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Turbulent and neoclassical transport in tokamak plasmas

István Pusztai
Department of Applied Physics
Chalmers University of Technology

Abstract

One of the greatest challenges of thermonuclear fusion is to under-
stand, predict and to some extent control particle and energy transport
in fusion plasmas. In the present thesis we consider theoretical and
experimental aspects of collisional and turbulent transport in tokamak
plasmas.

First the collisionality dependence of quasilinear particle flux due to
ion temperature gradient (ITG) and trapped electron modes is investi-
gated. A semi-analytical gyrokinetic model of electrostatic microinsta-
bilities is developed and used to study various parametric dependences
of ITG stability thresholds and quasilinear particle and energy fluxes,
focusing on the effect of collisions.

Then corrections to the neoclassical plateau regime transport in
transport barriers are calculated. It is found that the ion temperature
gradient drive of the bootstrap current can be enhanced significantly,
and the ion heat diffusivity and the poloidal flow of trace impurities are
also modified in the presence of strong radial electric fields.

Furthermore, we investigate the characteristics of microinstabilities
in electron cyclotron heated and ohmic discharges in the T10 tokamak
using linear gyrokinetic simulations, aiming to find insights into the
effect of auxiliary heating on the transport, with special emphasis on
impurity peaking.

The effect of primary ion species of differing charge and mass on
instabilities and transport is studied through linear and nonlinear gy-
rokinetic simulations. We perform transport analysis of three balanced
neutral beam injection discharges from the DIII-D tokamak which have
different main ion species (deuterium, hydrogen and helium).

Finally the magnitude and characteristics of the error in alkali beam
emission spectroscopy density profile measurements due to finite beam
width are analyzed and a deconvolution based correction algorithm is
introduced.

Keywords: thermonuclear fusion, tokamaks, microinstabilities, turbu-
lent transport, neoclassical transport, transport barriers, impurity trans-
port, isotope effect, transport analysis
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Chapter 1

Introduction

The ever increasing energy demand of humanity, our finite non-renewable
resources and the threatening extent of environmental pollution estab-
lish the need for a new, clean and large-scale energy source. One of the
most promising candidates for this purpose is controlled thermonuclear
fusion which has been an intensely explored area for more than half a
century.

Fusion utilizes the energy that is released as two light nuclei fuse
together, and provides one of the main energy sources of the Universe.
The reaction between the positively charged nuclei is obstructed by their
Coulomb repulsion, so that bringing even the most feasible fusion process
[D + T → 4He (3.5 MeV) + n (14.1 MeV)] to effect with reasonable effi-
ciency (at achievable density) requires a temperature of ∼108 K, which
implies that in laboratory conditions the fusion fuel has to be confined
by some special means. Fortunately, the extremely high temperatures
giving rise to the difficulties of confinement also provide a possible so-
lution, since the matter is then in an almost fully ionized, plasma state
which can be confined with a magnetic field.

As a consequence of the Poincaré–Hopf theorem [1], the only topol-
ogy in three dimensions which has non-vanishing continuous tangent
vector field is the torus. Accordingly, in order to prevent end losses,
the most successful magnetic confinement fusion devices, the stellara-
tor [2] and the tokamak [3] have toroidal magnetic geometry; i.e. their
magnetic field lines trace out nested toroidal surfaces. The tokamak
is axisymmetric and the twist of its magnetic field, which is necessary
for magnetohydrodynamic stability purposes, is maintained by a cur-
rent driven inductively in the plasma. According to its relative simplic-
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Chapter 1. Introduction

ity, both its theory and technology have developed relatively rapidly,
so that the experimentally achieved value of the fusion triple product

niTiτE , which is the main indicator of fusion performance, has doubled
approximately every second year since the mid-1950’s (ni and Ti are
the ion density and temperature and τE is the characteristic time of the
energy confinement).

Since the magnetic field of a stellarator is generated by external coils,
its operation does not rely on inductively driven toroidal current, that
makes a continuous operation possible, which is clearly desirable in reac-
tors. Also, in contrast to tokamaks, the stellarator lacks current induced
instabilities and a hard operational limit on plasma density (Greenwald
limit [4]). However, due to the lack of toroidal symmetry, the radial con-
finement of plasma particles is not guaranteed; its magnetic geometry
has to be optimized to avoid drift losses. Especially the confinement of
high energy ions is an issue in stellarators. The helical structure of the
magnetic field is produced by a complex magnetic coil system. Since the
sufficient computational capacity for the optimized design of such com-
plicated, inherently three-dimensional system has been achieved only in
the recent years, the stellarator has lagged behind the tokamak concept,
in terms of confinement properties and number of experiments.

On the road towards controlled thermonuclear fusion it was a notable
event when, in 1997, the largest current fusion experiment, JET (Joint
European Torus) produced 16 MW of fusion power – 65% of the input
power [5]. The “next step” will be an even bigger tokamak experiment,
ITER, which is under construction at the present time. Its goal is to
demonstrate the technical feasibility of fusion energy production by gen-
erating 500 MW fusion power from 50 MW input power [6]. Consider-
able knowledge on the behavior of fusion plasmas has been accumulated
in the recent decades that enabled the design of this experimental fusion
reactor. However, most of our predictions regarding the performance of
ITER are based on extrapolations using empirical scaling laws [7]. Even
today we lack a comprehensive and accurate description of the transport
processes in fusion plasmas due to the complexity of the problem.

For efficient fusion energy production the energy transport through
the magnetic surfaces should be minimized, and at the same time, to
maintain the ”burning” plasma, the particle transport has to be kept
under control. In addition to the ubiquitous but tolerable level of diffu-
sive collisional transport (which is called “neoclassical” transport), the
major part of the transport is due to convective fluxes associated with

2



plasma turbulence. This turbulence is driven by various kinds of small-
scale, low-frequency unstable modes, microinstabilities, due to density
or temperature gradients [8]. Even hydrodynamic turbulence is a com-
plex unresolved problem, and considering several fluid species coupled
through electromagnetic, friction and energy exchange effects, it is not
surprising that there is no general theory of plasma turbulence. Under-
standing and accurately predicting the turbulent transport is one of the
most challenging theoretical issues of magnetic confinement fusion.

The complexity of the problem – nonlinear coupling between the
different modes, turbulent cascades through the different spatial scales,
nonlinear self-regulation – almost makes analytical treatment impos-
sible, although there are methods such as renormalization [9], quasi-
linear [10] and mixing-length approaches that have been used – with
limited success. It seems that one has to resort to nonlinear kinetic
or fluid simulations to obtain an overall picture of turbulent transport;
accordingly, several kinetic and fluid simulation codes have been devel-
oped in the recent decades. Nevertheless, to understand the underlying
physical mechanisms and to ease the interpretation of simulation results
it is rather important to develop reduced models and investigate the
properties and different parametric dependences of microinstabilities.

The drive of turbulence in the plasma core in a conventional toka-
mak, is typically dominated by toroidal ion temperature gradient (ITG)
modes [11–13] and in certain cases trapped electron (TE) [14–16] modes,
but the electron temperature gradient (ETG) mode [17,18], and micro-
tearing modes can also play an important role [19]. In the core, the
level of the density and temperature fluctuations is only a few percent
of the corresponding equilibrium quantities, while, in the plasma edge
and scrape-off layer (SOL) they can be comparable. In the latter, outer
plasma regions mainly electrostatic fluid instabilities – driven by gradi-
ents in pressure, current or resistivity – dominate the turbulence.

To achieve reactor relevant conditions it is essential to understand,
reliably predict and – to some extent – control turbulent transport.
It was discovered that by applying sufficiently high auxiliary heating
power, a rapid spontaneous transition to an improved confinement mode
– the so called high confinement- or H-mode [20] – can be obtained, which
involves the formation of a transport barrier at the plasma edge, the so
called pedestal. In the H-mode pedestal or in artificially induced internal
transport barriers [21] the turbulent transport is strongly reduced, in
particular the ion energy transport can be on the level of the collisional
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Chapter 1. Introduction

transport. Long wavelength neoclassical sheared flows within the flux
surfaces play an important role in the suppression of turbulence. For
these reasons it is also important to have an accurate knowledge of
neoclassical transport.

Due to the reduced transport in the edge transport barrier, strong
pressure and current gradients can build up, that can destabilize magne-
tohydrodynamic (MHD) instabilities, leading to abrupt, quasi-periodic,
burst-like ejection of a considerable part of the energy stored in the
transport barrier region. These instabilities are called ELMs (edge lo-
calized modes) and can cause intolerable damage in the plasma limiting
elements or at least contribute to their deterioration, but on the other
hand they can be useful for helium ash removal [22]. In toroidal geom-
etry density and temperature gradients drive a non-inductive current,
the “bootstrap current”, which plays a crucial role in reactor relevant
operation by reducing the need for inductive current drive. This current,
which can be considered as one of the most important predictions of neo-
classical theory, can destabilize current-driven instabilities, in particular
in the plasma edge it contributes to the drive of ELMs [23].

For the deeper understanding of these complex phenomena deter-
mining the overall transport of heat and particles, strong interaction be-
tween theoretical and experimental work is needed. A routinely applied
method for electron density profiles and density fluctuation measurement
at the SOL, edge, or outer core regions is beam emission spectroscopy
(BES) [24,25]. It is based on the observation of a high energy collimated
neutral beam injected into the plasma for heating or purely diagnostic
purposes. The photons emitted in the spontaneous de-excitation of col-
lisionally excited beam atoms carry information on the distribution of
plasma parameters.

The collisions also lead to ionization of the beam atoms, resulting
in beam attenuation, which usually restricts the diagnostic to the outer
plasma regions. Accordingly, it is well suited for turbulence measure-
ments there, as well as for the investigation of equilibrium or fluctu-
ation driven flows in the edge, together with ELMs, geodesic acoustic
modes [26] or other transient phenomena affecting the transport.

The remainder of the thesis is organized as follows. In Chapter 2 we
introduce basic theoretical concepts that are used in the kinetic mod-
eling of transport phenomena in magnetic confinement fusion devices.
In particular we introduce magnetized plasmas and touch upon the par-
ticle motion in tokamak geometry before we give an introduction to
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gyro-averaged kinetic theories. In Chapter 3, after a short introduction
to collisional transport in general we restrict our attention to neoclas-
sical transport and the relevant kinetic description, the drift kinetic
formalism. We give an overview of the different collisionality regimes
and sketch the physics of the bootstrap current, and finally discuss the
issues of the neoclassical formalism in transport barriers. In Chapter 4
we start with discussing important tools to study microinstabilities and
turbulence: the gyrokinetic theory and the ballooning formalism. Then
the turbulent and quasilinear fluxes are discussed, before an overview of
the characteristics of the two most important microinstabilities, the ion
temperature gradient and trapped electron modes is given. A separate
section is dedicated to the role of collisions in anomalous transport from
both experimental and theoretical perspectives. Chapter 4 is closed by a
short discussion of nonlinear simulations. Chapter 5 concerns turbulence
and density profile measurements with beam emission spectroscopy. We
close by summarizing the included papers in Chapter 6.

5



Chapter 1. Introduction

6



Chapter 2

Basic concepts in the
transport of magnetized
plasmas

In this chapter we provide a brief overview of the physical and theoret-
ical concepts appearing in the field of transport theory of magnetized
plasmas to be used in the following parts of the thesis, however we do
not intend to reproduce the derivation of basic plasma physics results.
Another aim of this section is to delineate the scope and limitations of
the models to be presented.

2.1 Magnetized fusion plasmas

In the thesis the physics of fusion plasmas is studied. Plasma is a par-
tially or fully ionized matter. We focus on fully ionized plasmas that
are relevant in the core of fusion devices. The plasma consists of un-
bounded electrons and ions and in the applications of interest these can
be considered as classical (i.e. not quantum) objects, that is a very good
approximation for energies (∼ keV) and densities (∼ 1020m−3) typical
in magnetic confinement fusion.

A complete definition of plasmas involves also spatial and time scales.
The plasma is quasi-neutral, that is, in any macroscopic volume the
quantity (ne −

∑

i Zini)/ne ≪ 1, where ne(i) is the density of electrons
(ions) and the sum runs over all the ion species with the charge Zi. This
approximate condition can be shown to be valid only for length scales
larger than the Debye length λD =

√

ǫ0Te/e2ne (where Te is the electron
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Chapter 2. Basic concepts in the transport of magnetized plasmas

temperature), and time scales longer than the inverse plasma frequency
1/ωpe =

√

meǫ0/nee2. With other words, the plasma does not allow
macroscopic charge separation. However, it does not imply that there
can be no electrostatic fields present in plasmas, because extremely small
charge separation can give rise to considerable electric fields.

The ion composition in fusion reactors is dominated by the fuel ions,
namely deuterium and tritium. However, apart from a limited number
of D-T experiments, the vast majority of the experimental discharges op-
erate with a single species (mostly deuterium). Accordingly, the theoret-
ical work done in transport theory usually considers a single hydrogenic
species, which we refer to as the main species. Other ion species are also
present in the plasma – preferably in smaller quantities; these impuri-

ties can come from the plasma facing components interacting with the
plasma, and the helium “ash” of the fusion reactions also constitutes as
impurity. For plasmas with several ion species it is useful to introduce
the effective ion charge Zeff =

(
∑

i niZ
2
i

)

/ne, which appears in several
contexts in fusion plasma physics (for instance in the field of collisional
transport), and is an important measure of the purity of plasmas.

The plasmas to be considered are magnetized in the sense that the
collision frequency νa for a species a is much smaller than the cyclotron
frequency νa ≪ Ωa (Ωa = eaB/ma with the charge and mass of the
species ea and ma, and the magnetic field strength B), and that the
typical length scale on which the equilibrium plasma parameters vary,
L, is much larger than the ion Larmor radius ρi ≪ L (ρi = v⊥/Ωi,
where v⊥ is the magnitude of the velocity component perpendicular
to the magnetic field. The scale length of a plasma parameter X is
usually defined as LX = −|∇ lnX|−1). The smallness of the parameter
δ = ρi/L provides the basis of virtually the whole field of transport
theory of fusion plasmas operating with gyro-averaged kinetic equations
kept through certain order in δ.

