
Abstract

This thesis concerns describing the mechanical properties of the two dimen-
sional material graphene by continuum elasticity theory. In particular, Nano
ElectroMechanical Systems (NEMS) where part of the graphene sheet is
made suspended, are considered.

In the first paper, the motion of a suspended graphene sheet is used to
enhance the operation of a carbon nanotube field effect transistor. Here, the
suspended graphene is used as a top-gate, controlling the charge density on
the carbon nanotube channel. It is shown that the motion of the graphene
sheet increases the sensitivity of the charge density on the carbon nanotube
to the applied gate voltage.

A factor limiting the applicability of mechanical resonators in electron-
ics is damping of the mechanical motion. In an ongoing project, a specific
mode of dissipation, namely the coupling between the flexural motion of the
graphene sheet to phonons in the graphene and the underlying substrate, is
investigated on a theoretical basis. It is found that this mechanism gives rise
to both linear and amplitude dependent (nonlinear) damping.

In paper II, the rigidity of graphene toward bending is investigated in
collaboration with an experimental group at Gothenburg University. Here,
compressive strain was built up in the graphene membrane through thermal
cycling. Upon making the membrane suspended, the strain was released,
causing the graphene to buckle. This type of buckled structures display an
instability at a certain critical pressure. This critical pressure was then re-
lated to the bending rigidity of graphene. The bending rigidity was measured
both for bilayered and monolayered graphene, with the result κBi ≈ 30+20

−15eV
and κMono ≈ 7+4

−3 eV.
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Chapter 1

Introduction

Carbon is the basis for all life on earth. Indisputably, one of the reasons for
this is the remarkable diversity of the different forms of carbon, resulting from
the versatility of its chemical bonds. This allows for recycling the individual
carbon atoms within an organism; the same atom can, depending on how it
is bonded, be a part of the neurons firing while you are reading this thesis,
or of the muscle tissue in your fingers activated as you turn the pages. This
diversity is seen also in pure carbon, or carbon allotropes. As an example,
diamond is hard, transparent and insulating, while graphite is soft, opaque
and conducting.

In the past decades, the possibility to apply carbon to our ever increasing
technological demands have sparked a lot of interest. It has in particular
focussed on a few remarkable discoveries of carbon allotropes existing on the
nanoscale, starting with the so called ”Buckyballs” in 1985 [1], tiny balls of
carbon where the atoms are arranged in the same way as the patches of a
football. Single walled carbon nanotubes, tubes of carbon in the same char-
acteristic hexagonal, or ”honeycomb” lattice as the graphite planes, were
discovered in 1993 [2], although the tubular nature of carbon filaments was
known much earlier [3]. Carbon nanotubes have the clear advantage over
buckyballs that they can much more easily be connected to electrodes, sim-
plifying using them in electronic applications. The next major discovery was
made by Geim and Novoselov at Manchester University in 2004 [4], when they
successfully isolated and characterised graphene, a single layer of graphite.

All these variations of carbon on the nanoscale show an impressive diver-
sity of properties, but to fully exploit the possibilities of nanoscale carbon
it is clear that a fundamental understanding of the physics underlying these
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properties must be developed. This thesis concerns the mechanical proper-
ties of graphene, described using classical continuum elasticity theory. This
is the very same theory that underlies the equations of structural mechanics,
beams and plates. However, as will be shown in this thesis, when applied to
the two-dimensional material graphene, some interesting results arise.

1.1 Graphene

Graphene is a two-dimensional sheet of carbon atoms in a honeycomb struc-
ture (figure 1.1). In the original experiment of Geim and Novoselov, graphene
was isolated by repeatedly splitting stacked graphite layers by the use of
Scotch tape [4]. This method is still frequently in use, although much current
research is focussed on growing graphene chemically, to allow for industrial-
isation of graphene growth [5].

Figure 1.1: A: Schematic image of a graphene sheet, showing the car-
bon atoms arranged in a hexagonal lattice. B: The electronic spectrum of
graphene, showing the linear spectrum close to the Dirac point as an inset.
Image adapted from [6].

The properties of graphene differ significantly from conventional three-
dimensional materials. Chemically, the bonds are constructed by hybridising
two p-orbitals and one s-orbital (sp2-hybridisation). The resulting chemical
bond is referred to as a σ-bond, the most stable type of covalent bond. This
is responsible for the remarkably high tensile strength of graphene. The
remaining p-orbital may combine with free p-orbitals of neighboring carbon
atoms to form a π-bond. These bonds are in turn what determines the
electronic properties of graphene.

Among the most extraordinary features of the electronic properties of

3



graphene is its linear spectrum close to the Fermi energy,

E = ±~vFk,

with k measured from the so called Dirac point. The spectrum is conical with
edges at the six corners of the Brillouin zone of the hexagonal lattice (figure
1.1). Physically, this means that the velocity of the electrons, v = 1

~
∂E
∂k

= vF
is constant, independent of momentum, close to the Fermi energy. The Fermi
velocity in graphene is ∼ 106 m/s meaning that at short distances electrons
in graphene move like massless particles at about 1% of the speed of light. In
fact, the electrons in this region obey the massless Dirac equation, and are
therefore often referred to as massless Dirac fermions. At distances longer
than the mean free path of the electrons, the charge transport is diffusive with
reported electron mobilities up to 150000 cm2V−1s−1 at room temperature
[7, 8].

For a thorough overview of the electronic properties of graphene, the
reader is referred to the review by Castro Neto et al. [6].

1.2 Graphene and Nano ElectroMechanical

Systems (NEMS)

In recent years there has been considerable interest in combining the me-
chanical and electrical properties of carbon allotropes on the nanoscale in so
called Nano ElectroMechanical Systems (NEMS). A prototypal NEMS device
is depicted in figure 1.2. A graphene sheet is suspended over a trench, and is
actuated by applying a voltage to the gate below it. Nano electromechanical
systems are a miniaturised extension of the widely employed microelectrome-
chanical systems (MEMS) developed in the 1980s. There is a wide range of
enticing applications of carbon based NEMS, such as mass detectors with res-
olution reaching 10−21 g [9], nano electromechanical switches [10, 11], tunable
RF resonators [12, 13], memory devices [14] and transducers acuating and de-
tecting mechanical motion on the nanoscale [15]. Also, these structures pave
the way for experimental detection of quantised mechanical motion [16]. In
an article not included in this thesis, it is shown that carbon nanotube res-
onators coupled to a quantum dot in a so called single electron transistor
can display a parametric instability. Then, the mechanical response of the
resonator is large in a narrow frequency range. This could be used in filtering
applications [17].
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Figure 1.2: A prototypal graphene NEMS structure. A graphene sheet is
supended over a trench in the substrate. Mechanical motion of the graphene
is induced by applying a voltage to the gate below it.

Using graphene in NEMS has both advantages and drawbacks. The com-
bination of high tensile strength and low mass enables mechanical resonance
frequencies at the gigaherz scale [18]. The low mass and high electron mo-
bility also reduce energy consumption, which will increase importance with
increasing technological demands.

On the other hand, pure graphene lack the band gap of conventional
semiconductors. The conductivity of the graphene sheet can be tuned by
changing the charge concentration on it, just as in a regular semiconductor,
but unlike regular semiconductors the conductivity of graphene never quite
vanishes. This is a major drawback in applications where a low off-state
current is required, such as in logical applications. This can be circumvented
by for instance using bilayer graphene (two graphene sheets stacked on top
of each other) or two graphene sheets with a semiconducting material in
between [19]. In paper I of this thesis a different approach is used. The
charge channel is there a semiconducting carbon nanotube, which has the
desired band gap. The conductivity of the nanotube is then tuned by a
flexible top gate made of graphene. This is investigated in chapter 3.

In chapter 4 the concept of dissipation is introduced, and a specific mode
of dissipation, namely the coupling between out-of-plane and in-plane motion
of the graphene is analysed. In the last chapter, the rigidity of graphene
sheets to bending is investigated. Here, the instability of shallow shells under
external pressures is used to estimate the bending rigidity of bilayered and
monolayered graphene.
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1.3 Limitations of elasticity theory on graphene

The theory of elasticity has been used extensively the past centuries to de-
scribe the structural properties of solids. Still 250 years after its formula-
tion engineers use the Euler-Bernoulli equation to calculate the deflection of
loaded beams, and the Kirchoff-Love equations to estimate the vibrations of
plates.

Despite the enormous success of the theory, it is by no means obvious that
the classical theory is accurate in the two dimensional material graphene.
In fact, to lowest order in the free elastic energy graphene would inevitably
crumple and disintegrate, thus being highly unstable. Although this is solved
going to nonlinear terms in the free energy, the nonexistence of graphene
as a stable form of carbon in the standard linear formulation of elasticity
theory calls to question the validity of applying those equations to graphene.
Nonetheless, elasticity theory has proven to describe most of the mechanical
properties of graphene remarkably well.

