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Advanced Solvers for General High

Performance Transient Gas Turbine

Simulation Tools

Tomas U.J. Grönstedt∗

Chalmers University of Technology, SE-41296 Gothenburg, Sweden

The numerical simulation of a turbofan acceleration transient is performed, evaluating

the performance of a number of solvers ranging from a simple forward Euler method to

advanced fifth order differential algebraic schemes. Three different levels of complexity in

dynamic modeling for the turbofan model is studied. It is shown that differential algebraic

solvers are ideally suited for developing general transient simulation tools intended for

freely building up complex gas turbine systems. Furthermore, it is demonstrated that the

direct solution of the differential algebraic equation system can be done very efficiently,

outperforming the frequently used indirect approach. To make the engine modeling

assumptions completely transparent, the full nonlinear analytic test model is given within

the paper. An interpolation method substantially reducing the typical loss of performance

of high order solvers when applied to a real engine performance code is demonstrated.

Nomenclature

A component design area
b fuel flow
Cp specific heat
Cpc cold engine parts = 1005.0
Cph hot engine parts = 1148.0
f fuel air ratio
G torque
h stagnation entalphy
HPC high pressure compressor
HPT high pressure turbine
LPC low pressure compressor
LPT low pressure turbine
M Mach number
m mass flow

m̃ m
√
δ

θ
= corrected mass flow

n corrected rotational speed ( ns√
θ
)

ns mechanical rotational speed (n s)
ODE Ordinary Differential Equation system
ODAE Ordinary Differential Algebraic Equation

system
P stagnation pressure
P∞ ambient pressure (p a)
R the gas constant = 287.0
SLS Sea Level Static
T stagnation temperature

Greek

α bypass ratio
γ specific heat ratio
γc cold engine parts = 1.400
γh hot engine parts = 1.333
π pressure ratio

∗Ph.D. Student, M.Sc., thgr@tfd.chalmers.se

χ(M,γ)
√
γM

(
1 + γ−1

2 M2
)− γ+1

2(γ−1)

χ(π, γ)

√
2γ(π

γ−1
γ −1)

(γ−1)π
γ+1
γ

χc
√
γ γ+1

2

− γ+1
2(γ−1)

φi component design parameter number i
δ P1

101325.0
θ T1

288.15

Subscripts

1,3 inflow to component
2,4 outflow from component
dp design point
sl speed line
s static property
cr cooling rotor
cs cooling stator
id ideal
∞ ambient conditions

Superscripts
′ State derivative operator

Introduction

Dynamic gas turbine modeling has been in use for
almost five decades1 and digital dynamic engine simu-
lation tools for more than 20 years.2, 3 Early on it was
concluded that jet engines constitute stiff systems and
that the speed of integration can profit greatly from
the implementation of implicit solvers.4 Although sev-
eral authors have reported the successful use of low
order (first/second) implicit ODE (Ordinary Differ-
ential Equations) solvers,5–7 very little attention has
been paid to the direct use of differential algebraic
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system solvers and quantifying the improvements of
higher order integration techniques.
A critical matter concerning the modeling of a gas

turbine system is to decide whether an ODE or an
ODAE (ODE with coupled algebraic equations) model
is going to be applied. This choice will have quite
a substantial impact not only on the required com-
putation time but also on the complexity and effort
necessary for assembling the model and getting it run-
ning.
The performance of high order ordinary differential

equation solvers, is strongly dependent on the smooth-
ness of the engine model. Most performance codes
use component map data, from which the required
variables are interpolated. The selection of a poor in-
terpolation method can have a devastating effect on
the solver. This paper measures to which extent the
smoothness of the interpolation method influences the
performance of high order solvers on a typical gas tur-
bine transient. By introducing first, third and fifth
order splines8 to approximate all map data in the per-
formance model the smoothness can be increased in a
step wise manner, and consequently the effect of the
interpolation method on the solver performance can
be studied.
The main guide-line for deriving the engine models

