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Closest Point Sear
h in Latti
es

E. AGRELL, T. ERIKSSON, A. VARDY, and K. ZEGER

SUMMARY

In this semi-tutorial report, algorithms for �nding the 
losest point in a latti
e are studied.

The 
omplexity of di�erent strategies is 
ompared, both theoreti
ally and by experiments.

A 
omplete implementation of an eÆ
ient 
losest-point algorithm is given, together with

straightforward modi�
ations of the algorithm to solve a number of related sear
h problems

for latti
es, su
h as �nding a shortest ve
tor, determining the kissing number, 
omputing

the Voronoi-relevant ve
tors, or �nding a Korkine-Zolotare� redu
ed basis.

Keywords: Closest-point sear
h, kissing number, Korkine-Zolotare� redu
tion, latti
e de-


oding algorithm, shortest ve
tor, Voronoi-relevant ve
tors.
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I. Introdu
tion

In latti
e theory, a generator matrix B is any real matrix with linearly independent rows.

Hen
e n � d, where n is the number of 
olumns and d, the dimension, is the number of

rows. The latti
e generated by B is

�(B) ,

�

uB : u 2 Z

d

	

(1)

and the rows ofB are 
alled basis ve
tors. The 
losest-point problem, or de
oding for short,

is the problem of �nding, for a given latti
e � and an input ve
tor x 2 R

n

, a ve
tor
^
x 2 �

su
h that kx�
^
xk � kx� 
k for all 
 2 �. (In sour
e 
oding, the 
losest-point problem

is 
alled en
oding, see below.) Throughout this report, kzk denotes the Eu
lidean norm

of z.

The Voronoi region of a latti
e point is the set of all ve
tors that 
an be de
oded as this

point, namely


(�; 
) , fx 2 R

n

: kx� 
k � kx� 


0

k; 8


0

2 �g (2)

where 
 2 �. The Voronoi diagram of a latti
e is the set of all its Voronoi regions. It is

known that all Voronoi regions 
(�; 
) are 
onvex polytopes, they are symmetri
al with

respe
t to re
e
tion in 
, and they are translations of 
(�; 0), where 0 is the origin. Hen
e,

for most purposes it is suÆ
ient to study 
(�; 0).

In 
ommuni
ation theory, latti
es have been proposed both for use in modulation and in

quantization. If a latti
e is used as a 
ode for the Gaussian 
hannel, maximum likelihood

de
oding in the demodulator is a 
losest-point problem. Analogously, if a latti
e is used

as a 
odebook for ve
tor quantization and the mean square error 
riterion is used, then

the en
oding of ea
h input ve
tor is equivalent to a 
losest-point sear
h. Another instan
e

of the 
losest-point problem 
an appear in the sour
e de
oder or in the modulator, if the

latti
e is trun
ated into a so-
alled Voronoi 
ode [10℄. Typi
al for these appli
ations in


ommuni
ations is that the same latti
e is employed for many input ve
tors.

Other appli
ations where the 
losest-point problem arises in
lude latti
e design [2℄ and

Monte Carlo se
ond moment estimation [11℄. In both 
ases, random ve
tors are generated

uniformly inside a Voronoi region using a 
losest-point algorithm.
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The 
losely related shortest-ve
tor problem has been used in assessing the quality of

random number generators [25, pp. 89{113℄, and redu
tion has an important appli
ation

in 
ryptography [36℄. These sear
h problems, and the determination of some further latti
e

parameters through similar methods, will be dis
ussed in Se
tion VI.

The 
hoi
e of method for solving the 
losest-point problem depends on the stru
ture of

the latti
e. Intuitively, the more stru
ture a latti
e has, the faster 
an the 
losest point be

found. For most of the 
lassi
al latti
es, very eÆ
ient sear
h methods have been tailored

[12, Ch. 20℄. A more general approa
h is to represent the latti
e with a trellis and use a

trellis de
oding algorithm su
h as the Viterbi algorithm [7, 17℄. Finite-state trellises exist

if and only if the latti
e 
ontains d mutually orthogonal ve
tors [38℄.

In this report we address the problem of �nding the 
losest point in a general latti
e.

We assume that it possesses no exploitable stru
ture. One example of where this problem

arises is when a generator matrix is 
ontinuously adjusted, su
h as in numeri
al latti
e

design [2℄. Another example is MS-optimal separation of the linear phase 
omponent from

an arbitrary phase ve
tor [15℄, whi
h 
an be useful in, e.g., spee
h 
oding.

The 
omplexity of the general 
losest-point problem as a fun
tion of d was analyzed by

van Emde Boas in 1981, who showed that the problem is NP-hard [39℄. Hen
e, all known

algorithms for solving the problem optimally have exponential 
omplexity. It is also NP-

hard to �nd an approximate solution su
h that the ratio between the found distan
e and

the optimal one is upper-bounded by a 
onstant [5℄.

A 
ommon approa
h to the general 
losest-point problem is to identify a 
ertain region

in R

n

within whi
h the optimal latti
e point must lie, then investigate all points in this

region, possibly redu
ing its size dynami
ally. The earliest work in the �eld was done for

the shortest-ve
tor problem (see Se
tion VI-A) in the 
ontext of assessing the quality of


ertain random number generators. The �nite region to be sear
hed in these algorithms is

a parallelepiped with its axes parallel to the basis ve
tors [13℄, [14℄, [25, pp. 89{101, 110℄.

The development of 
losest-point algorithms follows two main bran
hes, inspired by two

seminal papers. Pohst in 1981 examined points inside a hypersphere [32℄, whereas Kannan

in 1983 used a re
tangular parallelepiped [22℄. Both papers later appeared in revised and

extended versions, Pohst's as [16℄ and Kannan's, following a paper by Helfri
h [20℄, as [23℄.
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The two strategies will be dis
ussed at greater length in Se
tion III-A.

A 
ru
ial parameter for the performan
e of these algorithms is the initial size of the

region. Some suggestions to this point were given in [40℄ and [31℄ for the Pohst strategy

and in [8℄ for the Kannan strategy. The latter paper also in
ludes an extensive 
omplexity

analysis. Appli
ations are dis
ussed in [9, 31, 40, 42℄.

Another, more subtle, di�eren
e between the two strategies is impli
it from the presen-

tations of them. Grossly generalizing, the Pohst method is intended as a pra
ti
al tool

and the method by Kannan as a theoreti
al tool. Papers dealing with the Pohst strategy

typi
ally dis
uss issues of implementation and appli
ations, whereas the Kannan-type pa-

pers fo
us on asymptoti
 
omplexity. This is probably the reason why the two strategies,

despite having so mu
h in 
ommon, have never been 
ompared and evaluated against ea
h

other.

In [35℄, S
hnorr and Eu
hner suggest an important improvement of the Pohst strategy,

by examining the points inside the aforementioned hypersphere in a di�erent order. In

Se
tions V and VII-C, the strategies by Pohst, Kannan, and S
hnorr-Eu
hner are 
om-

pared with respe
t to 
omputational 
omplexity, and it is shown that the S
hnorr-Eu
hner

strategy is faster than the other two. A pra
ti
al implementation of the S
hnorr-Eu
hner

strategy is presented in Se
tion III-B.

II. Preliminaries

In the following, we will say that two latti
es are identi
al if all latti
e points are the

same. Two generator matri
es B

1

and B

2

generate identi
al latti
es �(B

1

) = �(B

2

) if

and only if

B

1

=WB

2

(3)

where W is a square matrix with integer entries, whose determinant is 1 or �1.

A generator matrix B

2

is a rotated and re
e
ted representation of another generator

matrix B

1

if

B

1

= B

2

Q (4)

where QQ

T

= I. This 
an be regarded as a 
hange of 
oordinate system. If B

2

is

square and lower triangular, we say that it is a lower-triangular representation of B

1

. Any
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generator matrix has a lower-triangular representation B

2

, whi
h is unique ex
ept that

any set of 
olumns of B

2


an be negated. How to �nd a lower-triangular representation

of any generator matrix is dis
ussed in Se
tion IV.