It is worth noting, that it is in the rare cases where elasticity theory breaks
down that the new and exotic mechanical properties of the two-dimensional
membrane typically emerges, such as the negative thermal expansion coef-
ficient [20] or the non-vanishing bending rigidity, which will be discussed in
section 5. Despite the fact that some macroscopic properties of graphene can-
not be accurately derived from continuum elasticity theory alone, elasticity
theory is in many cases a useful framework for modeling graphene with the
macroscopic parameters as input. Furthermore, being able to describe the
mechanical properties of graphene using a simple set of equations immensely
simplifies the transition from scientific studies to commercial applications of
graphene. Charting the applicability space of elasticity theory on graphene
is therefore a very important field of study.
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Chapter 2

Elasticity theory

The aim of this section is to give a short review on the elasticity theory
used in the thesis. In the process, the equations of motion for a graphene
sheet under external forcing are derived. The discussion follows the book of
Landau and Lifshitz [21].

When an elastic body is deformed, the distance between points in the
body is changed. A measure of the deformation is then the difference between
the squared length element in the deformed body (dXI) and the undeformed
body (dxi)

dXIdXI − dxidxi =
∂XI

∂xj

∂XI

∂xk
dxjdxk − dxidxi =

(
∂XI

∂xj

∂XI

∂xk
− δjk

)
dxidxk

(2.1)
where summation over repeated indicies is implied. Defining the displacement
field as

uj = Xj − xj, (2.2)

the difference in length elements can be written as

dXIdXI − dxidxi =

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ul
∂xi

∂ul
∂xj

)
dxidxj = 2εijdxidxj. (2.3)

Here εij is the strain tensor,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ul
∂xi

∂ul
∂xj

)
. (2.4)

7



The free energy density for a deformed elastic body can, to lowest non-
vanishing order in the strain tensor, be written as

F =
λ

2
εiiεjj + µεijεij (2.5)

where λ and µ are known as the Lamé parameters of the material. The
internal stresses in the elastic body are given by the stress tensor,

σij =
∂F

∂εij
. (2.6)

This gives a linear relation between the strain and the stress in a material,
and it is a three dimensional generalisation of Hooke’s law.

In the following, we take the elastic body to be a two dimensional sheet
extended in the x-y plane. The strain tensor will then only have three com-
ponents, so the free energy expression takes the form

F =
λ

2
ε2ii + µε2ij =

(
λ

2
+ µ

)(
ε2xx + ε2yy

)
+ λεxxεyy + µε2xy, (2.7)

Denoting the displacement fields by

ux = u(x, y), uy = v(x, y), uz = w(x, y), (2.8)

the components of the strain tensor are, to lowest nonvanishing order in the
displacement fields,

εxx = ∂xu+
1

2
(∂xw)2,

εyy = ∂yv +
1

2
(∂yw)2,

εxy =
1

2
(∂yu+ ∂xv + ∂xw∂yw) . (2.9)

Higher order terms of the in-plane displacements have been omitted. This
approximation will be denoted the membrane approximation, and will be
investigated in chapter 4 on nonlinear dissipation in suspended graphene. As
an instructive example we make a further approximation for the moment,

∂xu = ∂yu = ∂xv = ∂yv = δ0. (2.10)
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This approximation is valid for suspended membranes with large, homoge-
neous initial strain δ0. In graphene, this strain is often rather large due to
stresses in the material during the mechanical exfoliation procedure. This
approximation is referred to as the out-of-plane approximation, as the in-
plane displacements are assumed to be void of dynamics. The free energy
density becomes

F =

(
λ

2
+ µ

)(
2δ2

0 + δ0

(
(∂xw)2 + (∂yw)2

)
+

1

4
(∂xw)4 +

1

4
(∂yw)4

)
+ λ

(
δ2

0 +
δ0

2

(
(∂xw)2 + (∂yw)2

)
+

1

4
(∂xw)2(∂yw)2

)
+ µ

(
δ2

0 + δ0∂xw∂yw +
1

4
(∂xw∂yw)2

)
. (2.11)

The Lagrangian density of this system is therefore given by

L = ρ
ẇ2

2
− F. (2.12)

Applying the Euler-Lagrange equations on the Lagrangian, using the free en-
ergy given by (2.11) results in the equation of motion for suspended graphene
sheets in the current approximation,

ρẅ − T0∇2w − T1∂x
(
(∂xw)|∇w|2

)
− T1∂y

(
(∂yw)|∇w|2

)
= f(x, y, t) (2.13)

where T1 = λ+2µ is a construction from the Lamé parameters, T0 = T1δ0, and
f(x, y, t) is an applied force density. We note that the linear wave equation
is recovered for T0 � T1. In most applications however, T0 is much smaller
than T1, meaning that the response of a suspended graphene sheet is highly
nonlinear. The type of this nonlinearity is more transparent when looking
at the dynamics of a single mode of the graphene sheet. We assume that
only one mode is excited and write w(x, y, t) = q(t)φ(x, y), with φ(x, y)
normalised to the area of the suspended sheet,

∫
dxdyφ(x, y)2 = A. The

equation of motion then transforms to

q̈ +
T0

ρA
q

∫
dxdy(∇φ)2 +

T1

ρA
q3

∫
dxdy (∇φ)4 =

1

ρA

∫
dxdyf(x, y, t)φ.

(2.14)
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The qubic nonlinearity in the mode amplitude q is the hallmark of the Duffing
oscillator. The resonance frequency is given by

ω0 =

√
T0

ρA

(∫
dxdy(∇φ)2

)1/2

(2.15)

and the Duffing parameter given by

α =
T1

ρA

∫
dxdy (∇φ)4 . (2.16)

In this model, the importance of nonlinearities in the response of graphene
is determined on one hand by the ratio between the initial tension of the
sheet and the intrinsic tensile strength, T0

T1
, and on the other on the ratio

of the overlap integrals of the excited mode, which is a purely geometrical
factor. An important feature of the Duffing equation is that the resonance
frequency is changed when the displacement of the membrane increases. This
is most easily seen by linearising the equation around a static equilibrium,
q = q0 + δq. The linearised equation then becomes

δ̈q +
(
ω2

0 + 3αq2
0

)
δq =

1

ρA

∫
dxdyf(x, y, t)φ. (2.17)

The resonance shift is therefore given by

δω2 = 3αq2
0. (2.18)

A more general mode expansion, w(x, t) = q0φ0(x, y) +
∑
qn(t)φn(x, y)

gives the result

q̈n+ω2
nqn+3

∑
i,j

qiqjI1(i, j, n)+
∑
i,j,k

qiqjqkI2(i, j, k, n) =
1

ρA

∫
dxdyf(x, y, t)φn(x, y)

(2.19)
where ωn is the frequency of the n-th mode, and I1 and I2 are overlap integrals
given by

I1(i, j, n) =
q0

ρA

∫
Ω

(∇φ0) · (∇φn) (∇φi) · (∇φj) dΩ

I2(i, j, k, n) =
1

ρA

∫
Ω

(∇φk) · (∇φn) (∇φi) · (∇φj) dΩ (2.20)

The overlap integrals couple the vibrational modes of the graphene sheet; if
the coupling constants are nonzero, exciting one mode will inevitably excite
other vibrational modes, effectively acting as a mode of dissipation. Other
modes of dissipation with the same structure will be discussed in chapter 4.
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Chapter 3

Modeling of graphene dynamics

In this chapter, the simplified equation of motion (2.13) derived in the previ-
ous chapter is investigated both analytically and numerically. Furthermore,
the mechanical properties are coupled to the electrical properties of graphene,
resulting in a simple model for a suspended graphene transistor.

The system at hand is depicted in figure 1.2. A graphene sheet is sus-
pended between two electrodes, source and drain, over a back gate. When
a voltage is applied to the back gate, the resulting electric field between the
back gate and the suspended graphene sheet causes charge to accumulate
on both surfaces, much as in a regular capacitor. This charge accumulation
generates a force between the gate and the graphene, which in turn causes
the graphene sheet to move.

