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Abstract

The notion of topological degree is studied for mappings from the boundary of a relatively compact
strictly pseudo-convex domain in a Stein manifold into a manifold in terms of index theory of Toeplitz
operators on the Hardy space. The index formalism of non-commutative geometry is used to derive analytic
integral formulas for the index of a Toeplitz operator with Hölder continuous symbol. The index formula
gives an analytic formula for the degree of a Hölder continuous mapping from the boundary of a strictly
pseudo-convex domain.
c⃝ 2012 Elsevier Inc. All rights reserved.
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0. Introduction

This paper is a study of analytic formulas for the degree of a mapping from the boundary
of a relatively compact strictly pseudo-convex domain in a Stein manifold. The degree of a
continuous mapping between two compact, connected, oriented manifolds of the same dimension
is abstractly defined in terms of homology for continuous functions. If the function f is
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differentiable, an analytic formula can be derived using Brouwer degree, see [19], or the more
global picture of de Rham cohomology. For any form ω of top degree, the form f ∗ω satisfies

X
f ∗ω = deg f


Y

ω.

Without differentiability conditions on f , there are no known analytic formulas beyond the
special case of a Hölder continuous mapping S1

→ S1, which can be found in Chapter 2.α

of [9]. The degree of a Hölder continuous function f : S1
→ S1 of exponent α is expressed

by an analytic formula by replacing the de Rham cohomology with the cyclic homology of the
algebra of Hölder continuous functions as

deg( f ) =
1

(2π i)2k


f (z0)

f (z1) − f (z0)

z1 − z0
· · ·

f (z0) − f (z2k)

z0 − z2k
dz0 . . . dz2k, (1)

whenever α(2k + 1) > 1. Later, the same technique was used in [22,23] in constructing index
formulas for pseudo differential operators with operator-valued symbols. Our aim is to find new
formulas for the degree in the multidimensional setting by expressing the degree of a Hölder
continuous function as the index of a Toeplitz operator and using the approach of [9].

The motivation to calculate the degree of a non-smooth mapping comes from nonlinear σ -
models in physics. For instance, the Skyrme model describing self-interacting mesons in terms
of a field f : X → Y , see [1], only has a constant solution if one does not pose a topological
restriction, and since the solutions are rarely smooth, but rather in the Sobolev space W 1,d(X, Y ),
one needs a degree defined on non-continuous functions. In the paper [8], the notion of a degree
was extended as far as to VMO-mappings in terms of approximation by continuous mappings.
See also [7] for a study of the homotopy structure of W 1,d(X, Y ).

The main idea that will be used in this paper is that the cohomological information of a
continuous mapping f : X → Y between odd-dimensional manifolds can be found in the
induced mapping f ∗

: K 1(X) → K 1(Y ) using the Chern–Simons character. The analytic
formula will be obtained by using index theory of Toeplitz operators. The index theory of Toeplitz
operators is a well-studied subject for many classes of symbols; see, for instance, [2,6,9,13]. If
X = ∂Ω , where Ω is a strictly pseudo-convex domain in a complex manifold, and f : ∂Ω → Y
is a smooth mapping, the idea can be expressed by the commutative diagram

K 1(Y )
f ∗

−−−−→ K 1(∂Ω)
ind

−−−−→ ZcsY

cs∂Ω


Hodd

d R (Y )
f ∗

−−−−→ Hodd
d R (∂Ω)

χ∂Ω
−−−−→ C

(2)

where the mapping ind : K 1(∂Ω) → Z denotes the index mapping defined in terms of suitable
Toeplitz operators on ∂Ω and

χ∂Ω (x) := −


∂Ω

x ∧ T d(Ω).

The left part of the diagram (2) is commutative by naturality of the Chern–Simons character and
the right part of the diagram is commutative by the Boutet de Monvel index formula.

K -theory is a topological invariant, and the picture of the index map as a pairing in a
local homology theory via Chern–Simons characters can be applied to more general classes of
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functions than the smooth functions. The homology theory present throughout all index theory
is cyclic homology. For a Hölder continuous mapping f : ∂Ω → Y of exponent α and Ω being
a relatively compact strictly pseudo-convex domain in a Stein manifold, the analogy of diagram
(2) is

K1(C∞(Y ))
f ∗

−−−−→ K1(Cα(∂Ω))
ind

−−−−→ ZcsY

cs∂Ω


HCodd(C∞(Y ))

f ∗

−−−−→ HCodd(Cα(∂Ω))
χ̃∂Ω

−−−−→ C

(3)

where the mapping χ̃∂Ω : HCodd(Cα(∂Ω)) → C is a cyclic cocycle on Cα(∂Ω) defined as the
Connes–Chern character of the Toeplitz operators on ∂Ω ; see more in [9,10]. The condition on Ω
to lie in a Stein manifold ensures that the cyclic cocycle χ̃∂Ω can be defined on Hölder continuous
functions; see below in Theorem 4.2. The right-hand side of diagram (3) is commutative by
Connes’ index formula; see Proposition 4 of Chapter IV.1 of [9]. The dimension in which the
Chern–Simons character will take values depends on the Hölder exponent α. More explicitly, the
cocycle χ̃∂Ω can be chosen as a cyclic 2k + 1-cocycle for any 2k + 1 > 2n/α.

The index of a Toeplitz operator Tu on the vector-valued Hardy space H2(∂Ω) ⊗ CN with
smooth symbol u : ∂Ω → GLN (C) can be calculated using the Boutet de Monvel index formula
as ind Tu = −


∂Ω cs∂Ω [u] if the Chern–Simons character cs∂Ω [u] only contains a top degree

term. In particular, if g : Y → GLN (C) satisfies that all terms, except for the top-degree term, in
cs∂Ω [g] are exact and f : ∂Ω → Y is smooth, we can consider the matrix symbol g ◦ f on ∂Ω .
Naturality of the Chern–Simons character implies the identity

deg f


Y
csY [g] = −ind Tg◦ f ,

where Tg◦ f is a Toeplitz operator on H2(∂Ω) ⊗ CN with symbol g ◦ f . This result extends to
Hölder continuous functions in the sense that, if we choose g which also satisfies the condition

Y csY [g] = 1, we obtain the analytic degree formula:

deg f = χ̃∂Ω (cs∂Ω [g ◦ f ]).

A drawback of our approach is that it only applies to boundaries of strictly pseudo-convex
domains in Stein manifolds. We discuss this drawback at the end of the fourth, and final, section
of this paper. The author intends to return to this question in a future paper and to address the
problem for even-dimensional manifolds.

The paper is organized as follows. In the first section, we reformulate the degree as an index
calculation using the Chern–Simons character from odd K -theory to de Rham cohomology. This
result is not remarkable in itself, since the Chern–Simons character is an isomorphism after
tensoring with the complex numbers. However, the constructions are explicit and allow us to
obtain explicit expressions for a generator of the de Rham cohomology. We will use the complex
spin representation of R2n to construct a smooth function u : S2n−1

→ SU (2n−1) such that
the Chern–Simons character of u is a multiple of the volume element on S2n−1. The function
u will then be used to construct a smooth mapping g̃ : Y → GL2n−1(C) for arbitrary odd-
dimensional manifold Y whose Chern–Simons character coincides with (−1)ndVY , where dVY
is a normalized volume form on Y ; see Theorem 1.6. Thus we obtain for any continuous function
f : ∂Ω → Y the formula deg f = (−1)n+1ind Tg◦ f , as is proved in Theorem 2.1.



