
Governing Bot-as-a-Service in Sustainability Platforms–Issues and
Approaches

Downloaded from: https://research.chalmers.se, 2024-03-13 11:08 UTC

Citation for the original published paper (version of record):
Truong, H., Phung, P., Dustdar, S. (2012). Governing Bot-as-a-Service in Sustainability
Platforms–Issues and Approaches. Procedia Computer Science, 10: 561-568.
http://dx.doi.org/10.1016/j.procs.2012.06.072

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

 Procedia Computer Science 10 (2012) 561 – 568

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.06.072

The 9th International Conference on Mobile Web Information Systems (MobiWIS)

Governing Bot-as-a-Service in Sustainability Platforms –
Issues and Approaches�

Hong-Linh Truonga, Phu H. Phungb, Schahram Dustdara

aDistributed Systems Group, Vienna University of Technology, Austria
bProSec Security Group, Chalmers University of Technology, Sweden

Abstract

The emerging cloud computing models for Internet-of-Things have fostered the development of lightweight applica-

tions using cloud services for monitoring and optimizing devices and equipment hosted in distributed facilities. Such

applications – called bots in our work – can be composed and deployed with multiple types of governance policies from

cloud platforms to distributed hosting environments and they can access not only local data and devices but also cloud

data and features. Therefore, it is a great challenge to govern them. In this paper, we discuss governance issues and

state-of-the-art on supporting the emerging Bot-as-a-Service in sustainability governance platforms. Based on that we

outline our approaches to policy development and enforcement for the Bot-as-a-Service model.

Keywords: bot-as-a-service, governance, policy enforcement, runtime monitoring, cloud computing

1. Introduction

Advances in networking, sensor, data management and cloud computing techniques have fostered the

integration of Internet-of-Things into cloud platforms for facility management. Cloud-based sustainability

governance platforms [1] have been developed and provided under the cloud computing models for facility

monitoring and management. Various sensors and applications for analyzing diverse types of data and for

managing devices and equipment for different stakeholders have been introduced in such platforms.

1.1. Motivation

While many techniques have concentrated on sensor integration, data integration and data analytics on

top of these platforms [2], we are interested in the development, deployment and execution of (intelligent and

context-aware) lightweight applications that can be developed, composed and deployed on-the-fly based on

context-specific situations captured from the monitoring and analysis of near-realtime sensor data. Together

with techniques for connecting and monitoring devices and equipment, which are concentrated on getting

information from these devices and equipment, such lightweight applications can be used to maintain and

�The work mentioned in this paper is partially funded by the Pacific Control Cloud Computing Lab and by the European WebSand

project. We thank our colleagues in the Pacific Control Cloud Computing Lab for fruitful discussion about bots and their applications.

Email addresses: truong@infosys.tuwien.ac.at (Hong-Linh Truong), phung@chalmers.se (Phu H. Phung),

dustdar@infosys.tuwien.ac.at (Schahram Dustdar)

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

562 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

optimize these devices and equipment. They are crucial as nowadays several types of equipment and devices

in large-scale facilities, such as freezers, chillers, and backup power systems, are expensive to maintain

and optimize. With a huge amount of monitoring data managed in sustainability governance platforms

and multiple stakeholders (e.g., manufactures, maintainers, and operators) using such platforms to monitor

and maintain their devices and equipment, it is possible for these applications to automatically learn the

operational history of, detect errors of, and to automate repair and support of devices and equipment.

However, these lightweight applications can be developed and deployed to cloud platforms by third-

parties, can be created by composing existing applications and functions offered by cloud services and

then configured and deployed to facility sites on-the-fly, or may be pre-installed in hosting environments

deployed at facility sites while being reconfigured for a specific context. Thus the development, deployment

and execution of these applications must be monitored and controlled at runtime to ensure they comply with

different governance policies. In our work, these lightweight applications are called bots and they can be

developed and executed in the cloud via a Bot Platform-as-a-Service (BoP), offering the Bot-as-a-Service

(BaaS) business model for sustainability governance.

