied to a value of the datatype List a or Tree a, PolyP generates

the right instantiation for function size.

One can see this de�nition as a de�nition of a family of functions, one for each f

on which fsize is used. Note that the type variable f has kind * -> * -> *, that

is, f takes two types and produces a type. We call variable f a functor variable.

Note that the di�erent cases in the de�nition of a polytypic function correspond

to the di�erent components of the datatype for functors described in Section 3.2.

The de�nition of function fsize requires the existence of polytypic functions sum

:: Regular d => d Int -> Int, which sums the integers in a value of an arbitrary

datatype. The de�nition of function sum is very similar that of size and can be

found in appendix B.2.

The �rst argument of function cata is a function of type (FunctorOf d) a b -> b.

This kind of functions can only be constructed by means of functions inn, out,

fmap, and functions de�ned by means of the polytypic construct (like fsize).

In all these cases the resulting function is also polytypic. If we want to use cata

on a speci�c datatype we must use a special syntactic construct for the argument

to cata: fci -> eig.

As an example we de�ne the function eval on the datatype BoolExp a by means

of a cata:

data BoolExp a = Con a
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| Not (BoolExp a)

| And (BoolExp a) (BoolExp a)

| Or (BoolExp a) (BoolExp a)

-- FunctorOf BoolExp = Par + Rec + Rec*Rec + Rec*Rec

eval :: BoolExp Bool -> Bool

eval = cata { Con -> id

Not -> not

And -> (&&)

Or -> (||) }

This evaluation function is an example of a function that cannot be made poly-

typic: The functor for BoolExp a contains two occurrences of the functor Rec * Rec

(for And and Or), and each polytypic function will behave in the same way on

these functors. That eval cannot be made polytypic should not be all too sur-

prising, it simply means that the there is no general algorithm that given the

abstract syntax of an expression type produces a semantics for that type!

Function fmap

Consider the function fmap, the de�nition of a functor on functions:

polytypic fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> (fmap p r) -+- (fmap p r)

g * h -> (fmap p r) -*- (fmap p r)

Empty -> id

Par -> p

Rec -> r

d @ g -> pmap (fmap p r)

Const t -> id

(-+-) :: (a -> c) -> (b -> d) -> Either a b -> Either c d

(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

If fmap is used on an element of type FList a b, then de�nition (3.4) of fmap is

generated, and if fmap is used on an element of type FTree a b, then de�nition

(3.7) of fmap is generated. Function fmap and function pmap, which is used in

the d @ g case, are mutually recursive.

9

The functions (-+-) and (-*-) are

implementation of the operators + and � from equations 3.1 and 3.3.

9

This recursive dependence is only in the generation phase. The generated instances for

fmap and pmap will not be mutually recursive as they will be instantiated on di�erent types.
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As an example we give the instance of function fmap for the functor FRose:

fmap_FRose = \p r -> (fmap_Par p r) -*- (fmap_(List@Rec) p r)

= \p r -> p -*- (pmap_List (fmap_Rec p r))

= \p r -> p -*- (pmap_List r)

3.3.2 Type checking polytypic de�nitions

We want to be sure that functions generated by polytypic functions are type

correct, so that no run-time type errors occur. For that purpose the polytypic

programming system type checks de�nitions of polytypic functions. This section

brie
y discusses how to type check polytypic functions, the details of the type

checking algorithm can be found in [39] and in section 2.3.

In order to type check inductive de�nitions of polytypic functions the system has

to know the type of the polytypic function: higher-order uni�cation is needed

to infer the type from the types of the functions in the case branches, and

general higher-order uni�cation is undecidable.

10

This is the reason why inductive

de�nitions of polytypic functions need an explicit type declaration. Given an

inductive de�nition of a polytypic function

polytypic foo :: ... f ...

= case f of

g + h -> bar

...

where f is a functor variable, the rule for type checking these de�nitions checks

among others that the declared type of function foo, with g + h substituted for

f, is an instance of the type of expression bar. For all of the expressions in the

branches of the case it is required that the declared type is an instance of the type

of the expression in the branch with the left-hand side of the branch substituted

for f in the declared type. The expression g + h can be seen as a `hungry' type

synonym (in desperate need of two type expression), so when we have substituted

g + h (or any of the other abstract type expressions) for f in the type of foo we

must also rewrite the expression using the following type synonym de�nitions:

type (g + h) a b = Either (g a b) (h a b)

type (g * h) a b = (g a b, h a b)

type Empty a b = ()

type Par a b = a

type Rec a b = b

10

See Ruehr's thesis [77] for a discussion on when it is possible to infer types for polytypic

functions.
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type (d @ g) a b = d (g a b)

type Const t a b = t

As an example we take the case g * h in the de�nition of fsize.

polytypic fsize :: f a Int -> Int

= case f of

...

g * h -> \(x,y) -> fsize x + fsize y

...

The type of the expression n(x,y) -> fsize x + fsize y is (f a Int, g a Int) ->

Int. Substituting the functor to the left of the arrow in the case branch, f * g, for

f in the declared type f a Int -> Int gives (f * g) a Int -> Int, and expanding

out the type synonyms gives (f a Int, g a Int) -> Int. This type is equal to

(and hence certainly an instance of) the type of the expression to the right of the

arrow in the case branch, so this part of the polytypic function de�nition is type

correct. For more examples, see section 2.3.

3.3.3 More examples of polytypic functions

In this section we de�ne three polytypic functions: flatten, propagate and zip,

which are useful in many situations.

Function flatten

Function flatten takes a value v of a datatype d a, and returns the list containing

all elements of type a occurring in v. For example, flatten (Bin (Bin (Leaf

17) (Leaf 3)) (Leaf 8)) equals [17,3,8]. This function is the central function

in Jay's [42] representation of values of shapely types: a value of a shapely type

is represented by its contents, obtained by 
attening the value, and its structure,

obtained by removing all contents of the value.

11

flatten :: Regular d => d a -> [a]

flatten = cata fl

polytypic fl :: f a [a] -> [a] =

case f of

g + h -> either fl fl

11

The polytypic function structure :: Regular d => d a -> d () has a very simple de�nition:

structure = pmap (const ()).
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g * h -> \(x,y) -> fl x ++ fl y

Empty -> \x -> []

Par -> \x -> [x]

Rec -> \x -> x

d @ g -> concat . flatten . pmap fl

Const t -> \x -> []

This de�nition of flatten returns a preorder traversal of a datatype, but other

variants are also possible.

Variants of function fl are the functions fl rec, which returns the list of elements

that occur at the recursive (second argument) position, fl par, which returns

the list of elements that occur at the parameter (�rst argument) position, and

fl all, which returns the list of elements that occur at both the recursive and

the parameter position.

fl_par :: f a b -> [a]

fl_rec :: f a b -> [b]

fl_all :: f a a -> [a]

fl_par = fl . fmap id nil

fl_rec = concat . fl . fmap nil (singleton.singleton)

fl_all = fl . fmap id singleton

singleton x = [x]

nil x = []

Function zip

Haskell's zip function takes two lists, and pairs the elements at corresponding

positions. If one list is longer than the other the extra elements are ignored. The

polytypic version of function zip, called pzip, zips two elements of datatype d a;

for example, pzip (Bin (Leaf 1) (Leaf 3)) (Bin (Leaf '7') (Leaf '8')) equals

the tree Bin (Leaf (1, '7') ) (Leaf (3, '8') ). Since it is impossible to zip

two elements that have di�erent structure, pzip returns a value of the form Just

x if the elements have the same shape, and Nothing otherwise. This implies that

we need some functions manipulating values with occurrences of Maybe values.

Functions resultM and bindM are the functions from the Maybe-monad.

resultM :: a -> Maybe a

resultM x = Just x

bindM :: Maybe a -> (a -> Maybe b) -> Maybe b

bindM x f = maybe Nothing f x
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(>>=) = bindM

(@@) :: (a -> Maybe b) -> (c -> Maybe a) -> c -> Maybe b

(g @@ f) a = f a >>= g

where maybe :: b -> (a -> b) -> Maybe a -> b is an implementation of the

catamorphism on the datatype Maybe a. Function propagate is a polytypic

function that propagates occurrences of Nothing in a element of a datatype to

top level.

12

For example, if we apply propagate to Bin (Leaf Nothing) (Leaf

(Just 1)) we obtain Nothing.

propagate :: Regular d => d (Maybe a) -> Maybe (d a)

propagate = cata (mapMaybe inn . fprop)

polytypic fprop :: f (Maybe a) (Maybe b) -> Maybe (f a b)

= case f of

g + h -> sumprop . (fprop -+- fprop)

g * h -> prodprop . (fprop -*- fprop)

Empty -> resultM

Par -> id

Rec -> id

d @ g -> propagate . (pmap fprop)

Const t -> resultM

sumprop :: Either (Maybe a) (Maybe b) -> Maybe (Either a b)

sumprop = mapMaybe Left `either` mapMaybe Right

prodprop :: (Maybe a,Maybe b) -> Maybe (a,b)

prodprop (Just x,Just y) = Just (x,y)

prodprop _ = Nothing

mapMaybe f = maybe Nothing (Just.f)

where mapMaybe is an implementation of the map function on the datatype

Maybe a.

Function pzip �rst determines whether or not the outermost constructors are

equal by means of the auxiliary function fzip, and then applies pzip recursively

to the children of the argument.

pzip :: Regular d => (d a,d b) -> Maybe (d (a,b))

12

Function propagate is an instance of the more general function thread :: (Regular d,

Monad m) => d (m a) -> m (d a), see appendix B.6.
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pzip = ((resultM.inn) @@ (fprop.fmap resultM pzip) @@ fzip )

. (out -*- out)

polytypic fzip :: (f a b,f c d) -> Maybe (f (a,c) (b,d))

= case f of

g + h -> (sumprop . (fzip -+- fzip)) @@ sumzip

g * h -> (prodprop . (fzip -*- fzip)) @@ prodzip

Empty -> const (resultM ())

Par -> resultM

Rec -> resultM

d @ g -> (propagate . (pmap fzip )) @@ pzip

Const t -> constzip

sumzip ::(Either a b,Either c d)-> Maybe (Either (a,c) (b,d))

sumzip (x,y) = case (x,y) of

(Left s,Left t) -> resultM (Left (s,t))

(Right s,Right t)-> resultM (Right (s,t))

_ -> Nothing

prodzip :: ((a,b),(c,d)) -> Maybe ((a,c),(b,d))

prodzip ((x,y),(s,t)) = resultM ((x,s),(y,t))

constzip :: (t,t) -> Maybe t

constzip (x,y) = resultM x

--constzip (x,y) = if x==y then resultM x else Nothing

Note that when fzip is applied to a pair of values that are represented by means

of the Const functor, we have (arbitrarily) chosen to return the �rst of these.

Ideally we should return Nothing if the constants are not equal, but there are

technical problems with using an equality test in this position. Function pzip

is a strict function. To obtain a nonstrict version of function pzip, we de�ne a

polytypic version of function zipWith, called pzipWith.

Function pzipWith

Function pzipWith is more general than its specialised version on the datatype

of lists. It takes the three functions ins, op, and fail, and a pair of values

(x,y). If x and y have the same outermost constructor, function pzipWith is

applied recursively to the fzipped children of the constructors. The pairs at the

parameters are combined with function op, and the result of these applications

is combined with function ins. If x and y have di�erent outermost constructors,

fail computes the result from x and y.
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pzipWith :: Regular d =>

((FunctorOf d) c e -> e) ->

((a,b)->c) ->

((d a,d b)->e) ->

(d a,d b) -> e

pzipWith ins op fail (x,y) =

maybe (fail (x,y))

(ins.fmap op (pzipWith ins op fail))

(fzip (out x,out y))

The expression pzipWith inn has type Regular d => ((a,b) -> c) -> ((d a,

d b) -> d c) -> (d a, d b) -> d c, and is the natural generalisation of Haskell's

function zipWith. We can now give an alternative de�nition of function pzip.

pzip :: Regular d => (d a, d b) -> Maybe (d (a, b))

pzip = pzipWith (mapMaybe inn.fprop) resultM (const Nothing)

This function is still not as lazy as the Haskell zip for lists. If we try to zip two

in�nite lists the program will loop even if we request only the �rst few elements

of the result. This is due to the use of a Maybe type in the result: the zip function

can not determine whether or not the structures are equal until the last element

has been checked. This can be worked around be using the result type (d (a,b),

Bool) where (x,True) corresponds to Just x and (y,False) corresponds to

Nothing:

pzip' :: Regular d => (d a, d b) -> (d (a,b), Bool)

pzip' p = ( pzipWith inn id (const undefined) p

, pzipWith (and.fl_all) (const True) (const False) p)

This version is lazy in the �rst component of the resulting pair (but of course still

strict in the second component).

