
Thesis for the Degree of Doctor of Philosophy

A Theory of
Parametric Polymorphism

and an Application
A formalisation of parametric polymorphism

within and about dependent type-theory, and an
application to property-based testing.

Jean-Philippe Bernardy

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Göteborg, Sweden 2011

A Theory of Parametric Polymorphism and an Application
A formalisation of parametric polymorphism within and about dependent
type-theory, and an application to property-based testing.
Jean-Philippe Bernardy

ISBN 978-91-7385-514-3

c© 2011 Jean-Philippe Bernardy

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3195

ISSN 0346-718X

Technical Report 77D
ISSN 1653-1787

Department of Computer Science and Engineering
Functional Programming Research Group

Chalmers University of Technology and
Göteborg University

SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 10 00

Printed at Chalmers
Göteborg, Sweden 2011

iii

A Theory of Parametric Polymorphism and an Application
A formalisation of parametric polymorphism within and about dependent
type-theory, and an application to property-based testing.
Jean-Philippe Bernardy

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

This thesis revisits the well-known notion of parametric polymorphism in
the light of modern developments in type-theory. Additionally, applica-
tions of parametric polymorphism are also presented.

The first part of the thesis presents a theoretical investigation of the se-
mantics of parametric polymorphism of and within type-theories with de-
pendent types. It is shown how the meaning of polymorphic, possibly
dependent, types can be reflected within type-theory itself, via a simple
syntactic transformation. This self-referential property opens the door to
internalise the transformation in type-theory, and we study one possible
way to do so. We also examine how the translation relates to various spe-
cific features of type-theory, such as proof irrelevance and realizability.

The second part is concerned an application of parametric polymorphism
relevant to software engineers. We present a schema to reduce polymor-
phic properties to equivalent monomorphic properties, for the purpose of
testing. Our proof uses parametricity and properties of initial algebras.

Keywords: Types, Polymorphism, Dependent types, Parametricity, Logical
relations, Realizability, Testing, Haskell type-classes

v

This thesis is based on the work contained in the following papers.

I. Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson (2010). “Para-
metricity and Dependent Types”. In: Proceedings of the 15th ACM SIG-
PLAN international conference on Functional programming. Baltimore, Mary-
land: ACM, pp. 345–356

II. Jean-Philippe Bernardy and Marc Lasson (2011). “Realizability and
Parametricity in Pure Type Systems”. In: Foundations Of Software Sci-
ence And Computational Structures. Ed. by Martin Hofmann. Vol. 6604.
Lecture Notes in Computer Science. Springer, pp. 108–122

III. Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen (2010).
“Testing Polymorphic Properties”. In: European Symposium on Program-
ming. Ed. by Andrew Gordon. Vol. 6012. Lecture Notes in Computer
Science. Springer, pp. 125–144

Contents

Introduction 1

1 Background . 1

2 Contents . 6

Paper I – Proofs for Free - Parametricity for Dependent Types 11

1 Introduction . 13

2 Pure type systems, with colour 14

3 The relational interpretation 19

4 Constants and datatypes . 26

5 Internalisation . 36

6 Applications . 41

7 Discussion . 48

A Proof of the abstraction theorem 51

Paper II – Realizability and Parametricity in PTSs 59

1 Introduction . 61

2 The first level . 63

3 The second level . 66

4 The third level . 73

5 Extensions . 77

6 Related work and conclusion 80

A Vectors from Lists . 82

B Details of proofs . 84

Paper III – Testing Polymorphic Properties 91

1 Introduction . 93

2 Examples . 95

3 Generalisation . 98

vii

viii CONTENTS

4 More examples . 108

5 Related work . 114

6 Future work . 117

7 Conclusion . 118

A Applying parametricity . 119

B Embedding containers . 120

C Auxiliary results about free distributive lattices 124

References 127

CONTENTS ix

Acknowledgements

Starting doctoral studies after spending many years away from the aca-
demic world is not an obvious thing to do. My warmest thanks go to
the people who made this change of direction possible, and supported it.
Without them this thesis would never have been written. In particular, Ray-
mond Devillers and Darius Blasband recommended me to Sibylle Schupp
who trusted me enough to accept to channel funds into my direction and
provided precious supervision during the first year of my studies.

Many thanks also go to Patrik Jansson, who has supervised me for the last
three years of my studies. His constant support, interest and guidance have
been invaluable. Koen Claessen accepted to co-supervise this work, and
his unparalleled enthusiasm easily blew away any cloud of doubt crossing
my way. My co-authors also deserve the deepest gratitude, as each of them
brought invaluable expertise and broadened my scientific horizons.

All of this work has been greatly facilitated by the environment provided
by the department, whose members, from doctoral students to professors,
constitute an amazing reservoir of knowledge, brilliance, and wisdom. The
less academic aspects of Chalmers are on par, and the administrative staff
gets at least part of the credit for it.

I also wish to thank Stephanie Weirich for accepting the role of faculty op-
ponent, as well as the members of the grading committee: Janis Voigtlän-
der, Patricia Johann and Catarina Coquand.

There are more antecedents to this thesis than space allows me to explicitly
acknowledge in writing. Even though I must stop here, they shall rest
assured that they are not forgotten. But enough looking back! I want to
also thank you, reader, for taking some of the ideas from this volume with
you, allowing them to live further on.

x CONTENTS

Introduction

1 Background

1.1 Programming Computers: an Art?

One of the foundational texts of computer science, “The Art of Computer
Programming” (Knuth, 1997), is prefaced with these words:

Here is your book, the one your thousands of letters have asked
us to publish. It has taken us years to do, checking and recheck-
ing countless recipes to bring you only the best, only the inter-
esting, only the perfect. Now we can say, without a shadow
of a doubt, that every single one of them, if you follow the
directions to the letter, will work for you exactly as well as it
did for us, even if you have never cooked before. — McCall’s
Cookbook (1963)

Such an introduction might give the impression that programming is not
quite a science, but rather an art, not in the noble sense of creating attrac-
tive artifacts (music, painting, sculpture, etc.) but in the pragmatic sense
of a collection of techniques learned by practice and observation (as in Sun
Tzu’s “The Art of War”).

The cookbook analogy remains as suggestive today as it was in the past
millennium: it seems that programming remains a business of trial and
error, mostly guided by empirical experience rather than rigorous scientific
inquiry.

A possible reason for this state of affairs is that programming has more
emphasis on the computer rather than the problem it is supposed to solve.
Practitioners of the art focus too quickly on the sequence of operations
that the computer should perform, at the expense of improving their own
understanding of the problem at hand. Often this shift of attention results
in software errors, because it is difficult to keep a good overview of a
program when one thinks of it as millions of elementary instructions.

1

2 Introduction

1.2 Intuitionistic Programming

We believe that programs are first and foremost constructions of the mind;
and essential to their correctness is therefore the ability of the program-
ming environment to support expressing the intuition of the programmer
as naturally as possible. What this might mean in technical terms is sub-
jective. We remark however that the ability to express oneself naturally
is also an important property of logical systems; and thus we attempt to
transpose some lessons learned from that field. We adopt the view that
intuitionistic type-theory (Martin-Löf, 1984) is the right framework to ex-
press oneself logically, and therefore that an ideal programming language
should incorporate that framework1.

In more detail, two aspects of programming environments are essential to
the construction of correct programs: abstraction, and types.

1.2.1 Abstraction

Over the years, proverbial pieces of wisdom have emerged to help pro-
grammers to focus on their intent rather than particulars of implementa-
tion. A popular one instructs: — Don’t repeat yourself! — compelling the
programmer to avoid repeating an implementation pattern multiple times.
Sticking to this principle prevents from scattering the implementation of
a single idea over the whole program, forcing to encode it as directly as
possible into the programming language.

Pierce (2002) translates “Don’t repeat yourself” into the following more
technical terms:

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where sim-
ilar functions are carried out by distinct pieces of code, it is
generally beneficial to combine them into one by abstracting out
the varying parts.

However, abstracting-out common parts is feasible only if the host pro-
gramming language allows it. The binary codes that a computer can na-
tively understand, (as well as their direct symbolic representations) typ-
ically do not allow any kind of abstraction — one is forced to encode
high-level ideas, necessarily obscuring the intent.

More evolved2 programming languages allow extracting parts of programs
and using them whenever needed simply by invoking them by name.
These program pieces program can be parametrized by simple values (they
abstract over the actual data to handle), then one call these functions. For

1Hence the title of this section.
2Dare we say more intelligently designed?

1. BACKGROUND 3

example, a list-sorting function can take the list of items to sort as a param-
eter, and returns the sorted list as result. With the advent of FORTRAN
(Metcalf and Reid, 1990) and similar languages, such first-order abstraction
became a commodity available to the majority of programmers.

Further along the line, functional programming languages such as Haskell
(Marlow, 2010) or ML (Milner, Tofte, and Harper, 1990) allow to abstract
over functions themselves, allowing great freedom of abstraction.

1.2.2 Types

Another language feature which is essential to support construction of
correct programs are types. In a nutshell, types enable the programmer
to keep track of the structure of data and computation in a way that is
checkable by the computer itself. Effectively, they act as contracts between
the implementer of the function and its users. Simple type systems such as
that of FORTRAN focus on the interpretation of bit patterns as integers or
rational values. For example, the compiler will warn the user of a function
whenever they attempt to feed a 64-bit integer to a function expecting a
16-bit one.

In languages with higher-order abstraction, such as Haskell or ML, one
can abstract over functions themselves. Types then specify the type of the
functions expected as parameters; and thus the type system becomes much
more expressive.

Advanced type systems, such as that of Agda (Norell, 2007), can capture
any functional property of data and computation: whether a list is sorted,
that a relational database corresponds to a given schema, etc. (Oury and
Swierstra (2008) provide more examples.) If type-checking is performed
statically, when the program is compiled, it then amounts to proving that
such properties hold for all executions of the program, independently of
its input.

The contributions of this thesis are within the realm of functional pro-
gramming with rich type systems. We believe that such programming lan-
guages are the best environments currently available to construct correct
programs, because they allow to:

• freely abstract parts of the program as desired, and conversely freely
combine simple, well-understood functions into more complex parts;
and

• precisely express the intention of the programmer for each function
using types.

4 Introduction

1.3 Parametric Polymorphism

Having briefly introduced the notion of types and abstraction (we refer
the reader to, for example, Pierce (2002) for an extensive discussion), we
are ready to introduce the topic of this thesis: parametric polymorphism.
Indeed, parametric polymorphism combines these two notions, it is ab-
straction over types. The rest of this section uses an example to illustrate the
idea.

Consider the following function, written in a Haskell-like language. It
inserts an integer into a suitable position within a sorted list.

insert : Int → List Int → List Int
insert x [] = [x]
insert x (y :: t) = if x 6 y

then x :: y :: t
else y :: insert x t

The above function does its job adequately, but is unsatisfactory in at least
one aspect: it is not as abstract as possible. For starters, it uses a concrete
comparison function, whereas in principle it could use any notion of or-
dering. Therefore, the particular ordering used can be abstracted, to yield
the following definition:

insert : (Int → Int → Bool) → Int → List Int → List Int
insert leq x [] = [x]
insert leq x (y :: t) = if leq x y

then x :: y :: t
else y :: insert leq x t

This version is more abstract, but misses one crucial aspect of abstrac-
tion. Cursory analysis of the function definition reveals that it is in fact
completely independent of the type of the elements handled. The same
function would work just as well with, for example, characters instead of
integers. This can be captured by adding another parameter to the func-
tion. The type of this parameter is ?, the type of types. Since the rest of
the type is dependent on this type argument, it must be named there. The
resulting syntax is illustrated in the following piece of code.

insert : (a : ?) → (a → a → Bool) → a → List a → List a
insert a leq x [] = [x]
insert a leq x (y :: t) = if leq x y

then x :: y :: t
else y :: insert a leq x t

The kind of abstraction introduced by the above example is often called
parametric polymorphism, and is the focus of the remainder of this volume.
Before moving on, we shall stress an important characteristic of ?, which

1. BACKGROUND 5

remains implicit in the above example. The type of types (?) is itself ab-
stract. That is, a function with a parameter a of type ? is forbidden to
behave differently depending on the actual argument given for a. (Still,
merely passing along a’s actual value, or values of type a, is allowed.) The
prototypical language capturing the concept of parametric polymorphism
is the polymorphic lambda-calculus (Reynolds, 1974). It was developed in-
dependently by Girard (1972). A perhaps more pedagogical introduction
to polymorphism is given by Cardelli and Wegner (1985).

1.4 The relational interpretation of types

As we have previously mentioned, types are a form of contract between
the implementer of the function and its users. By giving a polymorphic
type to a function, implementers promise to handle values abstractly. In
return, the function can be used in a wide variety of applications.

The meaning of the contract can be captured by logical propositions. For
example, the type-declaration of insert gives rise to the following proposi-
tion3:

∀ a1 a2 → (aR : a1 → a2 → ?) →
∀ o1 o2 → (∀ x1 x2 → aR x1 x2 →

∀ y1 y2 → aR y1 y2 → o1 x1 y1 o2 x2 y2) →
∀ x1 x2 → aR x1 x2 →
∀ xs1 xs2 → Indexwise aR xs1 xs2 →
Indexwise aR (insert a1 o1 x1 xs1) (insert a2 o2 x2 xs2)

In the above, aR refers to any relation between the types a1 and a2; and
Indexwise lifts the relation to lists, index-wise. The proposition is a theorem,
and its proof can be extracted mechanically from the definition of insert.
In fact, every implementation of insert respecting the contract imposed by
the type would yield a valid proof. This means that the above theorem
holds for any function that has the same type as insert — we know it holds
even before looking at the definition of the function it concerns. Hence,
the propositions coming from the relational interpretation are sometimes
called “free theorems”.

The rules to interpret System F types as relations in second order logic,
as well as the statement that every object must satisfy parametricity, were
given by Reynolds (1983). This interpretation makes the contract (as-type)
accessible to reasoning in a logical framework. Wadler (1989) has taken
advantage of this result to derive useful theorems from the type of usual
functional programs. Much of this dissertation is concerned with extend-
ing this idea to more complex type systems.

3The method to derive it is explained in Paper I.

6 Introduction

1.5 Programming languages with dependent types

System F is the core type system of many mainstream functional lan-
guages, but recent developments have seen the rise of programming lan-
guages based on even richer type systems. A critical feature of such sys-
tems is that the right-hand-side of a function type can depend on the vari-
able bound by the left-hand-side. A prototypical example is a lookup func-
tion in a tuple of given length n.

lookup : (a : ?) → (i : N) → (n : N) → (i< n) → Vec a n → a

Syntactically, the quantification over types ((a : ?)→ ...) is unified with the
formation of function types ((i : N) → ...). This syntactical unification is
the central feature of so called Pure Type Systems (PTS) (Barendregt, 1992).
A consequence of such a treatment is that the programming language also
becomes a powerful logical framework.4 Propositions can simply be writ-
ten down in the language of types; and inhabitants of the type play the role
of proofs. This unification of types and propositions is central in the next
chapter. With the introduction of dependency on values, types can express
any proposition, and thus they become a very precise specification tool.
This means that it is possible both to specify and implement safety-critical
applications in a single framework.

Languages featuring dependent types include Agda (Norell, 2007), which
is inspired by Martin-Löf type theory (Martin-Löf, 1984). The proof assis-
tant Coq, which is based on the calculus of inductive constructions (Co-
quand and Huet, 1986; Werner, 1994), has recently gained popularity as a
framework for expressing verified programs (Leroy, 2009; Chlipala et al.,
2009). Some aspects of dependent types have also made their way into the
Glasgow Haskell Compiler (the most used Haskell compiler).

2 Contents

The rest of the dissertation is comprised of self-contained papers which
discuss various aspects of the notion of parametric polymorphism. We
give here a brief overview that can serve as a reading guide.

2.1 Paper I: Parametricity and dependent types

In Paper I, the concern is to generalise Reynolds’ abstraction theorem for
systems with dependent types. Furthermore, if the framework is suffi-
ciently rich (as Coq or Agda are), the relational interpretation of terms can
be expressed in the same framework as the terms themselves.

4Conversely, proof assistants can be used as programming languages.

2. CONTENTS 7

Technically, for any PTS used as a programming language, there is a PTS
that can be used as a logic for parametricity. Types in the source PTS are
translated to relations (expressed as types) in the target system. Similarly,
values of a given type are translated to proofs that the values satisfy the
relational interpretation.

We also show that the assumption that every term satisfies the parametric-
ity condition generated by its type is consistent with the generated logic.

A consequence is that, for every function written by the programmer, the
theorem that it satisfies its parametricity condition comes for free, and can
be used right along with the original function in a proof assistant. The
net effect is that properties of the type that are given by polymorphism
become available for showing the correctness of the program.

2.2 Paper II: Realizability and Parametricity

Reynolds’ interpretation of types essentially acts as an embedding of Sys-
tem F into second-order logic. The corresponding projection removes
much information from logical formulas to obtain types of System F. The
projection was developed earlier by Girard (1972). The connection between
Reynolds’ and Girard’s interpretations was identified by Wadler (2007).

Whereas Paper I shows how Reynolds’ embedding can be generalised to de-
pendent types, Paper II shows how Girard’s projection can be generalised.
The paper also reveals parallels between parametricity and Krivine-style
realizability.

Additionally, Paper II addresses two shortcomings of Paper I. First, we
show how to handle PTSs with a finite number of sorts: it is not necessary
to extend the PTS of the programming language with an infinite hierarchy
to express the relational interpretation of its terms, as we do in Paper I.
Second, the proof of the abstraction theorem is more elegant: by separating
the treatments of terms and types, the proof becomes more structured and
shorter than that presented in Paper I. These two improvements come at
the cost of a longer definition for the relational interpretation of terms.

2.3 Paper III: Testing Polymorphic Properties

2.3.1 Property-based Testing

Besides typing, testing is another useful technique to aid in producing
reliable software. It comes into play when precise typing is either not
possible (the type system is too weak to express the property of interest)
or not practical (for example one does not know yet the right properties
to capture in the type). While testing isolated cases can be necessary to
get a grip on the program behaviour, it is often better to express general

8 Introduction

properties about functions and let a tool generate test cases to search for
counter-examples (Hughes, 2007).

2.3.2 Testing Polymorphic Code

Polymorphic properties are not so easy to test in that way though: be-
cause testing can only be applied to concrete values, one must generate
monomorphic instances. The problem is to pick the right set of monomor-
phic instances to test on. Many approaches are possible, from the most
conservative to the most daring:

1. test on every possible type;

2. test on a type with infinitely many elements; or

3. test on a type with just a few elements (like booleans).

The issue can be quite confusing, and we have anecdotal evidence that
testers often do the wrong thing.

For years, QuickCheck practice has been to use the second approach.
While relatively safe, this method is quite wasteful: one may potentially
perform many redundant tests. In order to speed up testing, Runciman,
Naylor, and Lindblad (2008) suggest the third method. However, if a too
small type is chosen, the generator will consistently miss whole classes of
test cases, giving a false sense of security to the users.

We propose a technique to automatically derive a monomorphic instance
of a polymorphic property aiming at minimising the amount of redundant
testing. We prove, via the relational interpretation of types, that such a
constructed instance covers all the cases possible in the polymorphic case.
In terms of the hierarchy presented above, our technique is as safe as 1.
and more efficient than 2.

Our framework effectively enables testers to take advantage of parametric
polymorphism without requiring them to work with the interpretation of
types as relations, nor leaving them to wonder how to apply it to their
particular problem.

2.4 Statement of personal contribution

The papers in this dissertation are coauthored with other people. My con-
tributions to the papers are as follows:

I. Proofs for free – Parametricity for dependent types

The main contributions of this paper are shared with my co-authors.
Other contributions are solely due to me, such as

2. CONTENTS 9

• the introduction of coloured pure type systems and the use of
colours in the formulation of the relational interpretation,

• the internalisation of parametricity,

• the irrelevant interpretation of propositions,

• the proof that identity proofs are extensionally equivalent to the
identity.

Ross Paterson is entirely responsible for the proof of correctness of
the inductive parametric interpretation of inductive families.

II. Realizability and Parametricity in Pure Type Systems

In this paper, my main technical contributions are

• the proof of the abstraction theorem (which is simpler than the
proof presented in the previous paper, at least in some respects),
and

• the theorem reducing realizability to parametricity, as well as its
(straightforward) proof.

The rest of the contributions of the paper are shared with Marc Las-
son, except for the proofs showing that the logical system P2 is well-
behaved (e.g. its normalisation property), which are entirely due to
him.

III. Testing Polymorphic Properties

The technical contributions in this paper are mine. Patrik Jansson
pointed out that the translation to our canonical testing type can be
expressed as embedding-projection pairs. Most examples are due to
Koen Claessen.

10 Introduction

Paper I

Proofs for Free - Parametricity for Dependent
Types

This paper is an extended and revised version of a paper which appeared
in the proceedings of the International Conference on Functional Program-
ming, 2010, under the title “Parametricity and Dependent Types”. The
present version is under consideration for publication in the Journal of
Functional Programming.

11

Proofs for Free - Parametricity for Dependent
Types

Jean-Philippe Bernardy, Patrik Jansson,
Ross Paterson

Abstract

Reynolds’ abstraction theorem shows how a typing judgement in Sys-
tem F can be translated into a relational statement (in second order
predicate logic) about inhabitants of the type.

We obtain a similar result for pure type systems: for any PTS used
as a programming language, there is a PTS that can be used as a logic
for parametricity. Types in the source PTS are translated to relations
(expressed as types) in the target. Similarly, values of a given type are
translated to proofs that the values satisfy the relational interpretation.
We extend the result to inductive families.

We also show that the assumption that every term satisfies the
parametricity condition generated by its type is consistent with the
generated logic. Our proof gives a computationally meaningful way
to interpret that assumption.

1 Introduction

Types are used in many parts of computer science to keep track of different
kinds of values and to keep software from going wrong. Starting from the
presentation of the simply typed lambda calculus by Church (1940), we
have seen a steady flow of typed languages and calculi. With increasingly
rich type systems came more refined properties about well-typed terms. In
his abstraction theorem Reynolds (1983) defined a relational interpretation of
System F types, and showed that interpretations of a well-typed term in
related contexts yield related results. In “Theorems for Free” Wadler (1989)
observed that if a type has no free variables, the relational interpretation
can thus be viewed as a parametricity property satisfied by all terms of that
type. Almost twenty years ago Barendregt (1992) described a common
framework for a large family of calculi with expressive types: Pure Type
Systems (PTSs). By the Curry–Howard correspondence, the calculi in the
PTS family can be seen both as programming languages and as logics. The
more advanced calculi go beyond System F and include full dependent
types and support expressing datatypes.

Recent work (Takeuti, 2004; Johann and Voigtländer, 2006; Neis, Dreyer,
and Rossberg, 2009; Vytiniotis and Weirich, 2010) has developed para-
metricity results for several such calculi, but not in a common frame-
work. In this paper, we apply and extend Reynolds’ idea to a large class

13

14 Proofs for Free - Parametricity for Dependent Types

of PTSs and we provide a framework which unifies previous descrip-
tions of parametricity and forms a basis for future studies of parametric-
ity in specific type systems. As a by-product, we get parametricity for
dependently-typed languages. This paper is an extended and revised ver-
sion of (Bernardy, Jansson, and Paterson, 2010). Our specific contributions
are:

• An extension of the PTS framework to capture explicit syntax (Sec-
tion 2).

• A concise definition of the translation of types to relations (Defini-
tion 9), which yields parametricity propositions for PTSs.

• A formulation (and a proof) of the abstraction theorem for PTSs (The-
orem 11). A remarkable feature of the theorem is that the translation
from types to relations and the translation from terms to proofs are
unified.

• An extension of the translation to inductive definitions (Section 4),
and its proof of correctness.

• A formulation of an axiom schema able to internalise the abstraction
theorem in the target PTS. The axiom schema is proved consistent,
thanks to a translation to the PTS without the axioms (Section 5).

• A specialisation of the general framework to constructs such as propo-
sitions, type classes and constructor classes (Section 6).

• A demonstration by example of how to derive free theorems for (and
as) dependently-typed functions (sections 3.3, 4 and 6).

Our examples use a notation close to that of Agda (Norell, 2007), for
greater familiarity for users of dependently-typed functional programming
languages. The notation takes advantage of the “implicit syntax” feature,
making the examples easy to read.

2 Pure type systems, with colour

In this section we introduce the notion of coloured pure type systems,
which is an extension of PTS (as described by Barendregt (1992, sec. 5.2)).
The colours capture the fact that various flavours of quantification use dif-
ferent syntax. We introduce our notation along the way, as well as our
running example type systems. While mere PTSs are sufficient for (most
of) the technical results of this paper, colours allow to emphasise the struc-
ture of our translation from programs to their relational counterparts. A
two-colour PTS is also extensively used in our examples.

2. PURE TYPE SYSTEMS, WITH COLOUR 15

Definition 1 (Syntax of terms). A PTS is a type system over a λ-calculus
with the following syntax:

T = C constant
| V variable
| T T application
| λV :T . T abstraction
| ∀V :T . T dependent function space

We often write (x : A)→ B for ∀x : A. B, and sometimes just A→ B when x
does not occur free in B. We use different fonts to indicate what category a
meta-syntactic variable ranges over. Sans-serif roman (like x) is used for V ,
fraktur (like c) for C and italics (like A) for T . As an exception, the letters
s and t are used for the subset S of C introduced in the next paragraph.

The typing judgement of a PTS is parametrised over a specification S =
(S ,A,R), where S ⊆ C, A ⊆ C × S and R ⊆ S × S × S . The set S
specifies the sorts, A the axioms (an axiom (c, s) ∈ A is often written c : s),
and R specifies the typing rules of the function space. A rule (s1, s2, s2),
where the second and third sorts coincide, is often written s1 ; s2.

An attractive feature of PTSs is that the syntax for types and values is
unified. It is the type of a term that tells how to interpret it (as a value,
type, kind, etc.).

The λ-cube Barendregt (1992) defined a family of calculi each with S =
{?,�}, A = {? : �} and R a selection of rules of the form s1 ; s2, for
example:

• The (monomorphic) λ-calculus has Rλ = {? ; ?}, corresponding to
ordinary (value-level, non-dependent) functions.

• System F has RF = Rλ ∪ {� ; ?}, adding (impredicative) univer-
sal quantification over types (thus including functions from types to
values).

• System Fω has RFω = RF ∪ {�; �}, adding type-level functions.

• The Calculus of Constructions (CC) has RCC = RFω ∪ {? ; �},
adding dependent types (functions from values to types).

Here ? and � are conventionally called the sorts of types and kinds respec-
tively.

Notice that F is a subsystem of Fω, which is itself a subsystem of CC.
(We say that S1 = (S1,A1,R1) is a subsystem of S2 = (S2,A2,R2) when
S1 ⊆ S2, A1 ⊆ A2 and R1 ⊆ R2.) In fact, the λ-cube is so named because
the lattice of the subsystem relation between all the systems forms a cube,
with CC at the top.

16 Proofs for Free - Parametricity for Dependent Types

Sort hierarchies Difficulties with impredicativity1 have led to the devel-
opment of type systems with an infinite hierarchy of sorts. The “pure”
part of such a system can be captured in the following PTS, which we
name Iω.

Definition 2 (Iω). Iω is a PTS with this specification:

• S = {?i | i ∈N}

• A = {?i : ?i+1 | i ∈N}

• R = {(?i, ?j, ?max(i,j)) | i, j ∈N}

Compared to the monomorphic λ-calculus, ? has been expanded into the
infinite hierarchy ?0, ?1, . . . In Iω, the sort ?0 (abbreviated ?) is called the
sort of types. Type constructors, or type-level functions have type ? → ?.
Terms like ? (representing the set of types) and ? → ? (representing the
set of type constructors) have type ?1 (the sort of kinds). Terms like ?1 and
?→ ?1 have type ?2, and so on.

Although the infinite sort hierarchy was introduced to avoid impredicativ-
ity, they can in fact coexist, as Coquand (1986) has shown. For example, in
the Generalised Calculus of Constructions (CCω) of Miquel (2001), impred-
icativity exists for the sort ? (conventionally called the sort of propositions),
which lies at the bottom of the hierarchy.

Definition 3 (CCω). CCω is a PTS with this specification:

• S = {?} ∪ {�i | i ∈N}

• A = {? : �0} ∪ {�i : �i+1 | i ∈N}

• R = {? ; ?, ? ; �i,�i ; ? | i ∈N} ∪
{(�i,�j,�max(i,j)) | i, j ∈N}

In the above definition, impredicativity is implemented by the rules of the
form �i ; ?.

Both CC and Iω are subsystems of CCω, with ?i in Iω corresponding to �i
in CCω. Because � in CC corresponds to �0 in CCω, we often abbreviate
�0 as �.

Many dependently-typed programming languages and proof assistants
are based on variants of Iω or CCω, often with the addition of induc-
tive definitions (Dybjer, 1994; Paulin-Mohring, 1993). Such tools include
Agda (Norell, 2007), Coq (The Coq development team, 2010) and Epigram
(McBride and McKinna, 2004).

1It is inconsistent with strong sums (Coquand, 1986).

2. PURE TYPE SYSTEMS, WITH COLOUR 17

2.1 PTS as logical framework

Another use for PTSs is as logical frameworks: types correspond to propo-
sitions and terms to proofs. This correspondence extends to all aspects of
the systems and is widely known as the Curry-Howard isomorphism. The
judgement ` p : P means that p is a witness, or proof of the proposition P.
If the judgement holds (for some p) we say that P is inhabited.

In the logical system reading, an inhabited type corresponds to a tautology
and dependent function types correspond to universal quantification. A
predicate P over a type A has the type A → s, for some sort s: a value a
satisfies the predicate whenever the type P a is inhabited. Similarly, binary
relations between values of types A1 and A2 have type A1 → A2 → s.

For this approach to be safe, it is important that the system be consistent.
In fact, the particular systems used here even exhibit the stronger normal-
isation property: each each witness p reduces to a normal form.

In fact, in Iω and similarly rich type systems, one may both represent
programs and logical formulae about them. In the following sections, we
make full use of this property: we encode programs and parametricity
statements about them in the same type system.

2.2 Explicit Syntax: Coloured Pure Type Systems

In PTSs, the syntax of terms is completely uniform. However, some sys-
tems usually presented as PTSs still use different syntax for the various
forms of quantifications. For example, traditional presentations of System
F use a different syntax for the quantification over individuals (? ; ?)
than for the quantification over types (� ; ?). A common case is to use
the symbols ∀ and Λ for quantification and abstraction over types, and→
and λ for individuals. Additionally, brackets are often used to mark type
application. While the flavour of quantification can always be recovered
from a type derivation, the advantage of explicit syntax is that it is possible
to identify which flavour is used merely by looking at the term. Moreover,
a type-derivation tree might not be available.

The purpose of Coloured Pure Type Systems is to capture explicit syntax
in a parametrised way. A colour annotation is added to the syntax of
application, abstraction and product, and a colour component is added to

R. A rule (k, s1, s2, s2) is often written s1
k;s2. Note that a single colour may

be assigned to multiple rules. (In the electronic version of this document,
colours are sometimes rendered visually.) The corresponding typing rules
ensure that the colours are matched (Figure 1.1).

Erasure of colour yields a plain (monochrome) PTS; and erasure of colour
in a valid coloured derivation tree yields a valid derivation tree in the
monochrome PTS. Therefore, useful properties of PTSs (such as subject

18 Proofs for Free - Parametricity for Dependent Types

TK = C constant
| V variable
| T •KT application
| λKV :T . T abstraction
| ∀KV :T . T dependent function space

c : s ∈ A` c : s
axiom

Γ ` A : s
Γ, x : A ` x : A

start

Γ ` A : B Γ ` C : s
Γ, x : C ` A : B

weakening

Γ ` A : s1 Γ, x : A ` B : s2 (k, s1, s2, s3) ∈ R
Γ ` (∀kx : A. B) : s3

product

Γ ` F : (∀kx : A. B) Γ ` a : A
Γ ` F •ka : B[x 7→ a]

application

Γ, x : A ` b : B Γ ` (∀kx : A. B) : s

Γ ` (λkx : A. b) : (∀kx : A. B)
abstraction

Γ ` A : B Γ ` B′ : s B =β B′

Γ ` A : B′
conversion

Figure 1.1: CPTS syntax for the set of colours K, and typing rules of the
CPTS with specification (K,S ,A,R). The only change with respect to the
standard PTS definition is the addition of colour annotations in product,
application and abstraction.

