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Closest Point Searh in Latties

E. AGRELL, T. ERIKSSON, A. VARDY, and K. ZEGER

SUMMARY

In this semi-tutorial report, algorithms for �nding the losest point in a lattie are studied.

The omplexity of di�erent strategies is ompared, both theoretially and by experiments.

A omplete implementation of an eÆient losest-point algorithm is given, together with

straightforward modi�ations of the algorithm to solve a number of related searh problems

for latties, suh as �nding a shortest vetor, determining the kissing number, omputing

the Voronoi-relevant vetors, or �nding a Korkine-Zolotare� redued basis.

Keywords: Closest-point searh, kissing number, Korkine-Zolotare� redution, lattie de-

oding algorithm, shortest vetor, Voronoi-relevant vetors.
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I. Introdution

In lattie theory, a generator matrix B is any real matrix with linearly independent rows.

Hene n � d, where n is the number of olumns and d, the dimension, is the number of

rows. The lattie generated by B is

�(B) ,

�

uB : u 2 Z

d

	

(1)

and the rows ofB are alled basis vetors. The losest-point problem, or deoding for short,

is the problem of �nding, for a given lattie � and an input vetor x 2 R

n

, a vetor
^
x 2 �

suh that kx�
^
xk � kx� k for all  2 �. (In soure oding, the losest-point problem

is alled enoding, see below.) Throughout this report, kzk denotes the Eulidean norm

of z.

The Voronoi region of a lattie point is the set of all vetors that an be deoded as this

point, namely


(�; ) , fx 2 R

n

: kx� k � kx� 

0

k; 8

0

2 �g (2)

where  2 �. The Voronoi diagram of a lattie is the set of all its Voronoi regions. It is

known that all Voronoi regions 
(�; ) are onvex polytopes, they are symmetrial with

respet to reetion in , and they are translations of 
(�; 0), where 0 is the origin. Hene,

for most purposes it is suÆient to study 
(�; 0).

In ommuniation theory, latties have been proposed both for use in modulation and in

quantization. If a lattie is used as a ode for the Gaussian hannel, maximum likelihood

deoding in the demodulator is a losest-point problem. Analogously, if a lattie is used

as a odebook for vetor quantization and the mean square error riterion is used, then

the enoding of eah input vetor is equivalent to a losest-point searh. Another instane

of the losest-point problem an appear in the soure deoder or in the modulator, if the

lattie is trunated into a so-alled Voronoi ode [10℄. Typial for these appliations in

ommuniations is that the same lattie is employed for many input vetors.

Other appliations where the losest-point problem arises inlude lattie design [2℄ and

Monte Carlo seond moment estimation [11℄. In both ases, random vetors are generated

uniformly inside a Voronoi region using a losest-point algorithm.
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The losely related shortest-vetor problem has been used in assessing the quality of

random number generators [25, pp. 89{113℄, and redution has an important appliation

in ryptography [36℄. These searh problems, and the determination of some further lattie

parameters through similar methods, will be disussed in Setion VI.

The hoie of method for solving the losest-point problem depends on the struture of

the lattie. Intuitively, the more struture a lattie has, the faster an the losest point be

found. For most of the lassial latties, very eÆient searh methods have been tailored

[12, Ch. 20℄. A more general approah is to represent the lattie with a trellis and use a

trellis deoding algorithm suh as the Viterbi algorithm [7, 17℄. Finite-state trellises exist

if and only if the lattie ontains d mutually orthogonal vetors [38℄.

In this report we address the problem of �nding the losest point in a general lattie.

We assume that it possesses no exploitable struture. One example of where this problem

arises is when a generator matrix is ontinuously adjusted, suh as in numerial lattie

design [2℄. Another example is MS-optimal separation of the linear phase omponent from

an arbitrary phase vetor [15℄, whih an be useful in, e.g., speeh oding.

The omplexity of the general losest-point problem as a funtion of d was analyzed by

van Emde Boas in 1981, who showed that the problem is NP-hard [39℄. Hene, all known

algorithms for solving the problem optimally have exponential omplexity. It is also NP-

hard to �nd an approximate solution suh that the ratio between the found distane and

the optimal one is upper-bounded by a onstant [5℄.

A ommon approah to the general losest-point problem is to identify a ertain region

in R

n

within whih the optimal lattie point must lie, then investigate all points in this

region, possibly reduing its size dynamially. The earliest work in the �eld was done for

the shortest-vetor problem (see Setion VI-A) in the ontext of assessing the quality of

ertain random number generators. The �nite region to be searhed in these algorithms is

a parallelepiped with its axes parallel to the basis vetors [13℄, [14℄, [25, pp. 89{101, 110℄.

The development of losest-point algorithms follows two main branhes, inspired by two

seminal papers. Pohst in 1981 examined points inside a hypersphere [32℄, whereas Kannan

in 1983 used a retangular parallelepiped [22℄. Both papers later appeared in revised and

extended versions, Pohst's as [16℄ and Kannan's, following a paper by Helfrih [20℄, as [23℄.
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The two strategies will be disussed at greater length in Setion III-A.

A ruial parameter for the performane of these algorithms is the initial size of the

region. Some suggestions to this point were given in [40℄ and [31℄ for the Pohst strategy

and in [8℄ for the Kannan strategy. The latter paper also inludes an extensive omplexity

analysis. Appliations are disussed in [9, 31, 40, 42℄.

Another, more subtle, di�erene between the two strategies is impliit from the presen-

tations of them. Grossly generalizing, the Pohst method is intended as a pratial tool

and the method by Kannan as a theoretial tool. Papers dealing with the Pohst strategy

typially disuss issues of implementation and appliations, whereas the Kannan-type pa-

pers fous on asymptoti omplexity. This is probably the reason why the two strategies,

despite having so muh in ommon, have never been ompared and evaluated against eah

other.

In [35℄, Shnorr and Euhner suggest an important improvement of the Pohst strategy,

by examining the points inside the aforementioned hypersphere in a di�erent order. In

Setions V and VII-C, the strategies by Pohst, Kannan, and Shnorr-Euhner are om-

pared with respet to omputational omplexity, and it is shown that the Shnorr-Euhner

strategy is faster than the other two. A pratial implementation of the Shnorr-Euhner

strategy is presented in Setion III-B.

