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Longitudinal Force Distribution Using
Quadratically Constrained Linear
Programming

M. Klomp*
Saab Automobile
SE-461 80 Trollhattan

Abstract

In this paper a new method is presented for the optimization of
force distribution for combined traction/braking and cornering. In
order to provide a general, simple and flexible problem formulation,
the optimization is addressed as a quadratically constrained linear
programming (QCLP) problem. Apart from fast numerical solutions,
different driveline configurations can be included in the QCLP problem
in a very straightforward fashion.

The optimization of the distribution of the individual wheel forces
using the quasi steady state assumption is known to be useful for
the study of the influence of particular driveline configurations on
the combined lateral and longitudinal grip envelope of a particular
vehicle/driveline configuration. The addition of the QCLP problem
formulation, makes another powerful tool available to the vehicle dy-
namics analyst to perform such studies.

1 Introduction

Advances in individual distribution of brake and traction forces on all four
wheels [6] provide means to enhance the combined longitudinal and lateral
grip of the vehicle [12]. This enhancement of the combined grip enables the
vehicle to better avoid critical situations, in particular when both longitudinal
and lateral forces are simultaneously required. For example when avoiding
an obstacle, the traveled distance of the vehicle in a given direction may need
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to be minimized or maximized. This is achieved by distributing the forces
on each wheel individually such that the global force acting on the center
of gravity (vector sum of all tire forces) of the vehicle is maximized in this
direction. In optimizing the wheel force distribution also tire and actuator
constraints and yaw balance must be considered.

Several studies have been made on how to distribute a predetermined
global force and yaw moment to each individual wheel, taking into account
actuator and tire constraints. Important contributions in this area are pre-
sented in [I4], where the force utilization is distributed as equally on all
wheels as possible. In [4, [I1], [13], additional constraints, due to actuator
limitations, are added to such a problem formulation. What is not explicitly
considered in [4], [IT), 3], however, is that the future tire limits are affected by
the instantaneous wheel force distribution because of the lateral and longi-
tudinal load transfer. Therefore, optimality over a longer time horizon is not
guaranteed. This issue is addressed using model predictive control (MPC)
in for instance [5, @, 20]. Although all these approaches have their merits for
more general problems, they either do not directly consider changes in the
tire limits caused by the force distribution, are computationally demanding
(non-linear MPC in particular), do not approximate the tire force limits well
(when using linearization), or a combination of these.

If, however, the problem being studied represents steady-state conditions,
then only the steady-state force distribution needs to be optimized. It is
shown in [IH3] [I8] that also for smooth changes in the combined longitudinal
and lateral acceleration (quasi steady state (QSS) conditions), the lateral and
yaw dynamics may be considered to be steady-state. The QSS approximation
is used in, for instance, [§] for race car lap simulation and in [16l [I7] to
optimize the force distribution for cases similar to our present problem.

One particularly relevant reference is [16] where the longitudinal acceler-
ation during traction or braking is maximized for a given cornering radius.
This is formulated as a nonlinear optimization problem with the longitudi-
nal force on each wheel as optimization parameters. The lateral forces are
subsequently derived from the QSS approximation and the available corner-
ing radius. Nevertheless, in order to more conveniently permit changes in
driveline configuration and direction of the optimized force magnitude, the
particular problem formulation in [I6] needs some adaptation.

The aim of this study is to formulate the force distribution problem in
such a way that the direction in which the global force is to be maximized
can be easily changed. Another objective is to find a simple and numerically
efficient formulation for this problem. Finally, the formulation shall be flex-
ible, such that different driveline configurations and tire constraints can be
easily incorporated.



This paper is organized such that first a simple planar vehicle model is
introduced. Following the modeling, the optimization of drive force distribu-
tion is formulated as a non-convex quadratically constrained linear program-
ming (QCLP) problem. This approach is applied to four configurations from
[17], which are with and without constraints on the left/right longitudinal
force distribution. In order to give an example on how the obtained results
could be used in a vehicle implementation, a scenario is studied where the
global force vector is fixed in the inertial system, demonstrating a wide range
of combined braking/traction and cornering. Finally the major findings are
summarized and the implications of the results are discussed.