2.2 Magnetic geometry and particle motion

In a homogeneous magnetic field the particle motion can be conveniently
decomposed to a gyration perpendicular to the magnetic field lines with
the cyclotron frequency (Larmor motion), and a free motion along the
magnetic field line. Thus the particle trajectory traces out a helix with
the position of its guiding center R = r − (b × v)/Ωa, where r is the
actual position and v is the velocity of the particle, b = B/B is the

8



2.2. Magnetic geometry and particle motion

unit vector in the direction of the magnetic field B. In this simple
configuration the velocity of the guiding center Ṙ is v‖ = bv‖, where
the parallel velocity is v‖ = b · v.

If the magnetic field has a spatial variation and/or there is an elec-
trostatic field present, the motion of the guiding center is more compli-
cated: In the parallel direction the particle can be accelerated by the
parallel component of the electric field and it is also affected by the
magnetic mirror force acting in the direction opposite to the gradient of
the field strength. The magnitude of the mirror force is µ∇‖B, where
µ = mv2⊥/(2B) is the magnetic moment of the gyrating particle with v⊥
the magnitude of the perpendicular velocity v⊥ = v − v‖. Perpendicu-
larly to the magnetic field the guiding center drifts with a velocity

vd = Ṙ⊥ =
E×B

B2
+

v2⊥
2Ω

b×∇ lnB +
v2‖

Ω
b× κ. (2.1)

The first term in the right hand side of Eq. (2.1) is called the E × B

drift, and it is independent of the charge or mass of the particle species.
The direction of the other two terms arising due to inhomogeneities
in the magnetic field, called the grad-B drift and the curvature drift
respectively, depend on the sign of the particle charge. We introduced
the curvature vector of the magnetic field κ = −b × (∇ × b) in the
curvature drift term which, in the limit of low normalized pressure β =
2µ0p/B

2 (µ0 is the vacuum permeability), can be approximated as κ ≈
b×∇ lnB to get a similar form to the grad-B drift. Then the magnetic
drift velocity vD can be written simply as

vD =
1

Ω

(

v2⊥
2

+ v2‖

)

b×∇ lnB. (2.2)

The derivation of the drift velocities (or more generally, the “guiding
center” picture of particle motion) assumes that |vd| ≪ |v|, which is
posteriorly justified for the cases we study. It implies that the motion of
an “average” particle along the magnetic field line is much faster than
its drift across the field lines; this is one of the reasons why the geometry
of magnetic field lines plays a crucial role in transport theory. The field
lines in toroidally symmetric configurations trace out surfaces, which
we call magnetic surfaces or flux surfaces. In plasmas in magnetohy-
drodynamic equilibrium (which we shall consider), the radial pressure
gradient is balanced by the J ×B force, where J is the plasma current
density. It follows from the MHD momentum equation J × B = ∇p,

9



Chapter 2. Basic concepts in the transport of magnetized plasmas

that B ·∇p = 0 = J ·∇p, which means that currents flow within the flux
surfaces that also coincide with the surfaces of constant pressure. As we
will see not just the total kinetic pressure, but the densities and tem-
peratures of each species separately are also approximately constants on
flux surfaces. However, fast toroidal rotation of heavy impurity ions and
other physical phenomena can cause significant poloidal asymmetries.

Figure 2.1: Toroidal geometry. r denotes the radial coordinate, φ and θ are
the toroidal and the poloidal angles, respectively, and R0 is the major radius of
the torus. Three nested flux surfaces are indicated, and the thick line represents
a magnetic field line in the q = 3 magnetic surface.

Due to the importance of the flux surfaces, the usual “radial” coor-
dinate is chosen to be a flux function, i.e. a quantity which is constant
on a flux surface, and monotonously increasing between the magnetic

axis (the innermost flux surface degenerated to a line) and the last

closed flux surface (LCFS) (the last magnetic surface whose field lines
do not go through any plasma facing component). It can be the poloidal
flux Ψ, which is – apart from a constant multiplier – the magnetic flux
through a surface between the magnetic axis and an arbitrary line lying
in a flux surface encircling the torus once toroidally while not making a
poloidal turn. Another convenient choice is the toroidal flux ΨT , that
is the magnetic flux trough a loop lying in a flux surface making one
poloidal loop. To get a radial coordinate with length dimension, some-
times rΨ ∼

√

ΨT /B0 is used with some reference field B0.
Since both Ψ and ΨT are (radially monotonously increasing) flux

functions they can be written as functions of each other, such as ΨT (Ψ).

10



2.2. Magnetic geometry and particle motion

The dimensionless function q(Ψ) = dΨT (Ψ)/dΨ, the so called safety

factor, is a measure of the helical “twistedness” of the field lines; it
means – in a flux surface average sense – the number of toroidal turns
needed to encircle the flux surface poloidally when following a magnetic
field line. In tokamaks q usually (but not necessarily) monotonically
increases radially from a value around 1; its radial logarithmic derivative
s = r(d ln q/dr) is called the magnetic shear. In Fig. 2.1 a magnetic field
line in the q = 3 flux surface is shown together with a set of toroidal
coordinates.

In toroidally symmetric configurations the magnetic field can be con-
veniently expressed as

B = I(Ψ)∇ϕ+∇ϕ×∇Ψ, (2.3)

where the first term is the toroidal component of the field Bt with
I = RBt, the second term is the poloidal field Bp, and ϕ denotes the
toroidal angle. In tokamaks the ratio of the poloidal and toroidal com-
ponents of the magnetic field is mostly much larger than unity and can
be approximated as Bt/Bp ≈ qR/r, with R and r being the major and
minor radii, respectively, and their ratio R/r is called the aspect ratio.

From Bp/Bt ≪ 1 it follows that Eq. (2.2) describes a drift domi-
nantly in the vertical direction. Therefore a guiding center moving along
the field line drifts off from a given flux surface. For purely toroidal field
it would lead to charge separation and the loss of confinement due to
the rising E × B drift. However for finite q the particles spend half of
their times (in, say, the upper half of the torus) diverging from a given
flux surface and half of their times (in the lower half) approaching the
same flux surface again, thus having no net radial drift on time average.

The magnetic field strength decreases with major radius as 1/R,
which leads to yet another complication in the motion of the particles.
Particles having too high magnetic moment compared to their kinetic
energy cannot make a complete poloidal turn as they are reflected back
from the higher field strength regions by the magnetic mirror force;
these are the trapped particles which constitute a ∼√

ǫ fraction of the
particles, where we introduced the inverse aspect ratio ǫ = r/R. These
particles bounce back and forth in the outboard side of the tokamak with
a poloidal projection of their guiding center trajectory having a banana
shape; hence the often used name for the trapped particle orbits: banana
orbits.

It is clear that for stationary fields the total energy of a particle
mv2/2 + eaΦ has to be a constant of motion, where Φ is the electro-
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Chapter 2. Basic concepts in the transport of magnetized plasmas

static potential. In magnetized plasmas, the magnetic moment of a
particle µ is an adiabatic invariant, which means that for slow (spatial
and temporal) changes in the magnetic field strength the perpendic-
ular velocity of the particles also changes keeping the quantity µ =
mv2⊥/(2B) a constant. In perfect toroidally symmetric configurations
there is an additional constant of motion, the canonical angular mo-
mentum Ψ∗ = −RAϕ −mRvϕ/ea = Ψ −mRvϕ/ea, which follows from
that the Lagrangian is independent of the toroidal angle ϕ (we intro-
duced the toroidal components of the velocity and the magnetic vector
potential, vϕ and Aϕ respectively). This condition guarantees that the
collisionless orbits are confined (i.e., restricted to a radially bounded
domain) in tokamaks. In magnetized plasmas not only Ψ∗ is conserved,
but also the canonical angular momentum of the guiding centers Ψ̄∗.

2.3 Distribution function and kinetic equations

The main objective of the kinetic theory of plasmas is to determine the
phase space distribution functions of the different plasma particle species
fa(t, r,v), from which – taking their appropriate moments and averages
– the desired macroscopic quantities, such as fluxes, flows, currents, can
be calculated. The evolution of the distribution functions is determined
from the Vlasov equation which is a local conservation equation for the
distribution function:

dfa
dt

≡ ∂fa
∂t

+ v · ∇fa +
ea
ma

(E+ v ×B) · ∂fa
∂v

= 0, (2.4)

where ea(E + v × B)/ma is the acceleration due to the Lorentz force.
The electric and magnetic fields appearing in Eq. (2.4) can be separated
to macroscopic fields, i.e. fields averaged over several Debye length, and
microscopic fields that are strongly fluctuating on spatial scales com-
parable to or smaller than the Debye length due to the discreteness of
the particles. The effect of the latter can be collected to a collision

operator Ca[fa] = ∂fa|coll which describes the change in the distribu-
tion as a result of collisions. The resulting kinetic equation, called
Fokker-Planck equation, is formally similar to Eq. (2.4) with two dif-
ferences; the appearing E and B now represent the macroscopic fields,
and the right hand side is equal to Ca[fa]. Not only does the collision
operator introduce coupling between the different species (noting that
Ca[fa] =

∑

j Caj [fa, fj ], where Caj describes collisions between species a

12



2.3. Distribution function and kinetic equations

and j), but the distributions of all species appear implicitly in Eq. (2.4)
as sources to the macroscopic electric and magnetic fields.

The Fokker-Planck equation together with the Maxwell’s equations
provide a complete and self-consistent description of plasmas, however
this system of equations applied to realistic problems is intractably com-
plex. Realizing that for the description of collisional or turbulent trans-
port processes it is usually unnecessary to resolve time scales correspond-
ing to the fast ion cyclotron motion, the problem can be significantly
simplified. A gyro-phase averaging can be performed on the full kinetic
equation – making use of the smallness of the gyro-radius compared to
the equilibrium scales – to obtain the simpler drift kinetic or gyrokinetic
equations for the gyro-center distribution. The drift kinetic equation
used mainly in the theory of collisional transport considers toroidally
symmetric fields and represents the particle as a drifting guiding center
with a charge and magnetic dipole moment corresponding to the gyra-
tion of the particle. The gyrokinetic equation allows for sharp spatial
variations in the perturbed fields and distributions on the scale of the
ion or electron gyro radius, thus it is more suited for the description of
turbulent transport.

Having calculated the distribution function of the different species
the most important transport quantities, the flux surface average of
the radial particle and energy fluxes (Γa and Qa, respectively) can be
calculated as

〈Γa · ∇Ψ〉 =
〈
∫

d3vfav · ∇Ψ

〉

, (2.5)

and

〈Qa · ∇Ψ〉 =
〈
∫

d3v
mav

2

2
fav · ∇Ψ

〉

, (2.6)

where 〈·〉 denotes the flux surface average.
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Chapter 3

Neoclassical transport

In toroidally symmetric magnetic configurations, which we consider hence-
forth, such as in tokamaks, in the absence of collisions and fluctuations
in local plasma parameters, the trajectories of plasma particles would
remain within a radially bounded domain. This result, following from
the conservation of the toroidal canonical momentum of the guiding cen-
ters, would mean no net radial transport. However, in reality, collisions
can move particles from one unperturbed orbit to another, which, on
the long term, leads to a diffusive transport of particles and heat across
flux surfaces.

Even in a cylindrical magnetized plasma there is a radial transport
due to collisions. The collisionless orbits are determined by the Larmor
gyration of particles around the magnetic field lines and a free streaming
of their guiding centers along the field lines. Collisions, by changing the
particle velocity perpendicularly to the magnetic field, can relocate the
particle from its gyro-orbit to another. The magnitude of the resulting
transport can be estimated with a random-walk argument. The particle
(electron or ion) diffusivity De = Di is proportional to νeiρ

2
e = νieρ

2
i ,

where νei (νie) is the electron-ion (ion-electron) collision frequency and
ρe (ρi) is the electron (ion) Larmor radius.

Only unlike particle collisions lead to particle transport, because in
like-particle collisions (i.e. electron-electron or ion-ion collisions) the
average guiding center position does not change. In an unlike particle
collision the electron step length (∼ρe) is a square root of electron-to-ion
mass ratio

√

me/mi smaller than the ion step length (∼ρi), but this is
balanced by that the electron-ion collision frequency is a factor me/mi

larger than the ion-electron collision frequency. Therefore the resulting
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Chapter 3. Neoclassical transport

electron and ion fluxes are equal Γe = Γi. Consequently, the collisional
particle transport does not lead to charge separation; this feature is
called ambipolarity. The ambipolar property of the particle transport,
which originates in the momentum conservation of the Coulomb colli-
sions, persists in the presence of radial electric fields and even in toroidal
geometry (in the lowest order in δ = ρi/L(≪ 1), where L represents the
radial length scale).

Since energy can be transferred in like-particle collisions there is no
condition for heat transport analogous to ambipolarity. In particular the
collisional ion energy transport is dominated by ion-ion collisions and is
typically a square root of ion-to-electron mass ratio larger than electron
energy transport; in terms of ion and electron energy diffusivities χi ∼
νiiρ

2
i , while χe ∼ νeeρ

2
e.

3.1 Collisional transport across flux surfaces

To understand the origin of the collisional transport fluxes in toroidal
geometry it is useful to introduce the fluid equations first. By taking
the {1,mv,mv2/2} velocity moments of the Fokker-Planck equation

dfa
dt

≡ ∂fa
∂t

+ v · ∇fa +
ea
ma

(E+ v ×B) · ∂fa
∂v

= Ca[fa], (3.1)

we obtain the conservation equations for particles, momentum and en-
ergy [27]:

∂na
∂t

+∇ · (naVa) = 0, (3.2)

∂manaVa

∂t
+∇a ·Πa = ne(E+V ×B) +

∫

d3v C[f ]mv, (3.3)

∂

∂t

(

3nT

2
+

mnV 2

2

)

+∇ ·Q = enE ·V +

∫

d3v C[f ]
mv2

2
, (3.4)

where we suppressed the species index, and introduced the fluid velocity
V = 〈v〉f , the temperature T = 〈mv2〉f/3, the momentum flux tensor
Π = 〈mnvv〉f and the energy flux Q = mn〈v2v〉f/2, and the average
over the distribution n〈·〉f = n−1

a

∫

·fd3v. We can denote the last term
on the right hand side of Eq. (3.3) by Fa (representing the collisional
friction force between different species).

