
How to evaluate search methods for vector quantization

Downloaded from: https://research.chalmers.se, 2024-03-13 07:11 UTC

Citation for the original published paper (version of record):
Agrell, E., Hedelin, P. (1994). How to evaluate search methods for vector quantization. Proc. Nordic
Signal Processing Symposium, Ålesund, Norway: 258-263

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

How to Evaluate Search Methods for Vector Quantization

Erik Agrell Per Hedelin

Department of Information Theory
Chalmers University of Technology

S-412 61Göteborg, Sweden

agrell@it.chalmers.se per@it.chalmers.se

ABSTRACT

Fast search methods for vector quantization are
a necessity for benefiting from the performance
gains of large-sized codebooks in real-time
applications. We take on two 4096 vector
quantizer codebooks as illustrative examples for
our study. The performance of a set of search
procedures is compared. Several aspects of
complexity are discussed. We compare average
computational complexity and maximum
computational complexity in the light of real-time
usage. We address storage requirement and the
computational complexity required to set up the
search procedures. Moreover we illustrate
distortion as a function of computational effort.
One main conclusion is that an accurate
comparison will not yield a single answer.
Depending on what aspects that are highlighted
in a test, either of the three search procedures in
study can be elected as the winner.

1. INTRODUCTION

At a constant transmission rate, distortion of vector
quantization decreases monotonically with
increasing dimension of the vectors to quantize.

There are several factors that have prohibited
employment of large codebooks, including storage
and training problems, but the issue of searching a
large set of codevectors is often the limiting factor
for applications. Hence, a major goal of source
coding research is to establish methods of
handling large-dimensional codebooks. In this
contribution we focus on aspects of searching
large sized codebooks, i.e. on the search
complexity.

1.1 The Search Problem

The search problem in vector quantization occurs
each time an input vector is to be encoded. The
codebook has to be examined for the best
representation of the input, according to some
criterion. The obvious way is an exhaustive search,

that is, calculating the distortion for each of the
possible output codewords. In the last two decades,
however, several approaches have been suggested
to increase the encoding speed. This is possible by
employing alternative tests, computationally
cheaper than full distortion calculations, to exclude
codewords, one or several at a time, from further
consideration. For most methods, this type of
strategy requires the precomputation of some
codebook properties.

One of the earliest ideas was to precompute
distances between all codewords and a set of fixed
(anchor) points. The triangle inequality, or similar
tests, is utilized to select a subset of the codewords,
for which the exact distortion has to be calculated
[1]. Recursive application of some subset-selection
method gives rise to tree-organized algorithms [2-
4]. A different approach is to exploit the
geometrical properties of the Voronoi diagram, as
in the neighbor descent methods [5-7].

In general, two prices are paid for obtaining a
fast search: i) additional memory is required, and
ii) an additional preparatory analysis of the
codebook is required. Since this latter step is made
once, prior to the employment of the encoder, a
large computational burden can often, but not
always, be tolerated for this analysis. Also, a
further speed gain can be obtained by accepting
iii) an increased output distortion.

1.2 Paper Outline

Because of the aforementioned multi-dimensional
trade-off between different qualities, between
aspects as computational burden and memory
requirements, it is not trivial to summarize the
performance of a search method in a single table
or diagram. Highlighted in this study is exactly
this evaluation problem. As an example, we encode
Gaussian data with a pdf-optimized vector
quantizer, using three different search algorithms.
We perform a few different tests, some of which
measure related properties. Nevertheless, the
various tests indicate quite different performance.
Each particular test would have given a fairly clear
(but possibly misleading) image of how good the

methods are, if published alone.
A comparison of three different search

algorithms is the essence of our contribution. We
discuss primarily the computational complexity.
We also comment on the additional storage
requirement of the algorithms, and, since one of
the methods does not perform optimal codebook
look-up, we compare the performance.

Finally, we relax the requirement of finding the
very best codeword by introducing a constraint on
the encoding time.

1.3 Notation

A d-dimensional vector X drawn from a random
source (with a known probability density function)
is to be encoded with a codebook c()i{ } of N k= 2
entries. The object is to minimize the conventional
Euclidean distortion measure

D E i= −[]X c() 2

One of the procedures discussed below utilizes
an eigenvalue analysis. We denote the eigenvalues
of the source correlation matrix by λm{ } . A
transformed source vector ′Y is ′ =Y AY where A
is the matrix of eigenvectors. Thus, the
components of ′Y are uncorrelated.

