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Closest Point Search in Lattices

E. AGRELL, T. ERIKSSON, A. VARDY, and K. ZEGER

SUMMARY

In this semi-tutorial report, algorithms for finding the closest point in a lattice are studied.
The complexity of different strategies is compared, both theoretically and by experiments.
A complete implementation of an efficient closest-point algorithm is given, together with
straightforward modifications of the algorithm to solve a number of related search problems
for lattices, such as finding a shortest vector, determining the kissing number, computing

the Voronoi-relevant vectors, or finding a Korkine-Zolotareff reduced basis.

Keywords: Closest-point search, kissing number, Korkine-Zolotareff reduction, lattice de-

coding algorithm, shortest vector, Voronoi-relevant vectors.



I. INTRODUCTION

In lattice theory, a generator matriz B is any real matrix with linearly independent rows.
Hence n > d, where n is the number of columns and d, the dimension, is the number of

rows. The lattice generated by B is
AB)2{uB: ueZ'} (1)

and the rows of B are called basis vectors. The closest-point problem, or decoding for short,
is the problem of finding, for a given lattice A and an input vector & € R", a vector & € A
such that || — || < ||z — || for all ¢ € A. (In source coding, the closest-point problem
is called encoding, see below.) Throughout this report, ||z|| denotes the Euclidean norm
of z.

The Voronoi region of a lattice point is the set of all vectors that can be decoded as this

point, namely
QN e)E2{xcR": |z—c| < |z- |,V € A} (2)

where ¢ € A. The Voronoi diagram of a lattice is the set of all its Voronoi regions. It is
known that all Voronoi regions (A, ¢) are convex polytopes, they are symmetrical with
respect to reflection in ¢, and they are translations of (A, 0), where 0 is the origin. Hence,
for most purposes it is sufficient to study (A, 0).

In communication theory, lattices have been proposed both for use in modulation and in
quantization. If a lattice is used as a code for the Gaussian channel, maximum likelihood
decoding in the demodulator is a closest-point problem. Analogously, if a lattice is used
as a codebook for vector quantization and the mean square error criterion is used, then
the encoding of each input vector is equivalent to a closest-point search. Another instance
of the closest-point problem can appear in the source decoder or in the modulator, if the
lattice is truncated into a so-called Voronoi code [10]. Typical for these applications in
communications is that the same lattice is employed for many input vectors.

Other applications where the closest-point problem arises include lattice design [2] and
Monte Carlo second moment estimation [11]. In both cases, random vectors are generated

uniformly inside a Voronoi region using a closest-point algorithm.



The closely related shortest-vector problem has been used in assessing the quality of
random number generators [25, pp. 89-113], and reduction has an important application
in cryptography [36]. These search problems, and the determination of some further lattice
parameters through similar methods, will be discussed in Section VI.

The choice of method for solving the closest-point problem depends on the structure of
the lattice. Intuitively, the more structure a lattice has, the faster can the closest point be
found. For most of the classical lattices, very efficient search methods have been tailored
[12, Ch. 20]. A more general approach is to represent the lattice with a trellis and use a
trellis decoding algorithm such as the Viterbi algorithm [7,17]. Finite-state trellises exist
if and only if the lattice contains d mutually orthogonal vectors [38].

In this report we address the problem of finding the closest point in a general lattice.
We assume that it possesses no exploitable structure. One example of where this problem
arises is when a generator matrix is continuously adjusted, such as in numerical lattice
design [2]. Another example is MS-optimal separation of the linear phase component from
an arbitrary phase vector [15], which can be useful in, e.g., speech coding.

The complexity of the general closest-point problem as a function of d was analyzed by
van Emde Boas in 1981, who showed that the problem is NP-hard [39]. Hence, all known
algorithms for solving the problem optimally have exponential complexity. It is also NP-
hard to find an approximate solution such that the ratio between the found distance and
the optimal one is upper-bounded by a constant [5].

A common approach to the general closest-point problem is to identify a certain region
in R® within which the optimal lattice point must lie, then investigate all points in this
region, possibly reducing its size dynamically. The earliest work in the field was done for
the shortest-vector problem (see Section VI-A) in the context of assessing the quality of
certain random number generators. The finite region to be searched in these algorithms is
a parallelepiped with its axes parallel to the basis vectors [13], [14], [25, pp. 89101, 110].

The development of closest-point algorithms follows two main branches, inspired by two
seminal papers. Pohst in 1981 examined points inside a hypersphere [32], whereas Kannan
in 1983 used a rectangular parallelepiped [22]. Both papers later appeared in revised and
extended versions, Pohst’s as [16] and Kannan’s, following a paper by Helfrich [20], as [23].



The two strategies will be discussed at greater length in Section III-A.

A crucial parameter for the performance of these algorithms is the initial size of the
region. Some suggestions to this point were given in [40] and [31] for the Pohst strategy
and in [8] for the Kannan strategy. The latter paper also includes an extensive complexity
analysis. Applications are discussed in [9,31,40,42].

Another, more subtle, difference between the two strategies is implicit from the presen-
tations of them. Grossly generalizing, the Pohst method is intended as a practical tool
and the method by Kannan as a theoretical tool. Papers dealing with the Pohst strategy
typically discuss issues of implementation and applications, whereas the Kannan-type pa-
pers focus on asymptotic complexity. This is probably the reason why the two strategies,
despite having so much in common, have never been compared and evaluated against each
other.