As a first approximation, consider two static, parallel plates separated by
a distance d. The voltages on the two plates are ±V/2, respectively. The
electric field between the plates is homogeneous and given by Ez = V

d
. From

Gauss law it follows that the charge on the plates are given by Q = ±ε0AVd .
The proportionality constant between the charges and the applied voltage is
called the capacitance of the system. The force between the plates is given
by the gradient of the electrostatic energy,

F = −∇U =
1

2
∇V Q =

1

2

∂C

∂z
V 2ẑ. (3.1)

Note that taking the voltage V to be oscillating with frequency ω, the force
oscillates at the double frequency, 2ω. The reason for this is that reversing
the sign of the voltage does not reverse the sign of the force; the opposing
charges on the two plates will still attract.
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The equation of motion of the suspended graphene under the influence of a
time dependent voltage on the back gate will therefore, in this approximation,
be

q̈n+ω2
nqn+3

∑
i,j

qiqjI1(i, j, n)+
∑
i,j,k

qiqjqkI2(i, j, k, n) =
1

ρA

ε0
2d2

V (t)2

∫
dxdyφn

(3.2)
The effect of this force acting on the graphene sheet will be that the

graphene sheet starts to oscillate. However, when the graphene moves, the
distance separating the graphene and the back gate will change, effectively
changing the force acting on the graphene. To estimate this effect, consider
a voltage signal consisting of a static part and a time varying part,
V (t) = Vdc + Vac(t), Vdc � Vac. To a first approximation the force would be
given by

F [x, y, t, w] =
ε0

2(d− w)2
(Vdc + Vac(t))

2, (3.3)

where w is the deviation from the equilibrium position of the graphene sheet.
This force can be expanded in a Taylor series,

F [x, y, t, w] =
ε0

2d2
(Vdc + Vac(t))

2
∑
n

n
(w
d

)n−1

. (3.4)

Considering only the first two terms in this expansion, the equation of motion
becomes

q̈n +

(
ω2
n −

ε0
ρAd3

V 2
dc

∫
dxdyφn(x, y)

)
qn+

3
∑
i,j

qiqjI1(i, j, n) +
∑
i,j,k

qiqjqkI2(i, j, k, n) =

ε0
2ρAd2

(
V 2
dc + 2VacVdc

) ∫
dxdyφn(x, y) (3.5)

which implies that, to lowest order in the deflection q0, the resonance fre-
quency of each mode is reduced by the amount

δω2
el =

ε0
ρAd3

V 2
dc

∫
dxdyφn(x, y) (3.6)

as a consequence of the electrostatic interaction between the graphene and
the back gate. At the same time, from the single mode expansion (2.17)
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it is clear that the mechanical nonlinearities gives a renaormalisation of the
frequency according to δω2

mech = 3αq2
0. It is worth noting, that when ω2

0 −
δω2

el + δω2
mech < 0 where ω0 is the frequency of the fundamental mode, the

structure is unstable and the graphene sheet will ”snap in” to the back gate.
The critical point is readily estimated within the single mode approx-

imation, w = (q0 + δq(t))φ(x, y). Here, q0 is the equilibrium deformation
resulting from the DC bias voltage and is given by solving the static equa-
tion of motion.

Let φ(x, y) =
√

2 cos(πx/l) be the fundamental mode for a doubly clamped
nanoribbon. Then, the resonance frequency is given by (2.15),

ω0 =
π

l

√
T0

ρ
(3.7)

and the Duffing parameter

α =
π4

l5
T1

ρ
. (3.8)

The equation for the static bias point then becomes

ω2
0q0 + αq3

0 =
√

2ε0
V 2
dc

ρA(d− q0)2
(3.9)

At the instability, the change in displacement due to a change in voltage
diverges, i.e.

∂q0

∂Vdc
→∞ (3.10)

which gives the condition

0 = ω2
0d− 3ω2

0q0 + 3αdq2
0 − 5αq3

0 (3.11)

so in the absence of a Duffing nonlinearity, the sheet will snap in at q0 = d/3.
Adding the Duffing nonlinearity stabilises the sheet slightly, and for a strictly
nonlinear sheet the snap in occurs at q0 = 3d/5.

It should be noted that the above considerations are based on crude
simplifications, and a more sophisticated analysis of the governing equations
requires a numerical treatment. To resolve this issue, we divide the graphene
into a triangular mesh. The charge density on each triangle is found by
solving Maxwells equations using the Boundary Element Method (BEM).
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The position of the sheet is then found by solving the equation of motion
iteratively. In figure 3.1, the numerically extracted resonance frequency is
shown as a function of bias voltage for a resonator of length l = 1µm, width
w = 1µm, T0

T1
= 10−3 and gate distance d = 400nm. The slight decrease in

resonance frequency for small values of the bias voltage is due to the electric
softening δω2

el, while the subsequent increase is a result of the mechanical
stiffening δω2

mech.

Figure 3.1: The resonance frequency of a suspended graphene sheet with pa-
rameters defined in the text, as a function of the bias voltage. The resonance
frequency initially decreases slightly as a result of the electronic softening,
but then increases again due to the mechanical stiffening of sheets under
tension. For even higher frequencies, the electronic softening is expected to
again prevail causing the sheet to snap-in to the substrate.
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3.1 CNTFET with suspended graphene gate

Adding to the structure described so far a semiconducting carbon nanotube
(CNT) between the graphene and the back gate, we have a field effect tran-
sistor (FET) with a flexible top gate (figure 3.2). This structure was realised
and studied experimentally by Svensson et al. By changing the voltages on
the back gate and the graphene top gate, the carrier density induced by the
two gates, and with it the conductance, of the carbon nanotube is altered.
The flexibility of the graphene top gate can easily be shown to increase the
response of the device to an applied voltage: the charge induced on the CNT
by a change of voltage on the top gate is

δQCNT = δ(CggVgg) = CggδVgg + VggδCgg, (3.12)

where Cgg is the capacitance between the CNT and the graphene gate, and
Vgg is the voltage on the top gate. However, the capacitance depends on the
position of the graphene, which in turn depends on the voltage, so

δQCNT = δVgg

(
Cgg +

δCgg
δu

δu

δVgg

)
, (3.13)

which is to be compared with the case of a static gate,

Qstatic
CNT = CggδVgg. (3.14)

It is worth noting that the capacitance between the graphene gate and the
back gate is neglected in this analysis.

3.1.1 Subthreshold slope

As a figure of merit of the structure we study the subthreshold slope (S−1),

S−1 =
∂lg
(
Id
I0

)
∂Vgg

, (3.15)

which is a measure of the variation of current due to a variation of the
gate voltage. The logarithm is taken in base 10. Treating the system as a
capacitive network, we have for the charge Q on the CNT-channel,

Q = Cgg(ξ(Q)/e− Vgg) +Cbg(φ(Q)− Vbg)⇒ φ(Q)− Q

CP =
VggCgg + VbgCbg

CP ,

(3.16)
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Figure 3.2: A Carbon NanoTube Field Effect Transistor (CNTFET) can
be realised by adding to the prototypal NEMS structure a semiconducting
nanotube. The graphene sheet is then used as a top gate. The flexibility of
the top gate can be shown to enhance the switching of the transistor.

where Cgg (Cbg) is the graphene gate capacitance (backgate capacitance), Vgg
(Vbg) is the graphene gate voltage (backgate voltage), CP = Cgg + Cbg + Cp
where Cp is the parasitic capacitance and ξ(Q) is the chemical potential of
the CNT.

Since the switching of the transistor occurs when the charge of the nan-
otube is depleted, the above expression is analysed in the limit of very small
accumulated charge on the CNT. In this limit, we find that

Q = Q0e
(eφ−E0)/kT (3.17)

which is inverted to find the potential as a function of the charge,

φ(Q) =
kT

e
log

(
Q

Q0

)
+ E0. (3.18)

Inserting this into equation (3.16), we have in the limit Q� Q0 that

kT

e
log

(
Q

Q0

)
=
VggCgg + VbgCbg

CP . (3.19)

Assuming that the current is proportional to the carrier concentration, we
find for the subthreshold slope,

S−1 =
e

kT log(10)

∂

∂Vgg

[
CggVgg + CbgVbg

CP
]
. (3.20)
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Treating Cgg as a function of graphene voltage Vgg, this simplifies to

log(10)kT

e
S−1 =

Cgg
CP

(
1 +

C ′ggCbg

CggCP
(

∆V + Vgg
Cp
Cbg

))
, (3.21)

where ∆V = Vgg − Vbg is the voltage difference between the graphene gate

and the backgate, and C ′gg = ∂Cgg

∂Vgg
. The first term in the above expression

gives the STS of the static gate transistor, while the second term summarises
the effect of the non-static gate. First, we note that since the graphene
gate capacitance Cgg will increase when the graphene sheet is deflected, the
second term will always be positive, meaning that the subthreshold slope will
always be larger for a non-static gate transistor as compared to a static gate
transistor. Second, the first term is bounded by Cgg

CP < 1. The case where

Cg = CP is known as the thermal limit for the STS for a static transistor,
giving a value of 60 mV/dec at room temperature. In the following, we will
show that the moving gate transistor allows for STS even higher than this
limit.

