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SOME ERROR ESTIMATES FOR THE LUMPED MASS FINITE
ELEMENT METHOD FOR A PARABOLIC PROBLEM

P. CHATZIPANTELIDIS, R. D. LAZAROV, AND V. THOMEE

ABSTRACT. We study the spatially semidiscrete lumped mass method for the
model homogeneous heat equation with homogeneous Dirichlet boundary con-
ditions. Improving earlier results we show that known optimal order smooth
initial data error estimates for the standard Galerkin method carry over to
the lumped mass method whereas nonsmooth initial data estimates require
special assumptions on the triangulation. We also discuss the application to
time discretization by the backward Euler and Crank—Nicolson methods.

1. INTRODUCTION

We consider the model initial-boundary value problem
(1.1) u—Au=0, inQ, w=0, ond, fort>0,
u(0) =v, in Q,

where 2 is a bounded convex polygonal domain in R2. For simplicity we restrict
ourselves to the homogeneous heat equation, thus without a forcing term, so that
the initial values v are the only data of the problem. This problem has a unique
solution u(t), under appropriate assumptions on v, and this solution is smooth for
t > 0, even if v is not. More precisely, for ¢ > 0 we denote by H? C Ly(2) the
Hilbert space defined by the norm

e 1/2
|vlg = (ij(v,qu)Q) ., where (v,w) = /va dz,
j=1

and where {\;}32,, {#;}52, are the eigenvalues and eigenfunctions of —A, with
homogeneous Dirichlet boundary conditions on Q. Thus |v|g = ||v]| = (v,v)/?
is the norm in Ly = Ly(f2), |v|; the norm in H} = HE(Q) and |v|y = ||Av| is
equivalent to the norm in H?()) when v = 0 on 9. For the solution of (LI]) we
then have the stability and smoothing estimate

|E(t)v|, < Ct=P=D2|y|,. for0<q<p, t>0, whereu(t)=E(t).

We first recall some facts about the spatially semidiscrete standard Galerkin
method for (1) in the piecewise linear finite element space

Sp={x€C(): x| linear, V7 € Tp; x|oa = 0},
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where {7Tp} ., <1 is a family of regular triangulations 7j, = {7} of Q, with h denoting
the maximum diameter of the triangles 7 € 7. We then seek an approximation
up(t) € Sy, of u(t) for t > 0 from

(1.2) (unt, x) + (Vup,Vx) =0, VYx €Sy, fort>0, withu,(0)=uvp,

where vj, € S}, is an approximation of v. It is well known that we have the smooth
data error estimate, valid uniformly down to ¢t = 0; cf. [7, Theorem 3.1],

(1.3) un(t) —u(t)|| < Ch*|vla, fort >0, if |lvp —v| < Ch?|vls.

We also have a nonsmooth data error estimate, for v only assumed to be in Ly, but
which deteriorates for ¢ tending to zero (cf. [7l, Theorem 3.2]), namely

(1.4) lun(t) — u(®)|]| < Ch*t ol if vy = Pyo, fort >0,

where Pj, denotes the Lo-projection onto S,. Note that the discrete initial data are
not as general in this case as in (I3).

We remark that the nonsmooth data error estimate (L)) is of optimal order
O(h?) for t bounded away from zero, but deteriorates as t — 0. We emphasize that
the triangulations 7j are assumed to be independent of ¢, and thus that the use of
finer 7}, for t small is not considered here.

We note for later use that a possible choice in (I3) is vp, = Pnv, and that hence,
by interpolation, we have the intermediate result between (IL3]) and (4,

(1.5) un(t) —u(t)|| < CR*Y2|v)y, if vy, = Pyv, for t > 0.

As is easily seen, this error bound also holds for v, = Rpv, the Ritz projection of
v onto Sy, defined in (Z4]) below. In the sequel we shall not insist on generality in
the choice of v, in our various error estimates, and an estimate such as ([3) would
be expressed with v, = Rpv. The above more general choice of vy, is then justified
by the stability of ([L2]) in vy,.

The object of study in this paper is the lumped mass modification of (2]
obtained by replacing the first term on the left by a quadrature expression, or

(1.6)  (unt, x)n + (Vup, Vx) =0, Vx €Sy, fort>0, withu,(0)=uvs,

where, denoting by {2] ?:1 the vertices of 7 and by 7, : C(Q) — S, the finite
element interpolation operator,

3
(17 (wwh =Y Qralvw), with Qrn(f) = |l3‘ Zf(z;) = /whf dz.

TE€TH

This method has the advantage over the standard Galerkin method that, under
the assumption that the triangulation is of Delaunay type, the solution satisfies the
maximum-principle; cf., e.g. [7, Theorem 15.5]. Our aim here is to show analogues

of (I3), (C4), and (L) for the solution of (L6), namely, with the appropriate
choices of vy,

1.8 an(t) —u(t)|| < CR* =Dy, fort>0, ¢=0,1,2.
q

We will prove this in Section [ for ¢ = 1,2. However, for ¢ = 0, we are only able
to show this under an additional hypothesis, expressed in terms of the quadrature
error operator Qy : S, — Sy, defined by

(19) (thXa VUJ) = eh(Xa %/1) = (Xa w)h - (X7¢)7 VTZ} € Sh7
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and requiring that

(1.10) 1Qrvll < CR2|[Y]|, Vi € Sp.

It will be shown that this assumption is satisfied for symmetric triangulations. We
will then give examples, in one space dimension, of nonsymmetric partitions such
that (L8) does not hold for ¢ = 0. For finite difference methods, which are close in
character to the lumped mass method with symmetric triangulations, it was shown
in [B], that nonsmooth data estimates similar to (L8) with ¢ = 0 hold. Without
condition (L.I0) we are only able to show the nonoptimal order error estimate

@n(t) — u(t)|] < Cht=Y2||v|, fort > 0.

Symmetry of the triangulations is a serious restriction which can only hold for
special shapes of .

We also discuss optimal order O(h) error estimates for the gradient of @, (t) —u(t),
with a dependence of ¢t depending on the smoothness of v.