3.3.4 Haskell's deriving construct

In Haskell there is a possibility to derive the functions in some classes for most

datatypes. For example, writing

data Tree a = Leaf a | Bin (Tree a) (Tree a) deriving (Eq, Ord)

generates instances of the class Eq (containing (==) and (/=)), and the class Ord

(containing compare, (<), (<=), (>=), (>), max, and min) for the datatype Tree

a. There are six classes that can be derived in Haskell, besides the two classes
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above: Bounded, functions for obtaining the bounds of bounded datatypes, Enum,

enumerating values of a datatype, and Read and Show

13

, functions for printing

and parsing values of a datatype. The functions in the derived classes are typical

examples of polytypic functions. In fact, one reason for developing a language

with which polytypic functions can be written was to generalise the rather ad hoc

deriving construct. All functions in the classes that can be derived can easily be

written as polytypic functions, except for the functions in the classes Show and

Read. To be able to write the functions in the classes Show and Read as polytypic

functions we have to introduce a separate built-in function that gives access to

constructor names.

14

In this section we will de�ne the polytypic versions of functions (==) (written

(!==!)) and compare by means of which all functions in the classes Eq and Ord

are de�ned. Furthermore, we will give the function with which the constructors

of a datatype can be printed. The de�nitions of the polytypic versions of the

functions in the other classes that can be derived can be found in PolyP's libraries.

Function (!==!)

Equality on datatypes is de�ned as follows. Function (!==!) zips its arguments,


attens the result to a list of pairs, and checks that each pair of values in this list

consists of equal values. The arguments have equal shape if pzip returns a value

of the form Just z for some z, and the arguments have equal contents if all pairs

in the list of pairs we obtain by 
attening z consist of equal elements.

(!==!) :: (Regular d, Eq a) => d a -> d a -> Bool

x !==! y = maybe False

(all (uncurry (==)) . flatten)

(pzip (x,y))

The laziness behaviour of this de�nition is not the same as in Haskell: It �rst

compares the structures (with pzip) and only then the contents. This means

that the comparison [1..] !==! [2..] never terminates. This can be remedied

if we de�ne function !==! by means of function pzipWith:

(!==!) :: (Regular d, Eq a) => d a -> d a -> Bool

l !==! r = pzipWith ins op fail (l,r)

where ins = and . fl_all

op = uncurry (==)

fail = \_ -> False

13

The class Text was split into Read and Show in Haskell 1.3.

14

We also need access to the �xities of the constructors, but we have not implemented that

yet.
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This version of (!==!) compares the structure and the values at the top level

before looking at the subtrees. With the new de�nition the calculation of [1..]

!==! [2..] terminates with the value False.

Function compare

The de�nition of function compare is more complicated than the de�nition of

function (!==!). The Haskell report de�nes x <= y for an arbitrary datatype

as follows: the outermost constructor of x appears earlier in the datatype de�-

nition than the outermost constructor of y, or x and y have the same outermost

constructor, and the children of x are lexicographically smaller than or equal to

(under the ordering (<=)) the children of y. This implies that we need to be able

to obtain the position of a constructor in its datatype de�nition. For this purpose

we introduce the polytypic function fcnumber, which given a value of type f a b

(usually obtained by means of function out, so the b is often d a), returns the

position of the constructor in the de�nition of the datatype corresponding to d a.

polytypic fcnumber :: f a b -> Int

= case f of

g + h -> fcnumber `either` ((1+) . fcnumber)

_ -> const 0

Here we use the fact that + is right-associative. Function compare is now de�ned

as follows. It �rst fzips its arguments. If the arguments cannot be fzipped (i.e.,

fzip returns Nothing), function order determines which of the arguments comes

�rst in the de�nition of the datatype, and returns LT, EQ, or GT accordingly. If the

arguments of compare can be fzipped, functions order and compare are applied

recursively, and the results are combined by 
attening the result, and folding

from left to right until we encounter a value unequal to EQ.

data Ordering = LT | EQ | GT

compare :: Ord a => d a -> d a -> Ordering

compare x y = maybe (order (fcnumber (out x),fcnumber (out y)))

(foldr op EQ

.fl_all

.fmap order (uncurry compare) )

(fzip (out x , out y))

where order (x,y) | x < y = LT

| x == y = EQ

| x > y = GT

op EQ y = y

op x y = x
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The classes Show and Read

The classes Show and Read contains functions for printing values of a datatype.

To be able to de�ne the functions in these classes as polytypic functions, we

have to introduce a separate built-in function that gives access to constructor

names. This function is called fconstructor name, and it is used in function

constructor name.

fconstructor_name :: f a b -> String

constructor_name :: d a -> String

constructor_name = fconstructor_name . out

For example, constructor name (Cons 1 Nil) equals "Cons".

Using constructor name a polytypic show function can be written as a catamor-

phism, but we have not worked out all details yet.

show :: (Regular d, Show a) => d a -> String

show = cata fshow . pmap show

polytypic fshow :: f String String -> String

...

3.4 Polytypic term rewriting

Rewriting systems is an area in which polytypic functions are useful. A rewriting

system is an algebra together with a set of rewriting rules. In a functional lan-

guage, the algebra is represented by a datatype, and the rewriting rules can be

represented as a list of pairs of values of the datatype extended with variables.

In this section we will de�ne a function rewrite which takes a set of rewrite

rules of some datatype extended with variables, and a value of the datatype

without variables, and rewrites this value by means of the rewriting rules us-

ing the parallel-innermost strategy, until a normal form is reached. We use the

parallel-innermost strategy [53] because it is relatively easy to implement func-

tion rewrite as an e�cient function when using this strategy. Function rewrite

does not check if the rewriting rules in its �rst argument are normalising, so it

will not terminate for certain inputs.

The other main function de�ned in this section is a function that determines

whether a set of rewriting rules is normalising. This function is based on a well-

known method of recursive path orderings, as developed by Dershowitz on the
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basis of a theorem of Kruskal, see [53]. The results in this section are for a large

part based on results from Berglund [8], in which more applications of polytypic

functions in rewriting systems can be found.

We will assume there is a polytypic uni�cation function unify that takes a pair

a terms and gives a substitution (see chapter 4 for an implementation), and a

function appSubst for applying this substitution to a term.

The code in this section was developed using a predecessor of PolyP with slightly

di�erent notation and has not been translated to the current notation. The di�er-

ences mainly appear in the types

15

and they are not essential for the algorithms.

3.4.1 A function for rewriting terms

Function rewrite takes two arguments with di�erent but related types: a set of

rewrite rules of a datatype extended with variables, and a value of the datatype

without variables. To express this relation between the types of the arguments

we have to make the presence of variables visible in the type. Let Mu f a be an

arbitrary datatype. Then we can extend this datatype with variables (represented

by integers) by adding an extra component to the sum represented by f: Mu

(Const Int + f) a. Thus we obtain the following type for rewrite:

type MuVar f a = Mu (Const Int + f) a

type Rule f a = (MuVar f a , MuVar f a)

rewrite :: [Rule f a] -> Mu f a -> Mu f a

Later we will convert values of Mu f a to values of type MuVar f a and vice versa.

Functions toMuVar and fromMuVar take care of these type conversions. Function

toMuvar injects values of an arbitrary datatype into values of the datatype ex-

tended with variables. The resulting value does not contain variables. Function

fromMuVar translates a variable-free value of the datatype extended with vari-

ables to the datatype without variables. This function fails when it is applied to

a value that does contain variables.

toMuVar :: Mu f a -> MuVar f a

toMuVar = cata ftoMuVar

polytypic ftoMuVar :: f a (MuVar f a) -> MuVar f a

= case f of

_ -> \x -> inn (Right x)

15

The main di�erence is that types of polytypic functions are written pf :: ... Mu f a

... instead of PolyPs pf :: Regular d => ... d a ....
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fromMuVar :: MuVar f a -> Mu f a

fromMuVar = cata ffromMuVar

polytypic ffromMuVar :: (Const Int + f) a (Mu f a) -> Mu f a

= case f of

_ -> \(Right x) -> inn x

We will de�ne function rewrite in a number of stages. The �rst de�nition is

a simple, clearly correct but very ine�cient implementation of rewrite. This

de�nition will subsequently be re�ned to a function with better performance.

A �rst de�nition of function rewrite

Function rewrite rewrites its second argument with the rules from its �rst ar-

gument until it reaches a normal form. So function rewrite is the �xed-point

of a function that performs a single parallel-innermost rewrite step, function

rewrite step. The �xed-point computation is surrounded by type conversions

in order to be able to apply the functions for uni�cation given in chapter 4.

rewrite rs = fromMuVar . rewrite' rs . toMuVar

rewrite' rs = fp (rewrite_step rs)

fp f x | fx !==! x = x

| otherwise = fp f fx

where fx = f x

rewrite_step :: [Rule f a] -> MuVar f a -> MuVar f a

Function rewrite step is the main rewriting engine. Given a set of rules and a

value x, it tries to rewrite all innermost redeces of x. This is achieved by applying

rewrite step recursively to x, and only rewriting the innermost redeces. At

each recursive application function rewrite step applies a function innermost.

Function innermostdetermines if any of the children have been rewritten. Only if

no child has been rewritten, it tries to reduce its argument. To determine whether

or not one of the children has been rewritten, function innermost compares its

argument with the original argument of function rewrite step. The recursive

structure of function rewrite step is that of a cata, but it needs access to the

original argument too. Such functions are called paramorphisms [63].

para :: (f a b -> Mu f a -> b) -> Mu f a -> b

para h x = h (fmap id (para h) (out x)) x
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rewrite_step rs = para (innermost rs)

innermost :: Eq a => [Rule f a] ->

(Const Int + f) a (MuVar f a) ->

MuVar f a -> MuVar f a

innermost rs x' x =

if (inn x') !/=! x then inn x' else reduce rs x

Function unify is de�ned in chapter 4.

reduce :: Eq a => [Rule f a] -> MuVar f a -> MuVar f a

reduce [] t = t

reduce ((lhs,rhs):rs) t = case unify (lhs,t) of

Just s -> appSubst s rhs

Nothing -> reduce rs t

Function rewrite is extremely ine�cient. For example, if we represent natural

numbers with Succ and Zero, and we use the rewriting rules for Zero, Succ, :+:,

and :*: given in the introduction, it takes hundreds of millions of (Gofer) reduc-

tions to rewrite the representation of 2

8

to the representation of 256. One reason

why rewrite is ine�cient is that in each application of function rewrite step

the argument is traversed top-down to �nd the innermost redeces. Another reason

is that function rewrite step performs a lot of expensive comparisons.

If we want to change function rewrite to rewrite terms using another inner-

most rewriting strategy, the only function that has to be rewritten is function

innermost. All the variants of innermost are simple polytypic functions.

Avoiding unnecessary top-down traversals and comparisons

We want to obtain a function that rewrites a term in time proportional to the

number of steps needed to rewrite the term. As a �rst step towards such a

function, we replace the �xed-point computation by a double recursion. The

double recursion avoids the unnecessary top-down traversals in search for the

innermost redeces. The idea is to �rst recursively rewrite the children of the

argument to normal form, and only then rewrite the argument itself.

For con
uent and normalising term rewriting systems we have that �rst applying

rewrite' to the subterms of the argument, and subsequently to the argument

itself, gives the same result as applying function rewrite' to the argument itself.

rewrite' rs (inn x) = rewrite' rs (inn (fmap id (rewrite' rs) x))

It follows that function rewrite' can be written as a catamorphism, which uses

function rewrite' in the recursive step. This version of function rewrite is

called rewritec.
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rewritec rs = cata frewrite

where frewrite x = rewrite' rs (inn x)

Observe that in the recursive step, all subexpressions are in normal form. It

follows that the only possible term that can be rewritten is the argument inn x.

If inn x is a redex, then it is rewritten, and we proceed with rewriting the result.

If inn x is not a redex, then inn x is in normal form. We adjust function reduce

such that it returns Nothing if it does not succeed in rewriting its argument, and

Just x if it does succeed with x.

rewritec rs = cata frewrite

where

frewrite x = maybe (inn x) (rewritec rs) (reduce rs (inn x))

reduce :: Eq a => [Rule f a] -> MuVar f a -> Maybe (MuVar f a)

reduce [] t = Nothing

reduce ((lhs,rhs):rs) t = case unify (lhs,t) of

Just s -> Just (appSubst s rhs)

Nothing -> reduce rs t

This function rewrites 2

8

much faster than the �rst de�nition of function rewrite,

but it is still far from linear in the number of rewrite steps.

