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1. Introduction

The goal of this paper is to present a proof of the energy estimate for the second order stabilized time-dependent
Maxwell's equation for the electric field. This equation is used in the Domain Decomposition Finite Element/Finite
Difference method developed in [2]. We also present a modification of the hybrid method of [2] and illustrate the
efficiency of the new method using several examples in two and three space dimensions. In our proof of the energy
estimate we adopt the technique of [19], where the energy estimates were derived for a single hyperbolic equation. The
main new element in our analysis is that we derive the energy estimate for the time-dependent Maxwell’s equation for
the electric field with Coulomb-type gauge condition in the presence of the first order absorbing boundary conditions [12].

* E-mail: larisa@chalmers.se
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L. Beilina

This estimate gives a bound of the electric field E through the initial data and the source function of these equations.
Thus, the energy estimate is useful for analyzing the stability properties of the proposed hybrid scheme.

The FDTD method, or Yee scheme, was introduced in 1966 in [27]. It is still the most popular scheme for finding numerical
solutions to time-dependent Maxwell’s equations since it is simple and efficient for implementation. However, it can be
applied only on structured meshes and suffers from the representation of the solution on curved boundaries [9]. On the
other hand, finite element methods (FEMs) can be applied on unstructured meshes and handle complex boundaries of
the computational domain. Hybrid FEMs/FDMs combine the advantages of both schemes by applying FEMs only on a
small part of the computational domain, where local mesh refinement is needed, and the FDTD method everywhere else.

In[10, 25, 26] the first stable time domain hybrid method was developed, which combined the finite difference time domain
method (FDTD) of [27] on the structured part of the mesh with tetrahedral edge elements on the unstructured part. Here
FDTD is viewed as a finite element method with edge elements on a hexahedral mesh, where the H(curl)-conforming
discretization of the electric field is obtained. In [10, 25, 26], implicit time-stepping is required inside the finite element
domain to obtain stability in time. Contrary to [10, 25, 26}, a fully explicit domain decomposition approach for solutions
to time-dependent Maxwell's system was proposed and numerically verified in [2]. This method uses the Yee scheme [27]
on the structured part of the mesh and a stabilized formulation for Maxwell's system on the unstructured part of the
mesh.

The main idea of the proposed modified domain decomposition FEM/FDM of this paper is the following: we decompose
the computational domain Q into two subregions, QO = Qrgm U Qppm, where in Qppy finite elements and in Qgpy finite
differences are used. We also note that in our algorithm Qggp lies strictly inside Qrpm, and thus corner sinqularities of
the computational solution for Maxwell’s system in Qg are excluded. We assume the magnetic permeability p(x) =1
in the whole domain Q. Next, we assume the dielectric permittivity €(x) > 0 in Qpgm, and we use the finite element
method to solve Maxwell’s system there. We also assume that both domains, Qrgm and Qppm, overlap in two layers of
structured nodes, and in these nodes the dielectric permittivity €(x) = 1 as well. However, in Qrgpm the mesh can be
purely unstructured, and thus, adaptive algorithms can be applied there.

In this work we assume that in Qppnm the dielectric permittivity €(x) = 1 and we solve the usual system of wave equations
with first order absorbing boundary conditions [12] at the exterior boundary of Qppym. This assumption is the main new
element of our modified domain decomposition method: now instead of solving Maxwell's equations in Qgpm using the
Yee scheme, as it was done in [2], we can use the usual explicit second order FDTD method to solve the wave equation
in Qrpm. This new element improves the stability of the whole hybrid FEM/FDM scheme of [2] in the overlapping
regions, the interpolation procedure that computes values of the electric field for the Yee scheme from the nodal values
of the finite element solution in the exchange procedure is not used anymore in the modified method of this paper.

Efficiency of the proposed modified method is evident for solutions of Coefficient Inverse Problems (CIPs). For the
solutions of electromagnetic CIPs, many algorithms need to accurately generate backscattered data at the boundary
of the computational domain in order to reconstruct the dielectric permittivity €(x) inside the medium. In this case
the forward problems for PDEs are considered in the entire space R3, see for example [3-5, 18]. It is efficient to
approximate the solution of these Cauchy problems via the solution of a boundary value problem in a bounded domain
with g(x) = p(x) = 1 in a neighborhood of the boundary of the computational domain, and with (x) # const, g(x) > 0
in the rest of the domain. In this case the time-dependent Maxwell’s equations reduce to a system of independent wave
equations in the neighborhood of the computational domain, and usage of the hybrid technique is preferable to the
efficient solution of CIPs with coefficients that have properties as described above.

The numerical implementation of the proposed domain decomposition method is as follows. We use the explicit finite
difference method in Qppym similar to the one used in [6]. However, for the finite element discretization of Maxwell’s
equations in Qgpm we use the node-based curl-curl formulation with the divergence free condition that is similar to [2].
The proposed domain decomposition method of this paper is unaffected by instabilities that can occur when the two
methods are hybridized since under our assumptions our Maxwell's system transforms into the system of wave equations
at the overlapping nodes between Qrgpm and Qppwm.