Our analysis provides improvements of earlier results in [3] (cf. also [7, Lemma
15.3 and p. 267]) where, by mimicking the proof for the standard Galerkin method,
it was shown that, e.g.,

ChQ‘D‘:;,

C’hzt_l/z\v\g for t >0, if v, = Rpv,

[an () = u(®)]] < {
thus requiring more regularity of the initial data than (I8). Our approach here
is to combine the error estimates ([3]), (I4) and (L) for the standard Galerkin
method with new bounds for the difference 6(t) = @y (t) — up (), which satisfies

(111) (515’ X)h + (V(S, VX) = _Eh(uhﬂfa X)’ fOI' X S Sh'

After we had finished our research, we became aware of the paper [6], where the
smooth data error estimate (L), with ¢ = 2, is shown for a slightly more general
parabolic equation and by a somewhat more lengthy argument than here. The
nonsmooth data error estimate, with ¢ = 0, is also stated but with an incomplete
proof.

The following is an outline of the paper. In Section 2] we introduce notation and
give some preliminary material needed for the analysis of the lumped mass method.
Further, we derive smooth and nonsmooth initial data estimates for the gradient
of the error in the standard Galerkin method, which will be used in the sequel. In
Section [}l we derive error estimates for the lumped mass method for initial data
with basic smoothness, or v € H? with ¢ = 1,2. In Section [ we show the optimal
order error bound for v € Ly under the assumption that (II0) holds. In Section
we show that this assumption is valid for symmetric meshes, and in Section [6] in
one space dimension, that the symmetry requirement can be somewhat relaxed. In
Section [ we give two nonsymmetric partitions in one space dimension for which
optimal Ls-convergence for nonsmooth data does not hold. Finally, in Section [ we
consider briefly the application of our results for the spatially semidiscrete problem
to the fully discrete backward Euler and Crank—Nicolson lumped mass methods.

2. PRELIMINARIES

In this section we recall some basic known facts for the spatially semidiscrete
standard Galerkin and lumped mass methods. We introduce notation and show
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smoothing properties of the solution operators for these two semidiscrete methods
and some other preliminary results needed in the sequel.
Introducing the discrete Laplacian Ay : S, — Sy, by

—(AnY,x) = (V¥, VX), V¥, x € Sy,
we may write the spatially discrete problem (2)) as
(2.1) Upt — Apup, =0, fort >0, with up(0) =vp.

With wuy,(t) its solution we define the solution operator Ej(t) = e®rt of (21 by
up(t) = Ep(t)vp,. Letting {)\?}é_v:h {¢?}§V:1 denote the eigenvalues and eigenfunc-
tions of —Ay, we have, by eigenfunction expansion,

(2.2) up(t) = Ep(t vh—Ze (o, @)@, for t > 0.

We shall need various smoothlng properties of Ep,(t). First, we recall the follow-
ing smoothing bounds for the exact solution u of ([II)); cf., e.g., [1],

(2.3) |DLE(t)w], < Ct=P=D/ 2|, fort >0, p,q, £ >0, 20+p>gq, ve HI.
In the following lemma, we show some discrete analogues of these bounds.
Lemma 2.1. For E)(t) defined by 22) we have, for vy, € Sy,

VP DEE (t)oy|| < Ct=4=P=D/2||Vy,||,  fort >0, £>0, p,g=0,1, 20+p > q.

Proof. By Parseval’s relation, since \e™* < C,t~*, for A > 0, s > 0, we get
N

IV7Df By (t)on||? = S (N1)2HPe =2t (v, ¢)2 < CE27779|| Wy, 2. O
j=1
In addition to the Lo-projection Py : Lo — Sj, satisfying
(Ph1}7X) = (1}7X), VX € Sha
our error analysis will use the Ritz projection, Ry, : H} — Sy, defined by

(2.4) (VRyv,Vx) = (Vv,Vy), for x € Sh.
It is well known, (cf. e.g. [7) Lemma 1.1]) that Ry, satisfies
(2.5) |Rpv — v|| + h||V(Ryv — v)|| < Chiv|,, forve HI, q=1,2.
Next, we turn to the lumped mass method. As is well known, the norms | - ||,
and || - || are equivalent on Sp,, or, more precisely,
(2.6) 3 Ixlln < IIxll < lixlla, ¥ x € S

We now introduce the discrete Laplacian —Ay, : S, — S}, corresponding to the
inner product (-, -)p, by

(27) —(AhU)vX)h = (v¢7vx)7 vd}a X € Sh'
The lumped mass method (6] can then be written in operator form as
(2.8) Unt — Aptp, =0, fort >0, with @,(0) = vy.

With Ej,(t) = e®rt as the solution operator of (Z8), we have

(2.9) up(t) = Ep(t)vn, = Ze *(vn, ¢h h¢
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where {A}}N ) and {¢!}]L, are the eigenvalues and the corresponding orthonormal
eigenfunctions, with respect to (-,-)n, of the positive definite operator —Ay,. We
show the following analogue of Lemma [2.1] for E},(t).

Lemma 2.2. For Ej(t) defined by @3) we have, for v, € S,
IV D En(t)onl| < Ct= =02 V0w, fort >0, £>0, p.g=0.1, 20+p>q.

Proof. Introducing the square root Gj, = (—=A)Y2: S, — S, of —Ay,, we have

N
IVoRll* = ((—=An)vr, vn)n = |Gronlli = Z/_\;'L(Uha )i

j=1
Since the norms || - ||, and || - || are equivalent on Sj, we find
N
— — — - _ _ 7}} —_ —
IV DE En(tyon|® < CIIGh DEEn(tyonllh, = C Y _(X))*HP~4e™ 1 (N}) (vn, 653
j=1
< CHCET D) Gl 2 < O @0 |y, |2, D
We recall the following estimate for the error in the quadrature expression in
@)
Lemma 2.3. Let ep(x, %) = (0 ¢¥)n — (X, ¢). Then
len O, )| < CRPYIVPXI VT, VX, 9 € Sh,  with p,g =0,1.
Proof. For completeness we sketch the proof; ¢f. Lemma 15.1 in [7]. Since the

quadrature formula is exact for linear functions over any triangle T € 7}, employing
the Bramble—Hilbert lemma and a Sobolev inequality, we conclude that

|Qrn(x¥) - / xwdz| < Ch2 Y ID*(x)lzy () < CHEIVX L) IVl La(r)
T || =2
with h, the maximal side length of 7. Now using an inverse inequality locally and

summing over 7 € T, we obtain the desired result. O

The following estimate holds for the quadrature error operator Q.