2. SEARCH METHODS

We compare three different search methods, two
neighbor descent methods, using different
adjacency tables, and one tree search method.

2.1 Neighbor Descent Methods

The neighbor descent (ND) methods utilize an
adjacency table, which is computed during the
preencoding analysis. It gives a list of adjacent
codewords for each codeword in the codebook.
The encoding of an input vector can then be done
by iterative improvement of an initial guess. An
iteration consists of computing the distortions for
the adjacent codewords of the current hypothesis.
If any of these codewords turns out to be better
than the hypothesis, further examination of
adjacent codewords is aborted. The current
hypothesis is abandoned and the found codeword
immediately becomes the new hypothesis. The
overall procedure continues until none of the
neighbors provide lower distortion.

Two neighbor descent algorithms were
compared. Their difference lies in the definition of
adjacent codewords. The first algorithm (referred
to as RND in [7]) uses the Voronoi diagram—two
codewords are regarded as adjacent if their
Voronoi regions have a facet in common. A linear

programming approach is described in [8] for
efficiently establishing the adjacency table for
each vector of an arbitrary codebook.

The second algorithm employs Gabriel
neighbors, which is a more restricted condition [9,
10] than the Voronoi neighbor concept. Two
codewords are Gabriel neighbors if they are
Voronoi neighbors and if their common facet is
intersected by the straight line between the two
codevectors.

The Gabriel approach reduces the memory
requirement and increases encoding speed, as
demonstrated in this paper. However, the price to
pay is distortion. In contrast to Voronoi neighbor
descent, which can be proved to find the optimal
codeword for every input [8], the Gabriel
adjacency is not sufficient to guarantee optimality.

Before comparing the complexity of building
the adjacency tables using the Voronoi and the
Gabriel approaches, it is important to stress that the
creation of the tables is done as a preparatory step,
i.e. before the employment of the encoding
algorithm. Still we find it worth mentioning that
finding the set of Gabriel neighbors is far simpler
than finding the corresponding Voronoi
neighbors. A flavor of the computational
complexity is obtained by comparing the CPU-
time for the particular 6-dimensional codebook we
take on as example in this study. For the Voronoi
neighbors approximately 25 hours were required
whereas the Gabriel neighbors were established in
one hour.

2.2 Tree Search Procedures

There exists a variety of tree search (TS)
procedures for vector quantization. Several
important TS procedures apply only to certain
(constrained) sets of codevectors. The particular
version employed in our study is general in the
sense that it is applicable for an arbitrary set of
(unconstrained) codevectors. The overall
architecture is that of a balanced d-level tree with
2km branches from each node at level m −1 [4].
Each level, m, corresponds to one component of
the transformed d-dimensional codevectors d ,
where d Ac= .

The total number of nodes, K, depends on the
branching, i.e. on km{ } , but for any allocation,
K N< 2 . Associated with each node at level m are
the leftmost r r km m m= +−1 bits of a codeword
index i . Hence, each leaf of the tree corresponds
to a codeword index i. Associated with each node
(,)m r at any level m d< is also a triplet

d d dm
r

m
r

m
r() () (), ,− +{ }

Table 1. Average and maximum number of neighbors, for two neighbor types
and two codebooks.

Average number of neighbors Maximum number of neighbors
Codebook Voronoi Gabriel Voronoi Gabriel

ρ = 0 117 62 178 99
ρ = 0 75. 118 50 305 87

consisting of the mean, the minimum and the
maximum respectively of the mth component of
the transformed codevectors d, i.e. dm

i() , for those i
only that are descendent leafs of the given node.

Preparatory to codebook employment the
branching parameters, km{ } , must be determined.
For this we have employed a conventional bit-
allocation algorithm utilizing the eigenvalues

λm{ } .
Next an index assignment for the codebook

vectors is obtained by sorting the transformed
codebook vectors d()i{ } according to the bit-
allocation. The triplets d d dm

r
m

r
m

r() () (), ,− +{ } are
obtained as a natural part of this sorting
procedure.