Two latti
es are equivalent if they are 
ongruent, that is, if one 
an be obtained from

the other through s
aling, rotation, and re
e
tion. Two generator matri
es B

1

and B

2

generate equivalent latti
es if and only if

B

1

= 
WB

2

Q (5)

where 
 is a real nonzero 
onstant andW and Q obey the same 
onditions as for (3) and

(4). The equivalen
e relation is denoted �(B

2

)

�

=

�(B

1

).

The pro
ess of sele
ting a good basis for a given latti
e, given some 
riterion, is 
alled

redu
tion. In many appli
ations, it is advantageous if the basis ve
tors are as short as

possible, and \reasonably" orthogonal to ea
h other. For latti
e sear
h problems, this was

�rst noted by Coveyou and Ma
Pherson [13℄. Two kinds of redu
tion will be dis
ussed in

the following.

KZ redu
tion is named after Korkine and Zolotare� [26℄, who de�ned this redu
tion


riterion in 1873. To determine if a generator matrix represents a KZ redu
ed basis,

it is 
onvenient to study its lower-triangular representation. A lower-triangular square

generator matrix

B =

2

6

6

6

6

6

6

4

b

1

b

2

.

.

.

b

d

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

b

11

0 � � � 0

b

21

b

22

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

b

d1

b

d2

� � � b

dd

3

7

7

7

7

7

7

5

(6)

is de�ned re
ursively to be KZ redu
ed if d = 1 or else the following hold:

� b

1

is a shortest nonzero ve
tor in �(B),

� jb

i1

j � jb

11

j=2 for i = 2; : : : ; d,

� The submatrix

2

6

6

6

4

b

22

� � � 0

.

.

.

.

.

.

.

.

.

b

d2

� � � b

dd

3

7

7

7

5

(7)
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is KZ redu
ed.

An arbitrary generator matrix B is KZ redu
ed if and only if its lower-triangular rep-

resentation is KZ redu
ed. Every latti
e has at least one KZ redu
ed generator matrix

[33℄.

For situations when KZ redu
tion would be too time-
onsuming, LLL redu
tion, named

after Lenstra, Lenstra, and Lov�asz, has been suggested [27℄. A lower-triangular generator

matrix (6) is LLL redu
ed if either d = 1 or else the following hold:

� kb

1

k � (2=

p

3)kb

2

k,

� jb

i1

j � jb

11

j=2 for i = 2; : : : ; d,

� The submatrix (7) is LLL redu
ed.

As before, an arbitrary generator matrix is LLL redu
ed if its lower-triangular represen-

tation is LLL redu
ed.

Any KZ redu
ed matrix is 
learly also LLL redu
ed. The motivation for the latter


riterion is that there exists a more eÆ
ient algorithm to 
onvert any d � n generator

matrix into an LLL redu
ed one [27℄. The algorithm, whi
h operates in polynomial time

in d and n, has be
ome very popular in appli
ations.

III. Closest-Point Sear
h Algorithms

A. Con
eptual Des
ription

To understand latti
e sear
h algorithms, a re
ursive 
hara
terization of latti
es is useful.

Let the d� n matrix B be de
omposed as

B =

2

4

B

1

b

d

3

5

(8)

and let b

d

= b

k

+ b

?

, where b

k

is in the row spa
e of B

1

(the top d� 1 rows of B) and b

?

is in the null spa
e. If B is lower triangular as in (6), this de
omposition is parti
ularly

simple, namely, b

k

= [b

d1

; : : : ; b

d;d�1

; 0℄ and b

?

= [0; : : : ; 0; b

dd

℄.

With the given terminology, any d-dimensional latti
e 
an be de
omposed as

�(B) =

1

[

u

d

=�1

�


+ u

d

b

k

+ u

d

b

?

: 
 2 � (B

1

)

	

(9)
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whi
h is basi
ally a sta
k of (d � 1)-dimensional translated sublatti
es. The (d � 1)-

dimensional hyperplanes that 
ontain these sublatti
es will be 
alled ((d�1)-dimensional)

layers and the index u

d

denotes whi
h layer a 
ertain latti
e point belongs to. The ve
-

tor b

k

is the o�set whi
h one sublatti
e is translated within its layer, with respe
t to an

adja
ent sublatti
e, and b

?

is a normal ve
tor to the layers, whose length equals the dis-

tan
e between two adja
ent layers. This distan
e equals b

dd

for lower-triangular generator

matri
es. Re
alling that any generator matrix 
an be rotated into lower-triangular form,

we will in this report let b

ii

denote the distan
e between (i� 1)-dimensional layers, even

when no expli
it triangular 
onstraint is imposed.

Now the sear
h algorithm for a d-dimensional latti
e will be re
ursively des
ribed as a

�nite number of (d� 1)-dimensional sear
h operations. Let x be a ve
tor to be de
oded

in the latti
e �(B), whi
h is de
omposed into layers a

ording to (9). The orthogonal

distan
e from x to the layer with index u

d

is

y

d

, ju

d

� ~u

d

j � kb

?

k (10)

where

~u

d

,

xb

T

?

kb

?

k

2

: (11)

Suppose that an upper bound R

d

is known on the attainable distan
e k
^
x� xk, where

^
x

is a 
losest latti
e point. Then it suÆ
es to 
onsider a �nite number of the layers in (9)

in order to ensure that the 
losest latti
e point will be found. The indi
es of these layers

are

1

u

d

=

�

~u

d

�

R

d

kb

?

k

�

; : : : ;

�

~u

d

+

R

d

kb

?

k

�

(12)

sin
e layers for whi
h y

d

> R

d

are not relevant. Of the 
onsidered layers, the one with

u

d

= [~u

d

℄ has the shortest orthogonal distan
e to x.

Four types of sear
h methods will now be identi�ed. They ea
h sear
h the layers indexed

in (12), but they di�er in the order in whi
h the layers are examined and in the 
hoi
e of

upper bound R

d�1

to be used in the (d� 1)-dimensional sear
h problems.

1

The fun
tions bz
, dze, and [z℄ denote the maximum integer not greater than z, the minimum integer not less

that z, and the 
losest integer to z (ties are broken arbitrarily), respe
tively. In addition, SGN(z) is �1 if z � 0

and 1 if z > 0. (The algorithm in Se
tion III-B requires that �1 is returned even for z = 0, whi
h may deviate

from the operation of most built-in sign fun
tions.)
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If only u

d

= [~u

d

℄ is 
onsidered, the d-dimensional sear
h problem is redu
ed to just one

(d � 1)-dimensional problem and no bound R

d

is needed. Re
ursive appli
ation of this

strategy yields Babai's nearest plane algorithm [6℄, whi
h is a fast method (polynomial in

the number of rows d and 
olumns n of B) to �nd a nearby latti
e point. In general, the

returned point (\Babai's point") is not the optimal one, but the error 
an be bounded.

The other three methods all �nd the optimal point. S
anning all layers in (12), and

supplying ea
h (d� 1)-dimensional sear
h problem with the same value of R

d�1

regardless

of u

d

, yields the Kannan strategy. Variants of this strategy di�er mainly in how the bounds

R

k

, k = 1; : : : ; d, are 
hosen [8, 20, 22, 23℄. Geometri
ally, the Kannan strategy amounts

to generating and examining all latti
e points within a given re
tangular parallelepiped.

The d-dimensional de
oding error ve
tor
^
x�x 
onsists, in the given re
ursive framework,

of two orthogonal 
omponents, one in the row spa
e of B

1

and one parallel to b

?

. The

former is the (d� 1)-dimensional de
oding error and the length of the latter is y

d

, whi
h

varies with u

d

. Hen
e R

d�1


an safely be 
hosen as

R

d�1

=

q

R

2

d

� y

2

d

: (13)

This idea of lettingR

d�1

depend on u

d

is the Pohst strategy [16,31,32,40,42℄. In geometri
al

terms, points inside a hypersphere, not a parallelepiped, are investigated. When any latti
e

point x

0

inside the sphere has been found, the bound R

d


an be immediately updated to

kx

0

� xk, sin
e this is an obvious upper bound on k
^
x� xk.