360 M. Goffeng / Advances in Mathematics 231 (2012) 357–377

In the second section, we will review the theory of Toeplitz operators on the boundary of
a strictly pseudo-convex domain. The material in this section is based on [6,9,11,13,16,21].
We will recall the basics from [11,16,21] of integral representations of holomorphic functions
on Stein manifolds and the non-orthogonal Henkin–Ramirez projection. We will continue the
section by recalling some known results about index formulas and how a certain Schatten class
condition can be used to obtain index formulas. The focus will be on the index formula of Connes,
see Proposition 4 in Chapter IV.1 of [9], involving cyclic cohomology and how the periodicity
operator S in cyclic cohomology can be used to extend cyclic cocycles to larger algebras. In
our case, the periodicity operator is used to extend a cyclic cocycle on the algebra C∞(∂Ω) to
a cyclic cocycle on Cα(∂Ω). We will also review a theorem of Russo, see [24], which gives a
sufficient condition for an integral operator to be of Schatten class.

The third section is devoted to proving that the Szegö projection P∂Ω : L2(∂Ω) → H2(∂Ω)

satisfies the property that for any p > 2n/α the commutator [P∂Ω , a] is a Schatten class operator
of order p for any Hölder continuous functions a on ∂Ω of exponent α. The statement about
the commutator [P∂Ω , a] can be reformulated as the corresponding big Hankel operator with
symbol a being of Schatten class. We will in fact not look at the Szegö projection, but rather
at the non-orthogonal Henkin–Ramirez projection PH R mentioned above. The projection PH R
has a particular behavior, making the estimates easier, and an application of Russo’s Theorem
implies that PH R − P∂Ω is Schatten class of order p > 2n; see Lemma 3.6.

In the fourth section; we will present the index formula and the degree formula for Hölder
continuous functions. Thus, if we let C∂Ω denote the Szegö kernel and dV the volume form on
∂Ω , we obtain the following index formula for u invertible and Hölder continuous on ∂Ω :

ind Tu = −


∂Ω2k+1

tr


2k

i=0

(1 − u(zi )
−1u(zi+1))C∂Ω (zi , zi+1)


dV

for any 2k+1 > 2n/α. Here, we identify z2k+1 with z0. Using the index formula for the mapping
degree, we finally obtain an analytic formula for the degree of a Hölder continuous mapping from
∂Ω to a connected, compact, orientable, Riemannian manifold Y . If f : ∂Ω → Y is a Hölder
continuous function of exponent α, the degree of f can be calculated for 2k + 1 > 2n/α from
the formula

deg( f ) = (−1)n


∂Ω2k+1
f̃ (z0, z1, . . . , z2k)

2k
j=0

C∂Ω (z j−1, z j )dV,

where f̃ : ∂Ω2k+1
→ C is a function explicitly expressed from f ; see more in Eq. (27).

1. The volume form as a Chern–Simons character

In order to represent the mapping degree as an index, we look for a matrix symbol whose
Chern–Simons character is cohomologous to the volume form dVY on Y . We will start by
considering the case of a 2n − 1-dimensional sphere, and construct a map into the Lie
group SU (2n−1) using the complex spinor representation of Spin(R2n). In the complex spin
representation, a vector in S2n−1 defines a unitary matrix; this construction produces a matrix
symbol on odd-dimensional spheres such that its Chern–Simons character spans H2n−1

d R (S2n−1).
The matrix symbol on S2n−1 generalizes to an arbitrary connected, compact, oriented manifold
Y of dimension 2n − 1 such that its Chern–Simons character coincides with (−1)ndVY .
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Let V denote a real vector space of dimension 2n with a non-degenerate inner product g.
We take a complex structure J on V which is compatible with the metric, and extend the
mapping J to a complex linear mapping on VC := V ⊗R C. Since J 2

= −1, we can decompose
VC := V 1,0

⊕ V 0,1 into two eigenspaces of J corresponding to the eigenvalues ±i . If we extend
g to a complex bilinear form gC on VC, and use the isomorphism ClC(V, g) ∼= Cl(VC, gC), we
can identify the complexified Clifford algebra of V with the complex algebra generated by 2n
symbols e1,+, . . . , en,+, e1,−, . . . , en,− satisfying the relations

{e j,+, ek,+} = {e j,−, ek,−} = 0 and {e j,+, ek,−} = −2δ jk,

where {·, ·} denotes the anti-commutator. The complex algebra ClC(V, g) becomes a ∗-algebra
in the ∗-operation e∗

j,+ := −e j,−.

The space SV := ∧
∗ V 1,0 becomes a complex Hilbert space equipped with the sesquilinear

form induced from g and J . The vector space SV will be given the orientation from the
lexicographic order on the basis ei1 ∧ ei2 ∧ · · · ∧ eik for i1 < i2 < · · · < ik . Define
c : VC → End(SV ) by

c(v).w :=
√

2v ∧ w, for v ∈ V 1,0 and

c(v′).w := −
√

2v′
¬w for v′

∈ V 0,1.

The linear mapping c satisfies

c(v∗) = c(v)∗ and c(w)c(v) + c(v)c(w) = −2g(w, v),

so by the universal property of the Clifford algebra ClC(V, g) we can extend c to a ∗-
representation ϕ : ClC(V ) → EndC(SV ). The space SV is a 2n-dimensional Hilbert space
which we equip with a Z2-grading as follows:

SV = S+

V ⊕ S−

V := ∧
even V 1,0

⊕ ∧
odd V 1,0.

Consider the subalgebra ClC(V )+ consisting of an even number of generators. The
representation ϕ restricts to a representation ClC(V )+ → EndC(S+

V ) and ClC(V )+ →

EndC(S−

V ). We define the 2n−1-dimensional oriented Hilbert space En := S+

Cn when n is even
and En := S−

Cn when n is odd. The representation ClC(Cn)+ → EndC(En) will be denoted by
ϕ+. For a vector v ∈ Cn , we can use the fact that Cn

⊗R C ∼= Cn
⊕ Cn , and define

v+ := ϕ+(v ⊕ 0) ∈ EndC(En) and v− := ϕ+(0 ⊕ v) ∈ EndC(En).

We will now define a symbol calculus for S2n−1. We choose the standard embedding S2n−1
⊆

Cn by taking coordinates zi : S2n−1
→ C satisfying |z1|

2
+ |z2|

2
· · · + |zn|

2
= 1. Define the

smooth map u : S2n−1
→ ClC(R2n)+ by

u(z) :=
1
2
(e1,+ + e1,−)(z+ + z̄−). (4)

Proposition 1.1. The mapping u satisfies

u(z)∗u(z) = u(z)u(z)∗ = 1,

so u : S2n−1
→ SU (2n−1) ⊆ EndC(En) is well defined.
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The proof of this proposition is a straightforward calculation using the relations in the Clifford
algebra ClC(V, g). Observe that, if n = 2, the mapping u is a diffeomorphism, since we can
choose 1 and e1 ∧ e2 as a basis for S+

V , and in this basis

u(z1, z2) =


−z1 −z̄2
z2 −z̄1


.

