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Abstract 

Catalysts with highly dispersed palladium on alumina, alumina doped with 20 wt.-% ceria and ceria have 

been prepared, characterized and examined for net-lean methane oxidation. In particular, the activity and 

selectivity were investigated during rich/lean cycling of the feed. The ceria content is found to influence 

both the general and the instantaneous activity responses. The results indicate that the active phase of 

palladium changes between reduced and oxidised Pd during the rich/lean cycling, and that the process is 

influenced by the presence of ceria. 
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Introduction 

Regulations imposed on pollutant emissions from automobiles led to the introduction and development 

of catalytic exhaust aftertreatment devices already in the 1970’s. To decrease carbon dioxide emissions, 

attention has recently been directed towards combustion of fuels from biological feedstock, which are 

alternatives to fossil fuels. Combustion of natural gas and biogas, which primarily consist of methane, 

results in reduced emissions of, e.g. CO2, NOx and particulate matter, as compared to combustion of 

longer hydrocarbons. However, due to high green house potential, methane emissions should be 

minimized from the exhaust to be an environmentally appealing fuel [1]. Catalytic oxidation of methane 

is still a challenge, especially at low temperatures. Palladium is among the most active catalysts for 

methane oxidation [2, 3] and the addition of ceria to the catalyst has shown to further improve the activity 

[4].  Ceria is reported to enhance the noble metal dispersion and promote both oxidation and reduction 

of the metal phase during dynamic reaction conditions [4]. Moreover, the presence of ceria is known to 

enhance the activity for methane oxidation at low temperatures and to increase the selectivity to complete 

oxidation [5]. 
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In the present study, we investigate methane oxidation over supported palladium, addressing 

the effect of doping alumina with ceria. Catalysts with palladium on alumina, alumina doped with 20 

wt.-% ceria and ceria have been prepared, characterized and examined for net-lean methane oxidation. 

In particular, the activity and selectivity were investigated during rich/lean cycling of the feed. 

 

Experimental Section 

Catalyst preparation and characterization 

Supported palladium catalysts with 2.2 wt.-% Pd were prepared by incipient-wetness impregnation [6]. 

An amount of 230 mg of either alumina (Sasol), alumina doped with 20 wt% of ceria (Sasol) or ceria 

(Rhône-Poulenc) was added to 114 mg aqueous solution of tetraaminpalladium(II) nitrate (4.6 wt% 

(NH3)4Pd(NO3)2, Johnson Matthey), as the precursor for Pd. The pH was adjusted to 11 by addition of 

diluted ammonia. The formed paste was mixed continuously for 15 min and then instantly frozen with 

liquid nitrogen and freeze-dried.  The resulting powder was then calcined in air for 1 h at 550°C, with a 

heating rate of 5°C/min from room temperature to 550°C.  

Monolith samples were prepared by coating cordierite structures (Corning, 400 cpsi, L=15 mm, 

Ø=12 mm) with 200 mg of the respective catalyst powders through a dip-coating procedure using 

böhmite as a binder [7]. The samples were finally calcined in air at 600°C for 2 h. Hereafter the ceria-

doped sample is referred to as Pd/AlCe-20, where 20 indicates the wt.-% of ceria in alumina.  

Characterization of the samples was performed using several experimental techniques. The total 

surface area of the powder and the monolith catalysts were measured by N2 physisorption at 77 K using 

a Micromeritics TriStar and Micromeritics ASAP 2010 instrument, respectively. The BET surface area 

was measured for both fresh powder samples and monolith catalysts before and after the 

activity/selectivity experiments. The support and Pd crystallite size of the fresh powder samples were 

investigated by X-ray diffraction (XRD) using a Bruker XRD D8 Advance instrument with 

monochromatic CuKα1 radiation, covering a 2q range of 20-65.9°. The step size and the step time were 

0.029° and 1 s, respectively. The sample rotation speed during the measurement was 60 rpm. Finally, 

transmission electron microscopy (TEM) was performed to image the Pd particle size of the fresh powder 

catalysts using a FEI Titan 80-300 TEM with a probe Cs (spherical abberation) corrector operated at 