The S
hnorr-Eu
hner strategy [35℄ 
ombines the advantages of Babai's nearest plane

algorithm and the Pohst strategy. Assume that ~u

d

� [~u

d

℄. Then the sequen
e

u

d

= [~u

d

℄ ; [~u

d

℄� 1; [~u

d

℄ + 1; [~u

d

℄� 2; : : : (14)

orders the layers a

ording to nonde
reasing distan
e from x. (A trivial 
ounterpart holds

when ~u

d

> [~u

d

℄.) The advantages of examining the layers in this order are subtle but

signi�
ant. Sin
e the likelihood that a layer will 
ontain
^
x de
reases with in
reasing

y

d

(see (13), the 
han
es of �nding
^
x early is maximized. Another advantage with the

nonde
reasing distan
e y

d

is that the sear
h 
an safely be terminated as soon as y

d

> R

d

,

where R

d

is the distan
e to the best found latti
e point so far. The very �rst latti
e

point generated will by de�nition be Babai's point. Sin
e the ordering in (14) does not
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depend on R

d

, no initial bound on R

d

is needed. A 
losest-point algorithm, based on the

S
hnorr-Eu
hner strategy, is further detailed in Se
tions III-B and IV.

B. Detailed Des
ription

This subse
tion 
ontains a stand-alone presentation of an eÆ
ient 
losest-point algo-

rithm, based on the S
hnorr-Eu
hner strategy. It is intended to be suÆ
iently detailed to

allow a straightforward implementation, even with no study of the underlying theory. For

eÆ
ien
y, the re
ursive operations dis
ussed in the previous subse
tion have been restru
-

tured into a loop. The variables S and
^
u are used instead of the more natural B = S

�1

and
^
x =

^
uB as input and output parameters. As dis
ussed in the next subse
tion, this

is motivated by the typi
al 
ommuni
ation appli
ation in whi
h many input ve
tors are

de
oded in the same latti
e.

Some notation needs to be de�ned. Matrix and ve
tor elements are named a

ording

to the following 
onventions:

u =

h

u

1

� � � u

d

i

p

k

=

h

p

k1

� � � p

kk

i

; k = 1; : : : ; d

S =

2

6

6

6

6

6

6

4

s

11

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

s

d1

� � � s

dd

3

7

7

7

7

7

7

5

:

The integer operations [z℄ and SGN(z) are de�ned in footnote 1.

Input:

S: A d� d lower-triangular matrix with positive diagonal elements.

x: A d-dimensional ve
tor to de
ode in �(S

�1

).

Output:

^
u: An integer ve
tor su
h that

^
uS

�1

is a latti
e point 
losest to x.
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Algorithm De
ode(S;x):

d := the size of S � Dimension

bestdist :=1 � Current distan
e re
ord

k := d � Dimension of examined layer

dist

k

:= 0 � Distan
e to examined layer

p

k

:= xS � Used to 
ompute ~u

d

, see (11)

u

k

:= [p

kk

℄ � Examined latti
e point

y :=

p

kk

� u

k

s

kk

� See (10)

step

k

:= SGN(y) � O�set to next layer in (14)

Loop:

newdist := dist

k

+ y

2

If newdist < bestdist then f

If k 6= 1 then f Case A

p

k�1;i

:= p

ki

� ys

ki

; i = 1; : : : ; k � 1

k := k � 1 � Move down

dist

k

:= newdist

u

k

:= [p

kk

℄ � Closest layer

y :=

p

kk

� u

k

s

kk

step

k

:= SGN(y)

g else f Case B

^
u := u � Best latti
e point so far

bestdist := newdist � Update re
ord

k := k + 1 � Move up

u

k

:= u

k

+ step

k

� Next layer

y :=

p

kk

� u

k

s

kk

step

k

:= �step

k

� SGN (step

k

)

g

g else f Case C

If k = d then Exit and return
^
u

else f

k := k + 1 � Move up

u

k

:= u

k

+ step

k

� Next layer

y :=

p

kk

� u

k

s

kk

step

k

:= �step

k

� SGN (step

k

)

g

g

Goto Loop
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In this algorithm, k is the dimension of the sublayer stru
ture 
urrently being investi-

gated. Ea
h time a k-dimensional layer has been found to whi
h the distan
e is shorter

than the 
urrently smallest found distan
e, this layer is expanded into (k�1)-dimensional

sublayers. This is done in Case A. Conversely, as soon as the distan
e to an examined

layer is greater than the lowest distan
e, the algorithm moves up one step in the hierar
hy

of layers, whi
h is done in Case C. Case B is invoked when the algorithm has su

ess-

fully moved down all the way to a 0-dimensional layer, that is, a latti
e point, without

superseding the lowest distan
e. Then this latti
e point is stored as a potential output

point, the lowest distan
e is updated, and the algorithm moves ba
k up again, without

restarting.

IV. Pre- and Postpro
essing

The algorithmDe
ode presented in Se
tion III-B requires that the latti
e be represented

by a lower-triangular generator matrix, whose diagonal elements are all positive. Su
h a

representation 
an be found for any latti
e (see (4)), so this requirement does not impose

any 
onstraint on the set of latti
es that 
an be sear
hed. Moreover, a representation with

the required properties 
an be found in in�nitely many ways for any given latti
e, whi
h

leaves the user with the freedom of 
hoosing one of them. The algorithm 
omputes a


losest ve
tor regardless of the representation 
hoi
e, but the speed with whi
h it rea
hes

the result varies 
onsiderably between di�erent representations. This is the topi
 of this

subse
tion: How should a given sear
h problem be prepro
essed, in order to make the

most eÆ
ient use of De
ode?

To address this question, we �rst present a general latti
e sear
h algorithm. It 
an be

regarded as a \front end" of De
ode, where expli
it pre- and postpro
essing is in
luded to

allow generator matri
es that are not lower triangular, possibly not even square. As with

De
ode, we �rst des
ribe the algorithm 
on
eptually, then suggest how to implement it.

Assume that a generator matrix B and an input ve
tor x are given. By linear integer

row operations, we 
hange B into another matrix, say B

2

, whi
h represents an identi
al

latti
e. (The purpose is to speed up De
ode, see below.) Next we rotate and re
e
t the

latti
e into a lower-triangular form, B

3

, so that �(B

3

)

�

=

�(B

2

) = �(B). It is essential
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to rotate and re
e
t the input ve
tor x in a similar fashion, so that the transformed input

ve
tor, x

3

, has the same relation to �(B

3

) as x has to �(B). This 
an be regarded as

a 
hange of 
oordinate system. Now the sear
h problem has a form that is suitable for

De
ode, whi
h will �nd the 
losest latti
e ve
tor
^
x

3

in this 
oordinate system. Reversing

the operations of rotation and re
e
tion produ
es
^
x, the latti
e ve
tor 
losest to x in

�(B).

Following these steps, the algorithm is detailed as follows.

Input:

B: A d-row, n-
olumn generator matrix.

x: An n-element ve
tor to de
ode.

Output:

^
x: The latti
e point 
losest to x.

Algorithm ClosestPoint(B;x):

1. Let B

2

:=WB, where W is an n� n integer matrix with determinant �1.

2. Find an orthonormal matrix Q su
h that B

2

= B

3

Q, where B

3

is a d � d lower-

triangular matrix with positive diagonal elements.

3. Let S

3

:= B

�1

3

.

4. Let x

3

:= xQ

T

.

5. Let
^
u

3

:= De
ode (S

3

;x

3

).

6. Return
^
x :=

^
u

3

B

2

.

Step 1, whi
h is redu
tion, is optional. It is possible to sele
tW as the identity matrix,

whi
h amounts to no redu
tion at all. This works well for low-dimensional and not too ill-


onditioned generator matri
es, as will be shown in Se
tion VII. However, the speed and

numeri
al stability of the sear
h 
an be improved signi�
antly by appropriate redu
tion,

whi
h is the topi
 of the last part of this subse
tion.