used for testing the numerical solvers, was to obtain
a nonlinear gas turbine system model with as realis-
tic dynamic performance as possible, at a minimum of
complexity. E.g. using constant specific heat ratios
γ = γh=1.333 for engine components with a fuel air
ratio 6= 0 and γ = γc=1.400 otherwise, was considered
acceptable since it was anticipated to have little effect
on how the solvers would perform. Effects of mechan-
ical losses were also neglected. Although metal air
heat transfer effects are very important for transient
modeling in general no such effects were included here,
since these phenomena do not add very much to the
burden for the solvers. The characteristic time scales
are much larger than those for rotor and especially
mass and thermal gas dynamics, with eigenvalues hav-
ing small negative real parts causing little trouble for
ODE/ODAE solvers.
All numerical tests have been conducted with a new

general transient and steady state code, GESTPAN9

(GEneral Stationary Transient Propulsion ANalysis),
developed at Chalmers University of Technology, The
Royal Institute of Technology and at Volvo Aero Cor-
poration. The tool has been developed using Fortran
90. This made the inclusion of the solvers, Fortran 77
code freely available for down-loading from NETLIB,10

very straight forward.

The Inter-Component Volume method

To simulate transient engine behavior, dynamic
components are introduced into the engine model. Vol-
ume components are used between the static engine

components to simulate storage of thermal energy and
gas mass, and rotor components are used to model
rotor dynamics.

Gas turbine dynamics and ODAE:s

If an attempt to model an arbitrary gas turbine sys-
tem is made the most probable system that will emerge
is a semi-explicit ordinary differential algebraic sys-
tem, i.e.:

x′ = f(t, x, z)

0 = g(t, x, z) (1)

This means that unless special care is taken during the
modeling process some algebraic equations (algebraic
loops) will arise coupled to the differential equation
system. Note that local equations completely con-
tained within a component do not constitute algebraic
equations. In the rest of this paper the x variables in
Eq. 1 will be referred to as differential variables and
the z variables as algebraic variables.
The semi-explicit ODAE represented by Eq. 1 is very

general indeed. Shampine et al.11 shows that a system
of equations can be represented in a SIMULINK block
diagram if and only if the system can be written as an
ODAE in the form represented by Eq. 1.

Methods for solving the ODAE problem

Basically three main strategies for solving Eq. 1 ex-
ist:

1. The “direct approach”

2. The “ODE approach” = “the indirect approach”

3. Transforming the ODAE model to an ODE model
by algebraic manipulations.

The direct approach is studied in this work by the
use of the DASSL solver.13 This code uses a kth or-
der Backward Differentiation Formula (BDF), where k
varies from one to five, to approximate the derivatives
of a more general expression than Eq. 1. The DASSL
code then solves the resulting equation system directly,
i.e. it solves for the differential and algebraic variables
simultaneously.
The ODE approach, or the indirect approach, is

based on solving the algebraic equations in Eq. 1 for
every function evaluation required by the ODE solver.
Here, the algebraic equations are solved with a globally
convergent Broyden method.14 Three different ODE
solvers have been tested. One implicit method (also a
BDF method),15 and two explicit methods; a variable
order Adams Bashforth method15 and the forward Eu-
ler method.

Transforming the ODAE to ODE

Using the Inter-Component Volume Method for
transient gas turbine modeling sometimes allows the
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algebraic equations of Eq. 1 to be eliminated through
manipulations of the component formulas. This has
been done in the “Engine 3” test case studied in this
paper (see burner, nozzle and mixer component sec-
tions in the Appendix).

System advantages with ODAE formulations

When working with a general gas turbine simula-
tion tool the use of such algebraic manipulations as
those described above are unfortunate from the system
complexity perspective. In order to make a specific en-
gine model free from algebraic equations component
physics has to be duplicated in more than one algo-
rithm, making the simulation system more complex
without any direct benefits. It is highly desirable to
be able to use the most straight forward and robust
way of formulating the component physics for all en-
gine models, including both transient and steady state
formulations.

