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Abstract

The problem of calculating the average bit-error probability (BER) of coherent M -ary phase shift keying

(PSK) over a Gaussian channel has been studied previously in the literature. A solution to the problem for

systems using a binary reflected Gray code (BRGC) to map bits to symbols was first presented by Lee in [1].

In this letter we show that the results obtained in [1] are incorrect for M ≥ 16. We show that the reason for

this is an invalid assumption that the BER is independent of the transmitted symbols, an assumption which

has also propagated to textbooks, e.g., [2, p. 211]. We give a new expression for the BER of M -PSK systems

using the BRGC and compare this with the results of [1].

I. INTRODUCTION

In this letter we will revise the calculation of the bit error probability of M -PSK, as presented in

[1]. We adopt the same vector model as in [1] and we show how to put the results from [1] into

a convenient form and then give a new expression for the BER of a binary reflected Gray encoded

M -PSK system as a function of M .

II. AN EXPRESSION FOR THE AVERAGE BER OF M -PSK

For any mapping between bits and symbols, the BER is given by the expression

Pb =
M−1∑
l=0

M−1∑
k=0
k 6=l

d (ck, cl)

m
Pr{r ∈ Sk|s = sl}Pr{s = sl} (1)

Here sk, k = 0, 1, . . . ,M − 1, denote the M = 2m available signal vectors (symbols) and Sk is the

decision region for symbol sk. The binary vector ck, k = 0, 1, . . . ,M − 1, denotes the bit pattern

assigned to the symbol sk, while the function d(ck, cl) denotes the Hamming distance between the

binary vectors ck and cl, i.e., the number of positions in which they differ. The number of bits in the

bit vectors ck is m = log2 M .

We assume (as in [1]) that the M symbols are spread uniformly on a circle of radius
√
Es =

√
mEb

in the signal space, where Es and Eb are the symbol and bit energy, respectively. Furthermore, we

assume (also as in [1]) that the symbols are equally likely to be transmitted, and that the receiver is

optimum in the sense that symbol error probability (SER) is minimized. This implies that all decision

regions will be geometrically congruent and that the probabilities Pr{r 6∈ Sk|s = sk} will be equal,

independent of k. Using these assumptions, we can rewrite (1) as

Pb =
M−1∑
l=0

M−1∑
k=1

d
(
cl, c(l+k) mod M

)
m

Pr{r ∈ S(l+k) mod M |s = sl}︸ ︷︷ ︸
,P (k)

Pr{s = sl}︸ ︷︷ ︸
=1/M

=
1

m

M−1∑
k=1

P (k)
M−1∑
l=0

d
(
cl, c(l+k) mod M

)
M︸ ︷︷ ︸

,d̄(k)

=
1

m

M−1∑
k=1

d̄ (k)P (k) (2)
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Here we have introduced the average distance spectrum d̄(k) to denote the average number of bit

positions differing between signal alternatives separated by k steps along the circle, i.e.,

d̄(k) =
1

M

M−1∑
l=0

d
(
cl, c(l+k) mod M

)
=

1

M

M−1∑
l=0

m−1∑
i=0

∣∣[cl]i − [c(l+k) mod M ]i
∣∣ (3)

where the notation [cl]i is used to denote the ith element of the binary vector cl. Obviously, it is

the average distance spectrum d̄(k) that depends on the particular bit-to-symbol mapping chosen,

and traditionally this is evaluated using computer simulation [3]. In addition, textbooks often use

approximations to obtain expressions for the BER as a function of M , see [4, p. 202] [5]. The

probabilities P (k) can be evaluated using the expressions given in, e.g., [4, p. 201] [1, 6].

By comparing the final expression in (2) with (5) in [1], we see that the equations are similar.

However, the important difference is that [1] uses simply the Hamming weight of the binary vector ck

(i.e., the Hamming distance between ck and the all-zero codeword c0) to multiply the corresponding

P (k), whereas in our (2), it is the average Hamming distance difference taken over all binary vectors

separated by k steps that multiplies each P (k). The motivation for using the weight directly in [1] is

the claim that the BER is independent of the transmitted symbols. If this claim were correct, then the

Hamming weight spectrum would be identical to the average distance spectrum. We show below that

it is not.