3. THE RELATIONAL INTERPRETATION 19

reduction, substitution, etc.) are retained in CPTSs.

2.2.1 A colour for logic

Earlier in this section, we have outlined how PTSs can be used to repre-
sent concepts like propositions and proofs. One may want to use special
syntax for PTS constructs when the proposition-as-types interpretation is
intended: even though propositions and types are syntactically unified in
PTSs, it can be useful to make the intent explicit. Therefore a special colour
might be reserved for the purpose of expressing logical formulae in some
CPTSs. A possible choice of concrete syntax is the following, reminiscent
of naive set theory.

Tlogic = . . .
| T ∈ T (reverse application)
| {V :T |T } (abstraction)
| ∀V :T . T (quantification)

2.2.2 A colour for implicit syntax

Many proof assistants and dependently-typed programming languages
(including Agda, Coq and LEGO) provide so-called “implicit” syntax. The
rationale for the feature is that, in the presence of precise type information,
some parts of terms (applications or abstractions) can be fully inferred by
the type-checker. In such cases, the user might want to actually leave out
such parts the the terms. It is convenient to do so by marking certain
quantifications as “implicit”. Then, the presence of the corresponding ap-
plications and abstractions can be inferred by the type-checker.

Such marking can be precisely modelled by a two-colour PTS: one colour
for regular syntax, and one for “implicit-syntax”. (Typically every rule is
available in both colours.) The syntax of CPTS does not allow for omission
of terms though, so it can be used only for terms whose omitted parts have
been filled in by the type-checker. Miquel (2001, p. 1.3.2) gives a detailed
overview of two-colour PTSs used for implicit syntax.

3 The relational interpretation

In this section we present the core contribution of this paper: the rela-
tional interpretation of a term, as a syntactic translation from terms (in a
source PTS) to terms (in a target PTS). As we will see in Section 3.3, it is a
generalisation of the classical rules given by Reynolds (1983), extended to
application and abstraction.

20 Proofs for Free - Parametricity for Dependent Types

3.1 From programming language to logic

For a particular source CPTS S, we shall require a target CPTS St, where
the relational counterparts of the source terms can be expressed. The use
of colour is double: first, to emphasise the structure of the relational in-
terpretation (which is less apparent in the monochrome case) and second
to support application to systems with implicit syntax. For a first approxi-
mation, we assume that the only constants in S are sorts. We return to the
general case in Section 4.

Definition 4 (reflecting system). A CPTS St = (Kt,S t,At,Rt) reflects a
CPTS S = (K,S ,A,R) if S is a subsystem of St and

1. there is a colour 0 ∈ Kt, used for relation (or predicate) construction.
Annotations for this colour are consistently omitted in the remainder
of the section.

2. there are two functions ·i and ·r from K to Kt

3. for each sort s ∈ S ,

• S t contains sorts s′, dse, ds′e and ds′′e
• At contains s : s′, dse : ds′e and ds′e : ds′′e
• Rt contains s ; ds′e and s′ ; ds′′e

4. for each axiom s : t ∈ A, ds′e = dte.

5. for each rule (k, s1, s2, s3) ∈ R,

• (k, s1, s2, s3) ∈ Rt

• s1
ki;ds3e ∈ Rt

• (kr, ds1e, ds2e, ds3e) ∈ Rt

Remark 5. The above definition is intuitively justified as follows.

1. The colour 0 is used for formation of parametricity predicates.

2. For each colour k ∈ K,

• the colour ki is used for universal quantification over individuals in
logical formulas;

• the colour kr is used for quantifications over propositions in the target
system.

3. For each sort s, the sort dse is the sort of parametricity propositions about
types in s, and must exist in S t. One can see d·e as a function from S to
S t.

3. THE RELATIONAL INTERPRETATION 21

For each input sort, the relational interpretation creates redexes to check
predicate membership2. This requires

• each input sort s to be typeable (i.e. inhabit another sort s′ — in the
above definition we consistently use s′ for a sort that s inhabits);

• two extra sorts in the target system (ds′e, ds′′e) on top of dse;

• rules to allow for the formation of predicates.

4. The following two relations between sorts must commute.

• axiomatic inhabitation (A);

• correspondence between a sort of types and a sort of relational propo-
sitions (d·e).

5. For each type-formation rule of the input system, there is:

• a copy of the rule in the target system;

• a formation rule for quantification over individuals;

• a formation rule for relational-propositions, exactly mirroring that of
the input system.

Example 1. The system CCω reflects each of the systems in the λ-cube,
with dse = s and ki = kr = k.

Definition 6 (reflective). We say that S is reflective if S reflects itself with
dse = s and ki = kr = k.

Example 2. Note that both Iω and CCω are reflective. Therefore we can
write programs in these systems and derive valid statements about them,
within the same PTS.

3.2 From types to relations, from terms to proofs

Definition 7 (renaming). The term Ai is obtained by replacing each free
variable x in the term A by a variable xi.

Definition 8 (replication). Given a natural number n (implicit from the
context), A stands for n terms Ai, each obtained by renaming, as defined
above. Correspondingly, x : A stands for n bindings (xi : Ai). If replication is
used in a binder (abstraction or dependent function space), then the binder
is also replicated.

2In Paper II we do away with this infelicity at the cost of a longer definition of the relational
interpretation.

22 Proofs for Free - Parametricity for Dependent Types

Definition 9 (J·K, translation from types to relations). We define a mapping
J·K from TK to TKt as follows:

JsK = λx : s. x→ dse
JxK = xR

J∀kx : A. BK = λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)

JF •kaK = JFK •ki
a •krJaK

Jλkx : A. bK = λki x : A. λkr xR : JAK x. JbK

Note that for each variable x free in A, the translation JAK has free variables
x1, . . . , xn and xR. There is a corresponding replication of variables bound
in contexts, which is made explicit in the following definition.

Definition 10 (translation of contexts).

JΓ, x : AK = JΓK, x : A, xR : JAK x

Note that each tuple x : A in the translated context must satisfy the rela-
tion JAK, as witnessed by xR. Thus, one may interpret JΓK as n related
environments.

We can then state our main result:

Theorem 11 (abstraction).

Γ `S A : B =⇒ JΓK `St JAK : JBK A

Proof. By induction on the derivation. Details of the proof are given in
appendix A, page 51.

The above theorem can be read in two ways. A direct reading is as a
typing judgement about translated terms: if A has type B, then JAK has
type JBK A. The more fruitful reading is as an abstraction theorem for pure
type systems: if A has type B in environment Γ, then n interpretations A
in related environments JΓK are related by JBK. Further, JAK is a witness
of this proposition within the type system. In particular, closed terms are
related to themselves: ` A : B =⇒ ` JAK : JBK A . . . A .

3.3 Examples: the λ-cube

In this section, we show that J·K specialises to the rules given by Reynolds
(1983) to read a System F type as a relation. Having shown that our
framework can explain parametricity theorems for System-F-style types,
we move on to progressively higher-order constructs. In these examples,
the binary version of parametricity is used (arity n = 2). We work here in

3. THE RELATIONAL INTERPRETATION 23

monochrome systems: K = {1}, and annotations are omitted. Using Def-
inition 4 one can verify that the following system reflects System F. Note
that the sorts �1 and �2 come from the need of typing membership tests,
and correspond to the sorts with the same name in CCω.

• S = {?,�,�1, d?e, d�e, d�e1, d�e2}

• A = {? : �,� : �1, d?e : d�e, d�e : d�1e, d�1e : d�2e}

• R = {? ; ?,� ; ?, ? ; d�e,� ; d�1e,�1 ; d�2e, d?e ;
d?e, d�e; d?e}

Types to relations Note that, by definition,

J?K T1 T2 = T1 → T2 → d?e

Here we use d?e on the right side as the sort of propositions. This means
that types are translated to relations (as desired).

Function types Applying our translation to non-dependent function types,
we get:

JA→ BK : J?K (A→ B) (A→ B)
JA→ BK f1 f2 = ∀a1 : A. ∀a2 : A. JAK a1 a2 → JBK (f1 a1) (f2 a2)

That is, functions are related iff they take related arguments into related
outputs. The rule is often found in the literature written in set-theoretic
notation, which can be recovered by using the syntax described in Sec-
tion 2.2.1 for the colours 0 and 1i, and special treatment of pairs:

JA→ BK = {(f1, f2)|∀a1, a2.(a1, a2) ∈ JAK→ (f1 a1, f2 a2) ∈ JBK}

Type schemes System F includes universal quantification of the form

∀A :?. B.

Applying J·K to this type expression yields:

J∀A : ?. BK : J?K (∀A : ?. B) (∀A : ?. B)
J∀A : ?. BK g1 g2 = ∀A1 : ?. ∀A2 : ?. ∀AR : J?K A1 A2. JBK (g1 A1) (g2 A2)

In words, polymorphic values are related iff instances at related types are
related. Note that because A may occur free in B, the variables A1, A2 and
AR may occur free in JBK.

24 Proofs for Free - Parametricity for Dependent Types

Type constructors With the addition of the rule � ; �, one can con-
struct terms of type ?→ ?, which are sometimes known as type construc-
tors, type formers or type-level functions. As Voigtländer (2009b) remarks,
extending Reynolds-style parametricity to support type constructors ap-
pears to be folklore. Such folklore can be precisely justified by our frame-
work by applying J·K to obtain the relational counterpart of type construc-
tors:

J?→ ?K : J�K (?→ ?) (?→ ?)
J?→ ?K F1 F2 = ∀A1 : ?. ∀A2 : ?. J?K A1 A2 → J?K (F1 A1) (F2 A2)

That is, a term of type J?→ ?K F1 F2 is a (polymorphic) function converting
a relation between any types A1 and A2 to a relation between F1 A1 and
F2 A2, a relational action. For the target system to accept the above, the rules
�; d�e and d�e; d�e must also be added there.

Dependent functions In a system with the rule ? ; �, value variables
may occur in dependent function types like ∀x : A. B, which we translate
as follows:

J∀x : A. BK : J?K (∀x : A. B) (∀x : A. B)
J∀x : A. BK f1 f2 = ∀x1 : A. ∀x2 : A. ∀xR : JAK x1 x2. JBK (f1 x1) (f2 x2)

Here, the target system is extended with the rule d?e ; d�e. The rule
? ; d�e is also required, but already in the system, as it is required in by
the source axiom ? : � as well.

Proof terms We have used J·K to turn types into relations, but we can
also use it to turn terms into proofs of abstraction properties. As a simple
example, the relation corresponding to the type T = (A : ?) → A→A,
namely

JTK f1 f2 = ∀A1 : ?. ∀A2 : ?. ∀AR : J?K A1 A2.
∀x1 : A1. ∀x2 : A2. AR x1 x2→AR (f1 A1 x1) (f2 A2 x2)

states that functions of type T map related inputs to related outputs, for
any relation. From a term id = λ A : ? . λ x : A . x of this type, by the
abstraction theorem we obtain a term JidK : JTK id id, that is, a proof of the
abstraction property:

JidK A1 A2 AR x1 x2 xR = xR

We return to proof terms in Section 4.3 after introducing datatypes.

3. THE RELATIONAL INTERPRETATION 25

3.4 Implicit syntax

In the following sections, our examples are written using Agda syntax, and
take advantage of the implicit syntax feature. The following colour-set is
used: K = {e, i} (e = explicit colour; i = implicit colour). Rather than using
colour annotations, the following (Agda-style) concrete syntax is used.

Definition 12 (Agda-like syntax for two-colour PTS).

T = C constant
| V variable
| T T application
| λV :T . T abstraction
| (V :T)→ T dependent function space
| T {T } implicit application
| λ{V :T }. T implicit abstraction
| {V :T } → T implicit dependent function space

Additionally, implicit abstraction and application may be left out when the
context allows it. We use the following colour-mappings:

0 7→ e

ir 7→ e ii 7→ i

er 7→ e ei 7→ i

In this case, J·K specialises as follows, and the abstraction theorem is un-
changed.

Definition 13 (translation from types to relations, specialised).

JsK = λx : s. x→ dse
JxK = xR

J(x : A)→ BK = λf : ((x : A)→ B). {x : A} → (xR : JAK x)→ JBK (f x)

JF aK = JFK {a} JaK

Jλx : A. bK = λ{x : A}. λxR : JAK x. JbK

J{x : A} → BK = λf : ({x : A} → B). {x : A} → (xR : JAK x)→ JBK (f {x})
JF {a}K = JFK {a} JaK

Jλ{x : A}. bK = λ{x : A}. λxR : JAK x. JbK

The usage of implicit syntax in the translation is not innocent: it is care-
fully designed to take advantage of the type-inference mechanism to allow
shorter expressions of the translations. For example, JidK, generated from
id : T can now hide four out of six abstractions:

26 Proofs for Free - Parametricity for Dependent Types

JidK AR xR = xR

In general, we observe the following:

Observation 14. For any term A of type B, given the type annotation JAK :
JBK A, then arguments may be omitted at every implicit application in the expan-
sion of JAK. Every implicit abstraction is inferable as well.

4 Constants and datatypes

While the above development assumes input pure type systems with C =
S , it is possible to add constants to the system and retain parametricity, as
long as each constant is parametric. That is, for each new axiom `S c : A
(where c is an arbitrary constant and A an arbitrary term not a mere sort)
we require a term JcK such that the judgement `St JcK : JAK c holds. (As-
suming additional β-conversion rules involving those constants preserve
types.)

One source of constants in many languages is datatype definitions. In
the rest of this section we investigate the implications of the parametricity
conditions on datatypes, and give two translation schemes for inductive
families (as an extension of Iω).

4.1 Parametricity and elimination

Reynolds (1983) and Wadler (1989) assume that each type constant K : ?
is translated to the identity relation. This definition is certainly com-
patible with the condition required by Theorem 11 for such constants:
JKK : J?K K K, but so are many other relations. Are we missing some re-
striction for constants? This question might be answered by resorting to
a translation to pure terms via Church encodings (Böhm and Berarducci,
1985), as Wadler (2007) does. However, in the hope to shed a different light
on the issue, we give another explanation, using our machinery.

Consider a base type, such as Bool : ?, equipped with constructors true :
Bool and false : Bool. In order to derive parametricity theorems in a sys-
tem containing such a constant Bool, we must define JBoolK, satisfying
` JBoolK : J?K Bool. What are the restrictions put on the term JBoolK? First,
we must be able to define JtrueK : JBoolK true. Therefore, JBoolK true must
be inhabited. The same reasoning holds for the false case.

Second, to write any useful program using Booleans, a way to test their
value is needed. This may be done by adding a constant

if : Bool→ (A : ?)→ A→ A→ A

such that if true A x y −→β x and if false A x y −→β y.

4. CONSTANTS AND DATATYPES 27

Now, if a program uses if, we must also define JifK of type

JBool→ (A : ?)→ A→ A→ AK if

for parametricity to work. Let us expand the type of JifK and attempt to
give a definition case by case:

JifK : {b1 b2 : Bool} → (bR : JBoolK b1 b2)→
{A1 A2 : ?} → (AR : J?K A1 A2)→
{x1 : A1} → {x2 : A2} → (xR : AR x1 x2)→
{y1 : A1} → {y2 : A2} → (yR : AR y1 y2)→
AR (if b1 A1 x1 y1) (if b2 A2 x2 y2)

JifK {true} {true} bR xR yR = xR

JifK {true} { false} bR xR yR = ?tf

JifK { false} {true} bR xR yR = ?ft

JifK { false} { false} bR xR yR = yR

(From this example onwards, we use a layout convention to ease the read-
ing of translated types: each triple of arguments, corresponding to one
argument in the original function, is written on its own line if space per-
mits.)

In order to complete the above definition, we must provide a type-correct
expression for each question mark. For ?tf , this means that we must con-
struct an expression of type AR x1 y2. Neither xR : AR x1 x2 nor yR : AR y1 y2
can help us here. The only liberty left is in bR : JBoolK true false. If we
let JBoolK true false be falsity (⊥), then this case can never be reached and
we need not give an equation for it. This reasoning holds symmetrically
for ?ft. Therefore, we have the restrictions:

JBoolK x x = some inhabited type
JBoolK x y = ⊥ if x 6= y

We have some freedom regarding picking “some inhabited type”, so we
choose JBoolK x x to be truth (>), making JBoolK an encoding of the identity
relation.

An intuition behind parametricity is that, when programs “know” more
about a type, the parametricity condition becomes stronger. The above ex-
ample illustrates how this intuition can be captured within our framework.

4.2 Inductive families

Many languages permit datatype declarations like those in Figure 1.2. De-
pendently typed languages typically allow the return types of constructors
to have different arguments, yielding inductive families (Paulin-Mohring,
1993; Dybjer, 1994) such as the family Vec, in which the type is indexed by
the number of elements.

28 Proofs for Free - Parametricity for Dependent Types

data⊥ : ?where
-- no constructors

data> : ?where
tt : >

data Bool : ?where
false : Bool
true : Bool

data N : ?where
zero : N

succ : N→N

data List (A : ?) : ?where
nil : List A
cons : A→ List A→ List A

data Vec (A : ?) : N→ ?where
nilV : Vec A zero
consV : A→ (n : N)→ Vec A n→

Vec A (succ n)

data Σ (A : ?) (B : A→ ?) : ?where
, : (a : A)→ B a→ Σ A B

data _ ≡ _ {A : ?} (a : A) : A→ ?where
refl : a≡ a

Figure 1.2: Examples of simple datatypes and inductive families

Data family declarations of sort s (? in the examples) have the typical
form:3

data T (a : A) : ∀n : N. s where
c : ∀b : B. (∀x : X. T a i)→ T a v

Arguments of the type constructor T may be either parameters a, which
scope over the constructors and are repeated at each recursive use of T,
or indices n, which may vary between uses. Data constructors c have non-
recursive arguments b, whose types are otherwise unrestricted, and recur-
sive arguments with types of a constrained form (T cannot appear in X),
which cannot be referred to in the other terms.

Such a declaration can be interpreted as a simultaneous declaration of
formation and introduction constants

T : ∀a : A. ∀n : N. s
c : ∀{a : A}. ∀b : B. (∀x : X. T a i)→ T a v

and also an eliminator to analyse values of that type:

T-elim : ∀{a : A}.
∀P : (∀n : N. T a n→ s).
Casec → ∀n : N. ∀t :T a n. P n t

where the type Casec of the case for each constructor c is

∀b : B. ∀u : (∀x : X. T a i). (∀x : X. P i (u x))→ P v (c {a} b u)

3We show only one of each element here, but the generalisation to arbitrary numbers is
straightforward.

4. CONSTANTS AND DATATYPES 29

with beta-equivalences (one for each constructor c):

T-elim {a}P e v (c {a} b u) = e b u (λx : X. T-elim {a}P e i (u x)) (1.1)

We shall often use corresponding pattern matching definitions instead of
these eliminators (Coquand, 1992).

For example, the definition of List in Figure 1.2 gives rise to the following
constants:

List : (A : ?)→ ?
nil : {A : ?} → List A
cons : {A : ?} → A→ List A→ List A
List-elim : {A : ?} → (P : List A→ ?)→

P nil→
((x : A)→ (xs : List A)→ P xs→ P (cons x xs))→
(ys : List A)→ P ys

In the following sections, we consider two ways to define a proof term
JcK : JTK c . . . c for each constant c : T introduced by the data definition.

4.3 Deductive-style translation

First, we define each proof as a term (using pattern matching to simplify
the presentation). We begin with the translation of the equation for each
constructor:

JT-elim a P e vK (c {a} b u) (JcK {a} aR {b} bR {u} uR) = JRHSK

for RHS = e b u (λx : X. T-elim {a}P e i (u x)). To turn this into a pattern
matching definition of T-elim, we need a suitable definition of JcK, and
similarly for the constructors in v. The only arguments of JcK not already
in scope are bR and uR, so we package them as a dependent pair, be-
cause the type of uR may depend on that of bR. Writing (x : A)× B for
Σ A (λx : A. B), we define

JTK : J∀a : A. ∀n : N. sKT
JTK {a} aR {v} JvK (c {a} b u) = (bR : JBK b)× J∀x : X. T a iK u
JTK {a} aR {u} uR t = ⊥
JcK : J∀a : A. ∀b : B. (∀x : X. T a i)→ T a vK c
JcK {a} aR {b} bR {u} uR = (bR, uR)

and the translation of T-elim becomes

JT-elim a P e vK (c {a} b u) (bR, uR) = JRHSK

30 Proofs for Free - Parametricity for Dependent Types

Because JTK yields ⊥ unless the constructors match, these clauses provide
complete coverage.

Booleans To get an intuition of the meaning of the above translation
scheme we proceed to apply it to a number of examples. For Booleans,
the generic schema specialises to the definitions given in Section 4.1.

Lists and vectors From the definition of List in Figure 1.2, we have the
constant List : ? → ?, so List is an example of a type constructor, and thus
JListK is a relation transformer. The relation transformer we get by applying
our scheme is exactly that given by Wadler (1989): lists are related iff their
lengths are equal and their elements are related point-wise.

JListK : J?→ ?K List List
JListK AR nil nil = >
JListK AR (cons x1 xs1) (cons x2 xs2) = AR x1 x2 × JListK AR xs1 xs2
JListK AR = ⊥
JnilK : J(A : ?)→ List AK nil nil
JnilK AR = tt

JconsK : J(A : ?)→ A→ List A→ List AK cons cons
JconsK AR xR xsR = (xR, xsR)

(We use > for nullary constructors as it is the identity of ×.) The transla-
tions of the constants of Vec are given in Figure 1.3.

List rearrangements The first example of a parametric type examined by
Wadler (1989) is the type of list rearrangements: R = (A : ?) → List A →
List A. Intuitively, functions of type R know nothing about the actual argu-
ment type A, and therefore they can only produce the output list by taking
elements from the input list. In this section we recover that result as an
instance of Theorem 11.

Applying the translation to R yields:

JRK : R→ R→ ?
JRK r1 r2 = {A1 A2 : ?} → (AR : J?K A1 A2)→

{xs1 : List A1} → {xs2 : List A2} → (xsR : JListK AR xs1 xs2)→
JListK AR (r1 A1 xs1) (r2 A2 xs2)

In words: two list rearrangements r1 and r2 are related iff for all types A1
and A2 with relation AR, and for all lists xs1 and xs2 point-wise related by
AR, the resulting lists r1 A1 xs1 and r2 A2 xs2 are also point-wise related by
AR. By Theorem 11, JRK r r holds for any term r of type R. This means that
applying r preserves (point-wise) any relation existing between input lists

4. CONSTANTS AND DATATYPES 31

JVecK : J(A : ?)→N→ ?K Vec
JVecK AR nR nilV nilV = >
JVec K AR (succ n1) (succ n2) nR (consV n1 x1 xs1) (consV n2 x2 xs2) =

AR x1 x2 × (nR : JNatK n1 n2) × JVecK AR nR
JVecK AR nR xs1 xs2 = ⊥
JnilVK : J{A : ?} → Vec A zeroK nilV
JnilVK AR = tt

JconsVK : J{A : ?} → A→ (n : N)→ Vec A n→ Vec A (succ n)K consV
JconsVK AR xR nR xsR = (xR, (nR, xsR))

JVec-elimK : J {A : ?} →
(P : (n : N)→ Vec n A→ ?)→
(en : P zero (nilV A))→
(ec : (x : A)→ (n : N)→ (xs : Vec n A)→

P n xs→ P (succ n) (consV x n xs))→
(n : N)→ (v : Vec n A)→ P n vK Vec-elim

JVec-elimK AR PR enR ecR {nilV} {nilV} = enR
JVec-elimK AR PR enR ecR nR {consV x1 n1 xs1} {consV x2 n2 xs2}

(xR, (nR, xsR))
= ecR xR nR xsR (JVec-elimK AR PR enR ecR nR xsR)

Figure 1.3: Deductive translation of Vec constants. (JNK is the identity
relation.)

32 Proofs for Free - Parametricity for Dependent Types

of equal length. By specialising AR to a function (AR a1 a2 = f a1≡ a2) we
obtain the well-known result:

(A1 A2 : ?)→ (f : A1 → A2)→ (xs : List A1)→
map f (r A1 xs)≡ r A2 (map f xs)

(This form relies on the facts that JListK preserves identities and composes
with map.)

Dependent pair It might be worthwhile noting that a dependent pair
translates to another dependent pair. That is, a pair (a, b) : Σ A B translates
to

(JaK, JbK) : JΣKJAKJBK(a1, b1)(a2, b2)

where

JΣK : {A1 A2 : ?} (AR : J?K A1 A2)
{B1 : A1 → ?} {B2 : A2 → ?}
(BR : {a1 : A1} {a2 : A2} → AR a1 a2 → J?K (B1 a1) (B2 a2))

JΣK AR BR (a1, b1) (a2, b2) = Σ (AR a1 a2) (λ aR → BR aR b1 b2)

Proof terms We have seen that applying J·K to a type yields a parametric-
ity property for terms of that type, and by Theorem 11 we can also apply
J·K to a term of that type to obtain a proof of the property. As an example,
consider a rearrangement function odds that returns every second element
from a list:

odds : (A : ?)→ List A→ List A
odds A nil = nil
odds A (cons x nil) = cons x nil
odds A (cons x (cons xs)) = cons x (odds A xs)

Any list rearrangement function must satisfy the parametricity condition
JRK seen above, and JoddsK is a proof that odds satisfies parametricity. Ex-
panding it yields:

JoddsK : J(A : ?)→ List A→ List AK odds odds
JoddsK AR {nil} {nil} = tt
JoddsK AR {cons x1 nil} {cons x2 nil} (xR,) = (xR, tt)
JoddsK AR {cons x1 (cons xs1)} {cons x2 (cons xs2)} (xR, (, xsR)) =
(xR, JoddsK AR {xs1} {xs2} xsR)

We see that JoddsK performs essentially the same computation as odds,
on two lists in parallel. However, instead of building a new list, it keeps
track of the relations (in the R-subscripted variables). This behaviour stems
from the last two cases in the definition of JoddsK. Performing such a
computation is enough to prove the parametricity condition.

4. CONSTANTS AND DATATYPES 33

4.4 Inductive-style translation

Inductive definitions offer another way of defining the translations JcK of
the constants associated with a datatype, an inductive definition in contrast
to the deductive definitions of the previous section. Given an inductive
family

data T (a : A) : K where
c : C

by applying our translation to the components of the data-declaration, we
obtain an inductive family that defines the relational counterparts of the
original type T and its constructors c at the same time:

data JTK (Ja : AK) : JKK (T a) where
JcK : JCK (c {a})

It remains to supply a proof term for the parametricity of the elimination
constant T-elim. If the inductive family has the form

data T (a : A) : ∀n : N. s where
c : ∀b : B. (∀x : X. T a i)→ T a v

then its translation is

data JTK (a : A) (aR : JAK a) : {n : N} → (nR : JNK n)→ T a n→ dse where
JcK : {b : B} → (bR : JBK b)→ J(∀x : X. T a i)→ T a vK (c {a} b)

and the elimination constant for JTK to sort dsee has type

JTK-elim : {a : A} → {aR : JAK a} →
(Q :{n : N} → (nR : JNK n)→ (t :T a n)→ JT a nK t→ dsee)→
CaseJcK →
{n : N} → (nR : JNK n)→ (t :T a n)→ (tR : JT a nK t)→ Q {n} nR t tR

where CaseJcK is

{b : B} → (bR : JBK b)→
{u : (x : X)→ T a i} → (uR : J(x : X)→ T a iK u)→
({x : X} → (xR : JXK x)→ Q {i} JiK (u x) Ju xK)→
Q {v} JvK (c {a} b u) Jc {a} b uK

Therefore the proof JT-elimK can be defined using JTK-elim and T-elim as
follows:

JT-elimK : J∀{a : A}. ∀P : (∀n : N. T a n→ s). ∀e : Casec.
∀n : N. ∀t :T a n. P n tKT-elim

JT-elim {a}P eK = JTK-elim {a} {aR}Q f

34 Proofs for Free - Parametricity for Dependent Types

where

Q {n} nR t tR = JP n tK (T-elim {a}P e n t) (1.2)

f {b} bR {u} uR = Je b uK {(λx : X. T-elim {a}P e i (u x))} (1.3)

We proceed to check that f has the right return type. Because

e b u : ((x : X)→ P i (u x))→ P v (c {a} b u)

we have (by the abstraction theorem)

Je b uK : {p : (x : X)→ P i (u x)} →
({x : X} → (xR : JXK x)→ JP i (u x)K (p x))→
JP v (c {a} b u)K (e b u p)

and hence the type of f {b} bR {u} uR is:

({x : X} → (xR : JXK x)→ JP i (u x)K (T-elim {a}P e i (u x)))→
JP v (c {a} b u)K (e b u (λx : X. T-elim {a}P e i (u x)))

= { datatype equation (1.1) from page 29 }
({x : X} → (xR : JXK x)→ JP i (u x)K (T-elim {a}P e i (u x)))→
JP v (c {a} b u)K (T-elim {a}P e v (c {a} b u))

= { definition of Q (1.2) }
({x : X} → (xR : JXK x)→ Q {i} JiK (u x) Ju xK)→
Q {v} JvK (c {a} b u) Jc {a} b uK

Deductive and inductive-style translations define the same relation, but the
objects witnessing the instances of the inductively defined-relation record
additional information, namely which rules are used to prove membership
of the relation. However, since the same constructor never appears in more
than one case of the inductive definition, that additional content can be
recovered from a witness of the deductive-style; therefore the two styles
are isomorphic.

Booleans Applying the above scheme to the data-declaration of Bool
(from Figure 1.2), we obtain:

data JBoolK : J?K Bool where
JtrueK : JBoolK true

JfalseK : JBoolK false

The main difference from the deductive-style definition is that it is possi-
ble, by analysis of a value of type JBoolK, to recover the arguments of the
relation (either all true, or all false).

The elimination constant for Bool is

4. CONSTANTS AND DATATYPES 35

Bool-elim : (P : Bool→ ?)→ P true→ P false→ (b : Bool)→ P b

Similarly, our new type JBoolK (with n = 2) has an elimination constant
with the following type:

JBoolK-elim : (C : a1 a2 : Bool→ JBoolK a1 a2 → ?)→
C true true JtrueK→ C false false JfalseK→
{b1 b2 : Bool} → (bR : JBoolK b1 b2)→ C b1 b2 bR

As an instance of the above scheme, we can define JBool-elimK using the
elimination constants JBoolK and JBoolK-elim as follows

JBool-elimK :
{P1 P2 : Bool→ ?} → (PR : JBool→ ?K P1 P2)→
{x1 : P1 true} → {x2 : P2 true} → (PR JtrueK x1 x2) →
{y1 : P1 false} → {y2 : P2 false} → (PR JfalseK y1 y2)→
{b1 b2 : Bool} → (bR : JBoolK b1 b2)→
PR bR (Bool-elim P1 x1 y1 b1)

(Bool-elim P2 x2 y2 b2)

JBool-elimK {P1} {P2}PR {x1} {x2} xR {y1} {y2} yR

= JBoolK-elim
(λ b1 b2 bR → PR bR (Bool-elim P1 x1 y1 b1)

(Bool-elim P2 x2 y2 b2))
xR yR

Lists For List, as introduced in Figure 1.2, we have the following deduc-
tive translation:

data JListK (JA : ?K) : J?K (List A)where
JnilK : JList AK nil
JconsK : JA→ List A→ List AK cons

or after expansion (for n = 2):

data JListK {A1 A2 : ?} (AR : J?K A1 A2) :
List A1 → List A2 → ? where

JnilK : JListK AR nil nil
JconsK : {x1 : A1} → {x2 : A2} → (xR : AR x1 x2)→

{xs1 : List A1} → {xs2 : List A2} → (xsR : JListK AR xs1 xs2)→
JListK AR (cons x1 xs1)

(cons x2 xs2)

The above definition encodes the same relational action as that given in
Section 4.3. Again, the difference is that the derivation of a relation between
lists xs1 and xs2 is available as an object of type JListK AR xs1 xs2.