At run-time, a transformed source vector Y is
processed by first finding an initial guess i* for the
index. This is accomplished by descending the tree
with hard pruning based on utilizing the mean
positions dm

r() for scoring. The true distortion D *
is evaluated for the winner of this step. The tree is
thereafter descended level by level until the leaf
nodes are encountered while utilizing d dm

r
m

r− +{ }() (),
for keeping track of a lower bound D m smin(,) of
the distortion associated with a node.

D m s D m s m s ymmin min(,) (,) (, ,)= − ′ +1 β

β(, ,)
()

()

()

()

()

() ()

()
m s y

y d

y d

y d
d y d

y d
m

m m
s

m m
s

m m
s

m
s

m m
s

m m
s

=
−

−

<
<

>

−

+

−

− +

+

2

2
0 <

where (,)m s− ′1 is the parent node of node (,)m s .
Propagation is inhibited for any node (r,m) that
reaches a distortion D m smin(,) that exceeds D* .
Finally, the true distortion of the surviving nodes
are evaluated. The selected codeword i is the one
yielding least true distortion within the set of
survivors.

3. TWO GAUSSIAN CODEBOOKS

We have studied several different codebooks in
various dimensions and for various rates. Below we
report on the performance for a six-dimensional
Gaussian source, i.e. d = 6 , coded at a rate R = 2 .
Thus the codebook size is N = 4096 . Two sample-

to-sample correlations, ρ , were selected, namely
ρ = 0 and ρ = 0 75. . The codebooks were trained
employing an LBG-type of approach using
random samples from the respective sources. The
iterations encompassed five million samples.
Performance as discussed below was measured on
additional random sets of one million vectors
(independent of the training sets).

The high-rate approximation for Gaussian
vector quantization (cf. [11]) states that

σ σQ
Rd f d2 2 22≥ ⋅ ⋅ ⋅ −

X Θ() ()

where R k d= / is the rate and

Θ() /
/

d dii
d d

ii
d= () ⋅()= =

−
∏ ∑λ λ1

1

1

1

f d
d d

d

d

d

d d

()
(/) / /

=

+

Γ 2
2

2 22 2

For dimension d = 6 this formula predicts a
signal-to-noise ratio (SNR) of 12 04 1 57 10 47. . .− =
dB for ρ = 0 and 12 04 1 57 2 99 13 46. . . .− + = dB for
ρ = 0 75. , both at rate R = 2 . We measured an SNR
of 10.41 dB for ρ = 0 and 13.47 dB for ρ = 0 75.
for our trained codebooks. The discrepancy to the
prediction given by the high-rate approximation is
in reasonable agreement with the accuracy of this
approximation for a moderate rate R . For our
example we thus have codebooks that are close to
optimal for the given sources.

3.1 Voronoi Properties of the Codebooks

The complexity of neighbor descent, regarding
encoding time as well as memory, is directly
dependent on the size of the adjacency table. This
is the twofold motivation for using Gabriel
neighbors instead of the complete Voronoi
description. Table 1 shows some statistics of the
adjacency tables for both codebooks.

The number of Gabriel neighbors is
approximately equal to half the number of
Voronoi neighbors for the uncorrelated codebook,
and considerably less than that for ρ = 0 75. .
Corresponding improvements in search time and
memory requirement will be noted in the next
section.

These results are typical for trained codebooks,

Table 2. Search complexity and storage requirement for the Gaussian codebook
with ρ = 0 . The last column shows the loss in SNR compared to a full search,
which gives an SNR of 10.41 dB.

Number of distance computations SNR
Method Average Maximum Storage difference (dB)

Voronoi ND 170 326 732 kbyte 0
Gabriel ND 108 233 394 kbyte –0.06
Tree search 78 693 12 kbyte 0

Table 3. Search complexity, storage requirement, and SNR loss (compared to a
full search yielding 13.47 dB) when ρ = 0 75. .

Number of distance computations SNR
Method Average Maximum Storage difference (dB)

Voronoi ND 165 425 737 kbyte 0
Gabriel ND 90 198 323 kbyte –0.10
Tree search 64 457 24 kbyte 0

i.e. codebooks that are close to optimal for a given
source. To our experience there are some notable
differences when searching, for instance, random
codebooks in comparison to (close to) optimal
codebooks. The underlying property is that
Voronoi regions are more regular for trained
codebooks than for randomized codebooks.

