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PolyLib � a library of polytypic functions

Patrik Jansson Johan Jeuring

May 15, 1998

1 Introduction

A polytypic program is a program that behaves uniformly over a large class of

datatypes. For functional polytypic programming this uniformity is achieved

by parameterising functions over type constructors to obtain polytypic func-

tions [12]. A polytypic function is de�ned either by induction on the structure

of regular
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type constructors or in terms of other polytypic functions. PolyP [8]

is an extension of the functional programming language Haskell with a construct

for de�ning polytypic functions. PolyP is a type guided preprocessor that gener-

ates instances of polytypic functions and inserts applications of these instances

where needed.

During the last few years we have used PolyP to construct a number of poly-

typic programs, for example for uni�cation, parsing, rewriting, pattern match-

ing, etc. These polytypic programs use several basic polytypic functions, such as

the relatively well-known cata and map, but also less well-known functions such

as propagate and thread. We have collected these basic polytypic functions

in the library of PolyP: PolyLib [10, app. B]. This paper describes the poly-

typic functions in PolyLib, motivates their presence in the library, and gives

a rationale for their design. Thus we hope to share our experience with other

researchers in the �eld. We will assume the reader has some familiarity with

the �eld of polytypic programming.

Of course, a library is an important part of a programming language. Lan-

guages like Java, Delphi, Perl and Haskell are popular partly because of their

useful and extensive libraries. For a polytypic programming language it is even

more important to have a clear and well-designed library: writing polytypic pro-

grams is di�cult, and we do not expect many programmers to write polytypic

programs. On the other hand, many programmers use polytypic programs such

as parser generators, equality functions, etc.

This is a �rst attempt to describe the library of PolyP; we expect that both

the form and content of this description will change over time. One of the goals

of this paper is to obtain feedback on the library design from other researchers

working within the �eld. At the moment the library only contains the basic
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A type constructor d is regular if the datatype d a contains no function spaces, and if the

argument of d is the same on the left- and right-hand side of its de�nition.
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polytypic functions. In the future we will develop special purpose sub-libraries

for polytypic functions with more advanced functionality, for example for parsing

and the other programs mentioned above.

2 Polytypic programs

Using di�erent versions of PolyP (and its predecessors) we have implemented a

number of polytypic programs. For example, we have implemented a polytypic

equality function, a polytypic show function, and a polytypic parser. Further-

more, we have implemented some more involved polytypic programs for pattern

matching, uni�cation and rewriting. Brief descriptions of these programs are

given in section 4. This section introduces the format we use for describing

polytypic library functions, and gives an overview of the contents of the library.

2.1 Describing polytypic functions

Our description of a polytypic function consists of (some of) the following com-

ponents: its name and type; an (in)formal description of the function; other

names the function is known by; known uses of the function; and its back-

ground and relationship to other polytypic functions. (Here we will often refer

to the polytypic applications in section 4.) For example:

pmap :: (a -> b) -> d a -> d b

Function pmap takes a function f and a value x of datatype d a, and

applies f . . . Also known as: map [12], map

n

[11]. Known uses:

Everywhere! Background: This was one of the �rst . . .

A problem with describing a library of polytypic functions is that it is not com-

pletely clear how to specify polytypic functions. The most basic combinators

have immediate category theoretic interpretations that can be used as a speci�-

cation, but for more complicated combinators the matter is not all that obvious.

Thus, we will normally not provide formal speci�cations of the library functions,

though we try to give references to more in-depth treatments.

2.2 Library overview

We have divided the library in �ve parts, see �gure 1. The �rst part of the

library contains powerful recursion combinators such as map, cata and ana.

This part is the core of the library in the sense that it is used in the de�nitions

of all the functions in the other parts. The second part deals with zips and some

derivates, such as the equality function. The third part consists of functions that

manipulate monads. The fourth and �fth parts consist of simpler (but still very

useful) functions, like �attening and summing. The following section describes

each of these functions in more detail.
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pmap, fmap, cata

ana, hylo, para

crush, fcrush

(a) Recursion oper-

ators

pzip, fzip

punzip, funzip

pzipWith, pzipWith'

pequal, fequal

(b) Zips etc.

pmapM, fmapM, cataM

anaM, hyloM, paraM

propagate, cross

thread, fthread

(c) Monad op's

flatten, fflatten

fl_par, fl_rec, conc

(d) Flatten functions

psum, size, prod

pand, pall

por, pany, pelem

(e) Miscellaneous

Figure 1: Overview of PolyLib

3 PolyLib

For the polytypic functions that have Haskell counterparts we prepend the letter

p (for polytypic) to the Haskell name to avoid a name clash. (The bifunctor

variants instead begin with an f.) In types we sometimes use b <- a as syn-

tactic sugar for a -> b. A polytypic function can be thought of as taking (a

representation of) a functor as its �rst argument. This argument is normally

omitted but sometimes written as a subscript for clarity: pmap

d

.