For any N , we can consider the subgroup SU (N − 1) ⊆ SU (N ) of elements of the form
1 ⊕ x . Denoting by e1 the first basis vector in CN , we can define a mapping q : SU (N ) →

S2N−1 by q(v) := ve1. A straightforward calculation shows that q factors over the quotient
SU (N )/SU (N − 1) and induces a diffeomorphism SU (N )/SU (N − 1) ∼= S2N−1. The function
u is in a sense a splitting to q .

Proposition 1.2. If ι : S2n−1
→ S2n

−1 is defined by

ι(z1, z2, . . . zn) :=


(−z1, z2, . . . zn, 0, . . . , 0) for n even
(−z̄1, z2, . . . , zn, 0, . . . , 0) for n odd

and q : SU (2n−1) → S2n
−1 is the mapping constructed above, the following identity is satisfied:

q ◦ u = ι.

Proof. We will start with the case when n is even. The first n basis vectors of S+

V are
1, e1 ∧ e2, e1 ∧ e3, . . . , e1 ∧ en , and

q(u(z)) = u(z)1 = −z1 + z2e1 ∧ e2 + z3e1 ∧ e3 + · · · + zne1 ∧ en .

If n is odd, the first basis vectors of S−

V are e1, e2, . . . , en . Therefore, we have the equality

q(u(z)) = u(z)e1 = −z̄1e1 + z2e2 + · · · znen . �

Consider α+ := ϕ+(dz ⊕ 0) and α− := ϕ+(0 ⊕ dz̄) as elements in T ∗S2n−1
⊗ EndC(En).

For an element k = (k1, . . . , k2l−1) ∈ {+, −}
2l−1, we define αk := αk1αk2 · · · αk2l−1 ∈

∧
2l+1 T ∗S2n−1

⊗ EndC(En). Define the set Γ+

l as the set of k ∈ {+, −}
2l−1 such that the

number of + in k is l. Similarly, Γ−

l is defined as the set of k ∈ {+, −}
2l−1 such that the number

of − in k is l. The number of elements in Γ±

l can be calculated as

|Γ+

l | = |Γ−

l | =


2l − 1
l − 1


=

(2l − 1)!

l!(l − 1)!
.

Lemma 1.3. For any k ∈ {+, −}
2l−1, we have the equalities

tr(z+αk) =


0 if k ∉ Γ−

l

(−1)n2n−1l!


m1,m2,...,ml

zm1 dz̄m1

l
j=2

dzm j ∧ dz̄m j if k ∈ Γ−

l

tr(z̄−αk) =


0 if k ∉ Γ+

n

(−1)n+12n−1l!


m1,m2...,ml

z̄m1dzm1

l
j=2

dzm j ∧ dz̄m j if k ∈ Γ+

l .

Here, tr denotes the matrix trace in EndC(En).
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The proof is a straightforward, but rather lengthy, calculation using the relations in the Clifford
algebra, so we omit it. We will use the notation dV for the normalized volume measure on S2n−1:

dV =
(n − 1)!

2πn

2n
k=1

(−1)k−1xkdx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dx2n (5)

=
(n − 1)!

2(2π i)n

n
k=1

z̄kdzk ∧ j≠k(dz j ∧ dz̄ j ) − zkdz̄k ∧ j≠k(dz j ∧ dz̄ j ). (6)

That dV is normalized follows from the fact that the 2n − 1-form ω on S2n−1, defined by

ω =

2n
k=1

(−1)k−1xkdx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dx2n,

satisfies that, if we change to spherical coordinates, the form r2n−1dr ∧ ω coincides with the
volume form on Cn . Since


C e−|z|2dm = π , where m denotes Lebesgue measure, Fubini’s

Theorem implies that


Cn e−|z|2dm = πn and

πn
=


Cn

e−|z|2dm =


∞

0
e−r2

r2n−1dr


S2n−1
ω =

(n − 1)!

2


S2n−1

ω.

Recall that, if g : Y → GLN (C) is a smooth mapping, the Chern–Simons character of g is an
element of the odd de Rham cohomology Hodd

d R (Y ), defined as

cs[g] =

∞
k=0

(k − 1)!

(2π i)k(2k − 1)!
tr(g−1dg)2k−1.

See more in Chapter 1.8 in [26]. We will denote the 2k − 1-degree term by cs2k−1[g]. The
cohomology class of cs[g] only depends on the homotopy class of g, so the Chern–Simons
character induces a group homomorphism cs : K1(C∞(Y )) → Hodd

d R (Y ).

Lemma 1.4. The mapping u defined in (4) satisfies

cs[u] = (−1)ndV .

Proof. Since the odd de Rham cohomology of S2n−1 is spanned by the volume form, it will be
sufficient to show that cs2n−1[u] = (−1)ndV . First, we observe the identity u∗du = −du∗u,
which follows from Proposition 1.1. This fact implies that

(u∗du)2n−1
= (−1)n−1u∗ du du∗ . . . du∗ du  

2n−1 factors

.

Our second observation is

u∗du = −
1
2
(z + z̄)(dz + dz̄) and du∗ du = −

1
2
(dz + dz̄)(dz + dz̄).

Therefore

(u∗du)2n−1
= −

1
2n (z + z̄)(dz + dz̄)2n−1.
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Because of Lemma 1.3, we have the equalities

tr((z + z̄)(dz + dz̄)2n−1) =


k∈Γ+

n

tr(z̄αk) +


k∈Γ−

n

tr(zαk)

=


k∈Γ+

n

(−1)n+12n−1(n − 1)!n!

n
k=1

z̄kdzk ∧ j≠k(dz j ∧ dz̄ j )

+


k∈Γ−

n

(−1)n2n−1(n − 1)!n!

n
k=1

zkdz̄k ∧ j≠k(dz j ∧ dz̄ j )

= (−1)n+12n−1(2n − 1)!

n
k=1


z̄kdzk ∧ j≠k(dz j ∧ dz̄ j ) − zkdz̄k ∧ j≠k(dz j ∧ dz̄ j )


=

(−1)n+12n(2π i)n(2n − 1)!

(n − 1)!
dV .

Finally, adding all results together we come to the conclusion of the lemma:

tr(u∗du)2n−1
= −

1
2n tr((z + z̄)(dz + dz̄)2n−1) = (−1)n (2π i)n(2n − 1)!

(n − 1)!
dV . �

To generalize the construction of u to an arbitrary manifold, we need to cut down u at
“infinity”. We define the smooth function ξ0 : [0, ∞) → R as

ξ0(x) :=


e
−

4
x2 , x > 0

0, x = 0,

and the smooth function ξ : S2n−1
→ Cn by

ξ(z) := ξ0(|1 − Re (z1)|)z + (ξ0(|1 − Re (z1)|) − 1, 0, 0, . . . , 0) .

By standard methods, it can be proved that, for any natural number k and any vector fields
X1, X2, . . . , Xl on S2n−1, the function ξ satisfies

|ξ(z) − (−1, 0, . . . , 0)| = O(|1 − Re (z1)|
k) (7)

and

|X1 X2 · · · Xlξ(z)| = O(|1 − Re (z1)|
k) as z → (1, 0, . . . , 0). (8)

Furthermore, the length of ξ(z) is given by

|ξ(z)|2 = 2(Re (z1) + 1)(ξ0(|1 − Re (z1)|)
2
− ξ0(|1 − Re (z1)|)) + 1,

so |ξ(z)| > 0 for all z ∈ S2n−1.
Using the function ξ , we define the smooth function ũ : S2n−1

→ GL2n−1(C) by

ũ(z) :=
1
2
(e1,+ + e1,−)(ξ(z)+ + ξ(z)−).

