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Abstract Theorems about characterization of finite rank Toeplitz operators in
Fock–Segal–Bargmann spaces, known previously only for symbols with compact sup-
port, are carried over to symbols without that restriction, however with a rather rapid
decay at infinity. The proof is based upon a new version of the Stone–Weierstrass
approximation theorem.
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1 Introduction

Toeplitz operators arise in different topics in Analysis and its applications. Different
properties of Toeplitz operators in Bergman type spaces has been studied extensively
for many years; in particular, recently, a special attention was directed to the question
on conditions for such Toeplitz operator to have finite rank. The key result in this topic
was obtained by Luecking [12]. He proved that a Toeplitz operator in the Bargmann
or Bergman space of analytical functions of one complex variable, with compactly
supported measure acting as symbol, can have finite rank only if the measure consists
of finitely many point masses. This result was generalized almost immediately, in
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332 G. Rozenblum

particular, to the case of several variables and to the case of a distribution acting as
symbol; a number of applications of such finite rank theorems were found (see [17]
for the detailed description of results and corresponding references, see also the recent
paper [16]). However, the condition of the symbol to have compact support remained,
since the starting point has been Luecking’s theorem all the time.

In the meantime it became more and more clear that with this condition dropped,
the properties of Toeplitz operators in the Bargmann space become quite different.
The first indication for this was the result by Grudsky and Vasilevsky [6] who had
found a nontrivial radial symbol such that the Toeplitz operator with this symbol is
zero. The construction in [6] is rather implicit, however in the recent paper [2] a series
of explicit examples of such symbols has been presented. In particular, the operator
with symbol

F(z) = |z|2s sin(a|z|2t )e|z|2−|z|2t ; 0 < t < 1/2, arctan a = t

2π
, (1.1)

is zero for positive integer s.
Both the elementary proof of the fact that there are no such examples for symbols

with compact support and the more advanced proof of the finite rank theorem in [12]
are essentially based upon the application of the classical Stone–Weierstrass theorem
on approximation of functions on compacts. In order to study the finite rank problem
without compact support condition, one need to find a proper version of this theorem.

In the present paper we extend the result by Luecking to the case of the symbol
without the condition of compactness of its support imposed, this condition being
replaced by the requirement of a sufficiently fast decay at infinity. The proof is based
upon a version of the Stone–Weierstrass theorem for the case of functions on a locally
compact space. This latter version was inspired by the studies by Nachbin [15] on this
topic, however our setting and the approach to the proof are somewhat different.

After proving the finite rank theorem, we discuss how the consequences of this the-
orem, concerning the multi-dimensional case as well as the Toeplitz operators in other
Bargmann type spaces, should be modifies for non-compactly supported symbols.

2 Setting

For a fixed integer d > 0, we denote by dμ the normalized Gaussian measure on C
d :

δμ(z) = πde−|z|2 dV (z), (2.1)

where dV (z) is the standard Lebesgue measure on R
2d ≡ C

d . In the space
L2(Cd , dμ), the entire analytical functions form a closed subspace B = B(Cd), which
is called the Segal–Bargmann or the Fock space. The orthogonal projection onto B is
known to be the integral operator P with kernel K (z, w) = ewz̄ = Kz(w), so that the
action of the projection can be written as

(Pu)(z) =
∫

K (z, w)u(w)dμ(w) = 〈u(·), K (z, ·)〉 = 〈u, Kz〉. (2.2)
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Finite rank Toeplitz operators 333

Here by the angle brackets 〈·, ·〉 we denote the integral of the product of the entries,
without complex conjugation; this notation is naturally extended to the action of a
distribution on the function.