300kV and using a high angle annular dark field  (HAADF) scanning TEM imaging mode providing Z 

number contrast. The electron probe size used for this study was about 0.2 nm. 
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Catalyst evaluation 

The activity/selectivity experiments were performed in a continuous gas-flow reactor described in detail 

elsewhere [8]. Briefly, it consists of a quartz tube (L=500 mm, Ø=14 mm), which is heated resistively 

by a surrounding metal coil insulated by a layer of glass wool. The temperature of the inlet gas 15 mm 

upstream the sample and the sample temperature were measured by individual thermocouples of K type. 

The inlet gas temperature was controlled by a PID regulator. Gases were introduced to the reactor by 

mass flow controllers (Brooks). The composition of the effluent stream was analyzed using a quadrupole 

mass spectrometer (Blazers Quadstar 422). To reduce axial temperature gradients, blank cordierite 

monoliths were positioned before and after the sample monolith [9]. Further, the reactor was insulated 

by quartz wool. All samples were pretreated in the reaction mixture of 0.1% CH4 and 1.5% O2, at 350°C 

for one hour using a total flow of 400 ml/min, corresponding to a space velocity (GHSV) of 10000 h-1. 

The GHSV was kept constant during all experiments having Ar as the carrier gas. The rich/lean (RL) 

cycling experiment includes eight cycles at 350°C changing the oxygen concentration between 1.5% 

(S=7.5) and 0.05% (S=0.25). The duration of each cycle was 10 minutes, i.e. 5 minuets for each rich/lean 

phase.   

Results and Discussion 

The results from the BET surface area measurements are summarized in Table 1. The increase in surface 

area from the fresh powder to fresh monolith, specifically in the ceria containing samples, is likely due 

to the effect of the binder. The minor difference in the total surface area of the different catalysts before 

and after the activity/selectivity experiments signifies negligible sintering of the support material during 

the experiments. Thus, the following results may include reversible changes of the support phase only. 

Changes in the dispersed phase will be discussed more extensively below.   

 
 
Table 1. BET surface area measured for the fresh powder sample and for the fresh and used monolith 
samples. 

 

 
Fresh powder 

sample (m2/g) 

Fresh monolith 

sample (m2/g) 

Used monolith 

sample (m2/g) 

D BET surface 

area (m2/g) 

Pd/Al2O3 182 185 176 -9 

Pd/AlCe-20 153 169 163 -6 

Pd/CeO2 94 128 123 -5 
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Further characterization of the powder catalysts was performed with XRD. In Fig. 1a, the 

diffractograms for the different catalysts as well as for the pure alumina and ceria supports are shown. 

The diffraction patterns observed for the catalysts originate mainly from the support phases. For example, 

the diffraction pattern for Pd/Al2O3 with peaks at 2θ = 37.5 and 46° is characteristic for γ-Al2O3 [10]. 

Analogously, for the Pd/AlCe-20 and Pd/CeO2 samples, diffraction peaks at 2θ = 28.5, 33.3, 47,5 and 

56.4° are characteristic for the fluorite structure of CeO2 [11, 12]. However, no peaks corresponding to 

Pd could be observed. This implies that the Pd particles are either not ordered and/or too small (<2 nm) 

to be distinguished from the other peaks [13].  

 

	
	
Fig. 1. (a) Normalized powder X-ray diffractograms of Al2O3, Pd/Al2O3, Pd/AlCe-20, Pd/CeO2 and CeO2 
with step size = 0.029°, step time = 1 s and speed of sample rotation = 60 rpm during the measurements. 
Characteristic diffraction lines of γ-Al2O3 and CeO2 are indicated by (*). (b) HAADF STEM image of 
the as prepared 2.2% Pd//Al2O3 sample. 

Fig. 1b shows the HAADF STEM image of the as prepared Pd/Al2O3 sample. Pd particles of 

subnanometer diameter are observable. Some, larger particles are also visible although the subnanometer 

sized particles are dominating. It is usually considered that noble metals interact more strongly with ceria 

than alumina. For example, ceria has been reported to promote high noble metal dispersion [11, 14]. 