Engine models

The nonlinear analytic engine component models
described in the Appendix have been used to gener-
ate three turbofan models:

1. Turbofan - rotor dynamics - ODAE

2. Turbofan - rotor/volume dynamics - ODAE

3. Turbofan - rotor/volume dynamics - ODE

The wiring diagrams in Fig. 1 and Fig. 2(a) as well
as in Fig. 2(b) illustrate how the engine components
are interconnected. The differential and algebraic vari-
ables used during the integration, as well as their
initial value for the test transient, are given in Table 1.
The index numbering and the referencing to algebraic
variables given in Table 1 are clear from the wiring di-
agrams and the abbreviations given in the table text.
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Fig. 1 Engine 1 - rotor dynamics - ODAE model

Engine 1,2,3

x1 ns,R1 = 124.29
x2 ns,R2 = 223.79

Engine 2,3

x3 TV 1 = 411.62
x4 mV 1 = 0.4124
x5 TV 2 = 727.07
x6 mV 2 = 1.3426
x7 TV 3 = 1373.4
x8 mV 3 = 0.6743
x9 TV 4 = 1061.7
x10 mV 4 = 0.3099
x11 TV 5 = 911.78
x12 mV 5 = 0.4401
x13 TV 6 = 767.61
x14 mV 6 = 0.5270

Engine 1 Engine 2

z1 P2,LPC = 2.43E5 bprS1 = 0.4122
z2 bprS1 = 0.4122 m3,M = 11.712
z3 P2,HPC = 1.40E6 m2,V 2 = 26.601
z4 P2,HPT = 4.72E5 m2,V 5 = 28.922
z5 P2,LPT = 2.30E5 m2,V 6 = 40.634

Table 1 Differential and algebraic variables used
during integration with their initial conditions
(V=Volume, R=Rotor, M=Mixer)

Solver comparisons - Methodology

Test transients and accuracy requirements

The engine test transient selected for the measure-
ment of the solver performance is an engine accelera-
tion trajectory from 67% to 95% of engine maximum
rotational speed.

Error control

To establish a converged solution integration was
carried out for a decreasing series of tolerances. The
three codes having a proper error control (not the for-
ward Euler implementation) were tested in this way
and produced the same solutions for the for all three
engines. Note that the converged solution of Engine 2
and Engine 3 will be the same but Engine 1 will differ
due to the absence of volumes.

A meaningful solver performance measurement has
to be carried out at a specific error tolerance. For gas
turbine engines a solution which is more accurate than
the maximum attainable accuracy of a tuned system
model would be wasteful. Another relevant aspect is
that the way errors are transported along the solution
trajectory depend on the dynamic system itself. A nu-
merical error made at one point might be attenuated
along the trajectory. With all this in mind a global
test was formed based on all the points along the in-
tegration compared to the converged solution, i.e. it
was required of a solution to pass the following test:
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Fig. 2 Engine 2 and Engine 3 - rotor and volume dynamics

√√√√
∑(

y−yconv

yconv

)2

nps
< 0.005 (2)

where nps is the number of points on the trajectory.
All cases were sampled at 100 Hz, i.e. 500 test points
were used. The error was checked on the fuel scheduled
by the feedback controller, i.e. the fuel component.
yconv was obtained using the DASSL code with a pure
relative error control using a tolerance of 10−10.

The transient was started from the initial conditions
given in Table 1 and a required rotational speed was set
to nr=180.0. The fuel scheduling trajectory relevant
for Engine 2 and Engine 3 is displayed in Fig. 3.

Solver comparisons - Results

The number of function evaluations, i.e. engine
evaluations, given in Table 2 below are the minimum
number necessary for the solution to pass the error test
defined by Eq. 2.

A number of observations can be made based on
Table 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Fuel flow (kg/s) − ψ(t)min(φ
1
  b

stat
 , φ

2
 (n

r
 − n

s
))

F
u
e
l 
fl
o
w

 (
k
g
/s

)

Time (s)

Æ Ç È É Ê Ë Ì Í Î È ÏÍ Ð Ï Ê É È Ì Ï

Fig. 3 Fuel scheduled by the control unit

Elimination of algebraic equations: In Engine 3 the
formulas of the mixer, the burner and the nozzle were
rearranged in order to eliminate the algebraic equa-
tions present in Engine 2. This operation resulted in
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Engine F. Eul. LSODE DASSL Adams
1 11240 3362 761 3898
2 625143 11879 1585 2393325
3 62502 1313 1147 286078

Table 2 Performance of the solvers

an increase in computational speed with about an or-
der of magnitude, for all solvers except for the DASSL
code. The reason for this is that the Forward Euler,
the LSODE and the Adams Bashforth implementa-
tions use an “ODE approach” to solve the differential
algebraic problem, i.e. the solution of a nonlinear
equation system has to be performed for every func-
tion evaluation required by the ODE-solver. The error
tolerance for the equation solver was set to a fraction
10−3 of the local error requirement of the ODE-solver.
This seemed, after some trade-off studies, to be close
to the optimal choice. A larger value increased the
number of function evaluations, since the inaccurately
solved equation system would disturb the ODE-solver.