It is easy to show using Eq. (2.3) that the flux surface average of the
particle flux can be written as

〈Γa · ∇Ψ〉 = 〈Rϕ̂ · (naVa ×B)〉, (3.5)
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3.2. Drift kinetic equation

with the toroidal unit vector ϕ̂. Using this identity and taking the flux
surface average of the toroidal projection of Eq. (3.3) then yields

〈Γa · ∇Ψ〉 =
1

ea

〈

Rϕ̂ · ∂manaVa

∂t
+Rϕ̂ · ∇ ·Πa − naeaREϕ −RFaϕ

〉

, (3.6)

where ϕ indices denote the toroidal component of a vector. Assuming
that the plasma parameter profiles evolve due to collisional diffusion
(D ∼ νρ2) the time derivatives should be small ∂t ∼ D/L2 ∼ δ2ν. From
this estimate the first term in the right hand side of Eq. (3.6) is at least
δ2 smaller than the last term, even for flow velocities comparable to the
thermal velocity. The second term would not be small if it contained
contributions from the diagonal of the pressure tensor (i.e. the scalar
pressure), but the pressure gradient does not appear due to axisymmetry
(ϕ̂ · ∇p = 0). For similar reason (ϕ̂ · ∇Φ = 0) in the third term (the
so called Ware-pinch) only the induced electric field appears. The last
term arising due to friction between the different species is responsible
for the collisional transport.

The transport caused by the perpendicular friction is called the clas-
sical transport, while the so called neoclassical transport [28] which usu-
ally dominates in large aspect ratio tokamaks is due to the combined ef-
fect of the parallel induced electric field E‖(ind) and the parallel friction
F‖. The neoclassical particle flux can be written as

〈Γa · ∇Ψ〉neo = −I

〈

Fa‖ + naeaE‖(ind)

eaB

〉

. (3.7)

3.2 Drift kinetic equation

The neoclassical fluxes can also be constructed kinetically; the particle
and energy fluxes can be written in terms of the distribution function
and the drift velocity formally as Eqs. (2.5) and (2.6) with the replace-
ment v → vd. The distribution function appearing in the expression for
the fluxes can be calculated from the drift kinetic equation. To derive
this equation, we will follow the approach of Catto et al [29]. Again, we
start with the Fokker-Planck equation (3.1), but rewrite it in a more con-
venient set of velocity space coordinates: the total energy per particle
mass E = v2/2 + eaΦ/ma that is a constant of motion for time inde-
pendent electrostatic potential Φ and in the absence of induced electric
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Chapter 3. Neoclassical transport

fields (we do not consider the relativistic case, when the particle mass
is not constant), the magnetic moment per particle mass µ = v2⊥/(2B)
that is an adiabatic invariant, and the gyro-angle ϕ. In these coordi-
nates the magnitude of the different velocity components are v2⊥ = 2µB
and v2‖ = 2[(E − eaΦ/ma)− µB].

In an arbitrary set of phase space coordinates {zi}6i=1 the kinetic
equation can be written as

∂tf +

6
∑

k=1

żk∂f/(∂zk) = C[f ], (3.8)

where the time derivative is taken at fixed z and the partial derivative
with respect to any zk is taken keeping all the other phase space co-
ordinates and the time fixed. The over-dot acting on any quantity Q
denotes Q̇ ≡ ∂tQ+ v · ∇Q+ (ea/ma) (E+ v ×B) · ∂vQ. Accordingly,

∂fa
∂t

+ ϕ̇
∂fa
∂ϕ

+ Ė ∂fa
∂E + µ̇

∂fa
∂µ

+ v · ∇fa = Ca[fa]. (3.9)

It can easily be shown that, assuming E‖ ≪ E⊥, to lowest order in δ
the total time derivatives of the velocity space coordinates are

Ė0 =
ea
ma

v⊥ · (E+∇Φ)

µ̇0 = − µ

B
v · ∇B −

v‖

B
v · ∇b · v +

ea
maB

v⊥ ·E

ϕ̇0 = −Ωa. (3.10)

Since the largest term in Eq. (3.9) is the one describing the Larmor
rotation (∝ ϕ̇), the lowest order kinetic equation is

−Ωa
∂f0
∂ϕ

= 0, (3.11)

where the distribution function is given as a series f = f0 + f1 + . . .
[fi+1/fi = O(δ)]. Equation (3.11) implies that the lowest order distri-
bution is gyro-phase independent. To next order we get

−Ωa
∂f1
∂ϕ

+ ϕ̇1
∂f0
∂ϕ

+ Ė0
∂f0
∂E + µ̇0

∂f0
∂µ

+ v · ∇f0 = C0[f0]. (3.12)

The gyro-phase average of this equation provides a constraint on f0

v‖b · ∇f0 = C0[f0], (3.13)
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3.2. Drift kinetic equation

where we used that on gyro-phase average the terms containing ϕ-
derivatives of single valued functions should vanish, and 〈Ė0〉ϕ = 0 =
〈µ̇0〉ϕ, furthermore the lowest order term in the gyro averaged velocity
is the parallel streaming. Taking the transit average of Eq. (3.13) over
a full bounce period for trapped particles and over a complete poloidal
circuit for the passing particles annihilates the left hand side of the
equation yielding

∮

dτC[f0] =

∮

dθ

v‖b · ∇θ
C[f0] = 0,

where τ denotes time. This constraint has the solution

f0 = ηa

(

ma

2πTa

)3/2

e−maE/Ta = na

(

ma

2πTa

)3/2

e−mav2/(2Ta),

that is a Maxwellian distribution, with ηa(r) = na(r) exp[eaΦ(r)/T (r)].
But the collision operator acting on a Maxwellian should vanish (since
the system reached local thermodynamic equilibrium), thus Eq. (3.13)
reduces to

v‖b · ∇f0 = 0. (3.14)

Since v‖ is arbitrary, this new constraint implies that f0 should be con-
stant along the field lines, which – together with the requirement of f0
being continuous – means that the lowest order distribution (and also
ηa) should be a flux function f0 = f0(Ψ, E).

To calculate the first order distribution f1 it is more convenient to
employ the canonical angular momentum Ψ∗ = Ψ−maRζ̂ ·v/ea (where
ζ̂ is the unit vector pointing in the toroidal direction) that is a constant
of the motion (Ψ̇∗ = 0). Considering Ψ∗ as a phase space variable we
can define the distribution

f∗(Ψ∗, E) = η∗(Ψ∗)

(

ma

2πTa(Ψ∗)

)3/2

e−maE/Ta(Ψ∗)

which has a very simple total time derivative

ḟ∗ = Ψ̇∗
∂f∗
∂Ψ∗

+ Ė ∂f∗
∂E +

∂f∗
∂t

= Ė ∂f∗
∂E +

∂f∗
∂t

.

We can write the distribution function as f = f∗ + h which, inserted in
the full kinetic equation (3.9), gives

ḣ+ Ė ∂f∗
∂E +

∂f∗
∂t

= C[f∗ + h]. (3.15)
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Chapter 3. Neoclassical transport

Writing the unknown part of the distribution h = h1 + h2 + . . . , using
that Ė = ea[∂tΦ − v · (∂tA)]/me is small according to the transport
ordering, to lowest order we find

−Ωa
∂h1
∂ϕ

= C0[f0] = C0[fM ] ≡ 0,

thus h1 is independent of the gyro-angle. Using this fact, the next order
equation can be written as

−Ωa
∂h2
∂ϕ

+ v · ∇h1 + µ̇
∂h1
∂µ

+
ea
ma

v · (E+∇Φ)
∂f0
∂E = C[f∗ + h1]. (3.16)

Since the collision operator acting on a Maxwellian is zero, we can make
the replacement C[f∗ + h1] → C[f∗ − f0 + h1].

Gyro-averaging Eq. (3.16) leads to the drift kinetic equation

v‖b · ∇h1 −
ea
Ta

f0v‖b · (E+∇Φ) = Cl

[

h1 −
Iv‖

Ωa

∂f0
∂Ψ

]

, (3.17)

where we used that the gyro-average of µ̇ vanishes, and approximated
f∗ by its Taylor expansion about Ψ to the first order

f∗ = fM (E ,Ψ) + (Ψ∗ −Ψ)
fM
∂Ψ

∣

∣

∣

∣

E

+ · · · ≈ f0 −
ma

ea
Rζ̂ · v∂f0

∂Ψ

∣

∣

∣

∣

E

. (3.18)

In Eq. (3.17) we approximated the Coulomb collision operator C with
the linearized collision operator Cl and used the rotational symmetry of
Cl to write 〈Cl[f∗ − f0 + h1]〉 = Cl[〈f∗ − f0〉 + h1]. For ions the second
term in the left hand side of Eq. (3.17) arising due to the induced electric
field is negligibly small, furthermore usually only the ion-ion collisions
need to be taken into account. The electron drift kinetic equation is more
complicated as the electrons are collisionally coupled to the ions, and
the effect of the induced electric field is not negligible. It can simplify
the latter problem if the solution fS of the Spitzer problem

Cl[fS ] =
e

Te
f0ev‖b · (E+∇Φ)

is known.
The drift kinetic equation is sometimes written in an alternative

form. The gyro-average of the first order correction to the lowest order
Maxwellian can be written as

f̄1 = h1 −
Iv‖

Ωa

∂f0
∂Ψ

∣

∣

∣

∣

E

.
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Realizing that the radial component of the guiding center drift velocity
[Eq. (2.1)] can be conveniently expressed as

vd · ∇Ψ = Iv‖b · ∇|E,µ
(

v‖

Ωa

)

, (3.19)

the drift kinetic equation for f̄1 can be easily derived

v‖b · ∇|E,µf̄1 − Clf̄1 = − vd · ∇Ψ
∂f0
∂Ψ

∣

∣

∣

∣

E

+
ea
Ta

f0v‖b · (E+∇Φ). (3.20)

3.3 Collisionality regimes

Depending on the relative magnitudes of the effective collision frequency
νeff – that is, the typical frequency of the collisional de-trapping of
trapped particles – and the typical frequencies for the circulating and
trapped particles to complete a full orbit (a full poloidal circuit or a
banana orbit respectively), we can identify three collisionality regimes.
In the low collisionality limit, the so called banana regime that is typ-
ical in the high temperature core in the tokamaks, both trapped and
circulating particles can complete their orbits before they become de-
trapped/trapped by collisions. In the high collisionality limit, that is
called the Pfirsch-Schlüter (PS) regime, both circulating and trapped
particle orbits are frequently interrupted by collisions. For large aspect
ratio (ǫ ≪ 1) there is a third, intermediate collisionality regime, the
plateau regime, where the circulating particles are weakly collisional,
like in the banana regime, but the trapped and barely passing particle
orbits are frequently interrupted by collisions (due to the lower parallel
velocity of these particles).

Mathematically, in the PS regime the typical mean free path vT /ν is
much smaller than the connection length qR, thus νqR/vT ≫ 1, while in
the banana regime the effective collision frequency (the frequency of the
collisional de-trapping of trapped particles νeff ∼ ν/ǫ) is much smaller
than the bounce frequency ωb ∼ √

ǫvT /(qR), accordingly νqR/vT ≪
ǫ3/2. Finally, the plateau regime that occupies the range between these
two is characterized by ǫ3/2 ≪ νqR/vT ≪ 1.

In the banana regime the main part of the radial collisional trans-
port is caused by the trapped particles. Due to the magnetic drifts these
particles have radially extended guiding center orbits. Using the conser-
vation of the canonical angular momentum of the guiding centers Ψ̄∗ the
radial width of the banana orbits can be easily estimated as ∆b ∼

√
ǫρp,
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where ρp = ρBt/Bp (≫ ρ) denotes the poloidal Larmor radius. Col-
lisions, by interrupting and de-trapping particles at different points of
their banana orbits can therefore cause a radial displacement of particles
with a step length comparable to ∆b, and in the long term they lead to
a diffusive transport.

The diffusivity in the banana regime can be estimated from a random
walk picture as Db ∼

√
ǫνeff∆

2
b ∼ νρ2q2/ǫ3/2, where the

√
ǫ factor comes

from the trapped fraction. This diffusivity significantly exceeds the clas-
sical diffusivity Dcl ∼ νρ2 discussed in the beginning of Chapter 3, as q
is typically higher than unity (except really close to the magnetic axis)
and ǫ is smaller than unity. To demonstrate that the contribution of the
circulating particles is lower than that of the banana particles we note
that a typical circulating particle gets trapped on the time scale of the
collision frequency ν (≪ νeff) and the radial extent of its orbit is smaller
by a factor of

√
ǫ than a typical banana width, which leads to a diffusion

coefficient ∼ q2ρ2ν ≪ Db.
In the PS regime the parallel motion of the particles is frequently

interrupted by collisions and as they change directions they drift up-
wards or downwards with the magnetic drift frequency. We can use a
random walk model to give an estimate for the diffusivity. The parallel
step length is the mean free path λ ∼ vT /ν which gives a parallel dif-
fusion coefficient D‖ ∼ λ2ν ∼ v2T /ν. The time to go around the torus
poloidally in a random walk fashion is therefore ∆t ∼ (qR)2/D‖. The
radial step length is then ∆r ∼ vd∆t ∼ ρvT∆t/R, from which the radial
PS diffusion coefficient can be calculated as DPS ∼ (∆r)2/∆t ∼ νρ2q2.
Since this collisionality regime is typical in the plasma edge, where the
safety factor q is larger than unity, the PS transport also exceeds the
classical transport.

The diffusion coefficients in both of the above collisionality regimes
exhibit a linear dependence on collision frequency. Interestingly for in-
termediate collisionalities, where the passing particles are collisionless
and the trapped ones are collisional (i.e. the plateau regime), the diffu-
sion coefficients become independent of collision frequency, although the
transport is caused by collisions. This is rather convenient since the de-
tails of the collision process (and the form of the collision operator used)
become unimportant. The transport in the plateau regime is caused by
a resonance between the transit- and collision frequencies of slowly cir-
culating particles [mathematically: slowly as (v‖/v)

3 ∼ νqR/v ≪ 1,
but circulating

√
ǫ ≪ v‖/v(

.
= ξ)]. To give a simple random walk es-
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timate in this region the usual (∆r)2/∆t should be multiplied by the
fraction of the resonant particles F ∼ ξ ∼ (νqR/v)1/3. The step time
is the inverse of the effective collision frequency νeff = ν/ξ2 and the
step size is ∆r ∼ vd/νeff , which leads to diffusivities with the magnitude
Dp ∼ qρ2vT /R. Not surprisingly, this estimate is obtained if we replace
νqR/vT by ǫ3/2 in the banana diffusivity estimate or by 1 in the PS esti-
mate. The collisionality dependence of the neoclassical diffusivity in the
banana, plateau and P-S collisionality regimes is illustrated in Fig. 3.1.