Step 2 implies rotation and re
e
tion of the latti
e, as in (4). The standard method

to a
hieve this is QR fa
torization of B

T

2

, whi
h gives both Q and B

3

[19, pp. 208{236℄,

[37, pp. 166{176℄. (B

3

is equal to R

T

in the QR fa
torization.) QR fa
torization 
an be

understood as a 
hange of 
oordinate system: Measure the �rst 
oordinate along b

1

, the

se
ond in the plane spanned by b

1

and b

2

, et
. The generator matrix will in this new


oordinate system be square and lower triangular.
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For De
ode to work, 
are must be taken to ensure that all diagonal elements of B

3

are

positive. Some implementations of QR fa
torization do not do this automati
ally; if this

is the 
ase, we multiply all 
olumns of B

3

that 
ontain a negative diagonal element, and

the 
orresponding rows of Q, by �1. As an alternative to QR fa
torization, B

3


an be

obtained by Cholesky fa
torization of B

2

B

T

2

[19, pp. 84{93℄, [37, pp. 332{334℄, after whi
h

the rotation matrix is given by Q = B

�1

3

B

2

.

In Steps 4{6, the input ve
tors are pro
essed. They are transformed into the 
oordinate

system of B

3

, de
oded, and transformed ba
k again.

If a large set of ve
tors are to be de
oded for the same latti
e, Steps 1{3 are of 
ourse

only 
arried out on
e for the whole set. In this 
ase, the overall exe
ution time may ben-

e�t from an e�e
tive but time-
onsuming redu
tion method being applied in Step 1. To

understand pre
isely what kind of prepro
essing would improve the performan
e of the

sear
h algorithm, we re
all the re
ursive interpretation of latti
es and of the algorithm

from Se
tion III-A. A d-dimensional latti
e 
onsists of parallel (d � 1)-dimensional sub-

latti
es, translated and sta
ked on top of ea
h other. This de
omposition into sublatti
es

is 
ontrolled by the redu
tion method. Two properties of the de
omposition are desirable

for a given latti
e:

(a) The (d � 1)-dimensional layers should be as far apart as possible. This minimizes

the number of layers to investigate, as all layers within a 
ertain distan
e range need to

be s
anned. As an extreme 
ase, suppose that the spa
ing between (d � 1)-dimensional

layers is mu
h larger than any other k-dimensional layer spa
ing in the latti
e. Then the


losest point will always lie in the 
losest (d� 1)-dimensional layer and the dimensionality

of the problem is pra
ti
ally redu
ed by one.

(b) The 0-dimensional layers (latti
e points) should be as densely spa
ed as possible in

the 1-dimensional layers (lines). The denser they are, the higher is the probability that

the 
losest latti
e point will belong to the 
losest latti
e line. If the 1-dimensional spa
ing

is mu
h smaller than all the other inter-layer distan
es, the 
losest point will always lie in

the 
losest line, so the dimensionality of the problem is pra
ti
ally redu
ed by one.

Both observations 
an of 
ourse be applied re
ursively, and hen
e high-dimensional

layer spa
ing should be large, and low-dimensional spa
ing should be small. This suggests
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two greedy algorithms: (a) sequentially maximizing the distan
es between k-dimensional

layers, beginning at k = d�1, and (b) minimizing the same distan
es, beginning at k = 0.

These two goals are ea
h other's duals in a fairly stri
t sense. Even though they may

appear 
ontradi
tory, they are in fa
t very similar [25, p. 94{98℄. A redu
tion algorithm


an 
hoose the numbers fb

kk

g in many ways for a given latti
e, but their produ
t is

invariant; it equals the volume of a Voronoi region. Now (a) is solved by maximizing �rst

b

dd

, then b

d�1;d�1

, et
. Be
ause of the 
onstant produ
t, this pro
edure for
es low values

into the last elements b

11

, b

22

, et
., so a good solution of (a) is in general good for (b) too.

Conversely, (b) is solved by �rst minimizing b

11

, then b

22

, et
., whi
h automati
ally yields

a good basis in sense (a), too.

The smallest possible value of b

11

that 
an be sele
ted for a given latti
e equals the length

of the shortest ve
tor in the latti
e.

2

Also, the largest possible b

dd

is the re
ipro
al of the

length of the shortest ve
tor in the dual latti
e.

3

Applying these shortest-ve
tor 
riteria

re
ursively, we 
on
lude that (b) is solved optimally by KZ redu
tion of any basis for the

latti
e. This follows dire
tly from the re
ursive de�nition of KZ redu
tion in Se
tion II.

Also, (a) is solved optimally by KZ redu
tion of a basis for the dual latti
e, then reversing

the order of the rows, and �nally transposing the inverse of the resulting matrix. (In the

following, we will refer to this latter strategy as \KZ redu
tion of the dual".) Finally, the

LLL algorithm yields an approximate (but faster) solution to both (a) and (b), be
ause

of its inherent sorting me
hanism.

Our re
ommendation, whi
h is supported in Se
tion VII, is to use KZ redu
tion in

appli
ations where the same latti
e is to be sear
hed many times, otherwise LLL.

V. Complexity Analysis

Banihashemi and Khandani observed that the average 
omplexity of a sear
h method

for uniformly distributed input ve
tors

4

is proportional to the volume of the region being

sear
hed [8℄. They used this volume to assess the 
omplexity of the Kannan algorithm. We

adopt the same approa
h here to analyze ClosestPoint (whi
h is based on the S
hnorr-

2

Shortest-ve
tor problems 
an be solved by a variant of ClosestPoint, as detailed in Se
tion VI-A.

3

Be
ause a generator matrix for the dual latti
e is (B

�1

)

T

, provided that B is square.

4

In the 
ontext of latti
es, a \uniform distribution" is assumed to be uniform over a region large enough to make

boundary e�e
ts negligible. This is equivalent to having a uniform distribution over just one Voronoi region.
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Eu
hner strategy), and to 
ompare it to Kannan. A 
omparison between ClosestPoint

and an algorithm based on the Pohst strategy is 
arried out experimentally, in Se
tion

VII.

For a given latti
e, let V

k

(R) denote the volume sear
hed in a k-dimensional layer, when

R is the given upper bound on the attainable distan
e. Sin
e the algorithm does not

require an initial value for R

d

, the desired 
omplexity measure is V

d

(1).

Theorem 1:

(a) V

d

(1) �

d

Y

k=1

�

k

(15)

(b) V

d

(1) �

�

d

2�e

�

�d=2

�

d

d

(16)

where

�

k

,

 

k

X

i=1

b

2

ii

!

1=2

: (17)

Proof: The algorithm always begins by 
omparing the 
urrently best upper bound

R

k

with the distan
e between the input ve
tor x and Babai's point.

5

The distan
e to

Babai's point in k dimensions is, for any x, at most �

k

=2 [6℄. Denote the smaller of the

two distan
es by f

k

(R

k

) , min(R

k

; �

k

=2). Also, let y

k

denote the orthogonal distan
e

from x to a (k � 1)-dimensional layer to be s
anned. The algorithm 
onsiders all layers

for whi
h y

k

� f

k

(R

k

), and the distan
e upper bound imposed on ea
h of these layers is

R

k�1

=

q

f

2

k

(R

k

)� y

2

k

: (18)

The volume V

k

(R

k

), regarded as an integral over V

k�1

(R

k�1

), is hen
e re
ursively bounded

by

V

k

(R) � 2

Z

f

k

(R)

0

V

k�1

(

q

f

2

k

(R)� y

2

)dy; if k � 1 (19)

V

0

(R) = 1 (20)

where the index of R has been dropped.