In paper I, (3.21) is analysed assuming a gate deflection on the form

u = u1∆V α, (3.22)

where u1 depends on the initial tension. For a completely linear graphene
sheet, α = 2 for deflections that are negligible compared to the distance
between the graphene and the backgate. Mechanical nonlinearites cause α
to decrease, so for small deflections we can assume α . 2. Then,

C ′gg =
∂Cgg
∂u

∂u

∂Vgg
=

αu

∆V

∂Cgg
∂u

. (3.23)

From elementary electromagnetics we have for the capacitance per unit
length between a cylinder and a plate

C =
2πε

log
(

4h
d

) , (3.24)

where h is the distance between the plate and the cylinder, d is the diameter
of the cylinder, while ε is the dielectric constant of the surrounding medium.
Thus the above relation is a function of the gate deflection u; however for a
given geometry and back gate bias, the switching of the transistor will occur
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at a specific gate voltage, and hence at a specific gate deflection. To find this
deflection, we note that at the switching, the following condition holds to a
good approximation,

VggCgg + VbgCbg = 0. (3.25)

From this we infer that

∆V =
|Vbg|(Cgg + Cbg)

Cgg
. (3.26)

This analysis finally gives the following relation,

kT

e
S−1 =

Cgg
CP

(
1 +

C ′gg∆V

Cgg (1 + Cgg/Cbg)

)
. (3.27)

Now, using equation (3.24) and (3.22) we can rewrite this as

kT

e
S−1 =

Cgg
CP

(
1 +

Cggαu

2πε(h− u)(1 + Cgg/Cbg)

)
, (3.28)

where h is the suspension height of the graphene sheet over the CNT. This
analysis leaves two fitting parameters; the parasitic capacitance Cp and the
parameter u1. In figure(3.3), STS is plotted for some different values of u1 as
a function of suspension height. The experimentally obtained point is marked
with a dot. The horizontal dashed line is the thermal limit of S−1. We note
that the suspension height necessary for beating the thermal limit increases
with increasing values of u1 (equivalent to decreasing T0). The dashed curve
is the subthreshold slope in the limit of infinite initial tension in the graphene,
corresponding to a static graphene gate. Also included in the figure are iso-
deflection curves; i.e curves which obey ∂S

∂(u/h)
= 0. The intersection of these

dotted curves with the inverse S curves gives the ratio of the deflection of the
suspended graphene with the distance between graphene and CNT. What we
infer from this is that at the thermal limit, the graphene sheet will have a
very large deflection, typically more than 80% of the graphene-CNT distance.
However, as derived in the previous section, when the graphene deflects more
than roughly 60% of the graphene-CNT distance, the electrostatic forces will
overcome the elastic forces acting on the graphene sheet, and the graphene
will snap-in to the dielectric, rendering the device useless. Following the 60%
iso-deflection curve we find that to beat the thermal limit before snapping
in to the surface at the experimental level of parasitic capacitance, a static
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Figure 3.3: The subthreshold slope as a function of the CNT-Graphene gate
distance, for various values of u1. Upper figure: With parasitic capacitances
fitted to the experimental data. In order to avoid snap-in at the thermal limit,
the suspension height cannot be larger than 3 nm. Lower figure: Without
inclusion of parasitic capacitance. Now, the suspension height can be
∼ 10 nm without snapping in at the thermal limit.

graphene-CNT distance of a mere 3 nm would be required, and an initial
tension of the graphene T0/T1 ≈ 0.45%.

Removing the parasitic capacitance completely slightly alleviates the re-
quirement on the suspension height, although the suspension height still
needs to be < 20 nm to beat the thermal limit.
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It is worth noting that this analysis does not take into account that close
to the snap-in instability, the derivative of the graphene-nanotube capaci-
tance, Cgg, grows rapidly. As a consequence, the subthreshold slope will
always tend to zero at the snap-in. However, utilising this particular effect
in an actual transistor is not very realistic, since the snap-in instability is ir-
reversible. Once the graphene snaps into the subrate, it is stuck. Therefore,
it is not expected that solving the full equation for the static deformation of
the graphene will give any considerable contributions to the analysis.

We note as a general feature of this kind of system, there is a balance
between wanting the graphene sheet to respond heavily to an applied volt-
age, and at the same time avoiding snap-in to the subrate. This balance is
reflected in the existance of an optimal value of the parameter T0: increasing
the initial tension from this value, the suspension height required to reach
the thermal limit will increase. Decreasing the inital tension, the sheet will
always snap-in to the substrate before reaching the thermal limit.
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Chapter 4

Modes of dissipation in
suspended graphene resonators

The elastodynamic considerations of the preceding section did not adress
the issue of dissipation. This is often accounted for by including a phe-
nomenological damping coeffiecient in the equations of motion. While this
procedure is sufficient for most modelling purposes, in order to give quantita-
tive predictions on the impact of dissipation in a system, a more fundamental
microscopic model is needed.

In the past, several modes of dissipation have been investigated [22, 23,
24, 25]. In general, dissipation can be described through the interaction of
the system with an external bath of oscillators.

The interaction allows for energy to be transferred between the system
and the bath. The same process that is responsible for transferring energy
from the system to the bath, will also result in thermal fluctuations in the
bath that transfer energy to the system. In thermal equilibrium, the rate of
energy transfer from the system to the bath and from the bath to the system
must be equal. There is no net energy flow. This gives a relation between
the thermal fluctuations and the dissipation in a system. This notion is
formalised in the fluctuation-dissipation theorem [26].

It is important to note that if energy is transferred to the system exter-
nally, i.e. if the system is driven by some external force, there is no need for
the system and the bath to be in thermal equilibrium. Then, energy may be
transferred from the system to the bath at a higher rate than from the bath
to the system.

In an ongoing project, the system is taken to be the out-of-plane mo-
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tion of the graphene, while the bath is the in-plane motion of the graphene
coupled to the phononic bath in the substrate beneath the graphene. The
coupling between the out-of-plane motion and the in-plane motion give rise
to dissipation, as is shown in the subsequent section.

4.1 Damping due to mechanical nonlineari-

ties

Consider an infinite graphene sheet, free to displace vertically in a region of
length l, otherwise perfectly clamped vertically (see figure 4.1). The in-plane
motion of the sheet is coupled harmonically to a substrate with coupling
parameter Λ. The graphene is treated as a quasi-1D structure, i.e. the
graphene is assumed to be static in the y-direction. In that case, the elastic
free energy density of the graphene in the membrane approximation defined
in chapter 2 is given by (2.7)

F = T0w
2
x +

T1

2

(
u2
x + uxw

2
x + w4

x/4
)

+
Λ(x)

2
(u− sΩ)2 + f(x, t)w. (4.1)

where T1 = 2µ + λ is a linear combination of the Lamé parameters, T0 is
the initial tension of the graphene, sΩ is the displacement field in x-direction
at the surface of the substrate and f(x, t) is an externally applied pressure.
The spatial dependence of the coupling constant reflects that the coupling
vanishes in the suspended region.

It is worth noticing that in this model, the graphene is attached to a three-
dimensional elastic medium. The medium extends throughout the entire half-
space beneath the sheet. This will over-estimate the rigidity of the substrate.

From the Euler-Lagrange equations the following equations of motion for
the in-plane and out-of-plane motion are derived,

ρGü−T1uxx =
T1

2
∂x
(
w2
x

)
+ Λ(x)(u− sΩ)

ρGẅ =T0wxx +
T1

2
∂x
[(

2ux + w2
x

)
wx
]

+ f(x, t). (4.2)

Writing w(x, t) = q(t)φ(x) where φ(x) has support only in the suspended

region and
∫ l/2
−l/2 φ(x)2 = l where l is the length of the suspended region and
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Figure 4.1: Schematic image of a suspended graphene sheet. Note that in
the model used in this thesis, the trench enters only as a region of vanishing
coupling between the graphene and the underlying substrate

writing f(x, t) = f0 cos(ωt), the last of these equations transforms to

q̈ + ω2
0q + α0q

3 +
T1

ρGl
q〈uxφ2

x〉 =
f0 cos(ωt)

ρGl
〈φ〉 (4.3)

where 〈fg〉 is shorthand for
∫ l/2
−l/2 dxf(x)g(x)∗, and ω0 and α0 are the reso-

nance frequency and the Duffing parameter, respectively, as given in chapter
2. The effect of coupling to the in-plane motion is completely contained in
the overlap 〈uxφ2

x〉. To find this overlap integral, we turn to the in-plane
motion.