The polytypic functions below are only de�ned for regular datatypes d a.

In the type this is indicated by adding a context Regular d => ..., but we

will omit this for brevity. A regular type constructor d is always the �xpoint of

some bifunctor f. We will denote this f by FunctorOf d.

3.1 Recursion operators

pmap :: (a -> b) -> d a -> d b

fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

Function pmap takes a function f and a value x of datatype d a, and applies

f recursively to all occurrences of elements of type a in x. With d as a functor

acting on types, pmap

d

is the corresponding functor action on functions. Func-

tion fmap

f

is the corresponding functor action for a bifunctor f. Also known

as: map [12], map

n

[11]. In charity [3] map

d

f x is written d{f}(x). Known

uses: Everywhere! Function fmap is used in the de�nition of pmap, cata, ana,

hylo, para and in many other PolyLib functions. Background: The map

function was one of the �rst combinators distinguished in the work of Bird and

Meertens, [2, 16]. The traditional map in functional languages maps a function

over a list of elements. The current Haskell version of map is overloaded:
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map :: Functor f => (a->b) -> f a -> f b

and can be used as the polytypic pmap if instance declarations for all regular

type constructors are given. Function pmap can be used to give default instances

for the Haskell map.

cata :: (FunctorOf d a b -> b) -> (d a -> b)

ana :: (FunctorOf d a b <- b) -> (d a <- b)

hylo :: (f a b -> d) -> (c -> f a b) -> (c -> d)

para :: (d a -> FunctorOf d a b -> b) -> (d a -> b)

Four powerful recursion operators on the type d a: The catamorphism, cata,

�evaluates� a data structure by recursively replacing the constructors with func-

tions. The typing of cata may seem unfamiliar but with the de�nition of

FunctorOf above it can seen as equivalent to:

cata :: (f a b -> b) -> (Mu f a -> b)

The anamorphism, ana, works in the opposite direction and builds a data struc-

ture. The hylomorphism, hylo, is the generalisation of these two functions that

simultaneously builds and evaluates a structure. Finally, the paramorphism,

para, is a generalised form of cata that gives its parameter function access not

only to the results of evaluating the substructures, but also the structure itself.

Also known as:

PolyLib Functorial ML [1] Squiggol charity [3]

cata i fold

1

i (jij) {| i |}

ana o - [(o)] (| o |)

Functions cata and para are instances of the Visitor pattern in [5]. Known

uses: Very many polytypic functions are de�ned using cata: pmap, crush,

thread, flatten, propagate, and all our applications use it. Function para is

used in rewrite. Background: The catamorphism, cata, is the generalisa-

tion of the Haskell function foldr and the anamorphism, ana, is the (category

theoretic) dual. Catamorphisms were introduced by Malcolm [14, 15]. A hy-

lomorphism is the fused composition of a catamorphism and an anamorphism

speci�ed by: hylo i o = cata i . ana o. The paramorphism [17], para, is

the elimination rule for the type d a from type theory. It captures the recursion

pattern of primitive recursive functions on the datatype d a.

crush :: (a->a->a) -> a -> d a -> a

fcrush :: (a->a->a) -> a -> f a a -> a

The function crush op e takes a structure x and inserts the operator op from

left to right between every pair of values of type a at every level in x. (The value

4



e is used in empty leaves.) Known uses: within the library see section 3.5.

Many of the functions in that section are then used in the di�erent applications.

Background: The de�nition of crush is found in [18]. For an associative

operator op with unit e, crush op e can be de�ned as foldr op e . flatten.

As crush has the same arguments as fold on lists it can be seen as an alternative

to cata as the generalisation of fold to regular datatypes.