5

In the implementation given in Se
tion III-B, R

k


orresponds to (bestdist� dist

k

)

1=2

.
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In the absen
e of a 
losed form for this quantity, we de�ne

V

0

k

(R) , 2

Z

�

k

=2

0

V

0

k�1

(

q

�

2

k

=4� y

2

)dy; if k � 1 (21)

V

00

k

(R) , 2

Z

R

0

V

00

k�1

(

p

R

2

� y

2

)dy; if k � 1 (22)

V

0

0

(R) , V

00

0

(R) , 1 (23)

and observe that V

k

(R) � V

0

k

(R) and V

k

(R) � V

00

k

(R). The re
ursions (21){(23) are solved

by, respe
tively

V

0

k

(R) =

k

Y

j=1

�

j

(24)

V

00

k

(R) =

2

k

�

k=2

�(k=2 + 1)

R

k

(25)

whi
h is easily veri�ed. Part (a) of the theorem is proved by (24). To 
omplete the proof

of (b), we observe that V

k

(R) = V

k

(f

k

(R)) and 
onsequently

V

d

(1) = V

d

(�

d

=2) (26)

�

�

d=2

�(d=2 + 1)

�

d

d

(27)

�

�

d

2�e

�

�d=2

�

d

d

(28)

where the last inequality follows from Stirling's inequality. 2

The 
orresponding volume K

d

for the Kannan algorithm is known exa
tly. For every

latti
e, it is in the range

d

Y

k=1

�

k

� K

d

� �

d

d

(29)

where the lower bound is exa
t if the sequen
e b

11

; : : : ; b

dd

is in
reasing and the upper

bound is exa
t if it is de
reasing [8℄. For a \good" latti
e, this sequen
e generally displays

a de
reasing trend, but the de
rease is not ne
essarily monotoni
 [24℄, [12, p. 158℄. Hen
e,

K

d

is often 
lose to the upper bound.

The ClosestPoint algorithm is faster than the Kannan algorithm for all dimensions and

all latti
es, sin
e the upper bound (15) for ClosestPoint 
oin
ides with the lower bound for
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Kannan (29). The magnitude of the gain is suggested by Theorem 1 (b): For latti
es su
h

that the upper bound in (29) is exa
t, ClosestPoint is at least a fa
tor (d=2�e)

d=2

faster.

This fa
tor is meant to indi
ate the asymptoti
 relation, and smaller order 
omponents

have been dropped in (28). For moderate values of d, (27) yields a signi�
antly better

bound, and the fa
tor is always at least one, even for \bad" latti
es.

Banihashemi and Khandani point out that the 
overing radii of the latti
e and its

sublatti
es 
an be exploited to redu
e the 
omplexity of the Kannan algorithm [8℄. This

option 
an be in
luded in ClosestPoint as well. However, it is diÆ
ult to determine the


overing radius of a general latti
e. The only known algorithm is the \diamond-
utting

algorithm" [41℄, whi
h, as detailed in Se
tion VI-C, is 
on�ned by memory limitations to

low dimensions. Methods to upper-bound the 
overing radius 
an be used instead [40℄.

VI. More Latti
e Sear
h Problems

Other sear
h problems involving latti
es 
an be solved by modi�
ations and extensions

of the ClosestPoint algorithm. These in
lude �nding latti
e parameters su
h as the

shortest ve
tor (or, equivalently, the pa
king density [12, p. 10℄), the kissing number, and

the Voronoi-relevant ve
tors. ClosestPoint 
an also be used to perform the key step in

basis redu
tion.

A. Shortest Ve
tor

Given a latti
e �, the shortest-ve
tor problem is to �nd the ve
tor in � � f0g with

the smallest Eu
lidean norm. Its history is 
losely interlinked with that of the 
losest-

point problem. It has been 
onje
tured that shortest-ve
tor problem is NP-hard [39℄,

but, in 
ontrast to the 
losest-point problem, this has not been proved. The 
onje
ture

was supported by the result of Ajtai, who showed that the shortest ve
tor problem for

randomized redu
tions is NP-hard [4℄, and by Mi

ian
io [28℄, who showed that to �nd

an approximate solution within any 
onstant fa
tor less than

p

2 is also NP-hard for

randomized redu
tions. It has also been proven that the shortest ve
tor problem is not

harder than the 
losest-ve
tor problem [18, 21℄.

The ClosestPoint algorithm 
an be straightforwardly modi�ed to solve the shortest-

ve
tor problem instead. The general idea is to submit x = 0 as the input and disregard
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^
x = 0 as a potential 
losest ve
tor. Algorithmi
ally, the 
hanges needed to 
onvert

ClosestPoint into ShortestV e
tor are the following.

� Omit x as an input for De
ode and ClosestPoint.

� In ClosestPoint, skip Step 4.

� In De
ode, repla
e line 5 with \p

k

:= 0".

� Repla
e lines 1{2 of Case B with

If newdist 6= 0 then f

^
u := u

bestdist := newdist

g:

In any latti
e, there is an even number of shortest ve
tors, be
ause the latti
e is sym-

metri
al with respe
t to re
e
tion in 0. Hen
e if
^
x is a shortest ve
tor, so is �

^
x. If

exe
ution time is 
ru
ial, a fa
tor of 2 in 
omputation time 
an be gained by exploiting

this symmetry. This is a
hieved by rewriting De
ode to s
an only half of the 
andidates

u, say, the ones for whi
h the �rst nonzero 
omponent is positive.

B. Kissing Number of Latti
es

The kissing number of a latti
e � is de�ned as the number of shortest nonzero ve
tors

in �. To 
ompute this latti
e parameter, it is essential to employ in�nite pre
ision; an

arbitrarily small perturbation of a generator matrix has the potential of redu
ing the

kissing number to two, regardless of the original value. However, we do not re
ommend

implementing De
ode using exa
t arithmeti
s. The same goal 
an be a
hieved far more

eÆ
iently by implementing the time-
onsuming operations as before using �nite-pre
ision

real numbers, in 
onjun
tion with a �nal in�nite-pre
ision stage, where a �nite set of


andidates is evaluated.

The new version of De
ode needs to keep tra
k of a set of potential shortest ve
tors, not

just the one best 
andidate. A margin of a

ura
y must be in
luded in the 
omparisons,

to avoid missing some of the shortest ve
tors due to numeri
al errors. This is a
hieved by

the following 
hanges, whi
h 
onvert ShortestV e
tor into KissingNumber.
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(i) In De
ode, in
lude \

^

U := ?" among the initial assignments.

(ii) In De
ode, repla
e the line pre
eding Case A with \If newdist < (1 + �)bestdist

then f", where � is a small positive number.

(iii) Repla
e the �rst two assignments in Case B with \

^

U :=

^

U [ fug" and \bestdist :=

min(bestdist; newdist)".

(iv) Repla
e
^
u in Case C with

^

U , and repla
e
^
u

3

in Step 5 with

^

U

3

.

(v) Remove \k := k + 1" from Case B.

(vi) Repla
e Step 6 with

6. Compute exa
t values of kuB

2

k for all u 2

^

U

3

and return the number of o

ur-

ren
es of the lowest value.

As for the shortest-ve
tor problem, a variant of the 
losest-point problem 
an be for-

mulated that in 
ase of a tie returns all the latti
e points that have minimum distan
e to

the input ve
tor, not just one of them. ClosestPoint is 
onverted into AllClosestPoints

through the following modi�
ations.

� Apply the 
hanges (i){(v) above to ClosestPoint.

� Repla
e Step 6 with

6. Compute exa
t values of kuB

2

� xk for all u 2

^

U

3

and 
all the lowest value

bestdist. Return

^

X := fuB

2

: u 2

^

U

3

; kuB

2

� xk = bestdistg.

The main appli
ation of this algorithm lies in the solution of the next problem.

C. Voronoi-Relevant Ve
tors

The relevant-ve
tor problem is to �nd the fa
ets

6

of the Voronoi region 
(�; 0), in other

words, to �nd a minimal set N (�) � � for whi
h


(�; 0) = fx 2 R

n

: kxk � kx� 


0

k; 8


0

2 N (�)g : (30)

The ve
tors in N (�) are 
alled Voronoi-relevant, or simply relevant. Our method to solve

the problem is through the following theorem.