In [35], Schnorr and Euchner suggest an important improvement of the Pohst strategy,
by examining the points inside the aforementioned hypersphere in a different order. In
Sections V and VII-C, the strategies by Pohst, Kannan, and Schnorr-Euchner are com-
pared with respect to computational complexity, and it is shown that the Schnorr-Euchner
strategy is faster than the other two. A practical implementation of the Schnorr-Euchner

strategy is presented in Section III-B.

II. PRELIMINARIES

In the following, we will say that two lattices are identical if all lattice points are the
same. Two generator matrices B, and B; generate identical lattices A(B;) = A(B3) if

and only if
B1 — WB2 (3)
where W is a square matrix with integer entries, whose determinant is 1 or —1.

A generator matrix By is a rotated and reflected representation of another generator

matrix B if
B, = B,Q (4)

where QQT = I. This can be regarded as a change of coordinate system. If B, is

square and lower triangular, we say that it is a lower-triangular representation of By. Any



generator matrix has a lower-triangular representation By, which is unique except that
any set of columns of B, can be negated. How to find a lower-triangular representation
of any generator matrix is discussed in Section IV.

Two lattices are equivalent if they are congruent, that is, if one can be obtained from
the other through scaling, rotation, and reflection. Two generator matrices By and B,

generate equivalent lattices if and only if
B, = cWB,Q (5)

where ¢ is a real nonzero constant and W and Q obey the same conditions as for (3) and
(4). The equivalence relation is denoted A(B3) = A(B).

The process of selecting a good basis for a given lattice, given some criterion, is called
reduction. In many applications, it is advantageous if the basis vectors are as short as
possible, and “reasonably” orthogonal to each other. For lattice search problems, this was
first noted by Coveyou and MacPherson [13]. Two kinds of reduction will be discussed in
the following.

K7 reduction is named after Korkine and Zolotareff [26], who defined this reduction
criterion in 1873. To determine if a generator matrix represents a KZ reduced basis,
it is convenient to study its lower-triangular representation. A lower-triangular square

generator matrix

b1 bll 0 s 0
b b b - 0

o || _ ]|t b2 ©)
by bai bao -+ bag

is defined recursively to be KZ reduced if d = 1 or else the following hold:
« b is a shortest nonzero vector in A(B),
° |bi1\§|bll|/2fori:2,...,d,

e The submatrix

byy -+ 0

baz -+ baa



is KZ reduced.
An arbitrary generator matrix B is KZ reduced if and only if its lower-triangular rep-
resentation is KZ reduced. Every lattice has at least one KZ reduced generator matrix
[33].

For situations when KZ reduction would be too time-consuming, LLL reduction, named
after Lenstra, Lenstra, and Lovdsz, has been suggested [27]. A lower-triangular generator
matrix (6) is LLL reduced if either d = 1 or else the following hold:

o bl < /)bl

o |ba| < |b1|/2fori=2,...,d,

« The submatrix (7) is LLL reduced.
As before, an arbitrary generator matrix is LLL reduced if its lower-triangular represen-
tation is LLL reduced.

Any KZ reduced matrix is clearly also LLL reduced. The motivation for the latter
criterion is that there exists a more efficient algorithm to convert any d x n generator
matrix into an LLL reduced one [27]. The algorithm, which operates in polynomial time

in d and n, has become very popular in applications.

III. CLOSEST-POINT SEARCH ALGORITHMS
A. Conceptual Description

To understand lattice search algorithms, a recursive characterization of lattices is useful.

Let the d X n matrix B be decomposed as

B,
B = (8)
bq
and let by = b; + b, where by is in the row space of B, (the top d — 1 rows of B) and b
is in the null space. If B is lower triangular as in (6), this decomposition is particularly
simple, namely, by = [bq1, . .. , ba4—1,0] and by =[0,...,0, bga).
With the given terminology, any d-dimensional lattice can be decomposed as

AB)= |J {e+usby+ud: ceA(By)} (9)

Ug=—00
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which is basically a stack of (d — 1)-dimensional translated sublattices. The (d — 1)-
dimensional hyperplanes that contain these sublattices will be called ((d — 1)-dimensional)
layers and the index u, denotes which layer a certain lattice point belongs to. The vec-
tor b is the offset which one sublattice is translated within its layer, with respect to an
adjacent sublattice, and b, is a normal vector to the layers, whose length equals the dis-
tance between two adjacent layers. This distance equals byq for lower-triangular generator
matrices. Recalling that any generator matrix can be rotated into lower-triangular form,
we will in this report let b;; denote the distance between (i — 1)-dimensional layers, even
when no explicit triangular constraint is imposed.

Now the search algorithm for a d-dimensional lattice will be recursively described as a
finite number of (d — 1)-dimensional search operations. Let & be a vector to be decoded
in the lattice A(B), which is decomposed into layers according to (9). The orthogonal

distance from x to the layer with index ug4 is

Ya = |ug — ial - [b| (10)
where
T
_ s zb)
Ug = —. (11)
6.2

Suppose that an upper bound Ry is known on the attainable distance ||z — x|, where @
is a closest lattice point. Then it suffices to consider a finite number of the layers in (9)

in order to ensure that the closest lattice point will be found. The indices of these layers

- Ry . R,
= _ . ... — 12
ta [ ||bL||W’ ’V“Hbﬂ (12)

since layers for which y, > R, are not relevant. Of the considered layers, the one with

arel

ug = [G4] has the shortest orthogonal distance to .
Four types of search methods will now be identified. They each search the layers indexed
n (12), but they differ in the order in which the layers are examined and in the choice of

upper bound R,_; to be used in the (d — 1)-dimensional search problems.