II. Preliminaries

In the following, we will say that two latties are idential if all lattie points are the

same. Two generator matries B

1

and B

2

generate idential latties �(B

1

) = �(B

2

) if

and only if

B

1

=WB

2

(3)

where W is a square matrix with integer entries, whose determinant is 1 or �1.

A generator matrix B

2

is a rotated and reeted representation of another generator

matrix B

1

if

B

1

= B

2

Q (4)

where QQ

T

= I. This an be regarded as a hange of oordinate system. If B

2

is

square and lower triangular, we say that it is a lower-triangular representation of B

1

. Any
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generator matrix has a lower-triangular representation B

2

, whih is unique exept that

any set of olumns of B

2

an be negated. How to �nd a lower-triangular representation

of any generator matrix is disussed in Setion IV.

Two latties are equivalent if they are ongruent, that is, if one an be obtained from

the other through saling, rotation, and reetion. Two generator matries B

1

and B

2

generate equivalent latties if and only if

B

1

= WB

2

Q (5)

where  is a real nonzero onstant andW and Q obey the same onditions as for (3) and

(4). The equivalene relation is denoted �(B

2

)

�

=

�(B

1

).

The proess of seleting a good basis for a given lattie, given some riterion, is alled

redution. In many appliations, it is advantageous if the basis vetors are as short as

possible, and \reasonably" orthogonal to eah other. For lattie searh problems, this was

�rst noted by Coveyou and MaPherson [13℄. Two kinds of redution will be disussed in

the following.

KZ redution is named after Korkine and Zolotare� [26℄, who de�ned this redution

riterion in 1873. To determine if a generator matrix represents a KZ redued basis,

it is onvenient to study its lower-triangular representation. A lower-triangular square

generator matrix

B =

2

6

6

6

6

6

6

4

b

1

b

2

.

.

.

b

d

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

b

11

0 � � � 0

b

21

b

22

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

b

d1

b

d2

� � � b

dd

3

7

7

7

7

7

7

5

(6)

is de�ned reursively to be KZ redued if d = 1 or else the following hold:

� b

1

is a shortest nonzero vetor in �(B),

� jb

i1

j � jb

11

j=2 for i = 2; : : : ; d,

� The submatrix

2

6

6

6

4

b

22

� � � 0

.

.

.

.

.

.

.

.

.

b

d2

� � � b

dd

3

7

7

7

5

(7)
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is KZ redued.

An arbitrary generator matrix B is KZ redued if and only if its lower-triangular rep-

resentation is KZ redued. Every lattie has at least one KZ redued generator matrix

[33℄.

For situations when KZ redution would be too time-onsuming, LLL redution, named

after Lenstra, Lenstra, and Lov�asz, has been suggested [27℄. A lower-triangular generator

matrix (6) is LLL redued if either d = 1 or else the following hold:

� kb

1

k � (2=

p

3)kb

2

k,

� jb

i1

j � jb

11

j=2 for i = 2; : : : ; d,

� The submatrix (7) is LLL redued.

As before, an arbitrary generator matrix is LLL redued if its lower-triangular represen-

tation is LLL redued.

Any KZ redued matrix is learly also LLL redued. The motivation for the latter

riterion is that there exists a more eÆient algorithm to onvert any d � n generator

matrix into an LLL redued one [27℄. The algorithm, whih operates in polynomial time

in d and n, has beome very popular in appliations.

III. Closest-Point Searh Algorithms

A. Coneptual Desription

To understand lattie searh algorithms, a reursive haraterization of latties is useful.

Let the d� n matrix B be deomposed as

B =

2

4

B

1

b

d

3

5

(8)

and let b

d

= b

k

+ b

?

, where b

k

is in the row spae of B

1

(the top d� 1 rows of B) and b

?

is in the null spae. If B is lower triangular as in (6), this deomposition is partiularly

simple, namely, b

k

= [b

d1

; : : : ; b

d;d�1

; 0℄ and b

?

= [0; : : : ; 0; b

dd

℄.

With the given terminology, any d-dimensional lattie an be deomposed as

�(B) =

1

[

u

d

=�1

�

+ u

d

b

k

+ u

d

b

?

:  2 � (B

1

)

	

(9)
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whih is basially a stak of (d � 1)-dimensional translated sublatties. The (d � 1)-

dimensional hyperplanes that ontain these sublatties will be alled ((d�1)-dimensional)

layers and the index u

d

denotes whih layer a ertain lattie point belongs to. The ve-

tor b

k

is the o�set whih one sublattie is translated within its layer, with respet to an

adjaent sublattie, and b

?

is a normal vetor to the layers, whose length equals the dis-

tane between two adjaent layers. This distane equals b

dd

for lower-triangular generator

matries. Realling that any generator matrix an be rotated into lower-triangular form,

we will in this report let b

ii

denote the distane between (i� 1)-dimensional layers, even

when no expliit triangular onstraint is imposed.

Now the searh algorithm for a d-dimensional lattie will be reursively desribed as a

�nite number of (d� 1)-dimensional searh operations. Let x be a vetor to be deoded

in the lattie �(B), whih is deomposed into layers aording to (9). The orthogonal

distane from x to the layer with index u

d

is

y

d

, ju

d

� ~u

d

j � kb

?

k (10)

where

~u

d

,

xb

T

?

kb

?

k

2

: (11)

Suppose that an upper bound R

d

is known on the attainable distane k
^
x� xk, where

^
x

is a losest lattie point. Then it suÆes to onsider a �nite number of the layers in (9)

in order to ensure that the losest lattie point will be found. The indies of these layers

are

1

u

d

=

�

~u

d

�

R

d

kb

?

k

�

; : : : ;

�

~u

d

+

R

d

kb

?

k

�

(12)

sine layers for whih y

d

> R

d

are not relevant. Of the onsidered layers, the one with

u

d

= [~u

d

℄ has the shortest orthogonal distane to x.