2 Vehicle Modeling

The vehicle model used in this study is shown in Figure [1| and is a front-
steered vehicle with one central source of longitudinal force, Fy'. This total
longitudinal force is first divided to the front and rear axles and subsequently
to each wheel through virtual ideal “differentials” (® in Figure [1]). The dif-
ference in drive force between the two outputs is denoted as AFxw1, AFxwo
and AFxyw3 for the front, rear and center differentials, respectively. In the
figure, the main part of the nomenclature used for geometry and forces of
the vehicle are defined.
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Figure 1: Two-track vehicle model showing the top-view geometry, velocities,
slip angles and forces.



2.1 Two-track Vehicle Model

In this paper, only the planar motion of the vehicle is considered and the
longitudinal, lateral and yaw velocities are chosen as state variables vy, vy
and 1}, respectively. This means that other dynamics of the vehicle, such
as roll, pitch, heave, wheel rotation, steering system and driveline dynamics,
are considered rigid. A discussion of some of these assumptions can be found
in [19], where the conclusion is that the planar dynamics and tire nonlinear-
ities are the most important factors to consider for most maneuvers. From
Newton’s second law of motion the following state-space model is derived:

& =f(x,u)=M 'Az —a (1)
where the state vector and input vector are

.’IJ:[’UX Vy ’QD}T

w=[F¥ AFy, AFx, AFxs 6]

respectively, and

= [px Py D}
px=[101010 10"
py=[0101010 1] (3)
py=[-s L s I —s =l s —lz}T
z = [Fxn Fy1y Fxao Fyzz]T

and where m is the vehicle mass, k is the radius of gyration. The lateral
forces, expressed in the wheel coordinate systems, Fyy1y...Fywoo, are a
function of both the state variables, x, and the input vector, w. This rela-
tionship between the lateral force and the input and state variables is given
below. The wheel forces, z, are limited according to the friction circle concept
[15]. This implies that

where the indexes ¢ = 1,2 are for the front and rear axle and j = 1,2 the
left /right wheels, respectively. The vertical forces, Fy;;, are given by the



static load distribution as well as the longitudinal and lateral load transfer
[12, [15]:

Fgij = Fyi; + (=1)'Cxmax + (—1)¢yimax (5)
where (y; is the lateral load transfer coefficient of each axle,
-1
Fy, = L =lmg
(=
Y

and where h is the height of the center of mass above the ground and g is
the gravitational acceleration. The longitudinal and lateral accelerations are

ax = @X — Uylb = q;z/m
ay = Uy +vxp = q;z/m

(7)

The transformation between the longitudinal and lateral wheel forces ex-
pressed in local wheel reference frame and these forces expressed in the vehicle
reference frame results in

z=Tzy (8)
where
2w = [FXWU Fywi -+ Fxwa FYWQQ]T
T =diag (T T\ T, T»)
_|cosd —sind 9
T = {siné cosé} ©)

10
mlo

In order to more easily relate the presented results to an actual driveline,
the total force and force differences are presented as functions of the longi-
tudinal acceleration. The total longitudinal force and the longitudinal force
differences relate to the wheel forces as

where

1 0 1 0 1 010
R_|"10 1 00 000 (11)
000 0 0 —-1010
10 -10 1 010



In summary, the model is a dynamic model on state-space form of a
three-degree of freedom all-wheel drive vehicle with three state variables and
five input variables.

2.2 Tire Model

A simple version of the well-known Magic Formula tire model [15] is used
to compute the lateral forces. In this model the longitudinal force, Fxy;;,
and the slip angle, «;;, on each wheel chosen as independent variables. The
slip angles, a;;, are the angles of the velocity vector at each individual wheel.
These are obtained from a linear transformation from the longitudinal, lateral
and yaw velocity at the center of gravity to the local velocities at the wheels,

such that o
—(—=1);
a;j = 0; — arctan vy = ( ) w (12)
lux + (=1)7s9))
The lateral forces are given by the Magic Formula:
FYWij = Dij SIII((C arctan(Baij)) (13)

with coefficients
D;; = \/(Mz’FZij)2 — Fiwip  Fxwij < piFzij cos ai (14)

and where the friction coefficients, B and C are given in Appendix [A] Tt
follows from Equation that the maximum lateral force is achieved for
the slip angle:

. 1 T
aij = Etan% (15)

3 Optimizing the Wheel Force Distribution
for Maximum Combined Grip

In this section, the distribution of the individual wheel forces is optimized
such that the the magnitude of the global force with a predetermined an-
gle, ¢ (relative to the longitudinal direction of the vehicle), is maximized.
This problem is formulated as a quadratically constrained linear program-
ming (QCLP) problem which is a special case of quadratically constrained
quadratic programming (QCQP) problems [7]. In this section, solutions to
the QCLP problem are shown for four different driveline configurations. In
the case the power source is, for instance, an electric motor, both traction
and braking is possible. For this reason, also braking is considered for the
driveline configurations which are studied.
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3.1 Quadratically Constrained Linear Programming

The objective to maximize the global force vector in a particular direction
¢, subject to tire constraints , the yaw balance , as well as additional
(optional) constraints on the longitudinal force distribution result in the fol-
lowing QCLP problem:

minimize  pgyz
subject to 2" Q;;z +piz +1i; <0

p,z =0 (16)
EFRz =0
where
Poo = —(Px cos ¢ + py sin @) (17)

The objective function maximizes the sum of the wheel forces in the pre-
determined direction and the (quadratic) inequality constraints are that the
tire forces must lie within the friction circle. The first equality constraint is
the yaw moment balance that must be maintained. Constraints which are
imposed by different driveline configurations are included by changing the
matrix FE.

The inequality constraints for each tire, expressed with z, are obtained

by combining the Equations (4], and ([7)):

2" Pyz < i (Fgy; + (-1)'CGepxz + (1) Gripy 2)? (18)
where
Py =diag(l 1 0 0 0 0 0 0)
Ppy=diag(0 01 1.0 0 0 0 (19)
Py =diag(0 0 0 0 1 1 0 0)
Py =diag(0 0 0 0 0 0 1 1)

By expanding Equation ((18)) we identify
O;; -+ Oy
Qj;=Py— | .
Oi; - 0Oy (20)
pi; = =207 Fp.((—1)'¢xpx + (—1)¢vipy)
riy = —(1Fy;)*
where

2 -1 i+j ;
0i; = /%2 (_1)i§r)j(CX<Yi ( )Ciz/fXCY (21)
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It may be noted that, since @;; is neither positive nor negative (semi)definite,
the problem is non-convex [7].

The gradients of the inequality and equality constraints are easily iden-
tified from the QCLP formulation in Equation . These gradients can
be supplied to the numerical solver, eliminating the need for these to be es-
timated by the solver, for faster computations. The gradient of the linear
parts of Equation are simply the vectors (or matrix) with which z is
multiplied, and for the quadratic inequality constraints

V(zTQijz) = zT(Qij + QZTJ) (22)

Summarizing, a QCLP problem is formulated with the objective to
maximize the combined grip subject to tire, yaw balance and driveline con-
figuration constraints. This problem is solved with a standard non-linear
programming solver (fmincon from the MathWorks™). In order to quan-
tify the benefits of the present formulation with regard to computational
efficiency, one example problem when E = 0 is studied for three different
problem formulations, using the same numerical solver. These problem for-
mulations are a standard non-linear programming (NLP) formulation using
the constraints in Equation and the QCLP formulation (29)) with and
without supplying the gradients to the solver. Relative to the NLP formula-
tion, the QCLP problem was nearly three times faster and five times faster if
additionally the gradients of the objective function and the constraints were
supplied to the solver. It is likely that additional computational benefits are
achieved if a specialized solver for QCLP problems is used.