1.2. Related work

While many research efforts have concentrated on security for monitoring sensors and data protection

in the facility side, such as smart Grids [3], and in the cloud side [4, 5], very little effort has been spent

on understanding issues in governing such bots in the cloud. In fact, the concept of combining cloud

computing models and bots development has just been emerging: such concepts are not similar to, e.g.,

mobile agents and their applications for building management [6], due to the complexity and diversity

of cloud data, devices, equipment, and stakeholders, although the concept of BaaS will naturally be built

upon existing work. Related work on understanding governance issues either focus only on part of the

BaaS model (e.g., hosting environments for mobile agents [7] and application stores [8]) or one aspect of

governance issues (e.g., security [3, 9, 10], data access [11], or performance [12]). We do a comprehensive

review of several governance issues in different phases of bot development, deployment and execution in

clouds. Most importantly, we consider relevant governance issues in an emerging model - BaaS in which

governance issues span across layers and places as well as associated with business models in the cloud.

1.3. Contributions and paper structure

In this paper, we systematically motivate the need for policy enforcement for bots in BoP. Our con-

tributions are (i) a deep analysis of the scenarios of the bot-as-a-service architecture and its governance

issues, (ii) a review of the state-of-the-art enforcement techniques in literature and identified the emerging

issues that have not been solved, and (iii) approaches to the policy definition, management, and enforcement

framework for the identified requirements and potential future developments.

The rest of this paper is organized as follows: Section 2 overviews BoP. Section 3 characterizes compo-

nents and interactions in BoP. Section 4 discusses governance issues and state-of-the-art. Section 5 presents

our approaches to the governance of bots. We conclude the paper and outline our future work in Section 6.

2. Overview of Bot Platform-as-a-Service

We are focusing on facility monitoring in smart cities, such as using the Galaxy platform (http:

//pacificcontrols.net/products/galaxy.html). In our work, several sensors are deployed in dif-

ferent buildings to monitor building Mechanical, Electrical and Plumbing (MEP) systems and surrounding

environments, such as temperature and air quality. In a cloud facility management model, at each facility

site, sensor data are aggregated and significant information is propagated to cloud services where online

monitoring is performed. At the moment, most of monitoring tasks for devices and equipment are con-

ducted by operators who are going to fix problems detected in facilities. In a recent emerging concept,

calling intelligent and context-aware bots, bots can be deployed at the facility sites to detect problems and

fix them automatically.

563 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

Sensor/Actuator
Integration Gateway

Bot Hosting
Environment

Sensor/Actuator
Integration Gateway

Building MEP

sensory data

sensory data

bot bot bot

control commands

control commands

Cloud-based Sustainability
 Monitoring Service

sensory data

Cloud-based
Bot-as-a-Service

Bot Store

manage bots

downloaded bots

Building MEP

Building MEP

Building MEP

deploy bots

govern bots

send bots

sustainability governance platform

monitor buildings

send bots

building

Third-party
Bot Store

downloaded bots

facility site

Fig. 1. High level view of Bot Platform-as-a-Service (BoP) consisting of bots, Bot Store, BaaS, and Bot Hosting Environment

A bot is a lightweight application that is executed by a hosting environment. In real systems, bot can

be built based on mobile agent platforms, OSGi (http://http://www.osgi.org), or plain Java objects.

To support the development and execution of bots in the cloud, a Bot Platform-as-a-Service (BoP) can be

provided. Figure 1 describes a high level view of BoP, including the following conceptual components:

• Bot-as-a-Service (BaaS): supports the development, composition of bots, management, and deploy-

ment of bots, and the definition and management of governance policies for bots.

• Bot Store: stores bots and templates for building bots. Bot Stores can be hosted by the sustainability

governance platform or third parties (e.g., a specific company which manages its chillers)

• Bot Hosting Environment: deploys, verifies and executes bots, and monitors bot execution.