Four types of searh methods will now be identi�ed. They eah searh the layers indexed

in (12), but they di�er in the order in whih the layers are examined and in the hoie of

upper bound R

d�1

to be used in the (d� 1)-dimensional searh problems.

1

The funtions bz, dze, and [z℄ denote the maximum integer not greater than z, the minimum integer not less

that z, and the losest integer to z (ties are broken arbitrarily), respetively. In addition, SGN(z) is �1 if z � 0

and 1 if z > 0. (The algorithm in Setion III-B requires that �1 is returned even for z = 0, whih may deviate

from the operation of most built-in sign funtions.)
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If only u

d

= [~u

d

℄ is onsidered, the d-dimensional searh problem is redued to just one

(d � 1)-dimensional problem and no bound R

d

is needed. Reursive appliation of this

strategy yields Babai's nearest plane algorithm [6℄, whih is a fast method (polynomial in

the number of rows d and olumns n of B) to �nd a nearby lattie point. In general, the

returned point (\Babai's point") is not the optimal one, but the error an be bounded.

The other three methods all �nd the optimal point. Sanning all layers in (12), and

supplying eah (d� 1)-dimensional searh problem with the same value of R

d�1

regardless

of u

d

, yields the Kannan strategy. Variants of this strategy di�er mainly in how the bounds

R

k

, k = 1; : : : ; d, are hosen [8, 20, 22, 23℄. Geometrially, the Kannan strategy amounts

to generating and examining all lattie points within a given retangular parallelepiped.

The d-dimensional deoding error vetor
^
x�x onsists, in the given reursive framework,

of two orthogonal omponents, one in the row spae of B

1

and one parallel to b

?

. The

former is the (d� 1)-dimensional deoding error and the length of the latter is y

d

, whih

varies with u

d

. Hene R

d�1

an safely be hosen as

R

d�1

=

q

R

2

d

� y

2

d

: (13)

This idea of lettingR

d�1

depend on u

d

is the Pohst strategy [16,31,32,40,42℄. In geometrial

terms, points inside a hypersphere, not a parallelepiped, are investigated. When any lattie

point x

0

inside the sphere has been found, the bound R

d

an be immediately updated to

kx

0

� xk, sine this is an obvious upper bound on k
^
x� xk.

The Shnorr-Euhner strategy [35℄ ombines the advantages of Babai's nearest plane

algorithm and the Pohst strategy. Assume that ~u

d

� [~u

d

℄. Then the sequene

u

d

= [~u

d

℄ ; [~u

d

℄� 1; [~u

d

℄ + 1; [~u

d

℄� 2; : : : (14)

orders the layers aording to nondereasing distane from x. (A trivial ounterpart holds

when ~u

d

> [~u

d

℄.) The advantages of examining the layers in this order are subtle but

signi�ant. Sine the likelihood that a layer will ontain
^
x dereases with inreasing

y

d

(see (13), the hanes of �nding
^
x early is maximized. Another advantage with the

nondereasing distane y

d

is that the searh an safely be terminated as soon as y

d

> R

d

,

where R

d

is the distane to the best found lattie point so far. The very �rst lattie

point generated will by de�nition be Babai's point. Sine the ordering in (14) does not
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depend on R

d

, no initial bound on R

d

is needed. A losest-point algorithm, based on the

Shnorr-Euhner strategy, is further detailed in Setions III-B and IV.

B. Detailed Desription

This subsetion ontains a stand-alone presentation of an eÆient losest-point algo-

rithm, based on the Shnorr-Euhner strategy. It is intended to be suÆiently detailed to

allow a straightforward implementation, even with no study of the underlying theory. For

eÆieny, the reursive operations disussed in the previous subsetion have been restru-

tured into a loop. The variables S and
^
u are used instead of the more natural B = S

�1

and
^
x =

^
uB as input and output parameters. As disussed in the next subsetion, this

is motivated by the typial ommuniation appliation in whih many input vetors are

deoded in the same lattie.

Some notation needs to be de�ned. Matrix and vetor elements are named aording

to the following onventions:

u =

h

u

1

� � � u

d

i

p

k

=

h

p

k1

� � � p

kk

i

; k = 1; : : : ; d

S =

2

6

6

6

6

6

6

4

s

11

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

s

d1

� � � s

dd

3

7

7

7

7

7

7

5

:

The integer operations [z℄ and SGN(z) are de�ned in footnote 1.

Input:

S: A d� d lower-triangular matrix with positive diagonal elements.

x: A d-dimensional vetor to deode in �(S

�1

).

Output:

^
u: An integer vetor suh that

^
uS

�1

is a lattie point losest to x.
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Algorithm Deode(S;x):

d := the size of S � Dimension

bestdist :=1 � Current distane reord

k := d � Dimension of examined layer

dist

k

:= 0 � Distane to examined layer

p

k

:= xS � Used to ompute ~u

d

, see (11)

u

k

:= [p

kk

℄ � Examined lattie point

y :=

p

kk

� u

k

s

kk

� See (10)

step

k

:= SGN(y) � O�set to next layer in (14)

Loop:

newdist := dist

k

+ y

2

If newdist < bestdist then f

If k 6= 1 then f Case A

p

k�1;i

:= p

ki

� ys

ki

; i = 1; : : : ; k � 1

k := k � 1 � Move down

dist

k

:= newdist

u

k

:= [p

kk

℄ � Closest layer

y :=

p

kk

� u

k

s

kk

step

k

:= SGN(y)

g else f Case B

^
u := u � Best lattie point so far

bestdist := newdist � Update reord

k := k + 1 � Move up

u

k

:= u

k

+ step

k

� Next layer

y :=

p

kk

� u

k

s

kk

step

k

:= �step

k

� SGN (step

k

)

g

g else f Case C

If k = d then Exit and return
^
u

else f

k := k + 1 � Move up

u

k

:= u

k

+ step

k

� Next layer

y :=

p

kk

� u

k

s

kk

step

k

:= �step

k

� SGN (step

k

)

g

g

Goto Loop
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In this algorithm, k is the dimension of the sublayer struture urrently being investi-

gated. Eah time a k-dimensional layer has been found to whih the distane is shorter

than the urrently smallest found distane, this layer is expanded into (k�1)-dimensional

sublayers. This is done in Case A. Conversely, as soon as the distane to an examined

layer is greater than the lowest distane, the algorithm moves up one step in the hierarhy

of layers, whih is done in Case C. Case B is invoked when the algorithm has suess-

fully moved down all the way to a 0-dimensional layer, that is, a lattie point, without

superseding the lowest distane. Then this lattie point is stored as a potential output

point, the lowest distane is updated, and the algorithm moves bak up again, without

restarting.