E�cient rewriting

A source of ine�ciency in function rewritec is the call to function rewritec

in frewrite. If reduce rs (inn x) returns some expression Just e, rewritec

rs is applied to e. When evaluating the expression rewritec rs e the whole

expression e is traversed to �nd the innermost redeces, including all subterms

which are known to be in normal form. For example, consider the expression 100

:*: 2, where 2 and 100 abbreviate their equivalents written with Succ and Zero.

Applying the second rule for :*:, this term is reduced to (100 :*: 1) :+: 100.

Now, rewritec rs will traverse both subexpressions 100, and �nd that they are

in normal form, which we already knew. To avoid these unnecessary traversals,

function rewritec is rewritten as follows. Instead of applying rewritec rs re-

cursively to the reduced expression, we apply a similar function recursively to

the right-hand side of the rule with which the expression is reduced. This avoids

recursing over the expressions substituted for the variables in this rule, which are

known to be in normal form. To de�ne this function we use the polytypic version

of function zipWith, called pzipWith. Function pzipWith is used in the de�ni-

tion of frewrite to zip the right-hand side of a rule with the expression obtained

by substituting the appropriate expressions for the variables in this rule. This
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means that in case pzipWith encounters two arguments with a di�erent outer-

most constructor, the left argument is a variable, and the right argument is an

expression in normal form substituted for the variable. In that case we return

the second argument. In case pzipWith encounters two arguments with the same

outermost constructor, it tries to rewrite the zipped expression.

rewritec rs = cata frewrite

where frewrite x = maybe (inn x) just (reduce rs (inn x))

just = pzipWith frewrite fst snd

reduce :: Eq a => [Rule f a] -> MuVar f a ->

Maybe (MuVar f a , MuVar f a)

reduce [] t = Nothing

reduce ((lhs,rhs):rs) t = case unify (lhs,t) of

Just s -> Just (rhs,

appSubst s rhs)

Nothing -> reduce rs t

The resulting rewrite function is linear in the number of reduction steps needed

to rewrite a term to normal form. It rewrites the representation of 2

8

into the

representation of 256 with the rules given for Zero, Succ, :+:, and :*: in the

introduction about 500 times faster than the original speci�cation of function

rewrite. This function can be further optimised by partially evaluating with

respect to the rules; we omit these optimisations.

3.4.2 Normalising sets of rewriting rules

Termination of function rewrite can only be guaranteed if its argument rules

are normalising. A set of rules is normalising if all terms are rewritten to normal

form (i.e. cannot be rewritten anymore) in a �nite number of steps. It is unde-

cidable whether or not a set of rewriting rules is normalising (unless all rules do

not contain variables), but there exist several techniques that manage to prove

the normalising property for a large class of normalising rewriting rules. A tech-

nique that works in many cases is the method based on a well-known method of

recursive path orderings, as developed by Dershowitz on the basis of a theorem

of Kruskal, see [53]. In this section we will de�ne a function normalise based on

this technique.

normalise :: Eq a => [Rule f a] -> Bool

Note that if function normalise returns False for a given set of rules this does not

necessarily mean that the rules are not normalising, it only means that function

normalise did not succeed in constructing a witness for the normalising property

of the rules.
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The recursive path orderings technique

The recursive path orderings technique for proving the normalising property is

rather complicated; it is based on a deep theorem from Kruskal. In this section

we will see the technique in action; see [53] for the theory behind this technique.

A set of rules of type [Rule f a] is normalising according to the recursive path

orderings technique if we can �nd an ordering on the constructors of the datatype

MuVar f a such that each left-hand side of a rule can be rewritten into its right-

hand side using a set of four special rules. These rules will be illustrated with

the rewriting rules for Zero, Succ, Add and Mul given in the introduction:

Var 1 :++: VZero -> Var 1

Var 1 :++: VSucc (Var 2) -> VSucc (Var 1 :++: Var 2)

Var 1 :**: VZero -> VZero

Var 1 :**: VSucc (Var 2) -> (Var 1 :**: Var 2) :++: Var 1

We assume that the constructors of the datatype VNumber are ordered by Var <

VZero < VSucc < :++: < :**:. The four rewriting rules with which left-hand

sides have to be rewritten into right-hand sides are the following:

� Place a mark (denoted by an exclamation mark !) on top of a term.

� A marked value x with outermost constructor c may be replaced by a value

with outermost constructor c' < c, and with marked x's occurring at the

recursive child positions of c'. For example, suppose y equals !(Var 1

:++: VSucc (Var 2)), then y -> VSucc y, since VSucc < :++:.

� A mark on a value x may be passed on to zero or more children of x.

For example, the mark on y in the above example may be passed on to

the subexpression VSucc (Var 2), so !(Var 1 :++: VSucc (Var 2)) ->

Var 1 :++: !(VSucc (Var 2)).

� A marked value may be replaced by one of its children occurring at the

recursive positions. For example, !(VSucc (Var 2)) -> Var 2.

Each of the right-hand sides of the rules for rewriting numbers can be rewritten

to its left-hand side using these rules. For example,

Var 1 :**: VSucc (Var 2)

-> { Rule 1 }

!(Var 1 :**: VSucc (Var 2))

-> { Rule 2 }

!(Var 1 :**: VSucc (Var 2)) :++: !(Var 1 :**: VSucc (Var 2))
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-> { Rule 4 }

!(Var 1 :**: VSucc (Var 2)) :++: Var 1

-> { Rule 3 }

(Var 1 :**: !(VSucc (Var 2))) :++: Var 1

-> { Rule 4 }

(Var 1 :**: Var 2) :++: Var 1

It follows that the set of rules for rewriting numbers is normalising.

Function normalise

A naive implementation of a function normalise that implements the recursive

path orderings technique computes all possible orderings on the constructors, and

tests for each ordering whether or not each left-hand side can be rewritten to its

corresponding left-hand side using the four special rules. If it succeeds with one of

the orderings, the set of rewriting rules is normalising. Since the four special rules

of the recursive path ordering technique themselves are not normalising this test

might fail to terminate. To obtain a terminating function normalise, we imple-

ment a restricted version of the four special rules. Thus, function normalise does

not fully implement the recursive path orderings technique, but it still manages

to prove the normalising property for a large class of sets of rewriting rules.

normalise rules = or [all (l_to_r ord) rules | ord <- allords]

allords :: [Mu f a -> Int]

l_to_r :: Eq a => (Mu f a -> Int) -> (Mu f a, Mu f a) -> Bool

Function allords generates all orderings, where an ordering is a function that

given a value of the datatype returns an integer. Function l to r implements a

restricted version of the four special rewrite rules.

Function allords is de�ned by means of two functions: function perms, which

computes all permutations of a list, and function fconstructors which returns

a representation of the list of all constructors of a datatype. The de�nition of

function perms is omitted.

polytypic fconstructors :: [f a b]

= case f of

g + h -> [Left x | x <- fconstructors] ++

[Right y | y <- fconstructors]

_ -> [undefined]

allords = map make_ord (perms fconstructors)
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where make_ord l x = index (fcnumber (out x)) (map fcnumber l)

index n (m:ms) | n == m = 0

| otherwise = 1 + index n ms

index n [] = error "no index in list"

A straightforward optimisation of function normalise can be obtained by only

generating those orderings that do not immediately fail given the argument rules.

For example, any ordering on VNumber with :**: < :++: will immediately fail

on account of the fourth rewriting rule, which requires :++: < :**:. We will not

implement this optimisation here.

Finally, we have to implement function l to r. Given an ordering and a rewriting

rule (l,r), function l to r tries to rewrite l into r. Distinguish the following

three cases:

� The outermost constructor of the right-hand side, ocr, is larger than the

outermost constructor of the left-hand side, ocl, under the given ordering.

In this case it is impossible to rewrite l into r, and function l to r returns

False.

� ocr is smaller than ocl under the given ordering. In this case, function

l to r computes the recursive components of the right-hand side. If there

are no such, it checks that the right-hand side itself is a subexpression of the

left-hand side. If there are recursive components, function l to r checks

that all of these are subexpressions of the left-hand side. For this purpose

we de�ne function subexpr, which takes two arguments, and determines

whether or not the second argument is a subexpression of the �rst argu-

ment. A subexpression of x does not have to be a consecutive part of x,

for example, the tree Bin (Leaf 3) (Leaf 2) is a subexpression of the

tree Bin (Bin (Leaf 3) (Leaf 4)) (Leaf 2). On lists, subexpressions

are usually called subsequences.

subexpr :: Eq a => Mu f a -> Mu f a -> Bool

subexpr l r =

pzipWith (and . fl_all)

(uncurry (==))

(\(x,y)-> (any (`subexpr` y) . fl_rec . out) x)

(l,r)

� The outermost constructors are equal under the given ordering. In this case,

function l to r fzips the children of the left-hand side and the right-hand

side. It checks that all pairs of values appearing at the parameter position

consist of equal values, and it checks that there exists at least one recursive

position pair. Furthermore, for each pair of values (l,r) appearing at a

recursive position, l to r ord (l,r) has to hold.
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We obtain the following de�nition of function l to r.

l_to_r ord (l,r)

| ocl < ocr = False

| ocl > ocr = let x = fl_rec (out r) in

if null x then subexpr l r else all (subexpr l) x

| ocl == ocr =

maybe undefined

(\x -> parEq x && all' (l_to_r ord) (fl_rec x))

(fzip (out l , out r))

where ocl = ord l

ocr = ord r

all' p [] = False

all' p xs = all p xs

parEq :: Eq a => f (a,a) b -> Bool

parEq = all (uncurry (==)) . fl_par

3.5 Conclusions and future work

This paper introduces polytypic programming: programmingwith polytypic func-

tions. Polytypic functions are useful in applications where programs are datatype

independent in nature. Typical example applications of this kind are uni�cation

(see chapter 4) and the rewriting system examples discussed in this paper. Poly-

typic functions are also useful in the evolutionary process of developing complex

software. Here, one important feature of polytypic functions is the fact that they

adapt automatically to changing structure.

The code generated for programs containing polytypic functions is usually only

slightly less e�cient than datatype-speci�c code. In fact, polytypic programming

encourages writing libraries of generally applicable applications, which is an in-

centive to write e�cient code, see for example our library of rewriting functions.

The polytypic programming system PolyP is still under development. In the

future PolyP will be able to handle mutual recursive datatypes, datatypes with

function spaces, and datatypes with multiple arguments.

Polytypic programming has many more applications than we have described in

this paper. A whole range of applications can be found in adaptive object-oriented

programming. Adaptive object-oriented programming is a kind of polytypic pro-

gramming, in which constructor names play an important role. For example,

Palsberg et al. [73] give a program that for an arbitrary datatype that contains
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the constructor names Bind and Use, checks that no variable is used before it

is bound. This program is easily translated into a polytypic function, but we

have yet to investigate the precise relation between polytypic programming and

adaptive object-oriented programming.
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Polytypic uni�cation
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Abstract

Uni�cation, or two-way pattern matching, is the process of solving an equation

involving two �rst-order terms with variables. Uni�cation is used in type inference

in many programming languages and in the execution of logic programs. This

means that uni�cation algorithms have to be written over and over again for

di�erent term types.

Many other functions also make sense for a large class of datatypes; examples are

pretty printers, equality checks, maps etc. They can be de�ned by induction on

the structure of user-de�ned datatypes. Implementations of these functions for

di�erent datatypes are closely related to the structure of the datatypes. We call

such functions polytypic.

This paper describes a uni�cation algorithm parametrised on the type of the

terms and shows how to use polytypism to obtain a uni�cation algorithm that

works for all regular term types.
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4.1 Introduction

In simple pattern matching, a pattern (a string containing wild cards) is matched

with a normal string to determine if the string is an instance of the pattern. This

can be generalised in at least two directions; we can allow the second string to

contain wild cards too, thus making the matching symmetric, or we can allow

more complicated terms than strings. By combining these two generalisations we

obtain uni�cation. A uni�cation algorithm tries to �nd a most general uni�er

(mgu) of two terms. The most general uni�er of two terms is the smallest sub-

stitution of terms for variables such that the substituted terms become equal.

1

Use of uni�cation is widespread; it is used in type inference algorithms, rewriting

systems, compilers, etc [54].

Descriptions of uni�cation algorithms normally deal with a general datatype

of terms, containing variables and applications of constructors to terms, but each

real implementation uses one speci�c instance of terms and a specialised version

of the algorithm for this term type. This paper describes a functional uni�cation

program that works for all regular term types. The program is an example of a

polytypic function [44].