Theorem 2: The Voronoi regions of two latti
e points 


1

2 � and 


2

2 � share a fa
et

if and only if

km� 


1

k < km� 


0

k; 8


0

2 �� f


1

; 


2

g (31)

6

A fa
et is a (d� 1)-dimensional fa
e of a d-dimensional polytope.
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where

m =

1

2

(


1

+ 


2

) : (32)

Proof: From (31) and (32),

m 2 
(�; 


1

) \ 
(�; 


2

)�

[




0

2��f


1

;


2

g


(�; 


0

) (33)

whi
h 
ompletes the \if" part of the theorem. To prove the \only if" part, assume that


(�; 


1

) and 
(�; 


2

) have a 
ommon fa
et. Let x be any point in the interior of this

fa
et, so that

kx� 


1

k = kx� 


2

k < kx� 


0

k; 8


0

2 �� f


1

; 


2

g : (34)

Then for all 


00

2 �� f


1

; 


2

g

km� 


1

k

2

� km� 


00

k

2

=

1

2

�

kx� 


1

k

2

� kx� 


00

k

2

�

+

1

2

�

kx� 


2

k

2

� kx� (


1

+ 


2

� 


00

)k

2

�

< 0 (35)

where the inequality follows from applying (34) twi
e. This proves (31). 2

This theorem was given by Vorono�� in a slightly di�erent 
ontext [43, vol. 134, pp. 277{

278℄, [12, p. 475℄, based on theory by Minkowski [29, pp. 81{85℄, [30, pp. 120{121℄. Similar

properties have been proved for the Voronoi regions of binary linear blo
k 
odes [1℄ and

of parallelepipeds [3℄.

Any ve
tor m given by (32) has the form zB, where 2z 2 Z

d

. However, to determine

N (�(B)) for a given latti
e �(B), it is suÆ
ient to investigate (31) for ve
tors m in the

�nite set

M(B) ,

�

zB : z 2 f0; 1=2g

d

� f0g

	

: (36)

Any feasible ve
torm = zB =2 M(B) 
an be mapped into another ve
torm

0

2 M(B) by

translating the latti
e, ex
ept when z 2 Z

d

. But in this 
ase it is obvious from Theorem

2 that 


1

and 


2

do not share a fa
et. This observation leads to the following algorithm.

Input:
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B: A d-row, n-
olumn generator matrix.

Output:

N : The relevant ve
tors of �.

Algorithm RelevantV e
tors(B):

1. Let N := ?.

2. For allm 2 M(B),

(a) Let

^

X := AllClosestPoints(B;m).

(b) If j

^

X j = 2, let N := N [ f2(
^
x�m) :

^
x 2

^

Xg.

3. Return N .

Optional optimization in
ludes moving Steps 1{3 of AllClosestPoints out of the loop,

sin
e all 
alls to AllClosestPoints 
on
ern the same latti
e. There is also a fa
tor of 2 in


omplexity to be gained through the same symmetry argument as for ShortestV e
tor.

It is readily seen that the maximum number of fa
ets that a Voronoi region 
an have in

any d-dimensional latti
e is 2jM(B)j = 2

d+1

� 2, and that this number is attained with

probability 1 by a latti
e whose basis is 
hosen randomly from a 
ontinuous distribution.

These properties were proved by Minkowski in 1897 [30, pp. 120{121℄ and by Vorono�� in

1909 [43, vol. 134, pp. 198{211 and vol. 136, pp. 67{70℄, respe
tively.

Relevant ve
tors have been determined for many 
lassi
al latti
es [12, Chs. 4,21℄, but

we believe that the algorithm RelevantV e
tors proposed above is the fastest known in the

general 
ase. The only alternative algorithm known to the authors is the \diamond-
utting

algorithm" by Viterbo and Biglieri, whi
h �nds the 
omplete geometri
al des
ription of the

Voronoi region of any latti
e [41℄. This des
ription in
ludes all verti
es, edges, et
., whi
h

evidently in
ludes information on the relevant ve
tors. However, to employ the diamond-


utting algorithm for the sole purpose of determining the relevant ve
tors is ineÆ
ient.

Vorono�� showed in his 
lassi
al work [43℄ that the number of (d� k)-dimensional fa
es of

a d-dimensional latti
e Voronoi region is upper-bounded by

(k + 1)

k

X

i=0

(�1)

i

�

k

i

�

(k � i + 1)

d

(37)

and that there exist latti
es whose Voronoi regions attain this number for every k. The

latti
e nowadays 
alled A

�

d

is one example [43, vol. 136, pp. 74{82, 137{143℄. Evaluating
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(37) for k = d; d � 1; : : : shows that the maximum number of verti
es equals (d + 1)!,

the maximum number of edges is (d=2)(d + 1)!, et
., whi
h implies that the memory

requirements for the diamond-
utting algorithm grows very rapidly with the dimension.

This property 
on�nes its use to low dimensions.

RelevantV e
tors, on the other hand, uses negligible memory but does not fully deter-

mine the Voronoi regions, only their fa
ets. In 
ases where verti
es, et
., are desired, we

suggest pre
eding the diamond-
utting algorithm with RelevantV e
tors, sin
e the 
om-

plexity (both time and memory) of the diamond-
utting algorithm 
an be redu
ed by

in
orporating knowledge of the relevant ve
tors.

D. Redu
tion

The last problem we mention here is the redu
tion problem. The problem of �nding a KZ

redu
ed basis for a latti
e has already been mentioned in Se
tions II and IV. Theoreti
al

results are available for spe
i�
 latti
es [24℄. Algorithms for general latti
es have been

proposed by Kannan [23℄ and S
hnorr [34℄. Sin
e KZ redu
tion essentially 
onsists of

solving d shortest-ve
tor problems, a 
losest-point algorithm 
an be used in this 
ontext,

too. In our experiments (Se
tion VII) we have 
omputed KZ redu
ed bases with this

method.

The general strategy is to �nd a shortest ve
tor in the latti
e, proje
t the latti
e onto

a hyperplane orthogonal to this ve
tor, and �nd a KZ redu
ed basis of this (d � 1)-

dimensional latti
e by re
ursion. In this appli
ation of ShortestV e
tor, Step 1 is performed

using LLL redu
tion, sin
e KZ redu
tion is obviously not a usable prerequisite for KZ

redu
tion. The details of implementation, whi
h we omit, follow straightforwardly from

the de�nition in Se
tion II.

VII. Experiments

In this se
tion, we report on experiments with the ClosestPoint algorithm from Se
tion

III-B, to evaluate its performan
e (in terms of sear
h time) for low- and high-dimensional

problems, to 
ompare it with other similar algorithms, and to �nd out how the basis for

the latti
e should be prepro
essed in order to a
hieve the best performan
e.
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A. Experiment Setup

To evaluate the performan
e of the ClosestPoint algorithm, we must de
ide what 
lass

of latti
es to use. The 
losest-point sear
h methods studied here are general methods, and

they do not 
ompete well with algorithms spe
ially designed for sear
hing a parti
ular

latti
e; su
h algorithms 
an exploit stru
ture in the latti
e and are generally faster (see

Se
tion I). Therefore, the natural appli
ation is one where a spe
ial sear
h method for

the 
hosen latti
e does not exist. Here, we 
on
entrate our e�orts on experiments with

random latti
es without any stru
ture that 
an be exploited. However, for 
omparison,

we also in
lude some experiments where the algorithms were applied to 
lassi
al, highly

stru
tured latti
es, su
h as the Lee
h latti
e in 24 dimensions, and the 
ubi
 latti
e Z

d

.

Following the dis
ussion above, we use generator matri
es with random elements, drawn

from i.i.d. zero-mean Gaussian distributions. For ea
h point in the diagrams 50 random

matri
es are generated, and for ea
h matrix a large number of uniform random ve
tors

(see footnote 4) are drawn.

7

We average over both random matri
es and random input

ve
tors. The sear
h times for all the algorithms are averaged using the same matri
es and

the same set of input ve
tors. The results are given as average sear
h time (in se
onds),

using a 
omputer based on a 300 MHz Pentium II pro
essor.

B. Prepro
essing

An important question for a 
losest-point algorithm is whether the performan
e 
an be

improved by somehow prepro
essing the generator matrix. Sin
e the prepro
essing step

needs to be exe
uted only on
e, and the pro
essed basis is typi
ally used many times in

most 
ommuni
ation appli
ations, it is usually worth the e�ort to invoke a good prepro-


essing pro
edure. In Se
tion IV, three di�erent prepro
essing strategies are dis
ussed:

LLL redu
tion, KZ redu
tion, and KZ redu
tion of the dual. All of these basi
ally aim to

�nd as short and orthogonal basis ve
tors as possible, and here we present experiments to

�nd the best of the redu
tion methods.