IV. Pre- and Postproessing

The algorithmDeode presented in Setion III-B requires that the lattie be represented

by a lower-triangular generator matrix, whose diagonal elements are all positive. Suh a

representation an be found for any lattie (see (4)), so this requirement does not impose

any onstraint on the set of latties that an be searhed. Moreover, a representation with

the required properties an be found in in�nitely many ways for any given lattie, whih

leaves the user with the freedom of hoosing one of them. The algorithm omputes a

losest vetor regardless of the representation hoie, but the speed with whih it reahes

the result varies onsiderably between di�erent representations. This is the topi of this

subsetion: How should a given searh problem be preproessed, in order to make the

most eÆient use of Deode?

To address this question, we �rst present a general lattie searh algorithm. It an be

regarded as a \front end" of Deode, where expliit pre- and postproessing is inluded to

allow generator matries that are not lower triangular, possibly not even square. As with

Deode, we �rst desribe the algorithm oneptually, then suggest how to implement it.

Assume that a generator matrix B and an input vetor x are given. By linear integer

row operations, we hange B into another matrix, say B

2

, whih represents an idential

lattie. (The purpose is to speed up Deode, see below.) Next we rotate and reet the

lattie into a lower-triangular form, B

3

, so that �(B

3

)

�

=

�(B

2

) = �(B). It is essential
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to rotate and reet the input vetor x in a similar fashion, so that the transformed input

vetor, x

3

, has the same relation to �(B

3

) as x has to �(B). This an be regarded as

a hange of oordinate system. Now the searh problem has a form that is suitable for

Deode, whih will �nd the losest lattie vetor
^
x

3

in this oordinate system. Reversing

the operations of rotation and reetion produes
^
x, the lattie vetor losest to x in

�(B).

Following these steps, the algorithm is detailed as follows.

Input:

B: A d-row, n-olumn generator matrix.

x: An n-element vetor to deode.

Output:

^
x: The lattie point losest to x.

Algorithm ClosestPoint(B;x):

1. Let B

2

:=WB, where W is an n� n integer matrix with determinant �1.

2. Find an orthonormal matrix Q suh that B

2

= B

3

Q, where B

3

is a d � d lower-

triangular matrix with positive diagonal elements.

3. Let S

3

:= B

�1

3

.

4. Let x

3

:= xQ

T

.

5. Let
^
u

3

:= Deode (S

3

;x

3

).

6. Return
^
x :=

^
u

3

B

2

.

Step 1, whih is redution, is optional. It is possible to seletW as the identity matrix,

whih amounts to no redution at all. This works well for low-dimensional and not too ill-

onditioned generator matries, as will be shown in Setion VII. However, the speed and

numerial stability of the searh an be improved signi�antly by appropriate redution,

whih is the topi of the last part of this subsetion.

Step 2 implies rotation and reetion of the lattie, as in (4). The standard method

to ahieve this is QR fatorization of B

T

2

, whih gives both Q and B

3

[19, pp. 208{236℄,

[37, pp. 166{176℄. (B

3

is equal to R

T

in the QR fatorization.) QR fatorization an be

understood as a hange of oordinate system: Measure the �rst oordinate along b

1

, the

seond in the plane spanned by b

1

and b

2

, et. The generator matrix will in this new

oordinate system be square and lower triangular.
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For Deode to work, are must be taken to ensure that all diagonal elements of B

3

are

positive. Some implementations of QR fatorization do not do this automatially; if this

is the ase, we multiply all olumns of B

3

that ontain a negative diagonal element, and

the orresponding rows of Q, by �1. As an alternative to QR fatorization, B

3

an be

obtained by Cholesky fatorization of B

2

B

T

2

[19, pp. 84{93℄, [37, pp. 332{334℄, after whih

the rotation matrix is given by Q = B

�1

3

B

2

.

In Steps 4{6, the input vetors are proessed. They are transformed into the oordinate

system of B

3

, deoded, and transformed bak again.

If a large set of vetors are to be deoded for the same lattie, Steps 1{3 are of ourse

only arried out one for the whole set. In this ase, the overall exeution time may ben-

e�t from an e�etive but time-onsuming redution method being applied in Step 1. To

understand preisely what kind of preproessing would improve the performane of the

searh algorithm, we reall the reursive interpretation of latties and of the algorithm

from Setion III-A. A d-dimensional lattie onsists of parallel (d � 1)-dimensional sub-

latties, translated and staked on top of eah other. This deomposition into sublatties

is ontrolled by the redution method. Two properties of the deomposition are desirable

for a given lattie:

(a) The (d � 1)-dimensional layers should be as far apart as possible. This minimizes

the number of layers to investigate, as all layers within a ertain distane range need to

be sanned. As an extreme ase, suppose that the spaing between (d � 1)-dimensional

layers is muh larger than any other k-dimensional layer spaing in the lattie. Then the

losest point will always lie in the losest (d� 1)-dimensional layer and the dimensionality

of the problem is pratially redued by one.

(b) The 0-dimensional layers (lattie points) should be as densely spaed as possible in

the 1-dimensional layers (lines). The denser they are, the higher is the probability that

the losest lattie point will belong to the losest lattie line. If the 1-dimensional spaing

is muh smaller than all the other inter-layer distanes, the losest point will always lie in

the losest line, so the dimensionality of the problem is pratially redued by one.

Both observations an of ourse be applied reursively, and hene high-dimensional

layer spaing should be large, and low-dimensional spaing should be small. This suggests
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two greedy algorithms: (a) sequentially maximizing the distanes between k-dimensional

layers, beginning at k = d�1, and (b) minimizing the same distanes, beginning at k = 0.

