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Abstract

Systems using coherent multilevel PSK to communicate over flat Rayleigh fading channels are

considered. We present a closed-form expression for the exact bit error probability when the binary re-

flected Gray code is used to map bits to symbols. The result is a general, simple, and correct expression,

which has not been previously available in the literature. A comparison between this new expression

and previous approximate expressions shows that the difference is more significant for fading channels

than for Gaussian channels.

I. INTRODUCTION

This paper deals with communication systems that uses M-ary phase-shift keying (M-PSK)

to transmit information over flat Rayleigh fading communication channels. Communication sys-

tems employing M-PSK have been thoroughly studied in the literature for many different types

of channels, see, e.g., [2–4]. In a recent publication [1], a method to evaluate the exact bit error

probability (BEP) of M-PSK systems was presented for additive, white Gaussian noise (AWGN)

channels. Even though the correct expression differs from previously published results on the

topic, the difference is only noticeable at very low signal-to-noise ratios (SNR). However, for

Rayleigh fading channels the instantaneous SNR is occasionally very small and the discrepancy

between the previous and the new expressions may become significant. It is the aim of this paper

to establish in what way the new results will affect the exact BEP of M-PSK over flat Rayleigh

fading channels. In particular, we address the problem of evaluating the bit error probability

(BEP) of a coherent M-PSK system and present a closed-form expression for the exact BEP of

M-PSK for any M = 2m, where m is a positive integer.

II. SYSTEM MODEL AND SYMBOL ERROR PROBABILITY

During a signalling interval the M-PSK transmitter can output one out of M signals with

quadrature modulation of the form

sk =
√

mEb ej 2π
M

k, k = 0, 1, . . .M − 1, (1)

where Eb is the energy per transmitted bit. In the flat Rayleigh channel model, the channel

is assumed to introduce two random variables in the signal observed by the receiver; a ran-

dom fluctuation of the received signal energy and phase and an additive, white Gaussian noise



component, as seen in the system block diagram of Figure 2. Assuming that the receiver is

able to perfectly track the phase of the channel, the detector in the receiver observes the signal

r = |a|s+n, where a is the complex channel coefficient. The random variable |a| has a Rayleigh

probability density function with mean
√

π/2 and n = nI + jnQ is a complex Gaussian noise

variable with nI and nQ being identically distributed zero-mean Gaussian random variables with

variance N0/2, where N0/2 is the double-sided noise power spectral density.

Each signal alternative is associated with a decision region Sk, and the receiver determines

what Sk the received signal r falls within and outputs as its estimate ŝ the corresponding signal

sk. A symbol error is said to occur if the estimate ŝ differs from the transmitted signal s. We

make the reasonable assumption that all signals are equally likely to be selected for transmission,

i.e., Pr{s = sk} = 1/M and we also assume that the receiver uses a maximum likelihood (ML)

symbol detector.

III. BIT ERROR PROBABILITY FOR FADING CHANNELS

When the average probability of bit errors is considered, the mapping of bits onto symbols

becomes important. In general, for a system using M-PSK with coherent ML detection, the

average bit error probability is given by [1]

Pb =
1

m

M−1∑
k=1

d̄ (k) P (k) (2)

where the function d̄(k) depends only on the bit-to-symbol mapping and the function P (k)

captures the influence of the channel on the error probability. Note that (2) is valid for any

(memoryless) channel and to calculate Pb, we need to find valid and tractable expressions for

d̄(k) and P (k).

The probability P (k) is the probability that the detected signal is found within the wedge in

the signal space delimited by angles (2k − 1)π/M and (2k + 1)π/M (assuming that s0 was

transmitted). By defining θ−k � (2k−1)π/M and θ+
k � (2k+1)π/M we can find P (k) directly



using the method described in [2, pp. 223],

P (k) =




1 − I
(

π
M

)
, k = 0,

1
2

(
I(θ−k ) − I(θ+

k )
)
, k = 1, 2, . . . , M

2
− 1,

I
(

(M−1)π
M

)
, k = M

2

(3)

and P (k) = P (M −k) for k = M/2+1, . . . , M −1. The function I(θ) is given, for the interval

of primary interest 0 < θ < π, as

I(θ) = 1 − θ

π
− β(θ)

(
1

2
+

1

π
arctan (β(θ) cot θ)

)
(4)

after defining

β(θ) �

√
mγ̄ sin2 θ

1 + mγ̄ sin2 θ
, (5)

where γ̄ = Eb/N0 is the average energy-to-noise ratio per bit.

The function d̄(k) is called the average distance spectrum (ADS) and is defined as the average

number of bit positions differing between signal alternatives separated by k steps along the M-

PSK circle. In order to evaluate the BEP of an M-PSK system, we must specify the particular

bit-to-symbol mapping used, since the choice of mapping will affect the BEP. A commonly

encountered way of mapping bits to symbols is by means of the binary reflected Gray code

(BRGC). In [1, eq. (7)] a closed-form for the ADS of the BRGC is given for all integers k,

d̄(k) = 2

∣∣∣∣ k

M
−
⌊

k

M

⌉∣∣∣∣ + 2

m∑
i=2

∣∣∣∣ k2i
−
⌊

k

2i

⌉∣∣∣∣ (6)

where �x� rounds x to the nearest integer (ties are resolved arbitrarily).

By combining (6) with (2) and the symmetric relation P (k) = P (M − k), we obtain

Pb =
1

m

M−1∑
k=1

(
2

∣∣∣∣ k

M
−
⌊

k

M

⌉∣∣∣∣+ 2

m∑
i=2

∣∣∣∣ k2i
−
⌊

k

2i

⌉∣∣∣∣
)

P (k). (7)

This equation, together with (3) and (4), provides a closed-form expression for the exact BEP of

coherent M-PSK over flat Rayleigh fading channels.



IV. COMMENTS AND CONCLUSIONS

A commonly encountered approach in the literature when evaluating the BEP of coherent

M-PSK systems, see e.g., [3, sec. IV], is to use the Hamming weights of the binary labels

assigned to the symbols, rather than the ADS. As was shown in [1], this method only generates

approximate results. However, for the Gaussian case, the difference is very small and almost

not noticeable. In Figure 1, the ratio between the BEP evaluated using the Hamming weights,

wH(k), and the BEP evaluated using the ADS, d̄(k), is shown for the Gaussian channel and the

flat Rayleigh fading channel. We note that the approximation of using wH(k) instead of d̄(k) is

still accurate, although much less accurate than for the AWGN channel. However, since there

is a closed-form available for the ADS, there is little motivation for the approximation of using

wH(k). From Figure 1 we also observe that the difference between the approximation and the

exact BEP for the fading channel is noticeable over the whole range of practical values of the bit

energy-to-noise ratio, which is not the case for the AWGN channel.
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Fig. 1. The graph indicates the ratio Pb(d̄)/Pb(wH) for M = 16, where Pb(wH) is (2)–(5) evaluated using the Hamming

weights of the BRGC labels in place of the ADS, and Pb(d̄) is (7) with (3)–(5).
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Fig. 2. Schematic block diagram of a communication system communicating over a Rayleigh fading channel.