3.2 Driveline Configurations Using Linear Constraints

The driveline configurations which are studied are taken from [17] and repre-
sent different combinations of constraints on the left /right longitudinal force
distributions. Either the left/right longitudinal force distribution is fixed
and equal (open) or is free within the tire constraints. These two possibil-
ities per axle are denoted as “o” for open or “a” for active in the index of
the E-matrix. These configurations impose the following additional equality
constraints on the optimization problem such that the E-matrix for each
configuration becomes

E..=0

E,=[0 1 0 0]

E,=1[0 0 1 0] (23)
0100

Ew=10 01 0}



It may be noted that the front/rear drive force distribution is optimized
for all four configurations. Although not pursued in this study, it is straight-
forward to use the E-matrix to add a (linear) constraints on the front/rear
drive force distribution as well. In this way, front-wheel, rear-wheel or fixed
torque-split all-wheel drive configurations can be studied, as in [I7]. This is
done by adding the row

Eip = [g 00 1} (24)
where AR
XW3
= -_— 2

For example, for front-wheel-drive (FWD) ¢ = 1 and for rear-wheel-drive
(RWD) ¢ = —1. For an all-wheel-drive (AWD) configuration with a 50/50
front /rear torque split, & = 0. These additional examples are mentioned to
demonstrate the flexibility of the employed formulation to incorporate a wide
variety of driveline configurations, beyond the four configurations studied in
this section.

3.3 Solutions for the Different Driveline Configura-
tions

The results from the four different driveline configurations above are shown
in Figures [2] and [3] The vehicle data used for these simulations is given in
Appendix [A]

In Figure |2 the optimal left /right and front /rear drive force distribution is
shown. In this figure, the sub-figures [Ja and 2Jb show the optimal left/right
longitudinal force differences for front and rear axle, respectively.

Figure .C shows the optimal front/rear distribution. The lines along
which all the longitudinal force is applied on the front or rear axle are indi-
cated in this sub-figure with diagonal dashed lines indicated with FWD and
RWD, respectively.

The maximum combined lateral and longitudinal acceleration is shown
in Figure 3] The dashed boundaries in Figure [2lc indicate the traction or
braking limit of the front and rear axles.

The results shown in these figures are identical to those presented in
[I7], where an excellent discussion on the implications of this drive force
distribution can be found.



Awag/m [IH/SQ]

Figure 2: Optimal drive force distribution for four different configura-
tions: active/active (circle), active/open (square), open/active (diamond),
open/open (triangle). Results are for 6 = 0.

ay™ [m/s’]

0

ax [m/s?]

Figure 3: g-g Diagrams for four different configurations: active/active (cir-
cle), active/open (square), open/active (diamond), open/open (triangle).
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3.4 Analytical Solution for Free Longitudinal
Force Distribution (active/active)

Next, closed-form expressions are presented for the case where the longitu-
dinal force distribution can be freely distributed to all four wheels and the
friction coefficient, u, is equal on all four wheels. The proposition is that
the friction force capability on each tire should be fully utilized and applied
in the same direction as the desired global force direction. It is further sug-
gested that the total friction capability can also be modeled as a circle. This
proposition implies that

Fgiol cos ¢
d
o ax| cos ¢ 97
ay| =19 | sin o (27)

which, when inserted into Equation , gives that
EXii| — (RO, + pimg((=1)'¢x cos 6 + (=1 ¢yisin ) | €29 (28)
Fyy; 24 ! sin ¢

where the asterisk indicates that this is the optimal force distribution for this
particular configuration.

In order to verify the proposition, the drive force distribution given by
Equation is compared to numerically computed solutions to Equation (29)
for this configuration.

In Figure [4] the numerical solution is shown with a solid line and the
closed-form solution with circles. From the figure it can be seen that the
proposed closed-form solution yields the same results as the numerical solu-
tion.