These two goals are eah other's duals in a fairly strit sense. Even though they may

appear ontraditory, they are in fat very similar [25, p. 94{98℄. A redution algorithm

an hoose the numbers fb

kk

g in many ways for a given lattie, but their produt is

invariant; it equals the volume of a Voronoi region. Now (a) is solved by maximizing �rst

b

dd

, then b

d�1;d�1

, et. Beause of the onstant produt, this proedure fores low values

into the last elements b

11

, b

22

, et., so a good solution of (a) is in general good for (b) too.

Conversely, (b) is solved by �rst minimizing b

11

, then b

22

, et., whih automatially yields

a good basis in sense (a), too.

The smallest possible value of b

11

that an be seleted for a given lattie equals the length

of the shortest vetor in the lattie.

2

Also, the largest possible b

dd

is the reiproal of the

length of the shortest vetor in the dual lattie.

3

Applying these shortest-vetor riteria

reursively, we onlude that (b) is solved optimally by KZ redution of any basis for the

lattie. This follows diretly from the reursive de�nition of KZ redution in Setion II.

Also, (a) is solved optimally by KZ redution of a basis for the dual lattie, then reversing

the order of the rows, and �nally transposing the inverse of the resulting matrix. (In the

following, we will refer to this latter strategy as \KZ redution of the dual".) Finally, the

LLL algorithm yields an approximate (but faster) solution to both (a) and (b), beause

of its inherent sorting mehanism.

Our reommendation, whih is supported in Setion VII, is to use KZ redution in

appliations where the same lattie is to be searhed many times, otherwise LLL.

V. Complexity Analysis

Banihashemi and Khandani observed that the average omplexity of a searh method

for uniformly distributed input vetors

4

is proportional to the volume of the region being

searhed [8℄. They used this volume to assess the omplexity of the Kannan algorithm. We

adopt the same approah here to analyze ClosestPoint (whih is based on the Shnorr-

2

Shortest-vetor problems an be solved by a variant of ClosestPoint, as detailed in Setion VI-A.

3

Beause a generator matrix for the dual lattie is (B

�1

)

T

, provided that B is square.

4

In the ontext of latties, a \uniform distribution" is assumed to be uniform over a region large enough to make

boundary e�ets negligible. This is equivalent to having a uniform distribution over just one Voronoi region.
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Euhner strategy), and to ompare it to Kannan. A omparison between ClosestPoint

and an algorithm based on the Pohst strategy is arried out experimentally, in Setion

VII.

For a given lattie, let V

k

(R) denote the volume searhed in a k-dimensional layer, when

R is the given upper bound on the attainable distane. Sine the algorithm does not

require an initial value for R

d

, the desired omplexity measure is V

d

(1).

Theorem 1:

(a) V

d

(1) �

d

Y

k=1

�

k

(15)

(b) V

d

(1) �

�

d

2�e

�

�d=2

�

d

d

(16)

where

�

k

,

 

k

X

i=1

b

2

ii

!

1=2

: (17)

Proof: The algorithm always begins by omparing the urrently best upper bound

R

k

with the distane between the input vetor x and Babai's point.

5

The distane to

Babai's point in k dimensions is, for any x, at most �

k

=2 [6℄. Denote the smaller of the

two distanes by f

k

(R

k

) , min(R

k

; �

k

=2). Also, let y

k

denote the orthogonal distane

from x to a (k � 1)-dimensional layer to be sanned. The algorithm onsiders all layers

for whih y

k

� f

k

(R

k

), and the distane upper bound imposed on eah of these layers is

R

k�1

=

q

f

2

k

(R

k

)� y

2

k

: (18)

The volume V

k

(R

k

), regarded as an integral over V

k�1

(R

k�1

), is hene reursively bounded

by

V

k

(R) � 2

Z

f

k

(R)

0

V

k�1

(

q

f

2

k

(R)� y

2

)dy; if k � 1 (19)

V

0

(R) = 1 (20)

where the index of R has been dropped.

5

In the implementation given in Setion III-B, R

k

orresponds to (bestdist� dist

k

)

1=2

.
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In the absene of a losed form for this quantity, we de�ne

V

0

k

(R) , 2

Z

�

k

=2

0

V

0

k�1

(

q

�

2

k

=4� y

2

)dy; if k � 1 (21)

V

00

k

(R) , 2

Z

R

0

V

00

k�1

(

p

R

2

� y

2

)dy; if k � 1 (22)

V

0

0

(R) , V

00

0

(R) , 1 (23)

and observe that V

k

(R) � V

0

k

(R) and V

k

(R) � V

00

k

(R). The reursions (21){(23) are solved

by, respetively

V

0

k

(R) =

k

Y

j=1

�

j

(24)

V

00

k

(R) =

2

k

�

k=2

�(k=2 + 1)

R

k

(25)

whih is easily veri�ed. Part (a) of the theorem is proved by (24). To omplete the proof

of (b), we observe that V

k

(R) = V

k

(f

k

(R)) and onsequently

V

d

(1) = V

d

(�

d

=2) (26)

�

�

d=2

�(d=2 + 1)

�

d

d

(27)

�

�

d

2�e

�

�d=2

�

d

d

(28)

where the last inequality follows from Stirling's inequality. 2

The orresponding volume K

d

for the Kannan algorithm is known exatly. For every

lattie, it is in the range

d

Y

k=1

�

k

� K

d

� �

d

d

(29)

where the lower bound is exat if the sequene b

11

; : : : ; b

dd

is inreasing and the upper

bound is exat if it is dereasing [8℄. For a \good" lattie, this sequene generally displays

a dereasing trend, but the derease is not neessarily monotoni [24℄, [12, p. 158℄. Hene,

K

d

is often lose to the upper bound.

The ClosestPoint algorithm is faster than the Kannan algorithm for all dimensions and

all latties, sine the upper bound (15) for ClosestPoint oinides with the lower bound for
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Kannan (29). The magnitude of the gain is suggested by Theorem 1 (b): For latties suh

that the upper bound in (29) is exat, ClosestPoint is at least a fator (d=2�e)

d=2

faster.