Figure 3.1: Classical (dashed) and neoclassical (solid) diffusivities as func-
tions of the collisionality in large aspect ratio (ǫ ≪ 1). For increasing ǫ the
neoclassical diffusivity curve becomes more and more smooth and the plateau
region shrinks until it completely disappears for ǫ ∼ O(1).

To demonstrate how transport arises in the plateau regime we solve
the ion drift kinetic equation, which, after introducing the distribution

Hi = h1i −
Iv‖f0i

ΩiTi

(

miv
2

2Ti
− 5

2

)

∂ lnTi
∂Ψ

,

and considering a large aspect ratio circular cross section plasma, can
be written in the form of

ξ
∂Hi

∂θ
+

νeffqR

v
Hi = Qi sin θ, (3.21)

where Qi is a source term proportional to the ion temperature gradient,
and the collision is modeled with a simple Krook operator C[Hi] →
−νeffHi. The radial fluxes are calculated as the flux surface average of
certain velocity moments of fvd · r̂, and we know that vd · r̂ ∝ sin θ,
so only that part of the solution Hi of Eq. (3.21) which is odd in theta
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needs to be kept. It is easy to show that

Hi(odd) = Qi
∆

ξ2 +∆2
sin θ,

where ∆ = νeffqR/v ≪ 1. In the ∆ → 0 limit the function ∆/(ξ2 +∆2)
approaches a Dirac delta function times a constant. Physically it means
that mainly those particles contribute to the transport for which ξ =
v‖/v is small enough that it becomes comparable to ∆, that is, the ones
having similar effective collision frequencies and transit frequencies. We
note that using more sophisticated collision operators would lead to the
same result [27].

3.4 Bootstrap current

In a cylindrical straight field line geometry parallel current arises only
due to parallel electric field and is determined by the conductivity. This
contribution to the total current in toroidal geometry is called the Spitzer
current (or ohmic current). However in the toroidal case there are further
components of the parallel current. Since the surface area of a flux
surface in the outboard side is higher than in the inboard side, and the
kinetic pressure is constant on a flux surface, a force pointing towards the
outboard side is acting on the plasma column. There are perpendicular
currents flowing within the flux surfaces to counteract this effect by
their J ×B force. To make the total current divergence free a parallel
return current, the Pfirsch-Schlüter current, arises. This current has
opposite directions in the inboard and outboard sides and vanishes on
flux surface average. Apart from the ohmic and PS currents there is
a further component of the total parallel current that does not vanish
on flux surface average, the so called bootstrap current generated by
density and temperature gradients.

To understand the physical mechanism behind the bootstrap current,
first we introduce the concept of diamagnetic flow. A particle orbit
deviates from the a given magnetic surface to a certain extent partly
because of the finite Larmor radius of the particle and partly due to
the drifts of the guiding center. The former effect is present even in
cylindrical geometry, and having radial gradients in the density and
temperature of the species causes a fluid flow perpendicularly to the field
lines [in the direction of sign(ea)b×∇{n, T}, the so called diamagnetic

direction]. In a certain spatial point there are particles passing with their
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guiding centers being in the higher or the lower density (temperature)
region; these two groups of particles have opposite velocity components
in the diamagnetic direction. Since in the higher density (temperature)
region there are more particles (having higher velocity), there will be
more particles moving in the diamagnetic direction than the opposite
direction, hence causing a net flow, that turns out to be proportional
to the pressure gradient. This is a purely fluid flow, since the particle
guiding centers (the average position of particles with regard to a field
line) are staying still.

In toroidal geometry, the magnetic drift of particles causes even
larger deviations from a reference flux surface (for trapped particles com-
parable to the banana width). The particles are mainly moving parallel
to the field lines but due to the drifts they pass higher and lower pres-
sure regions, which, by a process analogous to the one causing the usual
diamagnetic flow, generates a parallel flow, again, proportional to the
gradients in plasma profiles (see the illustration in Fig. 3.2).

net 
parallel 
flow

?

p

Figure 3.2: Parallel diamagnetic flow of trapped particle guiding centers (top
view).

It can be shown that the diamagnetic flow of the passing electrons is
higher than that of the trapped ones by a factor of ǫ−1/2, even though
the banana width is larger than the deviation of circulating orbits from
flux surfaces. Electron-electron collisions conserve momentum, therefore
the momentum loss of trapped electrons in collisions with the circulating
ones and the momentum loss of circulating particles in collisions with
the trapped ones should balance. If the parallel flows would simply
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Chapter 3. Neoclassical transport

consist of the diamagnetic flows caused by the guiding center motion, the
parallel momentum balance could not be achieved. Accordingly there
should be an additional parallel flow of circulating particles, which is –
interestingly – even higher than the diamagnetic flow of these particles.
This flow produces the bootstrap current.

For radially monotonically decreasing density and temperature pro-
files (which is almost always the case) the bootstrap current has the same
direction as the ohmic current, thus reducing the need of the ohmic cur-
rent drive which limits the length of the plasma discharges. Therefore, it
is considered to be advantageous for reactor relevant operation of toka-
maks. However, it can be shown that a tokamak cannot operate on
purely bootstrap current because the decreasing gradients towards the
magnetic axis would lead to magnetohydrodynamically unstable mag-
netic configurations. The bootstrap current also plays an important role
as a destabilizing factor for certain MHD instabilities.

3.5 Neoclassical transport in H-mode pedestals

The deviation of guiding centers from flux surfaces (the orbit width)
scales as the poloidal Larmor radius ρp, although formally smaller than
that by a factor of

√
ǫ for trapped and ǫ for circulating particles. How-

ever in realistic magnetic geometries at the edge
√
ǫ can be O(1), and

the banana width becomes comparable to ρp. There is experimental
evidence showing that the density length scale in an H-mode pedestal
can also be as small as the poloidal Larmor radius of ions, which causes
two problems. Most of the drift kinetic and gyrokinetic treatments as-
sume that the orbit width of the particles is much smaller than the scale
lengths of the background parameters, which might be violated in the
pedestal. Another problem is that, assuming sub-sonic toroidal rota-
tion of ions, the lowest order ion pressure balance equation requires the
existence of a strong radial electric field

dΦ

dr
≈ −Ti

ei

d lnni
dr

,

that significantly modifies the ion orbits. In particular, electrostatic
trapping of particles becomes important and the trapped region can be
shifted towards the tail of the distribution for sufficiently large radial
electric fields, as it is illustrated in Fig. 3.3.

In neoclassical theory the fact, that the radial drift term in the ki-
netic equation [first term in the right hand side of Eq. (3.20)] can be
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v||0

0

v||0

0

Figure 3.3: Location of the trapped region in velocity space in the weak radial
electric field limit (left) and for finite electric field (right). The lowest order
Maxwellian distribution is indicated with a gray-scale density plot.

expressed in terms of the parallel motion as in Eq. (3.19), is often used
to mathematically simplify the problem since this form has similar struc-
ture to the parallel streaming term [the first term in the left hand side
of Eq. (3.20)]. This can only be done though, when the poloidal motion
of particles is dominated by the parallel streaming (v · ∇θ = v‖b · ∇θ
in lowest order), which is usually the case. However, in the pedestal the
E×B drift in the strong radial electrostatic field can have a comparable
contribution to the poloidal motion. For this reason, vE×B needs to
be kept in the same order in the formalism as v‖, but since vE×B · ∇θ
cannot be expressed in terms of the parallel velocity the above simpli-
fying trick cannot be applied. To make progress, another approach can
be used in which the canonical angular momentum (or its gyro-average)
replaces the poloidal flux as one of the independent variables, which
is convenient because Ψ̇∗(∂ ·)/(∂Ψ∗) = 0. This method which makes
clear the distinction between transit averages and flux surface averages
was developed by Kagan and Catto [30]. As a complement to their ba-
nana regime calculation, we calculate the corrections to the neoclassical
plateau regime transport retaining finite E × B departures from flux
surfaces in paper C. An overview of these results completed by a zonal
flow residual calculation can be found in Ref. [G].
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Chapter 4

Turbulent transport and
microinstabilities

It was recognized from early fusion experiments that the heat transport
across the flux surfaces is so high that it cannot be explained purely
by collisional processes, even taking the neoclassical corrections into ac-
count. As will become clear in the sequel, turbulent flows of the plasma,
referred traditionally as anomalous transport, account for the major
part of the particle and heat fluxes. The turbulence is driven by differ-
ent drift-type microinstabilities that are destabilized by inhomogeneities
in the plasma parameters.

A rough estimate of the turbulent transport can be obtained using
a simple random walk estimate, assuming that the step length ∆ is
comparable to the ion thermal Larmor radius ρT = vT /Ωc and the step
time τ scales as the inverse of a typical (magnetic or diamagnetic) drift
frequency ∼ kθρT vT /a ∼ vT /a, where we used that the perpendicular
wave length ∼ 1/kθ is also comparable to the Larmor radius and the
scale lengths of plasma parameters scale as the minor radius of the device
a. This leads to the gyro-reduced Bohm (or simply “gyro-Bohm” [32])
scaling

D ∼ ∆2/τ ∼ ρ2T
vT
a

∼ ρT
a

T

eB
. (4.1)

The level of transport is determined by the saturation amplitude
of the perturbed quantities, and therefore the assumption of different
saturation mechanisms leads to different diffusivities. One widely used
approach is the mixing-length estimate [33], which balances the drift
wave drive due to gradients (∼ ω∗α) against the E × B nonlinearity
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Chapter 4. Turbulent transport and microinstabilities

leading to a diffusivity D ∼ γ/k2⊥, where γ is the linear growth rate
of the most unstable mode. This is equivalent to a “wave breaking”
picture, where the fluctuation amplitude saturates when the gradients
of the perturbed quantities grow to the level of the equilibrium gradients

∇n̂ ∼ ∇n ⇒ k⊥n̂ ∼ n/Ln. (4.2)

Assuming a Boltzmann relation between the density and potential per-
turbations, (n̂ and φ̂ respectively), this implies eφ̂/T ∼ (k⊥Ln)

−1.

4.1 Gyrokinetic description

For investigating microinstabilities and for quantitative calculation of
the turbulent fluxes one has to compute the distribution function of the
different species, which can be done within the framework of gyrokinetic
description of plasmas. This gyro-averaged kinetic description allows for
short perpendicular wave lengths k⊥ on the order of the (ion or electron)
Larmor radius and frequencies ω much lower than the ion cyclotron
frequency Ωc. In terms of the small parameter δ = ρ/L ∼ ρ/a the
ordering of the gyrokinetic theory can be written as

f̂a
fa

∼ eaφ̂

Ta
∼ eavTa|Â|

Ta
∼

k‖

k⊥
∼ ω

Ωca
∼ δ, (4.3)

where hat denotes the perturbed quantities. This ordering is often com-
pleted by assuming slow variation of the ensemble-averaged quantities
∂/∂t ∼ δ2, the so called transport ordering.

In the recursive method of deriving the gyrokinetic equation [34]
the distribution function is separated to perturbed f̂a and equilibrium
parts fa and these together with the perturbed and equilibrium B and
E fields are expanded in δ. The gyrokinetic equation is derived from the
Fokker-Planck equation

[

∂

∂t
+ v · ∇+

ea
ma

(

(E+ Ê) + v × (B+ B̂)
)

· ∂

∂v

]

(fa + f̂a)

= Ca[fa + f̂a]. (4.4)

From the ensemble average of Eq. (4.4) different orders of the drift ki-
netic equation can be derived, which, in particular, can be used to de-
termine the lowest order equilibrium distribution that is considered to
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4.1. Gyrokinetic description

be known in the gyrokinetic equation (and usually is a Maxwellian in a
rotating frame of reference).

To obtain an equation for the perturbed distribution f̂a, we subtract
the ensemble average of Eq. (4.4) from Eq. (4.4), yielding

[

∂

∂t
+ v · ∇+

ea
ma

(E+ v ×B) · ∂

∂v

]

f̂a

= − ea
ma

(

Ê+ v × B̂
)

· ∂(fa + f̂a)

∂v
+ Ca − 〈Ca〉ens −Da, (4.5)

where we introduced the fluctuation-particle interaction operator Da =
−(ea/ma)〈(Ê+ v × B̂) · ∂vf̂a〉ens.

The gyro-average of Eq. (4.5) to first order provides a constraint for
f̂a1 which should then have the form

f̂a1(x) = −eaΦ̂(x)

Ta
+Ha(X),

where the first term in the right hand side is called the adiabatic (or
Boltzmann) part of the perturbed distribution and the second term is the
non adiabatic part. The gyro-average of the next order equation leads to
the gyrokinetic equation, which, in axisymmetric toroidal configuration,
if the 0th order toroidal rotation can be neglected, can be written as
[34, 35]

∂ha
∂t

+ (v‖b+ vd) · ∇Ha + v̂d · ∇ha − Ca[Ha] = −v̂d · ∇fa0, (4.6)

where vd is given in Eq. (2.1), and we introduced the perturbed drift
velocity v̂d = b×∇Û/B and ha(X) = Ha(X)−eafa0Û(X)/Ta, with the
following gyro-averaged 〈·〉ϕ quantity

Û(X) =
〈

Φ̂(X+ ρ)− v · Â(X+ ρ)
〉

ϕ
. (4.7)

To allow for sharp variations perpendicularly to the field lines, the
perturbed fields Ŷ are expressed through the eikonal (or WKB) approx-
imation

Ŷ (x) = Y∗(X)eik⊥·x, (4.8)

where Y∗ and k⊥ are spatially slowly varying functions. The gyro-
average is

〈Ŷ 〉ϕ(X) = eik⊥·XY∗〈eik⊥·ρ〉ϕ. (4.9)
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The average can easily be evaluated in terms of the Bessel function of
the first kind Jn, using that

Jn(z) =
1

2π

∮

dγe−inγ+iz sin γ . (4.10)

Thus we have

〈eik⊥·ρ〉ϕ = J0(k⊥ρ),

〈v⊥e
ik⊥·ρ〉ϕ = iv⊥J1(k⊥ρ)(k⊥ × b)/k⊥, (4.11)

〈ρeik⊥·ρ〉ϕ = iρJ1(k⊥ρ)k⊥/k⊥.