For a bounded function F ∈ L∞(Cd) the Toeplitz operator with symbol F is defined
as

TF : B � u �→ PFu =
∫

K (z, w)F(w)u(w)dμ(w). (2.3)

Such operator is defined on the whole of B and is bounded. In this paper, similar to
[2], we are interested also in unbounded symbols. If we drop the boundedness condi-
tion for F , the Toeplitz operator is not necessarily bounded, being defined on the set
of functions u ∈ B such that Fu ∈ L2(Cd , dμ). As in [2], we introduce, for a given
c, classes Dc by

Dc = {F : Cd → C, |F(z)| ≤ bec|z|2} for some b. (2.4)

We also define the class D1,1 consisting of functions F : Cd → C such that

|F(z)| ≤ be|z|2−κ|z|, b > 0, κ > 0. (2.5)

Generally, it is hard to describe explicitly the domain of the Toeplitz operator for
an unbounded symbol. If F ∈ Dc, c < 1/2, the domain of TF contains all functions
u ∈ B∩D1/2−c and, therefore, is dense in B. Under less restrictive condition, F ∈ Dc,
c < 1, and even for F ∈ D1,1, the Toeplitz operator TF is still densely defined and
in particular, its domain contains all analytical polynomials, as well as all functions
Kz(·). In the finite rank problem which we mainly discuss in this paper, it is sufficient
to consider the action of the operator on these dense subsets.

Reasonable extensions of the definition of the operator TF beyond the condition
(2.4) are discussed in [8,9], and in [2].

3 Zero operators

We repeat here the standard reasoning which proves that the Toeplitz operator TF

with compactly supported symbol F can be zero if and only if F = 0. The ‘if’ part
is obvious. On the other hand, if TF u = 0 for any u ∈ B, then the sesquilinear form
(TF u, v) = 〈TF u, v̄〉 vanishes for any u, v ∈ B, or

∫
F(z)u(z)v(z)dμ(z) = 0. (3.1)

We take analytical polynomials p(z), q(z) as u(z), v(z) in (3.1); the linear span of func-
tions of the form p(z)q(z) is the space of all polynomials P(x, y), where z = x + ı y,
x, y ∈ R

d . By the Stone–Weierstrass theorem, such polynomials are dense in C-met-
ric in the space of continuous functions on a closed ball D containing the support
of F . Therefore, the functional φ �→ ∫

F(z)φ(z)dμ(z) is a zero functional, and by
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334 G. Rozenblum

the Riesz Representation Theorem, F = 0. Note that the same proof covers also the
case of F being a finite Borel measure with compact support as well as (somewhat
modified) an even more general case of F being a compactly supported distribution
(see the exposition in [1]).

As one can see, this reasoning does not admit an extension to the case of F with-
out compact support: the involvement of the Stone–Weierstrass theorem prevents it.
Moreover, the example (1.1) shows that the statement itself is wrong. The symbol in
(1.1) belongs to the class D1 but for any c < 1 does not belong to Dc. Theorem 3.1
below shows that it is the latter circumstance which is crucial.

Theorem 3.1 Suppose that the symbol F belongs to the class D1,1. If TF is a zero
operator then F = 0.

4 S.N. Bernstein’s approximation problem

The S. Bernstein approximation problem consists in finding the conditions for the
weight ω(t) > 0, such that any function f , continuous in R

d and satisfying
f (x)ω(|x |) = o(1) as |x | → ∞, can be approximated in R

d by polynomials, uni-
formly with weight ω(|x |). Such weights are called fundamental weights. This problem
was originally stated in [3], where first results were also obtained. Further on, improve-
ments and generalizations of S. Bernstein’s results were found in [4,7,14] and some
later papers. A necessary and sufficient condition for the weight to be fundamental
was obtained in dimension d = 1, where the problem was related to the question of
quasianaliticity. In higher dimensions some sufficient conditions are only known.

Since we do not aim for reaching sharpest possible results, we give a formulation
of such solution of the Bernstein problem in R

d which admits a simple formulation
and an elementary proof.

Theorem 4.1 Let the function ω(|x |) satisfy the inequality

ω(t) ≤ C exp(−γωt), t ∈ R
1, (4.1)

for some C, γω > 0. Then ω is a fundamental weight.

Remark 4.2 More sharp results allow a weaker condition than (4.1). In particular, the
condition (4.1) can be replaced by

ω(t) ≤ C exp(−γωt (log1 t log2 t . . . logN t)−1),

where log1 t = max(1, log t), log j t = log1(log j−1 t)).

For completeness, we present a short proof of Theorem 4.1. Being quite elementary,
it, probably, belongs to the folklore; the first exposition where the author could find
this approach was in [15].