The function ũ is well defined, since

ũ(z)∗ũ(z) = |ξ(z)|2 > 0.
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Observe that we may express ũ in terms of u as

ũ(z) = ξ0(|1 − Re (z1)|)(u(z) − 1) + 1.

If we choose a diffeomorphism τ : B2n−1 ∼= S2n−1
\ {(1, 0, . . . , 0)}, Eqs. (7) and (8) imply

that the function τ ∗ũ can be considered as a smooth function B2n−1 → GL2n−1(C) such that
τ ∗ũ − 1 vanishes to infinite order at the boundary of B2n−1. The particular choice of τ as the
stereographic projection

τ(y) :=


2|y|

2
− 1, 2


1 − |y|2 y


will give a function τ ∗ũ of the form

τ ∗ũ(y) = e
−

1
(1−|y|2)2 (u(τ (y)) − 1) + 1

=
e
−

1
(1−|y|2)2

2
(e1,+ + e1,−)(τ (y)+ + τ(y)−) + 1 − e

−
1

(1−|y|2)2 .

Lemma 1.5. There is a homotopy of smooth functions S2n−1
→ GL2n−1(C) between ũ and u.

Therefore cs[ũ] − cs[u] is an exact form.

Proof. We can take the homotopy w : S2n−1
× [0, 1] → GL2n−1(C) as

w(z, t) = ξt (|1 − Re (z1)|)(u(z) − 1) + 1,

where

ξt (x) := e
−

4(1−t)
x2 .

Clearly, w : S2n−1
× [0, 1] → GL2n−1(C) is a smooth function, and w(z, 0) = ũ(z) and

w(z, 1) = u(z). �

In the general case, let Y be a compact, connected, orientable manifold of odd dimension
2n − 1. If we take an open subset U of Y with coordinates (xi )

2n−1
i=1 such that

U =


x :

2n−1
i=1

|xi (x)|2 < 1


,

the coordinates define a diffeomorphism ν : U ∼= B2n−1. We can define the functions g, g̃ : Y →

GL2n−1(C) by

g(x) :=


u(τν(x)) for x ∈ U
1 for x ∉ U

(9)

g̃(x) :=


ũ(τν(x)) for x ∈ U
1 for x ∉ U.

(10)

If we let ν̃ : Y → S2n−1 be the Lipschitz continuous function defined by

ν̃(x) =


τ(ν(x)) for x ∈ U
(1, 0, . . . , 0) for x ∉ U,

(11)
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the functions g̃ and g can be expressed as g = ν̃∗u and g̃ = ν̃∗ũ. The function g̃ is smooth, and
the function g is Lipschitz continuous.

Theorem 1.6. Denoting the normalized volume form on Y by dVY , the function g̃ satisfies

cs[g̃] = (−1)ndVY , (12)

in Hodd
d R (Y ). Thus, if f : X → Y is a smooth mapping,

deg( f ) = (−1)n


X
f ∗cs[g̃].

Proof. By Lemmas 1.4 and 1.5, we have the identities
Y

cs[g̃] =


U

cs2n−1[g̃] =


U

ν̃∗cs2n−1[ũ]

=


S2n−1

cs2n−1[ũ] =


S2n−1

cs2n−1[u] = (−1)n .

Therefore, we have the identity cs2n−1[g̃] = (−1)ndVY . Since cs[g̃]−cs2n−1[g̃] is an exact form
on U and vanishes to infinite order at ∂U , the theorem follows. �

2. Toeplitz operators and their index theory

In this section, we will give the basics of integral representations of holomorphic functions
and the Henkin–Ramirez integral representation; we will take the facts from [11,16,21] that are
relevant for our purposes. After that, we will review the theory of Toeplitz operators on the
Hardy space on the boundary of a strictly pseudo-convex domain. We will let M denote a Stein
manifold, and we will assume that Ω ⊆ M is a relatively compact, strictly pseudo-convex domain
with smooth boundary.

Consider the Hilbert space L2(∂Ω), in some Riemannian metric on ∂Ω . We will use the
notation H2(∂Ω) for the Hardy space, which is defined as the space of functions in L2(∂Ω)

with holomorphic extensions to Ω . The subspace H2(∂Ω) ⊆ L2(∂Ω) is a closed subspace
so there exists a unique orthogonal projection P∂Ω : L2(∂Ω) → H2(∂Ω) called the Szegö
projection. We will consider the Henkin–Ramirez projection, see [15,20] and the generalization
in [16] to Stein manifolds, which we will denote by PH R : L2(∂Ω) → H2(∂Ω) and call the
HR projection. The HR projection is not necessarily orthogonal, but is often possible to calculate
explicitly, see [21], and easier to estimate. We will briefly review its construction in the case
M = Cn following Chapter VII of [21]. The construction of the HR projection on a general
Stein manifold is somewhat more complicated, but the same estimates hold, so we refer the
reader to the construction in [16].

The kernel of the HR projection should be thought of as the first terms in a Taylor expansion
of the Szegö kernel. This idea is explained in [17]. The HR kernel contains the most singular
part of the Szegö kernel, and the HR kernel can be very explicitly estimated at its singularities.
This is our reason to use the HR projection instead of the Szegö projection. If Ω is defined by the
strictly pluri-subharmonic function ρ, a function Φ = Φ(w, z) is defined as the smooth global
extension of the Levi polynomial

F(w, z) :=

n
j=1

∂ρ

∂w j
(w)(w j − z j ) −

1
2

n
j,k=1

∂2ρ

∂w j∂wk
(w)(w j − z j )(wk − zk)
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from the diagonal in Ω×Ω to the whole of Ω×Ω ; see more in Chapter V.1.1 and Chapter VII.5.1
of [21]. If we take c > 0 such that ∂∂̄ρ ≥ c, there is an ε > 0 such that

2Re Φ(w, z) ≥ ρ(w) − ρ(z) + c|z − w|
2, for |z − w| < ε, (13)

see more in equation 1.6, Chapter V.1.1 of [21]. By Lemma 1.5 of Chapter VII of [21], the
function Φ satisfies the following estimate:

∂Ω

dV (w)

|Φ(w, z)|n+β
. 1, (14)

where dV denotes the volume measure on ∂Ω if β < 0, and a similar estimate with the roles of z
and w interchanged. Here we used the standard notation a . b for the statement that there exists
a constant C > 0 such that a ≤ Cb.

By Theorem 3.6, Chapter VII of [21] we can associate with Φ a function H∂Ω in Ω × Ω
holomorphic in its second variable such that, if g ∈ L1(Ω) is holomorphic, it has the integral
representation

g(z) =


∂Ω

H∂Ω (w, z) f (w)dV (w).