! The functions |z], [#], and [z] denote the maximum integer not greater than z, the minimum integer not less
that z, and the closest integer to z (ties are broken arbitrarily), respectively. In addition, SGN(z) is —1if 2 <0
and 1 if z > 0. (The algorithm in Section III-B requires that +1 is returned even for z = 0, which may deviate

from the operation of most built-in sign functions.)
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If only uy = [@4] is considered, the d-dimensional search problem is reduced to just one
(d — 1)-dimensional problem and no bound R, is needed. Recursive application of this
strategy yields Babai’s nearest plane algorithm [6], which is a fast method (polynomial in
the number of rows d and columns n of B) to find a nearby lattice point. In general, the
returned point (“Babai’s point”) is not the optimal one, but the error can be bounded.

The other three methods all find the optimal point. Scanning all layers in (12), and
supplying each (d — 1)-dimensional search problem with the same value of R, ; regardless
of ug4, yields the Kannan strategy. Variants of this strategy differ mainly in how the bounds
Ry, k =1,...,d, are chosen [8,20,22,23]. Geometrically, the Kannan strategy amounts
to generating and examining all lattice points within a given rectangular parallelepiped.

The d-dimensional decoding error vector & —a consists, in the given recursive framework,
of two orthogonal components, one in the row space of By and one parallel to b,. The
former is the (d — 1)-dimensional decoding error and the length of the latter is y,, which

varies with ug. Hence Ry 1 can safely be chosen as

Rqy =\ RG — v (13)

This idea of letting Ry 1 depend on ug is the Pohst strategy [16,31,32,40,42]. In geometrical
terms, points inside a hypersphere, not a parallelepiped, are investigated. When any lattice
point &’ inside the sphere has been found, the bound R; can be immediately updated to
||’ — x|, since this is an obvious upper bound on || — ||

The Schnorr-Euchner strategy [35] combines the advantages of Babai’s nearest plane

algorithm and the Pohst strategy. Assume that 4 < [t4]). Then the sequence
Ugqg = [ad],[’&d] - 1,[@,1]—}-1,[@,1] —2,... (14)

orders the layers according to nondecreasing distance from @. (A trivial counterpart holds
when @4 > [ug4].) The advantages of examining the layers in this order are subtle but
significant. Since the likelihood that a layer will contain @ decreases with increasing
ya (see (13), the chances of finding & early is maximized. Another advantage with the
nondecreasing distance yg is that the search can safely be terminated as soon as yq > Ry,
where R, is the distance to the best found lattice point so far. The very first lattice
point generated will by definition be Babai’s point. Since the ordering in (14) does not



depend on Ry, no initial bound on R, is needed. A closest-point algorithm, based on the

Schnorr-Euchner strategy, is further detailed in Sections I1I-B and TV.

B. Detailed Description

This subsection contains a stand-alone presentation of an efficient closest-point algo-
rithm, based on the Schnorr-Euchner strategy. It is intended to be sufficiently detailed to
allow a straightforward implementation, even with no study of the underlying theory. For
efficiency, the recursive operations discussed in the previous subsection have been restruc-
tured into a loop. The variables S and @ are used instead of the more natural B = §~*
and £ = uB as input and output parameters. As discussed in the next subsection, this
is motivated by the typical communication application in which many input vectors are
decoded in the same lattice.

Some notation needs to be defined. Matrix and vector elements are named according

to the following conventions:

u:[ul F ud:|
pk:[pkl pkk]; k=1,....d
sy 0 -+ 0
S —
0
Sdi1 Tt Sdd

The integer operations [z] and SGN(z) are defined in footnote 1.
Input:
S: A d x d lower-triangular matrix with positive diagonal elements.
x: A d-dimensional vector to decode in A(S™").
Output:

@: An integer vector such that @S~ ! is a lattice point closest to .



Algorithm Decode(S, x):

d := the size of S
bestdist := oo
k:=d

dist, :=0

p, =S

U = [pkk]
. Pkk — Uk

Skk
stepy := SGN(y)

Loop:
newdist := disty + 1>
If newdist < bestdist then {
If £ #1 then {
Pk—1,i *= Pki — YSki;
k=FkF—1
dist, := newdist

Ug = [pkk]
. Prk — Uk

Skk
stepy := SGN(y)

} else {
U:=u
bestdist := newdist

k=k+1
U = Uk + stepg
. Prk — Uk
Skk

i=1,...

* Dimension

x Current distance record

+x Dimension of examined layer
x Distance to examined layer

« Used to compute g4, see (11)
x Examined lattice point

* See (10)

« Offset to next layer in (14)

Case A
Jk—1
* Move down

x Closest layer

Case B

x Best lattice point so far
x Update record

x Move up

x Next layer

stepy := —stepr — SGN (stepy)

}
} else {

Case C

If £ = d then Exit and return «

else {
k=k+1
U = U + stepg
. Dgr — Uk
o Skk

x Move up
x Next layer

stepy, := —stepy — SGN (stepy)

}

Goto Loop
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In this algorithm, £ is the dimension of the sublayer structure currently being investi-
gated. Each time a k-dimensional layer has been found to which the distance is shorter
than the currently smallest found distance, this layer is expanded into (k — 1)-dimensional
sublayers. This is done in Case A. Conversely, as soon as the distance to an examined
layer is greater than the lowest distance, the algorithm moves up one step in the hierarchy
of layers, which is done in Case C. Case B is invoked when the algorithm has success-
fully moved down all the way to a O-dimensional layer, that is, a lattice point, without
superseding the lowest distance. Then this lattice point is stored as a potential output
point, the lowest distance is updated, and the algorithm moves back up again, without

restarting.