Function length :: List a -> Int, which counts the number of occurrences

of a's in a list, and the similar function numOfNodes :: Tree a -> Int, which

counts the number of occurrences of a's in a tree are both instances of a more

general function size :: d a -> Int. Function size is not only polymorphic in

a, but also in the type constructor d. In the same way we can generalise the func-

tion map :: (a -> b) -> List a -> List b into a function map :: (a -> b)

-> d a -> d b, so that it too works for trees and other similar datatypes. We

call such functions polytypic functions. For an introduction to the basic ideas of

polytypic functions see [46] and for a more theoretical treatment of polytypism

[9] and [71].

In this paper we show that

� by parametrising the uni�cation algorithm by the datatype for terms, we

can separate the core of the algorithm from the parts depending on the

speci�c datatype, and

� by abstracting away from the type constructor dependence in the datatype

dependent part we obtain a polytypic program.

Thus we have one implementation of uni�cation that works for many di�erent

term types leaving the specialisation to the computer.

The core of the uni�cation algorithm is written in Haskell (using the Gofer

interpreter [50]) and the polytypic part in PolyP [39]. The full code is available

from http://www.cs.chalmers.se/~patrikj/unify/.

1

If two �rst order terms are uni�able, their mgu is unique [75].
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class Children t where children :: t ! [t]

class VarCheck t where varCheck :: t ! Maybe Var

class TopEq t where topEq :: t ! t ! Bool

class (VarCheck t, TopEq t, Children t) ) Term t

class Subst s t where idSubst :: s t

modBind :: (Var,t) ! s t ! s t

lookup :: Var ! s t ! Maybe t

Figure 4.1: Terms and substitutions

4.2 Uni�cation

In this section we will specify and implement a functional uni�cation algorithm.

We start with an example. Consider the uni�cation of the two terms f(x; f(a; b))

and f(g(y; a); y), where x and y are variables and f , g, a and b are constants. Since

both terms have an f on the outermost level, these expressions can be uni�ed

if x can be uni�ed with g(y; a), and f(a; b) can be uni�ed with y. As these two

pairs of terms are uni�ed by the substitution � = fx 7! g(y; a); y 7! f(a; b)g, the

original pair of terms is also uni�ed by applying the substitution �, yielding the

uni�ed term f(g(f(a; b); a); f(a; b)).

4.2.1 Terms

In the uni�cation literature, a term is usually de�ned as either a variable or an

application of a constructor to zero or more terms. (Var is a set of variables and

Con is a set of constructor constants.)

T ::= v j c(T

1

; : : : ; T

arity(c)

); v 2 Var; c 2 Con

We instead focus on the three properties of the type of terms we need to de�ne

uni�cation. We need to know

� whether or not a term is a variable, and if it is, which variable;

� the immediate subterms of a term;

� when two terms are top-level equal. (Usually `top level equal' means `equal

outermost constructors'.)

We de�ne one type class for each of these properties and de�ne the class of terms

to be the intersection of these three classes (see �gure 4.1). As an example, the

instances for the type T above are shown in �gure 4.2.
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data T = V Var | App Con [T]

instance Children T where children (V v) = []

children (App c ts) = ts

instance VarCheck T where varCheck (V v) = Just v

varCheck _ = Nothing

instance TopEq T where topEq (App c l) (App c' l') = c == c'

topEq (V v) (V w) = v == w

topEq _ _ = False

instance Term T

Figure 4.2: T is an instance of Term.

4.2.2 Substitutions

A substitution is a mapping from variables to terms leaving all but a �nite number

of variables unchanged. We de�ne a class of substitutions parametrised on the

type of terms

2

by the three functions lookup, modBind and idSubst. The call

lookup v s looks up the variable v in the substitution s (giving Nothing if the

variable is unchanged by s), modBind (v,t) s modi�es the substitution s to

bind v to t (leaving the bindings for other variables unchanged) and idSubst is

the identity substitution

A uni�er of two terms is a substitution that makes the terms equal. A substi-

tution s is at least as general as a substitution s' if and only if s' can be factored

by s, i.e. if there exists a substitution r such that s' = r . s, where we treat

substitutions as functions. We want to de�ne a function that given two terms

�nds the most general substitution that uni�es the terms or, if the terms are not

uni�able, reports this.

4.2.3 The uni�cation algorithm

Function unify takes two terms, and returns their most general uni�er. It is

implemented in terms of unify', which updates a current substitution that is

given as an extra argument. The uni�cation algorithm starts with the identity

substitution, traverses the terms and tries to update the substitution (as little

as possible) while solving the constraints found. If this succeeds the resulting

substitution is a most general uni�er of the terms. The algorithm distinguishes

three cases depending on whether or not the terms are variables.

2

This parametrisation is not essential for the results in the paper, we could just as well have

used some speci�c type for substitutions instead.
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unify :: (Term t,Subst s t) => t -> t -> Maybe (s t)

unify' :: (Term t,Subst s t) => t -> t -> s t -> Maybe (s t)

unify tx ty = unify' tx ty idSubst

unify' tx ty = uni (varCheck tx,varCheck ty) where

uni (Nothing,Nothing) | topEq tx ty = uniTerms tx ty

| otherwise = fail

uni (Just i, Just j ) | i == j = ok

uni (Just i, ) = i |-> ty

uni ( , Just j ) = j |-> tx

uniTerms x y = threadList (zipWith unify' (children x) (children y))

(|->) :: (Term t, Subst s t) => Var -> t -> s t -> Maybe (s t)

(i |-> t) s = if occursCheck i s t then fail s

else case lookup i s of

Nothing -> ok (modBind (i,t) s)

Just t' -> mapMaybe (modBind (i,t)) (unify' t t' s)

Figure 4.3: The core of the uni�cation algorithm

� If neither term is a variable we have two sub-cases; either the constructors

of the terms are di�erent (that is the terms are not top level equal) and the

uni�cation fails, or the constructors are equal and we unify all the children

pairwise.

� If both terms are variables and the variables are equal we succeed without

changing the substitution. (If the variables are not equal the case below

matches.)

� If one of the terms is a variable we try to add to the substitution the binding

of this variable to the other term. This succeeds if the variable does not

occur in the term and if the new binding of the variable can be uni�ed with

the old binding (in the current substitution).

A straightforward implementation of this description gives the code in �gure 4.3

using the auxiliary functions in �gure 4.4. We use the following functions and

types from Haskell 1.3: functions return and (>>=) for monad operations, the

type Maybe a and its catamorphism maybe and the type Either with catamor-

phism either.

To use this uni�cation algorithm on some term type T we must make T an

instance of the class Term by de�ning the three functions children, varCheck

and topEq. Traditionally these instances would be handwritten for the type T

and when we need uni�cation on a di�erent type we would need new instances.
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occursCheck :: (VarCheck t,Children t,Subst s t)

=> Var -> s t -> t -> Bool

occursCheck i s t = i `elem` reachlist s (vars t)

where

reachlist s l = l ++ concat (map (reachable s) l)

reachable s v = reachlist s (maybe [] vars (lookup v s))

vars :: (Children t,VarCheck t) => t -> [Var]

vars t = [ v | Just v <- map varCheck (subTerms t)]

subTerms :: Children t => t -> [t]

subTerms t = t : concat (map subTerms (children t))

threadList :: Monad m => [a -> m a] -> a -> m a

threadList = foldr (@@) return

(@@) :: Monad m => (a -> m b) -> (c -> m a) -> (c -> m b)

(f @@ g) x = g x >>= f

mapMaybe :: (a -> b) -> Maybe a -> Maybe b

mapMaybe f = maybe Nothing (Just.f)

ok, fail :: a -> Maybe a

ok = Just

fail = const Nothing

Figure 4.4: Auxiliary functions in the uni�cation algorithm
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But we can do better than that; by making these functions polytypic we get one

description that works for all term types.

4.3 Polytypic uni�cation

A polytypic function is a function parametrised on type constructors. Poly-

typic functions are de�ned either by induction on the structure of user-de�ned

datatypes or de�ned in terms of other polytypic (and possibly non-polytypic)

functions. To de�ne polytypic functions we use the Haskell extension PolyP [39].

To make the uni�cation algorithm polytypic we de�ne children, topEq and

varCheck for all term types d a, i.e. we express them as polytypic functions.

In the following subsections we will describe the polytypic functions we need for

uni�cation and how they are expressed in PolyP.

4.3.1 Polytypic notation

To abstract away from the speci�c type constructors we view all datatypes as

�x-points of functors, and extend the type language to include functor building

blocks. Functors are built up from the constants Par for the parameter, Rec for

the recursive component and Const t for constant types (Int, Bool etc.), Empty

and the combinator * for products and + for alternatives. See �gure 4.5 for some

examples. With a recursive datatype as a �x-point, inn and out are the fold and

unfold isomorphisms showing d a

�

=

F

d

a (d a).

inn :: d a  (FunctorOf d) a (d a)

out :: d a ! (FunctorOf d) a (d a)

To construct values of type d a we use inn, which e�ectively combines all the

constructors of the datatype in one function, and conversely, to deconstruct values

of type d a we use out instead of pattern matching. PolyP de�nes inn and out

for all regular

3

datatypes.

4.3.2 Function children

Function children :: Children t => t -> [t] returns the immediate subterms

of a term. We �nd these subterms by unfolding the recursive type one level, using

out, and listing the recursive components with fl rec:

instance Regular d => Children (d a) where

children = fl_rec . out

Function fl rec :: f a b -> [b] takes a value v of type f a b, and returns

the list containing all elements of type b occurring at the top level in v. The

3

A datatype d a is regular if it contains no function spaces, and if the arguments of the type

constructor d are the same on the left- and right-hand side of its de�nition.
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data Tree a = Null | Node (Tree a) a (Tree a)

-- FunctorOf Tree = Empty + Rec * Par * Rec

data Exp a = Val a | Neg (Exp a) | Add (Exp a) (Exp a)

-- FunctorOf Exp = Par + Rec + Rec * Rec

data Type a = TyVar Var | BaseType a | Apply (Type a) (Type a)

-- FunctorOf Type = Const Var + Par + Rec * Rec

Figure 4.5: Datatypes and functors.

polytypic de�nition of fl rec is given in �gure 4.6. (The subscripts indicating

the type are included for readability and are not part of the de�nition.)

polytypic fl rec

f

:: f a b -> [b]

= case f of

g + h -> either fl rec

g

fl rec

h

g * h -> n(x,y) -> fl rec

g

x ++ fl rec

h

y

Empty -> nil

Par -> nil

Rec -> singleton

Const t -> nil

nil :: a -> [b]

nil x = []

singleton :: a -> [a]

singleton x = [x]

Figure 4.6: The polytypic fl rec function.

A variant of function fl rec is the function fl par :: f a b -> [a], which

given a value v of type f a b returns the list of elements of type a in v. The

de�nition of fl par is similar to that of fl rec and is omitted.

4.3.3 Function topEq

Function topEq :: TopEq t => t -> t -> Bool compares the top level of two

terms for equality. This equality check is done in two steps; �rst the top level

structures of the terms are compared, and then the top level data values are

compared for equality.

instance (Regular d, Eq a) => TopEq (d a) where

topEq t t' = case fzip (out t,out t') of
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Nothing -> False

Just p -> all (uncurry (==)) (fl_par p)

The structure comparison is performed by the polytypic function fzip :: (f a b,

f c d) -> Maybe (f (a,c) (b,d)), a generalisation of the Haskell zip function.

Function fzip takes a pair of structures to Just a structure of pairs if the struc-

tures have the same shape and Nothing otherwise. The de�nition of fzip is

omitted.

4.3.4 Function varCheck

Function varCheck :: VarCheck t => t -> Maybe Var checks if a term is a

variable. A polytypic varCheck must recognise the datatype constructor that

represents variables, using only information about the structure of the datatype.

We have for simplicity chosen to represent variables by the �rst constructor in

the datatype, which should have one parameter of type Var.

instance Regular d => VarCheck (d a) where

varCheck = fvarCheck . out

polytypic fvarCheck :: f a b -> Maybe Var

= case f of

(Const Var) + g -> either ok fail

f -> fail

We have now made all regular datatypes instances of the class Term. Thus, by

combining the uni�cation algorithm from section 4.2 with the polytypic instance

declarations from this section, we get a uni�cation algorithm that works for all

regular term types.
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Chapter 5

Implementing PolyP

This chapter discusses the implementation of a compiler for the language ex-

tension PolyP. As a short summary of what is described at length in the other

chapters of this thesis we can say that PolyP is a language extension that allows

the de�nition of polytypic functions by induction on the structure of user de�ned

datatypes. A polytypic Haskell program is compiled (translated) to a Haskell

program by expanding out the instances of the polytypic functions that are used.

The polytypic de�nitions are type checked to ensure that the generated instances

are type-correct. We will use the name PolyP for both the compiler and the

language extension.