It is known that edge elements are the most satisfactory from a theoretical point of view [20] since they automatically
satisfy the divergence free condition. However, they are less attractive for time-dependent computations, since the
solution of a linear system is required at every time iteration. In addition, in the case of triangular or tetrahedral
edge elements, the entries of the diagonal matrix resulting from mass-lumping are not necessarily strictly positive [11];
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therefore, explicit time-stepping cannot be used in general. In contrast, nodal elements naturally lead to a fully explicit
scheme when mass-lumping is applied [11, 17]. However, numerical solutions to Maxwell's equations using nodal finite
elements may contain spurious solutions [21, 23]; there are various techniques to remove them [14-16, 22, 23]. We
eliminate the spurious solutions by adding the divergence condition to the time-dependent equation for the electric
field, which removes them when a local mesh refinement is applied and material discontinuities are not too big [2]. Our
numerical tests of Section 7 show that in the case of CIPs similar to ones of [5, 18], these spurious solutions will not
appear.

In subsection 7.2, we present numerical verification of the proposed modified domain decomposition method for the
solution to time-dependent Maxwell's system. Test 4 in this section is similar to the one performed in [5, 18]. The
reason to do so is the following. In [5, 18] we presented the reconstruction of refractive indexes of abnormalities from
experimental data. In these works, for the solution of the electromagnetic CIP, a simplified mathematical model with
a single wave equation was used instead of the full Maxwell's system. Despite this discrepancy, the reconstruction of
both locations and refractive indices of dielectrics obtained in [5] was highly accurate. In addition, using the adaptivity
technique the shape of the dielectric abnormalities was also reconstructed accurately. This can be explained by the
fact that the data immersing procedure of [5, 18] smoothed out the scattering data, and thus, enforced them to be good
for the considered model of the wave equation. Our conclusion from the numerical test of subsection 7.2 with a plane
wave is that all meaningful reflections from the abnormalities inside Qpgym are only from the one component of the
electric field while the reflections from the other components are negligible. This test explains results of experiments
performed in [5, 18] when physicists could measure only one component of the electric field. Because of that, in [5, 18]
we approximated our model problem of Maxwell's equations with a single wave equation. Tests of Section 7 illustrate
results of [5, 18] where in some experiments with the plane wave it is reasonable to approximate the full Maxwell's
system with a single wave equation. However, in our future work we plan to apply the modified method presented in
this paper for the solution of CIPs similar to ones in [5, 18], but for the full Maxwell's system, and compare results.

The outline of this work is as follows. In Section 2 we briefly recall Maxwell's equations and in Section 3 we present the
mathematical model considered in this work. In Section 4 we derive the energy estimate. Then in Section 5 we present
the finite element method: in subsection 5.1 the explicit scheme for the electric field is presented, the finite difference
scheme is summarized in subsection 5.2, and the first order absorbing boundary conditions for this scheme are presented
in subsection 5.3. Next, we formulate the modified hybrid FEM/FDM in Section 6. Finally, in Section 7 we present
numerical examples that demonstrate the efficiency of our adaptive hybrid FEM/FDM solver.

2. Maxwell’s equations

Let Q C R? be a bounded domain with a piecewise smooth boundary 9Q, and T = const > 0. Let [2(Q) be the space of
square integrable functions in Q). We define Q7 = Q x (0, T), and 0Qr = 0Q x (0, T). We consider Maxwell's equations
in an inhomogeneous isotropic medium in Qy:

oD oB .
E—VXH:—/, E—i—VXE:O, in Qr,

D = €E, B = uH,
E(x,0) = Eqg(x), H(x,0) = Hy(x).

Here E(x, t) and H(x, t) are the electric and magnetic fields, whereas D(x, t) and B(x, t) are the electric and magnetic
inductions, respectively. The dielectric permittivity, €(x) > 0, and the magnetic permeability, p(x) > 0, together with the
current density, J(x, t) € R?, are given and assumed piecewise smooth. Moreover, the electric and magnetic inductions
satisfy Gauss's law

V-D =p, V-B=0, in Qr, (2)

where p(x, t) is a given charge density. Traditionally, perfectly conducting boundary conditions for (1)—(2) are the most
popular ones:
nx E =0, H-n=0, on 0Qr.
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Here n denotes the outward normal on 0Q.

However, our goal is to construct an efficient solver for the forward problem (1) in order to generate data at 9Q) to solve
Coefficient Inverse Problems. As mentioned above, in the case of CIPs, forward problems are usually Cauchy problems.
Therefore, we need to approximate the solution of the Cauchy problem via the solution of a boundary value problem in a
bounded domain. On the other hand, if g(x), p(x) = const > 0 in a neighborhood Q" of 9Q), as is often the case in CIPs,
then it is well known that for (x,t) € O’ x (0, T), (1) provides with independent vector wave equations

eWd’E — AE = —pj, eud?’H —AH = V x/, 3)

where j = pdJ/dt. When solving CIPs in real-life applications, such as subsurface imaging or detecting explosives, it
is efficient to bound the domain of interest by an artificial boundary and impose absorbing boundary conditions. First
order absorbing boundary conditions [12] work quite well for the case of a single hyperbolic PDE [3, 4] when the plane
wave is initialized orthogonally to some part of the boundary dQ. Hence, by analogy, in this work we consider first
order absorbing boundary conditions at 0Q+ for Maxwell's equations.