Bots and BaaS interact with several other services, sensor/actuator integration gateways, devices and equip-

ment at the cloud and facility sides. For example, when the Monitoring Service detects a possible problem,

it can control BaaS to find suitable rules and algorithms to build a bot, which is deployed to the Bot Hosting

Environment to analyze device’s data and control the device. An important point is that, at runtime, bots

are instantiated based on existing problems and bots can be launched from bot stores in cloud service to bot

hosting environments at facility sites.

The BoP we present here conceptually describes how bots, BaaS, and other components in the cloud

platform and sensor integration gateways interact. From the implementation perspective, bots and their

hosting environments can be implemented using different frameworks, such as mobile agents, OSGi or

plain Java objects. For the sake of understanding general governance issues of BoP, we will not examine

languages and frameworks for bots as well the context-aware and intelligent capabilities of bots, but focus

on governance issues associated with BoP.

3. Characterizing Components and Interactions in Bot Platform-as-a-Service

In order to analyze possible issues in governing bots during their lifecycle – from the development

to the execution – it is important to understand requirements and scenarios for which bots are required.

In BoP described in Figure 1, the lifecycle of a bot has three main phases (i) Development – bots are

compiled from source code or bots are composed from existing objects/bots, (ii) Deployment – bots are

transferred from clouds to hosting environments for execution, and (iii) Execution – bots are running in

hosting environments. Due to the diversity of devices and equipment, on the one hand, multiple stakeholders

will develop different types of bots, specific for particular devices and equipment. On the other hand,

multiple stakeholders will have different service contracts for using bots. A single BoP must be able to

support such diverse stakeholders, bots, and hosting environments.

564 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

Phase Scenarios Governance support
Development Bots are written by third parties for

specific types of devices/equipment

and are stored either in cloud-based

Bot Store or third-party Bot Store

Bot integrity must be ensured. Many bots ser-

vice contract terms can only be defined for spe-

cific cases, e.g., which types of devices and data

analytics algorithms supported

Bots are composed, potentially from

other bots, by cloud consumers us-

ing BaaS

Governance policies for composite bots must be

compatible with bots to be composed.

Deployment Bots are deployed from Bot Stores to

Bot Hosting Environments.

Policies for bots are defined on the fly, e.g.

for specific hosting environments, devices, local

sensor data access and remote cloud features.

Bots are deployed to Bot Hosting

Environments on-the-fly by BaaS to

work with specific types of devices

We need to verify if bots are trusted and if bots

are really sent by trusted BaaS.

Execution Bots can only deal with specific de-

vices and can utilize data and ser-

vices from the cloud platform.

Access to specific types of data is monitored and

controlled.

Multiple bots are concurrent exe-

cuted

Bad performance of bots should not bring down

the hosting environment. Bot’s CPU and mem-

ory consumption must be controlled.

Table 1. Scenarios in the development, deployment, execution and dissolution of bots

Table 1 describes some representative scenarios in the development, deployment, and execution of bots.

In these scenarios, several governance supports are required. We categorize types of governance issues that

should be consider in BoP in the following:

1. System/network security and access control: protect systems and networks in order to prevent unau-

thorized access that can compromise BoP.

2. Application integrity and service verification: ensure that the bot content is sent by the trusted party

and is unchanged during bot transfer processes, e.g. from Bot Store to Bot Hosting Environment

3. Service contract management: due the pay-per-use model of cloud computing, bot capabilities are

depending on a service contract. This service contract can cover different terms related to, e.g., appli-

cation performance, and data acquisition and devices to be controlled.

4. System and application performance: ensure that the execution of bots will not prevent the correct

operation and the availability of hosting environments.

5. Data acquisition and control: Bots will access data from local hosting environments and sensor inte-

gration gateways as well as data from the cloud platform. Furthermore, bots will be able to control

building MEP (via actuators) and initiate certain features in the cloud platform (e.g., launch new bots

or escalate an emergency response processes).

Several governance supports require integrated solutions due to the intersection between cloud computing

model, mobile code, and Internet-of-thing. For example, except service contract management, most gover-

nance issues look similar to that for mobile code. However, we see that the issues of application performance

and cloud access are different, not to mention that the business service contract has a strong influence on all

other governance issues.