3.5 Linear Approximation of the Quadratic Constraints

Although the QCLP formulation has a linear cost function, the QCLP cannot
be solved with a standard linear programming solver. In [10], approximations
of the quadratic constraints to a polygon are suggested. Using this approx-
imation, the problem is a proper linear programming problem with linear
constraints (here denoted LCLP). As mentioned in the introduction, how-
ever, the approximation proposed in [10] does not explicitly consider changes
in the friction circles as function of the wheel force allocation. In order to
address this issue, the same normal force distribution model will be used

11
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Figure 4: Comparison between numerical (solid line) solution to the QCLP
problem (29) and closed-form expressions (circles) in Equation ([28)).

for the LCLP formulation in the same way as it was done for the QCLP

formulation.
With the quadratic constraints being approximated with an octagon, the
problem is reformulated to the following LCLP problem:

minimize  pgyz
subject to Dz <b (29)
D,z =0
where
. T
D = diag(Dy, Dy, Dy, D) — [dn cooodyy e dyy - d22}
o[ 1 V2-11-v2 1]
T v2-1 1 1 V2-1
dij = p((=1)"¢xpx + (=1 ¢ypy) (30)
-
b= [Mngll e :ungll ﬂ2Fg22 M2F§22]
T
Deq = [pw Dy (ER)T}
Py = Px SN @ — Py COS ¢
This particular problem formulation is only valid for positive lateral forces,
since only the left sides of the polygons are given in Dy. Since left and right
cornering are symmetric, extension to right cornering is straightforward but
left out for sake of brevity. It is of course also straightforward to extend the
above to polygons with more sides than eight.

The additional constraint p, = 0 is necessary to force the force vector
to be in the intended direction. Without this constraint, the solution to the

12
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Figure 6: Comparison between QCLP (circles) and LCLP (squares).

LCLP problem will only yield results in the vertexes of the polygons. This is
illustrated in Figure |5/ where it can be seen that it is always a vertex that has
the largest distance in the optimization direction. The only exception when
optimizing perpendicular to a side of the polygon; in this case any point
along the polygon yields the same result. The additional constraint solves
both of these issues.

A comparison for the active/active configuration (E = 0) is made between
the QCLP formulation and the LCLP formulation for 0 < ¢ < w. The
results are shown in Figure [0] and show a reasonable agreement between the
two solutions. The main benefit is that solving the LCLP problem with a
dedicated LP solver (in this case, linprog from the MathWorks™) was five
times faster than the solving the QCLP problem.

13



4 Vehicle Implementation of the
QCLP Optimization Results

The purpose of this section is to given an example of a vehicle implemen-
tation of the optimal drive force distribution obtained above. Since we are
interested in situations that involve smooth changes in combined longitudi-
nal and lateral acceleration, consider an example where the global force has
a fixed direction in the inertial reference frame. With initial conditions

zo=[15 0 —m/4)"

it can be seen that the desired direction of the global force is 135° relative to
the initial heading of the vehicle. The task is to maximize this global force,
resulting in both longitudinal and lateral forces, with the latter turning the
vehicle. As the vehicle turns, so does the direction of the global force in the
vehicle coordinate system.

The implementation was made by determining the total and longitudinal
force difference in the input vector w by linear interpolation of the off-line
computed optimal longitudinal force distribution. Since the lateral forces
cannot be directly controlled through the input vector, w, but only via the
front steering angle §, the inverse of the employed tire model is used to
compute the steering input that maximizes the lateral force. The steering
angle is computed by combining the average slip angle on the front axle
with the slip angle at which the maximum lateral force is achieved from
which we obtain

d=a]+ A (31)

where .
vy + L1
x|
which is the average slip angle on the front axle if § = 0.
Results are shown in Figure [ In Figure [7a, the speed history (v =
V% + v¥) is shown and in .b, the lateral versus the longitudinal acceler-
ation is shown, which can be compared to the g-g diagram in Figure [3 In
Figure[7].c, the trajectory in the inertial reference frame is shown. The circles
at the location at each wheel indicates the relative size of the friction circle
and the bold line within each circle indicates the force vector of that wheel.
From Figure c it can be seen that, as expected, the active/active con-
figuration exhibits both less displacement along both the Xz and Yg axes
than any of the other configurations. Conversely, the open/open configura-
tion, with the less combined grip than the other configurations (see Figure|3)),

(32)

[, = arctan
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takes the outermost path. It is also interesting to compare the speed histories
in Figure [7]a to the utilization of the combined grip in Figure [7}b. There it
can be seen that in particular between the active/active and the open/open
configuration, the difference is notable in the combined grip area. The ac-
tive/active configuration has the steepest changes in longitudinal speed and
does also reach the lowest speed of all configurations. These rapid changes
in speed explain why the trajectory has the highest average curvature.