Proof Consider the Banach space B = C0(R
d) of bounded continuous functions

on R
d , tending to zero at infinity, equipped with the sup norm. Let ς be a contin-

uous linear functional on B. For ζ ∈ C
d , consider a family of functions φζ (s) =
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Finite rank Toeplitz operators 335

ω(|s|) exp(ıζ s), s ∈ R
d . By (4.1), φζ (s) belongs to B as long as | Im (ζ )| < cω.

Moreover, in the same domain the function 
(ζ) = ς(φζ ) admits differentiation in
ζ and the Cauchy–Riemann equations are satisfied. Therefore, the function 
(ζ) is
holomorphic for | Im (ζ )| < γω.

Without losing in generality, we can assume that ω is smooth. Now, suppose that
ω is not a fundamental weight. This would mean that the set of functions ω(|s|)p(s),
with p(s) being all possible polynomials in s, is not dense in B. By the Hahn–Banach
Theorem, there must exist a nontrivial linear continuous functional ς ∈ B′ which is
annulled on the subspace spanned by ω(|s|)p(s).

Since ς(ω(|s|)p(s)) = (p(∂ζ )
)(0) for all polynomials p, this means that the
function 
(ζ) is identically zero in the domain | Im (ζ )| < γω. In particular, this
function is zero for ζ ∈ R

d :


(ζ) = ς(ω(|s|) exp(iζ s)) = 0, ζ ∈ R
d . (4.2)

Take any smooth function h(s) with compact support, Denote by ϑ(ζ ) the Fourier
transform of the function h(s)ω(|s|)−1. Now, multiply (4.2) by ϑ(ζ ) and integrate in
ζ over Rd . We obtain ς(h) = 0. Since smooth functions with compact support are
dense in B this means that the functional ς is trivial. This contradicts the choice of ς.

�
Now we can give the Proof of Theorem 3.1. In fact, consider the weight func-

tion ω(t) = exp(−κt), where κ is the constant in (2.5). Then, by Theorem 4.1,
any continuous function with compact support can be approximated on C

d by poly-
nomials of variables x, y ∈ R

d with respect to the weight ω(|z|). Moreover, since
F(z)e−|z|2 ≤ Cω(|z|), the relation (3.1) implies that

∫
F(z) f (z)dμ(z) vanishes for

any continuous function f with compact support. Therefore, again by the Riesz rep-
resentation theorem, the symbol F should be zero.

Theorem 3.1 can also be extended to the case of F being a distribution in a certain
class.

5 An extension of the Stone–Weierstrass theorem

The classical Stone–Weierstrass theorem deals with the approximation of continu-
ous functions defined on compact spaces. In order to handle the finite rank prob-
lem, we need an extension to the case of a non-compact locally compact space, with
uniform approximation replaced by the weighted approximation with proper weight.
An approach to such an extension has been developed by Nachbin [15]. We present
a somewhat different, more soft-analytic, approach enabling one to obtain a required
version of the theorem in a rather simple way, on the base of Bernstein type theorems
and pure topological considerations.

The version of the Stone–Weierstrass theorem, which we present here, is inspired by
considerations in [15]. We impose a certain (noncritical for applications) restrictions
on the algebra of approximating functions, which enables us to give a much shorter
and ‘softer’ proof.
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336 G. Rozenblum

Let X be a locally compact completely regular (T3 1
2
) topological space (see, e.g.,

[10] for definitions). For a continuous function f on X we say that f → 0 at infinity
if for any ε > 0 the set {x ∈ X : | f (x)| ≥ ε} is compact. Similarly, we say that
f ∈ C(X) tends to infinity at infinity if the set {x ∈ X : | f (x)| ≤ R} is compact for
any R > 0. For a function v(x) ≥ 0 on X—the weight function—we denote by C0

v
the Banach space of functions f ∈ C(X) such that v(x) f (x) → 0 at infinity, with the
norm | f |v = supx∈X | f (x)|v(x).

For a system A ⊂ C0
v of functions a1, . . . , aN we say that it separates points if for

any two different points x, x ′ ∈ X there exists a function a j ∈ A such that a j (x) �=
a j (x ′). We also say that the system A tends to infinity at infinity if

∑ |a j (x)| → ∞
at infinity.