4. Governance Issues and State-of-the Art

4.1. Current solutions for governance policy enforcement
In order to examine how existing techniques could support governance of bots in BoP, we need to

examine identified governance issues in different places in BoP. Table 2 summarizes main techniques that

565 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

Governance issues Places Existing techniques
Application integrity and

service authenticity

BaaS; Bot Store; Bot

Hosting Environment

code signing; certification authority

Application composition

based on service contract

BaaS dynamic software product lines [13]

Service contract enforce-

ment

BaaS; Bot Hosting

Environment

static analysis; sandboxing; mediation; security by

contract [9, 10]; Model-Carrying Code (MCC) [14]

System/network security

and access control

BaaS;Bot Store; Bot

Hosting Environment

secured connection; message signature; role-based

access control

Application performance Bot Hosting Environ-

ment

sandboxing [12]; virtual machine [15]; specific run-

time systems [16]; reference monitoring [17]

Data acquisition and con-

trol

Bot Hosting Environ-

ment

inlined reference monitoring [17]; safe interpreter;

Model-Carrying Code (MCC) [14]; security by con-

tract [9, 10]

Table 2. Summary of main existing techniques for governing bots in BoP

could be used for governing bots in BoP. Basically, a bot is built from a number of existing pieces of

binary code which might come from untrusted and trusted sources and the function and runtime of bots are

dependent on specific context and service contract between the consumer and the cloud provider. The main

issue is that the execution of bots must be monitored and controlled at runtime in order to prevent unintended

behaviors. Several techniques can be ready to support BoP, such as secured network connection, message

signature, and role based access controls. Therefore, we do not discuss them here. Instead, we will focus on

main critical points that are specific to BoP.

4.1.1. Governing application integrity, service identity, and application security
There are several techniques that can be applied to bots, however, these techniques are suitable only

certain phases of bots.

• Development phase: Static analysis can check bots before executing so that only those not violating

pre-defined policies are allowed to be executed. However, it cannot check runtime violations.

• Deployment phase: Code signing can certify the integrity of the code but cannot prevent bad behavior

of the code execution. Using certification authority, signatures of bots and BaaS can be checked again

with hosting environment policies, e.g., based on concepts in [18]. However, it can only allow to bots

to be installed/deployed/executed or not but no other steps.

• Execution phase: Execution monitoring techniques, e.g., based on inlined reference monitoring [17],

can enforce bot-specific security policies to prevent bad behavior at runtime. However, they are

designed specific for governing security only and are not targeted to our BaaS model. Model-Carrying

Code (MCC) [14] can be adaptable to Bot Hosting Environments, however, it requires the base system

to be modified. Sandboxing techniques can confine a bot instance within a Bot Hosting Environment

that can only access to a limited functionality. The confinement mechanism is based on ”all-or-

nothing” approach which is not suitable for fine-grained monitoring. Safe interpreter can also be used

to control bots, but it requires bots and Bot Hosting Environments to support interpretation languages.

4.1.2. Governing application performance
Governing application performance occurs mainly in execution phase. However, policies for application

performance can be defined in the development or deployment phases. There exist several techniques to

measure the performance of hosting environments and their processes. Many techniques, such as based

on sandboxing model [12], to control CPU/memory usage by applications require external tools to interact

with OS and applications but such tools are heavy. It is also possible to use virtual machine for hosting en-

vironments and control the performance of virtual machines [15]. However, we will not be able to prioritize

566 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

bots. Specific runtime systems [16] also enable bot-specific performance monitoring but it means that Bot

Hosting Environments must be based on these systems.

4.1.3. Governing service contract
Some contractual terms can be used to limit functions when a bot is developed and the other terms are

used to check runtime properties, such as number of data points, types of devices and specific facilities. In

particular, for on-the-fly composition and deployment, contract terms can strongly influence bot’s functions.