By eliminating B and D from (1) we obtain the following two independent second order systems of partial differential

equations:
’E
6?97+V><(p’1VxE):—/, (4)
2
u% +Vx(e"VxH) =Vx(E™),

The initial conditions are

E(X,O) = EO(X), %(X,O) _ W’
H(x,0) = Ho(x), %’:’ 0) = vu(xxl)_ro |

3. Mathematical models

We are interested in the solution to equation (4) for the electric field with first order absorbing boundary conditions
and appropriate initial conditions. For the above described setting of the problem it is convenient to use the domain
decomposition finite element/finite difference method. In doing so we decompose Q into two subregions, Qrenm and Qprp,
Q = Qrem U Qppm, see Figure 1. Qpppm corresponds to the domain where finite elements are used, and lies strictly
inside Qrpm. In Qrpm we will use the finite difference method with first order absorbing boundary conditions.

D o X * * * * X o D

Figure 1. Domain decomposition between Qrepm and Qrpm in one dimension. The interior nodes of the unstructured finite element grid are
denoted by stars, while circles and crosses denote nodes, which are shared between meshes in Qrgpm and Qrpg. The circles are
interior nodes wy of the grid in Qrpm, While the crosses are interior nodes w, of the grid in Qrgm. At each time iteration, the solution
obtained in Qrpm at wy is copied to the corresponding nodes in Qrgm, while simultaneously the solution obtained in Qrenm at wy is copied
to the corresponding nodes in Qrpm.

705




Energy estimates and numerical verification of the stabilized Domain Decomposition
Finite Element/Finite Difference approach for time-dependent Maxwell’s system

706

We also assume that we are working in a nonconducting medium, which means that the charge density p = 0. Our next
assumption is that the magnetic permeability p(x) = 1, x € Q, and we let the electric permittivity €(x) be such that

g(x) > for x € Qrgwm, elx) € C*(Q),

1,
)
ex) =1, for x € Qrpm.

Let us formulate the model problem for the electric field E with first order absorbing boundary conditions [12] at the
boundary 9Q:

’E
Ew-FVX(VXE):—j, in QT,

V-(eE) =0, in Qr,
E(x,0) = fo(x), Ei(x,0) = fi(x), in Q,
0,E(x, t) = —0:E(x, 1), on 0Qr.

Here we assume that
j € L(Qy), foe H' (Q), fi € L,(Q).

As we have mentioned above, we will use the domain decomposition finite element/finite difference method for the
numerical solution to (6). This means that for the solution to (6) in QFpm we shall use the finite difference method on
a structured mesh with constant coefficients € = y = 1. As we have pointed out in Section 2, in this case problem (6)
transforms to the system of vector wave equations (3).

In Qrem, however, we shall use finite elements on a sequence of non-degenerate unstructured meshes K, = {K}, with
elements K consisting of triangles in R? and tetrahedra in R3 [7]. Efficiency of the resulting domain decomposition
FEM/FDM scheme in Q is obtained by using the mass lumping in both space and time in Qrgpm, which makes the
scheme fully explicit [13]. In Qpgm we associate with Kj, a (continuous) mesh function h = h(x), which represents the
diameter of the element K > x. For the time discretization we let J. = {J} be a partition of the time interval / = [0, T},
where 0 = tg < t; < ... < ty = T is a sequence of discrete time steps with associated time intervals J = (ty_1, t;] of
constant length T = t;, — t,_1. Below, for any vector function u € R3 our notation v € LZ(Q) oru e Hk(Q), k=12,
means that every component of the vector function u belongs to this space.

Keeping the above remark in mind, it is well known that when using standard, piecewise continuous H'(Q)-conforming
FE for the numerical solution to Maxwell’s equations, we have the following difficulties. First, in general the solution
to (4) lies in the space Hy(curl, Q) N H(div, Q) with

Ho(curl, Q) = {u € L*(Q) : Vxu € [*(Q), uxn =0ondQ}, H(div, Q) = {u € L*(Q) : V-u € [*(Q)},

where n is the unit outward normal to dQ. The space Ho(curl, Q) N H(div, Q) is strictly larger than H'(Q) when Q has
re-entrant corners [20, p.191]. However, this restriction is of no concern in our method, because we will use finite
elements only in Qggpm, which lies strictly inside Q; hence, in our case corner singularities are excluded. Second,
because the bilinear form a(u,v) = (V x u, V x v) is not coercive without some (at least weak) restriction to divergence-
free functions, direct application of the finite element method to the numerical solution to Maxwell's equations using
H'(Q)-conforming nodal finite elements can result in spurious solutions (the finite element solution does not satisfy
the divergence condition from (6)). To remove these spurious solutions from the finite element solution, we shall add a
Coulomb-type gauge condition to enforce the divergence condition [1, 22, 23].