To illustrate the usefulness of polytypic programming it would have been

instructive to have an implementation of PolyP written in PolyP. Unfortunately

the implementation is still experimental and does not handle enough of the Haskell

language to make it possible to run it on itself.

1

Therefore the implementation of

PolyP is a normal Haskell 1.3 program and all instances of polytypic functions

used in it are hand written. We hope that the de�nitions and typings of these

polytypic instances, in addition to showing how PolyP is implemented, can give

some idea of the possible uses of polytypism.

In this chapter we will describe the algorithms used and show some samples

of the code. A more detailed description is included in the source distribution of

PolyP available from:

http://www.cs.chalmers.se/~patrikj/poly/polyp/

In the distribution most modules are written as literate scripts with comments

as L

A

T

E

X text so the whole implementation can be fed into L

A

T

E

X and printed.

Much of the non-polytypic code is borrowed from the Elmo project (an ex-

perimental implementation of Gofer in Gofer) at Utrecht University. We are

indebted to J. Fokker for sending us the source code for the Elmo project and

1

The day PolyP can be bootstrapped it will certainly handle most of Haskell | the code

already uses so much of Haskell that it required a new minor release of hbc [1] to get going!
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A. IJzendoorn for helping us understand and modify it in the beginning of the

development of PolyP.

5.1 Program structure

The implementation of PolyP is a Haskell 1.3 program divided into a number

of modules. The information 
ow inside PolyP is as follows: (pointers to more

information in the following sections are parenthesised)

� The parser takes an input �le to a list of equations expressed in the abstract

syntax (section 5.2).

� Dependency analysis splits these equations into datatype declarations and

mutually recursive groups of function de�nitions.

� For each regular datatype the corresponding functor is calculated. (section

5.5.1)

� The equation groups are labelled with type information and evidence values

using a type inference algorithm (section 5.7) similar to Jones' translation

and dictionary insertion algorithm [48, symbol ;].

� The labelled equations are traversed to collect requests for instances of

polytypic functions.

� For every request, code for an instance of a polytypic function is generated

and appended to the equation list (section 5.8).

� The �nal equation list is pretty printed using Hughes' combinators [36].

The following sections will describe the di�erent parts and show some (often

simpli�ed) parts of the code.

5.2 Abstract syntax

The abstract syntax of PolyP represents a subset of Haskell extendedwith the pos-

sibility to de�ne polytypic functions. As expressions can contain let-expressions,

and let-expressions contains equations which in turn contain expressions we

use two mutually recursive types, Expr and Eqn, to represent expressions and

equations. Expressions consists of variables, constructors, applications, lambda

abstractions, literals, wild-cards, case expressions, let expressions and explicitly

typed expressions:
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data Expr

= Var VarID

| Con ConID

| Expr :@: Expr

| Lambda Pat Expr

| Literal Literal

| WildCard

| Case Expr [(Pat, Expr)]

| Letrec [[Eqn]] Expr

| Typed Expr Type

type Pat = Expr

data Literal = BoolLit Bool | IntLit Int | ... deriving Eq

The �rst argument of the Letrec constructor is a list of mutually recursive groups

of equations.

The datatype for equations contain normal variable bindings but also poly-

typic bindings:

data Eqn =

...

| Polytypic VarID Type Func [(Func, Expr)]

-- polytypic p :: t = case f of {fi -> ei}

Here VarID, ConID and Func are the types for variable identi�ers, constructor

identi�ers and functors respectively.

Simple types, kinds and functors are all represented by the type Type which

contains type variables, type constructors and type application:

data Type = TVar VarID | TCon ConID | Type :@@: Type

type Kind = Type

type Func = Type

Function types are represented as an application of the constructor -> to two

arguments. As an example, the type a -> b is represented by TCon "->" :@@:

TVar "a" :@@: TVar "b".

Kind is a sort containing types in the terminology of Barendregt [5]. Kinds are

associated with types in much the same way as types are associated to expressions.

For example: Int :: * and List :: * -> * where * is the kind of types.

5.2.1 Parsing

The parser is a simple combinator parser in the style of [24] without a separate

lexical analysis phase and it is probably very ine�cient. We have deliberately

spent little time on this part as we probably will replace it by some complete
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Haskell parser in the future (perhaps the parser from nhc [76]). The parser does

some translations of the input; if expressions are translated to case expressions

and multiple parameter �-abstractions (\x y z-> e) are translated to nested one

parameter abstractions (\x-> \y-> \z-> e) to �t into the abstract syntax.

5.3 Folding

As we need to traverse and transform expressions, equations and types a number

of times in the program, we de�ne catamorphisms over these types. As mentioned

in the beginning of this chapter these de�nitions are hand-written but as soon

as PolyP is self-applicable they will be automatically generated. The function

cataExpr folds an expression to a value by replacing the constructors by the sup-

plied functions. As expressions and equations are mutually recursive cataExpr

takes as input not only the functions that are to replace the constructors of the

type Expr, but also the replacements for the constructors in the type Eqn. To

abbreviate the types of the functions that are used as arguments to the catamor-

phisms we de�ne two type synonyms, GExpr and GEqn, in the style of Sheard [79].

These type synonyms resemble

2

the functors of the datatypes Expr and Eqn.

cataExpr :: ( GExpr x q , GEqn x q ) -> Expr -> x

cataEqn :: ( GExpr x q , GEqn x q ) -> Eqn -> q

type GExpr x q =

( VarID -> x -- variable

, ConID -> x -- constructor

, x -> x -> x -- application

, x -> x -> x -- lambda abstraction

, Literal -> x -- literal

, x -- wild-card

, x -> [(x, x)] -> x -- case

, [[q]] -> x -> x -- letrec

, x -> Type -> x -- explicitly typed expression

)

type GEqn x q =

( ...

, VarID -> Type -> Func -> [(Func,x)] -> q -- polytypic def.

)

Function cataType is the catamorphism for types, and this de�nition is so small

that we can include it as an illustration of a typical catamorphism. From the

2

They are in fact isomorphic to variants of the functors, e.g. ((FunctorOf Eqn) x q ! q)

�

=

(GEqn x q) where the isomorphism is of the kind ((a + b)! c)

�

=

(a! c)� (b! c).
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de�nition of the local help function cT in function cataType below it is evident

that the constructors of the type are replaced by the corresponding function

arguments in a recursive traversal of the expression. (We repeat the de�nition of

Type here for clarity.)

data Type = TVar VarID | TCon ConID | Type:@@:Type

type FType a b = (VarID -> b, ConID -> b, a -> a -> b)

cataType :: FType a a -> Type -> a

cataType (var,con,app) = cT

where cT (TVar v) = var v

cT (TCon c) = con c

cT (f :@@: x) = (cT f) `app` (cT x)

mcataType :: Monad m => FType a (m a) -> Type -> m a

mcataType (var,con,app) = cataType (var,con,mapp)

where mapp mf mx = mf >>= \f -> mx >>= \x -> app f x

Using the catamorphism we also de�ne a monadic catamorphism [28, 67] that

threads a monad through all applications. This monadic catamorphism is used

in the translation of types from the abstract syntax to the graph representation

used in the type inference phase.

5.4 Representing types

Types can be seen as expressions in a rudimentary functional language built up

from variables, constants and applications. These type expressions can be viewed

as expression trees with applications as branching points and constants and vari-

ables at the leaves. By generalising the trees to directed acyclic graphs (DAGs)

we can express sharing of subexpressions. During type inference we represent

types as DAGs using mutable variables encapsulated in the ST s-monad [20]. We

chose this design to learn about and to experiment with `stateful programming'

using monads in a functional language and with the hope that the resulting im-

plementation would gain e�ciency from the ability to do update in place. When

it comes to learning and experimenting this was a de�nite success, but it does

not seem to improve the e�ciency that much.

The Hp in the types below is an abbreviation for heap and it indicates that

the mutable variables can be thought of as pointers into memory locations on the

heap. We will call types containing mutable variables heap types.

During type inference types are represented by pointers to elements of the

datatype HpNode s. The type HpNode s has the constructors HpVar for type

variables, HpCon for type constructors and HpApp for type applications. In the
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representation of variables we use a `trick' to simplify the substitution of a type for

a type variable. The case HpVar is used to represent a type variable (if it points

to itself) or an indirection node (if it points somewhere else). An indirection

node is simply a node containing a pointer to the rest of the type. In this way,

substitution can be performed simply by changing the pointer.

data HpNode s = HpVar (NodePtr s)

| HpCon ConID

| HpApp (NodePtr s) (NodePtr s)

type NodePtr s = MutVar s (HpNode s)

type HpType s = NodePtr s

type HpKind s = HpType s

Expressions in this type are built using the pseudo constructors mkVar, mkCon and

mkApp. As in the abstract syntax for types, there is no constructor for function

types as they can be built by applying the constructor -> to two arguments, but

we provide a pseudo constructor mkFun also for that one:

mkVar :: ST s (NodePtr s)

mkCon :: ConID -> ST s (NodePtr s)

mkApp :: NodePtr s -> NodePtr s -> ST s (NodePtr s)

mkFun :: NodePtr s -> NodePtr s -> ST s (NodePtr s)

mkVar = newVar undefined >>= \v -> -- create variable

writeVar v (HpVar v) >> -- tie a knot

return v -- return the pointer

mkCon conID = newVar (HpCon conID)

mkApp f g = newVar (HpApp f g)

mkFun a b = mkCon "->" >>= \to ->

mkApp to a >>= \ato->

mkApp ato b

The primitives for mutable variables in the ST s monad are:

newVar :: a -> ST s (MutVar s a)

writeVar :: MutVar s a -> a -> ST s ()

readVar :: MutVar s a -> ST s a

eqVar :: MutVar s a -> MutVar s a -> Bool
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5.4.1 Catamorphisms for heap types

The catamorphism for HpType gives its result in the ST s-monad as it uses data

on the heap. The catamorphism takes three functions to replace the three con-

structors with. A combination of NodePtr s and s (the state) can be seen as the

real type of an element of a heap type as its value depends on a location on the

heap. We use the type NodePtr s -> ST s a for the function that replaces HpVar

to allow this function to access the value the node pointer points to.

type GHpType s a = ( NodePtr s -> ST s a -- HpVar

, ConID -> a -- HpCon

, a -> a -> a -- HpApp

)

cataHpType :: GHpType s a -> HpType s -> ST s a

This catamorphism is used when translating the DAG representation to the ab-

stract syntax for types. In the opposite direction, translating from the abstract

syntax for types to the DAG representation

3

, an environment is used to make sure

that the variables are shared. This translation is expressed using the monadic

catamorphism for Type; mcataType. A future extension of the code to share con-

structors or even common subexpressions can be obtained with minor changes of

the code.

5.5 Functors and type evaluation

5.5.1 From datatypes to functors

For every regular datatype D we need the functor fD that represents its recursive

structure: Mu fD = D or equivalently fD= FunctorOf D. The function functorOf

:: Eqn -> Func transforms the abstract syntax representing a datatype de�ni-

tion to a functor. Note that functorOf (with a lower case f) is an implementation

of the FunctorOf from the type system. Function functorOf recursively replaces

alternatives with +, tuples by � and Empty, parameters by Par, recursive occur-

rences with Rec, constant types with Const and type applications with @. The

current version of functorOf requires exactly one type parameter and does not

handle nested datatype applications on the right hand side.

5.5.2 Type evaluation

In the typing rule for the polytypic construct (see �gure 2.7) we substitute

functor expressions for functor variables. These substituted functor expressions

3

As the abstract syntax for types is used in parsing the input and in pretty printing the

output of PolyP while the type inference algorithm in the middle uses DAGs we need to translate

the types in both directions.
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v � v c � c

v 62 t, v := t

v � t

f � g a � b

f a � g b

Figure 5.1: The uni�cation rules

are treated as type synonyms of kind * -> * -> *. This means that if we see

type expressions as expression in a functional language, the substituted functor

expressions are functions taking two arguments. Calculating the types by expand-

ing out the type synonyms is equivalent to evaluating the type expression using

�-reduction. As we have a graph based representation of types the type evalu-

ation uses graph reduction [74, chapter 12]. The type graph reduction function

typeEval takes a (pointer to the) type expression to be reduced and overwrites

it with the result as a `side e�ect' in the ST s monad:

typeEval :: HpType s -> ST s ()

5.6 Uni�cation

The implemented uni�cation algorithm is not the algorithm described in section

2.3.3 but hopefully a fair approximation of it. (The implementation seems to lag

behind the theory by at least half a year. :-) In this section we �rst describe the

uni�cation algorithm for the simple type language without any polytypic addi-

tions, and then the additional machinery that is used to approximate

4

uni�cation

when functors are added.