In Figure 1, the results from simulations using the three redu
tion methods are given.

8

7

The exa
t number is dependent on the dimension; for large dimensions with long sear
h times the average is


omputed over about 200 ve
tors for ea
h of the 50 matri
es, and for small dimensions the number of ve
tors is

mu
h larger.

8

As dis
ussed previously, the redu
tion is typi
ally performed only on
e for a large set of ve
tors, and the time
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Fig. 1. Comparison between di�erent redu
tion algorithms for prepro
essing of the generator matrix.

The average sear
h time is plotted as a fun
tion of the dimension.

We see that the performan
e 
an be signi�
antly improved by sele
ting a good prepro-


essor. The best methods in our study are the ones based on KZ redu
tion, whi
h are

almost indistinguishable. For high dimensions (30+), the KZ redu
tion 
an lower the

sear
h times by almost two orders of magnitude 
ompared to unredu
ed bases, and by one

order of magnitude 
ompared to LLL redu
tion. However, up to about 10{15 dimensions,

the LLL algorithm gives good results.

C. Algorithm Comparison

To assess the performan
e of the ClosestPoint algorithm, we have also implemented

an algorithm des
ribed by Viterbo and Boutros [42℄, based on the Pohst strategy. The

V iterboBoutros algorithm needs a starting bound on the attainable distan
e (see Se
-

tion III-A). First we �nd the distan
e to Babai's point and then use it as an initial

distan
e bound in the V iterboBoutros algorithm.

In Figure 2, the average time for a single 
losest-point operation is plotted as a fun
-

tion of the dimension, for the ClosestPoint and the V iterboBoutros algorithms.

9

The

ClosestPoint algorithm is faster for all tested dimensions. We 
an also see that the speed

needed for redu
tion is not in
luded in the sear
h time results.

9

For both algorithms, KZ redu
tion is applied to the generator matri
es.
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Fig. 2. Comparison of average sear
h time for the ClosestPoint algorithm and the V iterboBoutros

algorithm.

advantage in
reases with the dimension. In Figure 3, the speed ratio between the two al-

gorithms is plotted as a fun
tion of dimension. For small dimensions, the speed advantage

is a fa
tor of 2, while for the 40-dimensional example, the speed ratio is about 8.

Why is the ClosestPoint algorithm faster? The main di�eren
e between the two algo-

rithms is the order in whi
h the layers are examined (see the dis
ussion in Se
tion III-A),

but some implementation issues also di�er, su
h as the use of a dual basis for internal rep-

resentation, and a di�erent loop stru
ture. To determine whi
h of the above di�eren
es

leads to the speed di�eren
e, we reprogrammed ClosestPoint to examine the layers in the

same order as in the V iterboBoutros algorithm, while still keeping the implementation

stru
ture the same. The results (not presented here) reveal that with the ordering of layers

as in the V iterboBoutros algorithm, the ClosestPoint algorithm is no longer faster; the

run times for both algorithms are similar. The 
on
lusion is that it is the order in whi
h

the layers are examined that gives the ClosestPoint algorithm its better performan
e.

D. Comparison with Classi
al Latti
es

To further illustrate the performan
e of ClosestPoint, we here evaluate its performan
e

for 
lassi
al latti
es, and 
ompare with the performan
e for random matri
es (
hosen from

an i.i.d. Gaussian sour
e). In Figure 4, the average sear
h time for random latti
es and for
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Fig. 4. Sear
h time 
omparison of 
lassi
al and random latti
es.

the 
ubi
 latti
e is plotted as a fun
tion of the dimension, together with the sear
h times

for the Lee
h latti
e in 24 dimensions, and for the Barnes-Wall latti
es in dimensions 8,

16, and 32. >From this �gure, we see that there are no surprises in the sear
h 
omplexity

for 
lassi
al latti
es; the general 
urve is the same as that for random latti
es. This is

the strength as well as the weakness of algorithms of this type; they do not rely on any

parti
ular stru
ture. Also for the 
lassi
al latti
es (ex
ept the 
ubi
 latti
e of 
ourse), KZ
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Fig. 5. Sear
h time 
omparison for the ClosestPoint algorithm and the V iterboBoutros algorithm, for

a 45-dimensional example.

redu
tion leads to faster sear
h times, and is therefore applied before the experiments.

E. Suboptimal Sear
h

The 
losest-point sear
h algorithms studied here always returns a latti
e point 
losest to

the input point. However, in 
ertain appli
ations, it may be ne
essary to abort the sear
h

before the 
losest point has been found. Therefore, we have in
luded experiments where

the V iterboBoutros and the ClosestPoint algorithms are aborted after a given time. In

Figure 5, the average ratio between the suboptimal and the optimal distortions is given

for a 45-dimensional example, as a fun
tion of the time allowed for the sear
h. From this

�gure, we see that the ClosestPoint algorithm qui
kly �nds latti
e points fairly 
lose to

the optimal one, while it takes a 
onsiderable amount of time until the V iterboBoutros

algorithm improves on Babai's point. (Babai's point is the �rst point found for both

algorithms; in this example, its average distortion is 1.43 times the distortion of the optimal

point.)

We see that if a 10% higher average distortion than the optimal 
an be tolerated, the

ClosestPoint algorithm is more than 150 times faster than the V iterboBoutros algorithm,

as 
ompared to about 10 times faster if we wait until the optimal point is found (see

Figure 3). If 20% higher distortion 
an be tolerated for both algorithms, the ClosestPoint
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algorithm is more than 1500 times faster.

We only report results for a single 45-dimensional example, but the general 
on
lu-

sion is the same for all tested dimensions; if we abort the sear
h pro
edure before the

optimal point is found, the speed advantage of the ClosestPoint algorithm over the

V iterboBoutros algorithm is even 
learer than for uninterrupted sear
h.

VIII. Con
lusion

Algorithms for �nding the 
losest point in a latti
e were studied. The 
omplexity of

di�erent strategies for 
losest-point sear
h was theoreti
ally and experimentally evaluated,

and a 
omplete implementation of an eÆ
ient 
losest-point algorithm were given. The


losest point algorithm were also extended to solve a number of related latti
e sear
h

problems.

Referen
es

[1℄ E. Agrell, \On the Voronoi neighbor ratio for binary linear blo
k 
odes," IEEE Trans. Inform. Theory, vol. 44,

pp. 3064{3072, Nov. 1998.

[2℄ E. Agrell and T. Eriksson, \Optimization of latti
es for quantization," IEEE Trans. Inform. Theory, vol. 44,

pp. 1814{1828, Sept. 1998.

[3℄ E. Agrell and T. Ottosson, \ML optimal CDMA multiuser re
eiver," Ele
troni
s Letters, vol. 31, pp. 1554{

1555, Aug. 1995.

[4℄ M. Ajtai, \The shortest ve
tor problem in L

2

is NP -hard for randomized redu
tions," Rep. TR97-047, rev. 01,

Ele
troni
 Colloquium on Computational Complexity, Univ. of Trier, Germany, Nov. 1997.

[5℄ S. Arora, L. Babai, J. Stern, and Z. Sweedyk, \The hardness of approximate optima in latti
es, 
odes, and

systems of linear equations," Journal of Computer and System S
ien
es, vol. 54, pp. 317{331, Apr. 1997.

[6℄ L. Babai, \On Lov�asz' latti
e redu
tion and the nearest latti
e point problem," Combinatori
a, vol. 6, no. 1,

pp. 1{13, 1986.

[7℄ A. H. Banihashemi and I. F. Blake, \Trellis 
omplexity and minimal trellis diagrams of latti
es," IEEE

Trans. Inform. Theory, vol. 44, pp. 1829{1847, Sept. 1998.