36 Proofs for Free - Parametricity for Dependent Types

data JVecK (JA : ?K) : JN→ ?K (Vec A)where
JnilVK : JVec A zeroK nilV

JconsVK : J{x : A} → (n : N)→ Vec A n→ Vec A (succ n)K consV

data JVecK {A1 A2 : ?} (AR : A1 → A2 → ?) :
{n1 n2 : N} → (nR : JNK n1 n2)→
Vec A1 n1 → Vec A2 n2 → ? where

JnilVK : JVecK AR JzeroK nilV nilV
JconsVK : {x1 : A1} → {x2 : A2} → (xR : AR x1 x2)→

{n1 n2 : N} → (nR : JNK n1 n2)→
{xs1 : Vec A1 n1} → {xs2 : Vec A2 n2} →
(xsR : JVecK AR nR xs1 xs2)→

JVecK AR (JsuccK nR) (consV x1 n1 xs1) (consV x2 n2 xs2)

Figure 1.4: Inductive translation of Vec, both before and after expansion.

Proof terms The proof term for the list-rearrangement example can be
constructed in a similar way to the inductive one. The main difference is
that the target lists are also built and recorded in the JListK structure. In
short, this version has more of a computational flavour than the inductive
version.

JoddsK : J(A : ?)→ List A→ List AK odds odds
JoddsK AR JnilK = JnilK AR

JoddsK AR (JconsK xR JnilK) = JconsK AR xR (JnilK AR)
JoddsK AR (JconsK xR (JconsK xsR)) = JconsK AR xR (JoddsK AR xsR)

Vectors We can apply the same translation method to inductive families.
For example, Figures 1.4 and 1.5 give the translation of the family Vec,
corresponding to lists indexed by their length. The relation obtained by
applying J·K encodes that vectors are related if their lengths are the same
and if their elements are related point-wise. The difference with the List
version is that the equality of lengths is encoded in JconsVK as an N (iden-
tity) relation.

5 Internalisation

We know that free theorems hold for any term of S (and these theorems
are expressible and provable in St). Unfortunately, users of the logical
system St cannot take advantage of that fact: they have to redo the proofs
for every new program (even though the proof is derivable, thanks to J·K).
We would like the instances of the abstraction theorem to come truly for

5. INTERNALISATION 37

J Vec-elim K : J {A : ?} →
(P : (n : N)→ Vec n A→ ?)→
(en : P zero (nilV A))→
(ec : (x : A)→ (n : N)→ (xs : Vec n A)→

P n xs→ P (succ n) (consV A x n xs))→
(n : N)→ (v : Vec n A)→ P n vK Vec-elim

J Vec-elim A P en ecK = JVecK-elim AR

(λ Jn : N, v : Vec n AK . JP n vK (Vec-elim A P en ec v))
enR

(λ Jx : A, n : N, xs : Vec n AK . Jec x n xsK (Vec-elim A P en ec xs))

Figure 1.5: Proof term for Vec-elim using the inductive-style definitions.

free: that is, extend St with a suitable construct that makes parametricity
arguments available for every program in S. To do so, we construct a new
system St

p, which is the system St extended with following axiom schema:

Axiom 15 (parametricity). For every closed type B of sort s (`S B : s), as-
sume

paramB : ∀ki x : B. JBK x . . . x

The consistency of the new system remains to be shown. This can be done
via a sound translation from St

p to St. A first attempt would be to extend
β-reduction rules with

paramB A −→β JAK

Unfortunately, the above fails if A is an open term, because JAK con-
tains occurrences of the variable xR, which is not bound in the context
of paramB A. Therefore we need a more complex interpretation. Even with
a more complex interpretation accounting for free variables in A, we need
to stick to closed types. Indeed, if the type B were to contain free variables,
the type of paramB would not be well-scoped.

Parametricity witnesses Our attempt to show consistency by giving a
local interpretation of the parametricity principle failed. Therefore, we
instead can do a “global” transformation of a closed term in St

p to a term
in St.

The idea is to transform the program such that, whenever a variable (x : A)
is bound, a witness (xR : JAK x . . . x) that x satisfies the parametricity con-
dition is bound at the same time. This means that functions are modified
to take an additional argument witnessing that the original arguments are
parametric. This additional argument is then used to interpret occurrences

38 Proofs for Free - Parametricity for Dependent Types

of x in the argument of paramB. At every application, the parametricity
witness can be reconstructed, using the J·K translation of the original argu-
ment. For example, the fragment

value = p (suc m)

in context

N : ?
suc : N→N

m : N

X : d?e
p : N→ X

would be translated to:

value = p (suc m) (Jsuc mK)

in context

N : ?
J N K : N→N→ d?e
suc : N→N

JsucK : J N→N K suc suc
m : N

JmK : J N K m m
X : d?e
p : (n : N)→ JNK n n→ X

General case In the rest of the section, we define the translation 〈| · |〉 from
terms of St

p to terms of St. The translation is similar to J·K, with a number
of differences:

• The new translation deals with a richer language: there is a struc-
ture in the space of sorts, which can be either of the form s or dse.
Further, it does not duplicate the bindings whose type are not in
the source language (the sort is of the form dse). Therefore it be-
haves differently depending on this sort, and using sorts, we must
therefore distinguish two parts of the PTS: one (the source language
of J·K), which deals with programs and types of sort s and another
which deals with parametricity proofs and propositions of sort dse
(the target language).

• The translation does not transform types to relations.

5. INTERNALISATION 39

• The new translation does not replicate the bindings: it adds at most
one additional binding, regardless of the arity of param. A conse-
quence is that the renaming operation (Definition 7) must be modi-
fied, such that occurrences of variables bound in bindings processed
by 〈| · |〉 are not renamed.

As hinted above, 〈| · |〉 does not work on all possible system St. The precise
set of restrictions is as follows.

Definition 16 (Restrictions for internalisation).

1. Let dSe = S t − S . If s ∈ S , then dse ∈ dSe. This ensures that the
sorts of types of the sources language can always be distinguished
from the sorts of propositions.4

2. If (k, s1, s2, s3) ∈ Rt and s3 ∈ S , then s1 ∈ S and s2 ∈ S . This ensures
terms and types of the source language can contain no propositions
of parametricity nor their proofs.

3. Let Kv ⊆ K and Kw = K−Kv. (In the following we will use the meta-
syntactic variable a for colours in the first group and b for colours in
the second one.) If (k, s1, s2, s3) ∈ R then s1 ∈ S ↔ k ∈ Kv.

This ensures that quantifications over terms in the input language
can be recognised syntactically from quantifications over parametric-
ity propositions and proofs. This requirement is for convenience
only, as suitable colours can be inferred from a typing derivation.

4. For each rule s1
v;ds2e there must be a colour tv ∈ Kw and a rule

ds1e
tv;ds2e.

For example, the system described in Section 3.3 satisfies these conditions.

In the following, we assume that paramB is always saturated. Doing so
causes no loss of generality: η-expansion can be applied to obtain the
desired form. We define the translation 〈| · |〉 from terms typed in St

p to
terms of St as follows.

4This restriction rules out (non-trivial) reflective systems.

40 Proofs for Free - Parametricity for Dependent Types

Definition 17 (Compilation of param).

〈|s|〉 = s

〈|x|〉 = x

〈|paramB F A0 . . . Al |〉 = JFK A0 . . . Al

〈|(x : A)
v→ B|〉 = (x : A)

v→ (xR : JAK x . . . x)
tv→ 〈|B|〉

〈|λvx : A. b|〉 = λvx : A. λtv xR : JAK x . . . x. 〈|b|〉
〈|F •va|〉 = 〈|F|〉 •va •tvJaK (†)

〈|(x : A)
w→ B|〉 = (x : 〈|A|〉) w→ 〈|B|〉

〈|λwx : A. b|〉 = λwx : 〈|A|〉. 〈|b|〉
〈|F •wa|〉 = 〈|F|〉 •w〈|a|〉 (∗)
〈|Γ, x : A|〉 = 〈|Γ|〉, x : A, xR : JAK x . . . x if Γ ` A : s

〈|Γ, x : A|〉 = 〈|Γ|〉, x : 〈|A|〉 if Γ ` A : dse

Lemma 18. Assuming s ∈ S , then

1. if Γ `St B : s, then param cannot appear in B and

2. if Γ `St A : B, then param cannot appear in A.

Proof. The proof is done by simultaneous induction on the typing deriva-
tions.

In the base case, a constant cannot be param, because its type has a sort in
dse.
In the induction cases, we take advantage of the restriction on rules to
ensure that subterms also satisfy the conditions of the lemma.

Theorem 19. All occurrences of param are removed by 〈| · |〉.

Proof. The proof is done by induction on terms.

• The base case (paramB) removes occurrences.

• No other occurrences are introduced. In particular, in the line marked
with an asterisk (∗); the argument of sort dse (which may contain
param) is not duplicated. In line marked (†), the term a cannot
contain any occurrence of param, as shown by Lemma 18.

Theorem 20 (soundness). 〈| · |〉 translates valid judgements in St
p to valid judge-

ments in St.

Γ `St
p

A : B⇒ 〈|Γ|〉 `St 〈|A|〉 : 〈|B|〉

6. APPLICATIONS 41

Proof idea. The proof proceeds by induction on the typing derivation.

Computational interpretation We have previously discussed how the
computational content of a term JAK is essentially the same as that of A
(Section 3.3, Section 4.3). The same can be said about the translation 〈| · |〉.
Indeed, at most, it merely doubles abstractions and applications. Hence,
〈| · |〉 can be used as a pass of a compiler for a language featuring the param
construct.

6 Applications

Sections 3 and 4 contain simple applications of our setting. More applica-
tions of parametricity on programs expressible in System F are shown in
Paper III. In this section we see how elaborate constructions can be han-
dled. All examples of this section fit within the system Iω augmented with
inductive definitions.

6.1 A library for applications

Applying J·K by hand to non-trivial examples can be tedious. The reader
eager to experiment is suggested to use computer aids. One possible tool
is that of Böhme (2007) which computes the relational interpretation of
any Haskell type. Unfortunately, the above tool has not been extended
to support dependent types. To generate the examples for this paper, we
have used an Agda library (Bernardy, 2010) instead. An advantage of the
library approach is that one can use a single framework to write programs
and reason using free theorems about them.

6.2 Proof irrelevance and parametricity

In this section we show that any two proofs of a given proposition can be
treated as related. In a predicative system with inductive families, such as
Agda, there are at least two ways to represent propositions. A common
choice is to use ? for the sort of propositions, as we suggest in Section 2.1.
One issue is then that quantification over types in ? is in ?1, hence not
a proposition. The issue can be side-stepped by encoding propositions
in a universe like the following, where quantification using π yields a
proposition in the same universe.

data Prop : ?1 where
top : Prop
bot : Prop

42 Proofs for Free - Parametricity for Dependent Types

∧ : Prop→ Prop→ Prop
π : (A : ?)→ (f : A→ Prop)→ Prop

One can then construct proposition objects, for example an ordering be-
tween naturals

< : N→N→ Prop
n < zer = bot
zer < suc n = top
suc m < suc n = m < n

or the predicate that n is the biggest natural:

supremum : N→ Prop
supremum n = π N (λ m→ m6 n)

The intention is for propositions to be interpreted as the set of their proofs:

Proof : Prop→ ?
Proof top = >
Proof bot = ⊥
Proof (a∧ b) = Proof a × Proof b
Proof (π A f) = (a : A)→ Proof (f a)

but to enable changing the parametricity translation of proofs, we will
instead just postulate an abstract Proof : Prop→ ? and a few constants. We
choose constants so that proofs (terms of type Proof p for some p : Prop)
only can interact in limited ways with programs (a : A : ?). We allow
standard proof constructions: introduction and elimination of π and ∧
and introduction of >. Additionally, given any proof of falsity, we allow
to construct a program of an arbitrary type.

app : (A : ?)→ (f : A→ Prop)→ Proof (π A f)→ (a : A)→ Proof (f a)
abs : (A : ?)→ (f : A→ Prop)→ ((a : A)→ Proof (f a))→ Proof (π A f)
proj1 : (a b : Prop)→ Proof (a∧ b)→ Proof a
proj2 : (a b : Prop)→ Proof (a∧ b)→ Proof b
pair : (a b : Prop)→ Proof a→ Proof b→ Proof (a∧ b)
obvious : Proof top
botElim : Proof bot→ (A : ?)→ A

A consequence of this restriction is that the structure of proofs is irrelevant
in the meaning of programs. The reason is that programs cannot assume
that the structure of a proof follows that of the proposition being examined.

Note that programs could depend on the structure of proofs if we were to
use the definition of Proof given above, and that in that case, our relational
interpretation would translate proofs to witnesses that these are related.
For example, given the type of a lookup function in a list bound by length:

6. APPLICATIONS 43

lk : {A : ?} → (n : N)→ (xs : List A)→ Proof (n < len xs)→ A

one gets the following relation, which carries an assumption pR requiring
the proofs p1 and p2 to be related. That assumption would have a compli-
cated formulation if we had taken the standard interpretation of the set of
proofs.

JlkK : {A1 A2 : ?} (AR : A1→A2→ ?)
{n1 n2 : N} (nR : JNatK n1 n2)
{xs1 : List A1} {xs2 : List A2} (xsR : JListK AR xs1 xs2)
{p1 : Proof (n1 < len xs1)}
{p2 : Proof (n2 < len xs2)}
(pR : Jn < len xsK p1 p2)→
AR (lk n1 xs1 p1) (lk n1 xs1 p1)

However, by axiomatising Proof, we can pick any translation JProofK which
also satisfies the other axioms. In fact, we can assert that all proofs are
related:

JProofK : Jproposition→ ∗K Proof Proof
JProofK x1 x2 = >

The assumptions requiring proofs to be related then reduce to >; effec-
tively disappearing (because values of singleton types like > can always
be inferred).

For the above overriding to be sound, one needs to provide a translation of
app, abs, proj1, proj2, pair, obvious and botElim respecting the parametricity
condition. All but the last are easy to translate: their results are proofs,
so the result type of their translation is >. Hence, constant functions re-
turning tt do the job. Translating botElim can seem more tricky: because
it has a proof as argument, the assertion that all proofs are related makes
JbotElimK potentially more difficult to write, as it has one less assumption
to work with. However, it already has two proofs of falsity as arguments,
so the relational witness is superfluous.

JbotElimK : (b1 : Proof bot)→ (b2 : Proof bot)→ > →
J(A : ?)→ AK (botElim b1) (botElim b2)

JbotElimK b1 b2 = botElim b1 (J(A : ?)→ AK (botElim b1) (botElim b2))

In summary, assuming proof-irrelevance, proof arguments do not strengthen
parametricity conditions in useful ways. One often (but not always) does
not care about the actual proof of a proposition, but merely that it exists.
In that case, knowing that two proofs are related adds no information.

Irrelevant interpretation of propositions in CCω In the system CCω,
propositions are naturally encoded as inhabitants of the sort ?; because

44 Proofs for Free - Parametricity for Dependent Types

the system provides the impredicative rules �i ; ?. The interpretation
of proposition as trivial relations done in the previous section can be trans-
ported to CCω.

This yields another way for CCω to reflect itself:

• d�ie = ?,

• d?e removed.

In that case, J·K depends on the particular product rule corresponding to
the construct it is being applied to (see Section 5 for another example of a
transformation with similar behaviour).

Definition 21 (J·K in CCω, capturing irrelevance of ?).

J�iK = λx : s. x→ ?

JxK = xR

For (�i,�j,�itj),

J∀x : A. BK = λf : (∀x : A. B). ∀x : A. ∀xR : JAK x. JBK (f x)

JF aK = JFK a JaK

Jλx : A. bK = λx : A. λxR : JAK x. JbK

For ? ; �i,

J∀x : A. BK = λf : (∀x : A. B). ∀x : A. JBK (f x)

JF aK = JFK a

Jλx : A. bK = λx : A. JbK

Note that all types of sort ? and their inhabitants are removed by the above
translation. Therefore neither the case for ? nor the case for constructs
depending on the rule �i ; ? need to be given.

6.3 Type classes

What if a function is not parametrised over all types, but only types equipped
with decidable equality? One way to model this difference in a pure type
system is to add an extra parameter to capture the extra constraint. For ex-
ample, a function nub : Nub removing duplicates from a list may be given
the following type:

6. APPLICATIONS 45

Nub = (A : ?)→ Eq A→ List A→ List A

The equality requirement itself may be modelled as a mere comparison
function: Eq A = A → A → Bool. In that case, the parametricity state-
ment is amended with an extra requirement on the relation between types,
which expresses that eq1 and eq2 must respect the AR relation. Formally:

JEq AK eq1 eq2 = {a1 : A1} → {a2 : A2} → AR a1 a2 →
{b1 : A1} → {b2 : A2} → AR b1 b2 →
JBoolK (eq1 a1 b1) (eq2 a2 b2)

JNubK n1 n2 =
{A1 A2 : ?} → (AR : J?K A1 A2)→
{eq1 : Eq A1} → {eq2 : Eq A2} → JEq AK eq1 eq2 →
{xs1 : List A1} → {xs2 : List A2} → JList AK xs1 xs2 →
JListK AR (n1 A1 eq1 xs1) (n2 A2 eq2 xs2)

So far, this is just confirming the informal description in Wadler (1989). But
with access to full dependent types, one might wonder: what if we model
equality more precisely, for example by requiring eq to be reflexive?

Eq′ A = (eq : A→ A→ Bool) × Refl eq
Refl eq = (x : A)→ eq x x≡ true

In the case of Eq′, the parametricity condition does not become more ex-
citing. It merely requires the proofs of reflexivity at A1, A2 to be related.
This extra condition adds nothing new, as seen in Section 6.2.

The observations drawn from this simple example can be generalised:
type-classes may be encoded as their dictionary of methods (Wadler and
Blott, 1989), ignoring their laws. Indeed, even if a type class has associated
laws, they have little impact on the parametricity results.

6.4 Constructor classes

Having seen how to apply our framework both to type constructors and
type classes, we now apply it to types quantified over a type constructor,
with constraints.

Voigtländer (2009b) provides many such examples, using the Monad con-
structor class. They fit well in our framework, but here we show the sim-
pler example of Functors, which already captures the essence of constructor
classes.

Functor : ?1
Functor = (F : ?→ ?) × ((X Y : ?)→ (X→ Y)→ F X→ F Y)

Our translation readily applies to the above definition, and yields the fol-
lowing relation between functors:

46 Proofs for Free - Parametricity for Dependent Types

JFunctorK : Functor→ Functor→ ?1
JFunctorK (F1, map1) (F2, map2)

= (FR : {A1 A2 : ?} → (AR : A1→A2→ ?)→ (F1 A1 → F2 A2 → ?)) ×
({X1 X2 : ?} → (XR : X1→X2→ ?)→
{Y1 Y2 : ?} → (YR : Y1→Y2→ ?)→
{ f1 : X1→Y1} → { f2 : X2→Y2} →
({x1 : X1} → {x2 : X2} → XR x1 x2→YR (f1 x1) (f2 x2))→
{y1 : F1 X1} → {y2 : F2 X2} → (yR : FR XR y1 y2)→
FR YR (map1 f1 y1) (map2 f2 y2))

In words, the translation of a functor is the product of a relation trans-
former (FR) between functors F1 and F2, and a witness that map1 and map2
preserve relations.

Such Functors can be used to define a generic fold operation, which typi-
cally takes the following form:

data µ ((F, map) : Functor) : ?where
In : F (µ (F, map))→ µ (F, map)

fold : ((F, map) : Functor)→ (A : ?)→ (F A→ A)→ µ (F, map)→ A
fold (F, map)A φ (In d) = φ (map (µ (F, map))A (fold (F, map)A φ) d)

Note that the µ datatype is not strictly positive, so its use would be prohib-
ited in many dependently-typed languages to avoid inconsistency. How-
ever, if one restricts oneself to well-behaved functors (yielding strictly pos-
itive types), then consistency is restored both in the source and target sys-
tems, and the parametricity condition derived for fold is valid.

One can see from the type of fold that it behaves uniformly over (F, map)
as well as over A. By applying J·K to fold and its type, this observation
can be expressed (and justified) formally and used to reason about fold.
Further, every function defined using fold, and in general any function
parametrised over any functor enjoys the same kind of property.

Gibbons and Paterson (2009) previously made a similar observation in a
categorical setting, showing that fold is a natural transformation between
higher-order functors. Their argument heavily relies on categorical se-
mantics and the universal property of fold, while our type-theoretical ar-
gument uses the type of fold as a starting point and directly obtains a
parametricity property. However some additional work is required to ob-
tain the equivalent property using natural transformations and horizontal
compositions from the parametricity property.

6.5 Type equality

Equality between types A and B can be expressed by the following rela-
tion, named after Leibniz, which asserts that any proof involving A can be
converted to a proof involving B.

6. APPLICATIONS 47

Equal : ?→ ?→ ?1
Equal A B = (P : ?→ ?)→ P A→ P B

An intuitive reading of the type of Equal suggests that inhabitants of that
type can only be polymorphic identity functions. Indeed, conversions from
P A to P B, for an arbitrary P, cannot depend on the actual values. We
would like to apply the axiom of parametricity to recover a formal proof
of that result.

Before doing so, we will do a practice round on the similar, but simpler
problem of showing that functions of type Id must be (extensionally) the
identity function.

Id = (A : ?)→ A→ A

Using parametricity with arity n = 1, we have:

paramId : (f : Id)→
{A : Set} (AR : A→ Set)
{x : A}→ (xR : AR x)→
AR (f A x)

Then we can instantiate AR with the predicate of “being equal to x, the in-
put of f”; and its proof xR with reflexivity of equality to obtain the desired
result.

theorem : (f : Id)→ (A : ?)→ (x : A)→ x≡ f A x
theorem f A x = paramId f (_ ≡ _ x) refl

The proof of our original proposition follows the same pattern, with a
single complication. Because Equal A B is an open term, our parametricity
axiom cannot be applied to it directly. There is a simple trick that allows
us to proceed though: bind the variables in a dependent pair and apply
the axiom to that type. Parametricity then gives us:

SomeEqual = (A : ?) × (B : ?) × Equal A B
paramSomeEqual : (s : SomeEqual)→ JSomeEqualK s

where

JEqualK {A}AR {B}BR = λ (e : Equal A B)→
{P : ?→ ?} → (PR : {X : Set}→ (X→ Set)→P X→ Set)
{p : P A}→PR AR x1→
PR BR (e f p)

JSomeEqualK (A, B, e) =
(AR : A→ ?1) ×
(BR : B→ ?1) ×
(JEqualK AR BR e)

Using this instantiation of the parametricity axiom, we can proceed as in
the Id case, with three differences.

48 Proofs for Free - Parametricity for Dependent Types

• The instantiation of the predicate constructor PR takes an extra argu-
ment p, which we ignore.

• Because the input and output type are syntactically different, we use
heterogeneous equality (_ ∼= _).

• We ignore the predicates AR and BR constructed by param· in the
record of type JSomeEqualK.

theorem : ∀ (A B : ?)→ (e : Equal A B)→ (P : ?→ ?) (x : P A)→ x∼= e P x
theorem A B e P x = q

where (, , q) = (paramSomeEqual (A, B, e) {P} (λ p→ ((_ ∼= _) x)) refl)

Some points are worth emphasising:

• It is possible to get a result about an open term, even though our
axiom only handles closed terms. Still, we get a concrete result (the
above theorem) that does not involve any occurrence of the para-
metricity axiom. This happens because the function constructing
predicates (λ p→ ((_ ∼= _) x)) precisely discards those occurrences.

• The result is already exposed by Vytiniotis and Weirich (2010), but it
is remarkable that its proof is one line long given our framework.

• Because the equality _ ∼= _ is heterogeneous, deriving a substitution
principle from it requires Streicher’s Axiom K (Hofmann and Stre-
icher, 1996).

In consequence, it seems that one cannot derive that all proofs of
equality are equal from the axiom of parametricity.

7 Discussion

7.1 Related work

Some of the many studies of parametricity have already been mentioned
and analysed in the rest of the paper. In this section we compare our work
to only a couple of the most relevant pieces of work.

One direction of research is concerned with parametricity in extensions of
System F. Our work is directly inspired by Vytiniotis and Weirich (2010),
which extend parametricity to (an extension of) Fω: indeed, Fω can be
seen as a PTS with one more product rule than System F.

Before that, Takeuti (2004) attempted to extend CC with parametricity.
Takeuti asserted parametricity at all types, in a similar way as we do here,
in fact extending similar axiom schemes for System F by Plotkin and Abadi

7. DISCUSSION 49

(1993). For each α :� and P : α, Takeuti defined a relational interpretation
〈P〉 and a kind (|P : α|) such that 〈P〉 : (|P : α|). Then for each type T : ?, he
postulated an axiom paramT : (∀x : T. 〈T〉 x x), conjecturing that such ax-
ioms did not make the system inconsistent. For closed terms P, Takeuti’s
translations 〈P〉 and (|P : α|) resemble our JPK and JαK P respectively (with
n = 2), but the pattern is obscured by an error in the translation rule for
the product � ; ?. His omission of a witness xR for the relationship be-
tween values x1 and x2 in the rules corresponding to the product ? ; �
appears to correspond to a computationally-irrelevant interpretation of ?,
as we present in Section 6.2.

In previous work (Bernardy, Jansson, and Paterson, 2010) we have shown
that the relational interpretation can be generalised to PTSs. Here we ex-
tend the results in multiple ways:

• we have annotated the relational interpretation with colours, clari-
fying the role of each type of quantification, and showing how the
translation can take advantage of systems with implicit syntax (Sec-
tion 3);

• we have proven that our previous inductive relational interpretation
of inductive families is correct (Section 4.4);

• we show that part of the meta-theory of parametricity can be inter-
nalised into a PTS and that the theory remains consistent (for an
important class of systems) (Section 5);

• we have argued in detail why one can assume that two proofs of a
given proposition are always related (Section 6.2);

• we have shown on an example that the support of Σ types allows to
get results for open types, even with an axiom schema restricted to
closed types (Section 6.5);

• we allow for the source and target system to be different.

Bernardy and Lasson (2011) have shown how to construct a logic for para-
metricity for an arbitrary source PTS (Definition 4) which is as consistent
as the source PTS.

Besides supporting more sorts and function spaces, an orthogonal exten-
sion of parametricity theory is to support impure features in the system.
For example, (Johann and Voigtländer, 2006) studied how explicit strict-
ness modifies parametricity results. It is not obvious how to support such
extensions in our framework.

Another direction of research is concerned with better understanding of
parametricity. Here we shall mention only (Wadler, 2007), which gives a
particularly lucid presentation of the abstraction theorem, as the inverse

50 Proofs for Free - Parametricity for Dependent Types

of Girard’s Representation theorem (Girard, 1972): Reynolds gives an em-
bedding from System Fto second order logic, while Girard gives the corre-
sponding projection. Our version of the abstraction theorem differs in the
following aspects from that of Wadler (and to our knowledge all others):

1. Instead of targeting a logic, we target its propositions-as-types inter-
pretation, expressed in a PTS.

2. We abstract from the details of the systems, generalising to a class of
PTSs.

3. We add that the translation function used to interpret types as rela-
tions can also be used to interpret terms as witnesses of those rela-
tions. In short, the JAK part of Γ ` A : B =⇒ JΓK ` JAK : JBK A is
new. This additional insight depends heavily on using the interpre-
tation of propositions as types.

The question of how Girard’s projection generalises to arbitrary PTSs nat-
urally arises, and is addressed by Bernardy and Lasson (2011).

It also appears that the function J·K (for the unary case) has been discovered
independently by Monnier and Haguenauer (2010), for a very different
purpose. They use J·K as a compilation function from CC to a language
with singleton types as the sole way to express dependencies from values
to types. Their goal is to enforce phase-distinction between compile-time
and run-time. Type preservation of the translation scheme is the main
formal property presented by Monnier and Haguenauer. We remark that
this property is a specialisation of our abstraction theorem for CC. Another
lesson learnt from this parallel is that the unary J·K generates singleton
types.

7.2 Future work

Our explanation of parametricity for dependent types has opened a whole
range of interesting topics for future work.

We should investigate whether our framework can be applied (and ex-
tended if need be) to more exotic systems, for example those incorporating
strictness annotations (seq) or non-termination.

We gave an interpretation of the axiom of parametricity as a compilation
pass to a language not requiring the axiom. It would also be interesting to,
instead, extend the β-reduction rules to support the axiom.

The target PTS that we constructed has typed individuals, whereas many
logics for parametricity have untyped individuals. Girard’s representation
theorem shows that, in System F, such type information can be recovered
and is therefore not essential. It would be worthwhile to generalise that
result to arbitrary PTSs.

A. PROOF OF THE ABSTRACTION THEOREM 51

We presented only simple examples. Applying the results to more sub-
stantial applications should be done as well. In particular, we hope that
our results opens the door to a more streamlined way of getting free the-
orems for domain-specific programming languages. One would proceed
along the following steps:

1. model the domain-specific languages within a dependently-typed
language;

2. use J·K to obtain parametricity properties of any function of interest;

3. prove correctness by using the properties.

We think that the above process is an economical way to work with para-
metricity for extended type systems. Indeed, developing languages with
exotic type systems as an embedding in a dependently-typed language is
increasingly popular (Oury and Swierstra, 2008), and that is the first step
in the above process. By providing an automatic second step, we hope to
spare language designers the effort to adapt Reynolds’ abstraction theorem
for new type systems in an ad-hoc way.

Acknowledgements Thanks to Andreas Abel, Thierry Coquand, Nils
Anders Danielsson, Peter Dybjer, Marc Lasson, Guilhem Moulin, Ulf Norell,
Nicolas Pouillard, Janis Voigtländer, Stephanie Weirich and anonymous re-
viewers for providing us with very valuable feedback.

A Proof of the abstraction theorem

In this appendix we sketch the proof of our main theorem, using the fol-
lowing lemmas:

Lemma 22 (translation preserves β-reduction).

A −→∗β A′ =⇒ JAK −→∗β JA′K

Proof sketch. The proof proceeds by induction on the derivation of A −→∗β
A′. The interesting case is where the term A is a β-redex (λx : B. C) b. That
case relies on the way J·K interacts with substitution:

Jb[x 7→ C]K = JbK[x 7→ C][xR 7→ JCK]

The remaining cases are congruences.

Lemma 23 (JsK is well-typed). For each sort s ∈ S we have ` JsK : s→ dse′ in
St.

52 Proofs for Free - Parametricity for Dependent Types

Γ
`

A
:B

=⇒
JΓK`

JA
K

:JBK
A

axiom
`

s
:s ′

`
(λ

x:s.
x
→
dse)

:s→
ds ′e

start
Γ
`

A
:s

JΓK`
JA

K
: A
→
dse

Γ,x:A
`
x

:A
JΓK,x:A

,x
R

:JA
K
x
`
x

R
:JA

K
x

Γ
`

A
:B

JΓK`
JA

K
:JBK

A

w
eakening

Γ
`

C
:s

JΓK`
JC

K
:C
→
dse

Γ,x:C
`

A
:B

JΓK,x:C
,x

R
:JC

K
x
`

JA
K

:JBK
A

Γ
`

A
:s1

JΓK`
JA

K
:A
→
ds1 e

product
Γ,x:A

`
B

:s2
JΓK,x:A

,x
R

:JA
K
x
`

JBK
:B
→
ds2 e

Γ
`
(∀

kx:A
.B

)
:s3

JΓK`
(λ

f:(∀
kx:A

.B
).∀

k
ix:A

.∀
k

rx
R

:JA
K
x.JBK

(f
x))

:
(∀

kx:A
.B

)→
ds3 e

Γ
`

F
:
(∀

kx:A
.B

)
JΓK`

JFK
:
(∀

k
ix:A

.∀
k

rx
R

:JA
K
x.JBK

(F
•

k x))

application
Γ
`

a
:A

JΓK`
JaK

:JA
Ka

Γ
`

F
•

k A
:B

[x
7→

a]
JΓK`

JFK•
k

i a•
k

r JaK
:JB

[x
7→

a]K
(F
•

k a)

Γ
`

A
:s1

JΓK`
JA

K
:A
→
ds1 e

Γ,x:A
`

B
:s2

JΓK,x:A
,x

R
:JA

K
x
`

JBK
:B
→
ds2 e

abstraction
Γ,x:A

`
b

:B
JΓK,x:A

,x
R

:JA
K
x
`

JbK
:JBKb

Γ
`
(λ

kx:A
.b)

:
(∀

kx:A
.B

)
JΓK`

(λ
k

ix:A
.