III. EVALUATING THE AVERAGE DISTANCE SPECTRUM

In this section we will present a closed-form expression for the average distance spectrum d̄(k) for

the binary reflected Gray code (BRGC), which is the particular bit-to-symbol mapping used in [1].

The BRGC is what is called a cyclic Gray code, meaning that in the list containing the codewords

all adjacent codewords differ in exactly one bit position, including the first and the last codeword in

the list. This property is desirable for M -PSK, where we want to label the quantization of a circle.

The BRGC scheme, originally proposed and patented by Frank Gray in 1953 [7], is actually only

one special code in a large class of codes having the property that adjacent codewords differ in only

one position [8, 9]. For m = 1 (M = 2), the BRGC is simply {0, 1}. The BRGC of order m can

be constructed recursively from the BRGC of order m− 1 according to the following procedure: (i)

list the M/2 = 2m−1 codewords of the BRGC of order m − 1 two times row-wise over each other,

first in the original order and then in reflected (reverse) order, then (ii) add a column to the left of

the list consisting of M/2 zeros followed by M/2 ones. This is illustrated for the BRGCs of order

m = 1, 2, 3, and 4 in Table I.
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To obtain the average distance spectrum d̄(k), we first exchange the order of summation in (3) to

get

d̄(k) =
m−1∑
i=0

(
1

M

M−1∑
l=0

∣∣[cl]i − [c(l+k) mod M ]i
∣∣) =

m−1∑
i=0

d̄i(k) (4)

where d̄i(k) is the average number of bits that change in position i of bit patterns separated by k steps

along the circle.

As is shown in Appendix , the recursive construction method leads to an expression for the average

distance spectrum of the BRGC of order m given by

d̄(k) =
m−1∑
i=0

d̄i (k) = tri (2m, k) +
m∑
j=2

tri
(
2j, k

)
(5)

which is valid for all integers k. The function tri(P, k) is a periodic triangular function of period P ,

given by

tri (P, k) = 2

∣∣∣∣ kP −
⌊
k

P

⌉∣∣∣∣ (6)

where the function bxe rounds x to the closest integer. If x falls exactly midway between adjacent

integers either of the two can be selected—the choice does not affect the value of tri(P, k). Inserting

(6) into (5) we obtain

d̄(k) = 2

∣∣∣∣ kM −
⌊
k

M

⌉∣∣∣∣+ 2
m∑
i=2

∣∣∣∣ k2i
−
⌊
k

2i

⌉∣∣∣∣ (7)

In Table II, d̄(k) is listed for M = 2, 4, 8, and 16. The most interesting part of this table is the

values for M = 16, especially the non-integer values d̄(5) = d̄(7) = 2.5 marked by asterisks. These

values indicate that when the bit-to-symbol mapping is done using a BRGC, the bit error probability

of M -PSK is not independent of the transmitted symbols. Obviously, if it would be, then only integer

numbers could occur in the sequence d̄(k).

IV. RESULTS AND COMMENTS

This section gives a plot of the average BER of binary reflected Gray coded M -PSK as a function of

the bit-energy-to-noise ratio. The expression we evaluate is given by (2), where the average distance

spectrum d̄(k) is given by (7) and the probabilities P (k) are given in [1] (in which they are called

Ak). Note that [1] does not explicitly list the sequences given in Table II, but inserting the sequences

given in the table, using the relation d̄(k) = d̄(M − k), into (5) in [1] will reproduce the results of

(7)–(9) in [1].

In Figure 1, Pb is evaluated for M = 16 and for d̄(k) we use the values given for M = 16 in

Table II. From Figure 1 we see that the result presented in [1] gives a slight overestimation of the
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true BER. For reference, we include computer simulated values (◦), which are seen to be in very

good agreement with the new results derived in this paper. However, we also note that the difference

between the previous result and the result derived here is small and vanishes with increasing Eb/N0,

since the two distance spectra first differ in the fifth position. This is probably the reason why the

error in [1] has not been noted before. The discrepancy is a result of the invalid assumption that for

the BRGC the BER is independent of the transmitted symbols, which is only valid for 1 ≤ m ≤ 3.