Potentially, dynamic variability techniques for supporting building limited functions, e.g., based on context

[13], can be utilized. However, most dynamic composition and variability models are designed for service-

oriented software systems and large-scale software product lines, not lightweight applications. Furthermore,

there is a lack of techniques to generate bot software features from specific service contracts in specific

situations. At runtime, while existing techniques discussed in other sections can be used to enforce certain

contract terms, such as security and performance, we need to apply different techniques for enforcing a

service contract for bot instances of a consumer, as the contract covers multiple types of governance policies.

4.1.4. Governing data acquisition and control
Governing data acquisition and control is mainly related to the execution phase, although it might

need some support, such as policy generation and code rewriting, from the development phase. The key

point is that, dependent on service contract, data acquisition and control can be governed at the sys-

tem APIs for accessing data and sending control commands or at specific types of data/commands. For

example, a bot might be allowed to use read() API for reading any sensor data type or to use read

with only chiller data of chiller manufactured by a specific company (e.g., read(datatype=chiller,

chillerType=companyA)). While APIs can be protected and checked by using existing techniques, e.g.,

static analysis, sandboxing and inlined reference monitoring, they do not support well, e.g., how much data

or which control commands a specific bot instance should be allowed. Thus, advanced techniques, e.g.,

application-level data access monitoring [11], could be used. However, this may require extra components

to intercept bot level data acquisition and control messages.

4.2. Current solutions for governance policy definition and management

In order to govern bot executions, the unintended behaviors must be specified in policies for each bot so

that its execution can be controlled at runtime. As we have multiple governance issues, we also need to con-

sider multiple types of policies, including data acquisition and control, safety, and service contract policies.

These policies are bot-specific and the policies are established in case-to-case basis depending on each par-

ticular service contract between the consumer and the cloud platform provider. However, BoP must be able

to handle multiple types of policies for multiple bots from different consumers while these bots are possible

executed in the same hosting environment for the same facility (e.g., a bot for chiller and a bot for electricity

backup system can come from different stakeholders but are executed in the same hosting environment at

the same time). Another important point is that policies are used at different places, such as BaaS and Bot

Hosting Environments, at different phases, as inputs for different enforcement techniques. Although there

have been a number policy languages including research prototypes such as [19, 20, 21], and industry stan-

dards such as WS-Policy (http://www.w3.org/Submission/WS-Policy/), XACML (http://labs.

oracle.com/projects/xacml/), none of these considers all of the above multiple types of governance

policies. In mobile application development, such as Android (http://developer.android.com), appli-

cations are associated with use permission which specifies resources and functions can be accessed from the

hosting environment. However, such policies are static while BoP need dynamic policies.

4.3. Discussion

From the analysis in the previous section, on the one hand, we observed that while certain techniques

can in principle be used, it is not clear if they can be engineered in BoP, in particular, BoP needs to support

multiple types of governance and diverse types of hosting environments whose capabilities are limited.

For example, model-carrying code techniques require hosting environments to inspect bots; if using safe

567 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

interpreters, hosting environments must support interpretation languages; or using encryption to transfer

bots would require a heavy cryptosystem in hosting environments; or limiting CPU and memory of bots

might not be implemented in all hosting environments. On the other hand, we see that we need multiple

types of governance support carried out by cloud services and Bot Hosting Environments at different phases

of bot’s lifecycle. As a result, BoP needs to have governance policy specifications that allows different types

of governance. Furthermore, to enforce such policies, various techniques must be integrated, as typically a

type of techniques is suitable only for a specific governance support at a specific phase of bot’s lifecycle.