Thus, in the case of the Pd/AlCe-20 and Pd/CeO2 samples, it is likely that Pd phase is at least as dispersed 

as for the Pd/Al2O3 sample. The STEM result is consistent with that only the support phases could be 

observed with XRD. 
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Fig. 2a-c shows the outlet reactor gas concentrations at 350°C from two successive RL cycles  

(6th and 7th) with repeatable responses for Pd/Al2O3, Pd/AlCe-20 and Pd/CeO2, respectively. It is clear 

that both the stationary levels and the dynamic responses differ for the three catalysts. The average 

conversion of methane is lower for the rich periods (e.g., t = 81-86 min) compared to the lean periods 

(e.g., t = 86-91 min), which is mainly due to oxygen deficiency during the rich periods. With increasing 

ceria content the activity for methane oxidation generally increases and the transient responses are more 

pronounced. Following the increase in conversion, the CO2 and H2 production also increase, whereas no 

considerable change in CO production is observed. The latter could be due to water-gas shift reactions 

promoted by ceria [15].  

 

Fig. 2. Outlet reactor gas concentrations from oxidation of 0.1% CH4 over 2.2% (a) Pd/Al2O3 (b) 
Pd/AlCe-20 and (c) Pd/CeO2 catalysts while periodically varying the oxygen concentration between 
0.05% (S=0.25) for 5 min and 1.5% (S=7.5) for 5 min at 350ºC. 

 

During the lean phases, the conversion increases with time. The catalyst behavior during the 

rich phases is more complicated. The conversion drops and rises rapidly in the beginning and then 

follows a descending trend with the time on stream. Finally, for the Pd/Al2O3 sample a slight decrease in 

conversion at the introduction of the oxygen (t=85.5 min) can be observed. The conversion recovers 

thereafter as the oxygen concentration approaches the stoichiometric ratio. The samples maximum 

temperature change at the lean/rich and rich/lean switches was measured to be less than 5°C. This small 

change is not expected to have a significant influence on the methane oxidation. Thus, the activity is 

clearly influenced by the reactant stoichiometry, for which oxygen is the limiting reactant during rich 

conditions. In addition the observations can be discussed in terms of changes of the active phase, i.e., 

reduction and oxidation of Pd clusters, during the RL cycling, and how these processes are influenced 

by the support.  
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Ferri et al. reported that palladium oxide is the active phase for methane oxidation at low 

temperatures [16, 17] in contrast to Hicks et al. [18] proposing metallic Pd as the active phase for methane 

combustion. However there is still no consensus in the literature on the active phase of palladium for 

methane oxidation. Some studies emphasize the presence of both Pd and PdO phases [19, 20] or a thin 

PdO layer on metallic Pd [21] as to achieve high conversion. In addition, Choudhary et al. [22] 

differentiate between the activity of a partially reduced PdO/Al2O3 catalyst and a partially oxidized 

Pd0/Al2O3 sample with the same PdO content. They considered the PdO formation pathway to influence 

the activity for methane combustion resulting in the superior performance of the partially oxidized 

Pd0/Al2O3 catalyst. Recent detailed work on Pd single crystals report that high activity for methane 

oxidation is achieved for under-coordinated Pd in epitaxial PdO(101) or metallic surface [23] whereas 

for non-ordered palladium oxides the activity is low. 

In the present study we cannot unambiguously state which form of Pd is the most active phase. 