Thus, we modify equations (6) with 0 < s <1 to be

2
6T5+VX(VXE)—SV(V~(6E)) = —j, in Qr, (7)
E(x,0) = folx),  Eilx,0) = fi(x), in Q (8)
0,E(x,f) = —0E(x,f),  V-E =0, on 907, (9)
V-E=0 in Q' cC QFDM: S(X) =1 in QFDM: (10)
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where the subdomain Q)" is a small neighborhood of the outer boundary 9Q. We note that as soon as the term
—sV (V-(eE)) is incorporated in equation (7), the first equation in (10) is an over-determination. On the other hand,
this over-determination takes place only in a small neighborhood of the boundary 9Q rather than in the entire domain Q.
Likewise, we do not use (10) in our numerical experiments.

Since the modified bilinear form a(u,v) = (Vx u, Vxv) +s(V-u, V- V) is now coercive on H'(Q) [24], problem (7)—(9)
is now well posed. The addition of the term s(V-u, V-v) does not change any solution to (7)—(9), but only provides a
stabilization of the variational formulation, see also [20, p.191].

Using Gauss's law (2), problem (7)—(9) can be rewritten as

2
86—5+V(V~E)—V~(VE)—5V(V‘(5E)):—j, in Qr, (1)
E(x,0) = folx),  Ei(x.0) = f(x), in Q (12)
0.E(x,f) = —0E(x, 1), V-E =0, on 0Qr, (13)
V-E=0 in Q' cC QFDM: C(X) =1 in QFDM‘ (14)

4. Energy estimate for problem (11)—(14)

In this section we prove the uniqueness theorem, or energy estimate, for the vector £ € H*(Qr) of equation (11)—(14),
using the technique of [19], where the energy error estimates were derived for a single hyperbolic equation.

Theorem 4.1.

Assume that condition (5) on the coefficient (x) holds. Let Q C R> be a bounded domain with piecewise smooth
boundary 0Q. For any t € (0,T), let Q; = Qx (0,t). Suppose there exists a solution E € H*(Q7) of (11)~(14). Then
the vector E is unique and there exists a constant B = B(| €||a, t. s) depending only on | €|q, t and 0 < s < 1 such that
the following energy estimate is true for all € > 1 in (11)—(14):

[Vea:E(x, t)||f2(0) + [VE(x, t)”%z(n) + | Vse=1V - E(x, t)”%z(o)
< B[ Wil 0 + IVE Al + IV FollEya + 1ol ) + V56 =T 7 - foliEy ]

Proof. First we multiply the first equation of (11)-(14) by 29,E and integrate over Q x (0, t) to get

t t t
//Zea,tEatE dxdt + Ilsz-E)af dxdt — I/ZV-(VE)atE dxdt
0 Q 0 Q 0 Q

(15)
t t
— s/jZV(V-(sE))c?,dedr = —Z/ch?,E dxdt.
00 00
Integrating the first term of (15) in time we get
t
[/6,(sth2)dx dr = /(eath)(x, t)dx — /eff(x, t) dx. (16)
00 Q Q
Integrating the second term of (15), which corresponds to the divergence, by parts in space we have
t t t
2//V(V-E)6,E dxdt = 2//61En-(V-E) dSdt — Z/I(V-E)(V-Q,E) dxdt
00 0 40 00
. . (17)
= 2//61En-(V-E) dSdrt — //@(V-E)dedr.
0 40 00
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The term 2[0’ J300:En-(V-E)dSdt =0, since by (14), V-E = 0 in a small neighborhood of 3Q. Next, integrating the
last term of (17) in time and using (12) we have

— 0V -EYdxdt = — [ (V-EP(x,t)dx + [ (V-E(x,0)dx = — | (V-E(x,t)dx + | (V-fo)’(x)dx. (18)
/1 / / / /

Q Q Q

Integrating the third term of (15), which corresponds to the gradient, by parts in space and using (12) we get

t
2//V~(VE)6,dedr_ //(BEO,,EdeT—Z//VE) (VO,E) dx dt
0 Q

0 0Q

—2//6E)2d5dr—//6|VE| dxdr.

0 0Q

(19

Integrating the last term of (19) in time and using (12) we obtain

t
—//GI|VE|dedT = —/|VE|2(X, t) dx + /|VE|2(X,0) dx = —/|VE|2(X, t) dx + /|Vfo|2(x) dx.  (20)
0 Q Q Q Q Q

Integrating the augmented term of (15) in space we have

ZSIIV -(€E))0E dxdt = 25//6 En-(V-(eE)) deT—Zsj[(V-(sE))(V-G,E) dxdt

0 0Q 0

= 25//0 En-(V-(cE)) der—zs/[(w E)V -(0,E) dxdt 1)

0 00 0

- s/j €0,(V-E)?dxdr.
0 Q

The term 2s fot J30 0En-(V-(eE)) dSdt = 0, since € = 1 on the boundary 90, and by (14), V-E = 0 on a small
neighborhood of dQ). Next, integrating in space one more time the term 2s fot [o(Ve-E)V - (0;E) dx dt in (21) we have