λ
k

rx
R

:JA
K
x.JbK)

:
(∀

k
ix:A

.∀
k

rx
R

:JA
K
x.JBKb)

Γ
`

A
:B

JΓK`
JA

K
:JBK

A
Γ
`

B
′:s

JΓK`
JB
′K

:B
′→
dse

conversion
B
=

β
B
′

JBK
=

β
JB
′K

Γ
`

A
:B
′

JΓK`
JA

K
:JB
′K

A

Figure
1.

6:O
utline

of
a

proof
of

Theorem
1

1
by

induction
over

the
derivation

of
Γ
`

A
:B

.

A. PROOF OF THE ABSTRACTION THEOREM 53

Proof. From the requirements for a sort s ∈ S in Definition 4 we can infer
(in St)

` s : s′
st

x : s ` xi : s

` dse : dse′ ` s : s′
wk

x : s ` dse : dse′
s ; dse′

x : s ` x→ dse : dse′
` s : s′ ` dse′ : dse′′

s′ ; dse′′
` s→ dse′ : dse′′

abs
` (λx : s. x→ dse) : s→ dse′

Theorem 24 (abstraction). If the PTS St reflects S,

Γ `S A : B =⇒ JΓK `St JAK : JBK A

Proof sketch. A derivation of JΓK ` JAK : JBK A in St is constructed by in-
duction on the derivation of Γ ` A : B in S, using the syntactic properties
of PTSs. We have one case for each typing rule: each type rule translates
to a portion of a corresponding relational typing judgement, as shown in
Figure 1.6.

For concision, the proof sketch uses a variant form of the abstraction rule;
equivalence of the two systems follows from Barendregt (1992, Lemma
5.2.13). The conversion case uses Lemma 22.

Proof details. The following propositions are proved by simultaneous in-
duction on the typing judgement:

lem Γ `S A : s =⇒ JΓK `St A : s.

Proved by the thinning lemma (Barendregt, 1992, Lemma 5.2.12, p.
220). For each Ai, erase from the context JΓK the relational variables
and j-indexed variables such that j 6= i. The legality of the context is
ensured by ind.

ind Γ `S A : B =⇒ JΓK `St JAK : JBK A.

The proof proceeds by induction on the derivation of Γ ` A : B. We
have one case for each typing rule: each type rule translates to a por-
tion of a corresponding relational typing judgement; and we detail
them in the rest of the section. The construction of the derivation
makes use of the propositions lem, ind and ind’ (on smaller judge-
ments).

ind’ Γ `S B : s =⇒ JΓK `St JBK : B→ dse
Corollary of ind.

54 Proofs for Free - Parametricity for Dependent Types

We proceed with the case analysis for the proof of ind.

axiom c : s If c is not a sort, the proposition is assumed as an hypothesis.
For the remaining case s : t we have

... Lemma 23

` JsK : s→ dse′

... Lemma 23

` (λx : t. x→ dte) : t→ dte′ ` s : t
app

` (λx : t. x→ dte) s : dte′
conv, dse′ = dte

` JsK : (λx : t. x→ dte) s

start

... ind’
JΓK ` JAK : A→ dse

... lem
JΓK ` Ai : s

JΓK, x : A ` JAK : A→ dse
wk

... lem
JΓK ` Ai : s

JΓK, x : A ` xi : Ai
st

JΓK, x : A ` JAK x : dse
app

JΓK, x : A, xR : JAK x ` xR : JAK x
st

weakening

... ind
JΓK ` JAK : JBK A

... lem
JΓK ` Ci : s

JΓK, x : C ` JAK : JBK A
wk

... ind’
JΓK ` JCK : C → dse

... lem
JΓK ` Ci : s

JΓK, x : C ` JCK : C → dse
wk

... lem
JΓK ` Ci : s

JΓK, x : C ` xi : Ci
st

JΓK, x : C ` JCK x : dse
app

JΓK, x : C, xR : JCK x ` JAK : JBK A
wk

product (k, s1, s2, s3)

... ind’

JΓK ` JAK : A→ ds1e

... lem

JΓK ` Ai : s1

JΓK, x : A ` JAK : A→ ds1e
wk

... lem

JΓK ` Ai : s1

JΓK, x : A ` xi : Ai

st

JΓK, x : A ` JAK x : ds1e
app

... lem

JΓK ` (∀kx : A. B)i : s3

JΓK, f : (∀kx : A. B), x : A ` JAK x : ds1e

(1) {
wk (1)

A. PROOF OF THE ABSTRACTION THEOREM 55

... lem

JΓK ` Ai : s1

... lem

JΓK ` (∀kx : A. B)i : s3

JΓK, f : (∀kx : A. B) ` Ai : s1

wk

... (1)

JΓK, f : (∀kx : A. B), x : A ` JAK x : ds1e
wk (1)

... ind’

JΓK, x : A, xR : JAK x ` JBK : B→ ds2e

... lem

JΓK ` (∀kx : A. B)i : s3

JΓK, f : (∀kx : A. B), x : A, xR : JAK x ` JBK : B→ ds2e
wk (2)

... lem

JΓK ` (∀kx : A. B)i : s3

JΓK, f : (∀kx : A. B) ` fi : (∀kx : A. B)i

st

... lem

JΓK ` Ai : s1

... lem

JΓK ` (∀kx : A. B)i : s3

JΓK, f : (∀kx : A. B) ` Ai : s1

(2) { wk

JΓK, f : (∀kx : A. B), x : A ` fi : (∀kx : A. B)i

wk

... (2)

JΓK, f : (∀kx : A. B) ` Ai : s1

JΓK, f : (∀kx : A. B), x : A ` xi : Ai

st

JΓK, f : (∀kx : A. B), x : A ` (f •kx)i : Bi

app

... (1)

JΓK, f : (∀kx : A. B), x : A ` JAK x : ds1e
JΓK, f : (∀kx : A. B), x : A, xR : JAK x ` (f •kx)i : Bi

wk

JΓK, f : (∀kx : A. B), x : A, xR : JAK x ` JBK (f •kx) : ds2e
app

JΓK, f : (∀kx : A. B), x : A ` (∀kr xR : JAK x. JBK (f •kx)) : ds3e
(kr ,ds1e,ds2e,ds3e)

JΓK, f : (∀kx : A. B) ` (∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) : ds3e
s1

ki;ds3e

... lem

JΓK ` (∀kx : A. B)i : s3 JΓK ` ds3e : dt3e
JΓK ` (∀kx : A. B)→ ds3e : dt3e

s3;dt3e

JΓK ` (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) : (∀kx : A. B)→ ds3e
abs

JΓK ` s3 : t3

JΓK, x : s3 ` xi : s3

st
JΓK ` ds3e : dt3e JΓK ` s3 : t3

JΓK, x : s3 ` ds3e : dt3e
wk

JΓK, x : s3 ` x→ ds3e : dt3e
s3;dt3e

JΓK ` s3 : t3 JΓK ` dt3e : du3e
JΓK ` s3 → dt3e : du3e

t3;du3e

JΓK ` (λx : s3. x→ ds3e) : s3 → dt3e
abs

... lem

JΓK ` (∀kx : A. B)i : s3

JΓK ` (λx : s3. x→ ds3e) (∀kx : A. B) : dt3e
app

JΓK ` (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) : (λx : s3. x→ ds3e) (∀kx : A. B)
conv

application

56 Proofs for Free - Parametricity for Dependent Types

... ind

JΓK ` JFK : (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) F

... lem

JΓK ` Ai : sA

... ind’

JΓK ` JAK : A→ dsAe

... lem

JΓK ` ai : Ai

JΓK ` JAK a : dsAe
app

... lem

JΓK ` Ai : sA

JΓK, x : A ` JAK a : dsAe

(1) { wk

... ind’

JΓK ` JBK : B→ dsBe

... lem

JΓK ` Ai : sA

JΓK, x : A ` JBK : B→ dsBe
wk

... lem

JΓK ` Fi : (∀kx : A. B)i

... lem

JΓK ` Ai : sA

JΓK, x : A ` Fi : (∀kx : A. B)i

wk

... lem

JΓK ` Ai : sA

JΓK, x : A ` xi : Ai

st

JΓK, x : A ` (F •kx)i : Bi

app

JΓK, x : A ` JBK (F •kx) : dsBe
app

... (1)

JΓK, x : A ` JAK a : dsAe
JΓK, x : A, xR : JAK a ` JBK (F •kx) : dsBe

wk

JΓK, x : A ` (∀kr xR : JAK a. JBK (F •kx)) : dsBe
dsAe

kr;dsBe

JΓK ` (∀ki x : A. ∀kr xR : JAK a. JBK (F •kx)) : dsBe
sA

ki;dsBe

JΓK ` JFK : (∀ki x : A. ∀kr xR : JAK a. JBK (F •kx))
conv

... lem

JΓK ` ai : Ai

JΓK ` JFK •ki
a : (∀kr xR : JAK a. JBK[x 7→ a] (F •ka))

app

... ind

JΓK ` JaK : JAK a

JΓK ` JFK •ki
a •krJaK : JBK[x 7→ a][xR 7→ JaK] (F •ka)

app

abstraction We apply the generation lemma (Barendregt, 1992, Theorem
5.2.13, case 3) on Γ ` (∀kx : A. B) : s. We get: ∃sA ; sB such that

• Γ ` A : sA

• Γ, x : A ` B : sB

• s =β sB

Since sorts are irreducible, the last equation becomes s = sB, so we have:
∃sA ; s such that

• Γ ` A : sA

• Γ, x : A ` B : s

Induction on the judgements constructed above is valid, because the gen-
eration lemma generates smaller judgements. It yields:

A. PROOF OF THE ABSTRACTION THEOREM 57

• JΓK ` JAK : JsAK A

• JΓK, x : A, xR : JAK x ` JBK : JsK B.

and these judgements will be used in the construction of the target deriva-
tion.

First we show that the type is properly sorted:

... lem

JΓK ` Ai : sA

... lem

JΓK ` (∀kx : A. B)i : s

JΓK, f : (∀kx : A. B) ` Ai : sA
wk

... (1)

JΓK, x : A ` JAK x : dsAe

... lem

JΓK ` (∀kx : A. B)i : s

JΓK, f : (∀kx : A. B), x : A ` JAK x : dsAe

(2) { wk (1)

... ind’

JΓK ` JBK : B→ dse

... lem

JΓK ` (∀kx : A. B)i : dse
JΓK, f : (∀kx : A. B) ` JBK : B→ dse

wk

... lem

JΓK ` Ai : sA

... lem

JΓK ` (∀kx : A. B)i : s

JΓK, f : (∀kx : A. B) ` Ai : sA

(4) { wk

JΓK, f : (∀kx : A. B), x : A ` JBK : B→ dse
wk

... lem

JΓK ` (∀kx : A. B)i : s

JΓK, f : (∀kx : A. B) ` fi : (∀kx : A. B)i

st

... (4)

JΓK, f : (∀kx : A. B) ` Ai : sA

JΓK, f : (∀kx : A. B), x : A ` fi : (∀kx : A. B)i

wk

... (4)

JΓK, f : (∀kx : A. B) ` Ai : sA

JΓK, f : (∀kx : A. B), x : A ` xi : Ai

st

JΓK, f : (∀kx : A. B), x : A ` (f •kx)i : Bi

app

JΓK, f : (∀kx : A. B), x : A ` JBK (f •kx) : dse
app

... (2)

JΓK, f : (∀kx : A. B), x : A ` JAK x : dsAe
JΓK, f : (∀kx : A. B), x : A, xR : JAK x ` JBK (f •kx) : dse

wk

JΓK, f : (∀kx : A. B), x : A ` (∀kr xR : JAK x. JBK (f •kx)) : dse
dsAe

kr;dse

JΓK, f : (∀kx : A. B) ` (∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) : dse
sA

ki;dse

... lem

JΓK ` (∀kx : A. B)i : s

JΓK ` dse : dte

... lem

JΓK ` (∀kx : A. B)i : s

JΓK, f : (∀kx : A. B) ` dse : dte
wk

JΓK ` (∀f : (∀kx : A. B). dse) : dte
s;dte

JΓK ` (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) : (∀f : (∀kx : A. B). dse)
abs

... lem

JΓK ` (λkx : A. b)i : (∀kx : A. B)i

JΓK ` (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) (λkx : A. b) : dse

(S) {
app

58 Proofs for Free - Parametricity for Dependent Types

Then use this in the top-level tree:

... ind

JΓK ` JbK : JBK b

... lem

JΓK ` Ai : sA

JΓK, x : A ` JbK : JBK b
wk

... (1)

JΓK, x : A ` JAK x : dsAe
JΓK, x : A, xR : JAK x ` JbK : JBK b

wk

... ind’

JΓK ` JAK : A→ dsAe

... lem

JΓK ` Ai : sA

JΓK, x : A ` JAK : A→ dsAe
wk

... lem

JΓK ` Ai : sA

JΓK, x : A ` xi : Ai

st

JΓK, x : A ` JAK x : dsAe

(1) { app

... ind’

JΓK ` JBK : B→ dse

... lem

JΓK ` bi : Bi

JΓK ` JBK b : dse
app

... lem

JΓK ` Ai : sA

JΓK, x : A ` JBK b : dse
wk

... (1)

JΓK, x : A ` JAK x : dsAe
JΓK, x : A, xR : JAK x ` JBK b : dse

wk

JΓK, x : A ` (∀kr xR : JAK x. JBK b) : dse

(3) {
dsAe

kr;dse

JΓK, x : A ` (λkr xR : JAK x. JbK) : (∀kr xR : JAK x. JBK b)
abs

... lem

JΓK ` Ai : sA

... (3)

JΓK, x : A ` (∀kr xR : JAK x. JBK b) : dse
JΓK ` (∀ki x : A. ∀kr xR : JAK x. JBK b) : dse

sA
ki;dse

JΓK ` (λki x : A. λkr xR : JAK x. JbK) : (∀ki x : A. ∀kr xR : JAK x. JBK b)
abs

... (S)

JΓK ` (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) (λkx : A. b) : dse
app

JΓK ` (λki x : A. λkr xR : JAK x. JbK) : (λf : (∀kx : A. B). ∀ki x : A. ∀kr xR : JAK x. JBK (f •kx)) (λkx : A. b)
conv

conversion

... ind
JΓK ` JAK : JBK A

... ind’
JΓK ` JBK′ : B′ → dse

... lem
JΓK ` Ai : B′ i

JΓK ` JBK′ A : dse
app

JΓK ` JAK : JBK′ A
conv

The β-equality constraint (JBK A =β JB′K A) holds because J·K preserves
β-equivalence (Lemma 22).

Paper II

Realizability and Parametricity
in Pure Type Systems

The following paper is an extended version of a paper with the same title
appearing in the proceedings of FoSSaCS 2011.

59

Realizability and Parametricity
in Pure Type Systems

Jean-Philippe Bernardy Marc Lasson

Abstract

We describe a systematic method to build a logic from any program-
ming language described as a Pure Type System (PTS). The formulas
of this logic express properties about programs. We define a para-
metricity theory about programs and a realizability theory for the
logic. The logic is expressive enough to internalize both theories.
Thanks to the PTS setting, we abstract most idiosyncrasies specific
to particular type theories. This confers generality to the results, and
reveals parallels between parametricity and realizability.

1 Introduction

During the past decades, a recurring goal among logicians was to give a
computational interpretation of the reasoning behind mathematical proofs.
In this paper we adopt the converse approach: we give a systematic way
to build a logic from a programming language. The structure of the pro-
gramming language is replicated at the level of the logic: the expressive
power of the logic (e.g. the ability of expressing conjunctions) is directly
conditioned by the constructions available in the programming language
(e.g. presence of products).

We use the framework of Pure Type Systems (PTS) to represent both the
starting programming language and the logic obtained by our construc-
tion. A PTS (Barendregt, 1992; Berardi, 1989) is a generalized λ-calculus
where the syntax for terms and types are unified. Many systems can
be expressed as PTSs, including the simply typed λ-calculus, Girard and
Reynolds’ polymorphic λ-calculus (System F) and its extension System
Fω, Coquand’s Calculus of Constructions, as well as some exotic, and
even inconsistent systems such as λU (Girard, 1972). PTSs can model the
functional core of many modern programming languages (Haskell, Objec-
tive Caml) and proof assistants (Coq (The Coq development team, 2010),
Agda (Norell, 2007), Epigram (McBride and McKinna, 2004)). This unified
framework provides meta-theoretic results such as substitution lemmas,
subject reduction and uniqueness of types.

In Section 3, we describe a transformation which maps any PTS P to a
PTS P2. The starting PTS P will be viewed as a programming language in
which live types and programs and P2 will be viewed as a proof system in
which live proofs and formulas. The logic P2 is expressive enough to state

61

62 Realizability and Parametricity in PTSs

properties about the programs. It is therefore a setting of choice to develop
a parametricity and a realizability theory.

Parametricity. Reynolds (1983) originally developed the theory of para-
metricity to capture the meaning of types of his polymorphic λ-calculus
(equivalent to Girard’s System F). Each closed type can be interpreted
as a predicate that all its inhabitants satisfy. Reynolds’ approach to para-
metricity has proven to be a successful tool: applications range from pro-
gram transformations to speeding up program testing (Wadler, 1989; Gill,
Launchbury, and Peyton Jones, 1993; Bernardy, Jansson, and Claessen,
2010).

Parametricity theory can be adapted to other λ-calculi, and for each calcu-
lus, parametricity predicates are expressed in a corresponding logic. For
example, Abadi, Cardelli, and Curien (1993) remark that the simply-typed
lambda calculus corresponds to LCF (Milner, 1972). For System F, predi-
cates can be expressed in second order predicate logic, in one variant or
another (Abadi, Cardelli, and Curien, 1993; Mairson, 1991; Wadler, 2007).
More recently, Bernardy, Jansson, and Paterson (2010) have shown that
parametricity conditions for a reflective PTS can be expressed in the PTS
itself.

Realizability. The notion of realizability was first introduced by Kleene
(1945) in his seminal paper. The idea of relating programs and formulas,
in order to study their constructive content, was then widely used in proof
theory. For example, it provides tools for proving that an axiom is not
derivable in a system (excluded middle in (Kleene, 1971; Troelstra, 1998))
or that intuitionistic systems satisfy the existence property1 (Harrop, 1956;
Troelstra, 1998); see Van Oosten (2002) for a historical account of realizabil-
ity.

Originally, Kleene represented programs as integers in a theory of recur-
sive functions. Later, this technique has been extended to other notions of
programs like combinator algebra (Staples, 1973; Troelstra, 1998) or terms
of Gödel’s System T (Kreisel, 1959; Troelstra, 1998) in Kreisel’s modified
realizability. In this article, we generalize the latter approach by using an
arbitrary pure type system as the language of programs.

Krivine (1997) and Leivant (1990) have used realizability to prove Girard’s
representation theorem2 (Girard, 1972) and to build a general framework
for extracting programs from proofs in second-order logic (Krivine and
Parigot, 1990). In this paper, we extend Krivine’s methodology to lan-
guages with dependent types, like Paulin-Mohring (1989a); Paulin-Mohring

1If ∀x.∃y.ϕ(x, y) is a theorem, then there exists a program f such that ∀x.ϕ(x, f (x)).
2Functions definable in System F are exactly those provably total in second-order arith-

metic.

2. THE FIRST LEVEL 63

(1989b) did with the realizability theory behind the program extraction in
the Coq proof assistant (The Coq development team, 2010).

Contributions. Viewed as syntactical notions, realizability and parametric-
ity bear a lot of similarities. Our aim was to understand through the gen-
erality of PTSs how they are related. Our main contributions are:

• The general construction of a logic from the programming language
of its realizers with syntactic definitions of parametricity and realiz-
ability (Section 3).

• The proof that this construction is strongly normalizing if the starting
programming language is (Theorem 16).

• A characterization of both realizability in terms of parametricity (The-
orem 27) and parametricity in terms of realizability (Theorem 22).

2 The first level

In this section, we recall basic definitions and theorems about pure types
systems (PTSs). We refer the reader to (Barendregt, 1992) for a comprehen-
sive introduction to PTSs.3 A PTS is defined by a specification (S ,A,R)
where S is a set of sorts, A ⊆ S × S a set of axioms and R ⊆ S × S × S
a set of rules, which determines the typing of product types. This spec-
ification parameterizes both the syntax of term and the rules of the type
system.

Definition 1 (Syntax of terms). A PTS is a type system over a λ-calculus
with the following syntax:

T = S sort
| V variable
| T T application
| λV : T . T abstraction
| (V : T)→ T product

The product (x : A) → B may be also written ∀(x : A).B, or A → B when
x does not occur free in B.

The rules of the typing judgement (written Γ ` A : B) of the PTS (S ,A,R)
are given in Figure 2.2. The notation Γ ` A : B : C is a shorthand for
having both Γ ` A : B and Γ ` B : C simultaneously.

3Readers familiar with Paper I of the thesis might wish to skip this section, as it largely
overlaps with the corresponding section of Paper I. This present section adds the syntactic
notion of sort-annotation to the system, but colours (as introduced in Paper I) could also be
used for the same purpose.

64 Realizability and Parametricity in PTSs

s1 : s2 ∈ A` s1 : s2

Axiom

Γ ` A : s
Γ, x : A ` x : A

Start

Γ ` A : B Γ ` C : s
Γ, x : C ` A : B

Weakening

Γ ` F : ((x : A)→ B) Γ ` a : A
Γ ` F a : B[x 7→ a]

Application

Γ, x : A ` b : B Γ ` ((x : A)→ B) : s
Γ ` (λx : A. b) : ((x : A)→ B)

Abstraction

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` ((x : A)→ B) : s3

Product (s1, s2, s3) ∈ R

Γ ` A : B Γ ` B′ : s B =β B′

Γ ` A : B′

Conversion

Figure 2.1: Typing rules of the PTS (S ,A,R)

s1 : s2 ∈ A` s1 : s2

Axiom

Γ ` A : s
Γ, xs : A ` x : A

Start

Γ ` A : B Γ ` C : s
Γ, xs : C ` A : B

Weakening

Γ ` F : ((xs : A)→ B) Γ ` a : A
Γ ` (F a)s : B[x 7→ a]

Application

Γ, xs1 : A ` b : B Γ ` ((xs1 : A)→ B) : s
Γ ` (λxs1 : A. b) : ((xs1 : A)→ B)

Abstraction

Γ ` A : s1 Γ, xs1 : A ` B : s2

Γ ` ((xs1 : A)→ B) : s3

Product (s1, s2, s3) ∈ R

Γ ` A : B Γ ` B′ : s B =β B′

Γ ` A : B′

Conversion

Figure 2.2: Typing rules PTS (S ,A,R), with sort annotations.

2. THE FIRST LEVEL 65

Example 1 (System F). The PTS F has the following specification:

SF = {?,�} AF = {(?,�)} RF = {(?, ?, ?), (�, ?, ?)} .

It defines the λ-calculus with polymorphic types known as system F (Gi-
rard, 1972). The rule (?, ?, ?) corresponds to the formation of arrow types
(usually written σ→ τ) and the rule (�, ?, ?) corresponds to quantification
over types (∀α.τ).

Even though we use F as a running example throughout the article to
illustrate our general definitions our results apply to any PTS.

Sort annotations. We sometimes decorate terms with sort annotations.
They function as a syntactic reminder of the first component of the rule
used to type a product. We divide the set of variables into disjoint infinite
subsets V =

⊔{Vs|s ∈ S} and we write xs to indicate that a variable x be-
longs to Vs. We also annotate applications F a with the sort of the variable
of the product type of F. Using this notation, the product rule and the
application rule are written

Γ ` A : s1 Γ, xs1 : A ` B : s2

Γ ` ((xs1 : A)→ B) : s3

Product (s1, s2, s3) ∈ R

Γ ` F : ((xs : A)→ B) Γ ` a : A .
Γ ` (F a)s : B[x 7→ a]

Application

Since sort annotations can always be recovered by using the type deriva-
tion, we do not write them in our examples.

Example 2 (System F terms). In System F, we adopt the following con-
vention: the letters x, y, z, . . . range over V?, and α, β, γ, . . . over
V�. For instance, the identity program Id ≡ λ(α : ?)(x : α).x is of type
Unit ≡ ∀α : ?.α→ α. The Church numeral 0 ≡ λ(α : ?)(f : α→ α)(x : α).x
has type N ≡ ∀α : ?.(α → α) → (α → α) and the successor function on
Church numerals Succ ≡ λ(n : N)(α : ?)(f : α → α)(x : α). f (n α f x) is a
program of type N→N.

In any PTS a term A is said to be strongly normalizing if there is no infinite
β-reducing sequence starting from A. And A is weakly normalizing if there
is a term A′ in normal form (i.e. such that there is no B such that A′−→βB)
with A−→∗β A′. A PTS is strongly normalizing (resp. weakly normalizing) if
all its valid terms are strongly normalizing (resp. weakly normalizing).

Normalization properties are useful for solving the following problems:

• Type checking problem: Given a context Γ and two terms A and B, is
Γ ` A : B derivable ?

66 Realizability and Parametricity in PTSs

• Type synthesis problem: Given a context Γ and a term A, is there a term
B such that Γ ` A : B ?

Remark 2. In (weakly or strongly) normalizing PTSs, the type checking problem
and the type synthesis problem are decidable.

The uniqueness of types is a very convenient property enjoyed by most
interesting pure type systems.

Definition 3 (Singly sorted). A PTS (S ,A,R) is singly sorted if

1. (s1, s2), (s1, s′2) ∈ A ⇒ s2 = s′2,

2. (s1, s2, s3), (s1, s2, s′3) ∈ R ⇒ s3 = s′3.

Lemma 4 (Uniqueness of types for singly sorted PTSs). In a singly sorted
PTS we have,

Γ ` A : B1 and Γ ` A : B2 implies B1 =β B2.

Proof. See (Barendregt, 1992).

3 The second level

In this section we describe a logic to reason about the programs and types
written in an arbitrary PTS P, as well as basic results concerning the consis-
tency of the logic. This logic is also a PTS, which we name P2. Because we
carry out most of our development in P2, judgments refer to that system
unless the symbol ` is subscripted with the name of a specific system.

Definition 5 (second-level system). Given a PTS P = (S ,A,R), we define
P2 = (S2,A2,R2) by

S2 = S ∪ {dse | s ∈ S}
A2 = A ∪ {(ds1e, ds2e) | (s1, s2) ∈ A}
R2 = R ∪ {(ds1e, ds2e, ds3e), (s1, ds3e, ds3e) | (s1, s2, s3) ∈ R}

∪ {(s1, ds2e, ds2e) | (s1, s2) ∈ A}

Because we see P as a programming language and P2 as a logic for rea-
soning about programs in P, we adopt the following terminology and con-
ventions. We use the metasyntactic variables s, s1, s2, . . . to range over sorts
in S and t, t1, t2, . . . to range over sorts in S2. We call type a term inhab-
iting a first-level sort in some context (we write Γ ` A : s for a type A),
programs are inhabitants of types (Γ ` A : B : s for a program A of type
B), formulas denote inhabitants of a lifted sort (written Γ ` A : dse) and
proofs are inhabitants of formulas (Γ ` A : B : dse). We also say that types

3. THE SECOND LEVEL 67

and programs are first-level terms, and formulas and proofs are second-level
terms.

If s is a sort of P, then dse is the sort of formulas expressing properties
of types of sort s. For each rule (s1, s2, s3) in R, (ds1e, ds2e, ds3e) lifts
constructs of the programming language at the level of the logic, and
(s1, ds3e, ds3e) allows to form the quantification of programs of sort s1 in
formulas of sort ds3e.
For each axiom (s1, s2) in A, we add the rule (s1, ds2e, ds2e) in order to
form the type of predicates of sort ds2e parameterized by programs of sort
s1.

Example 3. The PTS F2 has the following specification:

S2
F = { ?,�, d?e, d�e }
A2

F = { (?,�), (d?e, d�e) }
R2

F = { (?, ?, ?), (�, ?, ?), (d?e, d?e, d?e), (d�e, d?e, d?e)
(?, d�e, d�e), (?, d?e, d?e), (�, d?e, d?e) }.

We extend our variable-naming convention to Vd?e and Vd�e as follows: the
variables h, h1, h2, . . . range over Vd?e, and the variables X, Y, Z, . . . range
over Vd�e. The logic F2 is a second-order logic with typed individuals
(Wadler (2007) gives another presentation of the same system). The sort
? is the type of types and the only inhabitant of �, while d?e is the sort
of propositions. The sort d�e is inhabited by the type of propositions
(d?e), the type of predicates (τ → d?e), and in general the type of relations
(τ1 → · · · → τn → d?e). The product formation rules can be understood
as follows:

• (d?e, d?e, d?e) allows to build implication between formulas, written
P→ Q.4

• (?, d?e, d?e) allows to quantify over individuals (as in ∀x : τ.P).

• (�, d?e, d?e) allows to quantify over types (as in ∀α : ?.P).

• (?, d�e, d�e) is used to build types of predicates depending on pro-
grams (as in ∀(x : σ).τ → d?e).

• (d�e, d?e, d?e) allows to quantify over predicates (as in ∀(X : τ →
d?e).P).

In F2, truth can be encoded by > ≡ ∀X : d?e.X → X and is proved
by Obvious ≡ λ(X : d?e)(h : X).h. The formula x =τ y ≡ ∀X : τ →
d?e.X x→ X y defines the Leibniz equality at type τ. The term

Refl ≡ λ(α : ?)(x : α)(X : α→ d?e)(h : X x).h
4In this example P and Q stand for formulas (terms of type d?e).

68 Realizability and Parametricity in PTSs

is a proof of the reflexivity of equality ∀(α : ?)(x : α).x =α x. And the
induction principle over Church numerals is a formula

N≡ λx : N.∀X :N→ d?e.(∀y : N.X y→ X (Succ y))→ X 0→ X x.

3.1 Structure of P2

Remark 6. P2 contains two copies of P, one syntactically equal to P and one
where sorts have been renamed from s to dse. The only rules where the two copies
interact are of the form (s, ds′e, ds′e). We call these rules interaction rules.

Programs (or types) can never refer to proofs (nor formulas). In other
words, a first-level term never contains a second-level term: it is typable in
P. Formally:

Theorem 7 (separation). For s ∈ S , if Γ ` A : B : s (resp. Γ ` B : s), then
there exists a sub-context Γ′ of Γ such that Γ′ `P A : B : s (resp. Γ′ `P B : s).

Proof. By induction on the structure of terms, and relying on the genera-
tion lemma (Barendregt, 1992, p. 5.2.13) and on the form of the rules in
R2: assuming (t1, t2, t3) ∈ R2 then t3 ∈ S ⇒ (t1 ∈ S ∧ t2 ∈ S) and
t2 ∈ S ⇒ (t1 ∈ S ∧ t3 ∈ S).

Remark 8. If P is singly sorted, then so is P2.

Therefore if P is singly sorted, then type checking and type synthesis are
decidable in P2. We will see in Section 3.2 that the strong normalization of
P is also preserved by our construction.

Lifting. The major part of the paper is about transformations and rela-
tions between the first and the second level. The first and simplest trans-
formation lifts terms from the first level to the second level, by substituting
occurrences of a sort s by dse everywhere (see Figure 2.3). The function is
defined only on first-level terms, and is extended to contexts in the obvi-
ous way. In addition to substituting sorts, lifting performs renaming of a
variable x in Vs to x̊ in Vdse.

Example 4. In F2, the lifting of inhabited types gives rise to logical tau-
tologies. For instance, dUnite = d∀α : ?.α → αe = ∀X : d?e.X → X = >,
and dNe = ∀X : d?e.(X → X)→ (X → X).