5.6.1 Simple DAG-uni�cation

Uni�cation algorithms normally take two terms containing variables as input and

return a substitution that, when applied, makes the two terms equal. In all

cases

5

where the uni�cation algorithm is used in type inference we are interested

only in the types after application. Thus we can combine the generation of the

substitution and its application to the terms. Furthermore, as we represent types

by updatable DAGs, we can use destructive update to overwrite type variables

with the type terms they should equal instead of introducing new bindings in a

substitution.

The function unify uni�es two types, the rules are shown in �gure 5.1.

Variables are overwritten with with the corresponding term, type constructors

are checked for equality and application nodes unify their children. An occurs-

check prevents the construction of cyclic types.

4

We use the word approximate as we have no proof that this uni�cation algorithm does the

right thing in all cases.

5

At least in this implementation.
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unify :: HpType s -> HpType s -> STErr s ()

The STErr s is a combination of the ST s-monad with an error monad so that

unify can report an error if the terms are impossible to unify. In the case when

a type variable v is uni�ed with some term t the variable v is overwritten with

an indirection node that points to the term t. This type variable might occur

in other parts of the type being uni�ed and all these occurrences must also be

changed to t. But as we know that the translation from the abstract syntax for

types produces a DAG with the property that all variables are shared, this single

overwrite automatically updates all occurrences of the type variable v. See van

Dijk's paper [20] for the details.

5.6.2 Type environment

The type environment is the � in P j � `

w

x : � (see section 2.3) and it contains

information about PolyP's prede�ned types and functions. The most important

ones are

Mu :: (* -> * -> *) -> (* -> *)

FunctorOf :: (* -> * -> *) <- (* -> *)

inn :: Poly (FunctorOf d) => (FunctorOf d) a (d a) -> d a

out :: Poly (FunctorOf d) => (FunctorOf d) a (d a) <- d a

where * is the kind of types and a <- b is a convenient notation for b -> a. Note

that the context part of the the types for inn and out uses Poly (FunctorOf

d) to denote Regular d. This is minor di�erence in notation from the theory

and will be removed in a later version. Currently a minimal prelude of common

Haskell functions is included but this will be replaced by a complete prelude

shortly.

The environment associates names with type schemes (types in which some

type variables are 8-quanti�ed). We call the 8-quanti�ed type variables generic

(type) variables. We implement the environment by splitting it into two parts.

The �rst part is an association of names with types and the second part a list of

all non-generic variables ngs :: [HpType s].

If a non-generic type variable is uni�ed with a type t, all of t's variables must

be made non-generic too [74, section 9.5]. This is automatically handled by the

representation of ngs: it is a list of pointers into the types that are uni�ed, with

the interpretation that all variables reachable from that list are non-generic. This

means that this list is automatically kept up to date without being explicitly used

in unify. (A very useful `side e�ect' !)
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5.6.3 Type ordering

In the type inference algorithm for the polytypic construct and when expres-

sions or equations are explicitly typed, we have to check that the speci�ed type

is an instance of the inferred type. This check is performed by the function

checkInstance which performs a `one-way' uni�cation that only allows non-

generic variables to be instantiated to non-generic types. The implementation

is similar to that of uni�cation and has the cases shown in �gure 5.2 (where we

informally denote checkInstance by �). In all other cases the types are ei-

t � 8v:v

t contains no generic variables

t � v

c � c

f

1

� f

2

e

1

� e

2

f

1

e

1

� f

2

e

2

Figure 5.2: Rules for type instantiation (�).

ther incomparable (type ordering is a partial order) or ordered in the opposite

direction.

5.6.4 Uni�cation with functors

As PolyP extends the type language to include functors the uni�cation algorithm

must be extended correspondingly. We use a function functorOf that takes the

name of a datatype to the functor that represents its structure. It is (a lookup in

a table generated by) the function functorOf de�ned in section 5.5.1 above. The

new cases are inserted where the simple uni�cation algorithm would fail | when

a constructor is uni�ed with an application. If this application is of the form Mu

f or FunctorOf D we proceed as follows:

� (Mu f, D): use the equality D = Mu (FunctorOf D) to the the pair (Mu f,

Mu (FunctorOf D)), strip o� the Mu's and go on to unify (f,FunctorOf D)

� (FunctorOf D, f) where f is generated by Empty, Const, Par, Rec, +, *,

@ and type (functor) variables: Succeed if (functorOf D, f)

6

are uni�able

and change f to be FunctorOf D, fail otherwise.

These rules are implemented and work for all the examples given in this thesis,

but there are probably examples where this algorithm would give the wrong

result. We are working on replacing this with an implementation of the correct

algorithm, given in section 2.3.3.

6

Note that we use functorOf (with the lower case f) from section 5.5.1 here.
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5.7 Type inference

This section describes the implementation of the type inference algorithm from

section 2.3.

5.7.1 Kind inference

The kind inference algorithm is used to check that all type expressions in data-

type declarations are kind-correct. It is a simpler variant of the type inference

algorithm and takes a kind environment and a type as input and produces a kind

or an error message as output. We represent kinds with the same type as types

(using mutable variables) so the result of the kind inference algorithm must be in

the ST s monad. As the inference algorithm might fail, we use a combination of

the state monad an the error monad: STErr s. Here is the complete algorithm:

(|*) :: KindBasis s -> Type -> STErr s (HpKind s)

basis |* (TVar name) = name `lookupKind` basis

basis |* (TCon name) = name `lookupKind` basis

basis |* (f :@@: x)

= basis |* x >>= \kX ->

basis |* f >>= \kF ->

mkVar' >>= \kApp ->

mkFun' kX kApp >>= \kF' ->

unify kF kF' >>

return kApp

The primed variants of mkVar and mkFun are lifted from the ST s to the STErr

s monad. Function lookupKind looks up names of constructors and variables

in the kind environment (of type KindBasis s). If a name is not found this is

reported by producing an error message in the STErr s monad.

5.7.2 Type labelling

The type inference algorithm is an extension of Damas-Milner's algorithmW [17]

similar to that in Mark Jones' thesis work on quali�ed types [48]. The main type

labelling function is (|->) that takes a type basis (containing types of previously

de�ned functions) and an expression and produces a type labelled expression and

the top level type. To infer the types in a group of mutually recursive de�nitions

we need to:

� Assume new type variables for the variable bindings.

� Extend the environment with the explicitly given types for the polytypic

bindings.
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� Label the value bindings with types:

{ Make the type variables temporarily non-generic. (All uses of a func-

tion within its de�nition group must have the same type.)

{ Label all equations.

� Label the polytypic de�nitions.

� Return a list with the types of the value bindings and the labelled equations.

The fact that the variable bindings are temporarily given non-generic types means

that we don't allow polymorphic recursion. The explicitly given types in the

polytypic declarations are treated as containing only generic variables (just like

any other explicit type).

To check a polytypic de�nition we �rst infer the types of the case alternatives

one by one giving t

i

. We also calculate the types �

i

that the alternatives should

have by substituting the di�erent functor alternatives for the functor in the ex-

plicitly given type and evaluating the resulting type using typeEval. Finally we

check that the inferred types are more general than the calculated types (i.e. that

t

i

� �

i

) using checkInstance de�ned in section 5.6.3.

5.8 Code generation

This section deals with creating speci�c instances of polytypic functions. If we

see a polytypic function as taking (a representation of) a type as its �rst argu-

ment we can say that the code generation phase partially evaluates this function

with respect to the type argument. This type argument is inserted by the type

inference algorithm.

The overall structure is as follows: replace polytypic identi�ers with (names

of) instances and generate a list of requests for instance declarations. Every re-

quest in the list is then handled in much the same way: generate an instance

declaration and (possibly) new requests. If the request is for a polytypic de�-

nition the corresponding functor case is looked up and inserted. If the request is

for inn or out its corresponding instance is generated. And if the request is for a

normal function de�nition, this de�nition is traversed recursively. The resulting

program will have the same structure as the old but with lots of instance decla-

rations added. See appendix A for an example of the result of the translation for

a simple polytypic program.

5.8.1 Generating requests

We generate all requests by traversing the expression tree representing the whole

program starting at the main de�nition and emitting requests for the traversal of

the free variables (names of functions) that we encounter. Each request contains
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the name of the function to be instantiated and the type it should be instantiated

to. The traversal function is a monadic catamorphism over the abstract syntax

for equations and expressions. We use a combination of a reader monad, for

keeping track of the types of all free variables, and a writer monad, that collects

the list of requests.

5.8.2 Generating polytypic instances

If the traversal function issues a request for an instance of type t' of a function

p de�ned by the polytypic construct:

polytypic p :: t = case f of { fi -> ei }

Then the type t' is matched with t and the functor part f' corresponding to

the functor variable f in the functor case is extracted. The functor f' is then

matched with the fi patterns in the case branches and the �rst matching case (fj

-> ej) is selected. The equation p f' = ej is used as the instance for function

p after it has been traversed and instantiated recursively. See section 2.2.2 for an

example.

5.8.3 Generating inn

D

and out

D

Instances of the polytypic functions inn

D

and out

D

for a datatype D a are gen-

erated from the following pattern:

inn

D

= uncurry

k

1

C

1

`either` � � � `either` uncurry

k

n

C

n

(5.1)

where C

i

are the n constructors of the datatype D a and k

i

= arity(C

i

). The

functions uncurry

k

are generalisations to arbitrary arity k of the binary (i.e.

k = 2) uncurry in Haskell.

out

D

x = case x of

C

1

a

1;1

� � � a

1;k

1

! Left (a

1;1

; (� � � ; a

1;k

1

) � � �)

C

2

a

2;1

� � � a

2;k

2

! Right (Left (a

2;1

; (� � � ; a

2;k

2

) � � �))

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

C

n

a

n;1

� � � a

n;k

n

! Right

n�1

(Left (a

n;1

; (� � � ; a

n;k

n

) � � �))

5.9 Conclusions and future work

The implementation of PolyP is still experimental. It su�ers from many restric-

tions in the expressiveness of the language that we hope to cure soon. Yet it

has been used to implement a number of polytypic functions: pmap, cata, pzip,

uni�cation [38, 40], rewriting [8, 46], parsing [12], genetic programming [84].

There are several improvements on our wish list:
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� Support for full Haskell syntax and the full Haskell type system.

� Polytypic functions for multi parameter datatypes.

� Polytypic functions for mutually recursive datatypes.

� Plugging PolyP into some existing Haskell compiler.

� Produce code that uses some kind of dictionaries that would create instances

lazily at run time.

� ...



99

Chapter 6

Related work

In chapter we describe work related to functional polytypic programming. We

brie
y describe a number of subject areas which have in
uenced the development

of polytypism and give many references to further reading.

6.1 The theory of datatypes

The basic idea behind polytypic programming is the idea of modelling datatypes

as initial functor-algebras. This is a relatively old idea, on which a large amount

of literature exists, see, amongst others, Lehmann and Smyth [56], Manes and

Arbib [60], and Hagino [31]. B�ohm and Berarducci [13] have a more algebraic

approach to modelling datatypes. They de�ne a data system (a group of mutually

recursive datatypes) to be a �nite parametric heterogeneous term algebra. This

is one of the few references where mutually recursive datatypes with multiple

parameters are described in detail. Fokkinga extends the theory of datatypes to

include `Datatype Laws without Signatures' [25] enabling abstract datatypes like

stacks to be de�ned in a category theoretic setting.

6.2 BMF

�

=

Squiggol

Polytypism has its roots in the branch of constructive algorithmics that was

named the Bird-Meertens Formalism (BMF) [10, 62] by Backhouse [2]. BMF is

not really a well de�ned formalism, but rather a collection of de�nitions, trans-

formations and laws for calculating with programs. In the `Theory of Lists' [10,

11, 43] many laws for calculating with programs are proved and used to derive

e�cient algorithms from clearly correct (but often hopelessly ine�cient) speci-

�cations. Polytypic functions are widely used in the Squiggol

1

community, see

[3, 9, 27, 59, 63, 64, 65, 67], where the list based calculus is generalised and

1

The term \Squiggol" comes from the use of more and more \squiggly" symbols to abbreviate

common functions.
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extended to other datatypes

2

and polytypic versions of many list functions are

de�ned: cata, map, zip, sum etc. Together with the functions, also the the-

orems and the transformation techniques developed in the theory of lists were

generalised. This leads us to the subject of polytypic calculation.

6.3 Polytypic calculation

Malcolm [59] and Fokkinga [26, 25, 27] develop categorical techniques for calcu-

lating and transforming programs. The most well know polytypic transformation

is the Fusion law, �rst described by Malcolm [58, 59].