Since the coupling parameter Λ(x) has support only in the nonsuspended
part of the graphene, the equation of motion for the in-plane motion in the
suspended region is

ü− T1

ρG
uxx =

T1

2ρG
q(t)2∂x

(
φ2
x

)
. (4.4)

Note that this is the wave equation with a source term T1

2
∂x (w2

x). The
in-plane motion can therefore be written in terms of a response function,

u(x, t) =
T1

2ρG

∫
dx′dt′R(x, x′, t− t′)q(t′)2∂x

(
φx(x

′, t′)2
)

(4.5)
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The form of the response function R(x, x′, t − t′) is determined by the
interaction with the substrate. For external forces that are periodic with
frequencies ω close to ω0, the response of the out-of-plane amplitude is written
as

q(t) = q0 +
1

2

(
q1(t)eiωt + q1(t)∗e−iωt

)
; q̇ =

iω

2

(
q1(t)eiωt − q1(t)∗e−iωt

)
(4.6)

where q0 is the static response and q1 is a slowly varying function of time.
At this point, it is worth considering the length and time scales involved in
the problem. Disregarding the graphene-substrate coupling for a moment,

the wavelength of the emitted in-plane phonons will be λ ∼ cG
2πω

= l
√

T1

T0
,

where cG ≡
√
T1/ρG is the sound velocity of graphene. Since T1

T0
∼ 10−3

for typical graphene sheets fabricated by exfoliation, the phonon wavelength
will be of the order 10 − 100µm for a suspension length of 1µm, which is
typically larger than the entire graphene sheet. The propagation time for
such a phonon across the suspended region is similarly much shorter than
the period of oscillation for the out-of-plane motion. Then, the slowly varying
q1 can be pulled out of the time integral, resulting in

u(x, t) =
c2
G

2

[(
(q2

0 +
|q1|2

2

)∫
dx′dt′R(x, x′, t− t′)∂x

(
φx(x

′)2
)

+

q0q1e
iωt

∫
dx′dt′R(x, x′, t− t′)eiω(t′−t)∂x

(
φx(x

′)2
)

+

q2
1

4
e2iωt

∫
dx′dt′R(x, x′, t− t′)e2iω(t′−t)∂x

(
φx(x

′)2
)]

+ c.c. (4.7)

Note that the time integrals in the expression above can be expressed as
Fourier transforms of the response function R̃(x, x′,Ω). Each of the integrals
correspond to a specific frequency component of the in-plane motion. Writing
u(x, t) = u0+1

2
(uω(x, t)eiωt + u∗ω(x, t)e−iωt)+1

2
(u2ω(x, t)e2iωt + u∗2ω(x, t)e−2iωt)

these different components are given by

u0(x, t) =
c2
G

2

(
q2

0 +
|q1|2

2

)
ϕ(x, 0)

uω(x, t) =c2
Gq0q1(t)ϕ(x,−ω)

u2ω(x, t) =c2
G

q2
1(t)

4
ϕ(x,−2ω), (4.8)

24



where ϕ(x,−Ω) ≡
∫
dx′R̃(x, x′,−Ω)∂x (φx(x

′)2). Inserting these expressions
into the equation for the out-of-plane motion and averaging the equation over
one period, the equation becomes,

iωq̇1 +
1

2

(
ω2

0 − ω2 + 3αq2
0

)
q1 +

3

8
α0|q1|2q1 +

c4
G

2l
q2

0q1〈ϕx(x,−ω)φ2
x〉+

c4
G

4l
q1

(
q2

0 +
|q1|2

2

)
〈ϕx(x, 0)φ2

x〉+

c4
G

4l

|q1|2q1

4
〈ϕx(x,−2ω)φ2

x〉 =
f0

2ρGl
〈φ〉. (4.9)

Depending on the form of the response function R(x, x′, t−t′), the overlap
integrals will have both real and imaginary parts. The real parts will renor-
malise the resonance frequency and Duffing parameter, while the imaginary
parts correspond to dissipation. The term containing ϕ(x, ω) is linear in the
out-of-plane amplitude, and corresponds to a linear viscous damping. On the
other hand, the term containing ϕ(x, 2ω) multiplies q1|q1|2 and corresponds
to an amplitude dependent, or nonlinear, damping. The importance of this
damping is determined partly by the ratio between the nonlinear damping
and the linear damping, and partly by the ratio between the nonlinear damp-
ing and the Duffing parameter. To separate the terms, the following notation
is introduced,

γ =
c4
G

l
q2

0Im{〈ϕx(x,−ω)φ2
x〉}

η =
c4
G

2l
Im{〈ϕx(x,−2ω)φ2

x〉}

3

8
α̃ =

3

8
α +

c4
G

8l
Re
{

2〈ϕx(x, 0)φ2
x〉+ 〈ϕx(x,−2ω)φ2

x〉
}

ω̃2
0 =ω2

0 +

(
3α +

c4
G

4l
〈ϕx(x, 0)φ2

x〉+
c4
G

2l
Re
{
〈ϕx(x,−ω)φ2

x〉
})

q2
0. (4.10)

The equation of motion can then be written

iωq̇1 +
1

2

(
ω̃2

0 − ω2
)
q1 +

3

8
α̃|q1|2q1 + i

1

2
γq1 + i

1

8
η|q1|2q1 =

f0

2ρGl
〈φ〉. (4.11)

Following Dykman [27], the following dimensionless quantities are inves-
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tigated,

δ =
η|q1|2

4γ
=

Im {〈ϕx(x,−2ω)φ2
x〉} |q1|2

Im {〈ϕx(x,−ω)φ2
x〉} q2

0

η̃ =
ηω

α̃
. (4.12)

The first of the dimensionless quantities measures the relative magnitude
of the linear and nonlinear damping. This is determined by the ratio of the
overlap integrals, which is a purely geometrical quantity, and the ratio be-
tween the vibrational amplitude and the static deformation of the graphene
sheet. For a small static deformation, it is therefore expected that the non-
linear damping dominates the dissipation caused by this mechanism. The
second quantity measures the relative importance of the two nonlinearities
in the equation. For η <

√
3, the well-known bifurcation of the Duffing equa-

tion is present, while for η >
√

3 this bifurcation vanishes [27]. This is a
purely geometrical factor, apart from the weak dependence of ω on the static
deformation of the graphene.

As a measure of the total dissipation due to this mechanism, we consider
the quality factor, defined as

Q =
ωĒ

¯̇E
, (4.13)

where Ē is the energy of the subsystem of interest, averaged over one period.
Here, the concern is the damping of the out-of-plane motion. The energy E
is consequently the part of the energy of the graphene related to the out-of-
plane motion,

E = ρ
ẇ2

2
+ T0w

2
x +

T1

2

(
uxw

2
x +

w4
x

4

)
. (4.14)

Inserting the expressions for u and w derived above and performing the
averaging, the expression for the quality factor becomes

Q−1 =
4γ + η|q1|2

4
(
ω2 + 3

16
α|q1|2

) (4.15)

To evaluate these dimensionless quantities, we need to consider the cou-
pling to the substrate explicitly. The equation for the substrate will be [28]

ρS
∂2

∂t2
~s = µ~∇2~s+ (µ+ λ)~∇~∇~s = 0 (4.16)
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The boundary condition is that the stress at the surface of the sub-
strate must compensate for the stress induces by the in-plane motion of
the graphene,

σxz|z=0 = Λ (u− sΩ) . (4.17)

Since the equation for the substrate is linear, the response of the substrate
at the surface can be given in terms of a linear response function Mxx,

sΩ(~x, z = 0, ω) = −
∫
d2x′Mxx(~x− ~x′, ω)σxz

(
~x′, z = 0, ω

)
. (4.18)

In a quasi-1D geometry, the y-integration can be performed as a partial
Fourier transform, resulting in

sΩ(x, ky, z = 0, ω) = −
∫
dx′Mxx(x−x′, ky, ω)Λ(x′) (u(x′, ω)− sΩ(x′, ky, ω)) ,

(4.19)
where σxz is replaced by Λ(x) (u(x, ω)− sΩ (x′, ky, ω) . It is sufficient to con-
sider ky = 0, so this will be supressed in the following. Discretising the
graphene sheet in the x-direction, this can be written as

sΩ(xj) = −
∑
i

∫ xi+h/2

xi−h/2
dx′Mxx(xj − x′, ω)Λ(xi)(u(xi, ω)− sω(xi, ω))

≡ −
∑
i

Rij(ω)Λ(xi)(u(xi, ω)− sω(xi, ω)) (4.20)

This is still an implicit expression for sΩ. Introducing the matrices R and
K with components Rji(ω)and Kji(ω) = Λ(xi)(ω)δij and rearranging, one
finds

K (u− s) = [I−KR]−1 Ku (4.21)

This result is inserted into the equation for the in-plane motion of the
graphene,

−ω2u− c2Lu +
1

ρ
[I−KR]−1 Ku = F(ω) , (4.22)

where F represents the discretised and Fourier transformed source term of
(4.2), and L is the discretised version of the second derivative operator. Tak-
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ing the response function from [29, 30],

Mxx(kx, ky, ω) =− i

ρSc2
Tk

2

[
p2(ω, k)k2

x

(ω2/c2
T − 2k2)

2
+ 4k2p1(ω, k)p2(ω, k)

+
k2
y

p2(ω, k)

]
;

p1(ω, k) =sign(ω)

√
ω2

c2
L

+ sign(ω)iε− k2

p2(ω, k) =sign(ω)

√
ω2

c2
T

+ sign(ω)iε− k2, (4.23)

where cT and cL are the transverse and longitudinal sound velocities of the
substrate, this equation is solved numerically.