For the function H∂Ω , the estimate

|H∂Ω (z, w)| . |Φ(w, z)|−n, (15)

holds in ∂Ω × ∂Ω ; see more in Proposition 3.1, Chapter VII of [21]. Since Φ satisfies the
estimate (13), where c is the infimum of ∂∂̄ρ, the construction of an HR projection does
give an L2-bounded projection for strictly pseudo-convex domains. If Ω is weakly pseudo-
convex, the situation is more problematic and not that well understood, partly due to problems
estimating solutions to the ∂̄-equation in weakly pseudo-convex domains. By Proposition 3.8 of
Chapter VII.3.1 in [21], the kernel H∂Ω satisfies the estimate

|H∂Ω (z, w) − H∂Ω (w, z)| . |Φ(z, w)|−n+1/2. (16)

The estimate (16) will be crucial when proving that P∂Ω − PH R is in the Schatten class. The
kernel H∂Ω determines a bounded operator PH R on L2(∂Ω) by Theorem 3.6 of Chapter VII.3
in [21]. Since the range of PH R is contained in H2(∂Ω) and g = PH Rg for any g ∈ H2(∂Ω), it
follows that PH R : L2(∂Ω) → H2(∂Ω) is a projection.

We will now present some facts about Toeplitz operators on the Hardy space of a relatively
compact strictly pseudo-convex domain Ω in a complex manifold M . Our operators are
associated with the Szegö projection since the theory becomes somewhat more complicated
when a non-orthogonal projection is involved. For any dimension N , we denote by C(∂Ω , MN )

the C∗-algebra of continuous functions ∂Ω → MN , the algebra of complex N × N -matrices.
The algebra C(∂Ω , MN ) has a representation π : C(∂Ω , MN ) → B(L2(∂Ω) ⊗ CN ) which is
given by pointwise multiplication. We define the linear mapping

T : C(∂Ω , MN ) → B(H2(∂Ω) ⊗ CN ), a → P∂Ωπ(a)P∂Ω .

Here, we identify P∂Ω with the projection L2(∂Ω) ⊗ CN
→ H2(∂Ω) ⊗ CN . An operator of

the form T (a) is called a Toeplitz operator on ∂Ω . Toeplitz operators are well studied; see for
instance [6,9,13] and [22]. The representation π satisfies [P∂Ω , π(a)] ∈ K(L2(∂Ω) ⊗ CN ) for
any a ∈ C(∂Ω , MN ); see for instance [6] or Theorem 3.1 below. Here, we use the symbol K to
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denote the algebra of compact operators. The fact that P∂Ω commutes with continuous functions
up to a compact operator implies the property

T (ab) − T (a)T (b) ∈ K(H2(∂Ω) ⊗ CN ). (17)

Furthermore, T (a) is compact if and only if a = 0. Let us denote the Calkin algebra B(H)/K(H)

by C(H) and the quotient mapping B(H) → C(H) by q. Eq. (17) implies that the mapping

β := q ◦ T : C(∂Ω , MN ) → C(H2(∂Ω) ⊗ CN )

is an injective ∗-homomorphism.
By the Boutet de Monvel index formula, from [6], if the symbol a is invertible and smooth,

the index of the Toeplitz operator T (a) has the analytic expression

ind (T (a)) = −


∂Ω

cs[a] ∧ T d(Ω); (18)

see more in Theorem 1 in [6], and the remarks thereafter. The mapping a → ind (T (a)),
defined on functions a : ∂Ω → GLN (C), is homotopy invariant, so it extends to a mapping
ind : K1(C∞(∂Ω)) → Z. Here, K1(C∞(∂Ω)) denotes the odd K -theory of the Frechet
algebra C∞(∂Ω), which is defined as homotopy classes of invertible matrices with coefficients
in C∞(∂Ω); see more in [5].

Theorem 2.1. Suppose that Ω ⊆ M is a relatively compact strictly pseudo-convex bounded
domain with smooth boundary, Y is a compact, orientable manifold of dimension 2n − 1, and
g : Y → GL2n−1(C) is the mapping defined in (10). If f : ∂Ω → Y is a continuous function,
then

deg( f ) = (−1)n+1ind (P∂Ωπ(g ◦ f )P∂Ω ). (19)

Proof. If we assume that f is smooth, the index formula of Boutet de Monvel, see above in
Eq. (18), implies that the index of P∂Ωπ(g ◦ f )P∂Ω satisfies

ind (P∂Ωπ(g ◦ f )P∂Ω ) = −


∂Ω

f ∗cs[g̃] ∧ T d(Ω) = −


∂Ω

f ∗cs[g̃] = (−1)n+1 deg( f ),

where the first equality follows from g and g̃ being homotopic, see Lemma 1.5, and the last two
equalities follow from Theorem 1.6. The general case follows from the fact that both hand sides
of (19) is homotopy invariant. �

Theorem 2.1 does in some cases hold with even looser regularity conditions on f . Since both
sides of Eq. (19) are homotopy invariants, the theorem holds for any class of functions which
are homotopic to smooth functions in such sense that both sides in (19) are well defined and
depend continuously on the function. For instance, if Ω is a bounded symmetric domain, we
may take f : ∂Ω → Y to be in the V M O-class. It follows from [3] that, if w : ∂Ω → GLN
has vanishing mean oscillation and Ω is a bounded symmetric domain, the operator P∂ΩwP∂Ω

is Fredholm. By Brezis and Nirenberg [8], the degree of a V M O-function is well defined and
depends continuously on f without any restriction on the geometry. To be more precise, there
is a one-parameter family ( ft )t∈(0,1) ⊆ C(∂Ω , Y ) such that ft → f in V M O when t → 0
and deg( f ) is defined as deg( ft ) for t small enough. Since the index of a Fredholm operator is
homotopy invariant, the degree of a function f : ∂Ω → Y in V M O satisfies

deg f = (−1)n+1ind (P∂Ωπ(g ◦ ft )P∂Ω ) = (−1)n+1ind (P∂Ωπ(g ◦ f )P∂Ω ).
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Our next task will be calculating the index of Toeplitz operators with non-smooth symbol. For
p ≥ 1, let L p(H) ⊆ B(H) denote the ideal of Schatten class operators on a separable Hilbert
space H, so T ∈ L p(H) if and only if tr((T ∗T )p/2) < ∞. An exact description of integral
operators belonging to this class exists only for p = 2. However, for p > 2, there exists a
convenient sufficient condition on the kernel, found in [24]. We will return to this subject a little
later. Suppose that π : A → B(H) is a representation of a C-algebra A and P is a projection
such that [P, π(a)] ∈ L p(H) for all a ∈ A and P − P∗

∈ L p(H). Atkinson’s Theorem implies
that, if a is invertible, Pπ(a)P is Fredholm. The operator F := 2P − 1 has the properties

F2
= 1 and F − F∗, [F, π(a)] ∈ L p(H). (20)

If π and F satisfy the conditions in Eq. (20), the pair (π, F) is called a p-summable odd
Fredholm module. If the pair (π, F) satisfies the requirement in Eq. (20) but with L p(H) replaced
by K(H), the pair (π, F) is a bounded odd Fredholm module. For a more thorough presentation
of Fredholm modules, see, for example, Chapters VII and VIII of [5]. Since our focus is on
Toeplitz operators, we will call (π, P) a Toeplitz pair if (π, 2P − 1) is a bounded odd Fredholm
module, and (π, P) is said to be p-summable if (π, 2P − 1) is.