However, based on the transient responses we can reason as follows. During the lean phase, the 

conversion reaches fairly high values, which may be attributed to methane oxidation on deeply oxidised 

Pd (PdOx, x=>1), which thus should be considered as highly active. The rapid changes in methane 

conversion at the introduction of the rich phase can be discussed in terms of reduction of oxidised Pd by 

methane. As the oxygen concentration of the feed is lowered at the introduction of the rich period, the 

oxygen concentration drops in the reactor and the methane conversion decreases. This decrease could be 

due to both the change of reactant stoichiometry which is limited by the availability of oxygen and/or 

due to a reduction of the PdOx phase becoming less active. Upon time on stream, further reduction of  

PdOx leads to the formation of a sufficiently high number of Pd0 sites, which have a high activity for 

methane oxidation [23], explaining the temporal increase in methane conversion at t=92 min. Evidently, 

thereafter, the available oxygen in the feed limits the methane oxidation. This is supported by the fact 

that observed methane conversion equals the expected conversion for complete consumption of supplied 

oxygen and that no oxygen could be detected in the effluent stream. Thus the present results can be 

interpreted such that fully oxidized or reduced Pd clusters facilitate methane oxidation while intermediate 

oxidation states suppress the oxidation of methane. Furthermore, the results from Kinnuen et al. [24] 

indicate that Pd/PdO interface sites enhance methane oxidation through a new pathway for the C-H bond 

dissociation. This supports the studies [25-27] finding the simultaneous presence of oxidized and reduced 

Pd phases necessary for high activity for methane conversion. Pd/PdO has also been reported by Pfefferle 
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[28] to serve as a porthole for dissociation of gas phase and migration to the oxide support and subsequent 

exchange with oxygen from the oxide support.  This provides the opportunity for the oxygen bonded to 

the support to take part in the reaction, favouring methane oxidation [29]. 

Burch et al. consider the inhibiting effect of water and carbon dioxide as to be important at 

temperatures below 450°C [30]. Formation of Pd(OH)2 blocks the effective access of methane to the 

active PdO sites. Card at al. [31] reported that Pd(OH)2 decomposes at temperatures exceeding 250°C 

but Cullis et al. [32] discussed the stabilization of the Pd(OH)2 phase by the ability of alumina to retain 

water. No inhibitory effect of water has been observed for Pd in metallic form [33]. In these studies water 

was included in the feed, whereas here water is only formed as a reaction product. Thus, the inhibitory 

effect of water is likely negligible in the present study. 

Ceria is known to store and release oxygen due to the ability of cerium to easily change 

oxidation state between Ce3+ and Ce4+. Based on the aforementioned discussion, this phenomenon will 

likely influence the transient responses of the catalysts. For example at the introduction of the rich period, 

oxygen supplied form the support phase can be used for oxidation of methane on the Pd clusters through 

reversed spill-over processes. By increasing the amount of ceria in the support, the corresponding 

increase in amount of oxygen that can be stored/released is achieved. This likely explains the more 

pronounced transient effects with increasing amounts of ceria. However, also the methane conversion 

during lean conditions increases with increasing ceria content of the support. This cannot be explained 

by oxygen storage/release dynamics, which can facilitate transient effects only. Instead it seems that 

including ceria introduces other sites, which are more active. For example this can be due to that the Pd 

clusters are stabilised differently by ceria as compared to alumina and, thereby, expose more active sites. 

Another explanation could be that sites at the Pd-support boundary are of special importance. For 

example, it has been proposed that Pd-Ce interface sites are more active than the palladium sites. Also 

cerium interacts synergistically with palladium favoring methane oxidation at low temperatures [5, 11]. 

Our results seem to support this idea as the number of Pd-Ce sites increases with increasing ceria content 

of the catalyst. In addition, these sites likely facilitate the transport of surface species between the support 

and the noble metal [34]. Besides, the maximum conversion during the rich phases is higher in the case 

of Pd/CeO2 compared to the other two catalysts, which is explained by the capacity of ceria to provide 

mobile oxygen for the reaction.  
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In summary we have investigated the oxidation of methane over highly dispersed Pd on alumina, 

alumina doped with 20 wt.-% ceria and ceria. It has been shown that the transient behavior, i.e., methane 

oxidation as a function of dynamic inlet gas conditions, involves complex oxidation and reduction 

processes that directly influence the global activity/selectivity. Also, it has been shown that the inclusion 

of ceria into alumina based catalyst formulations significantly can increase the performance of the 

catalyst. 
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