3

h � cata

D

f = cata

D

g

( (Fusion)

h � f = g � fmap

D

id h

The Fusion law (for applications, see section 3.2.7) gives the conditions under

which the composition of a function with a catamorphism can be fused to just

one catamorphism. Takano and Meijer [83] use another polytypic law, the acid-

rain theorem, to apply deforestation [85] transformations and Hu [35] uses a

number of polytypic laws to eliminate multiple traversals of data by combining

functions that recurse over the same structure.

Both the the fusion law and the acid-rain theorem are examples of free theo-

rems [86].

4

A free theorem can be derived automatically from the polymorphic

type of a function. Fegaras and Sheard [23, appendix A.1] (in more detail: [22])

give a function that given a type constructs its free theorem.

More examples of polytypic calculation of programs can be found in de Moor

[72] and Meertens [64].

6.4 Relational polytypism

Backhouse et al. [3, 4] argues very convincingly that the basis of the theory of

polytypism is best described in a relational setting. Bird, deMoor and Hoogendijk

[9] use this setting to generalise the theory of segments of lists to all datatypes.

6.5 Regular datatypes and beyond

Polytypic functions are normally de�ned for regular datatypes. Regular data-

types are initial �x-points of regular functors or, in the relational setting, regular

relators [4].

2

Datatypes that can be de�ned by means of a regular functor.

3

Malcolm calls it the promotion theorem following Bird's terminology for lists [10].

4

For example, the Fusion law is the free theorem of function cata.
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Jay [42] has developed an alternative theory for polytypic functions (in his

terminology: shapely functions), in which values are represented by their structure

and their contents. He uses an category theoretic formulation of polytypism based

on the notion of strong functors [69, 68].

The class of datatypes on which polytypic functions can be de�ned can be ex-

tended (with some e�ort) to include datatypes with function spaces. Freyd [29]

provides the category theoretic background for this extension. The problem with

the extension is that if a datatype parameter occurs in a negative position (to the

left of an odd number of function arrows) in a datatype de�nition, the recursive

de�nition of the catamorphism uses its own (right) inverse. Meijer and Hut-

ton [66] apply Freyd's theory to the de�nition of catamorphisms for datatypes

with embedded functions. They solve the problem of negative parameters by

simultaneously de�ning both the catamorphism and its right inverse (an anamor-

phism). Fegaras and Sheard [23] points out that this solution is too restrictive:

there are functions that can be de�ned as catamorphisms even though they lack

a right inverse. They give an alternative de�nition of the catamorphism using

an approximate inverse and give a type system that rejects the cases when this

approximation could lead to trouble.

6.6 Type systems

Type systems for languages which allow the use of polytypic functions have been

developed by several people:

� Ruehr [77] gives a full higher order type pattern language. The higher

order aspects of the type system makes the language a bit impractical but

he also presents a trade-o� design for a more manageable language with

type inference.

� Jones' type system [48, 51] is based on quali�ed types and higher-order

polymorphism. The type system is implemented in the functional language

Gofer [50] (a Haskell variant). Gofer has no construction for writing poly-

typic functions by induction on user de�ned datatypes but can be used to

simulate and type check polytypic functions. For an example, see the code

in appendix C.

� Jay et al. [7, 41] describe a type system for \Functorial ML", an interme-

diate language with some prede�ned polytypic functions including map and

cata (they call it fold). The language has no recursive let and no �x-

point operator so all recursive de�nitions must be expressed using fold.

The language can deal with multiple parameter datatypes, but not mutual

recursive datatypes and there is no means of introducing new polytypic

function de�ned by induction over datatypes.
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� Sheard and Nelson [80] gives a type system for a restricted version of

Compile-time Re
exive ML (CRML [34]). CRML is a two-level language

and a polytypic program is obtained by embedding second level type decla-

rations as values in �rst level computations. The restriction is that recursion

in the �rst level (that is executed at compile time) must be expressed us-

ing catamorphisms only, to guarantee termination. The type system uses

dependent types and a special type construction for the types of catamor-

phisms.

� Our type system (described in chapter 2 and [39]) extends Jones' system

[48, 51] with the possibility to introduce and type check polytypic functions

de�ned by induction on the structure of user de�ned datatypes.

6.7 Implementations

In previous chapters of this thesis we have argued that a polytypic programming

system should

� type check the polytypic code,

� allow de�nitions of new polytypic functions, and

� generate instances of these polytypic functions for regular datatypes.

The categorical language Charity [15] and the functional language P2 [41] do

not satisfy the second requirement. A predecessor of PolyP, Hollum [45] does not

satisfy the �rst requirement. Our system PolyP, described here and in chapter 2

satis�es these requirements and we know of only one other such system: that

of Sheard [78] using a restricted compile time re
ective setting. The reason

we are not using Sheard's system is that it uses a two level language built on

ML (Compile-time Re
exive ML [34]) extended with a type system using some

dependent types. We did not want to move that far away from the Haskell

(type) system. But the compile time re
exive setting could very well be used to

implement future versions of PolyP.

6.8 Speci�c polytypic functions

Generating instances for speci�c polytypic functions, such as (==), map, cata

etc. for a given type, is rather simple and has been demonstrated by several

authors [13, 21, 38, 39, 41, 71, 81, 78, 79]. Catamorphisms were early generated

by B�ohm and Berarducci [13] (in the �-calculus) and Sheard [81] (in an ML-like

language). Sheard also gave programs to automatically generate other kinds of

traversal functions like accumulations and equality functions.
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The paramorphism

5

, a more general recursion operator than the catamor-

phism, was introduced by Meertens [63] and many other recursion operators are

de�ned in [70, 71]. Catamorphisms can also be generalised to monadic catamor-

phism [28, 67] that thread a monad through all applications.

Polytypic functions for speci�c programming problems, such as the maximum

segment sum problem and the pattern matching problem were �rst given by Bird

et al. [9] and Jeuring [44].

6

Many other algorithms have also been expressed

polytypically: uni�cation [38, 40], pattern matching [44], data compression [39],

parsing [37, 12], rewriting [46, 8], genetic programming [84], etc.

All the polytypic functions above are parametrised on one datatype. There

is however no theoretical problem with de�ning multiply parametrised polytypic

functions. One example is the doubly parametric function transpose (also called

zip) de�ned by Ruehr [77] and Hoogendijk and Backhouse [33]. In PolyP it could

have the type:

transpose :: (Regular d, Regular e) => d (e a) -> e (d a)

It is a generalisation of the transpose operation on matrices.

6.9 Adaptive Object-Oriented Programming

In object-oriented programming polytypic programming appears under the names

`design patterns' [30], and `adaptive object-oriented programming' [57, 73]. Adap-

tive OOP is a programming style similar to polytypic programming. In adaptive

OOP methods (corresponding to our polytypic functions) are attached to groups

of classes (types) that usually satisfy certain constraints (such as being regular).

Lieberherr et al. [57] describes a system that allows the programmer to write

template programs containing a number of methods with associated `propagation

patterns'. The template programs are parametrised on (the structure of) a group

of related classes and the system automatically instantiates these templates for

di�erent class dependence graphs. Each method in the template program has a

signature (the type of the method), a pattern (that speci�es the set of paths in

the class dependence graph that method should be used on) and a code part (to

be executed for all matching paths).

As an example they give a program that sums the salaries in a conglomerate

of companies. The template has one method and this method has the pattern

from Conglomerate to Salary where Conglomerate is the root node of the

class graph and Salary is the name of the container object used for the salary

of an employee. The signature of the method says that the method updates an

integer variable totalSalary (passed in as a reference), and the code part just

increases totalSalary with the local salary.

5

The recursion pattern captured by the paramorphism in essentially the same as the pattern

in the elimination rule for a datatype in constructive type theory.

6

The �rst published use of the term polytypic function was by Jeuring in [44].
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Appendix A

Translating PolyP-code to

Haskell

A.1 A simple PolyP program

Combining the de�nitions from �gure 2.1 (flatten) with the de�nition of fmap

in �gure 2.2 and the code below we get a small polytypic program testing the

function separate. We assume a prelude containing composition and de�nitions

of the functions const, concat.

main = (separate l,separate r)

l = Cons 1 (Cons 2 Nil)

r = Fork 1 (Cons (Fork 2 Nil) Nil)

data List a = Nil | Cons a (List a)

data Rose a = Fork a (List (Rose a))

separate x = (pmap (const ()) x,flatten x)

pmap f = inn . fmap f (pmap f) . out

cata h = h . fmap id (cata h) . out

A.2 The generated code

The code generated by PolyP looks as follows. We have edited the generated

code slightly.

uncurry0 f p = f

uncurry2 f p = f (fst p) (snd p)
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data List a = Nil | Cons a (List a)

data Rose a = Fork a (List (Rose a))

main = (separate_f4List l, separate_f4Rose r)

l = Cons 1 (Cons 2 Nil)

r = Fork 1 (Cons (Fork 2 Nil) Nil)

separate_f4List x= (pmap_f4List (const ()) x, flatten_f4List x)

separate_f4Rose x= (pmap_f4Rose (const ()) x, flatten_f4Rose x)

pmap_f4List f = inn_f4List . fmap_f4List f (pmap_f4List f)

. out_f4List

pmap_f4Rose f = inn_f4Rose . fmap_f4Rose f (pmap_f4Rose f)

. out_f4Rose

flatten_f4List = cata_f4List fl_f4List

flatten_f4Rose = cata_f4Rose fl_f4Rose

inn_f4List = either (uncurry0 Nil) (uncurry2 Cons)

fmap_f4List = \p r -> (fmap_e p r) -+- (fmap_Ppr p r)

out_f4List x = case x of

Nil -> Left ()

(Cons a b) -> Right (a, b)

cata_f4List h = h . fmap_f4List id (cata_f4List h)

. out_f4List

fl_f4List = either fl_e fl_Ppr

inn_f4Rose = uncurry2 Fork

fmap_f4Rose = \p r -> (fmap_p p r) -*- (fmap_A4Listr p r)

out_f4Rose x = case x of

(Fork a b) -> (a, b)

cata_f4Rose h = h . fmap_f4Rose id (cata_f4Rose h)

. out_f4Rose

fl_f4Rose = \(x, y) -> fl_p x ++ fl_A4Listr y

f -+- g = either (Left . f) (Right . g)

fmap_e = \p r -> id

fmap_Ppr = \p r -> fmap_p p r -*- fmap_r p r

fl_e = \x -> ([])

fl_Ppr = \(x, y) -> (fl_p x) ++ (fl_r y)

(f -*- g) (x, y) = (f x, g y)

fmap_p = \p r -> p

fmap_A4Listr = \p r-> pmap_f4List (fmap_r p r)

fl_p = \x -> x : ([])

fl_A4Listr = concat . flatten_f4List . (pmap_f4List fl_r)

fmap_r = \p r -> r

fl_r = \x -> x
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Appendix B

A small polytypic function

library

This appendix contains a small polytypic function library. Many of the functions

are also described in section 3.3. The following polytypic functions are de�ned:

1. Base: fmap, pmap, cata, ana, hylo

2. Sum: sum, size

3. Flatten: flatten, fl, fl par, fl rec, fl all

4. Crush: crush, fcrush, sum, conc, size, flatten

5. Propagate: propagate, fprop

6. Thread: thread, fthread

7. Zip: pzip, pzipWith, pzip', fzip

8. ConstructorName: constructorName, fconstructorName

9. EqOrd: peq, pord, cnumber, fcnumber

B.1 Base

---------------------------------------------------------------

-- Basic polytypic functions

-- 970508 Patrik Jansson

-- module Base where

---------------------------------------------------------------

polytypic fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> (fmap p r) -+- (fmap p r)
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g * h -> (fmap p r) -*- (fmap p r)

Empty -> id

Par -> p

Rec -> r

d @ g -> pmap (fmap p r)

Const t -> id

-- pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

-- cata :: Regular d => (FunctorOf d a b -> b) -> (d a -> b)

-- ana :: Regular d => (FunctorOf d a b <- b) -> (d a <- b)

-- hylo :: Bifunctor f => (f a b -> d)-> (c -> f a b) -> c -> d

cata i = i . fmap id (cata i ) . out

ana o = inn . fmap id (ana o) . o

hylo i o = i . fmap id (hylo i o) . o

---------------------------------------------------------------

-- Help functions

--(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

--(-+-) :: (a -> c) -> (b -> d) -> Either a b -> Either c d

(f -*- g) (a,b) = (f a,g b)

(f -+- g) = either (Left.f) (Right.g)

B.2 Sum

---------------------------------------------------------------

-- Sum and size

-- 970424 Patrik Jansson

-- module Sum where

-- import Base(cata,pmap)