—25j](Vs-E)V~(0,E) dxdrt —25// Ve-E)n-(0:E) dxdT+25//V(Vs E)(0:E) dxdt

0Q 0 0Q

25//V(V6~E)0tE dxdt.
0Q

Here, the integral —2s f(; faQ(Ve-E)n -(0:E) dxdt =0, since € =1 in a small neighborhood of dQ and hence Ve =0
in this neighborhood. Next, collecting the estimates (16)—(21), (27), using the fact that Zfot [50(0:E)*dS dt > 0 and
substituting them in (15), we get

(€0 E)x, t)dx — [(V-EY(x,t)dx+ | [VEP(x, t)dx + s | | €0,(V-E) dxdt
/ / / I

< 20/0/|/||<9,E| dxdt + Q/gff(x, t)dx — Q/(V.fo)z(x) dx + /|Vf0|2(x) dx 2

Q

t
+ 25/I|V(V5-E)||61E| dxdt.
0 Q
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Let A = A(||€l c2(q), ) > 0 denote the constant depending only on ||g]q, t, and s. Now we can write the estimate
V(Ve-E)| < A(E|+|VE).

Using the above and the inequality 2ab < a? + b?, we estimate the last term in (22) as

t t

zs//|V(v5-E)||a,E| dxdt < 25A/[|8,E|-(|E|+|VE|) dx d. (23)
0 Q 0 Q

With another constant A we have

t t t

25//|V(V5-E)||6,E| dxdt < A[/|6,E|2dxd‘r+A//(|E|+|VE|)2dxdT.
ol ol 0

0 0 0

The second integral in the right hand side of (23) can be estimated as

t t t
A//(|E|+|VE|)2dxdT < 2A//|E|2dxdr + 2A//|VE|2dxdT. (24)
0 Q 0 Q 0 Q

Let us estimate the term fot Ia |E|?dx dt in (24). First we make the transformation
t
E(x,t) = E(x,0) + /(?tE dxdr. (25)
0

Taking the square of (25), integrating the result in space and using the estimate (a +b)? < 2a® + 2b?, we get

t 2 t
/|E|2dx < 2/|E|2(x,0) dx + 2/ /|a,E| dr | dx < 2/|E|2(x,0) dx + 2t/[|6,E|2drdx.
Q Q Q 0 Q 0 Q

Using the initial condition (12) we have

t

]|E|2dx§2||f0||fz(o)+2t]/|6tE|2drdx.
Q Q

0
Integrating the above equation in the time interval (0, t), we get

t t

//|E|2dx dt < 2t|fo|7,0) +2t2//|8,E|2drdx.
0 Q 0 Q

Substituting the above expression in (23) and using (24) with the constant B = B(||€| c2(q), t, 5) > 0, we get
t t t
A[/(|atE|2+|VE|2) dxdt < 2A | 2t|fo]7 0 +2tZI/|6IE|2dex + 2A//|VE|2dxdT
0 Q 0 Q 0 Q
t
< B//(|6,E|2+|VE|2) dxdt + B/fgdx,
0 Q Q

7038




Energy estimates and numerical verification of the stabilized Domain Decomposition
Finite Element/Finite Difference approach for time-dependent Maxwell’s system

and thus we get the following estimate for the augmented term in (22):

t t
25//|V(V5-E)||0,E| dxdt < A//(|6tE|2+|VE|2)dxdr+A/f§dx. (26)
0 Q 0 Q Q

Now we estimate the remaining terms in (22). Integrating the fourth term of (22) in time we get

sO/Q/eat(V~E)2dxdT = s/e(V-E)z(x,t) dx—s/e(V~E)2(x,0) dx

Q Q (27)
=s | e(V-EPx, t)dx —s | e(V-fo)2(x) dx.
/ /

Finally, to estimate the first term in the right hand side of (22) we use the arithmetic-geometric mean inequality

2ab < a? + b? to obtain
t t t
2// |- 10E| dx dt < // |j|2dxdT+I]|atE|2dxdr. (28)
00 00 00

Note that, by (5), for all € such that se > 1 we have

t t
B//(|6tE|2+|VE|2)dxdr < B//(s|6,E|2-|—(se—‘I)(V~E)2+ |VE|2) dxdrt.
0 Q 0 Q

Substituting (26)—(28) into (22), we have the following estimate for all s such that se —1 > 0:
t
/(aath+ |VE|2+(55—1)(V-E)2)(X, t) dx < /I j[2 dx dt
Q 0Q
. (29)
+ B//(s|a,E|2 + (se—1)(V-E) + |VE|2) dxdt + /(gff |V h[2 + (se=1)(V - fo)? + Bfg)(x, t) dx.
00

Q

Let us denote

F(t) = (56tE2 +|VEP + (55—1)(V-E)2)(x, t) dx.