The results presented in [1] and also in [2, p. 211] and [4, p. 201] are incorrect for all M ≥ 16 and

instead (2) should be used together with (7) to obtain correct results (for any M ). In [3] an alternative

approach to deriving expressions for the BER results in the same (numerical) values as the expressions

given here, but no general form for the average distance spectrum is provided.

V. CONCLUSIONS

The main contribution of this paper is a closed-form expression for the average distance spectrum

as a function of M for the binary reflected Gray mapping given by (7). Since the derived expression

differs from the results previously proposed in [1], we also correct these results here. The difference

between the previous results and the new results derived herein is small, and we show that the er-

roneous results resulted from an invalid assumption that the BER is independent of the transmitted

symbols.

APPENDIX

DERIVATION OF AVERAGE DISTANCE SPECTRUM FOR BRGCS

For any binary periodic sequence bl with period P we have

d̄(b, k) ,
1

P

P−1∑
l=0

|bl − bl+k| (8)

It is easily shown that for any positive (nonzero) integer n,

d̄(b, k) =
1

nP

nP−1∑
l=0

|bl − bl+k| =
1

P

P−1∑
l=0

|bl − bl+k|

=
1

P

P−1∑
l=0

(bl − bl+k)2 =
2

P

P−1∑
l=0

b2
l −

2

P

P−1∑
l=0

blbl+k (9)

The auto-correlation function of a binary square wave, s, with 50% duty-cycle (mean 1/2) and period

P is a triangular wave of amplitude 1/2 and period P , i.e.,

1

P

P−1∑
l=0

slsl+k =
1

2
(1− tri(P, k)) (10)
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where tri(P, k) is given by

tri (P, k) = 2

∣∣∣∣ kP −
⌊
k

P

⌉∣∣∣∣ (11)

and the function bxe rounds x to the closest integer (ties can be resolved arbitrarily). This means that

for binary periodic square waves with period P we have from (9)

d̄(s, k) =
2

P

P−1∑
l=0

s2
l −

2

P

P−1∑
l=0

slsl+k =
2

P
· P

2
− 2 · 1

2
(1− tri(P, k)) = tri(P, k) (12)

Theorem: The average distance spectrum d̄(k) defined by (4) of a binary reflected Gray code of

order m = log2 M is

d̄(k) = tri (2m, k) +
m∑
i=2

tri
(
2i, k

)
(13)

Proof: In the list containing the codewords of the BRGC (cf. Table I), each of the m columns,

periodically repeated, represent binary square waves, the two leftmost with period M and subsequent

columns with periods (M/2,M/4, . . . , 4). Using (12) in (4) gives the desired result. 2
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TABLE I

RECURSIVE CONSTRUCTION OF THE BRGCS OF ORDER m = 2, 3, AND 4 FROM THE BRGC OF ORDER m = 1.

m = 1 m = 2 m = 3 m = 4

0 ⇒ 0 0 ⇒ 0 0 0 ⇒ 0 0 0 0

1 0 1 0 0 1 0 0 0 1

1 1 0 1 1 0 0 1 1

1 0 0 1 0 0 0 1 0

1 1 0 0 1 1 0

1 1 1 0 1 1 1

1 0 1 0 1 0 1

1 0 0 0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0
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TABLE II

AVERAGE DISTANCE SPECTRUM d̄(k) FOR THE BINARY REFLECTED GRAY (BRGG) AND THE CORRESPONDING VALUES USED

IN [1] (LEE) FOR M = 2, 4, 8, AND 16. NOTE THAT d̄(0) = 0 AND THAT ONLY VALUES FOR k = 1, 2, . . . ,M/2 ARE GIVEN,

SINCE d̄(k) IS SYMMETRIC AROUND k = M/2.

M = 2 M = 4 M = 8 M = 16

k Lee BRGC Lee BRGC Lee BRGC Lee BRGC

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 2 2 2 2

4 2 2 2 2

5 3 2.5 (*)

6 3 3

7 2 2.5 (*)

8 2 2
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Fig. 1. Bit error probability of M -PSK for M = 16. The exact expressions given by (2) together with (7) are plotted along with

simulated values (◦), compared with the previously proposed exact expression given in [1]. The difference is slight, but obvious.
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