The DASSL code, on the other hand solves the prob-
lem by the “direct approach” treating the differential
and algebraic variables simultaneously. Note also that
the number of function evaluations required by DASSL
is reduced only with about 30% as the the system is
transformed from the ODAE system represented by
Engine 2 to the ODE system represented by Engine 3.

Engine 1 - non-stiff case: In the Engine 1 case all
the volumes have been eliminated. Since these are the
main source of stiffness (large negative real parts of
the eigenvalues on the system Jacobian) the explicit
solvers perform fairly well.

Engine 2 and 3: Judging from the performance
measurements of the variable order Adams method
and the forward Euler method the use of explicit meth-
ods for inter-component volume models seems com-
pletely out of the question. However, there is one
less appealing remedy to this problem. By increas-
ing the size of the volume giving rise to the pole with
the largest negative real part the stiffness of the model
can be reduced. Of course, such a trick could also in-
troduce some unwanted physical effects.2

A comment about the Forward Euler method: The
reason for the fact that the forward Euler method is
actually faster than the Adams method for Engine 2
and Engine 3 is that this implementation has no au-
tomatic stability control. The engine transients were
recalculated repeatedly for the Euler method in order
to obtain the largest possible step size without making
the solution unstable. As a matter of fact the order
used by the Adams method throughout the entire in-
tegration was one (this is the forward Euler method)
and since the Adams code monitors the stability auto-
matically it is reasonable for the method to be slower.
However, in the Engine case 1, the problem is no longer
stiff and the stability requirements will no longer limit

the selection of order for the Adams method. Up to
order 6 was then observed for the Adams code during
integration.

“Real” performance code effects

The major difference between a real performance
code and the nonlinear test equations given in the Ap-
pendix, is that the performance code will most likely
use a number of empirical maps for estimating the
component performance. When interpolation meth-
ods are used on these maps discontinuities in higher
derivatives will be introduced in the table break points.
More refined codes will then use smaller step sizes
around these points to get an accurate solution. This
can reduce the performance of high order solvers quite
drastically, as is shown below.
By the use of higher order approximating spline rou-

tines this problem can be alleviated, and in some cases
measurement noise can be filtered away at the same
time. The methodology for obtaining the spline ap-
proximations are described in great detail by Dierckx.8

Except for the nonlinear test equations described in
this paper the GESTPAN simulation system also has
a number of standard component performance models
based on measurement data or more accurate models.
A system with components corresponding to Engine 3
was set up (the same wiring diagram). In this case the
model used 26 empirical tables. Three sets of spline
coefficient approximations were defined for every ta-
ble: linear, cubic and quintic approximating splines.
The performance model was tuned to give roughly the
same off-design performance as the analytical model
and the code was started from close to the same ini-
tial conditions.
Since it is part of the conclusions of this paper that

the DASSL solver is the most suitable solver for de-
veloping general gas turbine simulation systems it was
selected for this study. Table 3 gives the results for
the runs.

Smoothness DASSL
Linear interpolation 10504

Linear spline approximations 9902
Cubic spline approximations 2387
Quintic spline approximations 2323

Table 3 Effect of map data smoothness on solver
performance

It is seen that a poor interpolation method can in-
crease the number of function evaluations between four
and five times.
The DASSL solver can be set up to limit the order of

the BDF method. This was done reducing the variable
order BDF-method to the backward Euler method.
This increased the number of necessary function eval-
uations to 17256 in the linear interpolation case and
15246 in the quintic spline case. This demonstrates
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that the benefits of high order derivative smoothness
is small for low order BDF methods. Likewise, the
benefits of high order BDF methods applied to models
with poor smoothness is limited. In fact, if linear in-
terpolation was used the optimal BDF for this problem
was of order two.