Lifting preserves both typing and β-reduction.

Lemma 9 (lifting preserves typing). Γ ` A : B : s⇒ dΓe ` dAe : dBe : dse

Proof. A consequence of P2 containing a copy of P with every sort s re-
named to dse.

3. THE SECOND LEVEL 69

dxe = x̊
dse = dse
d(x : A)→ Be= (x̊ : dAe)→ dBe
dλx : A. be = λx̊ : dAe. dbe
dA Be = dAe dBe

d–e = –
dΓ, x : Ae = dΓe, x̊ : dAe

bxdsec = ẋs

bdsec = s
b∀xs : A.Bc = bBc
b∀xdse : A.Bc= ∀ẋs : bAc.bBc
bλxs : A.Bc = bBc
bλxdse : A.Bc= λẋs : bAc.bBc
b(A B)sc = bAc
b(A B)dsec = bAc bBc

b–c = –
bΓ, xs : Ac = bΓc
bΓ, xdse : Ac = bΓc, ẋs : bAc

Figure 2.3: lifting from P to P2 and projection form P2 to P.

Lemma 10 (lifting preserves β-reduction). A−→βB⇒ dAe−→βdBe

Proof. By induction on the structure of A.

Projection. We define a projection from second-level terms into first-level
terms, which maps second-level constructs into first-level constructs. The
first-level subterms are removed, as well as the interactions between the
first and second levels. The reader may worry that some variable bindings
are removed, potentially leaving some occurrences unbound in the body of
the transformed term. However, these variables are first level, and hence
their occurrences are removed too (by the application case).

The function is defined only on second-level terms, and behaves differently
when facing pure second level or interaction terms. In order to distinguish
these cases, the projection takes sort-annotated terms as input. Like the
lifting, the projection performs renaming of each variable x in Vdse to ẋ in
Vs. We postulate that this renaming cancels that of the lifting: we have
˙̊x = x.

Example 5 (projections in F2).

b>c = Unit bObviousc = Id b∀(α : ?)(x : α).x =α xc = Unit

bN tc = N

Lemma 11 (projection is the left inverse of lifting). bdAec = A

Proof. By induction on the structure of A.

As lifting, projection preserves typing.

70 Realizability and Parametricity in PTSs

Lemma 12 (projection preserves typing). Γ ` A : B : dse ⇒ bΓc ` bAc :
bBc : s

Proof. By induction on the derivation Γ ` A : B.

In contrast to lifting, which keeps a term intact, projection may remove
parts of a term, in particular abstractions at the interaction level. Therefore,
β-reduction steps may be removed by projection.

Lemma 13 (projection preserves or removes β-reduction).
If A−→βB, then either bAc−→βbBc or bAc = bBc.

3.2 Strong normalization

Armed with the basic tools of projection and lifting, we can already prove
that P2 is as consistent as P.

Definition 14 (inconsistent sort). In any PTS Q, we say that a sort s is
inconsistent if for all B such that `Q B : s, there exists A such that `Q A : B
(in other words, all inhabitants of the sort are inhabited).

Theorem 15. If a sort dse is inconsistent, then s is inconsistent.

Proof. Assume B be such that ` B : s. By Lemma 9 we have ` dBe : dse.
Because dse is inconsistent, we can find A such that ` A : dBe : dse and,
by Lemma 12, ` bAc : bdBec : s. We finally apply Lemma 11 (bdBec = B)
and obtain ` bAc : B : s.

Example 6. In F2, the sort ? is consistent since the type ∀α : ?.α is not
inhabited. The previous lemma gives us a proof that d?e is also consistent
since a proof of ⊥ = ∀X : d?e.X = d∀α : ?.αe could be projected to a proof
of ∀α : ?.α.

Theorem 16 (normalization). If P is strongly normalizing, so is P2.

Proof. The proof is based on the observation that, if a term A is typable in
P2 and not normalizable, then at least either:

• one of the first-level subterms of A is not normalizable, or

• the first-level term bAc is not normalizable.

And yet bAc and the first-level subterms are typable in P (Theorem 7)
which would contradict the strong normalization of P.

3. THE SECOND LEVEL 71

3.3 Parametricity

In this section we develop Reynolds-style (Reynolds, 1983) parametricity
for P, in P2. While parametricity theory is often defined for binary rela-
tions, we abstract from the arity and develop the theory for an arbitrary
arity n, though we omit the index n when the arity of relations plays no
role or is obvious from the context.

The definition of parametricity is done in two parts: first we define what
it means for an n-tuple of programs z to satisfy the relation generated by
a type T (z ∈ JTKn

5); then we define the translation from a program z of
type T to a proof JzKn that a tuple z satisfies the relation.

The definition below uses n + 1 renamings: one of them (·̊) coincides with
that of lifting, and the others map x respectively to x1, . . . , xn. The tuple A
denotes n terms Ai, where Ai is the term A where each free variable x is
replaced by a fresh variable xi.

Definition 17 (parametricity).

C ∈ JsK = C → dse
C ∈ J(x : A)→ BK = (x : A)→ (x̊ : x ∈ JAK)→ C x ∈ JBK
C ∈ JTK = JTK C otherwise

JxK = x̊
Jλx : A. BK = λx : A. λx̊ : x ∈ JAK. JBK
JA BK = JAK B JBK
JTK = λz : T. z ∈ JTK otherwise

J–K = –
JΓ, x : AK = JΓK, x : A, x̊ : x ∈ JAK

Because the syntax of values and types are unified in a PTS, each of the
definitions · ∈ J·K and J·K must handle all constructions. In both cases, this
is done by using a catch-all case (the last line) that refers to the other part
of the definition.6

Remark 18. For arity 0, parametricity specializes to lifting (JAK0 = dAe).

Example 7. For instance, in F2, we have

(f , g) ∈ J∀(α : ?).α→ ∀(β : ?).β→ αK ≡
∀(α1 α2 : ?)(X : α1 → α2 → d?e)(x1 : α1)(x2 : α2).X x1 x2 →
∀(β1 β2 : ?)(Y : β1 → β2 → d?e)(y1 : β1)(y2 : β2).Y y1 y2 →
X (f α1 β1 x1 y1) (g α2 β2 x2 y2)

5A note about syntax: the construction · ∈ J·K constructs types and therefore binds tighter
that the colon.

6Readers familiar with Paper I might wonder why we need a longer definition of the
relational interpretation here. The question is addressed in Section 4.1.

72 Realizability and Parametricity in PTSs

We can then state our version of the abstraction theorem:

Theorem 19 (abstraction). If Γ ` A : B : s, then JΓK ` JAK : (A ∈ JBK) : dse

Proof. The result is a consequence of the following lemmas.

• A−→βB⇒ JAK−→∗βJBK

• Γ ` A : B⇒ JΓK ` A : B

• Γ ` B : s⇒ JΓK, z : B ` z ∈ JBK : dse

• Γ ` A : B : s⇒ JΓK ` JAK : A ∈ JBK

The proof of the last three lemmas is done by simultaneous induction on
the length of the derivations. (Details in appendix.)

A direct reading of the above result is as a typing judgement about trans-
lated terms (as for lemmas 9 and 12): if A has type B, then JAK has type
A ∈ JBK. However, it can also be understood as an abstraction theorem for
system P: if a program A has type B in Γ, then various interpretations of
A (A) in related environments (JΓK) are related, by the formula A ∈ JBK.

The system P2 is a natural setting to express parametricity conditions for
P. Indeed, the interaction rules of the form (s1, ds2e, ds2e) coming from
axioms (s1, s2) in P are needed to make the sort case valid; and the interac-
tion rules (s1, ds3e, ds3e) are needed for the quantification over individuals
in coming from rules (s1, s2, s3) in the product case.

3.4 Realizability

We develop here a Krivine-style (Krivine, 1997) internalized realizability
theory. Realizability bears similarities both to the projection and the para-
metricity transformations defined above.

Like the projection, the realizability transformation is applied on second-
level constructs, and behaves differently depending on whether it treats
interaction constructs or pure second-level ones. It is also similar to para-
metricity, as it is defined in two parts. In the first part we define what it
means for a program C to realize a formula F (C F); then we define the
translation from a proof p to a proof 〈p〉 that the program bpc satisfies the
realizability predicate.

4. THE THIRD LEVEL 73

Definition 20 (realizability).

C dse = C → dse
C ∀xs : A.B = ∀xs : A. C B
C ∀xdse : A.B = ∀(ẋs : bAc)(xdse : ẋ A). C ẋ B
C F = 〈F〉C otherwise

〈xdse〉 = xdse

〈λxs : A.B〉 = λxs : A.〈B〉
〈λxdse : A.B〉 = λ(ẋs : bAc)(xdse : ẋ A).〈B〉
〈(A B)s〉 = (〈A〉 B)s
〈(A B)dse〉 = ((〈A〉 bBc)s 〈B〉)dse
〈T〉 = λzs : bTc. z T otherwise

〈–〉 = –
〈Γ, xs : A〉 = 〈Γ〉, xs : A
〈Γ, xdse : A〉 = 〈Γ〉, ẋs : bAc, xdse : ẋ A

Theorem 21 (adequacy). If Γ ` A : B : dse, then 〈Γ〉 ` 〈A〉 : bAc B : dse

Proof idea. Similar in structure to the proof of the abstraction theorem.

Example 8. In F2, the formula y N x unfolds to

∀(α : ?)(X : N→ α→ d?e)(f : α→ α).
(∀(n : N)(y : α).X n y→ X (Succ n) (f y))→ ∀(z : α).X 0 y→ X x (y α f z)

In F2 this formula may be used to prove a representation theorem. We
can prove that Σ ` ∀x y : N.y N x ⇔ x =N y ∧ N x where Σ is a
set of extensionality axioms (∧ and ⇔ are defined by usual second-order
encodings). Let π be a proof of ∀x : N.N x→ N (f x) then ` bπc : N→N

and ` 〈π〉 : bπc ∀x : N.N x → N (f x) which unfold to ` 〈π〉 : ∀x y :
N.y Nx → bπcy N(f x). Let m be a term in closed normal form such
that ` m : N, we can prove N m and therefore m N m. We now have a
proof (under Σ) that bπcm N (f m) and we conclude that bπcm =N f m.
We have proved that the projection of any proof of ∀x : N.N x → N (f x)
can be proved extensionally equal to f . See (Wadler, 2007; Krivine, 1997;
Leivant, 1990) for more details.

4 The third level

By casting both parametricity and realizability in the mold of PTSs, we are
able to discern the connections between them. The connections already
surface in the previous sections: the definitions of parametricity and real-
izability bear some resemblance, and the adequacy and abstraction theo-

74 Realizability and Parametricity in PTSs

rems appear suspiciously similar. In this section we precisely spell out the
connection: realizability and parametricity can be defined in terms of each
other.

We first remark that realizability increases arity of parametricity.

Theorem 22 (realizability increases arity of parametricity). For any tuple
terms (B, C),(

B, C
)
∈ JAKn+1 = B

(
C ∈ JAKn

)
and JAKn+1 = 〈JAKn〉

Proof. By induction on the structure of A.

As a corollary, n-ary parametricity is the composition of lifting and n real-
izability steps:

Corollary 23 (from realizability to parametricity). C ∈ JAKn = C1
C2 · · · Cn dAe and JAKn = 〈· · · 〈dAe〉 · · ·〉 (assuming right-
associativity of)

Proof. By induction on n. The base case uses JAK0 = dAe.

One may also wonder about the converse: is it possible to define realiz-
ability in terms of parametricity? We can answer by the affirmative, but
we need a bigger system to do so. Indeed, we need to extend J·K to work
on second-level terms, and that is possible only if a third level is present
in the system. To do so, we can iterate the construction used in Section 3

to build a logic for an arbitrary PTS.

Definition 24 (third-level system). Given a PTS P = (S ,A,R), we define
P3 = (P2)

2, where the sort-lifting d·e used by both instances of the ·2
transformation are the same.

Remark 25. Because the sort-lifting used by both instances of the ·2 transforma-
tion are the same, P3 contains only three copies of P (not four). That is, for each
s, we unify the sort dse obtained from the first application of ·2 and dse obtained
from the second application. In fact P3 = (S3,A3,R3), where

S3 = S ∪ dSe ∪ ddSee
A3 = A ∪ dAe ∪ ddAee
R3 = R ∪ dRe ∪ ddRee

∪ {(s1, ds3e, ds3e), (ds1e, dds3ee, dds3ee) | (s1, s2, s3) ∈ R}
∪ {(s1, ds2e, ds2e), (ds1e, dds2ee, dds2ee) | (s1, s2) ∈ A}

The J·K transformation is extended to second-level constructs in P2, map-
ping them to third-level ones in P3. The b·c transformation is similarly
extended, to map the third level constructs to the second level, in addition
to mapping the second to the first one (only the first level is removed).

4. THE THIRD LEVEL 75

Given these extensions, we obtain that realizability is the composition of
parametricity and projection.

Lemma 26. If A is a first-level term, then

A = bC ∈ JAK1c and A = bJAK1c

Proof. By induction on the structure of A, using separation (Theorem 7).

Theorem 27 (from parametricity to realizability). If A is a second-level term,
then

C A = bdCe ∈ JAK1c and 〈A〉 = bJAK1c

Proof. By induction on the structure of A, using the above lemma.

4.1 Infinite PTSs

In the previous sections, we describe parametricity (or realizability) in two
interwoven parts; one that treats types (or formulas) and the other that
treats programs (or proofs). This is the schema classically found in the
literature. However, handling types and programs separately is somewhat
disappointing in the context of PTSs, whose one of the main strengths is
the unification between programs and types (or proofs and formulas).

Such a unification can apparently be done by simply unfolding the uses of
· ∈ J·K in the definition of J·K (or · · in the definition of 〈·〉). We obtain
the definition given in Figure 2.4. However, this definition introduces more
abstractions in the terms generated by J·K or 〈·〉; and this means that more
product rules are needed in the logic.

Furthermore, one would like to also unify terms and types in the abstrac-
tion and adequacy theorems. That is, use the shorter notation JΓK ` JAK :
JBK A (or 〈Γ〉 ` 〈A〉 : 〈B〉 A) instead of JΓK ` JAK : A ∈ JBK : dse (or
〈Γ〉 ` 〈A〉 : bAc B : dse).
The issue is then that, B can now be a top-sort, and A ∈ JsK is A → dse,
which is not typable in P2.

Definition 28 (top-sort). A sort s is called a top sort if there is no axiom
(s, s′) ∈ R.

An obvious solution is to forbid top-sorts, as Bernardy, Jansson, and Pa-
terson (2010).7 In that case, not only can the theorems be simplified, but
the definitions of parametricity and realizability as well (the extra abstrac-
tions become typable). Forbidding top-sorts seems like a drastic measure.

7In Paper I (which is an extended version of Bernardy, Jansson, and Paterson (2010)), we
have refined the result: we do not need an infinite sort hierarchy, but only a few extra sorts
and rules to make the terms generated by J·K typeable.

76 Realizability and Parametricity in PTSs

Parametricity

JxK = x̊
JsK = λx : s. x → dse

J(x : A)→ BK = λ f : ((x : A)→ B). (x : A)→ (x̊ : JAK x)→ JBK (f x)
JF aK = JFK a JaK

Jλx : A. bK = λx : A. λx̊ : JAK x. JbK

Projection

bxdsec = ẋs

bdsec = s
b∀xs : A.Bc = bBc
b∀xdse : A.Bc = ∀ẋs : bAc.bBc
bλxs : A.Bc = bBc
bλxdse : A.Bc = λẋs : bAc.bBc
b(A B)sc = bAc
b(A B)dsec = bAc bBc

Realizability↔ Parametricity

dAe = JAK0

〈A〉 = bJAKc
JAKn+1 = 〈JAKn〉

Theorems

Γ ` A : B =⇒ bΓc ` bAc : bBc
Γ ` A : B =⇒ 〈Γ〉 ` 〈A〉 : 〈B〉 bAc
Γ ` A : B =⇒ JΓK ` JAK : JBK A

Figure 2.4: Parametricity and realizability for infinite PTSs in a nutshell.
(We could also have chosen realizability plus lifting instead of parametric-
ity plus projection as basic constructs)

5. EXTENSIONS 77

However, many systems have already been extended with infinite sort hi-
erarchies.

sort hierarchies. For example, the Generalized Calculus of Constructions
(Coquand, 1986; Miquel, 2001) extends CC in that way.

Definition 29 (CCω). CCω is a PTS with this specification:

• S = {?} ∪ {�i | i ∈N}

• A = {? : �0} ∪ {�i : �i+1 | i ∈N}

• R = {? ; ?, ? ; �i,�i ; ? | i ∈N} ∪
{(�i,�j,�max(i,j)) | i, j ∈N}

Many dependently-typed programming languages and proof assistants al-
ready support infinite sort hierarchies: Agda (Norell, 2007) and Coq (The
Coq development team, 2010) are two well-known examples.

5 Extensions

5.1 Inductive definitions

Even though our development assumes pure type systems, with only ax-
ioms of the form (s1, s2), the theory easily accommodates the addition of
inductive definitions.

For parametricity, the way to extend the theory is exposed by Bernardy,
Jansson, and Paterson (2010). In brief: if for every inductive definition in
the programming language there is a corresponding inductive definition in
the logic, then the abstraction theorem holds. For instance, to the indexed
inductive definition I corresponds JIK, as defined below. (We write only
one constructor cp for concision, but the result applies to any number of
constructors.)

data I : ∀(x1 : A1) · · · (xn : An).s where

cp : ∀(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n

data JIK : I ∈ J∀(x1 : A1) · · · (xn : An).sK where

JcpK : cp ∈ J∀(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,nK

The result can be transported to realizability by following the correspon-
dence developed in the previous section. By taking the composition of
J·K and b·c for the definition of realizability, and knowing how to extend
J·K to inductive types, it suffices to extend b·c as well (respecting typing:
Lemma 12). The corresponding extension to realizability is compatible

78 Realizability and Parametricity in PTSs

with the definition for a pure system (by Theorem 27). Adequacy is proved
by the composition of abstraction and Lemma 12. The definition of b·c is
straightforward: each component of the definition must be transformed by
b·c. That is, for any inductive definition in the logic, there must be another
inductive definition in the programming language that realizes it. For in-
stance, given the definition I given below, one must also have bIc. 〈I〉 is
then given by 〈I〉 = bJIKc, but can also be expanded as below.

data I : ∀(x1 : A1) · · · (xn : An).dse where

cp : ∀(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n

data bIc : b∀(x1 : A1) · · · (xn : An).dsec where

bcpc : b∀(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,nc

data 〈I〉 : bIc (∀(x1 : A1) · · · (xn : An).dse) where

〈cp〉 : bcpc
(
∀(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n

)
We can use inductive types to encode usual logical connectives, and derive
realizability for them.

Example 9 (conjunction). The encoding of conjunction in a sort dse is as
follows:

data _∧ _ : dse → dse → dse where

conj : ∀ P Q : dse.P→ Q→ P ∧ Q

If we apply the projection operator to the conjunction we obtain the type
of its realizers: the cartesian product in s.

data _× _ : s→ s→ s where

(_, _) : ∀ α β : s.α→ β→ α× β

Now we can apply our realizability construction to obtain a predicate
telling what it means to realize a conjunction.

data 〈∧〉 : ∀(α : s).(α→ dse)→
∀(β : s).(β→ dse)→
α× β→ s where

〈conj〉 : ∀(α : s)(P : α→ dse)
(β : s)(Q : β→ dse)(x : α)(y : β).
P x→ Q y→ 〈∧〉 α P β Q (x, y)

By definition, t P ∧Q means 〈∧〉 bPc 〈P〉 bQc 〈Q〉 t. We have

t P ∧Q⇔ (π1 t) P ∧ (π2 t) Q

where π1 and π2 are projections upon Cartesian product.

We could build the realizers of other logical constructs in the same way:

5. EXTENSIONS 79

we would obtain a sum-type for the disjunction, an empty type for falsity,
and a box type for the existential quantifier. All the following properties
(corresponding to the usual definition of the realizability predicate) would
then be satisfied:

• t P ∨Q⇔ case twith ι1 x → x P | ι2 x → x Q.

• t ⊥ ⇔ ⊥ and t ¬P⇔ ∀(x : bPc).¬(x P)

• t ∃x : A.P⇔ ∃x : A.(unbox t) P

where case . . .with . . . is the destruction of the sum type, and unbox is the
destructor of the box type.

5.2 Program extraction and computational irrelevance

An application of the theory developed so far is the extraction of programs
from proofs. Indeed, an implication of the adequacy theorem is that the
program bAc, obtained by projection of a proof A of a formula B, corre-
sponds to an implementation of B, viewed as a specification. One says that
b·c implements program extraction.

For example, applying extraction to an expression involving vectors (as
defined in the previous section) yields a program over lists. This means
that programs can be justified in the rich system P2, and realized in the
simple system P. Practical benefits include a reduction in memory usage:
Brady, McBride, and McKinna (2004) measure an 80% reduction using a
technique with similar goals (but using a different technique).

While P2 is already much more expressive than P, it is possible to fur-
ther increase the expressive power of the system, while retaining the ad-
equacy theorem, by allowing quantification of first-level terms by second-
level terms.

Definition 30 (P2′). Let P = (S ,A,R), we define P2′ = (S2′ ,A2′ ,R2′)

S2′ = S ∪ {dse | s ∈ S}
A2′ =A ∪ {(ds1e, ds2e) | (s1, s2) ∈ A}
R2′ =R ∪ {(ds1e, ds2e, ds3e), (s1, ds3e, ds3e), (ds1e, s3, s3) | (s1, s2, s3) ∈ R}

∪ {(s1, ds2e, ds2e), (ds1e, s2, s2) | (s1, s2) ∈ A}

The result is a symmetric system, with two copies of P. Within either side
of the system, one can reason about terms belonging to the other side. Fur-
thermore, either side has a computational interpretation where the terms
of the other side are irrelevant. For the second level, this interpretation is
given by b·c.

80 Realizability and Parametricity in PTSs

Even though there is no separation between first and second level in P2′ ,
adequacy is preserved: the addition of rules of the form (ds1e, s2, s3) only
adds first level terms, which are removed by projection.

6 Related work and conclusion

This work builds upon realizability in the style of Krivine (1997) and para-
metricity in the style of Reynolds (1983), which have both spawned large
bodies of work.

Logics for parametricity. Study of parametricity is typically semantic,
including the seminal work of Reynolds (1983). There, the concern is to
capture the polymorphic character of λ-calculi (typically System F) in a
model.

Mairson (1991) pioneered a different angle of study, where the expressions
of the programming language are (syntactically) translated to formulas de-
scribing the program. That style has then been picked by various authors
before us, including Abadi, Cardelli, and Curien (1993); Plotkin and Abadi
(1993); Bernardy, Jansson, and Paterson (2010).

Plotkin and Abadi (1993) introduce a logic for parametricity, similar to
F2, but with several additions. The most important addition is that of a
parametricity axiom. This addition allows to prove the initiality of Church-
style encoding of types.

Wadler (2007) defines essentially the same concepts as us, but in the spe-
cial case of System F. He points out that realizability transforms unary
parametricity into binary parametricity, but does not generalize to arbi-
trary arity. We find the n = 0 case particularly interesting, as it shows
that parametricity can be constructed purely in terms of realizability and
a trivial lifting to the second level. We additionally show that realizability
can be obtained by composing parametricity and projection, while Wadler
only defines the realizability transformation as a separate construct. Our
projection b·c corresponds to what Wadler calls Girard’s projection.

The parametricity transformation and the abstraction theorem that we ex-
pose here are a modified version of (Bernardy, Jansson, and Paterson,
2010). The added benefits of the present version is that we handle finite
PTSs, and we allow the target system to be different from the source. The
possible separation of source and targets is already implicit in that paper
though. The way we handle finite PTSs is by separating the treatment of
types and programs.

Realizability. Our realizability construction can be understood as an ex-
tension of the work of Paulin-Mohring (1989a), providing a realizability in-

6. RELATED WORK AND CONCLUSION 81

terpretation for a variant of the Calculus of Construction. Paulin-Mohring
(1989a) splits CC in two levels; one where ? becomes Prop and one where
it becomes Spec. Perhaps counter-intuitively, Prop lies in what we call
the first level; and Spec lies in the second level. Indeed, Prop is removed
from the realizers. The system is symmetric, as the one we expose in
Section 5.2, in the sense that there is both a rule (Spec, Prop, Prop) and
(Prop, Spec, Spec). In order to see that Paulin-Mohring’s construction as a
special case of ours, it is necessary to recognize a number of small differ-
ences:

1. The sort Spec is transformed into Prop in the realizability transfor-
mation, whereas we would keep Spec.

2. The sorts of the original system use a different set of names (Data
and Order). Therefore the sort Spec is transformed into Data in the
projection, whereas we would use Prop.

3. The types of Spec and Prop inhabit the same sort, namely Type.

4. There is elimination from Spec to Prop, breaking the computational
irrelevance in that direction.

The first two differences are essentially renamings, and thus unimportant.

Connections. We are unaware of previous work showing the connection
between realizability and parametricity, at least as clearly as we do. Wadler
(2007) comes close, giving a version of Theorem 22 specialized to System
F, but not its converse, Theorem 27. Mairson (1991) mentions that his
work on parametricity is directly inspired by that of Leivant (1990) on
realizability, but does not formalize the parallels.

Conclusion. We have given an account of parametricity and realizability
in the framework of PTSs. The result is very concise: the definitions occupy
only a dozen of lines. By recognizing the parallels between the two, we
are able to further shrink the number of primitive concepts, as we show in
Figure 2.4.

Our work points the way towards the transportation of every parametricity
theory into a corresponding realizability theory, and vice versa.

Acknowledgements

Thanks to Andreas Abel, Thorsten Altenkirch, Thierry Coquand, Peter Dy-
bjer and Guilhem Moulin for helpful comments and discussions.

82 Realizability and Parametricity in PTSs

A Vectors from Lists

When programming with rich type systems, one often defines multiple
variants of a structure, with more or less information captured in the type.
For example, one may define a structure for lists, and a variant which
records the length of the list in an index:

data List (α : ?) : ?where
[] : List α
_ :: _ : α → List α → List α

data Vec (α : ?) : N → ?where
[] : Vec α zero
_ :: _ : α → (n : N) → Vec α n → Vec α (succ n)

It is then sometimes unclear which version of the datatype to use for which
purpose. Therefore, anticipating a wide range of applications, the authors
of such structures cannot help but duplicate the algorithms in addition of
the types, as it is done for example in the Agda standard library Daniels-
son, 2010.

Further, the above basic blocks are often combined to build complex pro-
grams, yielding a combinatorial explosion in the number of variants of
types. This proliferation of variants makes dependently-typed program-
ming awkward; and ultimately impedes the use of rich types.

We believe that the transformations that we expose here can help relating
the various versions of a type, and therefore alleviate the type-explosion
problem.

Consider the following version of the List type8:

data List (α : ?) : d?ewhere
[] : List α
_ :: _ : α → List α → List α

We can apply the projecting transformation on this version of List, to obtain
bListc (since α is first-level, all its occurrences are removed):

data bListc : ?where
b [] c : bListc
b::c_ : bListc → bListc

which is equal to the usual inductive definition of natural numbers, up to
renaming:

8One may wonder why it is admissible to change the sort of the argument as we do. The
reason is that the actual elements of a list are irrelevant to its structure. Using different sorts
is a way to express this fact.

A. VECTORS FROM LISTS 83

data N : ?where
zero : N

succ_ : N → N

One can also apply the realizability transformation on List, and obtain:

data 〈List〉 (α : ?) : bListc → d∗ewhere
〈 [] 〉 : 〈List〉 α b [] c
〈::〉 : α → (n : bListc) → 〈List〉 α n → 〈List〉 α (b::c n)

which is (up to renaming) equal to the definition of vectors shown above.
The above development can be summarised in the slogan: vectors show
that naturals realise lists.

In itself, the above observation is already useful: it can save a lot of work to
users of dependently-typed programming languages. Indeed, from regu-
lar types, the language may take advantage of realizability to automatically
generate indexed versions.

The benefits do not stop there however, since, from any program involving
lists, one can extract its homologue on vectors. Consider for example a
function appending two lists:

_ ++_ : List α → List α → List α
[] ++ xs = xs
(x : xs) ++ ys = x : (xs ++ ys)

its projection is

b++c : N → N → N

b [] c b++c xs = xs
(b::c xs) b++c ys = b::c (xs b++c ys)

which is merely addition of naturals; and its realizability interpretation
has type

〈++〉 : (n : N) → Vec α n → (m : N) → Vec α m →
Vec α (n b++cm)

and is vector concatenation.

The correspondence goes all the way: by adequacy, one can also transform
formulas and proofs concerning lists into formulas and proofs on vectors.

Using a similar technique, one may also transform all programs and proofs
on vectors to programs and proofs on lists. In that case one needs to project
away the index.

The connection between lists and vectors has been pointed out before. For
example, Mcbride (2010) and Atkey, Johann, and Ghani (2010) do it using
an algebraic approach. Attempts to unfiy various list-like structures also
exist (Danielsson, 2010, Data.Star module). Still, we believe that the connec-
tion is an elegant illustration of the power of the realizability transform.

84 Realizability and Parametricity in PTSs

B Details of proofs

This appendix contains the details of the proofs of normalization and ab-
straction theorems.

B.1 Normalization

Theorem 31 (normalization). If P is strongly normalizing, so is P2.

Proof. The proof is based on the observation (referred as (∗) below) that, if
a term A is typable in P2 and not normalizable, then at least either:

• one of the first-level subterms of A is not normalizable, or

• the first-level term bAc is not normalizable.

Then, by separation (Theorem 7), the first-level subterms are typable in P,
so they must be normalizable. We conclude that A must be normalizable.

To the above observation (∗) we first decompose the reduction relation
−→β into three disjoint relations −→β = −→1 ∪−→2 ∪−→i:

1. The relation −→1 reduces abstractions typable with the rules already
in R.

2. The relation −→2 reduces abstractions typable with rules of the form
(ds1e, ds2e, ds3e) for (s1, s2, s3) ∈ R.

3. The relation −→i reduces abstractions typable with the other rules
(corresponding to interaction reductions).

We then remark the following facts:

1. If A−→2 A′, then A is a second-level term and bAc−→βbA′c; because
the projection does not erase redexes reduced by −→2.

2. If A is a second-level term, then

A(−→1 ∪−→i)A′ implies bAc = bA′c

because the projection erases all redexes reduced by −→1 and by
−→i.

3. If A−→i A′, then the number of interaction redexes in A has been
decreased by one in A′.
Indeed, an interaction redex is always a second-level term and it
always involves an abstraction whose argument is a first-level term.
Therefore, the argument does not contain any interaction redex and
cannot be an abstraction that would create an interaction redex. This
is why −→i does not create nor duplicate interaction redexes.

B. DETAILS OF PROOFS 85

4. The number of interaction redexes is invariant by −→1 because in-
teraction redexes are second-level terms.

Let A−→β A1−→β A2−→β...−→β An−→β... be an infinite sequence of terms.
9 Then we are in one of these situations:

• either we can extract a sub-sequence (Ani)i∈N such that Ani (−→1 ∪
−→i)

∗ · −→2 Ani+1 for all i ∈N;

• or there exists a N such that for all n > N, An(−→1 ∪ −→i)An+1 or
more prosaically −→2 is not used in the chain starting from N.

In the former case, because A(−→1∪−→i)
∗ ·−→2 A′ implies bAc−→βbA′c,

we can build an infinite sequence (bAnic)i∈N decreasing for −→1.

In the latter case, because −→i strictly decreases the number of insignifi-
cant redexes and the reduction −→1 does not change this number, there
exists an integer M > N, such that for all n > M, An−→1 An+1. We can
write AM as B[x1 7→ t1, ..., xk 7→ tk] where all subterms of B that are types
or programs are variables among {x1, ..., xk}. Now, if B[x1 7→ t1, ..., xk 7→
tk]−→β AN+1 it means there exists t′ i such that AN+1 = B[x1 7→ t1, ..., xi 7→
t′ i, ..., xk 7→ tk] and ti−→βt′ i. By iterating this, we can build an infinite
decreasing sequence starting from ti for some 1 6 i 6 k.