To evaluate the quality factor, the static displacement and the amplitude
of vibrations must also be calculated. The out-of-plane motion is projected
onto the fundamental mode of the resonator, φ(x) =

√
2 cos

(
πx
l

)
. The static

displacement q0 is calculated as a function of the applied static bias voltage
Vdc in the same approximation as in chapter 3, assuming a parallel plate
capacitance between the back gate and the graphene. The response of the
substrate is ignored in this approximation. The static displacement is then
given by

q0 =
√

2
εl2V 2

dc

π3T0d2
(4.24)

To find the amplitude of the vibrational motion, the following dimension-
less variables

f̃ =
f

ω3

√
α

ρ2
G

; |q̃1| = q1

√
α

ω2
(4.25)

are introduced, where f is the amplitude of the oscillating force, projected
onto the fundamental mode shape. Then, following [31], the amplitude of
the vibrational motion of the Duffing oscillator is given by the relation

f̃ = |q̃1|
(
4γ/ω + |q̃1|2

)
(4.26)

This analysis enables the calculation of η, γ and Q. In the following, a
graphene sheet of suspended length 1 µm and initial tension T0 = 0.34 N/m=
10−3T1 on top of a SiO2 substrate is considered. The coupling parameter Λ is
taken from the literature to be Λ = 1020 N/m3 [32], and the distance to the
back-gate is d = 330nm. Furthermore, the total length of the graphene sheet
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Figure 4.2: The quality factor Q as a function of bias voltage Vdc. The quality
factor is evaluated for Vac = 10µV (blue line), Vac = 100µV (black line) and
Vac = 1mV (green line).

is taken to be 3µm. For this particular geometry, the values η̃ = 0.19 and δ =
0.42 is obtained. Thus, nonlinear damping is not strong enough to obliterate
the Duffing bistability. In fact, η̃ <

√
3 in all conducted simulations.

In figure 4.2, the quality factor Q is plotted as a function of Vdc for
three values of the driving voltage Vac at the vibrational resonance of the
graphene resonator. There is a clear kink in the quality factor, signifying
the transition from nonlinear to linear damping dominated regimes. The
dependence of the quality factor on the bias voltage is qualitatively different
in the two regimes, something that could be used for experimental verification
of nonlinear damping. Another signifying feature of the nonlinear damping
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regime is that the quality factor in this regime depends on the alternating
voltage, while it is independent of alternating voltage in the linear regime.

For this particular geometry, the nonlinear damping will dominate for
bias voltages Vdc . 10 V. The resulting quality factor lies in the range 104-
106, similar in magnitude to those reported in experiments of Q ∼ 105 [18].
The coupling between the flexural motion of the graphene sheet and the
in-plane motion may therefore be a contributing mechanism for dissipation,
and may give rise to measurable nonlinear dissipation for small bias voltages.
However, this mechanism alone will not remove the Duffing bistability.
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Chapter 5

Bending rigidity of graphene

In all previous models in this thesis, the energy cost of bending the graphene
sheet has been disregarded. This is often a valid approximation, particularly
when the sheet is under tension. At Gothenburg University, devices have
been fabricated where compressive strain is used to engineer the shape of
the suspended graphene sheet. The compressive strain is achieved through
thermal cycling before making the graphene suspended. After making the
graphene suspended, the compressive strain is released and the graphene
buckles. The interaction with the electrodes breaks the spatial symmetry of
the buckling, causing the graphene to buckle toward the electrodes. This
way, the graphene buckles can be assessed electrostatically (figure 5.1). In
these prebuckled structures, the response to an applied pressure is deter-
mined by the relative balance between bending and stretching energy. As a
consequence, the bending rigidity of the graphene can no longer be neglected.
Since the bending rigidity has a very limited effect on the mechanical prop-
erties of graphene in most structures, the numerical value of this parameter
is much less established than the elastic stiffness of graphene. In the present
case, the response of the sheet will be determined by the relative balance
of the elastic stiffness and bending rigidity. Hence, these structures give us
a unique opportunity to measure the bending rigidity directly. Before de-
scribing the details of the measurements, I give a brief review on the current
status of the bending rigidity of graphene.
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Figure 5.1: Visualisation of the buckled structures. The upper image is a
schematic image of the resulting structure. Beneath it to the left is an AFM
image of an experimental structure, and to the right an STM image. In both
images the resulting curvature is clearly visible.

5.1 Bending rigidity of graphene: current sta-

tus

The bending rigidity of bulk elastic materials is due to the stretching and
compression in different parts of the material as a consequence of the bending
deformation. The bending rigidity of such materials scale with thickness
and Young’s modulus as κ ∼ Eh3. For monolayer graphene, this tension-
compression model of bending stiffness does not apply, since graphene is two
dimensional. The bending rigidity must therefore have a different origin.

One such origin is the change in bond angles in the hexagonal atomic
structure associated with changing the curvature of the graphene sheet. This
effect can be estimated using so called bond order potentials, an empirical
set of potentials designed to describe the energetics of molecular bonds. Es-
timates based on bond order potentials as well as ab initio calculations give
values of κ ∼ 1eV [33, 34, 35]
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It is worth noting, that this estimate is given in the limit of zero tem-
perature. At higher temperatures, thermal fluctuations causes ripples in the
graphene sheet that are approximately 80Åwide that screens long wavelength
deformations such as bending. The bending rigidity is consequently increased
to about ∼ 2eV at T = 3500K [36].

Admittedly, this predicted increase in bending rigidity by a factor of
two when increasing the temperature from 0 K to 3500 K does not imply a
dramatic thermal effect. The case is quite different, in fact, when moving
from a single graphene layer to a bilayer [37]. At low temperatures the
two layers will follow each other rigidly, reinstating the tension-compression
model as the primary origin of bending stiffness already for membranes only
two atoms thick. The bending rigidity here is easily estimated considering
two thin plates separated by a distance h. When deforming this system,
we consider a hypothetical neutral surface between the thin plates that is
not stretched. If the system is bent into a cylinder with radius of curvature
R at the neutral surface, the radii of curvatures of the two plates become
R + h/2 and R − h/2 respectively. Compared to the nonstretched neutral
surface, the relative tension/compression of an infinitesimal length element
on each of the plates is consequently given by h/2R. The energy associated

with this deformation is ∆E = T1

2

(
h

2R

)2
for each plate, where T1 = λ + 2µ.

The bending rigidity is the parameter in the free energy multiplying the
inverse radius of curvature squared. Thus, κ = T1

h2

4
. Using T1 = 340 N/m

[38] and h = 3.4Å, this evaluates to κ ∼ 160 eV. This naive estimate is in
excellent agreement with ab initio calculations using bond order potentials,
giving values ranging from 160 to 180 eV [34] at T = 0 K. Thus, the energy
of bending a bilayered graphene sheet at low temperatures mainly comes
from the tension-compression energy, indicating that elasticity theory again
prevails.

If, however, the temperature is increased from T = 0 K, the individ-
ual graphene layers will create the same kind of thermal ripples described
above. At short distances, the graphene layers will appear to move inde-
pendently, meaning that the bending rigidity on this length scale (∼ 80 Å)
is drastically reduced to that of two monolayer graphene sheets, i.e. 2 − 4
eV. At the same time, the graphene sheets appear to conserve stacking or-
der despite the rippling. On longer length scales the sheets therefore do not
move independently, and a significantly larger bending rigidity is expected.
Thus, the issue of bending rigidity of bilayered graphene on experimentally
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relevant length scales is far more involved than its monolayered counterpart
and experimental determination of this parameter, both for monolayered and
few-layered graphene, is of significant importance for our understanding of
the microscopic behaviour of graphene.