Theorem 5.1 Let A ⊂ C0
v be a finite set of functions a1, . . . , aN , containing a nonzero

constant, separating points and tending to infinity at infinity. Suppose also that

v(x) ≤ C exp(−c′|a j (x)|) (5.1)

for some c′ > 0 and for all j = 1, . . . , N . Then the algebra of polynomials in a j (x)

and a j (x), j = 1, . . . , N , is dense in C0
v .

Theorem 5.1 can be considered both for real-valued and complex-valued spaces of
functions. The complex case is obviously reduced to the real one by considering the
system of functions Re (a j ), Im (a j ). Therefore we consider the real case only further
on.

The proof is based upon a topological lemma. It seems that it must belong to the
folklore, however the author was unable to locate it in the literature, therefore, a proof
is presented.

Lemma 5.2 Let, for a given weight v(x), the system A ∈ C(X) satisfy the condi-
tions of Theorem 5.1. Then for any function f ∈ Ccomp(X), there exists a function
g ∈ Ccomp(R

N ) such that

f (x) = g(a1(x), . . . , aN (x)), x ∈ X. (5.2)

Proof Denote by A the continuous mapping A : X → R
N , x �→ (a1(x), . . . , aN (x))

and set Q = A(X) ⊂ R
N . Consider the one-point compactification X� of the space X

and the one-point compactificationRN� ofRN . By the conditions of Theorem 5.1, the
mapping A extends by continuity to the mapping A� : X� → R

N�, and the image
Q� ⊂ R

N� of X� under this mapping is compact, as the image of a compact under
a continuous mapping. The point-separating property implies that the mapping A is
injective, therefore, A� is also injective, since only the compactifying point in X�\X
is mapped to the compactifying point in R

N�\RN . By the well known property, this
implies that the inverse mapping (A�)−1 : Q� → X� is continuous as well, together
with its restriction to Q = A(X) ⊂ R

N . So, we have a continuous function g0 defined
on Q, g0 = f ◦ A−1 such that f = g0 ◦ A−1. However, the function g0 is defined
only on the set Q. It remains to continue it, by means of the Brauer–Tietze–Uryson
lemma, from the (obviously, closed) set Q to a continuous function g on the whole of
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Finite rank Toeplitz operators 337

R
d . Finally we multiply g by a continuous function ψ that equals 1 on the compact

set A(supp ( f )) and vanishes outside some other compact set, to get a function with
compact support. �

Now we are able to give the proof of Theorem 5.1.

Proof Let f be a function in Cv(X)0. By density argument, it suffices to suppose
that f has compact support. By Lemma 5.2, there exists a function g ∈ C(RN ), hav-
ing compact support, such that f (x) = g(a1(x), . . . , aN (x)). Now, by the Bernstein
approximation theorem, (see Theorem 4.1), for any ε > 0, there exists a polynomial
p(w), w ∈ R

N , such that |p(w)− g(w)| exp(−c0|w|) < ε for all w ∈ R
N . Thus, for

w = A(x), x ∈ X , we have

|p(a1(x), . . . , aN (x)) − f (x)| exp(−c0|A(x)|) < ε, (5.3)

which, by the condition (5.1), implies the statement of the Theorem. �
Recall that the classical Stone–Weierstrass theorem can be derived from the Wei-

erstrass polynomial approximation theorem in a way, similar to our derivation of
Theorem 5.1 from the Bernstein approximation theorem. At the same time, the latter
is a particular case of Theorem 5.1. In fact, if, say, in the one-dimensional real case
(X = R

1), we consider as A the set of two functions, a1 = 1, a2 = x , then the algebra
generated by these two functions is exactly the algebra of polynomials in x variable,
and the condition (5.1) takes exactly the form |v(x)| = O(exp(−c′|x |)), i.e., coincides
with the condition of Theorem 4.1.

This example enables one to understand better the dependence of the condition
imposed on the weight on the set of approximating functions. Consider, again in the
above setting, the system of generators A consisting of functions a1 = 1, a2 = x3.
Then the algebra generated by A is the algebra of polynomials in x variable, with
degrees of all monomials divisible by 3. Theorem 5.1 requires then that v(x) =
O(exp(−c′|x |3)). Exactly the same condition on the weight is imposed by the Bern-
stein theorem, after we make the change of variables t = x3. So, generally, the smaller
is the approximating algebra, the faster should the weight decay at infinity. This effect
is, of course, not present in the problem of approximation on compacts.

