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1 INTRODUCTION 
 
Corrosion of reinforcement is one of the most com-
mon causes of deterioration in reinforced concrete 
bridges. Anchorage, prior to shear and bending mo-
ment resistance, is a main uncertainty in the evalua-
tion of the structural behaviour of corroded rein-
forced concrete structures. The bond behaviour, i.e. 
the interaction between the steel reinforcement and 
the surrounding concrete, is decisive for both the 
load-carrying capacity and the ductility in the ulti-
mate state, Zandi Hanjari et al. (2011) and Coronelli 
et al. (2004), as well for the stiffness distribution and 
deflection in the service state, Val et al. (2009). 
Thus, to assess the remaining load-carrying capacity 
of deteriorated existing structures, models to esti-
mate the remaining bond and anchorage capacity are 
needed.  

Existing analytical and numerical models of bond 
of corroded reinforcement have been developed 
based on experimental investigations of artificially 
corroded specimens. However, there are reasons to 
believe that the deterioration caused by natural cor-
rosion does not have the same effects on the struc-
tural behaviour as the deterioration caused by artifi-
cial corrosion. Experimental evidences found in the 
literature show that common methods of accelerated 
induced corrosion may influence the bond capacity 
and change the anchorage behaviour, Saifullah et al. 
(1994), Austin et al. (2004). Remarkable reduction 
of the corrosion time from years to days is a rather 

strong justification for using accelerated induced 
corrosion in lab tests. However, a great care should 
be taken to interpret the results and extrapolate them 
to field conditions. In this study, the anchorage ca-
pacity of naturally corroded steel reinforcement was 
investigated experimentally. The test set-up was 
carefully chosen and designed by using non-linear 
finite element analysis, Berg & Johansson (2011). 
The bond and anchorage behaviour was examined 
through measurements of applied load, free-end slip 
and mid-span deflection. 

2 EXPERIMENTS 

2.1 Test specimens 

The test specimens were taken from the south 
side edge beams of Stallbacka Bridge in Sweden. 
The inauguration of the bridge took place in 1981, 
and it is thus only 30 years old. The severity of the 
deterioration has been increased by poor design of 
the bridge. The cantilevering parts of the bridge deck 
slab were too slender, and lack of secondary rein-
forcement in the slab forced the edge beams to work 
as load distributors, carrying more load than they 
were designed for. Loaded concrete structures nor-
mally crack; the edge beams are no exception. The 
cracks facilitate the chloride penetration of the de-
icing salt and the open cracks store up free water 
that increase the risk of severe frost damages. Cracks 
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specimens, any significant modification to the g
ometry of the beams had to be avoided as it would 
have caused further damage to the concrete and 
steel/concrete interface. Consequently, many of a
chorage test set
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rect pull
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test indirect
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Table 1. Load levels corresponding with the initial inclined 
shear cracks observed during the tests. 
Beam No. (1) (2) (3) 

Units kN 

Reference beam (R) 160-170 175-185 - 

Medium Damage (M) 185-195 225-235 215-225 

Highly Damaged (H) 170-180 165-180 155-175 

 

 

Table 2. Maximum failure loads obtained in the experiments. 
Beam 

No. 

(1) (2) (3) Average Standard 

Deviation 

Units kN 

(R) 270.1 281.2 - 275.6 7.9 

(M) 234.9 243.8 250.2 243.0 7.7 

(H) 255.4 225.1 244.4 241.6 15.4 

 

 

Table 3. Available anchorage lengths in the experiments; the 
given values for each specimen are the average of the measured 
anchorage length on both edges of the failure zone. 

Beam 

No. 

(1) (2) (3) Average 

Units cm 

(R) 29.4 30.5 - 30.0 

(M) 31.4 27.2 34.1 30.9 

(H) 32.2 29.7 27.3 29.7 

 

4 CONCLUSIONS AND OUTLOOK 

Eight edge beams with varying levels of natural cor-
rosion damage were tested in indirectly supported 
four-point bending tests. In all tests, diagonal shear 
cracks preceded a splitting induced pull-out failure; 
i.e. anchorage failure was achieved as intended. The 
preliminary results show around 10% higher load-
carrying capacity for the reference specimens than 
for the damaged ones. Since the available anchorage 
length was about the same for both corroded and un-
corroded specimens, this corresponds to around 10% 
higher anchorage capacity in the undamaged speci-
mens than in the corroded ones. Medium and highly 
damaged beams; i.e. beams with corrosion cracks or 
cover spalling respectively, had about the same av-
erage values of maximum failure loads, but with a 
larger scatter in results for the highly damaged 
group. 

Since quite large scatter can be expected in this 
type of work with test specimens taken from an ex-
isting bridge, more tests will be carried out. In a se-
cond series, specimens from the north part of the 

Stallbacka Bridge will be tested. The tests will pro-
duce benchmark data of anchorage of naturally cor-
roded reinforcement. They will be evaluated with 
detailed nonlinear finite element modelling, using 
the bond and corrosion model developed in 
Lundgren (2005) and further developed in Zandi 
Hanjari et al. (2011). Through comparing results 
such as load versus deflection and free end-slip, and 
crack pattern, more detailed information on how the 
local bond-slip is affected by natural corrosion will 
be obtained. 
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