Using these we find that

Û(X) = J0(k⊥ρa)
[

Φ̂(X)− v‖Â‖(X)
]

+
1

2
[J0(k⊥ρa) + J2(k⊥ρa)]

v2⊥
Ωca

B̂‖(X). (4.12)

In linear gyrokinetic calculations the nonlinearity in Eq. (4.6) repre-
sented by the v̂d ·∇ha term is neglected. But even in the linear case the
equation is a partial differential equation for which analytical solution
can only be found in the simplest geometry and using further approx-
imations. Usually the linear gyrokinetic equation is solved numerically
either by looking for the asymptotic behavior of the time dependent
coupled gyrokinetic-Maxwell system (this is the “initial value solver”
approach), or by constructing a linear matrix equation from the dis-
cretized, Laplace-transformed problem and solving for its eigenmodes
(this is the “eigenvalue solver” approach [35]). The advantage of the
latter method is that it can find sub-dominant modes, while the initial
value solver methods converge to the most unstable eigenmode.

4.2 Ballooning formalism

The turbulent fluctuations in plasmas are typically highly elongated
along magnetic field lines (i.e. their parallel wave length 1/k‖ is com-
parable to the connection length qR), but they have a short perpen-
dicular scale (k⊥ρ ∼ 1). The seemingly simplest way to represent such
an elementary perturbation would be to write it as a flute-like mode:
∝ ei(mχ−nϕ), χ and ϕ are the poloidal and toroidal coordinates respec-
tively, and m = nq with the integers m and n. However, this form turns
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4.2. Ballooning formalism

out to be useful only on a rational surface (i.e. a surface with rational
q) and it is incompatible with the periodicity conditions in χ and ϕ as
soon as q is irrational, that is, at any finite distance from the rational
surface for finite magnetic shear.

The linear mode structure of microinstabilities is not localized around
rational surfaces but rather it is radially extended over several ratio-
nal surfaces (which are, in this case, close to each other due to the
high toroidal mode number). Thus, instead of employing a flute-like
expansion of the modes, it is more convenient to consider the prob-
lem in the ballooning representation which is appropriate for the de-
scription of mode structures characterized by short perpendicular and
long parallel wavelengths when the magnetic shear is finite [36]. After
separating the time dependence e−iωt, using an eikonal representation,
the nth toroidal harmonic of the perturbed field Ŷ can be expressed as
Ŷn(r, χ, ϕ) = ŷn(r, χ)e

−in[ϕ−q(r)χ], which can further be written as

Ŷn(r, χ, ϕ) =
∑

θ0

∞
∑

j=−∞

ŶB,n(χ+ 2πj, θ0)e
−in[ϕ−q(r)(χ+2πj+θ0)], (4.13)

where the ballooning function ŶB,n depending on the extended poloidal
angle θ = χ+2πj ∈ R has been introduced together with the ballooning
angle θ0, which acts as linear eigenmode label [37]. Physically θ0 is
the poloidal angle where the wave fronts are perpendicular to the flux
surfaces. The originally two-dimensional problem for ŷn(r, χ) – with a
periodicity condition in χ – now reduces to a series of one dimensional
calculations for ŶB,n(θ, θ0) with the much simpler condition ŶB,n(|θ| →
∞, θ0) → 0. In the limiting case of ρ∗ → 0, keeping N terms of the
θ0 series, so that θ0 = {2πl/N mod 2π}Nl=1, gives radially N∆ periodic
eigenmode solutions, where ∆ = (nq′)−1 is the distance between the
adjacent rational surfaces. The use of this expansion becomes apparent
if we note that the most unstable mode can usually be calculated by
considering only the θ0 = 0 term.

We would like to emphasize that the elementary modes in ballooning
representation are radially periodic. Strictly speaking this would rep-
resent the reality only if the different geometry and plasma parameters
were constant over the considered radial domain. However, to simplify
the mathematical problem we can approximate these parameters (and
their derivatives) with their value at a certain radial point within the
considered radial domain (we might call this procedure the “flattening of
the profiles”). This can be justified when the considered radial domain
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is small compared to the size of the device (i.e. in the ρ∗→0 limit). Ra-
dial periodicity and flattening of the profiles are often imposed even in
nonlinear simulations to increase computational efficiency, as in this case
the differential operators appearing in the gyrokinetic-Maxwell system
have no explicit dependence on radius and the binormal coordinate, thus
the perturbed quantities can be Taylor-expanded in the perpendicular
domain.

For a low-β, circular cross section, axisymmetric, large aspect ratio
equilibrium the linearized gyrokinetic equation for the nonadiabatic part
of the distribution ga reads in the ballooning representation as [39]

v‖

qR
∂θga − i (ω − ωDa) ga − C[ga] = −i

eafa0
Ta

(

ω − ωT∗a
)

φJ0(za), (4.14)

where g = ĝB,n and φ = Φ̂B,n in the notation of Eq. (4.13). Here,

only purely electrostatic perturbations are considered {Â‖, B̂‖} = 0,
and θ0 = 0 is chosen. The time derivative is expressed in terms of wave
frequency ∂t → −iω. Conventionally ωT∗a = ω∗a

[

1 +
(

x2a − 3
2

)

Lna/LTa
]

,
where ω∗a is the diamagnetic frequency, xa is the velocity normalized to
the thermal speed, Lna = − [∂r(lnna)]

−1 and LTa = − [∂r(lnTa)]
−1 are

the density and temperature scale lengths, ωDa = kθ(v
2
⊥/2+ v2‖)(cos θ+

sθ sin θ)/(ΩaR) is the magnetic drift frequency (without the finite beta
correction). The argument of the Bessel function being responsible for
the finite Larmor radius effects is za = kθv⊥a

√
1 + s2θ2/Ωa. The equi-

librium distribution fa0 is taken to be Maxwellian.

4.3 Particle and heat fluxes

To illustrate how turbulent fluxes arise first we consider only electrostatic
perturbations. The potential perturbation Φ̂ corresponds to a perturbed
drift velocity v̂d = b×∇Φ̂/B producing an ambipolar particle flow. The
flux surface average of this flow gives the particle flux Γa [8], which can
be expressed as

Γa = ℜ〈n̂av̂∗
d · r̂〉ψ, (4.15)

where n̂a is the perturbed density and r̂ is the radial unit vector. In
the electrostatic case the drive term in the gyrokinetic equation [the
right hand side of Eqs. (4.6) or (4.14)] is proportional to the potential
perturbation, therefore the density or temperature perturbations that
are different moments of the perturbed distribution function should also
have this property.
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Using that (b×∇Φ̂∗) · r̂ = ikθΦ̂
∗, the particle flux can be written as

Γa = −
〈

kθTana
eB

∣

∣

∣

∣

∣

eΦ̂

Ta

∣

∣

∣

∣

∣

2

ℑ
[

n̂a/na

eΦ̂/Ta

]〉

ψ

, (4.16)

where (n̂a/na)/(eΦ̂/Ta) is called the density response. Similarly one
finds that the energy flux is

Qa = −
〈

kθT
2
ana

eB

∣

∣

∣

∣

∣

eΦ̂

Ta

∣

∣

∣

∣

∣

2

ℑ
[

T̂a/Ta

eΦ̂/Ta

]〉

ψ

, (4.17)

with the temperature response (T̂a/Ta)/(eΦ̂/Ta). It is important to em-
phasize that – as it is clear from Eqs. (4.16) and (4.17) – particle (energy)
fluxes rise only when the perturbed density (temperature) and the per-
turbed potential are out of phase. In particular if the non-adiabatic
electron response is neglected there is no particle flux in a plasma with-
out impurities. Trivially, the adiabatic part of the distribution does not
lead to radial fluxes.

The mechanism of the quasilinear fluxes is illustrated in Fig. 4.1,
where the potential is color coded and the density is contour-plotted
with dotted lines. Particles drift along equipotential contours (indicated
by blue arrows) with the E×B drift velocity. The mode propagates in
the (electron or ion) diamagnetic direction (gray arrow), and the phase
shift between the density and potential perturbations leads to that the
the maxima of the density perturbations lag behind the maxima of the
potential perturbations. And since the density is apparently higher in
the outward (upward in the figure) than the inward flow region the
resulting imbalance in the flows leads to a net radial particle flux. The
same picture holds for temperature perturbations and energy fluxes.

The magnitude of the fluxes depends on the amplitude of the poten-
tial perturbations which remains undetermined in the solution of the lin-
ear problem. The most reliable method to calculate absolute fluxes is to
perform nonlinear simulations, where nonlinear saturation mechanisms
set the magnitude of the perturbed quantities. A less accurate, but com-
putationally less expensive (and sometimes even analytically tractable)
method is the quasilinear approach. In this case the linear problem is
solved for different toroidal mode numbers to obtain the linear responses,
then the fluxes are calculated using certain estimates for the magnitude
of the perturbed potential based on simple mixing-length arguments or
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Figure 4.1: Schematic picture on the mechanism behind the radial fluxes
driven by electrostatic turbulence. The perturbed potential – giving rise to
E×B flows – is color density plotted; the perturbed density is contour plotted
with dotted lines.

experience with nonlinear simulations. In analytical models usually only
one representative linear mode is chosen (corresponding to the highest
γ or γ/k2⊥). This approach is useful when the cross-phases between the
perturbed quantities are approximately preserved as one moves from
linear to non-linear simulations (the relevance of linear cross-phases is
discussed in Ref. [38]).

Not only electrostatic, but magnetic perturbations can also drive par-
ticle and energy fluxes. In the notation of Eqs. (4.6) and (4.7), Eq. (4.15)
can be written in terms of functions of the guiding center position as

Γa = ℜ
〈
∫

d3vHa〈v̂∗
d〉ϕ · r̂

〉

ψ

, (4.18)

where Ha is determined by the electrostatic gyrokinetic equation and
〈v̂∗
d〉ϕ = b× 〈Φ̂∗〉ϕ/B. In the electromagnetic case Ha is determined by

Eq. (4.6) with a source term including the contributions from v · Â, and
〈v̂∗
d〉ϕ = b× Û∗/B.

4.4 Microinstabilities

The generation of fine-scale turbulence in plasmas is believed to be pro-
duced by microinstabilities [40, 41], i.e. instabilities which have wave-
lengths that are comparable to the ion or electron Larmor radii. To
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obtain an overall picture of turbulent transport, and for the calculation
of turbulence saturation levels, nonlinear processes have to be taken into
account. However it is useful to identify the possible drives and condi-
tions of turbulent processes. Investigation of linear mode characteristics
can provide estimates of stability thresholds and parametric dependences
of turbulent fluxes.

Since the goal of fusion experiments is to sustain enormous temper-
ature gradients (the ∼ 4K ≈ 4 · 10−4 eV cryostat of a superconducting
device is separated from the ∼ 10 keV plasma core only by a few meters
or less), the plasma is always far from thermodynamic equilibrium. In
this non-equilibrium state the available free energy might be transferred
to turbulent flows via instabilities. Drift waves are particularly impor-
tant class of microinstabilities which have often been invoked as the main
source of plasma turbulence. Dissipation through, e.g., collisions or ki-
netic resonances often plays an important role in the de-stabilization of
the drift waves. We mainly focus on these type of instabilities classified
as dissipative modes, while some others, the reactive ones, do not require
dissipation – similarly to a wide range of MHD instabilities. A quite im-
portant class of instabilities is predominantly electrostatic, although in
spherical tokamaks and in the core of conventional tokamaks, where the
kinetic pressure normalized to the magnetic pressure β = p/(B2/2µ0) is
not negligibly small, electromagnetic modes might also play role [41]. In
the present thesis we restrict our studies to electrostatic microinstabili-
ties.

The microinstabilities have spatial scales that are typically much
longer than the Debye length, in addition, they are slow instabilities
compared to the plasma waves, so that the quasineutrality

∑

α eαn̂α
can be shown to be a very good approximation. The quasineutrality
condition can be used to obtain a dispersion relation from the density
responses of the different species.

The spatial and frequency scales of the microinstabilities that are
thought to be accountable for the turbulence are indicated in Fig. 4.2
together with MHD and cyclotron waves. Clearly, the microinstabilities
have much lower frequencies than the cyclotron frequencies (ωce, ωci),
which allows for the use of gyro-averaged equations. The wavelengths
are 10−104 times smaller than the size of the system, ranging from ∼ 10
times the ion Larmor radius to the electron Larmor radius. In contrast to
the MHD waves, this feature makes them somewhat less sensitive to the
shaping effects of the geometry, thus analytical calculations often rely
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on the framework of a circular cross section, large aspect ratio model.
The ion temperature gradient (ITG) mode driven by ion magnetic

drift and transit resonances, which is recognized as the most important
drive of turbulence (to be discussed in detail in Sec. 4.4.1 [11–13]), is
characterized by kθρi <∼ 1, but since the turbulent energy flux spectra
usually peak at lower wave numbers (kθρi ∼ 0.2− 0.4), an expansion in
the FLR parameter might be appropriate. The trapped electron mode
(TE or TEM, see Sec. 4.4.2 [14–16]), appearing in the same wave number
range kθρi <∼ 1, is destabilized by electron magnetic drift resonances or
collisional dissipation. The TE and ITG modes have a frequency range
between the ion and electron bounce frequencies (ωbi, ωbe) which are
comparable with the corresponding transit frequencies (ωti, ωte). This
means that the trapped electrons bounce several times during a wave
period; thus usually a bounce averaged electron gyrokinetic equation is
used, in which the parallel streaming term (v‖b · ∇) is annihilated by
the averaging operation. Trapping effects become important when the
mode frequency is comparable to or lower than the bounce frequency,
since then the particles are moving quickly enough along the field lines
to sample the whole toroidal geometry during a mode period. Whereas
for electron temperature gradient (ETG) and ITG modes the frequen-
cies are higher than the electron/ion bounce frequencies, respectively.
The corresponding trapped particle modes, namely, the trapped elec-
tron mode and the trapped ion mode (TIM) [42], have frequencies that
are lower than or comparable to the bounce frequencies, as it can be
seen in Fig. 4.2. Since the bounce frequency of trapped ions is usually
smaller than the ITG mode frequency, the ion trapping is often neglected
in ITG studies [43].