The condition that L := P∗
− P ∈ L p(H) can be interpreted in terms of the orthogonal

projection P̃ to the Hilbert space P H. Using that P̃ P = P and P P̃ = P̃ , we obtain the identity

P̃ L = P̃ P∗
− P̃ P = P̃ − P. (21)

Thus the condition P∗
− P ∈ L p(H) is equivalent to the property P̃ − P ∈ L p(H).

A Toeplitz pair (π, P) over a topological algebra A defines a mapping a → ind (Pπ(a)P)

on the invertible elements of A ⊗ MN for any N . Since the index is homotopy invariant, the
association a → ind (Pπ(a)P) induces the mapping ind : K1(A) → Z, where K1(A) denotes
the odd K -theory of A; see [5].

Connes placed the index theory for p-summable Toeplitz pairs in a suitable homological
picture using cyclic homology in [10]. We will consider Connes’ original definition of cyclic
cohomology, which simplifies the construction of the Chern–Connes character. The notation A⊗k

will be used for the kth tensor power of A. The Hochschild differential b : A⊗k
→ A⊗k−1 is

defined as

b(x0 ⊗ x1 ⊗ · · · ⊗ xk ⊗ xk+1) := (−1)k+1xk+1x0 ⊗ x1 ⊗ · · · ⊗ xk

+

k
j=0

(−1) j x0 ⊗ · · · ⊗ x j−1 ⊗ x j x j+1 ⊗ x j+2 ⊗ · · · ⊗ xk+1.

The cyclic permutation operator λ : A⊗k
→ A⊗k is defined by

λ(x0 ⊗ x1 ⊗ · ⊗ xk) = (−1)k xk ⊗ x0 ⊗ · · · ⊗ xk−1.

The complex Ck
λ(A) is defined as the space of continuous linear functionals µ on A⊗k+1 such

that µ ◦ λ = µ. The Hochschild coboundary operator µ → µ ◦ b makes C∗
λ(A) into a complex.

The cohomology of the complex C∗
λ(A) will be denoted by HC∗(A), and is called the cyclic

cohomology of A. There is a filtration on cyclic cohomology coming from a linear mapping
S : HCk(A) → HCk+2(A), which is called the suspension operator or the periodicity operator.
For a definition of the periodicity operator, see [9].
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The additive pairing between HC2k+1(A) and the odd K -theory K1(A) is defined by

⟨µ, u⟩k := dk (µ ⊗ tr)

(u−1
− 1) ⊗ (u − 1) ⊗ · · · ⊗ (u−1

− 1) ⊗ (u − 1)  
2k+2 factors

 ,

where we choose the same normalization constant dk as in Proposition 3 of Chapter III.3 of [9]:

dk :=
2−(2k+1)

√
2i

Γ


2k + 3
2

−1

.

The choice of normalization implies that, for a cohomology class in HC2k+1(A) represented by
the cyclic cocycle µ, the pairing satisfies

⟨Sµ, u⟩k+1 = ⟨µ, u⟩k;

see Proposition 3 in Chapter III.3 of [9]. Following Definition 3 of Chapter IV.1 of [9], we define
the Connes–Chern character of a p-summable Toeplitz pair as the cyclic cocycle:

ch2k+1(π, P)(a0, a1, . . . , a2k+1) := ck tr(π(a0)[P, π(a1)] · · · [P, π(a2k+1)]),

for 2k + 1 ≥ p, where

ck := −
√

2i22k+1Γ


2k + 3
2


.

This choice of normalization constant implies that

Sch2k+1(π, P) = ch2k+3(π, P),

by Proposition 2 in Chapter IV.1 of [9].

Theorem 2.2 (Proposition 4 of Chapter IV.1 of [9]). If (π, P) is a p-summable Toeplitz pair
over A, 2k+1 ≥ p, and a is invertible in A⊗MN , the index of Pπ(a)P : P H⊗CN

→ P H⊗CN

may be expressed as

ind (Pπ(a)P) = ⟨ch2k+1(π, P), a⟩k

= −tr

π(a−1)[P, π(a)][P, π(a−1)] · · · [P, π(a−1)][P, π(a)]


= −tr(P − π(a−1)Pπ(a))2k+1.

The role of the periodicity operator S in the context of index theory is to extend index formulas
to larger algebras. Suppose that µ is a cyclic k-cocycle on an algebra A which is a dense ∗-
subalgebra of a C∗-algebra A. As is explained in [9] for functions on S1 and in [23] for operator-
valued symbols, the cyclic k + 2m-cocycle Smµ can be extended to a cyclic cocycle on a larger
∗-subalgebra A ⊆ A′

⊆ A. When µ is the cyclic cocycle f0 ⊗ f1 →


f0d f1 on C∞(S1),
the 2m + 1-cocycle Smµ extends to Cα(S1) whenever α(2m + 1) > 1 by Proposition 3 in
Chapter III2.α of [9] and a formula for Smµ is given above in (1). Cyclic cocycles of the form
µ = ch(π, P) appear in index theory, and the periodicity operator can be used to extend index
formulas to larger algebras.

The index formula of Theorem 2.2 holds for Toeplitz operators under a Schatten class
condition, and to deal with this condition we will need the following theorem of Russo [24]
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to give a sufficient condition on an integral operator for it to be Schatten class. Let X denote
a σ -finite measure space. As in [4], for numbers 1 ≤ p, q < ∞, the mixed (p, q)-norm of a
function k : X × X → C is defined by

∥k∥p,q :=


X


X

|k(x, y)|pdx

 q
p

dy

 1
q

.

We denote the space of measurable functions k : X × X → C with finite mixed (p, q)-norm by
L(p,q)(X × X). By Theorem 4.1 of [4], the space L(p,q)(X × X) becomes a Banach space in the
mixed (p, q)-norm which is reflexive if 1 < p, q < ∞.

The Hermitian conjugate of the function k is defined by k∗(x, y) := k(y, x). Clearly, if a
bounded operator K has integral kernel k, the Hermitian conjugate K ∗ has integral kernel k∗.

Theorem 2.3 (Theorem 1 in [24]). Suppose that K : L2(X) → L2(X) is a bounded operator
given by an integral kernel k. If 2 < p < ∞, then

∥K∥L p(L2(X)) ≤ (∥k∥p′,p∥k∗
∥p′,p)

1/2, (22)

where p′
= p/(p − 1).

In the statement of the theorem in [24], the assumption that k ∈ L2(X × X) is made. This
assumption implies that K is Hilbert–Schmidt and K ∈ L p(L2(X)) for all p > 2, so for our
purposes it is not interesting. But since L2-kernels are dense in L(p,q), the non-commutative
Fatou Lemma, see Theorem 2.7d of [25], implies (22) for any k for which the right-hand side of
(22) is finite. Using Theorem 2.3, we obtain the following formula for the trace of the product of
integral operators.

Theorem 2.4. Suppose that K j : L2(X) → L2(X) are operators with integral kernels k j for
j = 1, . . . , m such that ∥k j∥p′,p, ∥k∗

j ∥p′,p < ∞ for certain p > 2. Then, for m ≥ p, the
operator K1 K2 · · · Km is a trace class operator, and we have the trace formula

tr(K1 K2 · · · Km) =


Xm


m

j=1

k j (x j , x j+1)


dx1dx2 · · · dxm,

where we identify xm+1 with x1.