Lemma 2.4. Let Ay, and Qy, be the operators defined by Z7) and (L), respec-
tively. Then

(2.10) IVQux|l + h|ALQrX|In < ChPTYH|VPX|, VX € Sk, p=0,1.
Proof. By (L) and Lemma 233 with ¢ = Qpx and ¢ = 1, it follows easily that

IVQrx|I* = en(x, Qnx) < CRPTH|VPX[| [VQrx||, for p=0,1,

which shows the first estimate of (ZI0). Also, by the definition of Ay, Lemma 23]
with ¢ = 0 shows

1ALQrXIE = —(VQrxX, VARQRX) = —en(X: AnQnrx) < CRP|[VPX|| | AnQux|ln;
for p = 0,1, which gives the second bound in (ZI0). O

In our analysis of the lumped mass method (6] we shall be interested not only
in the error estimates (L8] but also in the corresponding estimates for the gradient
of the error. Our approach will then require the following estimates for the standard
Galerkin method.
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Theorem 2.1. Let u and uy be the solutions of (1) and [L2), respectively. Then
IV (un (t) — u(t))] < {gg_il|vf;||/72)|v|qa forq=1,2, Zc z: i ]13:::})7
Proof. In a customary way we split the error into two terms as
up —u = (up, — Rpu) + (Rpu —u) =9 + o.
By (23) and [23) we have
[Vo(t)|| < Chlu(t)|a < Cht=1F92[v|,, fort >0, ve HY, ¢=0,1,2.
It remains to bound V¥ analogously. By our definitions we have
(2.11) 9 — Ap¥ = —Pro¢, fort > 0.
In the cases ¢ = 1,2 the Ritz projection Rjv is well defined so that ¥(0) = 0 and
hence, by Duhamel’s principle,
(2.12) I(t) = — /Ot En(t — s)Prot(s)ds.
Using Lemma [Z1] the stability of Py, (Z3) and ([Z3), we find, for 2p + 1 > g,
IVDEEw(t — s)PuDYo(s)|| < C(t = )~ | DY o(s)l|
< Ch(t —s)""Y2|DPu(s)|y < Ch(t — s) "1/ 25 P 1/24a/2)y) .
When ¢ = 2 we use this in [2ZI2)) to obtain

(2.13)

t
IV < C’h/ (t— )26V ds o]y = Chlu]s,
0

which shows the desired estimate for V¢ in this case.
To treat the case ¢ = 1 we use [212)) to write

t/2 t
Vo(t) = —{/ +/ }VEh(t — $)Pyou(s)ds = Ty + To.
0 t/2
Using ([2.13)), we find
t
1 To|| < C’h/ (t—s)" Y257 ds |v|, < Cht™Y?|u];.
t/2
For T we obtain by integration by parts
t/2 t/2
T = [VEu(t~ )Pael)] + [ VDLEWGE - 9)Prels) ds
0
and hence
t/2
T3l < Cht=22 [o]y + Ch/ (t— )2 ds oy < Cht=12]u]s.
0

Together these estimates show the desired bound for V4 for ¢ = 1.
Finally, for ¢ = 0, we multiply (ZTII]) by ¢ to obtain
(t): — Ap(t9) = —tPror + 9, for ¢ > 0.

Although 9¥(0) = vy, — Rp,v is not defined when v & H{, we have t9(t) — 0 as t — 0.
Indeed, using the estimate (cf. [7, formula (3.12)])

(2.14) lun () = u(®)|| < Cht™/|v]),
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the error bound (Z3)), and the regularity estimate |u(t)|; < Ct~'/2|jv|| we get
(2.15) W@ < Mun(t) = w@)]l + [ Ruu(t) —u(®)]] < Cht=2|Jo],
which shows that t9(t) — 0 as ¢ — 0.
Hence we may integrate the above equation over (0,¢) to find
¢ t
Ft) = —/ SEn(t — 5)Proi(s) ds +/ En(t — 5)9(s) ds,
0 0
so that
¢ ¢
V() = — / SVEn(t — 5)Proy(s) ds + / VEW(t — $)0(s) ds = T + T,
0 0
Using (2I3) with I =0, p = 1, ¢ = 0 we obtain
¢
IT5]] < Ch/ (t = )12 2 ds||ol| = Chlo].
0
For Ty, we note that in view of (28] we have
¢
ITul < Ch/ (t—s)"2s7 12 ds|jo|| = Ch]v].
0

Together these estimates complete the proof for ¢ = 0 and thus of the theorem.
Note that the choice vy, = Ppv enters in the estimate for uy(t) — w(t) in 2ZI5). O
3. THE LUMPED MASS METHOD WITH SMOOTH INITIAL DATA

In this section we derive optimal order error estimates for the lumped mass
method (L6), with initial data v in H? and H'.

Theorem 3.1. Let u be the solution of (1)) and @y that of (LH). Then
1 (8) = w(®) ||+ Bl V (@n () —u(®)|| < CH* Do)y, for q=1,2, if vy = Ryv.

Proof. Since the corresponding error bounds hold for the solution uy, of the standard
Galerkin method, by (L3), (L3) and Theorem 2] it suffices to show that

[6(t)|| + h||VE(t)|| < Ch* ==/ D], fort >0, g=1,2, whered =, — up.

By (LCH), (I2)) and the definition (I9) of the quadrature error operator Qp,, §(t)
satisfies (LTI]) and hence

(31) 5,5 - Ah(S = Athuhﬂ:, for ¢ > O, with 5(0) =0.
By Duhamel’s principle this shows

t
(3.2) 5(t) = / Bt — 5)AnQuuns(s) ds.

0
Using the fact that Ej,(t)A, = DyEj(t), and Lemmas and [Z4] we easily get

| En(6) AnQux|l + hIIVEL () AnQux|l

(3.3) N _ _
< Ot 2(IVQux|| + Pl ARQuxl) < CR2E2([ Vx|,

and hence

16+ A[IVO@) < Ch?/O (t = )" V2| Vun(s)| ds.