5. Towards Multi-phased Policy Management and Enforcement for Bots

Customer’s business

service contract

Bot-specific

policies

Bot hosting context-

specific policies

Bot context-specific

policies

Bot runtime context-specific

policies

BaaS

send policy-inlined bots, policies

Bot Hosting
Environment

execute bots
bot

Policy-inlined
bot instance

static analysis

utilizes

code rewriting

code signing
execution monitoring

utilizes utilizes

static checked by BaaS deployment checked by Bot Hosting Environment

attached to bots by BaaS
generated by Baas

extracted by BaaS

Policy definition
and management

Policy enforcement

policy
evolution

Fig. 2. Conceptual framework for multi-phased policy management and enforcement for bots

As discussed in the previous section, different types of policies need to be enforced for bots. Our

approaches are to address (i) policy definition and management and (ii) policy enforcement for multiple

types of governance through different phases of bot’s lifecycle in an integrated framework. Figure 2 depicts

our framework which is divided into two main blocks for policy definition and management and for policy
enforcement. In these two blocks, policy definitions are evolved through different phases and in each phase,

at different places, different components will use different techniques to enforce policies.

In summary, the framework works as follows. After a bot is built and stored, we already have static,

common bot-specific policies – bps. Such policies are obtained from the development and defined for a bot.

When a bot named b is selected for deployment for a particular consumer under a particular situation, BaaS

can take bot-specific policies and combine with consumer’s business service contract (e.g., cost and service

level agreements) to generate bot context-specific policies – bpcxt. In cases, bots are composed and deployed

on the fly, then the above-mentioned way is still valid, except that BaaS can just consider bps as a part of

bpcxt. Many policies pi ∈ bpcxt can be checked by BaaS before BaaS starts to deploy b. Before deploying

b, BaaS produces two subset of policies, bpcxt(h) and bpcxt(r). The first set of policies bpcxt(h) can be

checked by Bot Hosting Environment before running b, while bpcxt(r) can be used to check b at its runtime.

In our framework, bpcxt(r) is attached to b and bots will self-regulate their operations based on bpcxt(r).

For checking policies, suitable techniques will be employed at different places. Thus, our framework will

provide extensible mechanisms to enable plug-ins of different techniques.

With this approach, we will provide templates to define such policies. The policy templates for bot-

specific policies and context-specific policies are based on API calls provided by the hosting environment

and by cloud services. Templates for bot instance policies need further investigation to combine between

event sequences and their parameters, together with business rules. In our framework, an enforcement

service is integrated into BaaS to enforce desired policies. A bot is first checked by a static analysis technique

to ensure that it does not violate the defined static policies, and then context-specific policies. A bot passing

568 Hong-Linh Truong et al. / Procedia Computer Science 10 (2012) 561 – 568

the check will be rewritten to embed inlined reference monitor into the code so that the execution will be

controlled and monitored by the monitor at runtime to ensure that its execution will not violate the runtime

policies. When deploying into the hosting environment, the authenticity and integrity of the bot code must

be ensured. Our framework will support this feature by employing a code signing technique. Our proposed

framework provides an end-to-end enforcement solution for bots construction and execution. While several

feasible techniques are chosen, the challenging issue is how to integrate these techniques into the framework

so that they can work together to enforce desired policies for the bot architecture.

6. Conclusions and Future Work

The emerging Bot-as-a-Service model for monitoring and managing devices and equipment by utilizing

cloud computing offerings calls for a careful investigation on governance issues. In this paper, we analyze

possible governance issues and existing techniques that can be reused and should be improved in order to

support governance of bots in sustainability platforms. Our future work is to focus on the development our

policy definition, management and enforcement framework that support cross governance issues for bots.

References

[1] H.-L. Truong, S. Dustdar, A Survey on Cloud-based Sustainability Governance Systems, International Journal of Web Informa-

tion Systems, 2012. To appear.

[2] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Computer Networks 54 (15) (2010) 2787 – 2805.

[3] Y. Simmhan, A. G. Kumbhare, B. Cao, V. K. Prasanna, An analysis of security and privacy issues in smart grid software archi-

tectures on clouds, in: L. Liu, M. Parashar (Eds.), IEEE CLOUD, IEEE, 2011, pp. 582–589.

[4] D. Song, E. Shi, I. Fischer, U. Shankar, Cloud data protection for the masses, Computer 45 (1) (2012) 39 –45.

[5] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, D. Zamboni, Cloud security is not (just) virtualization security: a

short paper, in: Proceedings of the 2009 ACM workshop on Cloud computing security, CCSW ’09, ACM, New York, NY, USA,

2009, pp. 97–102.