Using Matlab and SIMULINK

Until recently, the methods for solving ODAE equa-
tions in SIMULINK were very crude indeed. As
Shampine observes11 “These versions had a limited
capability for solving models with algebraic loops, so
users had to resort to ad hoc changes to models in
order to solve DAE:s beyond the capabilities of the lan-
guage”. However, Shampine et al.11 have now intro-
duced improved methods for the solution of ODAE:s
both in Matlab and SIMULINK,12 including a method
using the direct approach for the Matlab environment.
The SIMULINK environment still uses the “indirect
approach”.
Although the LSODE and DASSL solvers show com-

parable performance for the Engine 3 case, the DASSL
code is about 4.4 times more efficient than LSODE
in the Engine 1 case and 7.5 times in the Engine 2
case. This indicates that the indirect approach used
by SIMULINK for dealing with ODAE:s corresponds
to a considerable loss in performance compared to the
direct method.

Conclusions

The direct approach for solving the ODAE system
arising from the acceleration test transient, has been
shown to work very efficiently. The DASSL solver was
about 4.4 times more efficient in the Engine 1 case and
7.5 times in the Engine 2 case, compared to the most
efficient solver using the indirect method. Further-
more, the DASSL code solved the full inter-component
volume model represented by Engine 2, using less than
half the number of function evaluations requiered by
the Adams method to solve the rotor dynamic model
represented by Engine 1. This indicates that the justi-
fiable use of models with only rotor dynamics is limited
to cases when a minimum of complexity is required.
The application of the direct method allows the

complexity of the simulation system to be kept at a
minimum, by using the same engine component for-
mulations for all engine models maintained by the
system, including both steady state and transient for-
mulations.
It has been demonstrated that high order BDF tech-

niques can give increased performance with as much as
a factor of 6.6 compared to the BDF method of order
one, i.e. the backward Euler method, if suitable meth-
ods for data interpolation are used.

Appendix: Engine component models

In this section all the nonlinear equations for the
test modules are defined. Every engine component has

its own set of design parameters φ1, φ2, ..., φn. These
are specified together with their equations in the com-
ponent section below, and their values are given in
Table 4. Note that specifying the engine design point
simply means giving values to all the component de-
sign parameters.

Compressor component

The compressor maps are generated using ellipses
with the minor and major axes depending on the ro-
tational speed ratio n

ndp
according to:

(
π

f( n
ndp

)
)2 + (

m̃

g( n
ndp

)
)2 = 1 (3)

where f( n
ndp

) and g( n
ndp

) are identified using the fol-

lowing requirements:

f(n = 0) = 1

f(n = ndp = φ6) = φ9πdp = φ9φ7

∂f(n = 0)

∂n
= 0

g(n = 0) = 0

g(n = ndp) = φ10

∂g(n = nc)

∂n
= 0

The value used here for φ9 (φ9=8.0) defines a rather
large extension for the n

ndp
= 1.0 ellipsis on the y-axis.

This gives a very steep rotational speed line, which
physically corresponds to a compressor close to choke.
A number of elementary functions could be used to

fulfill the equations above. f and g, given by Eq. 4
and Eq. 5 satisfy the equations, and give a reasonable
rotational speed line distribution.

f(n) = 1 + (A− 1)(
n

ndp

)4 (4)

g(n) = B
n

ndp

(2 − n

ndp

) (5)

Determining the stability limits: The surge line is de-
fined as the parabola in m̃ and π intersecting (0.0,1.0)
and (m̃dp, φ3πdp) and the choke line as the parabola
intersecting (0.0,1.0) and (m̃dp , φ4πdp).

Variable geometry: Variable geometry effects is in-
cluded by the use of

h = (1− φ12)

(
n

ndp

)φ11

+ φ12 (6)

where h is a factor multiplying the corrected mass
flows. The low pressure compressor map is shown in
Fig. 4:
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Fig. 4 LPC with variabel geometry

Compressor efficiency model: A third parabola, the
backbone of the compressor, is introduced through
(0.0,1.0) and (m̃dp , πdp) where the peak polytropic
efficiency for every rotational speed is assumed to oc-
cur. The polytropic efficiency in the design point, φ8,
is set to a fraction φ2 of the global compressor poly-
tropic efficiency peak value, which is assumed to occur
at n

ndp
= φ1. The variation in polytropic efficiency

along the backbone is determined using:

ηbb = a+ b
n

ndp

+ c(
n

ndp

)2 (7)

where a,b and c are determined from the known effi-
ciency values in n

ndp
= φ1,

n
ndp

= 1 and the requirement

of a maximum value in n
ndp

= φ1. The variation on

every rotational speed line is set by an analogous ap-
proach:

ηsl = a+ b(
π − πch

πsu − πch

) + c(
π − πch

πsu − πch

)2 (8)

having a peak polytropic efficiency in the backbone
point, a fraction φ5 of that polytropic efficiency in the
choke point and a maximum value in the backbone
point.

Burner component

The burner efficiency is computed using an empirical
reaction rate parameter, σ, defined according to

σ =
P 1.75
1 · e

T1
300.0

m1
(9)

The ratio between the computed σ value and the
value in the design point σdp = φ1, i.e.

σ
σdp

, is used to

compute the burner efficiency, ηb, according to

ηb = ηb,dp(1.0− e
−φ4

σ
σdp ) (10)

LPC HPC HPT LPT

φ1 0.85000 0.85000 0.90000 0.90000
φ2 0.95000 0.95000 2.10000 2.20000
φ3 1.33333 1.33333 0.41654 0.39336
φ4 0.33333 0.33333 0.00075 0.00199
φ5 0.90000 0.90000 0.50000
φ6 232.342 252.465 0.50000
φ7 5.40000 8.00000 0.50000
φ8 0.86200 0.86000
φ9 8.00000 8.00000
φ10 84.8916 18.6036
φ11 0.70000 0.70000
φ12 0.20000 0.20000

Burner Fuel Volume Mixer

φ1 6.18E10 0.25000 0.2 (V1) 0.16181
φ2 0.99000 1.30000 0.2 (V2) 0.03429
φ3 1.952E5 4.10653 0.2 (V3)
φ4 10.0000 -1.177E-1 0.2 (V4)
φ5 1.2512E-3 0.5 (V5)
φ6 -5.397E-6 0.5 (V6)
φ7 8.6744E-9

Nozzle Rotor 1 Rotor 2

φ1 2127.28 10.0 5.0
φ2 0.12843

Table 4 Design parameters of the engines

where ηb,dp = φ2. A temperature increase based on
ideal combustion is then computed according to:

∆tid = (-2.9429 · 106 − 252.4827t1 + 0.9789t21)f
3 +

(1.2888 · 105 + 55.6336t1 − 0.1461t21)f
2 +

(3.1273 · 104 − 0.5387t1 + 8.4160 · 10−4t21)f (11)

The real temperature is then computed according to

t2 = ∆tid · ηb + t1 (12)

The pressure loss is computed using:

P2 = P1 ·
(

1.0− φ3 ·
(

m1

√
T1

P1

)2
)

(13)

In the Engine 3 case this formula is used to compute
the mass flow as a function of the module pressure
drop.

Turbine component

The turbine inlet mass flow is a function of the tur-
bine pressure ratio according to:

ṁ1

√
T1

P1
=



















(

ṁ1

√
T1

P1

)∗
√

1−
(

π∗−π
ππ∗−π

)2

, π < π∗

(

ṁ1

√
T1

P1

)∗
, π > π∗

(14)
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where π∗ = φ2 is the assumed choking pressure ratio

and
(

ṁ
√
T1

P1

)∗
= φ4 the corrected choking mass flow.

The turbine polytropic efficiency is estimated using:

η = ηdp






1−







N√
∆h

(

N√
∆h

)

dp

− 1







2




(15)

where ηdp = φ1 and
(

N√
∆h

)

dp
= φ3

Airflow cooling scheme: The stator and rotor cool-
ing air are computed according to:

mcs = φ5mc

mcr = φ6mc

The turbine torque , Gt, is computed according to:

Gt =
∆h (m1 +mcs + φ7(mc −mcs −mcr))

2πn

The enthalpy upstream of the rotor, h1r, is given by

h1r =
h1rm1 + hc (mcs + φ7(mc −mcs −mcr))

m1 +mcs + φ7(mc −mcs −mcr)