5.2 Measuring the bending rigidity

As mentioned previously, the energy cost of bending a graphene sheet is ex-
tremely small compared to the energy required to stretch the sheet, so small
that the former is typically neglected completely compared to the latter when
modeling the mechanics of flat suspended graphene. It is therefore very diffi-
cult to experimentally estimate the value of this parameter by directly inves-
tigating the mechanical response of the graphene. In fact, the only reported
experimental estimate of the bending rigidity of monolayered graphene comes
from studies of the phonon spectrum of graphite [39], giving values consistent
with ab initio calculations. On the other hand, nano-indentation measure-
ments have proven successful for determining the bending rigidity of thicker
flakes (more than 8 layers) [40] where the difference in energy scales between
bending and stretching is less pronounced.

In the measurement scheme developed by our group in collaboration with
an experimental group at Gothenburg University, the inherent difficulties in
measuring the bending rigidity are avoided by tuning the geometry to our
advantage. Through thermal cycling a compressive strain is built up within
the graphene sheet, which is released when the sheet is suspended causing
the sheet to buckle (figure 5.2). When an external pressure is applied to
these prebuckled structures, the resulting deformation is small until a critical
pressure is reached, where the structures display a snap-through instability.
This instability is probed by gradually increasing the voltage on the back
gate while keeping an AFM tip in tapping mode on the graphene structure.
The sudden change in height on the AFM is a signature of the snap through.
A typical structure with snap through instability is shown in figure 5.2. A
schematic image of the process of snap through is seen in figure 5.4.

The instability was observed also in fully clamped structures, depicted in
figure 5.3. For fully clamped structures, continuum elasticity theory gives an
expression for the critical pressure,

pc =
4
√
κnT1

R1R2

(5.1)
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Figure 5.2: A doubly clamped structure showing a snap through instability.
a) and b) are AFM images of the sample at 0V and 3V, respectively. In
c), AFM sweeps have been made along the dashed line in a) while gradually
increasing the voltage. In d) the AFM tip is kept fixed at the spot marked
with a cross in a) while gradually increasing the voltage. Here, the snap-
through instability manifests itself as the discontinuity in tip position at
2.6V.

where n is the number of graphene layers and R1 and R2 are the principal
radii of curvature. It is worth noting that the instability requires curvature
in two directions, or equivalently a nonvanishing Gaussian curvature. This
is due to a result from differential geometry, stating that pure bending can
occur only in surfaces with a vanishing Gaussian curvature. Thus, to obtain
the desired competition between bending and stretching, one needs curvature
in two directions. Since the bending rigidity is very small for graphene mem-
branes, a sheet with vanishing Gaussian curvature will respond heavily to an
applied pressure through pure bending. The detailed calculation leading up
to equation (5.1) is far too involved to be included in this thesis; the reader
is here referred to Pogorelov [41]. The scaling of the critical pressure can
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Figure 5.3: A fully clamped structure showing a snap through instability. a)
and b) are AFM images of the sample at 0V and 3V, respectively. In c), AFM
sweeps have been made along the dashed line in a) while gradually increasing
the voltage. In d) the AFM tip is kept fixed at the spot marked with a cross in
a) while gradually increasing the voltage. Here, the snap-through instability
manifests itself as the discontinuity in tip position at 3V.

however be found from rather simple considerations.
Assume that a small pressure, well below the critical pressure, is applied

to a shallow spherical shell of radius R. The shell will respond by locally
becoming ”flatter” at the top of the shell. In other words, in a region of
width d, the radius of curvature increases from R to R′ > R (figure 5.5).
As the radius of curvature R′ increases, the graphene within the flattened
region is compressed. At some pressure, the deformed part of the shell will be
completely flat. Deforming the shell further, the compressive strain will be
released until the deformed part of the shell form a mirror image of its original
shape. Then, both the bending and stretching contributions to the energy
will be equal to the undeformed shell, apart from a considerable bending
in a region close to the edge of the deformed region. In other words, the
deformation of a shallow shell will be qualitatively different for small and
large applied pressures. It turns out that the latter configuration is unstable
under an applied pressure. The pressure at which the transition between the
two types of deformation occurs will therefore be the critical pressure.

The deformation at small pressures is parametrised by the width and
depth of the deformation according to figure 5.5). We aim at finding these
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parameters by minimising the free energy of the system.

Figure 5.4: A schematic view of the process of snap through. Left: For
small pressures a local deformation is formed in the region denoted Ω.Middle:
When the critical pressure is reached, it becomes energetically favourable
to form a concave region where the elastic energy is confined to a narrow
region Γ. Right: This concave region is elastically unstable. As a result, the
deformation propagates outward, and the sheet snaps through.

The elastic energy is divided into two parts, Utot = Ub +Us. The bending
energy density is given by

ub ∼ κ(ξ′′)2, (5.2)

where ξ is the deflection of the shell in the radial direction, and the differen-
tiation is with respect to a length element ds in the meridial direction. Since
the deflection changes by H over a distance d, the second derivative can be
approximated by

ξ′′ ∼ H

d2
. (5.3)

The bending energy density thus becomes

ub ∼ κ
H2

d4
. (5.4)

As for the stretching energy density, it is given by

us ∼ Tε2, (5.5)

where ε is the strain. For a spherical shell, the relative elongation of the
equator due to a homogeneous radial displacement ξ is 2πξ

2πR
= ξ

R
. Hence, the

strain is ε = ξ
R
∼ H

R
,

us ∼ T
H2

R2
. (5.6)
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Figure 5.5: Top: Shells under external pressure display two qualitatievely
different regions of deformation, indicated in the figure by the dashed and
dash-dotted line. At low pressures, the shell will locally flatten, decreasing
the local curvature. For large pressures, the deformed part of the shell will
form a mirror image of its undeformed counterpart. The main contribution to
the elastic energy will then be contained in a narrow region close to the edge
of the deformed region. Bottom: Close-up of the edge of the deformation for
large pressures. The edge region can be parametrised by a width δ and an
angle α.

The total elastic energy is the energy density times the area of the bulge,
which scales as d2,

Utot ∼ d2 (ub + us) = κ
H2

d2
+ T

H2d2

R2
. (5.7)

Note that the bending energy decreases with the bulge size d, while the
stretching energy increases with d. To determine the equilibrium shape of
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the shell, it is clear that both bending and stretching must be taken into
account.

To find d, we consider Gibbs free energy,

G = U − p∆V, (5.8)

where p is the pressure and ∆V is the change in volume due to the deforma-
tion. This volume scales as ∆V ∼ Hd2, so

G ∼
(
TH2

R2
− pH

)
d2 + κ

H2

d2
, (5.9)

so the effect of the pressure is to renormalise the parameter T to T̃ = T− pR2

H
.

Minimising the free energy with respect to d we find

0 =
∂G

∂d
∼ T̃

dH2

R2
− κH

2

d3
⇒ d ∼

(
κ

T̃

)1/4

R1/2. (5.10)

Inserting this into the free energy, we find

Utot ∼
√
κT̃

H2

R
, (5.11)

and the work done by the pressure is

p∆V ∼ pHR
κ1/2

T̃ 1/2
. (5.12)

Once again minimising Gibbs free energy, this time with respect to H, we
find

0 =
∂G

∂H
=

(
H

R

√
κT̃ − pR κ

1/2

T̃ 1/2

)
+

(
H2

R

κ1/2

T̃ 1/2
+ pHR

κ1/2

T̃ 3/2

)
∂T̃

∂H
. (5.13)

Inserting ∂T̃
∂H

= pR
2

H2 , we find

0 =

(
H

R

√
κT̃ − pR κ

1/2

T̃ 1/2

)
+ pR

κ1/2

T̃ 1/2
+
p2R3

H

κ1/2

T̃ 3/2
, (5.14)

which gives

H ∼ pR2

T̃
=

pR2

T − pR2

H

. (5.15)
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Solving this equation for H finally gives

H ∼ pR2

T
. (5.16)

This is the scaling of the depth of the deformation as a function of the
applied pressure. The situation described above ceases to be valid if the
forces on the membrane are so large that the shape of the membrane changes
considerably. In this case, we assume that the bulge forms a mirror reflection
of its original surface in a plane perpendicular to the symmetry axis. This
means that well inside the bulge, the curvature of the deformed shell is op-
posite in sign but equal in magnitude to the curvature of the original surface,
and hence the free energy density here remains unaffected. Instead, the ma-
jor part of the change in free energy will be concentrated to a narrow strip
of width δ around the edge of the bulge. The radius of the bulge is denoted
r, and its depth H. We start by finding δ, once again through minimisation
of Gibbs free energy.