8 P. CHATZIPANTELIDIS, R. D. LAZAROV, AND V. THOMEE

Here, since Ap Ry, = Py A, we obtain, by first applying Lemma [Z.1]
[Vuni(s)]| < Cs™?|luni(0)]| = Cs™ 2| ApRyv|| = Cs™ /2| Py Av|| < Cs™ 2o,
and hence

t
I8(6)]+ VB < O [ (¢~ 5) /252 dslola = C ol
0

which completes the proof for ¢ = 2.
To treat the case ¢ = 1, we use (B2) to write

t/2 t
34)  8(1) = { /O + /W}Eh(t—s)Athuh,t(s) ds = 61 (t) + 62(t).

Here we have, in the same way as above,

t
182(8)[+h Vo2 (t)]| < Ch? //2(15 =) 72 | Vun(s)|| ds
t

t
< c;ﬁ/ (t —s) 2571 ds | VRyv| < CR2Y2 |u);.
t/2

Integrating by parts we obtain

_ _ t/2 t/2 7
(3.5)  dai(t) = {Eh(t - S)AthUh(S)]O —/ DyEp(t — s)AnQnun(s) ds.
0
Employing (33) we now find, similarly to the above,
161 ()] + VL) < CR*2(|[Vun(t/2)]| + [V Ryvl|)

t/2
+ mﬂ/ (t = )32 [Vun(s)|| ds < CH2¢ 2o,
0
Together these estimates complete the proof. ([

4. THE LUMPED MASS METHOD WITH NONSMOOTH INITIAL DATA

In this section we discuss error estimates for the lumped mass method with
v € Lo, with discrete initial data v, = Ppv. To derive an optimal order error
bound analogous to ([L4)) for the standard Galerkin method, we now need to impose
a condition on the triangulations 7T, expressed as a boundedness condition for the
quadrature error operator Q. Without this condition we are only able to show a
nonoptimal order O(h) error bound in Lo, whereas for the gradient of the error an
optimal order O(h) still holds. We begin with the following theorem.

Theorem 4.1. Let u be the solution of (IIl) with v € Lo and let Gy, be the solution
of ([LA), with vy, = Pyv. Then

(4.1) |t (t) — u(t) + En(t) ApQpun|| < Ch*t Y ||v||, fort > 0.

Hence, a necessary and sufficient condition for the nonsmooth data error bound
(4.2) () — w(®)] < Ch2Yoll,  fort >0,

is that

(4.3) | En(t)ARQnPro|| < CR*Hv||,  fort > 0.
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Proof. Using again the notation § = @y, — up, we write
ap(t) — u(t) + Eh(t)AthPh’U =(0(t)+ Eh(t)AthPh’U) + (un(t) — u(t)).

Thus, in view of (4], it suffices to bound &(¢) + Ej(t)ApQp Pyv. Using the repre-
sentation ([3.4) and (B3) of §, we obtain

(5(t) + Eh(t)AthPhU = E‘h(t/2)Athuh(t/2) + 52(t) + 53(1f)7

t/2 B B
where 05(t) = —/ D ER(t — s)ApQpup(s) ds.
0
Here, similarly to the proof of Theorem [B.I] using the stability of Py,
1ER(t/2) An@pun(t/2)]| < CR*¢ 2| Vup (t/2)|| < CR* | Py < CR* o]
Further,

t
162(8)]] < ChQ/ (t =) 72572 ds | Pyl < CR*H o]
t)2
and, since ||Vup(s)|| < Cs™1/2||Py],
t)2
163 ()] < OhQ/ (t = 5)"*2 [ Vun(s)|| ds < Ch*¢Jo]].
0

Together these estimates show the desired bound (@I). O

We will now use this result to show that the O(h?) error bound (LI0) for the
quadrature error operator @, : S, — Sp, defined in (L) is sufficient for the non-
smooth data error estimate (£2]) to hold.

Theorem 4.2. Let u be the solution of (IIl) with v € Lo and let Gy, be the solution
of [L6), with v, = Pyv. Assume that Qy, satisfies (LI0). Then ([E2) holds.

Proof. The result follows by Theorem [4.1]since, by Lemma and (LI0), we have
1En () AnQnuon]l < Ct7H|Quunll < CR*Hv]. 0

The condition (II0) will be discussed in more detail in Section [l below. Note
that, by Lemma [2.4] without additional assumptions on the mesh, we always have

1Q@uxll < CIVQuxIl < Chlixll, Vi € Sh,
and that the following lower order error estimate always holds.

Theorem 4.3. Let u be the solution of (LI) with v € Lo and uy, the solution of
(T8, with vy, = Ppv. Then

lan(t) — u(®)|| < Cht=2||v|, fort > 0.
Proof. Using the stability of Ej,(¢) and E(t), and Lemma 4] we find
[an(t) — u(t) + En(t) AnQn Proll < Cllvll + CllAnQn Proll < Clv].
Combining this estimate with (£1I), we obtain
an(t) — u(t) + En(t)AnQuun| < Cht~2|jv]|.
But by Lemmas and [2.4] we have
1ER(6) ArQuonll < CEH2IVQuPyoll < Cht ™2 o]),
which shows the desired bound. g
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We end this section by showing an optimal order H'-norm nonsmooth data error
estimate, which does not require the additional assumption (LI0).

Theorem 4.4. Let u the solution of (LIl) with v € Lo and ay, the solution of (LT,
with vy, = Pyv. Then

IV (@n(t) = u(t))l| < Cht~Hv]l,  fort > 0.
Proof. In view of Theorem 2.1 it suffices to show
(4.4) [VS@®)| < Cht Yo, fort > 0.
Multiplying (B1) by ¢, we get
(t8)e — Ap(td) = tARQuup + 6, for t > 0.
Hence, by Duhamel’s principle we get
t t
V5 (t) = / SV En(t — 8)AnQnuni(s) ds + / VEn(t — 5)5(s)ds = I + 1.
0 0
By 3), Lemma 2] and the stability of Py, we find
t
1] < Ch/ (t—s)" 25712 ds|lon]| < Chlo].

0

To bound II, we use ([2.14) and Theorem H.3] to obtain
18I < Nan(t) = w(®)]| + fun(t) = u(@)[| < Cht ™|,
Therefore, Lemma gives
t
112 < Ch [ (¢ 9)7 257 2 ds o] = .
0

Together these estimates show (4.4]), which completes the proof. O

5. SYMMETRIC TRIANGULATIONS

In this section we show that for triangulations that are symmetric, in a sense
to be defined, assumption (LI0) is satisfied and therefore, by Theorem H2l the
optimal order nonsmooth data error estimate (€2)) holds.