This fator is meant to indiate the asymptoti relation, and smaller order omponents

have been dropped in (28). For moderate values of d, (27) yields a signi�antly better

bound, and the fator is always at least one, even for \bad" latties.

Banihashemi and Khandani point out that the overing radii of the lattie and its

sublatties an be exploited to redue the omplexity of the Kannan algorithm [8℄. This

option an be inluded in ClosestPoint as well. However, it is diÆult to determine the

overing radius of a general lattie. The only known algorithm is the \diamond-utting

algorithm" [41℄, whih, as detailed in Setion VI-C, is on�ned by memory limitations to

low dimensions. Methods to upper-bound the overing radius an be used instead [40℄.

VI. More Lattie Searh Problems

Other searh problems involving latties an be solved by modi�ations and extensions

of the ClosestPoint algorithm. These inlude �nding lattie parameters suh as the

shortest vetor (or, equivalently, the paking density [12, p. 10℄), the kissing number, and

the Voronoi-relevant vetors. ClosestPoint an also be used to perform the key step in

basis redution.

A. Shortest Vetor

Given a lattie �, the shortest-vetor problem is to �nd the vetor in � � f0g with

the smallest Eulidean norm. Its history is losely interlinked with that of the losest-

point problem. It has been onjetured that shortest-vetor problem is NP-hard [39℄,

but, in ontrast to the losest-point problem, this has not been proved. The onjeture

was supported by the result of Ajtai, who showed that the shortest vetor problem for

randomized redutions is NP-hard [4℄, and by Miianio [28℄, who showed that to �nd

an approximate solution within any onstant fator less than

p

2 is also NP-hard for

randomized redutions. It has also been proven that the shortest vetor problem is not

harder than the losest-vetor problem [18, 21℄.

The ClosestPoint algorithm an be straightforwardly modi�ed to solve the shortest-

vetor problem instead. The general idea is to submit x = 0 as the input and disregard



17

^
x = 0 as a potential losest vetor. Algorithmially, the hanges needed to onvert

ClosestPoint into ShortestV etor are the following.

� Omit x as an input for Deode and ClosestPoint.

� In ClosestPoint, skip Step 4.

� In Deode, replae line 5 with \p

k

:= 0".

� Replae lines 1{2 of Case B with

If newdist 6= 0 then f

^
u := u

bestdist := newdist

g:

In any lattie, there is an even number of shortest vetors, beause the lattie is sym-

metrial with respet to reetion in 0. Hene if
^
x is a shortest vetor, so is �

^
x. If

exeution time is ruial, a fator of 2 in omputation time an be gained by exploiting

this symmetry. This is ahieved by rewriting Deode to san only half of the andidates

u, say, the ones for whih the �rst nonzero omponent is positive.

B. Kissing Number of Latties

The kissing number of a lattie � is de�ned as the number of shortest nonzero vetors

in �. To ompute this lattie parameter, it is essential to employ in�nite preision; an

arbitrarily small perturbation of a generator matrix has the potential of reduing the

kissing number to two, regardless of the original value. However, we do not reommend

implementing Deode using exat arithmetis. The same goal an be ahieved far more

eÆiently by implementing the time-onsuming operations as before using �nite-preision

real numbers, in onjuntion with a �nal in�nite-preision stage, where a �nite set of

andidates is evaluated.

The new version of Deode needs to keep trak of a set of potential shortest vetors, not

just the one best andidate. A margin of auray must be inluded in the omparisons,

to avoid missing some of the shortest vetors due to numerial errors. This is ahieved by

the following hanges, whih onvert ShortestV etor into KissingNumber.
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(i) In Deode, inlude \

^

U := ?" among the initial assignments.

(ii) In Deode, replae the line preeding Case A with \If newdist < (1 + �)bestdist

then f", where � is a small positive number.

(iii) Replae the �rst two assignments in Case B with \

^

U :=

^

U [ fug" and \bestdist :=

min(bestdist; newdist)".

(iv) Replae
^
u in Case C with

^

U , and replae
^
u

3

in Step 5 with

^

U

3

.

(v) Remove \k := k + 1" from Case B.

(vi) Replae Step 6 with

6. Compute exat values of kuB

2

k for all u 2

^

U

3

and return the number of our-

renes of the lowest value.

As for the shortest-vetor problem, a variant of the losest-point problem an be for-

mulated that in ase of a tie returns all the lattie points that have minimum distane to

the input vetor, not just one of them. ClosestPoint is onverted into AllClosestPoints

through the following modi�ations.

� Apply the hanges (i){(v) above to ClosestPoint.

� Replae Step 6 with

6. Compute exat values of kuB

2

� xk for all u 2

^

U

3

and all the lowest value

bestdist. Return

^

X := fuB

2

: u 2

^

U

3

; kuB

2

� xk = bestdistg.

The main appliation of this algorithm lies in the solution of the next problem.

C. Voronoi-Relevant Vetors

The relevant-vetor problem is to �nd the faets

6

of the Voronoi region 
(�; 0), in other

words, to �nd a minimal set N (�) � � for whih


(�; 0) = fx 2 R

n

: kxk � kx� 

0

k; 8

0

2 N (�)g : (30)

The vetors in N (�) are alled Voronoi-relevant, or simply relevant. Our method to solve

the problem is through the following theorem.

Theorem 2: The Voronoi regions of two lattie points 

1

2 � and 

2

2 � share a faet

if and only if

km� 

1

k < km� 

0

k; 8

0

2 �� f

1

; 

2

g (31)

6

A faet is a (d� 1)-dimensional fae of a d-dimensional polytope.
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where

m =

1

2

(

1

+ 

2

) : (32)

Proof: From (31) and (32),

m 2 
(�; 

1

) \ 
(�; 

2

)�

[



0

2��f

1

;

2

g


(�; 

0

) (33)

whih ompletes the \if" part of the theorem. To prove the \only if" part, assume that


(�; 

1

) and 
(�; 

2

) have a ommon faet. Let x be any point in the interior of this

faet, so that

kx� 

1

k = kx� 

2

k < kx� 

0

k; 8

0

2 �� f

1

; 

2

g : (34)

Then for all 

00

2 �� f

1

; 

2

g

km� 

1

k

2

� km� 

00

k

2

=

1

2

�

kx� 

1

k

2

� kx� 

00

k

2

�

+

1

2

�

kx� 

2

k

2

� kx� (

1

+ 

2

� 

00

)k

2

�

< 0 (35)

where the inequality follows from applying (34) twie. This proves (31). 2

This theorem was given by Vorono�� in a slightly di�erent ontext [43, vol. 134, pp. 277{

278℄, [12, p. 475℄, based on theory by Minkowski [29, pp. 81{85℄, [30, pp. 120{121℄. Similar

properties have been proved for the Voronoi regions of binary linear blok odes [1℄ and

of parallelepipeds [3℄.