We will need a generalization of Theorem 5.1, which, actually, is its immediate
consequence.

Let A be a system of continuous functions, tending to infinity at infinity, i.e., with-
out the condition of separation of points imposed. For any x ∈ X , we denote by E (x)

the set of points y ∈ X such that a j (y) = a j (x) for all j . We say that the function
f ∈ C(X) is subordinate A, f � A, if f is constant on any subset E (x). In particular,
a j � A.

Theorem 5.3 Let the system of functions A satisfy all conditions of Theorem 5.1
except the separations of points. Then the algebra of polynomials in a j (x) and a j (x),
j = 1, . . . , N , is dense in the space of functions f ∈ C0

v such that f � A.

Proof We introduce the equivalence relation on X , setting x � y if y ∈ E (x), so
the sets x̃ = E (x) are equivalence classes. It follows from the condition that A tends
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to infinity at infinity that any set of the form E (x) is compact. Consider the quo-
tient space XA consisting of these equivalence classes, with the standard topology
generated by the projection π : x �→ E (x). Therefore, for any function f � A,
the function f̃ = f ◦ π−1 is well defined and continuous on XA. The functions
ã j = a j ◦ π−1 on XA satisfy the conditions of Theorem 5.1, provided we define the
weight ṽ(̃x) = inf{v(x) : x ∈ x̃}. The application of Theorem 5.1 gives now the result
we aim for. �

We will need a simple corollary of Theorem 5.3 concerning the approximation in
the integral sense.

Corollary 5.4 Let the conditions of Theorem 5.3 be fulfilled. Let ν0 be a nonnegative
locally finite Borel measure on X such that

the measure v−1(x)ν0(dx) is finite. (5.4)

Then any function f ∈ C0
v such that f � A can be arbitrarily exact approximated

by the functions of the form p(a1, . . . , aN ) in the sense of L1(ν0) with a polynomial
p.

Proof Again we can suppose that f has compact support. Consider the measure ν̃0
on XA generated by the projection π . By Theorem 5.3, for any ε > 0 we can find a
polynomial p(w), w ∈ R

N , such that |v(x)(p(a1(x), . . . , aN (x)) − f (x))| < ε for
all x ∈ X . Then for the L1-norm we have the estimate

‖ f − p(a1, . . . , aN )‖L1(ν0) =
∫

X

| f − p(a1, . . . , aN )|dν0

=
∫

X

[| f − p(a1, . . . , aN )|v] v−1dν0

∫

X

< ε

∫

X

v−1dν0.

The latter expression tends to zero as ε → 0. �

6 The finite rank theorem in the complex Bargmann space

In this section we prove the theorem about finite rank Toeplitz operators in the space
B = B(C1), which extends D. Luecking’s theorem to non-compactly supported mea-
sures.

For a complex locally finite Borel measure ν we denote by |ν| the nonnegative
measure |ν|(E) = var E (Re ν) + var E (Im ν), where var E denotes the variation of
the measure over the Borel set E .

Theorem 6.1 Let r be a positive integer and let ν be a complex Borel measure on C
1

such that

the nonnegative measure eγ |z|r |ν| is finite for some γ > 0. (6.1)
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Suppose that the Toeplitz operator Tν in B(C1), with the measure ν as symbol, has
rank less than r. Then the measure ν is a sum of less than r point masses.

Proof Following [12], we introduce the variable Z = (z1, . . . , zr) in C
r and the mea-

sure ν⊗r on C
r, the tensor product of r copies of the measure ν. Suppose that the

operator Tν has rank less than r. As it is shown in [12] (see also the exposition in
[5,11,17]), this implies that