“Vi
2

FIGURE 1. A triangle 7 and a patch II; around a vertex z;

T T
23 =%

-
2] = z2; 2

For z; a vertex of the triangulation 7, we define the patch II; = {{J7 : 7 €
Th, zi € Ot} (see Figure [ll), and say that Ty, is symmetric at z; if the patch II; is
symmetric around z;, in the sense that if x € II;, then z; — (z — 2;) = 22; —x € I1,.
Denoting by Z? the interior vertices of Tp,, we say that Ty, is symmetric if it is
symmetric at each z; € Zp. The patch in Figure [I] is nonsymmetric with respect
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to z;, whereas triangulations which are periodic repetition of the patches shown on
Figure [2] are symmetric. Symmetric triangulations exist only for special domains,
such as rectangles, but not for general polygonal domains.

Zi Zi Zi

FIGURE 2. Patches which are symmetric with respect to the vertex z;

We now show the sufficiency of symmetry for condition (LI0).
Theorem 5.1. If the triangulation Ty is symmetric, then (LIQ) holds.

Proof. The proof is based on duality. For given x € S}, we define ¢ = ¢, € H!
as the solution of the Dirichlet problem (V¢,Vn) = (x,n) for all n € H'. Since
Q is convex we have ¢ € H? and |¢|s < C||x||. Letting 7, be the finite element
interpolation operator into S}, we then have, for any ¥ € Sy,

(5.1)  [|Qu] = sup (N sup (VQn, Vo)
xesn Il XESh lIx|l
< sup (VQr), V(¢ — m9))| + sup |(VQnrt, Vrpo)| 41l
XESh Xl XESh lIxl

By the obvious error estimate for m;, and Lemma 2.4] we have

< CR?||y].
xesn  Ixll

To estimate I, we first rewrite the numerator in the form (cf. (7)),
(V@ Vi) = en(6m06) = (b madhn — (i) = 3 [ (mu(00) — wmao)d
T€Th T

Denoting the vertices of 7 by 27, 27, 2 and setting 2] = 27, 2§ = 27, and u(2]) = u;
(cf. Figure[Il), we obtain after a simple calculation

[ we) - vmorts = -1 S v, a70),

where
(AT¢); = dj1 —2¢; + djq1, §=1,2,3.
Hence, if 7 € II;, with (A7¢)(z;) = (AT¢); if 27 = z;,

(W mnd) =~ Y2 w()(Ai8)(),  where (A6)(=) = 15 3 I7I(A79) (=)
z €Z) TCII;

We can look upon (Aj¢)(z;) as a finite difference approximation of A¢ at z;, using
the values of ¢ at the vertices of II,. Since (A} ®)(z;) does not use information about
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Z3 29

p)
20 29 23 20

24
1

Z1 Z4

F1GURE 3. A pair of elements symmetric with respect to vertex zg

the location of these vertices, it does not generally approximate the Laplacian A¢
at z;. Such an example is the patch shown in Figure [1l

Now let 7, be symmetric at the vertex zg, so that the patch Il is symmetric
around zg. Then for the triangle 7 C Il there is a triangle 75 C Iy, symmetric to
71 with respect to zp (see Figure B]), so that |7i| = |m2| = |7|. Also, for ¢ a linear
function in Ily, we have

(5.3) [T (AT @)o + [T2| (A B)o = |T|(P1 + 2 — 2¢0 + P3 + P4 — 2¢00) = O.

Thus, for a patch II; which is symmetric with respect z; and ¢ linear in II; we have
(A} ¢); = 0, since this expression will be a sum of symmetric pairs satisfying the
relations (53). Applying the Bramble-Hilbert lemma we then obtain

|(A7,0)(z:)| < ORI 21 21, -

Employing this estimate, for any ¢ € Sy, we get

(VQub, Vo) = len(v, mne)| < | > 1(z:) s (21)]

2z, €Z)
<CR* Y ()| T2 (18]l a2y < CR?[[[| 1la < CRA[Y ] x|,
ZiEZ;)L
and hence |II| < Ch?||¢||. Together with (5.2)) this completes the proof. O

6. “ALMOST” SYMMETRIC PARTITIONS IN ONE DIMENSION

In this section we shall consider the spatially one-dimensional analogue of the
lumped mass method, and show that a nonsmooth data error estimate of type (£2)
holds for partitions which are somewhat more general than symmetric ones.

Let Q = (0,1) and let 7, = {I;}¥, with I; = (x;_1,;), be defined by the not
necessarily uniform partition 0 = zg < 1 < --- < zxy = 1, and let S, be the set
of the continuous piecewise linear functions over 7,. We set h; = z; — x;_1 and
h = max; h;. Using the quadrature formula,

Q) = FU @)+ i@~ [ fan
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we now define the approximation of the inner product (v,w) in Sp by

N N-1
. 1
(¥, X)n = ZQI,‘,,h,; (¥x) = Z Yixihi, with h; = i(hi +hit1)-
i=1 i=1

The lumped mass finite element method is then defined by
(6.1) (ﬂh,hX)h + (ﬂ%, X/) =0, Vyxe Sh, with ’l_Lh(O) = Vp.

It is easy to demonstrate that the analogues of our results in Sections BH5 remain

valid also for (GI)). Here we will show that assumption (II0) for the operator Qp,

holds for partitions which are “almost” symmetric in a sense to be defined below.
A direct computation shows that

((QhX)/aw,) = Gh(Xa'l/}) = (X,w)h - (Xa'l/})
N-1
= —% Z (hix1(Xiv1 — xi) — hi(Xe — Xi—1)) ¥i = (MpX, V),

where, taking into account that xog = xnx = 0, we have

1 .
(6.2)  (Mpx): = —@(hiﬂ(xiﬂ —xi) = hi(xi — xi-1)), i=1,...,N—1.
(2
Similarly, direct computation of (—=Apx,%)n = (X', %') gives
A L (X1 —Xi  Xi — Xi—1 .
6.3) —(Apx)i=—— - L i=1,... N1,
03 ~Bai=—y (Y5 Xet)

and we note that by the definition of the operator —A;, we have

(Qrx)"s¢") = —(ArQnX, V) = (MpX, ¥)n,
so that
(6.4) ~ApQn =My, or Q= (—Ay)" ' M,.