Proof. The case p = m = 2 follows if, for any k1, k2 ∈ L2(X × X), we have the trace formula

tr(K L∗) =


X×X

k(x, y)l(x, y)dxdy.

Consider the sesquilinear form on L2(L2(X)) defined by

(K , L) := tr(K L∗) −


k(x, y)l(x, y)dxdy.

Since tr(K ∗K ) =


X×X |k(x, y)|2dxdy, the sesquilinear form satisfies (K , K ) = 0, and the
polarization identity implies that (K , L) = 0 for any K , L ∈ L2(L2(X)).

If the operators K j : L2(X) → L2(X) are Hilbert–Schmidt, or equivalently they satisfy
k j ∈ L2(X × X), we may take K = K1 and L∗

= K2 K3 · · · Km , so the case p = m = 2 implies
that the operators K1, K2, . . . , Km satisfy the statement of the theorem. In the general case, the
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theorem follows from the non-commutative Fatou Lemma, see Theorem 2.7d of [25], since L2

is dense in L p for p > 2. �

3. The Toeplitz pair on the Hardy space

As explained in Section 2, for the representation π : C(∂Ω) → B(L2(∂Ω)) and the Szegö
projection P∂Ω , the commutator [P∂Ω , π(a)] is compact for any continuous a. Thus (π, P∂Ω )

is a Toeplitz pair over C(∂Ω). To enable the use of the index theory of [9], we will show
that the Toeplitz pair (π, P∂Ω ) restricted to the subalgebra of Hölder continuous functions
Cα(∂Ω) ⊆ C(∂Ω) becomes p-summable. These results will give us analytic degree formulas
for Hölder continuous mappings.

Theorem 3.1. If Ω is a relatively compact strictly pseudo-convex domain in a Stein manifold
of complex dimension n, and P denotes either PH R or P∂Ω , the operator [P, π(a)] belongs to
L p(L2(∂Ω)) for a ∈ Cα(∂Ω) and for all p > 2n/α.

The proof will be based on Theorem 2.3. We will start our proof of Theorem 3.1 by some
elementary estimates. We define the measurable function kα : ∂Ω × ∂Ω → C by

kα(z, w) :=
|z − w|

α

|Φ(w, z)|n
.

Lemma 3.2. The function kα satisfies

kα(z, w) . |Φ(w, z)|−(n−
α
2 )

for |z − w| < ε.

Proof. By (13), we have the estimate

|z − w|
α . |Φ(w, z)|α/2.

From this estimate, the lemma follows. �

We will use the notation dV for the volume measure on ∂Ω .

Lemma 3.3. The function kα satisfies
∂Ω

|kα(z, w)|p′

dV (z) . 1


∂Ω

|kα(z, w)|p′

dV (w) . 1

whenever

(2n − α)p′ < 2n.

Proof. We will only prove the first of the estimates in the lemma. The proof of the second
estimate goes analogously. Using (13) for Φ, we obtain

∂Ω
|kα(z, w)|p′

dV (z) .


Br (w)

|kα(z, w)|p′

dV (z),
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since the function Φ satisfies |Φ(w, z)| > r2 outside Br (w). By Lemma 3.2, we can estimate the
kernel pointwise by Φ, so (14) implies that

Br (w)

|kα(z, w)|p′

dV (z) .


Br (w)

|Φ(w, z)|−p′(n−
α
2 )dV (z) . 1

if (n −
α
2 )p′ < n. �

Lemma 3.4. The function kα satisfies ∥kα∥p′,p < ∞ and ∥k∗
α∥p′,p < ∞ for p > 2n/α.

Proof. By the first estimate in Lemma 3.3, we can estimate the mixed norms of kα as

∥kα∥
p
p′,p . 1,

whenever (2n − α)p′ < 2n. The statement (2n − α)p′ < 2n is equivalent to

1
p

= 1 −
1
p′

<
α

2n
,

which is equivalent to p > 2n/α. Similarly, the second estimate in Lemma 3.3 implies that
∥k∗

α∥p′,p < ∞ under the same condition on p. �

Lemma 3.5. Suppose that a ∈ Cα(∂Ω), and let κa denote the integral kernel of [PH R, π(a)].
The kernel κa satisfies

|κa(z, w)| ≤ ∥a∥Cα(∂Ω)|kα(z, w)|, (23)

where ∥ · ∥Cα(∂Ω) denotes the usual norm in Cα(∂Ω).

Proof. The integral kernel of [PH R, π(a)] is given by

κa(z, w) = (a(z) − a(w))H∂Ω (w, z).

Since a is Hölder continuous and H∂Ω satisfies Eq. (15), the estimate (23) follows. �

Lemma 3.6. The HR projection PH R satisfies PH R − P∗

H R ∈ Lq(L2(∂Ω)) for any q > 2n.
Therefore, PH R − P∂Ω ∈ Lq(L2(∂Ω)) for any q > 2n.

Proof. Let us denote the kernel of the operator PH R − P∗

H R by b. By (16), we have the pointwise
estimate |b(z, w)| . |Φ(w, z)|−n+1/2. Applying Lemma 3.4 with α = 0 and p′ such that
(n − 1/2)q ′

= np′, we obtain the inequality ∥b∥q ′,q < ∞ for any q > 2n. The fact that
PH R − P∂Ω ∈ Lq(L2(∂Ω)) follows now from (21). �

Proof of Theorem 3.1. By Lemma 3.5, the integral kernel κa of [PH R, π(a)] satisfies |κa | ≤

∥a∥Cα(∂Ω)kα . Theorem 2.3 implies the estimate

∥[PH R, π(a)]∥L p(L2(∂Ω)) ≤ ∥a∥Cα(∂Ω)(∥kα∥p′,p∥k∗
α∥p′,p)

1/2.

By Lemma 3.4, ∥kα∥p′,p, ∥k∗
α∥p′,p < ∞ for p > 2n/α, so [PH R, π(a)] ∈ L p(L2(∂Ω)) for

p > 2n/α. By Lemma 3.6, PH R − P∂Ω ∈ L p(L2(∂Ω)), so

[P∂Ω , π(a)] = [PH R, π(a)] + [P∂Ω − PH R, π(a)] ∈ L p(L2(∂Ω))

for p > 2n/α, and the proof of the theorem is complete. �
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4. The index and degree formula for boundaries of strictly pseudo-convex domains in Stein
manifolds

We may now combine our results on summability of the Toeplitz pairs (PH R, π) and (P∂Ω , π)

into index theorems and degree formulas. The index formula will be proved using the index
formula of Connes; see Theorem 2.2.

Theorem 4.1. Suppose that Ω is a relatively compact strictly pseudo-convex domain with
smooth boundary in a Stein manifold of complex dimension n, and denote the corresponding
HR kernel by H∂Ω and the Szegö kernel by C∂Ω . If a : ∂Ω → GLN is Hölder continuous with
exponent α, then for 2k + 1 > 2n/α the index formulas hold:

ind (P∂Ωπ(a)P∂Ω ) = ind (PH Rπ(a)PH R) (24)

= −


∂Ω2k+1

tr


2k
j=0

(1 − a(z j−1)
−1a(z j ))H∂Ω (z j−1, z j )


dV 2k+1 (25)

= −


∂Ω2k+1

tr


2k
j=0

(1 − a(z j−1)
−1a(z j ))C∂Ω (z j−1, z j )


dV 2k+1, (26)

where the integrals in (25) and (26) converge.