As an illustration of the drift wave phenomenon, from the quasineu-
trality condition one can derive the simplest possible electrostatic drift
wave by assuming adiabatic electron response, and deriving the ion re-
sponse from Eq. (4.14), neglecting the FLR effects (J0(zi → 0) → 1)
and all the terms on the left hand side, except −iωgi. This wave has
the frequency ω = ω∗e. It is marginally stable since ℑ(ω) = 0, and
it propagates on the flux surface in the electron diamagnetic direction.
Since the magnetic curvature is neglected, ωDi = 0, this mode does
not rely on the toroidal geometry: it is a slab mode. The first term of
Eq. (4.14) coming from the compressibility-like v‖b ·∇ term of Eq. (4.6)
would give sound wave propagation along the field lines. Neglecting this
term would mean that the ion inertia is assumed to be infinite, which is
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Figure 4.2: Typical spatial and temporal scales of different microinstabili-
ties. TIM – trapped ion mode, TEM – trapped electron mode, ITG (ηi) – ion
temperature gradient mode, ETG (ηi) – electron temperature gradient mode,
CDBM – current diffusive ballooning mode, δp – skin-depth (mode); (D) – dis-
sipative, (C) – collisionless, ES/EM – electrostatic/electromagnetic. [Source:
J. Plasma Fusion Res. 76, 1280 (2000)]

justified if the parallel phase velocity of the wave is much higher than
the ion thermal velocity and the magnetic field is not strongly sheared.
In the toroidal picture, this term might be neglected if the considered
frequency range is much higher than the transit or bounce frequency
of ions. Since ρe ≪ ρi, in the description of ion modes (kθρi ∼ 1) the
electron FLR effects can always be neglected (drift kinetic electrons are
considered).

In a local analysis of the ion response, taking collisions into account
by a simple energy-dependent Krook model C[gi] = −(ν/x3)gi, and
replacing the parallel compressibility term by k‖v‖, the ion gyrokinetic
equation reduces to an algebraic equation with the solution

gi =
efi0
Ti

ω − ω∗i

[

1−
(

3
2 − x2

)

ηi
]

ω − k‖v‖ − ωDT (x2⊥/2 + x2‖) + iν/x3
J0(zi)φ, (4.19)

where x = v/vT i and ωDT = ωDiv
2
T i/(v

2
⊥/2 + v2‖). We have introduced
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ηi = Ln/LT , which is a crucial parameter in ITG theory [41], and we
have taken the strongly ballooning limit θ → 0. The ion density re-
sponse appearing in the dispersion relation is the velocity integral of
this expression transformed back from guiding center to real space [by a
multiplication with J0(zi)]. The integral contains poles coming from the
resonances in the denominator. These terms - the transit, the magnetic
drift, and collisional resonances – can destabilize the mode. Depending
on whether the first or the second of these resonances dominate the re-
sulting instability is called slab or toroidal ITG mode, respectively. We
note that in tokamak core plasmas the toroidal mode is the dominant. If
all resonances and FLR effects are neglected (as in the previous example)
the (3/2)ηi and x2ηi terms in the numerator cancel out in the velocity
integration and the mode is not affected by temperature gradients.

In general, the collision term contains a differential operator in veloc-
ity space and the parallel ion dynamics term makes the problem a differ-
ential equation in real space. Moreover, considering the full dispersion
relation with a bounce-averaged electron response term, one obtains an
integro-differential equation in phase space, which would be intractable
analytically without further approximations. One can make use, for
example, of the following considerations: If νe/ω <∼ 1, then νi/ω is negli-
gibly small. For ωbi ≪ ωDT the parallel dynamics term is much smaller
than the magnetic drift term k‖v‖ ≪ ωDT . In addition, if the wavelength
is comparable to or longer than the ion gyro-radius, the electron finite
Larmor radius corrections can be neglected zi <∼ 1 ⇒ ze ∼ 0. Further-
more, one can try to identify the terms that shape the mode structure,
and others setting the mode frequency. Additionally, if ω ≪ ωbe the par-
allel dynamics dominates the circulating electron response; these elec-
trons can almost freely follow the potential perturbation and therefore
have a Boltzmann response. If the drift frequency for thermal veloci-
ties, ωDT , is much lower than the mode frequency, the drift resonance
is expected to play minor role. Then the expansion of the integrand
in the smallness of ωDT /ω – the so called ”non-resonant expansion” –
might be useful, but the validity of this approximation turns out to be
limited [44].

4.4.1 Ion temperature gradient mode

The most important microinstability affecting the ion thermal confine-
ment is the ion temperature gradient mode (ITG or ηi-mode), which is a
passing particle mode in the k‖vT i ≪ ω ≪ k‖vTe frequency range. Clas-
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sically the mode was investigated assuming adiabatic electron response
and the ion response was calculated as (4.19). Depending on whether
the mode is destabilized by the k‖v‖ or the ωDi resonance the mode is
called slab- or toroidal ITG. The former mode, which is basically a cou-
pled drift wave/ion acoustic wave in the presence of a radial ion pressure
gradient, appears even if we neglect the magnetic curvature. Its typical

frequency can be estimated as ω ∼
(

k2‖v
2
T iω∗iηi

)1/3
and it propagates in

the ion diamagnetic direction [41].
In toroidal geometry the curvature replaces the acoustic wave as the

main driving mechanism. The quasi-neutrality condition leads to an
eigenfunction problem in the ballooning angle with solutions peaking
near θ = 0, i.e., in the bad-curvature region, thus showing a ”balloon-
ing structure”. In this region, the magnetic drift acts to destabilize the
mode through the ion temperature gradient [41]. The transit resonance
term and the FLR effects also play an important role in shaping the bal-
looning eigenfunction. This mode also propagates in the ion diamagnetic
direction and has a frequency approximately ω ∼ (ω∗iωDiηi)

1/2.
The physical mechanism behind the toroidal ITG mode is the fol-

lowing. If there is a temperature perturbation in the plasma on the
outboard side of the torus, the (mainly vertical) magnetic drift of par-
ticles will have different velocities in the lower and higher temperature
regions, which leads to a growing density perturbation that is out of
phase with the temperature perturbation. The density perturbation
generates a potential perturbation, which, in turn, will generate E×B

flows. The phase of the perturbed flows with regard to the tempera-
ture perturbations is such that they convect hot plasma to the already
higher temperature spots of the temperature perturbation, leading to
the growth of the perturbation amplitude. On the inboard side the rela-
tive direction of ∇T is the opposite of ∇B and the magnetic curvature,
and the ITG instability is stabilized (thus we often refer to the outboard
and inboard sides of the torus as unfavorable and favorable curvature
regions). The poloidal angle dependence of the drive and the FLR sta-
bilization shapes the typical “ballooning” form of the mode structure.

An important feature of the ITG mode which appears in both slab
and toroidal cases is that the mode is stable below a critical temperature
gradient threshold, as illustrated in Fig. 4.3.

Within the adiabatic electron approximation and for pure hydrogen
plasma, the mode has no unstable roots for ηi = 0. Retaining parallel ion
dynamics is found to be stabilizing through Landau damping, which thus

41



Chapter 4. Turbulent transport and microinstabilities

Figure 4.3: Ion heat diffusivity as a function of the logarithmic temperature
gradient calculated with different gyro-kinetic and gyro-fluid codes. [Source:
Phys Plasmas 7, 969 (2000)]

introduces a q dependence, since in tokamaks the parallel wavelength is
comparable to the connection length ∼ Rq [45]. Introducing a non-
adiabatic trapped electron response, a new root, the trapped electron
mode appears which can be clearly distinguished from the ITG mode
if ηi, ηe and the trapped electron fraction are high, although there are
parameter regimes where the two modes form a single hybrid mode [46],
which can be unstable for ηi values lower than the classical threshold
value (unstable modes with ηi = 0 are possible in case of impure plasma
as well). For toroidal ITG the relevant parameters are R/Ln and R/LT
instead of ηi and ǫn = Ln/R.

We note that the slab mode can be relevant in toroidal geometry as
well, when the magnetic drift frequency becomes much smaller than the
diamagnetic frequency (when ǫn is small), which is typical in the edge
region, where the density profile is not flat [8].

Turbulent fluctuations can generate zero toroidal and poloidal mode
number perturbations which are then not damped by Landau-damping.
These, so called zonal-flows [47], appear as predominantly poloidal flows
within flux surfaces; the direction of which varies on a radial scale com-
parable to the ion Larmor radius.

Zonal flows, together with neoclassical equilibrium flows, have a
strong linear stabilizing effect [48]. In addition, the radial correlation
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length of turbulent structures is decreased by the flows, which leads to
reduced transport for a given fluctuation level. This double effect is
shown in Fig. 4.3 where the ion heat diffusivity curve showing higher
threshold corresponds to higher E×B shearing rate. This kind of tur-
bulence suppression is recognized to be important for the non-linear self
regulation of the plasma and transport barrier formation.

4.4.2 Trapped electron mode

The magnetic field strength in tokamaks decreases from the inboard side
of the torus (”high field side” or HFS) towards the outboard side (”low
field side” or LFS) approximately as 1/R. Thus the gyrating particles –
behaving like small magnetic dipoles following the field lines – experience
a magnetic mirror force. An O(

√
ǫ) fraction of particles with parallel

velocity at the outboard mid-plane lower than v⊥
√

Bmax/Bmin − 1 is re-
flected back from the high-field region, bouncing back and forth. These
trapped particles spend most of their time in the bad-curvature region,
the LFS, thus the curvature drift has a preferred direction (while this
effect averages out for the circulating particles), and the associated local
electrostatic fields drive E×B drifts giving rise to micro-scale instabili-
ties. The trapped particles cannot follow the electrostatic perturbations
freely even if their inertia is negligibly small (mathematically: the v‖b·∇
term vanishes on average over the trapped orbits), therefore they behave
non-adiabatically.

If collisions are not too frequent to de-trap the trapped particles
under a bounce period, various kinds of trapped particle instabilities
can arise. On the other hand, the collisional de-trapping can turn non-
adiabatic particles to adiabatic [49]. Therefore collisions play a crucial
role in the theory of trapped particle instabilities. The collision fre-
quency ν is usually defined by the frequency of π/2 angle scattering.
It is however convenient to define a higher, effective collision frequency

νeff = ν/ǫ describing the frequency of collisional de-trapping.
The trapped electron mode is one of the most important microin-

stabilities which can dominate the transport in the presence of internal
transport barriers and certainly significantly contributes to the anoma-
lous fluxes in tokamaks [40]. The dissipative TEM is destabilized by
the combined effect of the electron temperature gradient and the col-
lisions. The response of the circulating particles is dominated by the
parallel dynamics due to the small electron inertia, therefore neglect-
ing the O( ω

k‖vTe
) ≪ 1 non-adiabatic circulating electron response can
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be adequate [16] in the electrostatic case. For even lower collisionalities
the electron magnetic drift frequency resonance destabilizes the mode,
which is then called the collisionless TEM.

The maximum growth rate typically occurs at kθρi <∼ 1. For high
collisionalities the growth rate γ varies approximately as 1/ν. The TEM
stability boundary shows a strong dependence on collisionality and the
FLR parameter [16].

In paper D we study electron cyclotron (EC) heated and ohmic (OH)
plasmas from the T10 tokamak, where the transport is found to be
mainly driven by trapped electron modes. The qualitatively different
scaling with the electron-to-ion temperature ratios in the two cases is
due to that the TE mode is driven mainly by electron temperature gra-
dients in the EC case and density gradients in the OH case. Collisional
stabilization of the TE modes is also found to be important in these
experimental scenarios.

4.5 The role of collisions in turbulent transport

In the absence of microinstabilities the particle and heat fluxes across
the magnetic surfaces are determined by collisional transport processes,
as it was discussed in Sec. 3. Since collisional dissipation affects the
non-adiabatic response of the particles it plays an important role in the
turbulent transport as well.

In gases collisions change the velocity of an atom almost instanta-
neously, so that its trajectory in phase space is a continuous set of line
segments. In plasmas, on the other hand, each particle is in a continu-
ously running Coulomb interaction with a large number of other particles
being closer than a few Debye lengths. Since small-angle scattering dom-
inates, the phase-space trajectory of a single particle is a smooth curve,
and the collision operator – describing the variation of the distribution
function due to collisions – can be expressed as the ∆t → 0 limit of

C [f(v, t)] = −∇v

(〈∆v〉
∆t

f

)

+∇v∇v :

(〈∆v∆v〉
2∆t

f

)

+ . . . , (4.20)

where the expectation value is denoted by angle bracket. The first term
in Eq. (4.20) is responsible for the collisional drag on the particle while
the second term describes diffusion in velocity space.

The 〈∆vi〉 and 〈∆vi∆vj〉 quantities can be calculated by a statistical
description of binary Coulomb collisions between plasma particles. The
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∫

dr/r-like integral over the possible impact parameters do not need to
be evaluated over an infinite range, since the particles being outside the
Debye sphere do not contribute to the integral and the smallest distance
between the colliding particles rmin is also finite. So the integration
limits are to be cut off at λD and rmin, which leads to the appearance
of the Coulomb logarithm parameter lnΛ = ln(λD/rmin) in the collision
frequency.

A plasma particle is in a continuously running Coulomb interaction
with a large number of other particles, and the small-angle scattering
events strongly dominate, so the quantities, such as mean-free path or
collision time from the classical picture of collisions are to be reconsid-
ered in this context. The collision time τ is defined as the time which is
required for an order unity relative change in the velocity of the particle
as a result of the cumulated effect of Coulomb interactions. Then the
collision frequency is defined as ν = 1/τ .

The electron-ion collision frequency depends on electron mass me,
electron temperature Te, ion density ni and ion charge Z in the following
manner [27]

νei ∝
e4niZ

2 ln Λ

ǫ20m
1/2
e T

3/2
e

. (4.21)

Since νei is independent of mi, the total electron-ion collision frequency
in the presence of several ion species can be conveniently written as
Zeffνei(Z = 1). Due to the high ion-to-electron mass ratio much higher
number of elementary interactions is needed for an ion to significantly
change its velocity as a result of collision by electrons than vice versa.
Accordingly, the relative magnitudes of the different collision frequencies
are νee ∼ νei = νii

√

mi/me = νiemi/me (considering singly charged
ions).