P

Then we can rewrite estimate (29) in the form
t
F(t) < B/F(T)d'r+g(t), (30)
0

where g(t) = [ [, /P dxdt + [, (ef} + |V h|? + (se =1)(V - fo)? + AR ) (x, t) dx. Applying Gronwall's inequality to (30)
with a different constant B we get the desired estimate for all s such that se > 1:

/(CG,EZ +|VEP + (55—1)(V~E)2)(x, ) dx
Q

<B <j/|j|2dxdr+/(sf$+|Vf0|z+(sg—1)(v.fo)z+f§)(x, 1) dx) , 0
Q

0 Q
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5. The finite element method

We will formulate the finite element method for problem (7)—(9) with fy = f; = 0, which can be written as

0’E
EW+V(V-E)—V-(VE)—SV(V-(EE)) = —j, in Qr, (31
E(x,0) =0, E«(x,0) =0, in Q, (32)
0,E(x,t) = —0:E(x, 1), on 9Qr, (33)
V-E =0, on 9dQr,
V-E=0 in Q' C Qrpm, C(X) =1 in  Qrpm.

First we introduce the finite element trial space WE for every component of the electric field £ defined by
WE = {we WEwi,, € PIK)xPi()), K € Ky, ] € )},
where P;(K) and P;(J) denote the set of linear functions on K and J, respectively, and
WE = {W e H'(Q)x!: w(-,00)=0, d,wls, = —atw}.
We also introduce the finite element test space W,’ defined by
WY ={we W?: wi, € Pi(K)xPi()), KKy I€},

where
Wwe = {w IS H1(Q)><I cw(-, T)=0, 0,wlyq = —6tw}.

Hence, the finite element spaces WF and W/’ consist of continuous piecewise linear functions in space and time, which
satisfy certain homogeneous initial and first order absorbing boundary conditions. We also define the following L, inner
products and norms:

;
.= [ [padxdt,  Ipl = (o0 @)= [aBax, laf = (a,0).
2o ol
The finite element method for (11)—(14) reads: Find £ € WF such that for all g € WY,

_ ([ 9E" 9
at ' ot

) = (7 £ 900+ (0 Do + (VY 990 4 5((V-(6£9, 7 9) + (.90 0. (4)
Here, the initial condition (0E/dt)(x,0) = 0 is imposed weakly through the variational formulation.

5.1.  The explicit scheme for the electric field

We expand E(x, t) in terms of the standard continuous piecewise linear functions {¢;}¥, in space and {(;};_, in time as
E(x, t)= ZkN:1 Z:\L Ep @i(x) i (), where Ej, = Ej, denote unknown coefficients, substitute this expansion in variational
formulation (34) with @(x, t) = @;(x) y(t) and obtain the following system of discrete equations:
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N
_ Z Z Eh/ €(x) i(x) @;(x)

KeQrem k. i=11i,j=1

™=
™=

-2

KEQrem

x
T
[N

1i,)

+ Y iia[mw v [

0KE€AFey ki I=11,j=1

KeQrpm k. I=116,j=1

EhK/V @i(x)V - (p,(x)/

/ Ok (t) 0e i (t) dx dt

t—1

41

U () (t) dx dt

tk—1

O (1) Yu(t) dS dt

tk—1 (35)

tk41

N M
+ Z ZZE /V(pl(x v‘P/(X)/lllk(t)(,lll(t)dxdt

N M
+s Z ZZEIV 8(,0,X)V(p]()/

KeQrpm k.I=116,j=1

tei1

U (t) u(t) dx dt

tk—1

(pj(X)L,D[(t) dxdt=h+bL+hL5+1l4+5+1=0.

Next, we compute explicitly the time integrals of (35) using the definition of piecewise linear functions in time, and get

the following linear system of equations:

M (EFT — 2B + EFT) = TFk+T2D(6EI<1+§Ek ;Ekﬁ) G(6Ek1+§Ek 1Ek+1
2 1 1 (30)
— ST C( Ek ‘|+3Ek 6Ek+1) +§TMBQ(Ek+1_Ek7‘I)'

with initial conditions E® and E set to zero because of (32). Here, M and M;q are the block mass matrices in space, D
and C are the block stiffness matrices corresponding to the divergence terms, G is the stiffness matrix corresponding to

the gradient term, F* is the load vector at time level #, corresponding to j(-

of E(-, t,).

,-), whereas EX denotes the nodal values

For example, to compute explicitly the time integrals Z,’:{H ftik_*; Ok (t) i (t) dt in term I3, we use the definition of

piecewise linear functions in time and observe that all terms in Z,’:{H f::j O (t) Y (t) dt are zeros unless [ = k —1,
=k, [ =k+1. Thus we only have to compute the integrals

tet1

/at¢k—1¢kdt,

t—1
To do that we have

tk41 ty k41

i1 g1

/atlpkﬂlpkdt: /Ottﬂkkadt.