IV. PRE- AND POSTPROCESSING

The algorithm Decode presented in Section ITI-B requires that the lattice be represented
by a lower-triangular generator matrix, whose diagonal elements are all positive. Such a
representation can be found for any lattice (see (4)), so this requirement does not impose
any constraint on the set of lattices that can be searched. Moreover, a representation with
the required properties can be found in infinitely many ways for any given lattice, which
leaves the user with the freedom of choosing one of them. The algorithm computes a
closest vector regardless of the representation choice, but the speed with which it reaches
the result varies considerably between different representations. This is the topic of this
subsection: How should a given search problem be preprocessed, in order to make the
most efficient use of Decode?

To address this question, we first present a general lattice search algorithm. It can be
regarded as a “front end” of Decode, where explicit pre- and postprocessing is included to
allow generator matrices that are not lower triangular, possibly not even square. As with
Decode, we first describe the algorithm conceptually, then suggest how to implement it.

Assume that a generator matrix B and an input vector & are given. By linear integer
row operations, we change B into another matrix, say By, which represents an identical
lattice. (The purpose is to speed up Decode, see below.) Next we rotate and reflect the

lattice into a lower-triangular form, Bj, so that A(Bj) & A(By) = A(B). It is essential
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to rotate and reflect the input vector & in a similar fashion, so that the transformed input
vector, 3, has the same relation to A(Bj3) as « has to A(B). This can be regarded as
a change of coordinate system. Now the search problem has a form that is suitable for
Decode, which will find the closest lattice vector 3 in this coordinate system. Reversing
the operations of rotation and reflection produces &, the lattice vector closest to x in
A(B).
Following these steps, the algorithm is detailed as follows.

Input:

B: A d-row, n-column generator matrix.

x: An n-element vector to decode.
Output:

Z: The lattice point closest to .
Algorithm ClosestPoint(B, x):

1. Let By := W B, where W is an n X n integer matrix with determinant +1.

2. Find an orthonormal matrix @ such that By = B3(Q, where B3 is a d x d lower-
triangular matrix with positive diagonal elements.
Let S3:= B;'.
Let x5 :== Q.
Let @3 := Decode (S5, x3).

A

Return & := u3B>.

Step 1, which is reduction, is optional. It is possible to select W as the identity matrix,
which amounts to no reduction at all. This works well for low-dimensional and not too ill-
conditioned generator matrices, as will be shown in Section VII. However, the speed and
numerical stability of the search can be improved significantly by appropriate reduction,
which is the topic of the last part of this subsection.

Step 2 implies rotation and reflection of the lattice, as in (4). The standard method
to achieve this is QR factorization of B}, which gives both @ and Bj [19, pp. 208-236],
[37, pp. 166-176]. (Bjs is equal to R’ in the QR factorization.) QR factorization can be
understood as a change of coordinate system: Measure the first coordinate along by, the
second in the plane spanned by b; and by, etc. The generator matrix will in this new

coordinate system be square and lower triangular.
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For Decode to work, care must be taken to ensure that all diagonal elements of B3 are
positive. Some implementations of QR factorization do not do this automatically; if this
is the case, we multiply all columns of B3 that contain a negative diagonal element, and
the corresponding rows of @, by —1. As an alternative to QR factorization, B3 can be
obtained by Cholesky factorization of By B2 [19, pp. 84-93], [37, pp. 332-334], after which
the rotation matrix is given by Q = B;'B,.

In Steps 4-6, the input vectors are processed. They are transformed into the coordinate
system of Bj, decoded, and transformed back again.

If a large set of vectors are to be decoded for the same lattice, Steps 1-3 are of course
only carried out once for the whole set. In this case, the overall execution time may ben-
efit from an effective but time-consuming reduction method being applied in Step 1. To
understand precisely what kind of preprocessing would improve the performance of the
search algorithm, we recall the recursive interpretation of lattices and of the algorithm
from Section III-A. A d-dimensional lattice consists of parallel (d — 1)-dimensional sub-
lattices, translated and stacked on top of each other. This decomposition into sublattices
is controlled by the reduction method. Two properties of the decomposition are desirable
for a given lattice:

(a) The (d — 1)-dimensional layers should be as far apart as possible. This minimizes
the number of layers to investigate, as all layers within a certain distance range need to
be scanned. As an extreme case, suppose that the spacing between (d — 1)-dimensional
layers is much larger than any other k-dimensional layer spacing in the lattice. Then the
closest point will always lie in the closest (d —1)-dimensional layer and the dimensionality
of the problem is practically reduced by one.

(b) The 0-dimensional layers (lattice points) should be as densely spaced as possible in
the 1-dimensional layers (lines). The denser they are, the higher is the probability that
the closest lattice point will belong to the closest lattice line. If the 1-dimensional spacing
is much smaller than all the other inter-layer distances, the closest point will always lie in
the closest line, so the dimensionality of the problem is practically reduced by one.

Both observations can of course be applied recursively, and hence high-dimensional

layer spacing should be large, and low-dimensional spacing should be small. This suggests
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two greedy algorithms: (a) sequentially maximizing the distances between k-dimensional
layers, beginning at k = d — 1, and (b) minimizing the same distances, beginning at k = 0.

These two goals are each other’s duals in a fairly strict sense. Even though they may
appear contradictory, they are in fact very similar [25, p. 94-98]. A reduction algorithm
can choose the numbers {by;} in many ways for a given lattice, but their product is
invariant; it equals the volume of a Voronoi region. Now (a) is solved by maximizing first
baa, then by 1 4 1, etc. Because of the constant product, this procedure forces low values
into the last elements by, bay, etc., so a good solution of (a) is in general good for (b) too.
Conversely, (b) is solved by first minimizing by1, then by, etc., which automatically yields
a good basis in sense (a), too.