B.2 Abstraction

Lemma 32 (J·K and substitution).

Jt[x 7→ e]K = JtK[x 7→ e][̊x 7→ JeK]

Proof. Recall that if x is free in t, then xi and x̊ are free in JtK. The free
variable x̊ is introduced by the rule JxK = x̊, therefore if x is substituted by
e, x̊ must be substituted by JeK. Similarly, each of the xi must be substituted
by ei (renaming must be applied to the substituted expression).

Lemma 33. A−→βB =⇒ JAK−→∗βJBK

Proof. By induction on the derivation. All cases are congruences, except
for the interesting base case, where β-reduction happens.

In that case, we want to show that if

(λx : T. t) e−→βt[x 7→ e]

9The proof may also be carried out constructively: the idea is to reuse the normalization
procedure of terms in P to normalize terms in P2. More precisely, given a well-typed A,
one can use the normalization procedure of bAc to normalize the 2nd level structure, and
normalize the 1st level subterms independently. The separation properties guarantee that the
interactions between first and second level structure only add a finite number of β-reductions.

86 Realizability and Parametricity in PTSs

then
J(λx : T. t) eK−→∗βJt[x 7→ e]K.

By definition:

J(λx : T. t) eK = Jλx : T. tK e JeK

= (λx : T. λx̊ : JTK x. JtK) e JeK

And by Lemma 32, we are left with showing that

(λx : T. λx̊ : JTK x. JtK) e JeK−→∗βJtK[x 7→ e][̊x 7→ JeK]

which one can identify as n + 1 instances of β-reduction.

Corollary 34 (J·K preserves reduction).

A−→∗βB =⇒ JAK−→∗βJBK

Furthermore, the number of reductions in the target is n + 1 times the number of
reductions in the source.

Corollary 35 (J·K preserves β-equivalence). A =β B =⇒ JAK =β JBK

The following lemmas (36, 37 and 38) are proved by construction of a
derivation tree in P2 from a derivation tree in P. The three corresponding
functions are denoted as follows:

1. |·| for Γ ` A : B⇒ JΓK ` A : B

2. {·} for Γ ` B : s⇒ JΓK, z : B ` z ∈ JBK : dse

3. J·K for Γ ` A : B : s⇒ JΓK ` JAK : A ∈ JBK

Even though the constructions are interdependent, it is not difficult to see
that recursive calls are made only on strictly smaller trees.

Lemma 36 (|·|). Γ ` A : B⇒ JΓK ` A : B

Proof. By the thinning lemma. For each Ai, erase from the context JΓK the
relational variables and j-indexed variables such that j 6= i. The legality of
the context is ensured by Lemma 37 and Lemma 38.

The following two lemmas proceed by case analysis on the derivation tree.
The presentation uses the following conventions:

• Each case is presented separately: first the input tree is recalled, then
the transformed tree is shown. The symbol ⇒ is used to separate
input and output trees.

B. DETAILS OF PROOFS 87

• The constructions may make use of the other lemmas, and usages are
marked by |·|, {·} or J·K.

• Usage of the generation lemma (Barendregt, 1992, Theorem 5.2.13) is
indicated in the input tree. Consequences of generation are placed
higher up.

• For the sake of concision, some usage of the weakening rule are omit-
ted.

• For concision again, mundane parts of the construction are omitted
(squiggly lines indicate missing parts).

Lemma 37 ({·}). Γ ` B : s⇒ JΓK, z : B ` z ∈ JBK : dse

Proof. By case analysis on the derivation of Γ ` A : B.

Axiom

` s : s′
ax ⇒

` s : s′
ax

z : s ` z : s
st
` dse : ds′e

ax

z : s ` z→ dse : ds′e
(s,ds′e,ds′e)

z : s ` z ∈ JsK : ds′e
def

Start
Γ ` s : s′

Γ, x : s ` x : s
st

⇒

JΓK, x : s, x̊ : x ∈ JsK, z : x ` x̊ : x → dse
JΓK, x : s ` x : s

JΓK, x : s, x̊ : x ∈ JsK, z : x ` z : x
st

JΓK, x : s, x̊ : x ∈ JsK, z : x ` x̊ z : dse
app

JΓK, x : s, x̊ : x ∈ JsK, z : x ` z ∈ JxK : dse
def

Weakening
Γ ` A : s Γ ` C : s′

Γ, x : C ` A : s
wk

⇒
{Γ ` A : s}

JΓK, z : A ` z ∈ JAK : dse
|Γ ` C : s′|

JΓK ` C : s′

JΓK, x : C, z : A ` z ∈ JAK : dse
wk

{Γ ` C : s′}
JΓK, x : C ` x ∈ JCK : ds′e

JΓK, x : C, x̊ : x ∈ JCK, z : A ` z ∈ JAK : dse
wk

Abstraction impossible: no type is a lambda abstraction.

88 Realizability and Parametricity in PTSs

Application
Γ ` A : s1 Γ ` A→ s : s3

generation
Γ ` F : A→ s Γ ` a : A

Γ ` F a : s
app

⇒
JΓ ` F : A→ s : s3K

JΓK ` JFK : F ∈ JA→ sK
JΓK ` JFK : (x : A)→ x ∈ JAK→ F x ∈ JsK

def
|Γ ` a : A|

JΓK ` a : A
JΓK ` JFK a : a ∈ JAK→ F a ∈ JsK

app
JΓ ` a : A : s1K

JΓK ` JaK : a ∈ JAK
JΓK ` JFK a JaK : F a ∈ JsK

app

JΓK ` JFK a JaK : F a→ dse
def

|Γ ` F a : s|
JΓK ` F a : s

JΓK, z : F a ` z : F a
st

JΓK, z : F a ` JFK a JaK z : dse
app

JΓK, z : F a ` z ∈ JF aK : dse
def

Product
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (x : A)→ B : s
(s1,s2,s)

⇒

|Γ ` A : s1|
JΓK ` A : s1

{Γ ` A : s1}
JΓK, x : A ` x ∈ JAK : ds1e

JΓK, z : ((x : A)→ B), x : A ` z x : B
app

{Γ, x : A ` B : s2}
JΓK, x : A, x̊ : x ∈ JAK, y : B ` y ∈ JBK : ds2e

JΓK, z : ((x : A)→ B), x : A, x̊ : x ∈ JAK ` z x ∈ JBK : ds2e
substitution

JΓK, z : ((x : A)→ B), x : A ` (x̊ : x ∈ JAK)→ z x ∈ JBK : dse
(ds1e,ds2e,dse)

JΓK, z : ((x : A)→ B) ` (x : A)→ (x̊ : x ∈ JAK)→ z x ∈ JBK : dse
(s1,dse,dse)

JΓK, z : ((x : A)→ B) ` z ∈ J(x : A)→ BK : dse
def

Conversion
Γ ` B : s′ s =β s′ Γ ` s : s′′

Γ ` B : s
conv

⇒
{Γ ` B : s′}

JΓK, z : B ` z ∈ JBK : ds′e dse =β ds′e
|Γ ` s : s′′|

JΓK ` s : s′′

JΓK, z : B ` z ∈ JBK : dse
conv

Lemma 38 (J·K). Γ ` A : B : s⇒ JΓK ` JAK : A ∈ JBK

Proof. By case analysis on the derivation of Γ ` B : s.

B. DETAILS OF PROOFS 89

Product, Axiom Γ ` T : s : s′

⇒

{Γ ` T : s}
JΓK, z : T ` z ∈ JTK : dse

|Γ ` T : s|
JΓK ` T : s

{Γ ` s : s′}
JΓK, z : s ` z ∈ JsK : ds′e

JΓK ` T ∈ JsK : ds′e
substitution

JΓK ` T → dse : ds′e
def

JΓK ` λz : T. z ∈ JTK : T → dse
abs

JΓK ` JTK : T ∈ JsK
def

Start

Γ ` A : s
Γ, x : A ` x : A

st ⇒

{Γ ` A : s}
JΓK, x : A ` x ∈ JAK : dse

JΓK, x : A, x̊ : x ∈ JAK ` x̊ : x ∈ JAK
st

Weakening
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B
wk

⇒
JΓ ` A : B : sK

JΓK ` JAK : A ∈ JBK

|Γ ` C : s|
JΓK ` C : s

JΓK, x : C ` JAK : A ∈ JBK
wk

{Γ ` C : s}
JΓK, x : C ` x ∈ JCK : dse

JΓK, x : C, x̊ : x ∈ JCK ` JAK : A ∈ JBK
wk

.

The construction also uses that Γ ` A : B & Γ, x : C ` B : s⇒ Γ ` B : s

Abstraction

Γ, x : A ` b : B

Γ ` A : s1 Γ, x : A ` B : s2

generation
Γ ` ((x : A)→ B) : s

Γ ` (λx : A. b) : ((x : A)→ B)
abs

⇒
JΓ, x : A ` b : B : s2K

JΓK, x : A, x̊ : x ∈ JAK ` JbK : b ∈ JBK
JΓK, x : A ` (λx̊ : x ∈ JAK. JbK) : ((x̊ : x ∈ JAK)→ b ∈ JBK)

abs

JΓK ` (λx : A. λx̊ : x ∈ JAK. JbK) : ((x : A)→ (x̊ : x ∈ JAK)→ b ∈ JBK)
abs

JΓK ` (λx : A. λx̊ : x ∈ JAK. JbK) : ((x : A)→ (x̊ : x ∈ JAK)→ (λx : A. b) x ∈ JBK)
conv

Continuations of the tree (squiggly lines) are similar to derivations found
in {Γ ` (Πx : A.B) : s}.

Application
Γ ` A : s1

Γ ` ((x : A)→ B) : s3
(s1,s2,s3)

generation
Γ ` F : ((x : A)→ B) Γ ` a : A

Γ ` F a : B[x 7→ a]
app

⇒

90 Realizability and Parametricity in PTSs

JΓ ` F : ((x : A)→ B) : s3K

JΓK ` JFK : F ∈ J(x : A)→ BK : s3

JΓK ` JFK : (x : A)→ (x̊ : x ∈ JAK)→ F x ∈ JBK
def

|Γ ` a : A|
JΓK ` a : A

JΓK ` JFK a : (x̊ : a ∈ JAK)→ (F a ∈ JBK)[x 7→ a]
app

JΓ ` a : A : s1K

JΓK ` JaK : a ∈ JAK
JΓK ` JFK a JaK : (F a ∈ JBK)[x 7→ a][x̊ 7→ JaK]

app

JΓK ` JF aK : F a ∈ JB[x 7→ a]K
def

Conversion
Γ ` A : B′ B =β B′ Γ ` B : s

Γ ` A : B
conv

⇒

JΓ ` A : B′ : s′K

JΓK ` JAK : A ∈ JB′K A ∈ JBK =β A ∈ JB′K

|Γ ` A : B|
JΓK ` A : B

{Γ ` B : s}
JΓK, z : B ` z ∈ JBK : dse

JΓK ` A ∈ JBK : dse
subs

JΓK ` JAK : A ∈ JBK
conv

Γ `
B′ : s′ is a consequence of Γ ` B : s and B =β B′ (Corollary 35).

Theorem 39 (abstraction). If Γ ` A : B : s, then JΓK ` JAK : A ∈ JBK : dse

Proof. Combine Lemma 37 and Lemma 38.

Paper III

Testing Polymorphic Properties

The following paper was originally published in the European Symposium
of Programming (ESOP) 2010. The version given here includes the appen-
dices, where details of proofs can be found, as well as small corrections.
Additionally, the body of the text has been edited for typography, and to
match the notation used in the previous papers.

91

Testing Polymorphic Properties

Jean-Philippe Bernardy, Patrik Jansson,
Koen Claessen

Abstract

This paper is concerned with testing properties of polymorphic func-
tions. The problem is that testing can only be performed on specific
monomorphic instances, whereas parametrically polymorphic func-
tions are expected to work for any type. We present a schema for con-
structing a monomorphic instance for a polymorphic property, such
that correctness of that single instance implies correctness for all other
instances. We also give a formal definition of the class of polymorphic
properties the schema can be used for. Compared with the standard
method of testing such properties, our schema leads to a significant
reduction of necessary test cases.

1 Introduction

How should one test a polymorphic function?

A modern and convenient approach to testing is to write specifications as
properties, and let a tool generate test cases. Such tools have been im-
plemented for many programming languages, such as Ada, C++, Curry,
Erlang, Haskell, Java, .NET and Scala (Hoffman, Nair, and Strooper, 1998;
Bagge, David, and Haveraaen, 2008; Christiansen and Fischer, 2008; Arts
et al., 2006; Claessen and Hughes, 2000; Saff, 2007; Tillmann and Schulte,
2005; Nilsson, 2009). But how should one generate test cases for polymor-
phic functions? Parametrically polymorphic functions, by their very na-
ture, work uniformly on values of any type, whereas in order to run a
concrete test, one must pick values from a specific monomorphic type.

As an example, suppose we have two different implementations of the
standard function reverse that reverses a list:

reverse1, reverse2 : ∀ a. List a → List a

In order to test that they do the same thing, what monomorphic type
should we pick for the type variable a? Standard praxis, as for exam-
ple used by QuickCheck (Claessen and Hughes, 2000), suggests to simply
use a type with a large enough domain, such as natural numbers, resulting
in the following property:

∀xs : List N . reverse1 xs reverse2 xs

93

94 Testing Polymorphic Properties

Intuitively, testing the functions only on the type N is “enough”; if the
original polymorphic property has a counter example (in this case a mono-
morphic type T and a concrete list xs : List T), there also exists a counter
example to the monomorphic property (in this case a concrete list xs′ :
List N).

However, how do we know this is enough? And, can we do better than
this? This paper aims to provide an answer to these questions for a large
class of properties of polymorphic functions. We give a systematic way
of computing the monomorphic type that a polymorphic property should
be tested on. Perhaps surprisingly, we do this by only inspecting the type
of the functions that are being tested, not their definition. Moreover, our
method significantly improves on the standard testing praxis by making
the monomorphic domains over which we quantify even more precise. For
example, to check that reverse1 and reverse2 implement the same function,
it turns out to be enough to test:

∀n : N . reverse1 [1 . . n] reverse2 [1 . . n]

In other words, we only need to quantify over the length of the argument
list, and not its elements! This is a big improvement over the previous
property; for each list length n, only one test suffices, whereas previously,
we had an unbounded number of lists to test for each length. This signifi-
cantly increases test efficiency.

Related Work There are a few cases in the literature where it has been
shown that, for a specific polymorphic function, testing it on a particular
monomorphic type is enough. For example, Knuth’s classical result that
verifying a sorting network only has to be done on booleans (Knuth, 1998,
sec. 5.3.4), can be cast into a question about polymorphic testing (Day,
Launchbury, and Lewis, 1999). The network can be represented as a poly-
morphic function parametrised over a comparator (a 2-element sorter):

sort : ∀ a. (a × a → a × a) → List a → List a

Knuth has shown that, in order to check whether such a function really
sorts, it is enough to show that it works for booleans; in other words check-
ing if the following function is a sorting function:

sort_Bool : List Bool → List Bool
sort_Bool = sort (λ (x, y) → (x∧ y, x∨ y))

Another example is a result by Voigtländer (2008), which says that in order
to check that a given function is a scan function, it is enough to check it
for all possible combinations on a domain of three elements.

The result we present in this paper has the same motivation as these earlier
results, but the concrete details are not exactly the same. In section 4, we
compare our general result with Knuth’s and Voigtländer’s specific results.

2. EXAMPLES 95

Contributions and outlook Our main contribution is a schema for test-
ing polymorphic properties effectively and efficiently. We explain the
schema both from a theoretical and practical point of view. Our examples
are aimed at giving practitioners a good intuition of the method (section 2)
and demonstrate some of its applications (section 4). A more formal ex-
position is provided in section 3. We cover related and future work in
sections 5 and 6 and we conclude in section 7.

2 Examples

In this section, we discuss a number of examples illustrating the idea be-
hind our method in preparation for the more formal treatment in the next
section. We are using Haskell-style notation1 and QuickCheck-style prop-
erties here, but our result can be used in the context of other languages
and other property-testing frameworks.

Example 1. Let us first compare two implementations of the function filter:

filter1, filter2 : ∀a. (a → Bool) → List a → List a

A parametric polymorphic function knows nothing about the type it is
being used on. So, the only way an element of type a can appear in the
result, is if it was produced somehow by the argument of the function. We
can analyse the type of the arguments of the functions under test, in order
to see in what way the arguments can be used to produce an element of
type a. The concrete type A we are going to construct to test the functions
on will represent all such ways in which the arguments can be used to
produce an a.

In the case of filter, the only way we can produce elements of type a, is
by using an element from its argument list (the predicate (a → Bool) can
only inspect elements). So, a natural choice for A is to be the index of the
element from the argument list it used:

data A : ?where
X : N → A

In other words, X i stands for the ith element (of type a) from the input list.
Now, we have not only fixed a type to use for a, but also decided which
elements the list xs should be filled with, once we know the length. Thus,
the final monomorphic property becomes:

∀n : N . p : A → Bool. let xs = [X 1 . . X n]
in filter1 p xs filter2 p xs

1In this version of the paper, the notation has been adapted to improve the coherence with
other chapters of the thesis; however we sometimes omit here the type (or kind) of universally
quantified variables, as in Haskell. For example ∀ a : ?. X is often just written ∀ a. X

96 Testing Polymorphic Properties

Note that we still need to quantify over the predicate p of type A → Bool.

The construction we apply here can be seen as a kind of symbolic simu-
lation: we feed the function with symbolic variables (here represented by
naturals), and examine the output. This becomes more clear in the next
example.

Example 2. Let us take a look at a typical polymorphic property, relating
the functions reverse and append (++)

∀a : ?. ∀xs, ys : List a. reverse (xs ++ ys) reverse ys ++ reverse xs

We can view the left- and right-hand sides of the property as two different
polymorphic functions that are supposed to deliver the same result. Where
can elements in the result list come from? Either from the list xs, or the list
ys. Thus, the monomorphic type A becomes:

data A : ?where
X : N → A
Y : N → A

And in the property, we not only instantiate the type, but also the elements
of the lists:

∀n, m : N . let xs = [X 1 . . X n]
ys = [Y 1 . . Y m]

in reverse (xs ++ ys) reverse ys ++ reverse xs

Example 3. Let us take a closer look at the reverse example again, where
we compare two different implementations of the function reverse:

reverse1, reverse2 : ∀a. List a → List a

The type analysis works in the same way as for reverse. The only way the
function can construct elements in the result list is by taking them from
the argument list; the function argument can only inspect the elements,
not create them. So, the monomorphic datatype A becomes:

data A : ?where
X : N → A

And the property:

∀n : N . let xs = [X 1 . . X n] in reverse1 xs reverse2 xs

Arguments of higher-order functions can not only be used to inspect el-
ements of type a, but also used to construct such elements, as the next
example shows.

2. EXAMPLES 97

Example 4. Let us now compare two implementations of the function
iterate:

iterate1, iterate2 : ∀ a. (a → a) → a → List a

The expression iterate f x generates the infinite list [x, f x, f (f x), ...]. The
standard way of testing equality between infinite lists is to compare finite
prefixes:

∀a : ?. ∀k : N . ∀f : a → a. ∀x : a.
take k (iterate1 f x) take k (iterate2 f x)

In order to calculate a suitable monotype A to test these functions on, we
again analyse the sources of as. The two possible sources are: the second
argument x, and the first argument f. The first argument needs another a
in order to produce an a. The resulting monotype A thus becomes recursive:

data A : ?where
X : A
F : A → A

And the monomorphic property becomes:

∀k : Nat. take k (iterate1 F X) take k (iterate2 F X)

The interesting thing is that we do not even need to quantify over the
arguments of the functions anymore!

Finally, an example of a property that does not hold.

Example 5. Take a look at the following property which claims that map
and filter commute (which is incorrect as formulated).

∀a : ?. ∀p : a → Bool. ∀f : a → a. ∀xs : List a.
map f (filter p xs) filter p (map f xs)

A typical QuickCheck user may pick a to be N, and running QuickCheck
might produce the following counterexample2:

p = {1 → True, → False}
f = { → 1}
xs = [3]

In other words, if p is a predicate that holds only for 1, and f is the constant
function 1, and if we start with a list [3], the property does not hold.

Investigating the left- and right-hand sides as functions from p, f, and xs
to lists, we see that an element of type a may either directly come from the

2Using a recent QuickCheck extension to show functions.

98 Testing Polymorphic Properties

list xs, or be the result of applying f. Expressing this in terms of a datatype,
we get:

data A : ?where
X : N → A
F : A → A

And the property turns into:

∀p : A → Bool. ∀n : N . let xs = [X 1 . . X n]
in map F (filter p xs) filter p (map F xs)

The only arguments we need to quantify over are the predicate p and
the length of the list xs: the function f is fixed to the constructor F. But
there is one more advantage; the counterexample that is produced is more
descriptive:

p = {F (X 1) → True, → False}
f = F
xs = [X 1]

We clearly see that p holds only for the result of applying f to the (only)
element in the list xs.

3 Generalisation

In this section we present a systematic formulation of our schema to test
polymorphic functions. Additionally we expose the main theoretical re-
sults that back up the method and argue for their correctness. We assume
familiarity with basic notions of category theory, notably the interpretation
of data types as initial algebras (Bird and de Moor, 1997, ch. 2).

3.1 Notation

We use a notation close to that of Bird and de Moor (1997), but borrow the
names of functions from the Haskell prelude. Other notable idiosyncrasies
are the following:

• If F denotes a functor, then the action on morphisms is also written
F. (In Haskell it would be the fmap instance for type constructor F).

• An (F-)algebra is a pair of a type a and function of type F a→ a, but
we often omit the type component. If an initial algebra exists, we call
the type component the least fixed point of F, and write it µF.

• The catamorphism (also known as fold) of the algebra p : F a→ a is
denoted by ([p]) : µF→ a.

3. GENERALISATION 99

• The letters σ, τ, denote type expressions. The brackets in σ[a] indicate
that a may appear in the expression σ.

• The operators + and × denote sum- and product-types, respectively.

• We often use explicit ∀ in type schemes.

3.2 Revisiting reverse

We start by going through all the necessary steps for one particular con-
crete example, namely testing two implementations of reverse against each
other:

reverse1, reverse2 : ∀ a. List a → List a

The method we use makes a clear distinction between arguments (values
that are passed to the function) and results (values which are delivered by
the function, and should be compared with other results). Furthermore,
the arguments are divided up into two kinds: arguments that can be used
by the function to construct elements of type a, and arguments that can
only be used to observe arguments of type a.

The first step we take in order to compute the monomorphic instance is
to transform the function under test into a function that makes these three
parts of the function type explicit. The final type we are looking for is of
the form:

Canonic = ∀ a. (F a→ a) × (G a→X)→H a

for functors F, G, H and a monomorphic type X. The argument of type
F a→ a can be used to construct elements of type a, the argument of type
G a→X can be used to observe arguments of type a (by transforming them
into a known type X), and H a is the result of the function. We call the type
above the canonical testing type; all polymorphic functions of the above type
can be tested using our method, if there exists an initial F-algebra.

How do we transform functions like reverse into functions with a canonical
testing type? We start by “dissecting” arguments that can produce as into
functions that produce exactly one a. For reverse, the one argument that
contains as is of type List a. We now make use of the fact that all lists can be
represented by a pair of its length and its indexing function, and we thus
replace the list argument with an argument of type N × (N→ a) (we will
say more about this transformation in section 3.6). After re-ordering the
arguments the new type is

∀ a. (N→ a) × N→ List a

which fits the requirement, with F a = N, G a = ()3, X = N, and H a =
List a.

3taking advantage of the isomorphism between () → N and N.

100 Testing Polymorphic Properties

For the original function reverse1 (and similarly for reverse2), we can define
a corresponding function with a canonical testing type as follows:

reverse1′ : ∀ a. (N→ a) × N→ List a
reverse1′ = reverse1 ◦ project

This uses an auxiliary function to project the arguments of the new func-
tion to the initial arguments:

project : (N→ a) × N → List a
project (f, obs) = map f [1 . . obs]

Observe that if the new arguments properly cover the domain (N→ a) ×
N, then the original arguments also properly cover the domain List a. It
means that the transformations that we have performed to fit the canonical
testing type do not weaken the verification procedure.

What have we gained by this rewriting? Our main result says: to test
whether two polymorphic functions with a canonical testing type are equal,
it is enough to test for equality on the monomorphic type A, where A is
the least fixpoint of the functor F, and to use the initial algebra α : F A→A
as the first argument.

For the reverse example, the least fixpoint of F is simply N and the initial
algebra is the identity function. Thus, to check if reverse1′ and reverse2′ are
equal, we merely have to check

∀ obs : N . reverse1′ (id, obs) reverse2′ (id, obs)

Writing the transformation explicitly is cumbersome, and indeed we can
avoid it, by picking arguments directly from the image of the partially ap-
plied projection function, that is, from the set {project (id, obs) | obs∈N}.
By doing so, we obtain the property given in the introduction.

∀ n : N . reverse1 [1 . . n] reverse2 [1 . . n]

3.3 Overview

In general, given a function of type ∀ a. σ[a]→H a, the objective is to con-
struct a type A, and identify a set of arguments of type σ[a := A] to test it
against. To do so, we proceed with the following three steps.

1. Transform the function to test, whose type is ∀ a. σ[a]→H a, into a
function whose type is in the canonical form

∀ a. (F a→ a) × (G a→X)→H a

where F, G, H are functors. This must be done through an embedding-
projection pair ((e, p) : σ[a]⊆ (F a→ a) × (G a→X)). The purpose is

3. GENERALISATION 101

to identify all the ways (for the function) to construct values of type
a, and express them as an algebra of a functor F. (Sect. 3.6).

2. Calculate the initial algebra (µF, α) of the functor F. Parametricity
and initiality implies that fixing the algebra to α and a to µF still
covers all cases. Note that the quantification over the type argument
has now been removed. (Sect. 3.4)

3. Re-interpret the fixing of the algebra to α in step 2 in the context
of the original type, using the projection produced in step 1. The
arguments to test the function on are picked in the set {p (α, s) |
s∈G (µF)→X}. (Sect. 3.5)

After these steps the type argument is gone, and testing can proceed as
usual. We detail the procedure and argue for its validity in the following
sections.

3.4 The initial view

In this section we expose and justify the crucial step of our approach: the
removal of polymorphism itself. We begin with showing that applications
of (some) polymorphic functions can be expressed in terms of a monomor-
phic case.

Suppose that the polymorphic function has type

∀ a. (F a→ a) × (G a→X)→H a

that is, its only way to construct values of type a are given by an algebra of
functor F, (X is a constant type where a cannot appear). Then, instead of
passing a given algebra to a polymorphic function, one can pass the initial
algebra, and use the catamorphism of the algebra to translate the results.
If the function can also observe the values of the polymorphic parameter,
then the observation functions passed as argument must be composed with
the catamorphism.

By passing the initial algebra, the type parameter is fixed to µF. The appli-
cations of the catamorphism handle the polymorphism, effectively hiding
it from the function under test. The following theorem expresses the idea
formally. Our proof relies on parametricity (Wadler, 1989) and properties
of initial algebras (Bird and de Moor, 1997, ch. 2)

Theorem 1. Let

• F, G, H be functors and

• f : (∀ a : ?. (F a→ a) × (G a→X)→H a).

102 Testing Polymorphic Properties

If there is an initial F-algebra (µF, α), then

∀ t : ?, p : F t→ t, r : G t→X.
ft (p, r) = H ([p]) (fµF (α, r ◦G ([p])))

Proof. We apply the parametricity theorem (restricted to functions) on the
type of f, following mechanically the rules given by Fegaras and Sheard
(1996, theorem 1). After simplification we obtain:

∀ f : (∀ a : ?. (F a→ a) × (G a→X)→H a),
t1, t2 : ?, ρ : t2→ t1,
p1 : F t1→ t1, p2 : F t2→ t2, r : G t1→X.

p1 ◦ F ρ = ρ ◦ p2 ⇒ ft1 (p1, r) = H ρ (ft2 (p2, r ◦G ρ))

This equation expresses a general case (ft1 (p1, r)) in terms of a specific
case (H ρ (ft2 (p2, r ◦G ρ))), under the assumption p1 ◦ F ρ = ρ ◦ p2. Here,
we hope to find specific values for t2, q and ρ which verify the assump-
tion, and obtain a characterisation of the polymorphic case in terms of a
monomorphic case.

Satisfying the assumption (p1 ◦ F ρ = ρ ◦ p2) is
equivalent to making the diagram on the right
commute.
Let us pick the following values for t2, p2 and ρ:

• t2 = µF, the least fixpoint of F;

• p2 = α, the initial F-algebra;

• ρ = ([p1]), the catamorphism of p1.

We know from properties of initial algebras and
catamorphisms that these choices make the dia-
gram commute. Thus, the assumption is verified,
and the proof is complete.

t2F t2

t1F t1

p2

ρF ρ

p1

Remark 2. The above theorem is a generalisation of (the inverse of) Church en-
codings.

The purpose of Church encodings is to encode data types in the pure λ-calculus.
Church encodings can also target the polymorphic λ-calculus (Böhm and Berar-
ducci, 1985), and the resulting types are polymorphic. In essence, a data-type
which is the fixpoint of a functor (µ F) is encoded to the type ∀ a. (F a → a) → a.
Conversely, the concrete type µ F is a proper representation of ∀ a. (F a → a) →
a.

Therefore, for the special case of G = () and H a = a, the above theorem is a
direct consequence of the correctness of Church encodings.

3. GENERALISATION 103

∀ s : G (µ F)→X, α : F (µ F)→ (µ F) . fµF α s = gµF α s

⇒ {by r ◦G ([p]) being a special case of s}
∀ p, r. fµF α (r ◦G ([p])) = gµF α (r ◦G ([p]))

⇒ {by (cata p) being a function}
∀ p, r. H ([p]) (fµF α (r ◦G ([p]))) = H ([p]) (gµF α (r ◦G ([p])))

⇒ {by theorem 1}
∀ p, r. fa p r = ga p r

Figure 3.1: Long proof for theorem 3. The universally quantified variables
have the following types, when omitted: a : ?, p : F a→ a, r : G a→X.

Theorem 1 shows that we can express a polymorphic function in terms of a
particular monomorphic instance, but the expressions still involve apply-
ing (polymorphic) catamorphisms. In the case where we have a function
to test (f) and a model (g) to compare against, we can apply theorem 1 to
both sides and simplify away the catamorphisms.

Theorem 3. Let F, G, H be functors, let f, g : ∀ a : ?. (F a→ a) × (G a→X)→H a.
If there is an initial F-algebra (µF, α), then

∀ s : G (µF)→X. fµF (α, s) = gµF (α, s)

⇒ ∀ a : ?, p : F a→ a, r : G a→X. fa (p, r) = ga (p, r)

Proof. If fµF (α, s) = gµF (α, s) holds for any s, then in particular the equal-
ity fµF (α, r ◦G ([p])) = gµF (α, r ◦G ([p])) holds. Applying H ([p]) to both
sides of the equality preserves it, and then we can use theorem 1 to trans-
form both sides and obtain that fa (p, r) = ga (p, r) holds for any choice of
a, p and r. The steps are detailed formally in figure 3.1.

3.5 General form of arguments

The results of the previous section apply only to functions of the canonical
type (∀ a. (F a→ a) × (G a→X)→H a). In this section we show that we
can extend these results to any argument types which can be embedded in
(F a→ a) × (G a→X).

Definition 4. An embedding-projection pair (an EP) is a pair of functions
e : A→B, p : B→A satisfying p ◦ e = id. Because it constitutes evidence

104 Testing Polymorphic Properties

σ[a]

H a

(F a→ a) × (G a→X)

ep

f ′

f

Figure 3.2: Algebra isolation

that covering B is enough to cover A, we write (e, p) : A ⊆ B to denote
such a pair.

Given an EP4 (e, p) : σ[a]⊆ (F a→ a) × (G a→X), one can transform the
arguments calculated in the previous section (α paired with any function
of type G (µF)→X) into σ[a] by using the projection component, p. The
existence of the embedding guarantees that the domain of the original
function is properly covered. This idea is expressed formally in the fol-
lowing theorem. The type information is summarised diagrammatically in
figure 3.2.