Any vetor m given by (32) has the form zB, where 2z 2 Z

d

. However, to determine

N (�(B)) for a given lattie �(B), it is suÆient to investigate (31) for vetors m in the

�nite set

M(B) ,

�

zB : z 2 f0; 1=2g

d

� f0g

	

: (36)

Any feasible vetorm = zB =2 M(B) an be mapped into another vetorm

0

2 M(B) by

translating the lattie, exept when z 2 Z

d

. But in this ase it is obvious from Theorem

2 that 

1

and 

2

do not share a faet. This observation leads to the following algorithm.

Input:
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B: A d-row, n-olumn generator matrix.

Output:

N : The relevant vetors of �.

Algorithm RelevantV etors(B):

1. Let N := ?.

2. For allm 2 M(B),

(a) Let

^

X := AllClosestPoints(B;m).

(b) If j

^

X j = 2, let N := N [ f2(
^
x�m) :

^
x 2

^

Xg.

3. Return N .

Optional optimization inludes moving Steps 1{3 of AllClosestPoints out of the loop,

sine all alls to AllClosestPoints onern the same lattie. There is also a fator of 2 in

omplexity to be gained through the same symmetry argument as for ShortestV etor.

It is readily seen that the maximum number of faets that a Voronoi region an have in

any d-dimensional lattie is 2jM(B)j = 2

d+1

� 2, and that this number is attained with

probability 1 by a lattie whose basis is hosen randomly from a ontinuous distribution.

These properties were proved by Minkowski in 1897 [30, pp. 120{121℄ and by Vorono�� in

1909 [43, vol. 134, pp. 198{211 and vol. 136, pp. 67{70℄, respetively.

Relevant vetors have been determined for many lassial latties [12, Chs. 4,21℄, but

we believe that the algorithm RelevantV etors proposed above is the fastest known in the

general ase. The only alternative algorithm known to the authors is the \diamond-utting

algorithm" by Viterbo and Biglieri, whih �nds the omplete geometrial desription of the

Voronoi region of any lattie [41℄. This desription inludes all verties, edges, et., whih

evidently inludes information on the relevant vetors. However, to employ the diamond-

utting algorithm for the sole purpose of determining the relevant vetors is ineÆient.

Vorono�� showed in his lassial work [43℄ that the number of (d� k)-dimensional faes of

a d-dimensional lattie Voronoi region is upper-bounded by

(k + 1)

k

X

i=0

(�1)

i

�

k

i

�

(k � i + 1)

d

(37)

and that there exist latties whose Voronoi regions attain this number for every k. The

lattie nowadays alled A

�

d

is one example [43, vol. 136, pp. 74{82, 137{143℄. Evaluating
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(37) for k = d; d � 1; : : : shows that the maximum number of verties equals (d + 1)!,

the maximum number of edges is (d=2)(d + 1)!, et., whih implies that the memory

requirements for the diamond-utting algorithm grows very rapidly with the dimension.

This property on�nes its use to low dimensions.

RelevantV etors, on the other hand, uses negligible memory but does not fully deter-

mine the Voronoi regions, only their faets. In ases where verties, et., are desired, we

suggest preeding the diamond-utting algorithm with RelevantV etors, sine the om-

plexity (both time and memory) of the diamond-utting algorithm an be redued by

inorporating knowledge of the relevant vetors.

D. Redution

The last problem we mention here is the redution problem. The problem of �nding a KZ

redued basis for a lattie has already been mentioned in Setions II and IV. Theoretial

results are available for spei� latties [24℄. Algorithms for general latties have been

proposed by Kannan [23℄ and Shnorr [34℄. Sine KZ redution essentially onsists of

solving d shortest-vetor problems, a losest-point algorithm an be used in this ontext,

too. In our experiments (Setion VII) we have omputed KZ redued bases with this

method.

The general strategy is to �nd a shortest vetor in the lattie, projet the lattie onto

a hyperplane orthogonal to this vetor, and �nd a KZ redued basis of this (d � 1)-

dimensional lattie by reursion. In this appliation of ShortestV etor, Step 1 is performed

using LLL redution, sine KZ redution is obviously not a usable prerequisite for KZ

redution. The details of implementation, whih we omit, follow straightforwardly from

the de�nition in Setion II.

VII. Experiments

In this setion, we report on experiments with the ClosestPoint algorithm from Setion

III-B, to evaluate its performane (in terms of searh time) for low- and high-dimensional

problems, to ompare it with other similar algorithms, and to �nd out how the basis for

the lattie should be preproessed in order to ahieve the best performane.
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A. Experiment Setup

To evaluate the performane of the ClosestPoint algorithm, we must deide what lass

of latties to use. The losest-point searh methods studied here are general methods, and

they do not ompete well with algorithms speially designed for searhing a partiular

lattie; suh algorithms an exploit struture in the lattie and are generally faster (see

Setion I). Therefore, the natural appliation is one where a speial searh method for

the hosen lattie does not exist. Here, we onentrate our e�orts on experiments with

random latties without any struture that an be exploited. However, for omparison,

we also inlude some experiments where the algorithms were applied to lassial, highly

strutured latties, suh as the Leeh lattie in 24 dimensions, and the ubi lattie Z

d

.

Following the disussion above, we use generator matries with random elements, drawn

from i.i.d. zero-mean Gaussian distributions. For eah point in the diagrams 50 random

matries are generated, and for eah matrix a large number of uniform random vetors

(see footnote 4) are drawn.