4. EVALUATION OF SEARCH METHODS

4.1 Searching for Optimum

As a measure of how fast a search algorithm is, the
number of vectorial distance computations is often
used. In our 12-bit examples a full search
obviously requires the computation of 4096
distances, but for most fast search methods, the
number of distances depends on the particular
input vector X. The maximum number of distance
computations, over all X, is a relevant measure in
real-time applications where a fixed amount of
time must be assigned for the encoding of an input
vector. In applications where a large delay is
allowed, the average number is more appropriate.

The three search methods were used in
conjunction with the two vector quantizers for
Gaussian data described above. Table 2 shows both
maximum and average number of distance
computations for the codebook with a sample-to-
sample correlation of ρ = 0, together with the
memory requirement for storage of the
precomputed codebook structure. According to
these tests, the TS method is faster than ND, and it
also requires much less memory.

The signal-to-noise ratio of the quantizer is also
shown in the table. This is because Gabriel ND
theoretically does not guarantee optimal encoding.

(The other two algorithms do.) As it turns out,
however, the SNR decrease is minor, namely .06
dB. Gabriel ND practically always finds the truly
optimal codeword, or one with almost as low
distortion.

The same set of results for ρ = 0 75. are shown
in table 3. The distortion is still very close to that
obtained with optimal encoding, but the difference
is larger than for the uncorrelated codebook. The
explanation to this is that the Gabriel neighbors are
fewer for the correlated codebook (see table 1),
which also is the cause of the lower search
complexity in this case.

Summarizing the results of tables 2 and 3, we
see that the tree search method outperforms either
of the two neighbor methods as regards average
computational complexity as well as in storage
requirements. The two neighbor methods, on the
other hand, have a considerably lower maximum
computational complexity.

4.2 Constraining the Encoding Time

However, tables 2 and 3 do not reveal all aspects of
importance for applications. It is also relevant to
address how rapidly the distortion decreases
during the encoding process, that is, we need to
find out how significant it is to actually continue
until the algorithms terminate, guaranteeing
optimal codebook look-up. If the last distance
computations have a small probability of
improving the output codeword, we can buy
considerable time for just a small distortion
increase by imposing a bound on the number of
distance computations that are allowed. In real-
time applications where the available time for
encoding is limited, such a bound is a necessity.

1751501251007550250

14

12

10

8

6

4

2

0

Gabriel ND
Voronoi ND
Tree search

Complexity

SNR
(dB)

Figure 1. SNR as a function of complexity given by the number of distance
measurements, for the vector quantizer with ρ = 0 .

1751501251007550250

14

12

10

8

6

4

2

0

Gabriel ND
Voronoi ND

Tree search

Complexity

SNR
(dB)

Figure 2. SNR as a function of complexity for ρ = 0 75. .

SNR as a function of such a bound is depicted
in figure 1. The diagram shows that both ND
methods gives a higher SNR than TS if more than
26 distortion computations are allowed, or
conversely, that ND reaches any SNR value greater
than 6.4 dB faster. The TS complexity displays a
step after a time corresponding to 5 distance
computations. This is the time needed for the
initial pass through the tree, with hard pruning,
before which not even an initial guess is known. If
only very little time is available, this is an efficient
method, skipping the second pass.

Figure 2 shows similar results for the correlated
codebook. The encoding algorithms reach a
higher SNR value, but the same qualitative

differences between the algorithms as in figure 1
can be observed.

The curves illustrate the three phases of a search
procedure: finding an initial guess, improving the
guess, and verifying that the last guess cannot be
further improved. The algorithms perform
differently in each of these phases. The first pass
in tree search provides an excellent initial guess,
but the improvement thereafter is slow. Of the
three algorithms, Gabriel ND is the fastest in the
second phase, but Voronoi ND performs a
stronger test in the third phase, guaranteeing that
the optimal codeword was indeed found, which is
important at least from a theoretical point of view.