Obviously, a partition that is symmetric with respect to each of its nodes is
uniform, so that h; = h for all i. In this case (6.2)) and (63]) imply 6h~2M), = —A,,
and Qp = %hz I, where I is the identity operator, and hence assumption (LI0) is
satisfied. More generally, we have the following lemma which easily follows from
©2) and (E3) by checking the coefficients. Here, for @ = (wi,...,wny-1) and
X € Sy, we define Wy € Sy by (Wx); = wix;- Further, we set (712)1- =h2i=
1,...,N—1.

Lemma 6.1. Let the operator Oy, : Sy, — Sy, be defined by (Onx)i = (xi — Xi—1)/his
i=1,...,N—1. Then
Myx = —%Ah(ﬁzx) + %(%(qu), where w; = hH_l(l - (hi/hi_H)Q).

In the following theorem we shall consider families of partitions that are almost
uniform in the sense that, uniformly in 5,

i

hiJrl

(6.5)

—1‘§Ch, i=1,... N—1.

Theorem 6.1. If (6.5) holds, we have for Qp, = (—Ay) ™My, uniformly in h,
1QnxIl < CR?|Ix|l,  for x € S
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Proof. By (6.4) and Lemma [6.1] we have
(@nx)i = ((=An) "' Mix)i = ghixi + §((=Bn) "' On(@x))i = L + IT;.

Clearly, [|I]ln < §h*||x||n- To deal with I1, we note that (—A;)~!, and hence also
(—=Ap)~'/2, is bounded in || - ||, uniformly in A, and we shall show the following:

Lemma 6.2. With our definitions above we have, uniformly in h,
1(=20)"20hx]In < Clixlln,  for x € S
Using this lemma we find, since |w;| < Ch?, that || II||;, < Cl|l@x|ln < Ch2|x]n,

which completes the proof of the Theorem O
Proof of Lemma 62 . We have
o= —A)"Y29,y, Onx, (—Ap)~1/2
H(_Ah) 1/26hXHh = sup (( h) hX w)h _ ( hX ( h) 1Z))h
YESH [41]n wes), %1

Consider for ¢ € Sy, with Oy x; = (Xit1 — Xi)/ P,

B N N-1
Onx: B)n =D (i = Xi-1)6i = — Y _ Xi(@i41 — 61) = — (6 Ond)n < [IxI|n]|Onbln-

i=1 i=0

Note that
10nll;, < Cll¢'|* = C(~And, ¢)n, with C > 0.
Now choose ¢ = (—Ap) /24 to find

100 (= An) 217 < CU(=An)(=AR) "2, (=AR)29)n = Cll0]l7.
Hence
(Onxs (=) 2) < Cllxlnll¢lln,
which completes the proof. (I

As in Theorem the result of Theorem implies a nonsmooth data error
estimate of the form [@2]) for vy, = Pyo.

7. COUNTEREXAMPLES

In this section we continue the discussion of the lumped mass method (E1)) in
one space dimension and present two examples, where the necessary and sufficient
condition for optimal convergence of Theorem F1] is not satisfied and hence the
O(h?) nonsmooth data error estimate does not hold.

First, we consider a special nonuniform mesh by choosing h = 4/(3N), where N
is a positive integer divisible by 4, and take

(7.1) h; = %h, foriodd and h;=h, forieven, 7i=1,...,N.
Obviously, h; = 3h. This mesh consists of J = N/2 copies of the patch (0,1h) U

(%h7 %h) and is not symmetric with respect to any mesh-point; see Figure [l

Zj-1 zy TJjt+1

FIGURE 4. A nonsymmetric partition in one space dimension
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By Lemma .l since w; = 2h, for i odd, w; = —3h, for i even, we have
(7.2) Myx = — 184 (h%x) + My,
where
~ 1 i+ 2xi-1, for 7 odd,
(7.3) (Myx)s = 7 4 072X ‘
6 | —2x: — xi-1, for i even.

In view of Theorem 1] the following proposition will show that the O(h) error
estimate for ¢ > 0 in Theorem 3] is best possible.

Proposition 7.1. Let T}, be defined by ([I)). For the lumped mass initial value
L

problem 1) with vy, = 2" (P yi2j — 28 42511), where ®; is the nodal basis
function at x;, we have, for each t >0 and h small,
| En()AnQnunlln > chllvp|ln, with ¢ = c(t) > 0.

Proof. In view of (2) and (6.4) we have
(7.4) Quon = (=AR) " Myvy, = — 102y, + (=Ap) " My,
Since, by E(t)A = DyEj(t) and Lemma 2.2

t En(6)An(h?oy)|| < C[R%vn || < CR2 oy, for t > 0,
it will suffice to consider the last term on the right of (74). We find at once from

[@3) that Mh(q)gj —289;41) = (Pgji2 — Poj;)/3, where we have set @ = 0, so
that

37-1 $7-1
1 1
My, = Z My(®y0; — 20 740j41) = 3 (@ri2j12 — Pria)) = _§(I>J'
7=0 7=0

Hence, with 5\? and &? being the eigenfunction and eigenvalues of —Ay, since
zy = 3 and hence (Mpvp, %) = 5 (@, 0%) = 1 h ol (1),
N—1
1En () AR((—=An) " Mywn)[l7 = > e —2N( (Myvn, 60)7 > 5 he —23; Teh(1)2,
J=1

Since, as is easily seen, ||vp||, = @, the proof is completed by showing that the

last expression is bounded below by c¢(t)h?.
Let ¢1(2) = v2sinmz be the eigenfunction of —u” = Au, corresponding to the
first eigenvalue \; = m2. We shall need the fact that
(7.5) 6" — ¢1]|gr = O(R) and A — X\j, as h — 0,
see e.g. [4 pp. 87-92]. Using this, we have

L) = (3) — 8 — b1l > V2= |} — ¢1lm > V2 —Ch,
which shows our claim. The proof is now complete. (I

Next we give a second example of a partition 7; for which the optimal order
error estimate (@2) does not hold, although 7, is symmetric with respect to all
nodes of 7Tp, but one. Let J/N = 3/5 and h = 3/(4.J), and let T}, be defined by (see
Figure [{)

(76) hj:Ij—Ij_lzh, foerJand h]‘: h, fOI‘J<jSN.