k-1 tk—1

tx tx

1 t— 1
/at’,[/k—ﬂ//kdl‘ = /a,¢;k,1¢kdt +/a,¢k,1¢kdt = /artﬂmtﬂkdt = / g = -

te — ti
te—1 -1 tk t—1 te—1
k1 tx k41 k1 ] Tkt ‘ ; 1
il —
O dt = /ar¢k+1¢kdt +/0r¢k+1¢kdt = /at¢k+1¢kdf - / tﬂitdt =5 (37)
k+1 — Lk
t—1 tk—1 tk tk tk
k1 te tky 1 1 ti 1 ty
t— t_ t —t
/a,(,[lkl,[lkdt = /6,¢k¢zkdt+/6 Y dt = [ﬁdt—; / ﬁdt =0.
- 1 +1 =
t—1 tk—1 tk qu -1
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By replacing in /5 the integrals ZkNJﬁ fttkkj 0+ (t) Y (t) dt with their explicit expression through (37) we get the term
(EXT —E*")/2 in the last term of (36). In a similar way we obtain the term 7(EX~"/6 4 2E¥/3 + E**'/6) in (36), which
corresponds to the explicitly computed terms of the mass matrix in time Zlk\{,=1 ftikj Ui (t) Yy (t) dt. Additional T at the
right hand side of (36) appears after the explicit computing of the time integrals Z//:{1=1 f,:kj 0 (t) O¢ () dt. This also
gives terms EX*1 — 2EX 4 EX~" at the left hand side of (36).

Let us define the mapping Fg such that Fx(K) = K and let @ be the piecewise linear local basis function on the reference
element K such that ¢ o Fx = @. Then, at the element level K, the matrix entries in (36) are explicitly given by:

Mff: (6,'<p[oF,<, <Pf°F’<)/<' Mﬁ? = (‘PiOFK' ‘PjOFK)aQK,
D[K]: (V'(PIOFKvV'(PjOFK)K, G’KI: (V(PIOFK, V(ijFK)Kr
Cl = (V(ep)oFk, VogjoFi) e, Flw =9k

To obtain an explicit scheme we approximate M by the lumped mass matrix M! in space, i.e., the diagonal approximation
obtained by taking the row sum of M [13, 17]. We use the mass lumping as well in time by replacing terms corresponding
to the mass matrix in time, EX='6 4+ 2EX/3 + E¥*1/6, by EX.

Next, by multiplying (36) with (M)~", we obtain the following fully explicit time-stepping method to solve (11)-(14):

1

Ek+1 1— i TM&Q(ML)71 — _ TZ(ML)71 Fk + ZEk 4 TZ(ML)71 DEk _ T2(ML)71 GEk
1 (39)
—sT’(MYTTCEF — (1 + 5 MO (MY EF.
In the case when (38) is used only in Qpgpm in the hybrid FEM/FDM, it reduces to the following scheme:
E“ = (MY FY 4+ 2EX + (MY DEF — X(MY) T GEX — stA(MY)TTCEF — BN (39)

5.2. Finite difference formulation

We recall, see Section 3, that in Qrpy we have g(x) = p(x) = 1. Thus in Qrpm we have to solve a system of vector wave
equations for the vector field E = (E4, E3, E3):

FE — NE = —j, (40)
E(x,00=0, E(x,0=0, in Q
O,E(x, 1) = —0,E(x, 1),  on 9Q. (41)

Using standard finite difference discretization of equation (40) in Qrpm we obtain the following explicit scheme:

k+1 2k 28 K k k=1
Eifn=—Tjijm+ TAES, + 26, — Ef, (42)
where Ezk,/,m is the solution on the time iteration k at the discrete point (i, j, m), jik,j,m is the discrete analog of the

k

ijm s the discrete Laplacian. In three dimensions, to approximate AEF

function j, T is the time step, and AE ij,m

we get
the standard seven-point stencil

EX 2EF 4+ EX EX 2Ek, , + EL, Ef 2E};, + Ef

i+1,im ij,m —1,j,m ij+1,m i,j—1,m ijm+1 i i,j,m—1
AE/( _ J J J + J J + J J

bjm dx? dy? dz2 '

where dx, dy, and dz are the steps of discrete finite difference meshes in the directions x, y, z, respectively.
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5.3. Absorbing boundary conditions

To discretize absorbing boundary condition (41) in Qrpm we use a forward finite difference approximation at the middle
point, which gives a numerical approximation of higher order than an ordinary (backward or forward) finite difference
approximation. For example, for the left boundary of Qrpm we have the following variant of condition (41):

OE(x, 1)  OE(x, 1)
ox  at

Then we use the following finite difference discretization of the above equation:

[ S R N Efrim—Elm  EN ., — ESE

ij,m ij,m + i+1,j,m i+1,j,m _ i+1,j,m ij,m _ i+1,j,m ijm 0
dt dt dx dx '
which can be transformed to
Ek+1 — pk = dx—dt ., dx—dt
ijm — =i+1,j,m ij,m dX + dt i+1,j,m dX + dt

For other boundaries of Qgpym, boundary condition (41) can be written similarly.

6. The domain decomposition FEM/FDM

We now describe the data communication for the solution to problem (11)—(14) between the finite element method on the
unstructured part of the mesh, Qggpm, and the finite difference method on the structured part, Qrpym. This communication
is achieved by mesh overlapping across a two-element thick layer around Qrgpm, see Figure 1.