The smallest possible value of b;; that can be selected for a given lattice equals the length
of the shortest vector in the lattice.? Also, the largest possible by is the reciprocal of the
length of the shortest vector in the dual lattice.®> Applying these shortest-vector criteria
recursively, we conclude that (b) is solved optimally by KZ reduction of any basis for the
lattice. This follows directly from the recursive definition of KZ reduction in Section II.
Also, (a) is solved optimally by KZ reduction of a basis for the dual lattice, then reversing
the order of the rows, and finally transposing the inverse of the resulting matrix. (In the
following, we will refer to this latter strategy as “KZ reduction of the dual”.) Finally, the
LLL algorithm yields an approximate (but faster) solution to both (a) and (b), because
of its inherent sorting mechanism.

Our recommendation, which is supported in Section VII, is to use KZ reduction in

applications where the same lattice is to be searched many times, otherwise LLL.

V. COMPLEXITY ANALYSIS

Banihashemi and Khandani observed that the average complexity of a search method
for uniformly distributed input vectors* is proportional to the volume of the region being
searched [8]. They used this volume to assess the complexity of the Kannan algorithm. We

adopt the same approach here to analyze ClosestPoint (which is based on the Schnorr-

2Shortest-vector problems can be solved by a variant of ClosestPoint, as detailed in Section VI-A.
3Because a generator matrix for the dual lattice is (B~*)T, provided that B is square.
“In the context of lattices, a “uniform distribution” is assumed to be uniform over a region large enough to make

boundary effects negligible. This is equivalent to having a uniform distribution over just one Voronoi region.
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Euchner strategy), and to compare it to Kannan. A comparison between ClosestPoint
and an algorithm based on the Pohst strategy is carried out experimentally, in Section
VII.

For a given lattice, let V;(R) denote the volume searched in a k-dimensional layer, when
R is the given upper bound on the attainable distance. Since the algorithm does not
require an initial value for Ry, the desired complexity measure is V(00).

Theorem 1:

d

(a) Va(oo) <[] 8 (15)

k=1

(b) Va(oo) < (i)d/2 b (16)

2me

where

k 1/2
B 2 (Z bi) : (17)

Proof: The algorithm always begins by comparing the currently best upper bound
Ry, with the distance between the input vector  and Babai’s point.> The distance to
Babai’s point in k£ dimensions is, for any @, at most /2 [6]. Denote the smaller of the
two distances by fi(Rr) = min(Ry, 3:/2). Also, let 3 denote the orthogonal distance
from @ to a (k — 1)-dimensional layer to be scanned. The algorithm considers all layers

for which y, < fr(Ry), and the distance upper bound imposed on each of these layers is
Ry =/ fi(Ry) — - (18)

The volume Vi (Ry), regarded as an integral over Vi,_1(Ry_1), is hence recursively bounded

by
fr(R)
Vi(R) <2 / Vi (JF2(R) — )y, ik > 1 (19)
Vo(R) = 1 (20)

where the index of R has been dropped.

®In the implementation given in Section III-B, Ry, corresponds to (bestdist — dist;)'/?.
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In the absence of a closed form for this quantity, we define

Br/2

V(R é2/ V! (\/B2/4 — y?)dy, if k>1 21

x(R) ) r—1(\/ Bi/ ) (21)
R

1/;;’(1-‘.2)%2/ VI (VR2 — y2)dy, if k> 1 (22)
0

Vi(R) = Vy'(R) =1 (23)

and observe that V;(R) < V/(R) and Vi (R) < V/'(R). The recursions (21)—(23) are solved
by, respectively

vim =114 (24
V” B — 2k7i'k/2 Rk o5
() = 5 (25)

which is easily verified. Part (a) of the theorem is proved by (24). To complete the proof
of (b), we observe that Vi (R) = Vi(fr(R)) and consequently

Va(o0) = Va(Ba/2) (26)
/2
< —_pd 27
—F(d/2+1)5d (27)
<[ — 28
< () & (28)
where the last inequality follows from Stirling’s inequality. O

The corresponding volume K, for the Kannan algorithm is known exactly. For every

lattice, it is in the range

d
Hﬁk < K4 < 3 (29)
k=1

where the lower bound is exact if the sequence biq,... ,bgq is increasing and the upper

bound is exact if it is decreasing [8]. For a “good” lattice, this sequence generally displays
a decreasing trend, but the decrease is not necessarily monotonic [24], [12, p. 158]. Hence,
K, is often close to the upper bound.

The Closest Point algorithm is faster than the Kannan algorithm for all dimensions and

all lattices, since the upper bound (15) for Closest Point coincides with the lower bound for
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Kannan (29). The magnitude of the gain is suggested by Theorem 1 (b): For lattices such
that the upper bound in (29) is exact, ClosestPoint is at least a factor (d/2me)%? faster.
This factor is meant to indicate the asymptotic relation, and smaller order components
have been dropped in (28). For moderate values of d, (27) yields a significantly better
bound, and the factor is always at least one, even for “bad” lattices.

Banihashemi and Khandani point out that the covering radii of the lattice and its
sublattices can be exploited to reduce the complexity of the Kannan algorithm [8]. This
option can be included in ClosestPoint as well. However, it is difficult to determine the
covering radius of a general lattice. The only known algorithm is the “diamond-cutting
algorithm” [41], which, as detailed in Section VI-C, is confined by memory limitations to

low dimensions. Methods to upper-bound the covering radius can be used instead [40].