7

We average over both random matries and random input

vetors. The searh times for all the algorithms are averaged using the same matries and

the same set of input vetors. The results are given as average searh time (in seonds),

using a omputer based on a 300 MHz Pentium II proessor.

B. Preproessing

An important question for a losest-point algorithm is whether the performane an be

improved by somehow preproessing the generator matrix. Sine the preproessing step

needs to be exeuted only one, and the proessed basis is typially used many times in

most ommuniation appliations, it is usually worth the e�ort to invoke a good prepro-

essing proedure. In Setion IV, three di�erent preproessing strategies are disussed:

LLL redution, KZ redution, and KZ redution of the dual. All of these basially aim to

�nd as short and orthogonal basis vetors as possible, and here we present experiments to

�nd the best of the redution methods.

In Figure 1, the results from simulations using the three redution methods are given.

8

7

The exat number is dependent on the dimension; for large dimensions with long searh times the average is

omputed over about 200 vetors for eah of the 50 matries, and for small dimensions the number of vetors is

muh larger.

8

As disussed previously, the redution is typially performed only one for a large set of vetors, and the time
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Fig. 1. Comparison between di�erent redution algorithms for preproessing of the generator matrix.

The average searh time is plotted as a funtion of the dimension.

We see that the performane an be signi�antly improved by seleting a good prepro-

essor. The best methods in our study are the ones based on KZ redution, whih are

almost indistinguishable. For high dimensions (30+), the KZ redution an lower the

searh times by almost two orders of magnitude ompared to unredued bases, and by one

order of magnitude ompared to LLL redution. However, up to about 10{15 dimensions,

the LLL algorithm gives good results.

C. Algorithm Comparison

To assess the performane of the ClosestPoint algorithm, we have also implemented

an algorithm desribed by Viterbo and Boutros [42℄, based on the Pohst strategy. The

V iterboBoutros algorithm needs a starting bound on the attainable distane (see Se-

tion III-A). First we �nd the distane to Babai's point and then use it as an initial

distane bound in the V iterboBoutros algorithm.

In Figure 2, the average time for a single losest-point operation is plotted as a fun-

tion of the dimension, for the ClosestPoint and the V iterboBoutros algorithms.

9

The

ClosestPoint algorithm is faster for all tested dimensions. We an also see that the speed

needed for redution is not inluded in the searh time results.

9

For both algorithms, KZ redution is applied to the generator matries.
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Fig. 2. Comparison of average searh time for the ClosestPoint algorithm and the V iterboBoutros

algorithm.

advantage inreases with the dimension. In Figure 3, the speed ratio between the two al-

gorithms is plotted as a funtion of dimension. For small dimensions, the speed advantage

is a fator of 2, while for the 40-dimensional example, the speed ratio is about 8.

Why is the ClosestPoint algorithm faster? The main di�erene between the two algo-

rithms is the order in whih the layers are examined (see the disussion in Setion III-A),

but some implementation issues also di�er, suh as the use of a dual basis for internal rep-

resentation, and a di�erent loop struture. To determine whih of the above di�erenes

leads to the speed di�erene, we reprogrammed ClosestPoint to examine the layers in the

same order as in the V iterboBoutros algorithm, while still keeping the implementation

struture the same. The results (not presented here) reveal that with the ordering of layers

as in the V iterboBoutros algorithm, the ClosestPoint algorithm is no longer faster; the

run times for both algorithms are similar. The onlusion is that it is the order in whih

the layers are examined that gives the ClosestPoint algorithm its better performane.

D. Comparison with Classial Latties

To further illustrate the performane of ClosestPoint, we here evaluate its performane

for lassial latties, and ompare with the performane for random matries (hosen from

an i.i.d. Gaussian soure). In Figure 4, the average searh time for random latties and for
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Fig. 4. Searh time omparison of lassial and random latties.

the ubi lattie is plotted as a funtion of the dimension, together with the searh times

for the Leeh lattie in 24 dimensions, and for the Barnes-Wall latties in dimensions 8,

16, and 32. >From this �gure, we see that there are no surprises in the searh omplexity

for lassial latties; the general urve is the same as that for random latties. This is

the strength as well as the weakness of algorithms of this type; they do not rely on any

partiular struture. Also for the lassial latties (exept the ubi lattie of ourse), KZ
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Fig. 5. Searh time omparison for the ClosestPoint algorithm and the V iterboBoutros algorithm, for

a 45-dimensional example.

redution leads to faster searh times, and is therefore applied before the experiments.

E. Suboptimal Searh

The losest-point searh algorithms studied here always returns a lattie point losest to

the input point. However, in ertain appliations, it may be neessary to abort the searh

before the losest point has been found. Therefore, we have inluded experiments where

the V iterboBoutros and the ClosestPoint algorithms are aborted after a given time. In

Figure 5, the average ratio between the suboptimal and the optimal distortions is given

for a 45-dimensional example, as a funtion of the time allowed for the searh. From this

�gure, we see that the ClosestPoint algorithm quikly �nds lattie points fairly lose to

the optimal one, while it takes a onsiderable amount of time until the V iterboBoutros

algorithm improves on Babai's point. (Babai's point is the �rst point found for both

algorithms; in this example, its average distortion is 1.43 times the distortion of the optimal

point.)

We see that if a 10% higher average distortion than the optimal an be tolerated, the

ClosestPoint algorithm is more than 150 times faster than the V iterboBoutros algorithm,

as ompared to about 10 times faster if we wait until the optimal point is found (see

Figure 3). If 20% higher distortion an be tolerated for both algorithms, the ClosestPoint
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algorithm is more than 1500 times faster.

We only report results for a single 45-dimensional example, but the general onlu-

sion is the same for all tested dimensions; if we abort the searh proedure before the

optimal point is found, the speed advantage of the ClosestPoint algorithm over the

V iterboBoutros algorithm is even learer than for uninterrupted searh.

VIII. Conlusion

Algorithms for �nding the losest point in a lattie were studied. The omplexity of

di�erent strategies for losest-point searh was theoretially and experimentally evaluated,

and a omplete implementation of an eÆient losest-point algorithm were given. The

losest point algorithm were also extended to solve a number of related lattie searh

problems.
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