3.2 Zips

pzip :: (d a,d b) -> Maybe ( d (a,b) )

punzip :: d (a,b) -> (d a,d b)

fzip :: (f a b,f c d) -> Maybe ( f (a,c) (b,d) )

funzip :: f (a,c) (b,d) -> (f a b,f c d)

Function punzip takes a structure containing pairs and splits it up into a pair of

structures containing the �rst and the second components respectively. Function

pzip is a partial inverse of punzip: it takes a pair of structures and zips them

together to Just a structure of pairs if the two structures have the same shape,

and to Nothing otherwise. Also known as: zip

m

[11], zip.�.d [6], Known

uses: Function fzip is used in the de�nition of pzipWith. Background: The

traditional function zip

zip :: [a] -> [b] -> [(a,b)]

combines two lists and does not need the Maybe type in the result as the longer

list can always be truncated. (In general such truncation is possible for all types

that have a nullary constructor, but not for all regular types.) A more general

(�doubly polytypic�) variant of pzip: transpose (called zip.d.e in [6])

transpose :: d (e a) -> e (d a)

was �rst described by Fritz Ruehr [19]. For a formal de�nition, see Hoogendijk

& Backhouse [6].

pzipWith :: ((a,b) -> Maybe c) -> (d a,d b) -> Maybe (d (a,b))

pzipWith' :: (FunctorOf d c e -> e) -> ((d a, d b) -> e) ->

((a, b) -> c) -> (d a,d b) -> e

Function pzipWith op works like pzip but uses the operator op to combine the

values from the two structures instead of just pairing them. As the zip might

fail, we also give the operator a chance to signal failure by giving it a Maybe-type

as a result.

2

2

The type constructor Maybe can be replaced by any monad with a zero, but we didn't

want to clutter up the already complicated type with contexts.
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Function pzipWith' is a generalisation of pzipWith that can handle two

structures of di�erent shape. In the call pzipWith' ins fail op, op is used

as long as the structures have the same shape, fail is used to handle the

case when the two structures mismatch, and ins combines the results from the

substructures. (The type of ins is the same as the type of the �rst argument to

cata.) Also known as: zipop

m

[11]. Known uses: Function pzipWith' is

used in the de�nition of equality, matching and even uni�cation. Background:

Function pzipWith is the polytypic variant of the Haskell function zipWith

zipWith :: (a->b->c) -> [a] -> [b] -> [(a,b)]

but pzipWith' is new. Function pzip is just pzipWith Just.

pequal :: (a->b->Bool) -> d a -> d b -> Bool

fequal :: (a->b->Bool) -> (c->d->Bool) -> f a c -> f b d -> Bool

The expression pequal eq x y checks if the structures x and y are equivalent

using the equivalence operator eq to compare the elements pairwise. Known

uses: fequal is used in the uni�cation algorithm to determine when two terms

are top level equal. Background: An early version of a polytypic equality

function appeared in [20]. Function pequal can be instantiated to give a default

for the Haskell Eq-class for regular datatypes:

(==) :: Eq a => d a -> d a -> Bool

(==) = pequal (==)

In Haskell the equality function can be automatically derived by the compiler,

and our polytypic equality is an attempt at moving that derivation out of the

compiler into the prelude.

3.3 Monad operations

pmapM :: Monad m => (a->m b) -> d a -> m (d b)

fmapM :: Monad m => (a->m c) -> (b->m d) -> f a b -> m (f c d)

cataM :: Monad m => (FunctorOf d a b -> m b) -> (d a -> m b)

anaM :: Monad m => (b -> m (FunctorOf d a b)) -> (b -> m (d a))

hyloM :: Monad m => (f a b -> m d) -> (c -> m (f a b)) -> c -> m d

paraM :: Monad m => (d a -> FunctorOf d a b -> m b) -> d a -> m b

Function pmapM is a variant of pmap that threads a monad m from left to right

through a structure after applying its function argument to all elements in

the structure. A monadic map can, for example, use a state monad to record

information about the elements in the structure during the traversal. The other

recursion operators are generalised in the same way to form even more general
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combinators. Also known as: traversals [11]. Known uses: in unify and in

the parser. Background: Monadic maps and catamorphisms are described in

[4]. The monadic map (also called active traversal) is closely related to thread

(also called passive traversal):

pmapM f = thread . pmap f

thread = pmapM id

propagate :: d (Maybe a) -> Maybe (d a)

cross :: d [a] -> [d a]