VI. MORE LATTICE SEARCH PROBLEMS

Other search problems involving lattices can be solved by modifications and extensions
of the ClosestPoint algorithm. These include finding lattice parameters such as the
shortest vector (or, equivalently, the packing density [12, p. 10]), the kissing number, and
the Voronoi-relevant vectors. ClosestPoint can also be used to perform the key step in

basis reduction.

A. Shortest Vector

Given a lattice A, the shortest-vector problem is to find the vector in A — {0} with
the smallest Euclidean norm. Its history is closely interlinked with that of the closest-
point problem. It has been conjectured that shortest-vector problem is NP-hard [39],
but, in contrast to the closest-point problem, this has not been proved. The conjecture
was supported by the result of Ajtai, who showed that the shortest vector problem for
randomized reductions is NP-hard [4], and by Micciancio [28], who showed that to find
an approximate solution within any constant factor less than /2 is also NP-hard for
randomized reductions. It has also been proven that the shortest vector problem is not
harder than the closest-vector problem [18,21].

The ClosestPoint algorithm can be straightforwardly modified to solve the shortest-

vector problem instead. The general idea is to submit & = 0 as the input and disregard
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x = 0 as a potential closest vector. Algorithmically, the changes needed to convert
ClosestPoint into ShortestVector are the following.

e Omit x as an input for Decode and ClosestPoint.

o In ClosestPoint, skip Step 4.

o In Decode, replace line 5 with “p, := 0”.

« Replace lines 1-2 of Case B with

If newdist # 0 then {
uU:=1u

bestdist := newdist

In any lattice, there is an even number of shortest vectors, because the lattice is sym-
metrical with respect to reflection in 0. Hence if & is a shortest vector, so is —&. If
execution time is crucial, a factor of 2 in computation time can be gained by exploiting
this symmetry. This is achieved by rewriting Decode to scan only half of the candidates

u, say, the ones for which the first nonzero component is positive.

B. Kissing Number of Lattices

The kissing number of a lattice A is defined as the number of shortest nonzero vectors
in A. To compute this lattice parameter, it is essential to employ infinite precision; an
arbitrarily small perturbation of a generator matrix has the potential of reducing the
kissing number to two, regardless of the original value. However, we do not recommend
implementing Decode using exact arithmetics. The same goal can be achieved far more
efficiently by implementing the time-consuming operations as before using finite-precision
real numbers, in conjunction with a final infinite-precision stage, where a finite set of
candidates is evaluated.

The new version of Decode needs to keep track of a set of potential shortest vectors, not
just the one best candidate. A margin of accuracy must be included in the comparisons,
to avoid missing some of the shortest vectors due to numerical errors. This is achieved by

the following changes, which convert ShortestVector into Kissing Number.
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(i) In Decode, include “U := @” among the initial assignments.

(ii) In Decode, replace the line preceding Case A with “If newdist < (1 + €)bestdist
then {”, where € is a small positive number.

(iii) Replace the first two assignments in Case B with ‘U := U U {u}” and “bestdist :=
min(bestdist, newdist)” .

(iv) Replace @ in Case C with ¢/, and replace @3 in Step 5 with Us.

(v) Remove “k :=k + 17 from Case B.

(vi) Replace Step 6 with

6. Compute exact values of |uB,|| for all w € Us and return the number of occur-
rences of the lowest value.

As for the shortest-vector problem, a variant of the closest-point problem can be for-
mulated that in case of a tie returns all the lattice points that have minimum distance to
the input vector, not just one of them. ClosestPoint is converted into AllClosestPoints
through the following modifications.

« Apply the changes (i)—(v) above to ClosestPoint.
« Replace Step 6 with
6. Compute exact values of [|[uBy — || for all w € U; and call the lowest value
bestdist. Return X := {uBs : u € Us, |uBy — || = bestdist}.

The main application of this algorithm lies in the solution of the next problem.

C. Voronoi-Relevant Vectors

The relevant-vector problem is to find the facets® of the Voronoi region (A, 0), in other

words, to find a minimal set A(A) C A for which
QAN 0)={zeR": |z|<|z-C|,Vc e N)}. (30)

The vectors in N (A) are called Voronoi-relevant, or simply relevant. Our method to solve
the problem is through the following theorem.
Theorem 2: The Voronoi regions of two lattice points ¢; € A and ¢, € A share a facet

if and only if

lm — e ]| < |lm —¢|,Ve' € A - {c1, ¢0} (31)

SA facet is a (d — 1)-dimensional face of a d-dimensional polytope.
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where
m = — (01 + 02) . (32)
Proof: From (31) and (32),

meQhe)NQNe) - | o4 (33)

cdeA—{c1,c2}
which completes the “if” part of the theorem. To prove the “only if” part, assume that
Q(A,e1) and (A, ¢y) have a common facet. Let & be any point in the interior of this

facet, so that
|z —cill =z — el <l - |, Ve’ € A = {e1, e} . (34)
Then for all ¢" € A —{e1, ¢}
2 w2 _ 1 2 "2
lm —c|” = lm —'||* = 5 (& — el|* — [l — ¢"||)

2
1
+5 (lz = el” = [l = (e1 + e = ))

<0 (35)

where the inequality follows from applying (34) twice. This proves (31). O
This theorem was given by Voronoi in a slightly different context [43, vol. 134, pp. 277
278], [12, p. 475], based on theory by Minkowski [29, pp. 81 85], [30, pp. 120 121]. Similar
properties have been proved for the Voronoi regions of binary linear block codes [1] and
of parallelepipeds [3].
Any vector m given by (32) has the form zB, where 2z € Z?. However, to determine
N (A(B)) for a given lattice A(B), it is sufficient to investigate (31) for vectors m in the

finite set
M(B) £ {zB: z€{0,1/2}"—{0}}. (36)

Any feasible vector m = zB ¢ M(B) can be mapped into another vector m’ € M(B) by
translating the lattice, except when z € Z?. But in this case it is obvious from Theorem
2 that ¢; and ¢, do not share a facet. This observation leads to the following algorithm.