[8℄ A. H. Banihashemi and A. K. Khandani, \On the 
omplexity of de
oding latti
es using the Korkin{Zolotarev

redu
ed basis," IEEE Trans. Inform. Theory, vol. 44, pp. 162{171, Jan. 1998.

[9℄ J. Boutros, E. Viterbo, C. Rastello, and J.-C. Bel�ore, \Good latti
e 
onstellations for both Rayleigh fading

and Gaussian 
hannels," IEEE Trans. Inform. Theory, vol. 42, pp. 502{518, Mar. 1996.

[10℄ J. H. Conway and N. J. A. Sloane, \A fast en
oding method for latti
e 
odes and quantizers," IEEE Trans. In-

form. Theory, vol. IT-29, pp. 820{824, Nov. 1983.

[11℄ J. H. Conway and N. J. A. Sloane, \On the Voronoi regions of 
ertain latti
es," SIAM Journal on Algebrai


and Dis
rete Methods, vol. 5, pp. 294{305, Sept. 1984.

[12℄ J. H. Conway and N. J. A. Sloane, Sphere Pa
kings, Latti
es and Groups. New York, NY: Springer-Verlag,

3rd ed., 1999.



28

[13℄ R. R. Coveyou and R. D. Ma
Pherson, \Fourier analysis of uniform random number generators," Journal of

the Asso
iation for Computing Ma
hinery, vol. 14, pp. 100{119, Jan. 1967.

[14℄ U. Dieter, \How to 
al
ulate shortest ve
tors in a latti
e," Mathemati
s of Computation, vol. 29, pp. 827{833,

Jul. 1975.

[15℄ T. Eriksson and E. Agrell, \On separation of linear phase from arbitrary phase ve
tors," unpublished work,

1999.

[16℄ U. Fin
ke and M. Pohst, \Improved methods for 
al
ulating ve
tors of short length in a latti
e, in
luding a


omplexity analysis," Mathemati
s of Computation, vol. 44, pp. 463{471, Apr. 1985.

[17℄ G. D. Forney, Jr., \Coset 
odes|part II: Binary latti
es and related 
odes," IEEE Trans. Inform. Theory,

vol. 34, pp. 1152{1187, Sept. 1988.

[18℄ O. Goldrei
h, D. Mi

ian
io, S. Safra, and J. P. Seifert, \Approximating shortest latti
e ve
tors is not harder

that approximating 
losest latti
e ve
tors," Information Pro
essing Letters, vol. 71, pp. 55{61, July 1999.

[19℄ W. W. Hager, Applied Numeri
al Linear Algebra. Englewood Cli�s, NJ: Prenti
e Hall, 1988.

[20℄ B. Helfri
h, \Algorithms to 
onstru
t Minkowski redu
ed and Hermite redu
ed latti
e bases," Theoreti
al

Computer S
ien
e, vol. 41, nos. 2{3, pp. 125{139, 1985.

[21℄ M. Henk, \Note on shortest and nearest latti
e ve
tors," Information Pro
essing Letters, vol. 61, pp. 183{188,

1997.

[22℄ R. Kannan, \Improved algorithms for integer programming and related latti
e problems," in Pro
. of the

ACM Symposium on Theory of Computing, (Boston, MA), pp. 193{206, Apr. 1983.

[23℄ R. Kannan, \Minkowski's 
onvex body theorem and integer programming," Mathemati
s of Operations Re-

sear
h, vol. 12, pp. 415{440, Aug. 1987.

[24℄ A. K. Khandani and M. Esmaeili, \Su

essive minimization of the state 
omplexity of the self-dual latti
es

using Korkin-Zolotarev redu
ed basis," Te
h. Rep. UW-E&CE#97-01, Dept. of Ele
tri
al and Computer

Engineering, Univ. of Waterloo, Waterloo, Ontario, Canada, Jan. 1997.

[25℄ D. E. Knuth, The Art of Computer Programming, vol. 2, Seminumeri
al Algorithms. Reading, MA: Addison-

Wesley, 2nd ed., 1981.

[26℄ A. Korkine and G. Zolotare�, \Sur les formes quadratiques," Mathematis
he Annalen, vol. 6, pp. 366{389,

1873 (in Fren
h).

[27℄ A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz, \Fa
toring polynomials with rational 
oeÆ
ients," Mathe-

matis
he Annalen, vol. 261, pp. 515{534, 1982.

[28℄ D. Mi

ian
io, \The shortest ve
tor in a latti
e is hard to approximate to within some 
onstant," in Pro
.

39th Annual Symposium on Foundations of Computer S
ien
e, (Palo Alto, CA, USA), pp. 92{98, Nov. 1998.

[29℄ H. Minkowski, Geometrie der Zahlen. Leipzig, Germany, 1896 (in German).

[30℄ H. Minkowski, Gesammelte Abhandlungen, vol. 2. Leipzig, Germany: Teubner, 1911 (in German).

[31℄ W. H. Mow, \Maximum likelihood sequen
e estimation from the latti
e viewpoint," IEEE Trans. Inform. The-

ory, vol. 40, pp. 1591{1600, Sept. 1994.

[32℄ M. Pohst, \On the 
omputation of latti
e ve
tors of minimal length, su

essive minima and redu
ed bases

with appli
ations," ACM SIGSAM Bulletin, vol. 15, pp. 37{44, Feb. 1981.

[33℄ S. S. Ryshkov and E. P. Baranovskii, \Classi
al methods in the theory of latti
e pa
kings," Uspekhi Matem-

ati
heskikh Nauk, vol. 34, pp. 3{64, July{Aug. 1979 (in Russian). Translated in Russian Mathemati
al Surveys,

vol. 34, no. 4, pp. 1{68, 1979.



29

[34℄ C. P. S
hnorr, \A hierar
hy of polynomial time latti
e basis redu
tion algorithms," Theoreti
al Computer

S
ien
e, vol. 53, nos. 2{3, pp. 201{224, 1987.

[35℄ C. P. S
hnorr and M. Eu
hner, \Latti
e basis redu
tion: improved pra
ti
al algorithms and solving subset

sum problems," Mathemati
al Programming, vol. 66, pp. 181{191, 1994.

[36℄ J. Stern, \Latti
es and 
ryptography: An overview," in Publi
 Key Cryptography. Pro
. Int. Workshop on

Pra
ti
e and Theory in Publi
 Key Cryptography (H. Imai and Y. Zheng, eds.), (Pa
i�
o Yokohama, Japan),

pp. 50{54, Feb. 1998.

[37℄ G. Strang, Linear Algebra and Its Appli
ations. San Diego, CA: Har
ourt Bra
e Jovanovi
h, 3rd ed., 1988.

[38℄ V. Tarokh and A. Vardy, \Upper bounds on trellis 
omplexity of latti
es," IEEE Trans. Inform. Theory,

vol. 43, pp. 1294{1300, July 1997.

[39℄ P. van Emde Boas, \Another NP-
omplete partition problem and the 
omplexity of 
omputing short ve
tors

in a latti
e," Rep. 81-04, Mathematis
h Instituut, Amsterdam, The Netherlands, Apr. 1981.

[40℄ E. Viterbo and E. Biglieri, \A universal de
oding algorithm for latti
e 
odes," in Pro
. GRETSI, (Juan-les-

Pins, Fran
e), pp. 611{614, Sept. 1993.

[41℄ E. Viterbo and E. Biglieri, \Computing the Voronoi 
ell of a latti
e: The diamond-
utting algorithm," IEEE

Trans. Inform. Theory, vol. 42, pp. 161{171, Jan. 1996.

[42℄ E. Viterbo and J. Boutros, \A universal latti
e 
ode de
oder for fading 
hannels," IEEE Trans. Inform. The-

ory, vol. 45, pp. 1639{1642, July 1997.

[43℄ G. Vorono��, \Nouvelles appli
ations des param�etres 
ontinus �a la th�eorie des formes quadratiques," Journal

f�ur die Reine und Angewandte Mathematik, vol. 133, pp. 97{178, 1908; vol. 134, pp. 198{287, 1908; and

vol. 136, pp. 67{181, 1909 (in Fren
h).