The turbine rotor exit temperature, t2r, is obtained
according to

t2r =
t1r

πη
γ−1
γ

(16)

The exhaust temperature t2, obtained after all the
cooling air has been introduced, is found from the ro-
tor outlet entalphy t2 = h2

cp
, which is given by:

h2 =
m2rh2r + ((1.0− φ7)(mc −mcs −mcr) +mcr)hc

m1 +mc

(17)

Nozzle component

The exhaust stagnation pressure is determined from

P2 = P1

(

1.0− φ1 ·
(

m1

√
t1

P1

)2
)

(18)

The 1D continuity equation states (π = P2

P∞
):

m1

√
RT2

AP2
= χ(π, γ2) (19)

Where A = φ2. In the Engine 1 and Engine 2 cases
this relation is used to form an internal residual, and
in the Engine 3 case the equation is used to compute
the mass flow.

Splitter component

The splitter splits the flow into two streams pre-
serving the thermodynamic properties of the gas. The
bypass ratio α is defined as α =

mbypass
mcore

according to:

m2 =
m1

α+ 1
(20)

m4 = m1 −m2 (21)

Engine 1 and Engine 2 have two splitters one for
the bypass duct and one for cooling flow splitter. The
ODE model only has the latter. In the bypass splitter
α is an iteration variable (algebraic variable). In the
cooling flow splitter, α is set to 0.068.

Mixer component

The mixer adds the bypass stream to the core flow
conserving mass, energy and momentum. The Mach
number of the core flow, M1, and the Mach number
in the bypass duct, M3, are computed using the 1-D
compressible continuity equation:

m1

√
RT1

A1P1
= χ(γh,M1) (22)

m3

√
RT3

A3P3
= χ(γh,M3) (23)

where A1 = φ1 and A2 = φ2. A Kutta condition
(equal static pressure) has to be satisfied. In Engine 1
and Engine 2 the mass flow is specified and a resid-
ual is formed equating Ps1 and Ps3, and for Engine 3
this relationship is used directly to compute m3 after
M1 has been guessed. To find the Mach number after
mixing the impulse function17 is introduced:

F = PsA+ γPsAM
2 (24)

Assert that:

F2 = F1 + F3 (25)

Introducing Eq. 24 into Eq. 25 yields:

P2sA2

(

1 + γhM
2
2

)

=

P1sA1

(

1 + γhM
2
1

)

+ P3sA3

(

1 + γhM
2
3

)

(26)

Using the 1-D compressible continuity equation for
P2A2 yields:

A2P2 =
m2

√
RT2

χ(γh,M2)
(27)

T2 can be computed since the enthalpy of the mixed
stream is a mass weighted average of its two con-
stituents. Thus, M2 can be found iteratively, and P2

is then obtained from the continuity equation.
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Fuel component - Control unit

The fuel module serves as a simple proportional
controller scheduling the fuel flow, b, during the test
transient according to:

b = Ψ(t) min(φ1bstat, φ2(nr − ns))

bstat = φ3 + φ4ns + φ5ns
2 + φ6ns

3 + φ7ns
4

Ψ(t) = 1.0− e−5tln5 (28)

where nr is the required rotational speed and ns the
mechanical speed. The expression for bstat is a result
from fitting a fourth degree polynomial to a number of
steady state fuel consumption operating points. The
expression for Ψ ramps the fuel from bstat at t = 0
approaching the φ1bstat exponentially fast. The fuel
flow reaches 80% of φ1bstat in 0.2 seconds.

The volume component

The volume components are used to simulate stor-
age of energy and mass in the engine according to:

m′V = m1 −m2 (29)

T ′V =
m1T1 −m1TV

mV

(30)

where m′V and T ′V are the time derivatives of the
integrated temperature, TV , and the integrated mass,
mV , respectively. The output pressure of the module
is computed using the ideal gas law and the states
according to:

p =
mV RTV

v
(31)

where the volume v = φ1 is a design parameter of
the volume component.

The rotor component

The rotor acceleration, n′, is calculated according
to:

n′ =

∑

Gt −
∑

Gc

2πI
(32)

where
∑

Gt is the sum of the turbine torques,
∑

Gc

is the sum of the compressor torques and I is the mo-
ment of inertia of the shaft.
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