1
2
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h h h

Ty zy TJj+1
FIGURE 5. A nonsymmetric partition with respect to the point = ;

By Lemma [6.] we may write, since wy = —% h and w; =0 for j # J,
XJ, for j =J+1,
Myx = _%Ah(EQX) + My, where (th)j = % —xJ, forj=1J,
’ o, for j # J,J + 1,
and it follows that
(7.7) (Mux,¥)n =+ hxs($y1 —g),  for x, 1 € Sh.
Proposition 7.2. Let T}, be defined by ([LG). For the lumped mass initial value
problem (61]), with up(0) = @, the nodal basis function at x; = 3/4, we have
|EL()ALQr® 5|l > c(t)h¥ 2| @ ||n,  with ¢(t) >0, fort >0, h small.
Proof. The proof is similar to Theorem [T} Using (7)) we get
IER()M® [} > €225 (My, @, 6107 > & e M h2(31 1y — O )7
Since (ZH) implies |(_§L7Jle - _’fJ) — (¢1.741 — #1.5)] < Ch*? and for ¢; =
V2sin(mz) we have |p1,041 — P1,0] > @ hr| cos(mzy)| = %hw, it follows that
1ER )Myl > c(t)h? = c(t)h*/2 (D ]|,
since ||® || = (3h/4)'/2. The proof is now complete. O

8. SOME FULLY DISCRETE SCHEMES

In this final section we discuss briefly the generalization of our above results for
the spatially semidiscrete lumped mass method to some basic fully discrete schemes,
namely the backward Euler and Crank—Nicolson methods.

With £ > 0, t, =nk, n=0,1,..., the backward Euler lumped mass method
approximates u(t,) by U™ € S, for n > 0 such that, with U™ = (U™ — U~ 1) /k,
QU™ x)n + (VU™ Vx) =0, VYx €Sy, forn>1, withU° =,

or, with A, = —Ah,
(8.1) U™ + A, U™ =0, forn>1, with U°=uv,.
Note that, for simplicity of notation, we write U™ instead of the perhaps more

natural U", and similarly below, Fyj instead of Epp.

We shall have use for the following abstract lemma, in the case H = S}, normed
by || - [|n, and A = Ay,

Lemma 8.1. Let A be a linear, selfadjoint, positive definite operator in a Hilbert
space ‘H, with compact inverse, let u = u(t) be the solution of

(8.2) u+Au=0, fort>0, withu(0)=v,
and let U = {U"}52, be defined by
(8.3) U™ + AU" =0, forn>1, withU’=v.
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Then, forp=0,1, =1 < q < 3, with p+ q¢ > 0, we have

(8.4) |AP/2(U™ — u(t,))|| < Ckt, =92 APTD 2y forn > 1.

Proof. Solving for U" we may write (83) as U" = (I + kA)~1U""! and hence
U" = E}'v, where E; =r(kA), withr(A\)=1/(1+ ).

“tndy = e~k Ay | we have

Thus, since u(t,) =e
AP/2(U™ —u(t,)) = AP2F,(kA)v, with F,(\) = r"(\) — e ™,
and therefore, by eigenfunction expansion and Parseval’s relation,

[AP2(U™ —u(ta)| < sup [NTVPE,(RA)] [ APTO 2y
A€o (A)

=12 sup AR, ()] AT 2,

A€o (kA)
Hence, since k%/2n~(1-4/2) — ktﬁ(kq/z), it suffices for the proof of (84 to show
(8.5) AR, < Cn~ Y2 for A >0, n> 1.

For 0 < A <1 we have [r(\)| < e~ with ¢ > 0, and |r(A\) —e™*| < CA2. Hence
n—1
ATIRIE N S A2 () — e Yo e (Ve
§=0

< ON2 U2 emnA < Cn_(l_q/Q), for n > 1.
For A > 1 we have |r()\)| < e¢, with ¢ > 0, and since A\~9/2|r()\)| < C, we find
AV2E, (N < A2 rN) P 4 A2 e < onm YD forp > 1,
which shows (B3] and thus completes the proof. O

We now show some optimal order error estimates for ([81]) with initial data in
H? and H!, and for initial data only in Lo, if ((LI0) holds for Q.

Theorem 8.1. Let U be the solution of &1, and u that of (LI). Then
(8.6) U™ —u(ty)| < C(h2 + k)t; 2w, forn>0, ¢q=1,2, if v, = Ryv.
Further, if (LIQ) holds for Qp,

(8.7) (U™ —u(ty)|| < C(h? + k)t Mvll, forn >0, if vy = Pyo.
Proof. We start with the estimates (8.6]) and split the error as
(8.8) U™ —u(tn) = (U" = an(tn)) + (an(tn) = u(tn)) = Bn + 1.

In view of Theorem B.11 7, is bounded as required. We obtain, by Lemma [B.1]
1Balln = U™ = @i (ta)lln < Cht, 0=9/D | A2 Ry, < Clt= =92 o]y, g =1,2,
where the last inequality follows from HA,lI/QRhUHh = |[VRpv|| < |v|; and
||Ath’U||,2l == (VRh’U, VAthQ)) == (V’U7 VAth’U) = —(A’U, AhR}ﬂ)),

for ¢ = 1,2, respectively. This completes the proof of (8.4]).
We turn now to (8X). Estimating 7, by Theorem 2] it remains to bound S,
as stated. Employing Lemma [RI] we have

1Balln = U™ = an(ta)lln < Cht M| Provlln < Cht |oll. U
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For the gradient of the error we have the following smooth and nonsmooth data
error estimates, without additional assumptions on the triangulations.

Theorem 8.2. Let U be the solution of [81), and w that of ([LI). Then
C(h+k)lvls, if vn= Ry,
Cht:' + k> )|vll,  if vn = Ppo.

Proof. The estimates needed for 7, are contained in Theorems Bl and 4 To
bound (,, in the smooth data case, we first show the error bound for v, = v, =

— A Ry, Av. Since |Vy|| = ||A;L/2x||h for x € Sy, we then have, by Lemma R1]
(89)  VBall < CKIAL Bulln < Ck|A,* RiAv]ln = Ck|V(RyAv)| < Chlus.
In order to complete the proof it suffices to show
(8.10) (IV(Rpv —vp)|| < Chlvls.
In fact, setting Eyp = (I + kAp) ! we have
n 1/2 rn 1/2
IVERXI = 11432 Egaxlin < 11432 xln = I1VxIl,

VU™ = u(ta))ll < {

and hence
IVEL, (vn = on) || < [V(on =) + V(0 = Rao) | + [V (Rrv — 0p)[| < Chlo]s.