Proof. By Theorem 2.2, we have

ind (P∂Ωπ(a)P∂Ω ) = −tr(P∂Ω − π(a−1)P∂Ωπ(a))2k+1,

and by Theorem 2.4 the trace has the form

−tr(P∂Ω − π(a−1)P∂Ωπ(a))2k+1

= −


∂Ω2k+1

tr


2k
j=0

(1 − a(z j−1)
−1a(z j ))C∂Ω (z j−1, z j )


dV 2k+1.

Similarly, the index for PH Rπ(a)PH R is calculated. The theorem follows from the identity
ind (P∂Ωπ(a)P∂Ω ) = ind (PH Rπ(a)PH R), since Lemma 3.6 implies that P∂Ωπ(a)P∂Ω −

PH Rπ(a)PH R is compact. �

Theorem 4.1 has an interpretation in terms of cyclic cohomology. Define the cyclic 2n − 1-
cocycle χ∂Ω on C∞(∂Ω) by

χ∂Ω :=

n
k=0

Skωk,

where ωk denotes the cyclic 2n − 2k − 1-cocycle given by the Todd class T dk(Ω) in degree 2k
as

ωk(a0, a1, . . . , a2n−2k−1) :=


∂Ω

a0da1 ∧ da2 ∧ · · · ∧ da2n−2k−1 ∧ T dk(Ω).

Similarly to Proposition 13, Chapter III.3 of [9], we have the following theorem.
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Theorem 4.2. The cyclic cocycle Smχ∂Ω defines the same cyclic cohomology class on C∞(∂Ω)

as

χ̃∂Ω (a0, a1, . . . , a2n+2m−1)

:=


∂Ω2n+2m−1

tr


a0(z0)

2n+2m−1
j=1

(a j (z j ) − a j (z j−1))C∂Ω (z j−1, z j )


dV,

where we identify z2n+2m−1 = z0. Furthermore, the cyclic cocycle χ̃∂Ω extends to a cyclic
2n + 2m − 1-cocycle on Cα(∂Ω) if m > (2n(1 − α) + α)/2α.

Returning to the degree calculations, to express the degree of a Hölder continuous function
we will use Theorems 2.1 and 4.1. In order to express the formulas in Theorem 4.1 directly in
terms of f , we will need some notation. Let ⟨·, ·⟩ denote the scalar product on Cn . The symmetric
group on m elements will be denoted by Sm . We will consider Sm as the group of bijections on
the set {1, 2, . . . , m}, and identify the element m + 1 with 1 in the set {1, 2, . . . , m}.

For 2l ≤ m, we will define a function εl : Sm → {0, 1, −1}, which we will refer to the
order parity. If σ ∈ Sm satisfies that there is an i ∈ {σ(1), σ (2), . . . σ (2l − 1), σ (2l)} such that
i + 1, i − 1 ∉ {σ(1), σ (2), . . . σ (2l − 1), σ (2l)}, we set εl(σ ) = 0. If σ does not satisfy this
condition, the order parity of σ is set as (−1)k , where k is the smallest number of transpositions
needed to map the set {σ(1), σ (2), . . . σ (2l − 1), σ (2l)}, with j identified with j + m, to a set of
the form { j1, j1 + 1, j2, j2 + 1, . . . , jl , jl + 1}, where 1 ≤ j1 < j2 < · · · < jl ≤ m.

Proposition 4.3. The function u satisfies

tr


2k

i=0

(1 − u(zi−1)
∗u(zi ))



=

2k+1
l=0


σ∈S2(2k+1)

(−1)l2n−l−1εl(σ )⟨zσ(1), zσ(2)⟩⟨zσ(3), zσ(4)⟩ · · · ⟨zσ(2l−1), zσ(2l)⟩,

where we identify zm with zm+2k+1 for m = 0, 1, . . . , 2k.

Proof. The product in the lemma satisfies the equalities

2k−1
i=1

(1 − u(zi−1)
∗u(zi )) =

2k−1
i=1


1 +

1
2
(zi−1,+ + z̄i−1,−)(zi,+ + z̄i,−)



=

2k−1
l=0


i1<i2<···<il

2−l
l

j=1


(zi j −1,+ + z̄i j −1,−)(zi j ,+ + z̄i j ,−)


.

The lemma follows from these equalities and degree reasons. �

Let us choose an open subset U ⊆ Y such that there is a diffeomorphism ν : U → B2n−1.
Let ν̃ be as in Eq. (11), and define the function f̃ : ∂Ω2k+1

→ C by

f̃ (z0, z1, . . . , z2k)

:=


σ∈S2(2k−1)

2k−1
l=0

(−1)l2n−l−1εl(σ )

l
i=1

⟨ν̃( f (zσ(2 j−1))), ν̃( f (zσ(2 j)))⟩, (27)

where we identify zm with zm+2k+1.
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Theorem 4.4. Suppose that Ω is a relatively compact strictly pseudo-convex domain with
smooth boundary in a Stein manifold of complex dimension n, and that Y is a connected,
compact, orientable, Riemannian manifold of dimension 2n − 1. If f : ∂Ω → Y is a Hölder
continuous function of exponent α, the degree of f can be calculated by

deg( f ) = (−1)n
⟨χ̃∂Ω , g ◦ f ⟩k

= (−1)n


∂Ω2k+1
f̃ (z0, z1, . . . , z2k)

2k
j=0

H∂Ω (z j−1, z j )dV

= (−1)n


∂Ω2k+1
f̃ (z0, z1, . . . , z2k)

2k
j=0

C∂Ω (z j−1, z j )dV

whenever 2k + 1 > 2n/α.

Proof. By Theorems 2.1 and 4.1, we have the equality

deg( f ) = (−1)n


∂Ω2k+1
tr


2k
j=0

(1 − g( f )(z j )
∗g( f )(z j+1))H∂Ω (z j−1, z j )


dV .

Proposition 4.3 implies that

tr


2k
j=0

(1 − g( f )(z j )
∗g( f )(z j+1))


= f̃ (z0, z1, . . . , z2k),

from which the theorem follows. �

Let us end this paper by a remark on the restriction in Theorem 4.4 that the domain of f
must be the boundary of a strictly pseudo-convex domain in a Stein manifold. The condition
on a manifold M to be a Stein manifold of complex dimension n implies that M has the
same homotopy type as an n-dimensional CW -complex, since the embedding theorem for Stein
manifolds, see for instance [12], implies that a Stein manifold of complex dimension n can be
embedded in C2n+1, and by Theorem 7.2 of [18] an n-dimensional complex submanifold of
complex Euclidean space has the same homotopy type as a CW -complex of dimension n.

Conversely, if X is a real analytic manifold, then, for any choice of metric on X , the co-
sphere bundle S∗ X is diffeomorphic to the boundary of a strictly pseudo-convex domain in a
Stein manifold; see for instance Proposition 4.3 of [14] or Chapter V.5 of [12]. So the degree
of f coincides with the mapping H2n−1

d R (S∗Y ) → H2n−1
d R (S∗ X) that f induces under the Thom

isomorphism Hn
d R(X) ∼= H2n−1(S∗ X). Thus the degree of a function f : X → Y can be

expressed using our methods for any real analytic X .
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