Function propagate propagates Nothing to the top level. Function cross is

the cross (or tensor) product that given a structure x containing lists, generates

a list of structures of the same shape. This list has one element for every

combination of values drawn from the lists in x. These two functions can be

generalised to thread any monad through a value. Known uses: propagate

is used in the de�nition of pzip. Background: Function propagate is an

instance of transpose [19], and both propagate and cross are instances of

thread below.

thread :: Monad m => d (m a) -> m (d a)

fthread :: Monad m => f (m a) (m b) -> m (f a b)

Function thread is used to tie together the monad computations in the elements

from left to right. Also known as: dist

d

[4]. Known uses: Function thread

can be used to de�ne the monadic map: pmapM f = thread . pmap f. Func-

tion fthread is also used in the parser to thread the parsing monad through

di�erent structures. Function thread can be instantiated (with d = []) to the

Haskell prelude function

accumulate :: Monad m => [m a] -> m [a]

but also (with m = Maybe) to propagate and (with m = []) to cross.

3.4 Flatten functions

flatten :: d a -> [a]

fflatten :: f a [a] -> [a]

fl_par :: f a b -> [a]

fl_rec :: f a b -> [b]

Function flatten x traverses the structure x and collects all elements from left

to right in a list. The other three function are variants of this for a bifunctor
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f. Also known as: extract

m;i

[11], listify [6]. Known uses: fl_rec is used

in the uni�cation algorithm to �nd the list of immediate subterms of a term.

Function fflatten is used to de�ne flatten

flatten = cata fflatten

Background: In the relational theory of polytypism [6] there is a membership

relation mem.d for every relator (type constructor) d such that a mem.d x �

a `elem` (flatten x)

3.5 Miscellaneous

A number of simple polytypic functions can be de�ned in terms of crush and

pmap. For brevity we present this part of PolyLib below by providing only the

name, the type and the de�nition of each function.

psum :: d Int -> Int

prod :: d Int -> Int

conc :: d [a] -> [a]

pand :: d Bool -> Bool

por :: d Bool -> Bool

psum = crush (+) 0

prod = crush (*) 1

conc = crush (++) []

pand = crush (&&) True

por = crush (||) False

size :: d a -> Int

flatten :: d a -> [a]

pall :: (a->Bool) -> d a -> Bool

pany :: (a->Bool) -> d a -> Bool

pelem :: Eq a => a -> d a -> Bool

size = psum . pmap (\_->1)

flatten = conc . pmap (:[])

pall p = pand . pmap p

pany p = por . pmap p

pelem x = pany (\y->x==y)

4 Polytypic applications using PolyLib

This section lists some polytypic applications we have written during the last few

years. Most of these are candidates for inclusion in future versions of PolyLib.

� A polytypic show function and a simple polytypic parser [7].

� Pattern matching, [12], can be de�ned for all regular datatypes that in-

clude an anonymous �wild-card�. We use a Haskell class HasWildcard

with a member function isWild :: t -> Bool to express this restriction.

Function pmatch

pmatch :: HasWildcard t => t -> t -> Bool

takes a pattern and a value and tries to match this pattern with the value.

� Generalising pattern matching such that it becomes symmetric in its two

arguments and allows named wild-cards gives uni�cation.

The uni�cation program [9]: unify
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unify :: (Term t,Subst s) => t -> t -> Maybe (s t)

takes two terms and gives Just a unifying substitution if they are uni�able

and Nothing otherwise. The member functions of the class Term can all

be generated polytypically for every regular datatype so unify is also

polytypic.

� Given a uni�cation function, rewriting is not far away: in [13] we give an

implementation of a function rewrite

rewrite :: Term t => [(t,t)] -> t -> t

that takes a list of rewrite rules (pairs of terms containing variables) and

a term and rewrites the term as far as possible using these rules.

� A di�erent application area is that of genetic algorithms [21], where poly-

typic functions for doing genetic recombinations of elements of regular

datatypes are used. The recombination algorithm uses polytypic func-

tions for extracting or replacing a certain substructure.

5 Conclusions

We have given a description of PolyLib: the library of PolyP. This library has

grown out of our experience with implementing polytypic functions. PolyLib

is very likely incomplete, but we think we have included most basic polytypic

combinators. Future work consists of the construction of special purpose sub-

libraries, and of more complete description of the basic polytypic combinators.

For an implementation PolyLib and PolyP, see

http://www.cs.chalmers.se/�patrikj/poly/polyp/
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