---------------------------------------------------------------

-- sum :: Regular d => d Int -> Int

sum = cata fsum

-- Bifunctor f => ...

polytypic fsum :: f Int Int -> Int

= case f of

g + h -> fsum `either` fsum

g * h -> \(x,y) -> fsum x + fsum y
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Empty -> \x -> 0

Par -> id

Rec -> id

d @ g -> sum . pmap fsum

Const t -> \x -> 0

-- size :: Regular d => d a -> Int

size = sum . pmap (\_->1)

B.3 Flatten

---------------------------------------------------------------

-- Flatten

-- 970424 Patrik Jansson

-- module Flatten where

-- import Base(cata,pmap,fmap)

---------------------------------------------------------------

-- flatten :: Regular d => d a -> [a]

flatten = cata fflatten

-- Bifunctor f => ...

polytypic fflatten :: f a [a] -> [a]

= case f of

g + h -> fflatten `either` fflatten

g * h -> \(x,y) -> fflatten x ++ fflatten y

Empty -> nil

Par -> singleton

Rec -> id

d @ g -> concat . flatten . pmap fflatten

Const t -> nil

-- fl_par :: Bifunctor f => f a b -> [a]

-- fl_rec :: Bifunctor f => f a b -> [b]

-- fl_all :: Bifunctor f => f a a -> [a]

fl_par = fflatten . fmap id nil

fl_rec = concat . fflatten . fmap nil (singleton.singleton)

fl_all = fflatten . fmap id singleton

---------------------------------------------------------------

-- Help functions for lists

singleton x = [x]
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nil x = []

B.4 Crush

---------------------------------------------------------------

-- Crush

-- 970428 Patrik Jansson

-- module Crush where

-- import Base(cata,pmap)

-- main = size "Patrik"

---------------------------------------------------------------

-- crush :: Regular d => (a->a->a) -> a -> d a -> a

crush op e = cata (fcrush op e)

-- Bifunctor f => ...

polytypic fcrush :: (a->a->a) -> a -> f a a -> a

= \op e -> case f of

g + h -> fcrush op e `either` fcrush op e

g * h -> \(x,y) -> op (fcrush op e x)

(fcrush op e y)

Empty -> \x -> e

Par -> id

Rec -> id

d @ g -> crush op e . pmap (fcrush op e)

Const t -> \x -> e

-- sum :: Regular d => d Int -> Int

-- conc :: Regular d => d [a] -> [a]

sum = crush (+) 0

conc = crush (++) []

-- size :: Regular d => d a -> Int

-- flatten :: Regular d => d a -> [a]

size = sum . pmap (\_->1)

flatten = conc . pmap (\x->[x])

B.5 Propagate

---------------------------------------------------------------

-- Propagate Maybe to the top

-- 970424 Patrik Jansson

-- module Propagate where
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-- import Base(cata,inn,pmap)

-- (Can be generalised to thread any monad, see Thread)

---------------------------------------------------------------

-- propagate :: Regular d => d (Maybe a) -> Maybe (d a)

propagate = cata (mapMaybe inn . fprop)

-- Bifunctor f => ...

polytypic fprop :: f (Maybe a) (Maybe b) -> Maybe (f a b)

= case f of

g + h -> sumprop . (fprop -+- fprop)

g * h -> prodprop . (fprop -*- fprop)

Empty -> Just

Par -> id

Rec -> id

d @ g -> propagate . (pmap fprop)

Const t -> Just

--sumprop :: Either (Maybe a) (Maybe b) -> Maybe (Either a b)

sumprop = mapMaybe Left `either` mapMaybe Right

--prodprop :: (Maybe a,Maybe b) -> Maybe (a,b)

prodprop p = case p of

(Just x,Just y) -> Just (x,y)

_ -> Nothing

---------------------------------------------------------------

-- Maybe functions

mapMaybe f = maybe Nothing (Just.f)

B.6 Thread

---------------------------------------------------------------

-- Threads a monad through a value

-- 970424 Patrik Jansson

-- module Thread where

-- import Base(cata,inn,pmap)

---------------------------------------------------------------

-- (Regular d, Monad m) => d (m a) -> m (d a)

thread = cata (mapm inn . fthread)
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-- Bifunctor f => ...

polytypic fthread :: f (m a) (m b) -> m (f a b)

= case f of

g + h -> sumthread . (fthread -+- fthread)

g * h -> prodthread . (fthread -*- fthread)

Empty -> return

Par -> id

Rec -> id

d @ g -> thread . (pmap fthread)

Const t -> return

--sumthread :: Either (m a) (m b) -> m (Either a b)

sumthread = mapm Left `either` mapm Right

--prodthread :: (m a,m b) -> m (a,b)

prodthread (mx,my) = mx >>= \x-> my >>= \y-> return (x,y)

----------------------------------------------------------------

-- Monad operations (that are not in PolyPs prelude)

mapm f mx = mx >>= \x -> return (f x)

B.7 Zip

---------------------------------------------------------------

-- Zip functions

--- 970424 Patrik Jansson

-- module Zip where

-- import Base(inn,out, fmap,(-+-),(-*-))

-- import Propagate(fprop,sumprop,prodprop,propagate)

---------------------------------------------------------------

-- Regular d => (d a,d b) -> Maybe (d (a,b))

pzip = ( (resultM.inn) @@ (fprop.fmap resultM pzip) @@ fzip )

. (out -*- out)

-- Regular d => (d a, d b) -> Maybe (d (a, b))

pzip2 = pzipWith (mapMaybe inn.fprop) resultM (const Nothing)

-- Regular d => (d a, d b) -> (d (a, b),Bool)

pzip3 p = ( pzipWith inn id (const bottom) p

, pzipWith (and.fl_all) (const True) (const False) p
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)

-- Regular d => (FunctorOf d c e -> e) -> ((a,b)->c) ->

-- ((d a,d b)->e) -> (d a,d b) -> e

pzipWith ins op fail (x,y) =

maybe (fail (x,y)) (ins.fmap op (pzipWith ins op fail))

(fzip (out x,out y))

-- Bifunctor f => ...

polytypic fzip :: (f a b,f c d) -> Maybe (f (a,c) (b,d))

= case f of

g + h -> (sumprop . (fzip -+- fzip)) @@ sumzip

g * h -> (prodprop . (fzip -*- fzip)) @@ prodzip

Empty -> const (resultM ())

Par -> resultM

Rec -> resultM

d @ g -> (propagate . (pmap fzip) ) @@ pzip

Const t -> constzip

--sumzip ::(Either a b,Either c d)-> Maybe (Either (a,c) (b,d))

sumzip (x,y) = case (x,y) of

(Left s ,Left t ) -> resultM (Left (s,t))

(Right s,Right t) -> resultM (Right (s,t))

_ -> Nothing

--prodzip :: ((a,b),(c,d)) -> Maybe ((a,c),(b,d))

prodzip ((x,y),(s,t)) = resultM ((x,s),(y,t))

-- should be

-- constzip :: Eq t => (t,t) -> Maybe t

-- constzip (x,y) = if x==y then resultM x else Nothing

-- but this requires an inexpressible type of fzip

constzip (x,y) = resultM x

{-

Maybe monad functions

-}

--resultM :: a -> Maybe a

resultM x = Just x

--bindM :: Maybe a -> (a -> Maybe b) -> Maybe b

bindM x f = maybe Nothing f x
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--(@@) :: (a -> Maybe b) -> (c -> Maybe a) -> c -> Maybe b

(g @@ f) a = f a `bindM` g

bottom = bottom

B.8 ConstructorName

---------------------------------------------------------------

-- ConstructorName

-- 970424 Patrik Jansson

-- module ConstructorName where

-- import Base(inn,out)

---------------------------------------------------------------

constructors :: [d a]

constructors = map inn cs

constructorName = fconstructorName . out

polytypic cs :: [f a b]

= case f of

g + h -> map Left cs ++ map Right cs

g -> [undef]

undef = undef

B.9 EqOrd

---------------------------------------------------------------

-- Equality and ordering

-- 970424 Patrik Jansson

-- module EqOrd where

-- import Base

-- import Flatten

-- import Zip

---------------------------------------------------------------

data Order = Less | Same | More deriving Show

peq x y = maybe False (all (uncurry (==)) . flatten) (pzip (x,y))

peq' l r = pzipWith (and . fl_all)
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(uncurry (==))

(\_ -> False)

(l,r)

pord (x,y) = maybe (compar (cnumber x,cnumber y))

(foldr ordop Same .fl_all.fmap compar pord)

(fzip (out x, out y))

ordop x y = case x of

Same -> y

_ -> x

compar = compar

---------------------------------------------------------------

cnumber = fcnumber . out

polytypic fcnumber :: f a b -> Int

= case f of

g + h -> fcnumber `either` (inc . fcnumber)

g -> \_ -> 0

inc n = n+1

---------------------------------------------------------------

all p = and . map p
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Appendix C

Simulating polytypism in Gofer

This appendix shows some examples of how polytypic functions can be simulated

in Gofer using higher order polymorphism and constructor classes. The idea and

some of the code comes from Mark Jones [49]. Mu is a higher-order polymorphic

type constructor: its argument f is a type constructor that takes two types and

constructs a type.

---------------------------------------------------------------

-- Representing datatypes

data Mu f a = In (f a (Mu f a))

inn :: f a (Mu f a) -> Mu f a

inn = In

out :: Mu f a -> f a (Mu f a)

out (In x) = x

data Sum f g a b = InL (f a b) | InR (g a b)

data Empty a b = Empty

data Prod f g a b = Prod (f a b) (g a b)

data Comp f g a b = Comp (Mu f (g a b))

data Par a b = Par a

data Rec a b = Rec b

---------------------------------------------------------------

-- Sums

infix 6 -+-

(-+-) :: (f a b -> f' c d) -> (g a b -> g' c d) ->

Sum f g a b -> Sum f' g' c d
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(f -+- g) (InL x) = InL (f x)

(f -+- g) (InR x) = InR (g x)

mapsum :: (f a b -> f c d) -> (g a b -> g c d) ->

Sum f g a b -> Sum f g c d

(f `mapsum` g) x = case x of

InL y -> InL (f y)

InR z -> InR (g z)

junc :: (f a b -> c) -> (g a b -> c) -> Sum f g a b -> c

junc f g (InL x) = f x

junc f g (InR x) = g x

data S a b = Inl a | Inr b

instance (Eq a,Eq b) => Eq (S a b) where

Inl x == Inl y = x == y

Inr x == Inr y = x == y

_ == _ = False

---------------------------------------------------------------

-- Function fmap

class Fun f where

fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

instance (Fun f, Fun g) => Fun (Sum f g) where

fmap f g = fmap f g -+- fmap f g

instance (Fun f, Fun g) => Fun (Prod f g) where

fmap f g (Prod a b) = Prod (fmap f g a) (fmap f g b)

instance Fun Empty where

fmap f g Empty = Empty

instance Fun Par where

fmap f g (Par a) = Par (f a)

instance Fun Rec where

fmap f g (Rec b) = Rec (g b)

instance (Fun f, Fun g) => Fun (Comp f g) where

fmap f g (Comp x) = Comp (pmap (fmap f g) x)
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---------------------------------------------------------------

-- Catamorphism and map

pmap :: Fun f => (a -> b) -> Mu f a -> Mu f b

pmap f = inn . fmap f (pmap f) . out

--pmap f = cata (inn . fmap f id)

cata :: Fun f => (f a b -> b) -> Mu f a -> b

cata phi = phi . fmap id (cata phi) . out

ana :: Fun f => (b -> f a b) -> b -> Mu f a

ana psi = inn . fmap id (ana psi) . psi

---------------------------------------------------------------

-- Function flatten flattens a value of an arbitrary datatype.

flatten :: (Fun f, Fl f) => Mu f a -> [a]

flatten = cata fl

class Fl f where

fl :: f a [a] -> [a]

instance (Fl f,Fl g) => Fl (Sum f g) where

fl = fl `junc` fl

instance Fl Empty where

fl Empty = []

instance (Fl f,Fl g) => Fl (Prod f g) where

fl (Prod x y) = fl x ++ fl y

instance (Fun f,Fl f,Fl g) => Fl (Comp f g) where

fl (Comp x) = (concat . flatten . pmap fl) x

instance Fl Par where

fl (Par x) = [x]

instance Fl Rec where

fl (Rec x) = x

---------------------------------------------------------------
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-- Functions flr and flp return the elements in the recursive

-- and parameter positions, respectively.

class Flr f where

flr :: f a b -> [b]

-- definition omitted

class Flp f where

flp :: f a b -> [a]

-- definition omitted
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