The bending energy density is again given by

ub ∼ κ
ξ2

δ4
, (5.17)

and the stretching by

us ∼ T
ξ2

R2
. (5.18)

The area of the bending strip scales as rδ, so the total elastic energy becomes

Utot = rδ

(
κ
ξ2

δ4
+ T

ξ2

R

)
. (5.19)

The deflection ξ is determined geometrically. With the notation defined in
figure 5.5, we have ξ = δ sinα ≈ δ r

R
.

The total elastic energy thus becomes

Utot ∼ κ
r3

R2δ
+ T

r3δ3

R4
. (5.20)

The work done by the pressure is again

W = p∆V ∼ pHr2. (5.21)
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Note that the work done by the pressure does not depend on the width of the
bending strip δ; hence, in determining δ only the elastic free energy needs to
be considered,

0 =
∂Utot
∂δ
∼ r3

(
T
δ2

R4
− κ 1

R2δ2

)
→ δ ∼ κ1/4

T 1/4
R1/2. (5.22)

Before we write down Gibbs free energy, we note that r and H are related
geometrically through r2 ∼ RH. Then, minimising Gibbs free energy with
respect to H we find

0 =
∂G

∂H
=
κ3/4T 1/4H1/2

R
− pRH, (5.23)

which gives

H ∼ κ3/2T 1/2

R4p2
. (5.24)

The physical interpretation of this result is that, if one decreases the pressure,
the bulge will increase in size; this indicates that the structure is unstable.
Indeed, calculating the seond derivative of Gibbs free energy one finds

∂2G

∂H2
=
κ3/4T 1/4

2RH1/2
− pR = −pR

2
< 0, (5.25)

meaning that this value of H corresponds to a maximum of Gibbs free energy,
not a minimum. Larger bulges will grow on their own accord, while smaller
bulges will decrease. It is therefore expected that until the critical bulge size
H is reached, the deformation is well described by the scaling derived in the
previous section,

H ∼ pR2

T
. (5.26)

So at what pressure does H reach its critial value? We set H = Hcr, giving

pcrR
2

T
=
κ3/2T 1/2

R4p2
cr

⇒ pcr ∼
√
κT

R2
, (5.27)

giving the correct scaling behavior.
The same method can be applied to doubly clamped beams with principal

radii of curvature Rx and Ry. In this case, the stretching energy is expected
to scale with the gaussian curvature, so

us = T
ξ2

RxRy

. (5.28)
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Hence, for small deflections it is sufficient to do the substitiution R2 → RxRy,
resulting in

H ∼ pRxRy

T
. (5.29)

For large deflections, the situation is slightly more intricate. One can no
longer assume that the bulge formed in the ribbon is closed by a simply con-
nected curve as depicted in figure 4. Let us instead investigate the limit where
this edge consists of two parallel lines, separated by a distance 2r.Again, we
start by determining the width of the edge region, δ by minimising the free
energy. The bending energy density is still

ub ∼ κ
ξ2

δ4
, (5.30)

while the stretching energy scales with the gaussian curvature, as argued
above,

us ∼ T
ξ2

RxRy

. (5.31)

The same geometrical argument as for the fully clamped structures give for
the deflection

ξ ∼ δ
r

Rx

. (5.32)

The area of the width region scales as Dδ, where D is the width of the ribbon,
so the total elastic energy becomes

Utot ∼ Dδ

(
κ
r2

δ2R2
x

+ T
r2δ2

R3
xRy

)
. (5.33)

Minimising with respect to δ gives

δ ∼
( κ
T
RxRy

)1/4

, (5.34)

where we have used r2 ∼ HRx. Inserting this into the elastic energy yields

Utot ∼
κ3/4T 1/4HD

R
5/4
x R

1/4
y

. (5.35)

The work done by the pressure is

W = p∆V ∼ pHrD ∼ pDH3/2R1/2
x , (5.36)
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again using r2 ∼ HRx. Once again differentiating Gibbs free energy with
respect to H we find

Hcr ∼
κ3/2T 3/2

R
7/2
x R

1/2
y p2

, (5.37)

where the subscript cr indicates that this is again the critical deformation
of the shell. Using the scaling for small deformations found previously, H ∼
pRxRy

T
, we obtain the critical pressure

pcr ∼
κ1/4T 1/4

R
3/2
x R

1/2
y

. (5.38)

If the pressure is applied electrostatically, we expect that p ∼ V 2, meaning
that the critical voltage would be given by

Vcr ∼
κ1/4T 1/4

R
3/4
x R

1/4
y

. (5.39)

Plotting V 4
cr versus R−4 in a logarithmic scale for the fully clamped struc-

tures, the experimental values are expected to fall along a straight line with
unit slope. The bending rigidity can then be extracted from the intersection
of the line with the y−axis. The experimentally obtained values for the fully
clamped structures, all bilayers, are shown in figure 5.7. It is seen that the
scaling is very consistent with the one derived above. Using the analytical
expression from Pogorelov, we were able to fit the bending rigidity, giving
κ ≈ 30+20

−15eV. The rather large error bars here are mainly due to the smallness
of the data set considered, and are not inherent to the method itself.

For the beam structures, the data points are expected to fall along a line
with unit slope when plotting V 4

cr versus R−3. Also the beam structures follow
the expected scaling, as seen in figure 5.7. In this data set both bilayers and
monolayers are present. Using the value of the bending rigidity extracted for
the bilayers, we found a monolayer bending rigidity of κ ∼ 7+4

−3 eV. Again,
the error bars are large mainly due to the very small data set (only two
monolayered structures were successfully fabricated and measured).
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Figure 5.6: Scaling of the snap-through voltage with radius of curvature for
fully clamped bilayer drums. The full line is the best least squares fit to the
logarithmised values, while the dashed lines represent the uncertainty. The
scaling is consistent with theoretical considerations.

Figure 5.7: Scaling of the snap-through voltage with radius of curvature for
doubly clamped beams. The open diamonds are monolayers, full diamonds
bilayers and open square trilayer. The scaling is consistent with theoretical
considerations.
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Chapter 6

Summary and outlook

In this thesis, the equations of classical elasticity theory are applied to sus-
pended graphene structures of various designs. In the first paper, a mechan-
ically active suspended graphene sheet is used as a top gate in a carbon
nanotube field effect transistor (CNTFET). The mechanical motion of the
graphene is shown to improve the characteristics of the CNTFET. Using a
simplified equation of motion coupled to the the electronic properties of the
semiconducting CNT channel, a quantitative analysis of the performance of
the device was made. The analysis focussed on the subthreshold slope of
the device, a measure of the change in current due to a change in voltage
close to the the switching of the transistor. It was found that there are two
important parameters determining the subthreshold slope in these devices;
first, the suspension height of the graphene and second, the initial tension of
the graphene sheet. With a lower suspension height the capacitance between
the graphene gate and the CNT channel increases, leading to a higher sensi-
tivity to a change in voltage. For a given suspension height, there was also
found to exist an optimum value of the tension of the sheet. Too high ten-
sion and the graphene gate does not respond well mechanically to an applied
voltage. Too low tension and the graphene snaps in to the back gate before
reaching the switching. The modeling was done in connection with experi-
mental fabrication and characterisation of a device with the same design by
an experimental group at Gothenburg University.

In an ongoing project, a more complete description of the elastic prop-
erties of graphene is employed to investigate the dissipation in suspended
graphene structures arising from the coupling between the out-of-plane and
in-plane motion of graphene. It was found that both linear and nonlinear
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(amplitude dependent) damping is expected to be present in such devices.
The nonlinear damping is a result of the nonlinear coupling between the two
systems. Although this nonlinear term was found too small to dominate
the nonlinear response of suspended graphene sheets under realistic assump-
tions, it can, under certain circumstances, be the dominating dissipation
term. More specifically, the ratio between the nonlinear and linear damp-

ing terms scale as |ψ|
2

q̄2
, where ψ is the amplitude of the vibrational motion,

and q̄ is the static displacement of the graphene sheet. Thus, the nonlinear
damping can dominate for small static displacements. The quality factor dis-
play qualitatively different behaviour with respect to driving voltage and bias
voltage in the two different damping regimes. The quality factors obtained
from this mechanism ranges from 104 to 106 for the considered geometry,
which is consistent with recent experimental findings [18].

In the last paper, the bending rigidity of monolayer and bilayer graphene
is estimated using suspended graphene sheets that are buckled due to a built-
in compressive strain, fabricated and characterised by an experimental group
at Gothenburg University. These structures were shown to display a snap-
through instability under large enough pressures. Describing the buckled
graphene sheet as a shallow elastic shell, the critical pressure could be related
to the bending rigidity of the system. The bending rigidity of bilayered
graphene was estimated to κ ≈ 30+20

−15 eV, and for monolayers to κ ∼ 7+4
−3 eV.
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