In passing we compose a new search algorithm

of the three studied algorithms, employing each
one in the phase for which it is most favorable.
Thus we use TS to find an initial guess, then iterate
Gabriel ND until it terminates, and finally use
Voronoi ND to check if the solution is optimal and
improve it if possible. This hybrid search
algorithm outperforms its three components in all
aspects but storage. The memory requirement is
equal to that of Voronoi ND, plus one third of the
TS memory (only the first element of the triplets is
needed). The Gabriel adjacency table can be
included as a part of the Voronoi table and does
not require any extra memory.

5. SUMMARY AND CONCLUSIONS

Neighbor descent methods are attractive for vector
quantization since such methods isolate a good
candidate at an early stage. The examples taken on
illustrate this property well. The examples also
show that neighbor descent algorithms are less
effective in their final phase when verifying that
they actually have retrieved the correct entry.

Employing only Gabriel neighbors performs
surprisingly well. The loss in performance by
utilizing only a subset of the true Voronoi
neighbors is so marginal that it falls below the
accuracy of SNR measurements over one million
sample vectors.

The tree search algorithm is effective in storage.
Its average computational complexity in terms of
distance computations is the lowest of the methods,
for optimal codebook look-up.

Whenever optimal search is mandatory the
maximum number of computations is of
importance. The descent methods have a
maximum that exceeds the maximum number of
neighbors accounted for in the method.

“Fast” is an ambiguous term. What appears to
be a competitive search method in one test, may
come out as a slow method in another. It depends
on what properties you measure. Therefore, it is
vital to employ a test procedure that is in
correspondence with the intended application and
implementation. That a method has been found to
be fast in one type of source coding system does
not automatically imply that is suitable to use in
another. Especially, the relative performance may
change dramatically when a time constraint is
imposed. We emphasize that an evaluation of a
search algorithm should incorporate several
different tests in order to accurately describe the
“fastness” of the algorithm.

REFERENCES

[1] W. A. Burkhard and R. M. Keller, “Some approaches
to best-match file searching,” Communications of
the ACM, vol. 16, no. 4, pp. 230–236, Apr. 1973.

[2] J. H. Friedman, J. L. Bentley, and R. A. Finkel,
“An algorithm for finding best matches in
logarithmic expected time,” ACM Transactions on
Mathematical Software, vol. 3, no. 3, pp. 209–
226, Sept. 1977.

[3] V. Ramasubramanian and K. K. Paliwal, “Fast K-
dimensional tree algorithms for nearest neighbor
search with application to vector quantization
encoding,” IEEE Transactions on Signal Processing,
vol. 40, no. 3, pp. 518–531, Mar. 1992.

[4] P. Hedelin, “Single stage spectral quantization at 20
bits,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1,
pp. 525–528, Adelaide, Australia, Apr. 1994.

[5] P. J. Green and R. Sibson, “Computing Dirichlet
tessellations in the plane,” The Computer Journal,
vol. 21, no. 2, pp. 168–173, May 1978.

[6] R. L. Joshi and P. G. Poonacha, “A new MMSE
encoding algorithm for vector quantization,” in Proc.
IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 645–
648, Toronto, Ontario, Canada, May 1991.

[7] E. Agrell, “Spectral coding by fast vector
quantization,” in Proc. IEEE Workshop on Speech
Coding for Telecommunications, pp. 61–62, Sainte-
Adèle, Québec, Canada, Oct. 1993.

[8] E. Agrell, “A method for examining vector quantizer
structures,” in Proc. IEEE International Symposium
on Information Theory, p. 394, San Antonio, TX,
Jan. 1993.

[9] A. Okabe, B. Boots, and K. Sugihara, Spatial
tessellations: Concepts and applications of Voronoi
diagrams. Chichester, England, U.K.: John Wiley
& Sons, 1992.

[10] S. Arya and D. M. Mount, “Algorithms for fast
vector quantization,” in Proc. Data Compression
Conference, J. A. Storer, M. Cohn, eds., pp. 381–
390, Snowbird, UT, Mar.–Apr. 1993.

[11] T. D. Lookabaugh and R. M. Gray, “High-resolution
quantization theory and the vector quantizer
advantage,” IEEE Transactions on Information
Theory, vol. 35, no. 5, pp. 1020–1033, 1989 1989.