Making use of Eq. (4.20), the most general collision operator describ-
ing binary collisions, the so-called Fokker-Planck operator [50] can be
derived to be [51]

Cab
[

fa(v), fb(v
′)
]

= −e2ae
2
b ln Λ

8πǫ20m
2
a

(4.22)

×∂vk

∫

u2δkl − ukul
u3

(

fa(v)

mb
∂v′

l
fb(v

′)− fb(v
′)

ma
∂vlfb(v)

)

d3v′,

where u = v − v′ is the relative velocity of the colliding particles and
the indices a and b refer to the colliding species. In several cases it is
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Chapter 4. Turbulent transport and microinstabilities

useful to derive an approximate, model collision operator that is simpler,
and therefore less accurate than the one given above, but still models
the physical phenomena that are important for the problem. It is always
required that the collision operator drives the system towards local ther-
modynamic equilibrium. In particular, if fa and fb are two Maxwellian
distributions with equal temperatures and mean velocities the operator
should vanish.

Since electrons are much lighter than ions, the dominant process in
the electron-ion collisions is pitch-angle scattering, driving a velocity
diffusion on a constant-energy surface. This process tends to make the
electron distribution isotropic in the ion rest frame. The energy transfer
is small due to the high ion-to-electron mass ratiomi/me, so the electron
speed is approximately conserved. Furthermore, if the gyro-angle depen-
dence of the collisions can be neglected the collision operator reduces to
the pitch-angle scattering operator

Cei ≈
νei
x3e

L ≡ νei
x3e

1

2
∂ξ

(

1− ξ2
)

∂ξ, (4.23)

where ξ = cos θ with the pitch-angle θ.
If one wants to investigate the collisional de-trapping of trapped

electrons, it is sometimes enough to keep only a pitch-angle scattering
model operator of electron-ion collisions since trapping depends only on
the cosine of the pitch angle, ξ = v‖/v. In other cases it is merely suffi-
cient that the collision operator drives the particle distribution towards
a Maxwellian, so that it reduces the perturbed part of the distribu-
tion. An example of such an operator is the so-called Krook model,
C = −ν(fa − fMa), where an energy dependence can be included in
the collision frequency ν. For other applications it can be important
that the collision model conserves energy and momentum, or that it in-
corporates other physical effects, such as parallel velocity diffusion. A
systematic derivation of model collision operators is given by Hirshman
and Sigmar [52].

It was found both experimentally and in simulations that collisions
can strongly affect anomalous particle transport [53]. Electron density
profiles in tokamak cores are usually not completely flat, although the
particle sources are mainly localized in the periphery of the plasma. Neo-
classical theory predicts an inward particle transport, due to the Ware
pinch [54]. However this effect is often not sufficiently strong to explain
the experimentally found density peaking, which implies the existence of
an anomalous component of the particle pinch. Experimentally, density
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Figure 4.4: Density peaking parameter as a function of effective collisional-
ity, measured in H-mode plasmas of the ASDEX-Upgrade tokamak for three
different values of the edge safety factor q95. [Source: Phys. Rev. Lett. 90,
205003 (2003)]

peaking is found to increase with decreasing collisionality [53,55–57] for
a wide range of plasma parameters, as shown in Fig. 4.4. Since fusion
power scales as n2, this phenomenon is crucial for reactor relevant fu-
sion experiments operating with high temperatures and thus having low
collisionalities.

Figure 4.5: Normalized electron particle flow as a function of electron collision
frequency (νe is normalized to cs/a). [Source: Phys. Plasmas 12, 022305
(2005)]

If collisions are neglected, the inward particle fluxes can be explained
by gyrokinetic theory [58]. The transport is dominated by ITG driven
turbulence in most cases, and ITG modes produce an inward particle flux
through magnetic curvature effects and thermodiffusion, as predicted
by both linear theory and nonlinear gyrokinetic simulations [44]. In
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fact, the particle flux shows a very strong collisionality dependence for
low collision frequencies as illustrated in Fig. 4.5; showing the result of
nonlinear gyrokinetic simulations using a pitch-angle scattering collision
operator. We note that gyro-fluid simulations predict somewhat higher
collisionality for the reversal of particle flows [59].

The collisionality dependence of the particle flux at low electron-ion
collision frequencies suggest that the non-adiabatic electron response is
affected (note that Γ ∝ ℑ(n̂e) and νi ≈ 0). The circulating electrons
are expected to have a quite weak non-adiabatic response which is al-
most independent of collisionality [44]. This conclusion is supported by
Fig. 4.5, where the trapped and passing contributions in the particle flux
are also indicated. The

√
νei-like collisionality dependence can be inter-

preted with the development of a boundary-layer at the trapped-passing
boundary.

After discussing the effect of electron-ion collisions on microinsta-
bilities and transport we note that ion-ion collisions also play a role in
turbulent transport by providing the main stabilization mechanism of
zonal-flows, thus affecting the saturated level of transport.

In paper A we investigate the collisionality dependence of the quasi-
linear particle flux for weakly collisional plasmas using aWKB (Wentzel–
Kramers–Brillouin) solution of the electron gyrokinetic equation, where
the electron-ion collisions are modeled by the pitch-angle scattering op-
erator. While in this work the mode frequencies are constant input
parameters, in paper B we take collisional effects into account through
the dispersion relation as well. In this extended model the density re-
sponses are calculated without assuming the magnetic drift frequency
to be small.

4.6 Nonlinear simulations and transport analy-
sis

As it has been established, linear gyrokinetic simulations consider only
one exponentially growing toroidal mode which, in the absence of non-
linear mode coupling mechanisms, never saturates. Accordingly, a linear
simulations does not provide the magnitude of the perturbed quantities,
and the absolute level of the transport, in contrast to nonlinear simula-
tions. Thus, in order to quantitatively compute turbulent transport one
has to resort to nonlinear simulations.

There are different approaches to solve the nonlinear gyrokinetic-
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Maxwell system and different levels of sophistication implemented in
nonlinear codes. The “delta-f” codes separate the lowest order (equilib-
rium) distribution and solve only for the next order deviation from the
equilibrium. The “full-f” codes solve for the whole distribution function
to the same accuracy in ρ∗. Since there is no full-f formalism to handle
collisions, the full-f approach has no significant advantage compared to
the delta-f approach. The continuum models evolve the discretized 5-D
phase space distribution according to the gyrokinetic equations, while
the particle-in-cell codes sample the phase space through a large number
of quasi-particles and follow their trajectories under the effect of their
self-consistently generated electromagnetic fields.

All of these methods are solved in an initial value manner. After the
exponential growth of linear modes the fluctuations reach an amplitude
where nonlinear mode couplings become important, until the system
evolves to a fully developed turbulence, where the initial conditions be-
come unimportant (in a statistical sense). Then the simulation is run for
a sufficiently long time in this phase until the statistical properties of the
desired quantities, such as radial fluxes, are adequate; see an illustration
in Fig. 4.6.

Figure 4.6: Results of a nonlinear GYRO simulation for the local parameters
of a DIII-D discharge. Left: Time trace of the ion energy flux (given in gyro-
Bohm units), Right: poloidal wave number spectrum (at the outboard-mid-
plane) of the ion energy flux, averaged over the half of the total simulation
time.

Exploiting the elongated nature of the turbulent fluctuations in toka-
maks gyrokinetic simulation codes use conveniently chosen field aligned
coordinate systems. These are rather similar to the ballooning coordi-
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nates, however they are more fitted to handle the E × B nonlinearity
and zonal flows. The simulation domain is a “flux tube” that has a ra-
dial and binormal extent that is significantly larger than the correlation
length in these directions (∼ 10ρi), and follows the field lines over a few
connection lengths (again, depending on the parallel correlation length
of the turbulence).

In the limit of vanishing ρ∗ (that is relevant to large tokamaks, such
as ITER) the plasma parameter profiles and their derivatives can be
approximated by constant values over the perpendicular simulation do-
main. Since the perpendicular domain size is chosen to be larger than
the perpendicular correlation length, periodic boundary conditions can
be applied to increase numerical efficiency. But sometimes, when pro-
file variations and non-local effects are expected to play a role in the
considered problem, the periodic boundary conditions and the profile-
flattening can be relaxed (these are called “global” simulations).

The existing gyrokinetic simulations do not model the time evolution
of the background profiles as these being a higher order effect in the ρ∗
expansion, but rather evaluate the radial transport in a particular in-
stant of time at a certain radial location. To quantitatively calculate the
energy and particle fluxes the profiles should be known with quite high
accuracy, since the fluxes often exhibit a strong nonlinear dependence
on the gradients of plasma parameters [60]; changing the gradients by
a small amount can lead to significant differences in the fluxes. When
drift-wave turbulence models are validated to experiments, instead of
calculating the “fixed gradient” fluxes, it is sometimes more convenient
to calculate how the profiles should look like to produce the experimen-
tal level of fluxes (the latter can be calculated from power balance if
the energy deposition profiles are given). This can be done by itera-
tion schemes requiring a large number of evaluation of the transport in
several radial locations [61].

Even one nonlinear gyrokinetic simulation with appropriate phase-
space resolution requires considerable computational resources, therefore
it is clear that predictive profile calculations are extraordinarily expen-
sive. This shows the advantage of gyro-fluid and/or quasilinear models
(e.g. TGLF [62] and the Weiland model [8]) that – although not being as
accurate – can calculate the turbulent fluxes much faster than nonlinear
gyrokinetic codes.

In larger devices the perpendicular spatial scale of the turbulence is
unaffected by the system size and it is mainly linked to the ion Larmor
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radius ρi, while the typical frequencies of kθρi ∼ 1 fluctuations scale as
vT i/a. From this picture – purely based on dimensional arguments – we
expect that the diffusivities should follow gyro-Bohm scaling, that is χ ∼
ρ2i vT i/a. The theoretically predicted gyro-Bohm scaling is in conflict
with the experimentally usually observed improving confinement with
increasing isotope mass. In paper E we study the effect of the primary
ion species of differing mass and charge on instabilities and transport
through first principles gyrokinetic simulations with GYRO. We also
present the transport analysis of three balanced beam injection DIII-D
discharges having different main ion species: deuterium, hydrogen and
helium.
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Chapter 5

Beam emission
spectroscopy

The progress in the understanding of anomalous transport, such as the
development of plasma turbulence models, strongly rely on experimen-
tal data measured by various kinds of plasma diagnostic tools. Since in
such high temperature systems, the methods based on physical contact
of the measuring device and the plasma are quite limited, the diagnos-
tics either passively collect radiation or particles emitted by the plasma
(passive diagnostics), or observe the interaction of the plasma with some
material/radiation introduced externally (active diagnostics) [63]. Beam
emission spectroscopy (BES) is an important, widely used active diag-
nostic tool of fusion plasmas, which is based on the observation of light
emitted by a high energy neutral beam injected into the plasma [64]. The
measured intensity distribution corresponding to the spontaneous emis-
sion from the highest population excited atomic state, the light profile,
provides information on the distribution of plasma parameters affecting
the beam evolution.

Heating beams (neutral beam injection, NBI) – observed tangentially
to the magnetic field lines – are also used for beam emission spectroscopy
[65,66], although in the thesis we focus on beams used only for diagnostic
purposes [67–70]. The diagnostic beams have much lower beam current
(∼ mA) than the NBI beams, and due to the attenuation of the beam
in the plasma, mainly the outer plasma regions can be probed by them.
Since the density of beam atoms is ∼ 1014 m−3 (which is low compared
to ∼ 1019−1020 m−3 plasma densities), the momentum transfer from the
beam is negligibly small, and the quantity of deposited beam material is
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usually too low to noticeably modify the Zeff in the plasma, the method
is considered to be non-intrusive [71]. A further advantage of BES is
that it is not line integrated, but a well localized measurement of plasma
parameters.

The electron density, the temperature of plasma particle species
(mainly Te) and the distribution of impurities are the relevant param-
eters determining the beam evolution [72]. Due to the relatively weak
temperature dependence of the reaction rates of alkali elements, they are
well suited for electron density measurements. We restrict our studies
to the prevailing alkali beam emission spectroscopy.

One of the main purposes of alkali BES is the electron density fluc-
tuation measurement [67, 69] (with >∼ 0.5 µs temporal resolution [31])
which provides useful – statistical or time-resolved – information on
turbulence, such as frequency-, wave-number spectra, flow velocities,
spatial and temporal correlations, or even snapshots of the turbulence.
In fluctuation measurements linear – but not local – response in emit-
ted intensity to density perturbations is assumed, which depends on the
equilibrium density profile. The time resolution of such measurements is
limited by the photon statistics which depends on the achievable beam
current and the efficiency of the observation. Results of BES fluctua-
tion measurements are shown in Fig. 5.1, where – in the left figure –
the broadband turbulent spectrum and the dramatic reduction of the
density fluctuations in an L-H transition is plotted, and in the right
figure the frequency spectrum of density fluctuations in different radial
positions is shown.

An other important application of alkali BES is the electron den-
sity profile measurement [64, 68, 72]. This measurement, relying on the
knowledge of the derivative of the light profile, requires smooth, time
averaged light profiles, which limits its time resolution. The spatial
resolution of both measurement modes is limited by the characteristic
distance covered by a beam atom under the spontaneous decay of the
observed transition.

In NBI BES measurements the beam is wide enough to make 2-
dimensional turbulence measurements possible for a fixed beam posi-
tion. By means of scanning the beam, poloidally resolved measurements
are also feasible with the ∼ 1 − 2 cm wide diagnostic beams [67]. In
these measurements, the scanning frequency is higher than the achiev-
able sampling frequency of the profile measurements. In several cases
the beam is observed from the same poloidal plane, and a time averaged
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Figure 5.1: Deuterium BES measurement on the DIII-D tokamak. Left:
spectrogram showing the evolution of turbulent density fluctuations in an L-H
transition (r/a = 0.65). Right: Power spectra of fluctuations in different radial
positions. [Source: Plasma and Fusion Research 2, S1025 (2007)]

signal of the fluctuation measurement is used for calculating the den-
sity profile which is, in turn, used as an input to the evaluation of the
fluctuation measurements. In this configuration, the density calculation
is based on the light profile from a beam which is several times wider
than the physical beam width. In spite of that, in many experiments a
one-dimensional beam is considered in the density calculations.