The estimate (810) follows from

(V(0h=Rpv), VX) = =(RaAv, x)n + (Av, X) = —en(RrAv, x) = ((Ry — I)Av, X)
S Ch||RpAv[[ [V + Ch|[VAv| [[x]] < Chlvls[[Vx]], for x € Sp.
To bound f3,, for nonsmooth data, we use Lemma BTl with p =1, ¢ = —1 to find
IVBall < Ckt 22| Pyl < Ckt o]

This completes the proof of the theorem. ([

We now turn to the Crank—Nicolson method, defined by

_ 1 1
(8.11) QU™+ A,U""2 =0, forn > 1, with U® =v),, U""2 =3U"+U"").

This method does not have as advantageous smoothing properties as the backward
Euler method, which is reflected in the following counterpart of Lemma BT1

Lemma 8.2. Let A and u be as in Lemma Bl and let U = {U"}>2 ) satisfy

_ 1

U™+ AU 2 =0, forn>1, withU°=v.
Then, forp=20,1, g =1,2, we have
(8.12) |AP/2(U™ — u(t,))|| < Ck?t;,; 2=D||AP/* ey |, forn > 1.

Proof. Here, as in the proof of Lemma B employing eigenvalue expansions, it
suffices to show, for F},(A) = r™(A) — e ™, with r(A) = (1 — $A)/(1 4 ), that

AYUF,(A\)| <Cn~ 9 for A\>0,n>1, ¢g=1,2.
For 0 < A <1 we have |r(\)| < e~} with ¢ > 0, and |r(\) — e~ *| < CA?, so that
AUE, V)| <CN e <On~ @9 for0<A<1,n>1, ¢g=1,2
For A > 1 we have |r()\)| < e~%*, with ¢ > 0, and hence
ATYF,(A)| < A%/ p ATl < 0~ forn>1,¢=1,2. O
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We now show optimal order error estimates, where this time we need to require
v € H* for the error bound to hold uniformly down to ¢ = 0. Because of the limited
smoothing in the Crank—Nicolson method, no error bound is given for v only in L.

Theorem 8.3. Let U be the solution of ®IIl), and u that of (LI). Then, with
q=1,2, we have

U™ —u(t,)]| < C(h* + k*; D) ulog, forn>1, if v, = Ryo.

Proof. With our new U™ we may again split the error as in (88]), and by Theorem
B 7, is bounded as desired. To bound S, it suffices, using the stability of E}}, =
r(k Ap), with r(k Ay) = (1 — 2k Ap)(1 + 1k Aj)7!, and Lemma B2 to find o),
such that

(8.13) |on — Rpv|| < Ch*|vlaq  and [|ALT|ln < C |v]ag.
For ¢ = 2 we may choose U, = —A; ' R, Av, because || A2 |, < Clv|s and
[oh = Rpv]| < OV (@ — Ruv)|| < Ch?Jula,
in which the latter inequality follows, using our definitions and Lemma 2.3 from
(V(0p—Rpv),Vx) = —(RrAv, X)n + (Av, x) = —en(RpAv, x) — ((Rr, — I)Av, x)
< Ch*|[VRy A |V x|l + Ch?[Avlz [[x]| < CR?Jola [[Vxl,  for x € Sh.
For ¢ = 1, (8I3)) is obviously satisfied with v, = Rpv, completing the proof. O
We now show corresponding error bounds for the gradient of the error.

Theorem 8.4. Let U be the solution of BI1l), and u that of (Ll). Then, for
q=1,2, we have

VU™ = u(t,)|| < C(h+ Et; D) |vlagi1, forn>1, if vy, = Rpv.

Proof. Again, by Theorem Bl 7, is bounded as desired. To estimate 3,,, we now
want to find v;, such that

(8.14) IV @ — Ruv)ll < Chlvlagsr and || A4/* Ty < Clolag.
For ¢ = 2 we choose vy, = A;QRhsz, and obtain
|45 %l = 1141 RuA?0]ln = |V (R A%0)| < Clols,
and the first part of (8I4) follows, with A, = x, from
(V(0h — Riv), Vx) = (RnA%0,9) — (R — 1)Av, x) — en(RpAv, x) — (A%, 1))
= e (RpA*v, ) — ((Ry, — I)Av, x) — en(RrAv, X)

+ (R — I)A%v,¢) < Chlvls||Vx|l, for x € Sh.

For ¢ = 1 we take, as in the proof of Theorem B2 v;, = —A,:thAv, recalling from

(B9) and (BI0) that (8I4) then holds. O

In order to produce optimal order convergence for initial data only in Lo, assum-
ing @y, appropriate, one may modify the Crank—Nicolson scheme by taking the first
two steps by the backward Euler method, which has a smoothing effect, to obtain
the following result. The proof is analogous to those of Theorems 8.1 and B3] and
uses the appropriate combination of Lemmas B and B2t cf. [7], Theorem 7.4.
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Theorem 8.5. Let U™ be the defined by 1) forn = 1,2, and by @II) forn > 3,
and let u be the solution of (LI). Then, if Qp satisfies (LIQ)), we have

U™ = u(t,)|| < C(R*t Y + K%t 2)||Jvll,  ifvp = Pyv,  forn > 1.

We remark that if the mesh ratio condition & < Ch? and the inverse assumption
Vx| < Ch=Y|x||, for x € Sp, hold, then the use of the two preliminary backward
Euler steps above is not needed, and also, since k%t ? <kt !, the error bound may
be written as ||U™ — u(t,)|| < Ch%t,; ||v|. In fact, under these assumptions, the
spectrum of kA, is bounded above and one easily shows that (8I2]) holds also with
g = 0, which implies our claim. Similarly, if instead & < Ch5/3, then the spectrum

of kAj, is bounded above by Ch~'/3, and one easily finds that one backward Euler

step suffices to show ||U™ — u(t,)| < Ch? 773/2||v||.
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