Theorem 5. Let F, G, H be functors and let f, g : ∀ a. σ[a]→H a. If there is an
initial F-algebra (µF, α) and an EP (e, p) : σ[a]⊆ (F a→ a) × (G a→X), then

∀ s : G (µF)→X. fµF (p (α, s)) = gµF (p (α, s))

⇒ ∀ a : ?, l : σ[a]. fa l = ga l

4Strictly speaking, this is a polymorphic EP — one EP for each type a.

3. GENERALISATION 105

Proof. Apply theorem 3 to f ′ = f ◦ p and g′ = g ◦ p as follows:

∀ s : G (µF)→X. fµF (p (α, s)) = gµF (p (α, s))

⇔ {by definition of ◦}
∀ s : G (µF)→X. (fµF ◦ p) (α, s) = (gµF ◦ p) (α, s)

⇔ {by definition of f ′ and g′}

∀ s : G (µF)→X. f ′µF (α, s) = g′µF (α, s)

⇒ {by theorem 3}

∀ a : ?, q : (F a→ a) × (G a→X) . f ′a q = g′a q

⇒ {by e l being a special case of q}

∀ a : ?, l : σ[a]. f ′a (e l) = g′a (e l)

⇔ {by definition of f ′ and g′}

∀ a : ?, l : σ[a]. (fa ◦ p) (e l) = (ga ◦ p) (e l)

⇔ {by definition of ◦}
∀ a : ?, l : σ[a]. fa ((p ◦ e) l) = ga ((p ◦ e) l)

⇔ {by the EP law: p ◦ e≡ id}

∀ a : ?, l : σ[a]. fa l = ga l

Properties used for testing are not always expressed in terms of a model,
but very often directly as a predicate: they are merely Boolean-valued
functions. We can specialise the above result to that case: given a poly-
morphic predicate, it is enough to verify it for the initial algebra.

Theorem 6. Let F, G be functors, let f : ∀ a. σ[a]→Bool. If there is an EP
(e, p) : σ[a]⊆ (F a→ a) × (G a→X) and an initial F-algebra (µF, α), then

∀ s : G (µF)→X. fµF (p (α, s))

⇒ ∀ a : ?, l : σ[a]. fa l

Proof. Substitute const True for g in theorem 5.

One might think that theorem 5, about models, follows from theorem 6,
about properties, using f (p, r) = test (p, r) model (p, r). This is in fact
invalid in general, because one cannot assume that equality () is avail-
able for arbitrary types. Indeed, our usage of parametricity in the proof
assumes the opposite.

The above results show that it is enough to test on arguments picked from
the set I = {p (α, s) | s : G (µF)→X}. This could be done by picking

106 Testing Polymorphic Properties

elements s in G (µF)→X and testing on p (α, s). However, for the efficiency
of testing, it is important not to proceed as such, because it can cause
redundant tests to be performed. This is because the projection can map
different inputs into a single element in I. A better way to proceed is to
generate elements of I directly.

3.6 Embedding construction

The previous section shows that our technique can handle arguments that
can be embedded in (F a→ a) × (G a→X). In this section we show that
all first-order polymorphic arguments can be embedded. Our proof is
constructive: it is also a method to build the EP. It is important to construct
the embedding because it is used in computing the set of arguments to test
the property on.

The general form of a first order argument is a function of type C a→D a,
where C and D are functors and D is polynomial5. Note that non-functional
values can be represented by adding a dummy argument. Similarly, the
above form includes n-ary functions, as long as they are written in an
uncurried form. We structure the proof as a series of embedding steps
between the most general form and the canonical form. EPs for each step
are composed into the final EP. The overall plan is to split all complex ar-
guments into observations or constructors, then group each class together.
Lemmas detailing these important steps are given after the top-level proof
outline.

Theorem 7. Let Ci and Di be functors. If Di are constructed by sum, products
and fixpoints (0, 1,+,×, µ), and none of the Ci a are empty, then there exist func-
tors F, G and an EP (e, p) : ∀ a : ?. ×i (Ci a→Di a) ⊆ (F a→ a) × (G a→X).

5Contructed only from + and ×.

3. GENERALISATION 107

Proof. ×
i
(Ci a→Di a)

⊆ {by lemma 9}

×
i
(Ci a→ (Si × (Pi→ a)))

≡ {by distributing→ over ×}

×
i
(Ci a→ Si) × (Ci a × Pi→ a)

≡ {by letting Fi a = Gi a × Pi}

×
i
(Ci a→ Si) × (Fi a→ a)

≡ {by commutativity and associativity of ×}

×
i
(Ci a→ Si) × ×

i
(Fi a→ a)

⊆ {by lemma 8}

(G a→X) × ×
i
(Fi a→ a)

≡ {by (τ1 → a)× (τ2 → a) ≡ (τ1 + τ2)→ a}

(G a→X) × (F a→ a)

where G a = ×i (Ci a); F a = +i (Fi a) and X is given by the following
lemma from Ci and Si.

Lemma 8. For all types σ1, σ2 and non-empty types τ1, τ2 (witness1 : τ1 and
witness2 : τ2) then there exists (e, p) : (τ1 → σ1)× (τ2 → σ2) ⊆ τ1 × τ2 →
σ1 × σ2.

Proof. The embedding applies the embedded functions pair-wise.

e (f1, f2) = λ (t1, t2) → (f1 t1, f2 t2)

The projection can be constructed by providing dummy arguments (witness)
to missing parts of the pair. It is safe to do so, because that part of the pair
is ignored by the embedding e anyway. That is, p ◦ e = id regardless of
the choice of witnesses.

p h = (λ t1 → fst (h (t1 , witness2)),
λ t2 → snd (h (witness1, t2)))

Lemma 9. Let D be a functor constructed by sum, products and fixpoints. Then
there exist types S, P and (e, p) : D a ⊆ S × (P→ a)

Proof. D represents a data structure, which can be decomposed into a
shape (S) and a function from positions inside that shape to elements
(P→ a). (See appendix B for a detailed discussion). The shape can be
obtained by using trivial elements (S = D 1). For testing purposes, only

108 Testing Polymorphic Properties

structures with a finite number of elements can be generated, and there-
fore one can use natural numbers for positions (P = N). The projection
can traverse the data structure in pre-order and use the second component
of the pair (N → a) to look up the element to put at each position (as done
by Voigtländer (2009a)). The corresponding embedding is easy to build.

3.7 Correctness in practice

We have reasoned in a fast-and-loose fashion: our proofs rely on the
strongest version of parametricity, which holds only in the polymorphic
lambda-calculus.

Applying them to languages with non-termination (like Haskell) is merely
“morally correct” (Danielsson et al., 2006). In general, we assume that the
functions under test are well-behaved with respect to parametricity: they
should not make use of side-effects, infinite data structures, bottoms, etc.
In the context of random or exhaustive testing, these assumptions are gen-
erally valid. Therefore, our results are readily applicable in practice with a
very high level of confidence.

Still, we could extend the result by using a more precise version of para-
metricity, as for example Johann and Voigtländer (2006) expose it.

4 More examples

In this section, we will deal with some more complicated examples.

4.1 Multiple type parameters

While the theoretical development assumes a single type parameter, we
can apply our schema to functions with multiple type parameters. The
basic idea is to treat parameters one at a time, assuming the others con-
stant. We do not justify this formally, but merely show how to proceed on
a couple of examples.

Example 6 (map). Consider the ubiquitous function map, which applies a
function to each element in a list.

map : ∀ a b. (a → b) → List a → List b

As usual, we are interested in testing a candidate map function against a
known-working model.

We first aim to remove the type parameter a. To do so, we isolate the
constructors for a by embedding the list argument into a shape (the length

4. MORE EXAMPLES 109

of the list) and a function giving the element at each position (see lemma
9). We obtain the type ∀ a b. (a → b) → N → (N → a) → List b. We
see from the type that the only constructor is an algebra of the functor
F a = N. The initial F-algebra is

data A : ?where
X : N → A

After substitution, we have the type ∀ b. (A → b) → N → (N → A) →
List b, and we know that the third argument is fixed to X.

We can proceed and remove the type parameter b. There is only one con-
structor for b, which is already isolated, so the initial algebra is easy to
compute:

data B : ?where
F : A → B

After substitution, we have the type (A → B) → N → (N → A) →
List B, and we know that the first argument is fixed to F. The second
and third arguments can be projected back into a list, so we get the final
property:

∀ n : N . let xs = [X 1 . . X n]
in map1 F xs map2 F xs

Note that the function to pass to map is fixed: again, only testing for vari-
ous lengths is enough!

Example 7 (prefix). In Haskell, the standard function isPrefixOf tests whether
its first argument is a prefix list of its second argument. isPrefixOf normally
uses the overloaded equality (() : a → a → Bool) to compare elements
in the first list to elements in the second one. Instead we consider a more
general version that explicitly takes a comparison function as parameter.
In that case, the types of elements in input lists do not have to match. This
generalisation is captured in a type as follows:

isPrefixOf : ∀ a b. (a → b → Bool) → List a → List b → Bool

In this example, the type arguments are completely independent, so we can
remove both at once. Both lists can be embedded into a shape (N) and
a function from positions (N → a) in the familiar way. We get the type:
∀ a b. (a → b → Bool) → N → (N → a) → N → (N → b) → Bool.

Computing the initial algebras offers no surprise. We obtain:

data A : ?where
X : N → A

data B : ?where
Y : N → B

110 Testing Polymorphic Properties

We have to test functions of type (A → B → Bool) → N → (N →
A) → N → (N → B) → Bool, with the third argument fixed to X
and the fifth fixed to Y. Again, by using the projection, we know that we
can instead generate lists of X i and Y j to pass directly to the polymorphic
function.

Thus, a property to check that two implementations of isPrefixOf have the
same behaviour is written as follows:

∀ eq : A → B → Bool, m : N, n : N .
let xs = [X 1 . . X m]

ys = [Y 1 . . Y n]
in isPrefixOf1 eq xs ys isPrefixOf2 eq xs ys

What if we had used the type ∀ a. (a → a → Bool) → List a → List a →
Bool6, which is not the most precise type that can be given to the function?

In that case, the initial algebra would be

data A : ?where
X : N → A
Y : N → A

and the property would look exactly the same. The difference is that the
function eq would be quantified over a larger set. It would only be passed
values of the form X i for the first argument, and Y i for the second argu-
ment, but the generator of random values does not “know” it, because the
type we gave is too imprecise. Therefore, it might generate redundant test
cases, where eq only differs in its results for argument-pairs that are not in
the form X i, Y i. As we have seen in the above example, this redundancy
is avoided by using the most general type. This is another example where
more polymorphism makes testing more efficient.

4.2 Assumptions on arguments

It can be quite challenging to write properties for functions whose argu-
ments must satisfy non-trivial properties. For example, generating asso-
ciative functions or total orders is not obvious. A naïve solution is to gen-
erate unrestricted arguments and then condition the final property on the
arguments being well behaved. This can be highly inefficient if the prob-
ability to generate a well-behaved argument is small. Since our technique
fixes some parameters, it is sometimes easier to find (or more efficient to
generate) arguments with a complex structure. We give examples in the
following sections.

6This type is isomorphic to the type of the function isPrefixOf from the standard Haskell
libraries, ∀ a. Eq a ⇒ List a → List a → Bool

4. MORE EXAMPLES 111

Example 8 (Parallel Prefix). A parallel-prefix computation computes the
list [x1, x1 ⊕ x2, . . . , x1 ⊕ . . .⊕ xn], given an associative operation ⊕ and a
list of inputs x1, . . . , xn. How can we test that two given parallel-prefix
computations have equivalent outputs?

We start with the type ∀ a. (a→ a→ a)→ List a→ List a. To isolate the con-
structors, we rewrite the list type as usual and get

∀ a. (a→ a→ a)→N→ (N→ a)→ List a

We can group the constructors to make the algebra more apparent:

∀ a. ((a × a+N)→ a)→N→ List a. The next step is to pick the initial
algebra.

One might be tempted to use the following datatype and its constructors
for the initial algebra.

data A : ?where
OPlus : A → A → A
X : N → A

However, we must take into account that the operation passed to the prefix
computation must be associative. The OPlus constructor retains too much
information: one can recover how the applications of ⊕ were associated
by examining the structure of A. In order to reflect associativity, a “flat”
structure is required. Thus, one should work with lists7, as follows:

A = List N

x n = [n]
oplus = (++)

The final property is therefore:

∀ n : N . let xs = map x [1 . . n]
in prefix1 oplus xs prefix2 oplus xs

The problem of testing parallel prefix networks has been studied before,
notably by Sheeran, who has presented a preliminary version of our result
in an invited talk in Hardware Design and Functional Languages (Sheeran,
2007). Voigtländer (2008) presents another monomorphic instance: he shows
that it is enough to test over a 3-value type (3). At first sight, it might seem
that testing over 3 is better than over N. However, merely substituting
the type-variable with 3 still requires testing all combinations of the other
arguments, yielding 113× 3n tests8 to cover the lists of length n, while by

7Ideally a sequence with efficient concatenation should be used, such as finger trees.
8Voigtländer (2008) shows that only some combinations are relevant, but the number of

tests is still quadratic in the length of the input list. 113 is the number of associative functions
in 3→ 3→ 3.

112 Testing Polymorphic Properties

our method a single test is enough for a given length. Again, the efficiency
of our method comes from the fixing of more arguments than the type
variable.

The above explanation to deal with associativity relies very much on intu-
ition, but it can be generalised. One must always take in account the laws
restricting the input when computing the initial algebra: that is, one must
find the initial object of the category of algebras that respect those laws.
We direct the interested reader to Fokkinga (1996) for details.

Example 9 (Insertion in sorted list). Consider testing an insertion function
which assumes that its input list is strictly ascending. That is, its type
is ∀ a. (a → a → Bool) → a → List a → List a, but the list argument is
restricted to lists that are strictly ascending according to the first argument,
which in turn must be a strict total order. After breaking down the list as
usual one must handle the type ∀ a. (a → a → Bool) → a → N →
(N → a) → List a.

Forcing the list to be sorted can be tricky to encode as a property of an
algebra. So, instead of constraining the lists, we put all the burden on the
first argument (an observation): it must be a strict total order that also
makes the list ascending. This change of perspective lets us calculate the
initial algebra without limitation. We obtain

data A : ?where
Y : A
X : N → A

The element to insert is Y, and as in many preceding examples, the func-
tion receives lists of the form [X 1 . . X n]. This makes generating suitable
orders (A→A→Bool) easy. Indeed, for such an order (ord) to respect the
order of the list, it must satisfy the equation:

ord (X i) (X j) = i< j

Therefore, we only need to decide on how to order Y with respect to X i.
That is, decide where to position Y in the list. For an input list of length
n, there are exactly n + 1 possible positions to insert an element. The final
property shows how to define the order given a position k for Y.

∀ n : N, k : {0 . . n} . let xs = [X 1 . . X n]
in insert1 (ord k)Y xs insert2 (ord k)Y xs

where ord k (X i) (X j) = i< j
ord k Y Y = False
ord k (X i)Y = i 6 k
ord k Y (X j) = k< j

4. MORE EXAMPLES 113

Example 10 (Sorting network). A generator of sorting networks can be
represented as a polymorphic function of type ∀ a. (a × a → a × a) →
List a → List a. The first argument is a two-element comparator. Note
that, by parametricity, the function cannot check whether the comparator
swaps its inputs or not. It is restricted to merely compose instances of the
comparator.

Let us apply our schema on the above type. We use the isomorphism
τ → a× b ∼= (τ → a)× (τ → b) to split the first argument, and handle the
list as usual. We obtain the following type.

∀ a. (a × a → a) → (a × a → a) → N → (N → a) → List a

If we overlook the restrictions on the constructors, the initial algebra is

data A : ?where
Min : A → A → A
Max : A → A → A
X : Int → A

As usual, the sorting function is to be run on [X 1 . . X n]. The comparator
is built out of Min and Max. Therefore, to fully test the sorting function, it
suffices to test the following function.

sort_Lat : N → List a
sort_Lat n = sort (λ (x, y) → (Min x y, Max x y)) [X 1 . . X n]

The output is a list where each element is a comparison tree: a description
of how to compute the element by taking minimums and maximums of
some elements of the input. In order to verify that the function works, we
are left with checking that the output trees are those of a correct sorting
function.

Note that this must be checked modulo the laws which restrict our initial
algebra. Min and Max must faithfully represent 2-element comparators
which can be passed to the polymorphic function. Therefore, the type
A must be understood as a free distributive lattice (Davey and Priestley,
2002) where Min and Max are meet (∧) and join (∨) and X i are generators.
Note that every term of a free distributive lattice can be transformed to the
normal form given in appendix C.

The correctness of the function can then be expressed as checking each
element of the output (ok) against the output of a known sorting function.
Formally:

ok =
∨

M⊆{1...n},#M=n−k

(∧
i∈M

X i

)

There are (at least) two possible approaches to proceed with the verifica-
tion.

114 Testing Polymorphic Properties

1. Verify the equivalence symbolically, using the laws of the distributive
lattice. This is known as the word problem for distributive lattices.
One way to do this is to test for syntactical equivalence after trans-
formation to normal form.

2. Check the equivalence for all possible assignments of booleans to the
variables X i, meet and join being interpreted as Boolean conjunction
and disjunction. This is valid because truth tables are a complete
interpretation of free distributive lattices. (See appendix C). In effect,
proceeding as such is equivalent to testing the sorting function on all
lists of booleans.

This second way to test equivalence shows that our technique is es-
sentially (at least) as efficient as that of Knuth (1998), provided that
properties of the distributive lattice structure are cleverly exploited.

5 Related work

Universe-bound polymorphism Jansson, Jeuring, and students of the
Utrecht University Generic Programming class (2007) have studied the test-
ing of datatype-generic functions: polymorphic functions where the type
parameter is bound to a given universe. This restriction allows them to
proceed by case analysis on the shape of the type. In contrast, our method
makes the assumption that type parameters are universally quantified, tak-
ing advantage of parametricity. Since universal quantification and shape
analysis are mutually exclusive, Jansson’s method and ours complement
each other very well.

Shortcut Fusion Shortcut deforestation (Gill, Launchbury, and Peyton
Jones, 1993) is a technique to remove intermediate lists. A pre-requisite
to shortcut deforestation is that producers of lists are written on the form
g (:) [], or essentially, g α where α is the initial algebra of the list functor. In
general, functions that are normally written in terms of the initial algebra
must be parametrised over any algebra, thereby adding a level of polymor-
phism. This is the exact opposite of the transformation we perform.

Similarity with our work does not stop here, as the correctness argument
for shortcut deforestation also relies heavily on polymorphism and para-
metricity.

Defunctionalisation Reynolds describes defunctionalisation: a transfor-
mation technique to remove higher-order functions (Reynolds, 1998). Each
λ-abstraction is replaced by a distinctive constructor, whose argument
holds the free variables. Applications are implemented via case-analysis:
the tag of the constructor tells which abstraction is entered.

5. RELATED WORK 115

criterion traditional new
type N µF
constructors F N→N {α}
observations G N→X G (µF)→X

Table 3.1: Comparison of the traditional QuickCheck praxis to the new
method.

Danvy and Nielsen (2001) have shown that defunctionalisation works as an
inverse to Church encoding. Thus, theorem 1 can be seen as a special case
of defunctionalisation, targeted at the constructors of a polymorphic type.
However, our main focus is not the removal of function parameters, but
of type parameters. Indeed, our embedding step, which introduces func-
tion parameters, is often crucial for the removal of polymorphism. Note
also that we do not transform the function under test. In fact, only the
arguments passed to the function are defunctionalised. The constructing
functions are transformed to constructors of a datatype, and the observa-
tions have to perform case-analysis on this datatype.

Concretisation Pottier and Gauthier (2006) introduce concretisation: a gen-
eralisation of defunctionalisation that can target any source language con-
struct by translating its introduction form into an injection, and its elim-
ination form into case analysis. They apply concretisation to Rémy-style
polymorphic records and Haskell type classes, but not removal of poly-
morphism altogether.

QuickCheck As explained in the introduction, the standard way to test
polymorphic functions in QuickCheck (Claessen and Hughes, 2000) is to
substitute N for polymorphic parameters. In the first runs, QuickCheck
assigns only small values to parameters of this type, effectively testing
small subsets of N. As testing progresses, the size is increased. This strat-
egy is already very difficult to beat! Indeed, we observe that, thanks to
parametricity, if one verifies correctness for a type of size n, the function
works for all types of size n or less. Additionally, because of the inherent
nature of testing, it is only possible to run a finite number of test cases.
Therefore, the standard QuickCheck strategy of type instantiation is al-
ready very good. We can do better because, in addition to fixing the type,
we also fix some (components of) parameters passed to the function. In ef-
fect, meaningless tests (tests that are isomorphic to other already run tests,
or tests that are unnecessarily specific) are avoided.

The situation is summarised in table 3.1. By fixing the constructors, a
whole dimension is removed from the testing space. Even though the
space of observations is enlarged when the type µF is bigger than N (from

116 Testing Polymorphic Properties

G N→X to G (µF)→X), the trade-off is still beneficial in most cases. We
argue informally as follows: if µF>N, then F is a “big” functor, such as
F a = 1+ a × a. This means that the set F N→N is big, and as we replace
that by a singleton set, this gain dwarfs the ratio between G (µF)→X and
G N→X, for any polynomial functor G.

Besides efficiency, another benefit to the new method is that the generated
counter examples are more informative, as seen on an example in section 2.

In Haskell, there is another pitfall to substituting the polymorphic param-
eter by N: type classes. Imagine for example that the type parameter is
constrained to be an instance of the Eq typeclass. Because N is such an
instance, it is possible to use it for the type parameter, but this badly skews
the distribution of inputs. Indeed, on average, the probability that a b,
for generated a and b tends to be very small. A better strategy would be
to have a different instance of Eq for each run, each with a probability of
equality close to 1/2. Our method does not suffer from this problem: we
insist that the methods of classes are explicitly taken into account when
identifying the constructors and the observations.

Exhaustive Checking We argue in the previous section that using N for
type parameters is a sensible approach for random testing. However, as
Runciman, Naylor, and Lindblad (2008) remark, this does not work as
well for depth-bound exhaustive testing: the dimension of the test space
for constructors F N→N) grows exponentially as the depth of the search
increases. They suggest to use smaller types to test on (such as the unit or
Boolean), but the user of the library is left to guess which size is suitable.
Our method kills two birds with one stone: we conjure up a suitable type
parameter to use, and prevent the exponential explosion of the search for
constructors by fixing them. Therefore, we believe that our method is an
essential improvement for exhaustive testing of polymorphic functions.

Typeful programming We make essential use of types. Many property-
based testing tools use type information to generate suitable parameters to
test functions automatically. Here we further the exercise and show that
polymorphism and calculations at the type level can produce type-level
and (more precise) value-level arguments for polymorphic functions.

Symbolic execution Tillmann and Schulte (2005) generate test cases by
symbolic execution of the property to check. As we have mentioned in
section 2, our technique can be understood as symbolic execution, there-
fore, generating test cases by symbolic execution potentially subsumes our
method. The advantage of our approach is that it is purely type-based:
the monomorphic instance is independent of the actual definition of the
property. Therefore, it can work with an underlying black-box tester for

6. FUTURE WORK 117

monomorphic code.

6 Future work

While the scope of this paper is the testing of polymorphic functions, our
technique to remove polymorphism is not specific to testing: any kind of
verification technique can be applied on the produced monomorphic in-
stance. This suggests that it may have applications outside the domain of
testing, maybe in automated theorem proving. This remains to be investi-
gated.

Automated test-case generation libraries typically address the problem of
generating random values for monomorphic arguments. We have ad-
dressed the problem of calculating values for type arguments. A natural
development would be to unify both approaches in the framework of a
dependently-typed programming language. A first step towards this goal
would be to give a detailed account of parametricity in presence of depen-
dent types.9

With the exception of computing initial algebras with laws, the technique
described here is completely algorithmic. Therefore, one can assume that it
is easy to automate it and build a QuickCheck-like library to test polymor-
phic properties. However, such a tool would need to analyse the type struc-
ture of the functions it is given, and languages based on the polymorphic
lambda calculus typically lack such a feature. Moreover, this very feature
would invalidate the parametricity theorem, since it relies on universally
quantified types being opaque, thereby invalidating our “monomorphisa-
tion” transformation. A long term area of research would be to design
a programming language where parametricity and type-analysis can be
specified on a case-by-case basis. As a short-term goal, we propose to
mechanise the technique as an external tool rather than a library, or re-
quire the programmer to explicitly inform the polymorphic test generator
about the type structure.

We have shown how to get rid of polymorphism using the “initial view” of
the type parameters. As there exists a dual to shortcut fusion (Svennings-
son, 2002), we conjecture that there exists a dual to our method, using
the “final view”. That is, the function should be transformed to isolate
a co-algebra and fix it to the final element of the category. It is unclear
at this point what would be the outcome of this dual in terms of testing
behaviour.

The technique that we present requires a specific form for the type of the
function to test. While our examples show that this form covers a wide
range of polymorphic functions that are commonly tested, one can still

9This sentence reflects the status at the time of submission of the paper to ESOP. The
previous chapters of the thesis constitute an attempt to tackle the problem.

118 Testing Polymorphic Properties

aspire for a larger applicability. We hope to improve this aspect, either
by showing that more types can be embedded, or by amending the core
theory. In particular, we address only rank-1 polymorphism: extending
to rank-n would be useful. Also, the restriction that F must be a func-
tor in (F a→ a) × (G a→X) seems too specific. Indeed, Church-encoding
some types may lead to F being a type-function that is not a functor, and
there is a-priori no reason that the encoding cannot be reverted. An ex-
ample is given by Washburn and Weirich (2003): data T = Lam (T →
T) | App T T is encoded as ∀ a. ((a→ a)→ a)→ (a→ a→ a)→ a, and F a =
(a→ a) + (a × a), which is not a functor. We hope to achieve this by fully
explaining our technique in a defunctionalisation setting.

7 Conclusion

We have presented a schema for efficient testing of polymorphic proper-
ties. The idea is to substitute polymorphic values by a faithful symbolic
representation. This symbolic representation is obtained by type analysis,
in two steps:

1. isolation of the constructors (yielding a functor F); and

2. restriction to the initial F-algebra.

We suspect that neither of these steps is original, but we could not find
them spelt out as such, and therefore we believe that bringing them to
the attention of the programming languages community is worthwhile.
Furthermore, the testing of polymorphic properties is a novel application
for these theoretical ideas.

We have shown on numerous examples, and informally argued that ap-
plying our technique not only enables testing polymorphic properties by
removing polymorphism, but yields good efficiency compared to the stan-
dard praxis of substituting N for the polymorphic argument. In some
cases, this improvement is so dramatic that it makes the difference be-
tween testing being useful or not. As another evidence of the value of the
method, we have applied it to classical problems and have recovered or
improved on the corresponding specific results.

Giving a more polymorphic type to a given function enlarges its domain,
so one might think that this can increase the amount of testing necessary
to verify properties about that function. If our technique is applied, the
opposite is true.

You love polymorphism, but you were afraid that it would complicate test-
ing? Fear no more! On the contrary, polymorphism can facilitate testing if
approached from the right angle.

A. APPLYING PARAMETRICITY 119

Acknowledgments.

We would like to give special thanks to Marcin Zalewski, whose repeated
interest for the topic and early results gave us the motivation to pursue
the ideas presented in this paper. Peter Dybjer gave useful references
about Church encodings. Anonymous reviewers and Jasmin Blanchette
gave useful comments and helped improve the presentation of the paper.
This work is partially funded by the Swedish Research Council.

A Applying parametricity

In this we section show the details of applying the parametricity theorem
to our canonical testing type: ∀ a. (F a→ a) × (G a→X)→H a. The idea
behind parametricity is that types can be interpreted as relations, and all
values in a closed types are related to themselves. Using double brackets
to denote the relation corresponding to a type, the parametricity theorem
applied to f : ∀ a. (F a→ a) × (G a→X)→H a is

J ∀ a. (F a→ a)→ (G a→X)→H a K f f

Our task is to evaluate the double brackets to obtain a theorem about f
expressed in higher order logic. To do so we could use the definition given
in previous papers (Definition 9, page 22). However, it is more convenient
to use a version where the relations corresponding to type variables are
specialized to functions. Hence, we follow the rules given by Fegaras and
Sheard (1996). The first step is to handle polymorphism, quantifying over
any function (ρ) between any types.

∀ t1, t2 : ?, ρ : t2→ t1. J (F a→ a)→ (G a→X)→H a K a 7→ ρ ft1 ft2

The index J. . .Ka 7→ρ is a reminder that the type variable a is to be interpreted
as the function ρ inside the double brackets. In the interest of conciseness,
this index is left implicit if there is no ambiguity as to the interpretation of
a type variable.

The rest of the proof is a mostly straightforward interpretation of the type
as relation, and is detailed in figure 3.3. The most tricky case involves
applications of functors, so we detail it in the following lemma.

Lemma 10. Let F : ?→ ? be a functor, t1, t2 : ?, ρ : t2→ t1, x1 : F t1, x2 : F t2.
Then

JF aK a 7→ ρ x1 x2⇒ x1 = F ρ x2

120 Testing Polymorphic Properties

Proof.

JF aK x1 x2

≡ {by interpretation of functor application}

∀ u : t2→ t1. (∀ z : t2. JaK z (u z))⇒x1 = F u x2

≡ {by interpretation of type variable}

∀ u : t2→ t1. (∀ z : t2, u z = ρ z)⇒x1 = F u x2

≡ {by extensionality}

∀ u : t2→ t1. u = ρ⇒x1 = F u x2

≡ {by elimination of u}

x1 = F ρ x2

B Embedding containers

In section 3.6 we have given a very restricted view of containers. Abbott,
Altenkirch, and Ghani (2003); Morris and Altenkirch (2009) provide the
full picture. In this section we refine lemma 9 by using a more precise
definition of containers.

Abbott et al. observe that data types can be expressed as dependent pairs
of a shape (s : S) and a function from positions (P s) inside that shape to
the type of the element. (We only deal with the 1-parameter case here.)
Figure 3.4 gives the definitions for containers and expresses the list type as
a container.

The transformation of types into their container form yields a dependent
pair ((s : S) × (P s→ a)), where a is the polymorphic parameter we at-
tempt to eliminate. As its name indicates, a dependent pair does not quite
achieve independence of the two components. Therefore, transformation
into containers does not quite achieve the separation between construc-
tors and observations. It is unclear how to compute the initial algebra
in this setting. Therefore, we choose to embed the container types in a
(non-dependent) pair: (s : S) × (P s→ a). This pair type can be properly
broken down into an observation (S) and a constructor (s : S) × (P s→ a).
For lists the observation (the shape) is just the length and the constructor
is a function from list index to list elements. It bears repeating that the ob-
servation will be generated randomly, and the constructor fixed by taking
the initial view. (They will be recombined using the projection.) Therefore,
to fully cover all test cases for a container, one needs only a single test per
shape.

B. EMBEDDING CONTAINERS 121

∀
t 1

,t
2

:?
,ρ

:t
2
→

t 1
.

J(
F

a
→

a)
→

(G
a
→

X
)
→

H
aK

a
7→

ρ
f t

1
f t

2

⇒
{b

y
de

fin
it

io
n

of
J.

..
K

on
fu

nc
ti

on
ty

pe
}

JF
a
→

aK
p

1
p

2
⇒

JG
a
→

X
Kr

1
r 2

⇒
JH

aK
(f

t 1
p

1
r 1
)
(f

t 2
p

2
s)

⇒
{b

y
de

fin
it

io
n

of
J.