The evolution of the beam in the plasma is accurately described
by the collisional radiative model [73] which considers collisional and
spontaneous atomic transitions. Each collisional process is characterized
by a rate coefficient defined as

R =

∫

d3vσ(|v − vB|) |v − vB| fα(v), (5.1)

where vB is the velocity of the beam atoms, σ is the cross section of
the process and fα is the velocity distribution of the colliding species,
considered to be a Maxwellian. The rate coefficients depend paramet-
rically on the beam energy and the temperature Tα. In terms of the
rate coefficients, the evolution of the occupation densities of the atomic
states is described by the rate equations, which read in the rest frame

55



Chapter 5. Beam emission spectroscopy

of beam atoms

dtNk = −Nk
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where the different plasma species are indexed by α, and the j and k
indices run over the different atomic levels; n denotes particle density, N
is the population of an atomic state. Akj is the spontaneous transition
frequency and Rkj is the rate coefficient corresponding to the j → k
transition. The ionized state is denoted by +, and the ionized beam atom
is considered to be lost from the beam. In a simulation the evolution of
a finite number of levels are followed, and the populations of the higher
principal quantum number states are neglected. After approximations
regarding the impurity content Eq. (5.2) can be written in the more
compact form [72]

dN

dx
= [ne(x)A(x) +B] ·N, (5.3)

where the different atomic populations are stored in the vector N(x) and
the matrices A(x) and B describe collisional and spontaneous atomic
transitions.

Observing the ι → ϕ transition the emitted light intensity is propor-
tional to NιJAϕι/vB, where the J is the current density of the beam.
Since in alkali BES measurements one spectral line is observed, the evo-
lution of only one atomic population Nι is known directly.

5.1 Turbulence measurements

In turbulence measurements it is assumed that the electron density dis-
tribution along the beam can be decomposed to a slowly varying density
profile and a fluctuating density ne(x, t) = ne0(x) + n̂e(x, t) [74]. The
time average of n̂e(x, t) vanishes, and on the time scale of fluctuations
the profile is considered to be static. Here, for simplicity, we consider one
dimensional fluctuation measurements and neglect the finite thickness of
the beam, although the quantities to be introduced can be generalized
to two dimensions.
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The measured light profile S can be decomposed accordingly to a
static and a fluctuating part S(x, t) = S [nα0(x), Tα0(x)] + Ŝ(nα, Tα),
where S can be determined by solving the rate equations (5.3), and
the fluctuation part depends on both the static and fluctuating parts of
plasma parameters. However, for alkali beams, the effect of temperature
and impurity content fluctuations on Ŝ can be neglected. Then, the
fluctuating part of the measured light profile can be written in terms of
the density fluctuation transfer function h(x, x′) as

Ŝ(x, t) =

∫ x

0
n̂e(x

′, t)h(x, x′)dx′, (5.4)

where the transfer function is considered to be dependent only on the
static part of the plasma parameter profiles. (In fact, the value of Ŝ(x, t)
depends on the density fluctuations at the retarded time t− (x−x′)/vB,
but in the present reasoning, this effect is neglected.) The transfer func-
tion is needed in the calculation of density fluctuation cross-correlations
from light profile cross-correlations.

The transfer function can be easily calculated as

h(x, x0) = S
[

ne0 + δ(x′ − x0)
]

− S [ne0] , (5.5)

in other words, an elementary fluctuation is superimposed on the den-
sity profile at point x0, the difference appearing in the light profile is
monitored. Eq. (5.5) reflects the importance of static density profiles in
the evaluation of fluctuation measurements.

5.2 Electron density measurements

High spatial and temporal resolution electron density profile measure-
ments [31, 68, 72] in the outer regions of fusion plasmas are of great
importance, providing useful information on edge phenomena, such as
pedestal formation and ELM activity. Also, as we pointed out, the
knowledge of the density profile is also an important input to BES fluc-
tuation measurements.

In the direct problem – such as in a BES measurement design – we are
interested in the measured light profile given the plasma parameter pro-
files along the beam line. It consists of the simulation of beam evolution
and the modeling of the observation of the emitted light. Considering
an ideal (one dimensional) beam, the beam evolution can be calculated
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Chapter 5. Beam emission spectroscopy

by the numerical integration of the rate equation system (5.3) with an
appropriate initial condition.

In a measurement evaluation the inverse problem is solved, where
the electron density is to be calculated from the measured light profile
I(x). The classical solution of the inverse problem starts from the rate
equation for the initial state ι of the observed transition, which is

dxNι =
∑

j

[ne(x)Aιj(x) +Bιj ]Nj(x). (5.6)

Using that the light profile I(x) is proportional to Nι, from Eq. (5.6)
the electron density can be expressed as

ne(x) =
d
dx(log I)−

∑

j
Nj

Nι
Bιj

∑

j
Nj

Nι
Aιj

. (5.7)

Since the relative populations are not known a priori, Eq. (5.7) has to
be solved simultaneously with the direct problem [68]. Note that this
method does not require the absolute value of the Nι population, only
an arbitrarily normalized light profile.

For experimentally relevant plasma densities, there exists a point,
where the collisional processes acting to populate and de-populate the
ι level equalize, therefore the evolution of this population becomes in-
dependent of electron density (the measurement is insensitive in the
vicinity of this point). Around this “blind point” the classical method is
replaced by a technique, where the density is calculated as a fraction of
integral quantities that are non-vanishing in the vicinity of the singular
point [72]. This technique relies on the knowledge of the absolute Nι

profile, and the parameter α = Nι/I is found iteratively.
Recently, a Bayesian probabilistic method has been developed [31],

based on the solution of the direct problem. The measured data are
compared to direct calculations, and the most probable density profile
is chosen. This approach requires much higher computational capacity,
and often the constraint of monotonicity of the ne profile. However, it
is more stable than the previous techniques – even in the vicinity of
the singular point – and allows for the evaluation of noisy data, accord-
ingly, higher time resolution profile measurements. At the same time it
provides the accuracy of the calculation in each point.

In paper F, we point out that neglecting the finite beam width, even
for diagnostic beams, might cause non-negligible error in the calculated
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5.2. Electron density measurements

density profile – regularly the underestimation of the pedestal density.
We present a de-convolution based inversion algorithm, which, given
the measured light profile, calculates the emission distribution along the
beam axis, allowing for the use of conventional one-dimensional density
reconstruction methods.
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Chapter 6

Summary

In the present thesis theoretical and experimental aspects of collisional
and turbulent transport in tokamaks are addressed.

In the first part of the thesis, the most important electrostatic drift
wave instabilities driving the turbulent transport, the ion temperature
gradient (ITG) and trapped electron (TE) modes, and the quasilinear
fluxes driven by them are studied focusing on the effect of collisions.

In paper A, the collisionality dependence of quasilinear particle flux
due to ITG and TE modes is investigated analytically. For weakly col-
lisional plasmas, we derive the WKB solution of the trapped electron
gyrokinetic equation, where the collisions are modeled by the Lorentz
operator. In this model the frequencies and growth rates are considered
as input parameters, therefore the dependences on different parameters
– such as collisionality – through the eigenfrequency are neglected, and
we use a simple, purely real model ballooning potential.

In accordance with previously published gyrokinetic simulation re-
sults, we find that, far from marginal stability, the inward flux due to
ITG modes – caused mainly by magnetic curvature effects and thermo-
diffusion – is reversed as electron collisions are introduced. However, if
the plasma is close to marginal stability, collisions might even enhance
the inward particle transport. We compare the results calculated by
using the Lorentz operator and an energy dependent Krook operator
and conclude that the form of the collision operator determines the scal-
ing with collisionality and therefore affects the collisionality threshold
where the particle flow reverses. The difference between the two models
is larger close to marginal stability. We find that, for low collisionalities,
due to the boundary layer development of the non-adiabatic electron
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distribution function at the trapped-passing boundary, the collisional
contribution in the particle flux is proportional to the square root of the
collisionality.

In paper B, we improved our “Collisional Model of Electrostatic Tur-
bulence” (COMET) regarding several aspects and focus on the stability
of the ITG mode and the ITG-driven quasilinear fluxes. Here, also the
ion response is calculated in the long wavelength limit, and the mode
frequencies are calculated from the quasineutrality constraint. We in-
troduce a shear dependent imaginary part of the ballooning potential,
which we motivate by a self-consistent variational solution of the bal-
looning eigenfunction problem. This is found to be important for the
quantitatively accurate calculation of mode frequencies and fluxes. The
improved model, where both the particle and energy fluxes are calcu-
lated, does not rely on the non-resonant expansion in magnetic drift
frequencies.

We find that, although the frequencies and growth rates of ITG
modes far from the stability threshold are only weakly sensitive to colli-
sionality, the temperature gradient threshold for stability is significantly
affected by electron-ion collisions for high enough logarithmic density
gradients. The decrease of collisionality destabilizes the ITG mode driv-
ing an inward particle flux, which leads to the steepening of the density
profile, in agreement with the trend found in experiments on the colli-
sionality dependence of density peaking. Closed analytical expressions
for the electron and ion perturbed density and temperature responses
have been derived; and simple, but quite accurate algebraic approxima-
tions for these quantities are given.

In the next part of the thesis we focus on the collisional transport
in transport barriers. In Paper C we calculate the neoclassical plateau
regime transport in a tokamak pedestal. In tokamak pedestals with sub-
sonic ion flows the radial scale of plasma profiles can be comparable to
the ion poloidal Larmor radius, thereby making the radial electrostatic
field so strong that the contribution of the E × B drift to the poloidal
motion of ions can be comparable to the parallel streaming (mathemati-
cally, the normalized electric field U = vE×BB/viBp can be order unity).
We calculate the modifications to neoclassical plateau regime adopting a
novel kinetic approach allowing for short radial scale lengths and strong
electric fields. We find that the ion heat diffusivity is reduced for large
values of U , as the resonance causing plateau regime transport is shifted
toward the tail of the distribution, but it is enhanced by almost 50%

62



if U ≈ 1. Moreover, the poloidal ion and impurity flows are modified
in the pedestal. The altered poloidal ion flow is most pronounced in
the region of the strongest radial electric field where it modifies the fric-
tion of the electrons with the ions and can lead to an increase in the
bootstrap current, by enhancing the coefficient of the ion temperature
gradient term. We show that, unlike the banana regime, orbit squeezing
does not affect the plateau regime results.

After the general and more analytical considerations we address more
specific physics questions through gyrokinetic simulations based on mea-
surements. In paper D we investigate the characteristics of microinsta-
bilities in electron cyclotron heated (ECRH) and ohmic discharges in the
T10 tokamak, aiming to find insights into the effect of auxiliary heat-
ing on the transport. Results from many different devices have shown
that impurity accumulation can be reduced by central ECRH, while in
some parameter regions ECRH does not affect the electron or impurity
density profiles, or even peaking of these profiles is observed.

Trapped electron modes are found to be unstable in both the ohmic
(OH) and the electron cyclotron (EC) heated scenarios studied. In the
OH case the main drive is from the density gradient and in the EC case
from the electron temperature gradient. The growth rates and parti-
cle fluxes exhibit qualitatively different scaling with the electron-to-ion
temperature ratios in the two cases; in the OH case the electron particle
flux decreases with this parameter, while it increases in the EC case.
This is mainly due to the fact that the dominant drives and the colli-
sionalities are different. Our linear gyrokinetic simulations indicate that
the impurity convective flux is negative in both EC and OH cases, but it
is significantly lower in the EC case. Furthermore the impurity diffusion
coefficient is lower in that case. As a consequence, the impurity peaking
factor is lower in the EC; a trend that is consistent with the observa-
tions, however according to the simulations it does not change sign when
electron cyclotron heating is applied. A sign change in the peaking fac-
tor is, therefore probably due to some additional physical mechanism,
such as poloidal asymmetry of the impurity ions, not accounted for in
the linear gyrokinetic simulations.

In paper E the effect of primary ion species of differing charge and
mass – specifically, deuterium, hydrogen and helium – on instabilities
and transport is studied in DIII-D plasmas through gyrokinetic simu-
lations with GYRO. The main motivation of this paper is the “isotope
scaling problem”: the experimentally observed favorable scaling of the
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energy confinement time with isotope mass is in conflict with the gyro-
Bohm scaling. In linear simulations under imposed similarity of the
profiles there is an isomorphism between the linear growth rates of hy-
drogen isotopes, but the growth rates are higher for Z > 1 main ions
due to the appearance of the charge in the Poisson equation. On ion
scales the most significant effect of the different electron-to-ion mass
ratio appears through collisions stabilizing trapped electron modes. In
nonlinear simulations significant favorable deviations from pure gyro-
Bohm scaling are found due to electron-to-ion mass ratio effects and
collisions. The presence of any non-trace impurity species cannot be
neglected in a comprehensive simulation of the transport; including car-
bon impurity in the simulations caused a dramatic reduction of energy
fluxes. The transport in the analyzed deuterium and helium discharges
could be well reproduced in gyrokinetic and gyrofluid simulations while
the energy transport in the hydrogen discharge was much higher than
the gyrokinetic predictions taking neoclassical flows into account. This
significant discrepancy is the subject of ongoing investigation and should
be a basis of future validation efforts.

Finally the thesis touches upon a purely experimental problem; the
magnitude and characteristics of the error in alkali beam emission spec-
troscopy (BES) density profile measurements due to finite beam width
are analyzed and a deconvolution based correction algorithm is intro-
duced. If the line of sight is far from tangential to the flux surfaces and
the beam width is comparable to the scale length of the light profile,
the observation might cause an undesired smoothing of the light pro-
file, resulting in the underestimation of the measured electron density.
In paper F, the characteristics and magnitude of this systematic error
is studied; a general estimation of the maximal relative error is pre-
sented depending on plasma parameters and observation geometry. We
demonstrate a deconvolution based correction method by its applica-
tion in simulated BES measurements of the COMPASS and TEXTOR
tokamaks. The method gives a good estimate of the emissivity along
the beam line from the measured light profile so that the level of the
remaining error in the calculated density after correction is in the order
of the accuracy of the density profile calculation algorithm. The method
allows the use of the conventional one dimensional density calculation
algorithms even for configurations, where the finite beam width is not
negligible.
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