∫

Cr

p(Z)q(Z)|W (Z)|2dν⊗r = 0 (6.2)

for all symmetric analytical polynomials in the variable Z . Here W (Z) is the Wander-
monde determinant, W (Z) = ∏

j<k(z j − zk).
It is known (see, e.g, [13]) that in the algebra S(r) of symmetric polynomials

in r variables the elementary symmetric polynomials a0 = 1, a1 = ∑
j z j , a1 =∑

j1< j2 z j1 z j2 , . . . , ak = ∑
j1<···< jk z j1 . . . z jk , . . . form an algebra basis, which

means that any symmetric polynomial is a polynomial of variables a j . All these poly-
nomials satisfy the estimate |a j (Z)| = O(|Z |r) as |Z | → ∞. Therefore, by the
condition (6.1) of the Theorem, for the measure ν0 = |ν⊗r| on X = C

r the require-
ment (5.4) of Corollary 5.4 is fulfilled. With, probably, a somewhat larger γ , this
condition is fulfilled for the measure |W (Z)|2ν0, since W (Z) only grows polynomial-
ly. The functions a j , a j do not separate points in X = C

r: the points Z1, Z2 in X are
equivalent by the equivalence relation generated as in 5.4 by this system of functions
iff one of them is obtained from the other one by a permutation of co-ordinates.

Now, by Corollary 5.4, we infer that the functions of the form p(Z)q(Z) with sym-
metric polynomials p, q are dense in the space of compactly supported continuous
symmetric functions in X in the sense of the space L1(|W |2|ν|⊗r).

We pass to the limit in (6.2) using this density statement to obtain

∫

Cr

f (Z)|W (Z)|2dν⊗r = 0 (6.3)

for all compactly supported continuous symmetric functions f (Z).
This statement, but for compactly supported measures, had been derived from (6.2)

in [12]. The remaining reasoning follows literally the one in [12]. We repeat it in short.
By symmetrizing (6.3) one obtains the same relation, but now with an arbitrary com-
pactly supported continuous function f . Therefore, the measure |W (Z)|2dν⊗r must
be the zero measure. This means that the support of ν⊗r lies in the zero set of W , and
this is impossible if this latter support contains at least r points. �

The decay condition of the measure imposed on the measure ν in Theorem 6.1
depends on the rank of the Toeplitz operator Tν . It is easy to formulate a simple
sufficient condition taking care of all finite rank cases.

Corollary 6.2 Let ν be a locally finite complex measure on C
1, such that the measure

v(z)−1|μ| is finite, with some positive weight v satisfying v(z) = o(exp(−|z|N )) for
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any N. Then the Toeplitz operator Tν can have finite rank only if the measure ν is a
finite combination of point masses.

7 Generalizations

After the proof in [12] appeared, a number of generalizations of Luecking’s finite rank
theorem have been obtained, see [1,5,11,17,18]. Some of them do not use the com-
pactness of the support of the measure ν but rather build upon the theorem itself, and
thus carry over to the noncompact case automatically (of course, with the condition
of the type (6.1)) imposed.

Here we just give the list of these results.

• The multi-dimensional extension of Luecking’s theorem to the case of operators
in B(Cd), d > 1 in [5].

• The extension to the case of operators in the harmonic Bargmann space in [1] and
to operators in d-harmonic Bargmann space in [5] in R

d .
• The extension to the case of operators in the Bargmann space of solutions of the

Helmholtz equation in [17].
• A generalization of the finite rank theorem to operators in the subspace in the

Bargmann space B(Cd), spanned by monomials Zα , with a certain ‘sparse’ but
infinite set of monomials removed [11,17].

The alternative to [5] proof of the multi-dimensional extension of Luecking’s the-
orem in [18] does not carry over directly to non-compactly supported measures. This
proof uses the induction on dimension and the relation of the finite rank property for
the Toeplitz operator in the Bargmann space and this property for the operator with
the same symbol, but acting in the Bergman space of analytical functions in a bounded
domain containing the support of the symbol. This circumstance can be taken care of
by a slight change in the proof. In fact, it is noticed [18] that the finite rank property
for the measure ν implies the same property for the measure νg = |g(Z)|2ν, where
g is a function analytical in the neighborhood of the support of the measure ν. This
reasoning does not hold water for the measure with a noncompact support. However,
the proof can be modified a little, by considering not all analytical functions g but
only polynomials. The modified reasoning goes through, but we do not repeat here
all details, especially, since the proof of this fact in [5], as mentioned before, holds
without changes.

The only essential property that, by now, fails to be carried over to the noncompact
case, is the finite rank theorem for Toeplitz operators with distributional symbols. The
existing proof of this property, (see [1], and, in a modified form, in [17]) uses the
compactness of the support in a crucial way, and it is unclear at the moment, how this
obstacle can be dealt with.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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