Input:
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B: A d-row, n-column generator matrix.
Output:
N: The relevant vectors of A.
Algorithm RelevantVectors(B):
1. Let N := 2.
2. For all m € M(B),
(a) Let X := AllClosestPoints(B, m).
(b) If |X] =2, let N :== N U {2(z —m) : & € X}.
3. Return V.

Optional optimization includes moving Steps 1-3 of AllClosestPoints out of the loop,
since all calls to AllClosestPoints concern the same lattice. There is also a factor of 2 in
complexity to be gained through the same symmetry argument as for ShortestVector.

It is readily seen that the maximum number of facets that a Voronoi region can have in
any d-dimensional lattice is 2| M (B)| = 24! — 2, and that this number is attained with
probability 1 by a lattice whose basis is chosen randomly from a continuous distribution.
These properties were proved by Minkowski in 1897 [30, pp. 120-121] and by Voronof in
1909 [43, vol. 134, pp. 198-211 and vol. 136, pp. 67-70], respectively.

Relevant vectors have been determined for many classical lattices [12, Chs. 4,21], but
we believe that the algorithm RelevantV ectors proposed above is the fastest known in the
general case. The only alternative algorithm known to the authors is the “diamond-cutting
algorithm” by Viterbo and Biglieri, which finds the complete geometrical description of the
Voronoi region of any lattice [41]. This description includes all vertices, edges, etc., which
evidently includes information on the relevant vectors. However, to employ the diamond-
cutting algorithm for the sole purpose of determining the relevant vectors is inefficient.
Voronoi showed in his classical work [43] that the number of (d — k)-dimensional faces of
a d-dimensional lattice Voronoi region is upper-bounded by

k

(k+1)> (-1) (’j) (k—i+1) (37)

=0
and that there exist lattices whose Voronoi regions attain this number for every k. The

lattice nowadays called A} is one example [43, vol. 136, pp. 74-82, 137-143]. Evaluating
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(37) for k = d,d — 1,... shows that the maximum number of vertices equals (d + 1)!,
the maximum number of edges is (d/2)(d + 1)!, etc., which implies that the memory
requirements for the diamond-cutting algorithm grows very rapidly with the dimension.
This property confines its use to low dimensions.

RelevantVectors, on the other hand, uses negligible memory but does not fully deter-
mine the Voronoi regions, only their facets. In cases where vertices, etc., are desired, we
suggest preceding the diamond-cutting algorithm with RelevantV ectors, since the com-
plexity (both time and memory) of the diamond-cutting algorithm can be reduced by

incorporating knowledge of the relevant vectors.

D. Reduction

The last problem we mention here is the reduction problem. The problem of finding a KZ
reduced basis for a lattice has already been mentioned in Sections IT and IV. Theoretical
results are available for specific lattices [24]. Algorithms for general lattices have been
proposed by Kannan [23] and Schnorr [34]. Since KZ reduction essentially consists of
solving d shortest-vector problems, a closest-point algorithm can be used in this context,
too. In our experiments (Section VII) we have computed KZ reduced bases with this
method.

The general strategy is to find a shortest vector in the lattice, project the lattice onto
a hyperplane orthogonal to this vector, and find a KZ reduced basis of this (d — 1)-
dimensional lattice by recursion. In this application of ShortestVector, Step 1 is performed
using LLL reduction, since KZ reduction is obviously not a usable prerequisite for KZ
reduction. The details of implementation, which we omit, follow straightforwardly from

the definition in Section II.

VII. EXPERIMENTS

In this section, we report on experiments with the C'losest Point algorithm from Section
I1I-B, to evaluate its performance (in terms of search time) for low- and high-dimensional
problems, to compare it with other similar algorithms, and to find out how the basis for

the lattice should be preprocessed in order to achieve the best performance.
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A. FExperiment Setup

To evaluate the performance of the Closest Point algorithm, we must decide what class
of lattices to use. The closest-point search methods studied here are general methods, and
they do not compete well with algorithms specially designed for searching a particular
lattice; such algorithms can exploit structure in the lattice and are generally faster (see
Section I). Therefore, the natural application is one where a special search method for
the chosen lattice does not exist. Here, we concentrate our efforts on experiments with
random lattices without any structure that can be exploited. However, for comparison,
we also include some experiments where the algorithms were applied to classical, highly
structured lattices, such as the Leech lattice in 24 dimensions, and the cubic lattice Z%.

Following the discussion above, we use generator matrices with random elements, drawn
from i.i.d. zero-mean Gaussian distributions. For each point in the diagrams 50 random
matrices are generated, and for each matrix a large number of uniform random vectors
(see footnote 4) are drawn.” We average over both random matrices and random input
vectors. The search times for all the algorithms are averaged using the same matrices and
the same set of input vectors. The results are given as average search time (in seconds),

using a computer based on a 300 MHz Pentium II processor.

B. Preprocessing

An important question for a closest-point algorithm is whether the performance can be
improved by somehow preprocessing the generator matrix. Since the preprocessing step
needs to be executed only once, and the processed basis is typically used many times in
most communication applications, it is usually worth the effort to invoke a good prepro-
cessing procedure. In Section IV, three different preprocessing strategies are discussed:
LLL reduction, KZ reduction, and KZ reduction of the dual. All of these basically aim to
find as short and orthogonal basis vectors as possible, and here we present experiments to
find the best of the reduction methods.