..
K

on
fu

nc
ti

on
ty

pe
}

(∀
x

:F
t 1

,y
:F

t 2
.J

F
aK

x
y
⇒

Ja
K(

p
1

x)
(p

2
y)
)

⇒
(∀

x
:G

t 1
,y

:G
t 2

.J
G

aK
x

y
⇒

JX
K(

r 1
x)

(r
2

y)
)

⇒
JH

aK
(f

t 1
p

1
r 1
)
(f

t 2
p

2
s)

⇒
{b

y
ap

pl
yi

ng
3

ti
m

es
Le

m
m

a
1

0
an

d
JX

Ki
s

eq
u

al
it

y}
(∀

x
:F

t 1
,y

:F
t 2

.x
=

F
ρ

y
⇒

p
1

x
=

ρ
(p

2
y)
)
⇒

(∀
x

:G
t 1

,y
:G

t 2
.x

=
G

ρ
y
⇒

r 1
x
=

r 2
y)

⇒
f t

1
p

1
r 1

=
H

ρ
(f

_
{t

2
}p

2
s)

⇒
{b

y
su

bs
ti

tu
ti

on
s}

(∀
y

:F
t 2

.p
1
(F

ρ
y)

=
ρ
(p

2
y)
)

⇒
(∀

y
:G

t 2
.r

1
(G

ρ
y)

=
r 2

y)
⇒

f t
1

p
1

r 1
=

H
ρ
(f

t 2
p

2
s)

⇒
{b

y
de

fin
it

io
n

of
fu

nc
ti

on
co

m
po

si
ti

on
an

d
ex

te
ns

io
na

le
qu

al
it

y
on

fu
nc

ti
on

s}
p

1
◦F

ρ
=

ρ
◦p

2
⇒

r 1
◦G

ρ
=

r 2
⇒

f t
1

p
1

r 1
=

H
ρ
(f

t 2
p

2
s)

⇒
{b

y
el

im
in

at
io

n
of

s}
p

1
◦F

ρ
=

ρ
◦p

2
⇒

f t
1

p
1

r 1
=

H
ρ
(f

t 2
p

2
(r

1
◦G

ρ
))

Fi
gu

re
3
.3

:
A

pp
ly

in
g

pa
ra

m
et

ri
ci

ty
,p

ar
t

2
.

In
th

e
ab

ov
e

w
e

om
it

th
e

bi
nd

er
s

fo
r

th
e

va
ri

ab
le

s
p

,q
,r

an
d

s,
w

hi
ch

ar
e

im
pl

ic
it

ly
un

iv
er

sa
lly

qu
an

ti
fie

d
as

fo
llo

w
s:

p
1

:F
t 1
→

t 1
,p

2
:F

t 2
→

t 2
,r

1
:G

t 1
→

X
,s

:G
t 2
→

X

122 Testing Polymorphic Properties

Cont : (S : ?) → (S → ?) → ? → ?
Cont S P X = (s : S) × (P s → X)

Cont′ : (S : ?) → (S → ?) → ? → ?
Cont′ S P X = S × ((s : S) × P s → X)

List = Cont N Fin -- Example

where Fin n denotes a set with n elements.

data Fin : N→ Set where
zero : {n : N}→ Fin (suc n)
suc : {n : N} (i : Fin n)→ Fin (suc n)

Figure 3.4: The definition of containers (Cont) has a top-level dependent
pair. It can be embedded in a non-dependent version (Cont′).

There remains to show that such an embedding exists.

Theorem 11. ∀ S, P, X, given an arbitrary x : X, there exists an EP

(e, p) : (s : S) × (P s→X) ⊆ S × ((s : S) × P s→X) .

Proof. Note that the first component of each pair is the same: a shape.
The second component is a function returning X in both cases, but the
embedded type has a “smaller” domain. The idea is to use the same
shape on both sides, embed the input function in the output function by
returning the same elements when the shape coincides with that of the
input. A default element is returned otherwise. This yields the definitions
given in figure 3.5. Note that the embedding requires a decidable equality
relation between shapes.

Showing that the projection is the left-inverse of the embedding is trivial,
provided extensionality.

Note that our proof provides a construction of the projection, so we have
all the elements to generate arguments for testing.

B.1 Breaking containers, in practice

While the procedure described above is very general (it works for any
container), it has two disadvantages:

• dependent pairs are introduced in the monomorphic instance (and
only a few languages support dependent pairs);

• it can be complicated if one wishes to perform it by hand.

B. EMBEDDING CONTAINERS 123

projection : ∀ {S P X} →
Cont′ S P X → Cont S P X

projection (s, f) = (s, λ p→ f (s, p))

getX : ∀ {S P X} → (def : X) → {s : S} →
(f : (P s→X)) → (sp : (s′ : S) × P s′) →
Dec (s≡ fst sp)→X

getX def f (, p) (yes refl) = f p
getX def f (no) = def

embedding : ∀ {S P X} → (def : X) →
Cont S P X → Cont′ S P X

embedding def (s, f) =

(s, λ sp → getX def f sp (s
?
= fst sp)

Figure 3.5: Embedding containers in a non-dependent pair. The
Agda (Norell, 2007) code uses a type for decidable equality Dec with con-
structors yes and no, the equality proof type ≡ with constructor refl and

assumes S has a decidable equality ?
=.

The first disadvantage can be overcome by using a position type which
works for any shape (even if it is “too big”). This can be done by erasing
the type index. In the case of lists, we have seen in section 3.2 that we can
use N instead of (n : N) × (Fin n).

For the purpose of testing, one can often overcome the second disadvan-
tage by short-circuiting the procedure entirely, as we have proposed in
section 3.6.

We know that our method can treat arguments types as long as they can
be embedded in (F a → a) × (G a → X). We do not have a complete
syntactic characterisation of the types which possess such an embedding.
However, we can formulate subsets which do possess such an embedding.
Such a subset is any product of ×i(Ci a→Di a), where Di is a container
type with decidable equality on shapes and Ci is a functor. This subset is
a refinement of that given in section 3.6.

To give some insight to the limitation of the method, we can also give types
for which we failed to find a proper embedding. Notably, an argument of
type (a → X) → X is problematic: while it seems to fit the pattern G a →
X with G a = (a → X), G is not a functor. Types of the form (a → X) →
X are created by continuation-passing style (CPS) transformations. We
suspect that in general the method does not apply to functions expressed
in CPS.

124 Testing Polymorphic Properties

C Auxiliary results about free distributive lat-
tices

We assume free distributive lattices with a finite number or generators.

Theorem 12. Every term of a free distributive lattice can be transformed to the
following normal form:

∨
Mi∈J

 ∧
x∈Mi

x

where there is no i 6= j such that Mi ⊆ Mj.

Proof (sketch). Inner joins can be eliminated by the distributive law. Redun-
dant meets can be removed by the absorption law.

Definition 13. The truth table of term x, denoted JxK, is a mapping of sets
of variables to Boolean values. It can be computed by substituting each
variable by 1 if it is in the set, 0 otherwise, meet and joins being interpreted
as Boolean conjunction and disjunction.

JXiK(S) = i ∈ S

Jx ∧ yK(S) = JxK(S) ∧ JyK(S)
Jx ∨ yK(S) = JxK(S) ∨ JyK(S)

Remark 14. If

e =
∨

M∈J

(∧
x∈M

x

)
then ∀M ∈ J.JeKM = 1.

Theorem 15. If JaK = JbK, then a = b

Proof. Let us prove the contrapositive, namely a 6= b⇒ JaK 6= JbK. Assume
(without loss of generality) that a and b are written in normal form, and
let Ja and Jb be the respective sets of meets of a and b. If a 6= b then either

• there exists Ma ∈ Ja such that Ma 6∈ Jb, or

• there exists Mb ∈ Jb such that Mb 6∈ Ja.

Let use examine the first alternative, knowing that the second can be han-
dled symmetrically. We know that JaK(Ma) = 1. If JbK(Ma) = 0, we have
a discrepancy in the truth tables. Assume then that JbK(Ma) = 1. Then,

C. AUXILIARY RESULTS ABOUT FREE DISTRIBUTIVE LATTICES 125

there must be an Mb ∈ Jb such that Mb ⊂ Ma. By definition of the nor-
mal form, Mb 6∈ Ja. Again, either there must either be a discrepancy in
the truth tables, or we can repeat the argument with strictly smaller sets.
Eventually, that option becomes unavailable: since there is a finite number
of variables, the empty set is eventually reached. We conclude that there
must be a set M such that JaK(M) 6= JbK(M)

126 Testing Polymorphic Properties

References

Abadi, Martín, Luca Cardelli, and Pierre-Louis Curien (1993). “Formal
parametric polymorphism”. In: Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. Charleston,
South Carolina, United States: ACM, pp. 157–170. isbn: 0-89791-560-7. doi:
10.1145/158511.158622. See pp. 62, 80.

Abbott, Michael, Thorsten Altenkirch, and Neil Ghani (2003). “Categories
of Containers”. In: Foundations of Software Science and Computation Struc-
tures. Vol. 2620. Lecture Notes in Computer Science. Springer, Heidelberg,
pp. 23–38. isbn: 0302-9743. doi: 10.1007/3-540-36576-1_2. See p. 120.

Arts, Thomas, John Hughes, Joakim Johansson, and Ulf Wiger (2006).
“Testing telecoms software with quviq QuickCheck”. In: Proceedings of the
2006 ACM SIGPLAN workshop on Erlang. Portland, Oregon, USA: ACM,
pp. 2–10. isbn: 1-59593-490-1. doi: 10.1145/1159789.1159792. See p. 93.

Atkey, Robert, Patricia Johann, and Neil Ghani (2010). “When is a Type
Refinement an Inductive Type?” In: Foundations Of Software Science And
Computational Structures. Ed. by Martin Hofmann. Vol. 6604. Lecture Notes
in Computer Science. Springer, pp. 72–87. See p. 83.

Bagge, Anya Helene, Valentin David, and Magne Haveraaen (2008).
“Axiom-based testing for C++”. In: Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications.
Nashville, TN, USA: ACM, pp. 721–722. isbn: 978-1-60558-220-7. doi: 10.
1145/1449814.1449829. See p. 93.

Barendregt, Hendrik Pieter (1992). “Lambda calculi with types”. In: Hand-
book of logic in computer science 2, 117–309. doi: 10.1.1.26.4391. See pp. 6,
13–15, 53, 56, 61, 63, 66, 68, 87.

Berardi, Stepfano (1989). “Type Dependence and Constructive Mathemat-
ics”. PhD thesis. Dipartimento di Informatica, Torino. See p. 61.

127

http://dx.doi.org/10.1145/158511.158622
http://dx.doi.org/10.1007/3-540-36576-1_2
http://dx.doi.org/10.1145/1159789.1159792
http://dx.doi.org/10.1145/1449814.1449829
http://dx.doi.org/10.1145/1449814.1449829
http://dx.doi.org/10.1.1.26.4391

128 References

Bernardy, Jean-Philippe (2010). Lightweight Free Theorems: Agda Library.
http : / / wiki . portal . chalmers . se / agda / agda . php ? n = Libraries .

LightweightFreeTheorems. See p. 41.

Bernardy, Jean-Philippe, Patrik Jansson, and Koen Claessen (2010). “Test-
ing Polymorphic Properties”. In: European Symposium on Programming.
Ed. by Andrew Gordon. Vol. 6012. Lecture Notes in Computer Science.
Springer, pp. 125–144. See pp. v, 62.

Bernardy, Jean-Philippe, Patrik Jansson, and Ross Paterson (2010). “Para-
metricity and Dependent Types”. In: Proceedings of the 15th ACM SIG-
PLAN international conference on Functional programming. Baltimore, Mary-
land: ACM, pp. 345–356. See pp. v, 14, 49, 62, 75, 77, 80.

Bernardy, Jean-Philippe and Marc Lasson (2011). “Realizability and Para-
metricity in Pure Type Systems”. In: Foundations Of Software Science And
Computational Structures. Ed. by Martin Hofmann. Vol. 6604. Lecture Notes
in Computer Science. Springer, pp. 108–122. See pp. v, 49, 50.

Bird, Richard and Oege de Moor (1997). Algebra of programming. Prentice-
Hall, Inc. isbn: 013507245X. See pp. 98, 101.

Brady, Edwin, Conor McBride, and James McKinna (2004). “Inductive
Families Need Not Store Their Indices”. In: Types for Proofs and Programs.
Ed. by Stefano Berardi, Mario Coppo, and Ferruccio Damiani. Vol. 3085.
Lecture Notes in Computer Science. Springer, pp. 115–129. doi: 10.1007/
978-3-540-24849-1_8. See p. 79.

Böhm, Corrado and Alessandro Berarducci (1985). “Automatic synthesis of
typed Lambda-programs on term algebras”. In: Theoretical Computer Science
39.2-3, pp. 135–154. See pp. 26, 102.

Böhme, Sascha (2007). “Free theorems for sublanguages of Haskell”. Tool
currently available (2010) at http://www-ps.iai.uni-bonn.de/cgi-bin/

free-theorems-webui.cgi. Master’s Thesis. Technische Universität Dres-
den. See p. 41.

Cardelli, Luca and Peter Wegner (1985). “On understanding types, data
abstraction, and polymorphism”. In: ACM Computing Surveys 17.4 (Dec.
1985), pp. 471–523. issn: 0360-0300. doi: 10.1145/6041.6042. See p. 5.

Chlipala, Adam et al. (2009). “Effective interactive proofs for higher-order
imperative programs”. In: Proceedings of the 14th ACM SIGPLAN interna-
tional conference on Functional programming. ICFP ’09. Edinburgh, Scotland:
ACM, pp. 79–90. isbn: 978-1-60558-332-7. doi: http://doi.acm.org/10.

1145/1596550.1596565. See p. 6.

http://wiki.portal.chalmers.se/agda/agda.php?n=Libraries.LightweightFreeTheorems
http://wiki.portal.chalmers.se/agda/agda.php?n=Libraries.LightweightFreeTheorems
http://dx.doi.org/10.1007/978-3-540-24849-1_8
http://dx.doi.org/10.1007/978-3-540-24849-1_8
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
http://dx.doi.org/10.1145/6041.6042
http://dx.doi.org/http://doi.acm.org/10.1145/1596550.1596565
http://dx.doi.org/http://doi.acm.org/10.1145/1596550.1596565

References 129

Christiansen, Jan and Sebastian Fischer (2008). “EasyCheck — Test Data
for Free”. In: Functional and Logic Programming. Vol. 4989. Lecture Notes in
Computer Science. Springer, pp. 322–336. See p. 93.

Church, Alonzo (1940). “A formulation of the simple theory of types”. In:
Journal of symbolic logic 5.2, pp. 56–68. issn: 0022-4812. See p. 13.

Claessen, Koen and John Hughes (2000). “QuickCheck: a lightweight
tool for random testing of Haskell programs”. In: Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming. ACM,
pp. 268–279. isbn: 1-58113-202-6. doi: 10.1145/351240.351266. See pp. 93,
115.

Coquand, Thierry (1986). “An Analysis of Girard’s Paradox”. In: Logic in
computer science. IEEE Computer Society Press, pp. 227–236. See pp. 16, 77.

— (1992). “Pattern Matching with Dependent Types”. In: Proceedings of the
Workshop on Types for Proofs and Programs, pp. 66–79. See p. 29.

Coquand, Thierry and Gérard Huet (1986). “The calculus of constructions”.
PhD thesis. INRIA. See p. 6.

Danielsson, Nils Anders (2010). The Agda standard library. See pp. 82, 83.

Danielsson, Nils Anders, John Hughes, Patrik Jansson, and Jeremy Gib-
bons (2006). “Fast and loose reasoning is morally correct”. In: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 206–217. doi: 10.1145/1111320.1111056. See p. 108.

Danvy, Olivier and Lasse R. Nielsen (2001). “Defunctionalization at work”.
In: Proceedings of the 3rd ACM SIGPLAN international conference on Principles
and practice of declarative programming. Florence, Italy: ACM, pp. 162–174.
isbn: 1-58113-388-X. doi: 10.1145/773184.773202. See p. 115.

Davey, Brian A. and Hilary A. Priestley (2002). Introduction to lattices and
order. Cambridge University Press. isbn: 0521784514, 9780521784511. See
p. 113.

Day, Nancy A., John Launchbury, and Jeff Lewis (1999). “Logical abstrac-
tions in Haskell”. In: In Proceedings of the 1999 Haskell Workshop. doi: 10.1.
1.37.2140. See p. 94.

Dybjer, Peter (1994). “Inductive families”. In: Formal Aspects of Computing
6.4, pp. 440–465. doi: 10.1007/BF01211308. See pp. 16, 27.

Fegaras, Leonidas and Tim Sheard (1996). “Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space)”. In:

http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1145/1111320.1111056
http://dx.doi.org/10.1145/773184.773202
http://dx.doi.org/10.1.1.37.2140
http://dx.doi.org/10.1.1.37.2140
http://dx.doi.org/10.1007/BF01211308

130 References

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. St. Petersburg Beach, Florida, United States: ACM,
pp. 284–294. isbn: 0-89791-769-3. doi: 10.1145/237721.237792. See pp. 102,
119.

Fokkinga, Maarten M. (1996). “Datatype Laws Without Signatures”. In:
Mathematical Structures in Computer Science 6.01, pp. 1–32. doi: 10.1017/

S0960129500000852. See p. 112.

Gibbons, Jeremy and Ross Paterson (2009). “Parametric datatype-
genericity”. In: Proceedings of the 2009 ACM SIGPLAN workshop on Generic
programming. Edinburgh, Scotland: ACM, pp. 85–93. isbn: 978-1-60558-510-
9. doi: 10.1145/1596614.1596626. See p. 46.

Gill, Andrew, John Launchbury, and Simon Peyton Jones (1993). “A short
cut to deforestation”. In: Proceedings of the conference on Functional program-
ming languages and computer architecture. Copenhagen, Denmark: ACM,
pp. 223–232. isbn: 0-89791-595-X. doi: 10.1145/165180.165214. See pp. 62,
114.

Girard, Jean-Yves (1972). “Interprétation fonctionnelle et elimination des
coupures de l’arithmétique d’ordre supérieur”. Thèse d’état. Université de
Paris 7. See pp. 5, 7, 50, 61, 62, 65.

Harrop, Ronald (1956). “On disjunctions and existential statements in in-
tuitionistic systems of logic”. In: Mathematische Annalen 132.4, pp. 347–361.
See p. 62.

Hoffman, Daniel, Jayakrishnan Nair, and Paul Strooper (1998). “Testing
generic Ada packages with APE”. In: Ada Letters XVIII.6, pp. 255–262. doi:
10.1145/301687.289640. See p. 93.

Hofmann, Martin and Thomas Streicher (1996). “The Groupoid Interpre-
tation of Type Theory”. In: Venice Festschrift. Oxford University Press,
pp. 83–111. See p. 48.

Hughes, John (2007). “QuickCheck Testing for Fun and Profit”. In: Practical
Aspects of Declarative Languages. Springer, pp. 1–32. See p. 8.

Jansson, Patrik, Johan Jeuring, and students of the Utrecht University
Generic Programming class (2007). “Testing properties of generic func-
tions”. In: Proceedings of IFL 2006. Ed. by Zoltan Horvath. Vol. 4449. Lecture
Notes in Computer Science. Springer, pp. 217–234. See p. 114.

Johann, Patricia and Janis Voigtländer (2006). “The Impact of seq on Free
Theorems-based Program Transformations”. In: Fundamenta Informaticae
69.1-2, pp. 63–102. See pp. 13, 49, 108.

http://dx.doi.org/10.1145/237721.237792
http://dx.doi.org/10.1017/S0960129500000852
http://dx.doi.org/10.1017/S0960129500000852
http://dx.doi.org/10.1145/1596614.1596626
http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1145/301687.289640

References 131

Kleene, Stephen Cole (1945). “On the interpretation of intuitionistic num-
ber theory”. In: Journal of Symbolic Logic 10.4, pp. 109–124. See p. 62.

— (1971). Introduction to metamathematics. Wolters-Noordhoff. See p. 62.

Knuth, Donald E. (1997). The Art of Computer Programming, Volume 1: Fun-
damental Algorithms. Addison-Wesley Professional. isbn: 0201896834. See
p. 1.

— (1998). The Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition). 2nd ed. Addison-Wesley Professional. isbn: 0201896850. See
pp. 94, 114.

Kreisel, Georg (1959). “Interpretation of analysis by means of construc-
tive functionals of finite types”. In: Constructivity in mathematics. Ed. by A.
Heyting. North-Holland, Amsterdam, pp. 101–128. See p. 62.

Krivine, Jean-Louis (1997). Lambda-calcul – types et modèles. Dunod. isbn:
2225820910. See pp. 62, 72, 73, 80.

Krivine, Jean-Louis and Michel Parigot (1990). “Programming with
proofs”. In: Journal of Information Processing and Cybernetics 26.3,
pp. 149–167. issn: 0863-0593. See p. 62.

Leivant, Daniel (1990). “Contracting proofs to programs”. In: Logic and
Computer Science, pp. 279–327. See pp. 62, 73, 81.

Leroy, Xavier (2009). “Formal verification of a realistic compiler”. In: Com-
munications of the ACM 52.7, pp. 107–115. See p. 6.

Mairson, Harry (1991). “Outline of a proof theory of parametricity”. In:
Proceedings of the 5th ACM conference on Functional programming languages
and computer architecture. Vol. 523. Lecture Notes in Computer Science.
Springer-Verlag, pp. 313–327. doi: 10.1007/3540543961_15. See pp. 62, 80,
81.

Marlow, Simon (2010). “Haskell 2010 Language Report”. http://haskell.
org/definition/haskell2010.pdf. See p. 3.

Martin-Löf, Per (1984). Intuitionistic type theory. Bibliopolis. See pp. 2, 6.

Mcbride, Conor (2010). “Ornamental Algebras, Algebraic Ornaments”.
Manuscript available online. See p. 83.

McBride, Conor and James McKinna (2004). “The view from the left”. In:
Journal of Functional Programming 14.01, 69–111. See pp. 16, 61.

http://dx.doi.org/10.1007/3540543961_15
http://haskell.org/definition/haskell2010.pdf
http://haskell.org/definition/haskell2010.pdf

132 References

Metcalf, Michael and John Reid (1990). Fortran 90 explained. Oxford Uni-
versity Press. isbn: 0198537727. See p. 3.

Milner, Robert, Mads Tofte, and Robert Harper (1990). The definition of Stan-
dard ML. MIT press. isbn: 0262631296. See p. 3.

Milner, Robin (1972). “Logic for Computable Functions: description of a
machine implementation.” In: Artificial Intelligence. See p. 62.

Miquel, Alexandre (2001). “Le Calcul des Constructions implicite: syntaxe
et sémantique”. Thèse de doctorat. Université Paris 7. See pp. 16, 19, 77.

Monnier, Stefan and David Haguenauer (2010). “Singleton types here, sin-
gleton types there, singleton types everywhere”. In: Proceedings of the 4th
ACM SIGPLAN workshop on Programming languages meets program verifica-
tion. Madrid, Spain: ACM, pp. 1–8. isbn: 978-1-60558-890-2. doi: 10.1145/
1707790.1707792. See p. 50.

Morris, Peter and Thorsten Altenkirch (2009). “Indexed Containers”. In:
Twenty-Fourth IEEE Symposium on Logic in Computer Science. Los Alami-
tos, CA, USA: IEEE Computer Society, pp. 277–285. doi: http://doi.

ieeecomputersociety.org/10.1109/LICS.2009.33. See p. 120.

Neis, Georg, Derek Dreyer, and Andreas Rossberg (2009). “Non-parametric
parametricity”. In: Proceedings of the 14th ACM SIGPLAN international con-
ference on Functional programming. Edinburgh, Scotland: ACM, pp. 135–148.
isbn: 978-1-60558-332-7. doi: 10.1145/1596550.1596572. See p. 13.

Nilsson, Rickard (2009). ScalaCheck. http : / / code . google . com / p /

scalacheck/. July 2009. See p. 93.

Norell, Ulf (2007). “Towards a practical programming language based on
dependent type theory”. PhD Thesis. Chalmers Tekniska Högskola. See
pp. 3, 6, 14, 16, 61, 77, 123.

Oury, Nicolas and Wouter Swierstra (2008). “The power of Pi”. In: Proceed-
ings of the 13th ACM SIGPLAN international conference on Functional program-
ming. Victoria, BC, Canada: ACM, pp. 39–50. isbn: 978-1-59593-919-7. doi:
10.1145/1411204.1411213. See pp. 3, 51.

Paulin-Mohring, Christine (1989a). “Extracting Fω’s programs from proofs
in the calculus of constructions”. In: POPL ’89: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
Austin, Texas, United States: ACM, pp. 89–104. isbn: 0-89791-294-2. doi:
http://doi.acm.org/10.1145/75277.75285. See pp. 62, 80, 81.

http://dx.doi.org/10.1145/1707790.1707792
http://dx.doi.org/10.1145/1707790.1707792
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/LICS.2009.33
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/LICS.2009.33
http://dx.doi.org/10.1145/1596550.1596572
http://code.google.com/p/scalacheck/
http://code.google.com/p/scalacheck/
http://dx.doi.org/10.1145/1411204.1411213
http://dx.doi.org/http://doi.acm.org/10.1145/75277.75285

References 133

— (1989b). “Extraction de programmes dans le Calcul des Constructions”.
PhD thesis. Université Paris 7. See p. 62.

Paulin-Mohring, Christine (1993). “Inductive definitions in the system Coq
– rules and properties”. In: Typed Lambda Calculi and Applications. Springer,
pp. 328–345. See pp. 16, 27.

Pierce, Benjamin C. (2002). Types and Programming Languages. 1st ed. The
MIT Press. isbn: 0-262-16209-1. See pp. 2, 4.

Plotkin, Gordon and Martín Abadi (1993). “A logic for parametric poly-
morphism”. In: Proceedings of the International Conference on Typed Lambda
Calculi and Applications. Vol. 664. Lecture Notes in Computer Science.
Springer, 361–375. See pp. 48, 80.

Pottier, Francois and Nadji Gauthier (2006). “Polymorphic typed defunc-
tionalization and concretization”. In: Higher-Order Symbol. Comput. 19.1,
pp. 125–162. See p. 115.

Reynolds, John C. (1974). “Towards a theory of type structure”. In: Colloque
sur la Programmation. Springer, pp. 408–425. See p. 5.

— (1983). “Types, abstraction and parametric polymorphism”. In: Informa-
tion processing 83.1, pp. 513–523. See pp. 5, 13, 19, 22, 26, 62, 71, 80.

— (1998). “Definitional Interpreters for Higher-Order Programming Lan-
guages”. In: Higher-Order and Symbolic Computation 11.4, pp. 363–397. See
p. 114.

Runciman, Colin, Matthew Naylor, and Fredrik Lindblad (2008). “Small-
check and lazy smallcheck: automatic exhaustive testing for small values”.
In: Proceedings of the first ACM SIGPLAN symposium on Haskell. Victoria, BC,
Canada: ACM, pp. 37–48. isbn: 978-1-60558-064-7. doi: 10.1145/1411286.
1411292. See pp. 8, 116.

Saff, David (2007). “Theory-infected: or how i learned to stop worrying and
love universal quantification”. In: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications compan-
ion. Montreal, Quebec, Canada: ACM, pp. 846–847. isbn: 978-1-59593-865-
7. doi: 10.1145/1297846.1297919. See p. 93.

Sheeran, Mary (2007). Hardware Design and Functional Programming: a Per-
fect Match. Talk at Hardware Design and Functional Languages. See p. 111.

Staples, John (1973). “Combinator realizability of constructive finite type
analysis”. In: Cambridge Summer School in Mathematical Logic, pp. 253–273.
See p. 62.

http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/1297846.1297919

134 References

Sun Tzu (2003). The Art of War. Penguin Classics. isbn: 0140439196. See
p. 1.

Svenningsson, Josef (2002). “Shortcut fusion for accumulating parameters
& zip-like functions”. In: Proceedings of the seventh ACM SIGPLAN inter-
national conference on Functional programming. Pittsburg PA, USA: ACM,
pp. 124–132. doi: 10.1145/583852.581491. See p. 117.

Takeuti, Izumi (2004). “The Theory of Parametricity in Lambda Cube”.
Manuscript. See pp. 13, 48.

The Coq development team (2010). The Coq proof assistant. See pp. 16, 61,
63, 77.

Tillmann, Nikolai and Wolfram Schulte (2005). “Parameterized unit tests”.
In: SIGSOFT Software Engineering Notes 30.5, pp. 253–262. doi: 10.1145/

1095430.1081749. See pp. 93, 116.

Troelstra, Anne Sjerp (1998). “Handbook of proof theory”. In: ed. by
Samuel R. Buss. Elsevier. Chap. Realizability. See p. 62.

Van Oosten, Jaap (2002). “Realizability: a historical essay”. In: Mathematical
Structures in Computer Science 12.03, pp. 239–263. See p. 62.

Voigtländer, Janis (2008). “Much ado about two (pearl): a pearl on parallel
prefix computation”. In: SIGPLAN Not. 43.1, pp. 29–35. doi: 10.1145/13288
97.1328445. See pp. 94, 111.

— (2009a). “Bidirectionalization for free! (Pearl)”. In: Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages. Savannah, GA, USA: ACM, pp. 165–176. isbn: 978-1-60558-379-2.
doi: 10.1145/1480881.1480904. See p. 108.

— (2009b). “Free theorems involving type constructor classes: Functional
pearl”. In: Proceedings of the 14th ACM SIGPLAN international conference on
Functional programming. Edinburgh, Scotland: ACM, pp. 173–184. isbn: 978-
1-60558-332-7. doi: 10.1145/1631687.1596577. See pp. 24, 45.

Vytiniotis, Dimitrios and Stephanie Weirich (2010). “Parametricity, Type
Equality, and Higher-Order Polymorphism”. In: Journal of Functional Pro-
gramming 20.02, pp. 175–210. doi: 10.1017/S0956796810000079. See pp. 13,
48.

Wadler, Philip (1989). “Theorems for free!” In: Proceedings of the fourth in-
ternational conference on Functional programming languages and computer ar-
chitecture. Imperial College, London, United Kingdom: ACM, pp. 347–359.

http://dx.doi.org/10.1145/583852.581491
http://dx.doi.org/10.1145/1095430.1081749
http://dx.doi.org/10.1145/1095430.1081749
http://dx.doi.org/10.1145/1328897.1328445
http://dx.doi.org/10.1145/1328897.1328445
http://dx.doi.org/10.1145/1480881.1480904
http://dx.doi.org/10.1145/1631687.1596577
http://dx.doi.org/10.1017/S0956796810000079

References 135

isbn: 0-89791-328-0. doi: 10.1145/99370.99404. See pp. 5, 13, 26, 30, 45, 62,
101.

— (2007). “The Girard–Reynolds isomorphism”. In: Theoretical Computer
Science 375.1–3, 201–226. See pp. 7, 26, 49, 50, 62, 67, 73, 80, 81.

Wadler, Philip and Stephen Blott (1989). “How to make ad-hoc polymor-
phism less ad hoc”. In: POPL ’89: Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, pp. 60–76.
isbn: 0897912942. doi: 10.1145/75277.75283. See p. 45.

Washburn, Geoffrey and Stephanie Weirich (2003). “Boxes go bananas: en-
coding higher-order abstract syntax with parametric polymorphism”. In:
Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming. Uppsala, Sweden: ACM, pp. 249–262. isbn: 1-58113-756-7.
doi: 10.1145/944705.944728. See p. 118.

Werner, Benjamin (1994). “Une théorie des constructions inductives”. PhD
Thesis. Université de Paris 7. See p. 6.

http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/944705.944728

	Introduction
	1 Background
	2 Contents

	Paper I – Proofs for Free - Parametricity for Dependent Types
	1 Introduction
	2 Pure type systems, with colour
	3 The relational interpretation
	4 Constants and datatypes
	5 Internalisation
	6 Applications
	7 Discussion
	A Proof of the abstraction theorem

	Paper II – Realizability and Parametricity in PTSs
	1 Introduction
	2 The first level
	3 The second level
	4 The third level
	5 Extensions
	6 Related work and conclusion
	A Vectors from Lists
	B Details of proofs

	Paper III – Testing Polymorphic Properties
	1 Introduction
	2 Examples
	3 Generalisation
	4 More examples
	5 Related work
	6 Future work
	7 Conclusion
	A Applying parametricity
	B Embedding containers
	C Auxiliary results about free distributive lattices

	References