Note that these results intend to show the maximum performance of
each configuration, not necessarily the desired trajectory. If all vehicles are,
for example, to have the same (feasible) speed profile, the difference in the
configurations would instead be a difference in friction utilization and thereby
a larger safety margin for the more capable configuration.

Although not predicted by the QSS approximation, it can be seen that
the highest lateral acceleration is achieved for the open/open configuration.
This is likely due to that the time at which the speed is constant (which
is when the maximum lateral acceleration is achieved) is much shorter for
the active/active configuration than for the open/open configuration. It is
suggested that for the active/active configuration, the vehicle never reaches
steady-state. This would indicate that, in this example, the QSS assumption
is likely not entirely valid during the entire range of combined grip operated
in this example. Nevertheless, given the simplicity with which the drive force
distribution can be optimized, and that the qualitative outcome of the vehicle
simulation is well predicted by the QSS method, it is still considered useful
for these type of situations.

5 Summary

The purpose of this study was to study the optimal force distribution for
combined traction/braking and cornering with the objective to maximize
the combined lateral and longitudinal grip in a particular direction. The
aim was to find a simple and flexible problem formulation for the present
problem.

These objectives were achieved by formulating the problem as a quadrat-
ically constrained linear programming (QCLP) problem based on the quasi
steady state (QSS) assumption. The QCLP problem was solved for four
different driveline configurations with different constraints on the left/right
drive force distribution. The QCLP formulation allowed for these configu-
rations to be easily implemented without reformulation of the optimization
problem for each case. Further, some examples were given how the front or
rear wheel drive configurations can be implemented as well, further demon-
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Figure 7: Results from vehicle implementation of the longitudinal force dis-
tribution obtained from the QCLP optimization. The target global force
direction is fixed (upward) in the inertial reference frame.
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strating the flexibility of the chosen approach.

Additionally, a closed-form solution to the general optimization problem
was given for the case where the force distribution can be individually con-
trolled. These derived expressions are for this special case, equivalent to the
constrained optimization problem, but being in a much simpler form.

Also a new linear approximation of the quadratic constraints was pre-
sented, which reduces the nonlinear problem to a standard linear program-
ming problem. This formulation may have applications in on-line optimiza-
tion or linear model predictive control (MPC).

Finally an example implementation of the off-line computed optimiza-
tion results in the presented vehicle model are shown to yield results closely
following the predictions from the QSS optimization.

In conclusion, this study has demonstrated the application of the QCLP
formulation for the study of driveline configurations for the QSS approxi-
mation of cornering problems involving combined longitudinal and lateral
acceleration near the vehicle limit. It is straightforward to extend the pro-
posed method to braking, and it is not unlikely that also other applications,
such as active steering, are possible.

The optimization of the distribution of the individual wheel forces using
the QSS assumption provides a tool to understand the implications of par-
ticular driveline configurations on the combined lateral and longitudinal grip
envelope [16, 17]. The addition of the QCLP problem formulation by this
study, makes another powerful tool available to the vehicle dynamics analyst
to perform such studies.
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Vehicle and Tire Data

The vehicle data in Table [I] is used in the conducted simulations are taken
from [I7] and represent a medium-sized passenger vehicle. The yaw inertia
was not available in [I7] but is taken from another vehicle with similar size.
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| Description | Variable(s) | Unit | Value(s) |

Vehicle mass (front/rear) my/ma kgl | 900/600
Yaw radius of gyration k m] | +/15/26
Wheel base [ [m)] 2.7
Height of mass center h [m)] 0.5
Track width (f/r) w [m)] 1.5
Lateral load transfer coefficient (f/r) Cv1/Cyva -] | 0.17/0.16
Axle friction (f/r) 1/ pho ] 1.0/1.1
Tire shape factor -] C 3/2
Tire stiffness factor -] B 10

Table 1: Vehicle and tire data
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