In Figure 1, the results from simulations using the three reduction methods are given.®

"The exact number is dependent on the dimension; for large dimensions with long search times the average is
computed over about 200 vectors for each of the 50 matrices, and for small dimensions the number of vectors is

much larger.
8 As discussed previously, the reduction is typically performed only once for a large set of vectors, and the time
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Fig. 1. Comparison between different reduction algorithms for preprocessing of the generator matrix.

The average search time is plotted as a function of the dimension.

We see that the performance can be significantly improved by selecting a good prepro-
cessor. The best methods in our study are the ones based on KZ reduction, which are
almost indistinguishable. For high dimensions (30+), the KZ reduction can lower the
search times by almost two orders of magnitude compared to unreduced bases, and by one
order of magnitude compared to LLL reduction. However, up to about 10—15 dimensions,

the LLL algorithm gives good results.

C. Algorithm Comparison

To assess the performance of the CllosestPoint algorithm, we have also implemented
an algorithm described by Viterbo and Boutros [42], based on the Pohst strategy. The
ViterboBoutros algorithm needs a starting bound on the attainable distance (see Sec-
tion ITI-A). First we find the distance to Babai’s point and then use it as an initial
distance bound in the ViterboBoutros algorithm.

In Figure 2, the average time for a single closest-point operation is plotted as a func-
tion of the dimension, for the ClosestPoint and the ViterboBoutros algorithms.® The

ClosestPoint algorithm is faster for all tested dimensions. We can also see that the speed

needed for reduction is not included in the search time results.
9For both algorithms, KZ reduction is applied to the generator matrices.
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Fig. 2. Comparison of average search time for the ClosestPoint algorithm and the ViterboBoutros

algorithm.

advantage increases with the dimension. In Figure 3, the speed ratio between the two al-
gorithms is plotted as a function of dimension. For small dimensions, the speed advantage
is a factor of 2, while for the 40-dimensional example, the speed ratio is about 8.

Why is the Cllosest Point algorithm faster? The main difference between the two algo-
rithms is the order in which the layers are examined (see the discussion in Section III-A),
but some implementation issues also differ, such as the use of a dual basis for internal rep-
resentation, and a different loop structure. To determine which of the above differences
leads to the speed difference, we reprogrammed Closest Point to examine the layers in the
same order as in the ViterboBoutros algorithm, while still keeping the implementation
structure the same. The results (not presented here) reveal that with the ordering of layers
as in the ViterboBoutros algorithm, the Closest Point algorithm is no longer faster; the
run times for both algorithms are similar. The conclusion is that it is the order in which

the layers are examined that gives the Closest Point algorithm its better performance.

D. Comparison with Classical Lattices

To further illustrate the performance of Closest Point, we here evaluate its performance
for classical lattices, and compare with the performance for random matrices (chosen from

an i.i.d. Gaussian source). In Figure 4, the average search time for random lattices and for



25

0 5 10 15 20 25 30 35 40 45
dimension

Fig. 3. The ratio between search times for Closest Point and the ViterboBoutros algorithm as a function

of the dimension.
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Fig. 4. Search time comparison of classical and random lattices.

the cubic lattice is plotted as a function of the dimension, together with the search times
for the Leech lattice in 24 dimensions, and for the Barnes-Wall lattices in dimensions 8§,
16, and 32. ;From this figure, we see that there are no surprises in the search complexity
for classical lattices; the general curve is the same as that for random lattices. This is
the strength as well as the weakness of algorithms of this type; they do not rely on any

particular structure. Also for the classical lattices (except the cubic lattice of course), KZ
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Fig. 5. Search time comparison for the ClosestPoint algorithm and the ViterboBoutros algorithm, for

a 45-dimensional example.

reduction leads to faster search times, and is therefore applied before the experiments.

E. Suboptimal Search

The closest-point search algorithms studied here always returns a lattice point closest to
the input point. However, in certain applications, it may be necessary to abort the search
before the closest point has been found. Therefore, we have included experiments where
the ViterboBoutros and the ClosestPoint algorithms are aborted after a given time. In
Figure 5, the average ratio between the suboptimal and the optimal distortions is given
for a 45-dimensional example, as a function of the time allowed for the search. From this
figure, we see that the ClosestPoint algorithm quickly finds lattice points fairly close to
the optimal one, while it takes a considerable amount of time until the ViterboBoutros
algorithm improves on Babai’s point. (Babai’s point is the first point found for both
algorithms; in this example, its average distortion is 1.43 times the distortion of the optimal
point.)

We see that if a 10% higher average distortion than the optimal can be tolerated, the
ClosestPoint algorithm is more than 150 times faster than the ViterboBoutros algorithm,
as compared to about 10 times faster if we wait until the optimal point is found (see

Figure 3). If 20% higher distortion can be tolerated for both algorithms, the ClosestPoint
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algorithm is more than 1500 times faster.

We only report results for a single 45-dimensional example, but the general conclu-
sion is the same for all tested dimensions; if we abort the search procedure before the
optimal point is found, the speed advantage of the ClosestPoint algorithm over the

ViterboBoutros algorithm is even clearer than for uninterrupted search.

VIII. CONCLUSION

Algorithms for finding the closest point in a lattice were studied. The complexity of
different strategies for closest-point search was theoretically and experimentally evaluated,
and a complete implementation of an efficient closest-point algorithm were given. The
closest point algorithm were also extended to solve a number of related lattice search

problems.
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