[6] D. Booy, K. Liu, B. Qiao, C. Guy, A semiotic multi-agent system for intelligent building control, in: Proceedings of the 1st inter-

national conference on Ambient media and systems, Ambi-Sys ’08, ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 2008, pp. 24:1–24:7.

[7] A. Bürkle, A. Hertel, W. Müller, M. Wieser, Evaluating the security of mobile agent platforms, Autonomous Agents and Multi-

Agent Systems 18 (2) (2009) 295–311.

[8] K. P. N. Puttaswamy, C. Kruegel, B. Y. Zhao, Silverline: toward data confidentiality in storage-intensive cloud applications, in:

Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, ACM, New York, NY, USA, 2011, pp. 10:1–10:13.

[9] N. Dragoni, F. Martinelli, F. Massacci, P. Mori, C. Schaefer, T. Walter, E. Vetillard, Security-by-Contract (SxC) for software and

services of mobile systems, At your service - Service-Oriented Computing from an EU Perspective. MIT Press, 2008.

[10] L. Desmet, W. Joosen, F. Massacci, F. Piessens, I. Siahaan, D. Vanoverberghe, Security by contract on the.net platform, in:

Information Security Technical Report, Elsevier, 2008.

[11] D. Y. Zhu, J. Jung, D. Song, T. Kohno, D. Wetherall, Tainteraser: protecting sensitive data leaks using application-level taint

tracking, SIGOPS Oper. Syst. Rev. 45 (2011) 142–154.

[12] F. Chang, A. Itzkovitz, V. Karamcheti, User-level resource-constrained sandboxing, in: Proceedings of the 4th conference on

USENIX Windows Systems Symposium - Volume 4, USENIX Association, Berkeley, CA, USA, 2000, pp. 3–3.

[13] C. Parra, X. Blanc, L. Duchien, Context awareness for dynamic service-oriented product lines, in: Proceedings of the 13th

International Software Product Line Conference, SPLC ’09, Carnegie Mellon University, 2009, pp. 131–140.

[14] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, D. C. DuVarney, Model-carrying code: a practical approach for safe execution

of untrusted applications, in: Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP ’03, ACM,

New York, NY, USA, 2003, pp. 15–28. doi:http://doi.acm.org/10.1145/945445.945448.

[15] K. Onoue, Y. Oyama, A. Yonezawa, Control of system calls from outside of virtual machines, in: Proceedings of the 2008 ACM

symposium on Applied computing, SAC ’08, ACM, New York, NY, USA, 2008, pp. 2116–1221.

[16] G. Back, W. C. Hsieh, The kaffeos java runtime system, ACM Trans. Program. Lang. Syst. 27 (2005) 583–630.

[17] Úlfar Erlingsson, The Inlined Reference Monitors Approach to Security Policy Enforcement, Ph.D. thesis, Cornell University,

Ithaca, New York (2004).

[18] W. Enck, M. Ongtang, P. McDaniel, On lightweight mobile phone application certification, in: Proceedings of the 16th ACM

conference on Computer and communications security, CCS ’09, ACM, New York, NY, USA, 2009, pp. 235–245.

[19] L. Bauer, J. Ligatti, D. Walker, Composing security policies with Polymer, in: PLDI ’05: Proceedings of the 2005 ACM SIG-

PLAN conference on Programming language design and implementation, ACM, New York, NY, USA, 2005, pp. 305–314.

[20] I. Aktug, K. Naliuka, Conspec – a formal language for policy specification, Electron. Notes Theor. Comput. Sci. 197 (1) (2008)

45–58. doi:http://dx.doi.org/10.1016/j.entcs.2007.10.013.

[21] K. W. Hamlen, M. Jones, Aspect-oriented in-lined reference monitors, in: Proceedings of the third ACM SIGPLAN workshop

on Programming languages and analysis for security, PLAS ’08, ACM, New York, NY, USA, 2008, pp. 11–20.