First, using Figure 1, we observe that the interior nodes of the computational domain Q belong to either of the following
sets:

w, nodes ‘0o’ interior to Qrpym that lie on the boundary of Qpgpm,
wyx  nodes ‘X’ interior to Qpgpm that lie on the boundary of Qgpwm,
w, nodes ‘s’ interior to Qrgm that are not contained in Qrpm,

wp nodes ‘D' interior to Qrpy that are not contained in Qpgm.

We also note that because we are using the explicit domain decomposition FEM/FDM we need to choose the time
step T such that the whole scheme remains stable. We use the stability analysis on the structured meshes and choose
the largest time step in our computations accordingly to the CFL stability condition [2]

T< VEn . (43)
= VAldZ +1(dy? +1]d22

Usually, we have dx = dy = dz = h, and condition (43) can be rewritten in three dimensions as

TS h\/%TI- (44)



L. Beilina

Algorithm
At every time step we perform the following operations:

(a) On the structured part of the mesh Qrpy, compute £5*1 from (42) with absorbing boundary condition (41) at 0Q,
with EX and EX=" known.

n the unstructured part of the mes FEM, COmpute using the explicit finite element scheme wit
b) On th d f th hQ Ek“bg g th licit fi L h 39 h EF
and E¥' known.

(c) Use the values of the electric field EX*! at nodes w,, which are computed using the finite element scheme (39), as
a boundary condition for the finite difference method in Qprpm.

(d) Use the values of the electric field E5*" at nodes w,, which are computed using the finite difference scheme (42), as
a boundary condition for the finite element method in Qpgpm.

(e) Apply swap of the solutions for the electric field in order to apply the algorithm on a new time level k.

7. Numerical studies

In all our two-dimensional tests we choose the computational domain Q =[—8.0,8.0] x[—8.0,8.0]. This domain is split
into a finite element subdomain Qrgm = [—3.5,3.5] % [—3.5,3.5] and a surrounding region Qppyw with a structured mesh,
Q= QFEM U QFDM! see F'Lgure 2.

a) Qrpm b) Q = Qrem U Qrpm ) Qrem

Figure 2. The hybrid mesh b) is a combination of a structured mesh a), where FDM is applied, and a mesh c), where we use FEM, with two layers
of overlapping structured elements. The coefficient ¢(x) in (31) is given as follows: g(x) = 1in Qrpm and g(x) > 1 for x € O\ Qrpm.

The spatial mesh in Q consists of triangles and in Qgpm of squares. The boundary of the domain Q is 9Q = 00, U3, U
0Q)3. Here, Q¢ and 0Q); are the top and the bottom sides of Q, and 9Q; is the union of the left and right sides of this
domain, see Figure 2. Let us define Qrem; = Qrem x (0, T) and Qrpm; = Qrpm x (0, T).

We also denote different boundaries in the domain decomposition method, see Section 6 for details, as follows: the
boundary of Qrgm by 0Qpem, the outer boundary of Qrpy by 0Q), the inner boundary of Qrpym by 0Qrpm, nodes
corresponding to dQrgm but which lie in Qrpy by 9Q,,, and the nodes corresponding to dQrpym but which lie in Qrem by
0Q,,. Next, let 0Qrpm; = 0Qrpm X (0, T), 0Qrem; = 0Qrem % (0, T), 0Qy,, = 9Q,, x (0, T), and 9Qy,,, = 9Q,, x (0, T).
In all our computational tests we choose the penalty factor s = 1.

woT
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7.1. Numerical studies with exact smooth solution

In computational tests of this section we solve Maxwell's system (6) in Q during time T = [0, 20] in two dimensions with
the known smooth solution

t2 2

cos (7rx) - sin(my), Exx,y,t) = —Zt—o sin(sx) - cos(my).

Eilx,y, t) = 30

In this case, problem (6) for the electric field in Qpgpm reduces to the following problem in two dimensions:

0’F Jd (0E oE . .
sa—t; + ay (a—x2 - a—;) = (e+ t27%) - cos(nx) - sin(my), in Qrem;,

PE, 9 [0E, OE, o ,
Cﬁ—aix (W_W) = _(€+t7r )‘Sln(JTX)‘COS(JTy), n QFEMT,

(45)
Ex,00=0, E(x,00=0, in QOew

V(GE) =0, in QFEMT;

E(, Dl onreyy, = E,1lon,,
In Qrpm our coefficients are € = y =1, and in this domain we have to solve the following problem:

01Fr — AFy = (e+ t21%) - cos(nx) - sin(my), in Qrpmy,
0nE, — AE;, = —(e+ t27r2) - sin(7x) - cos(my), in Qrpmy,
E(x,0) =0, E:(x,0) =0, in  Qppwm,
E(x, 1) faoFDMT = E(x,1) Taow”r

0,E = —0,u, on 0Q7.

From system (45) we see that in Qpgym the solution E is initialized by the non-zero solution for the electric field obtained
by the finite difference method in Qrpn and thus the initialized finite element solution is also nonzero. To solve (45),
we modify these equations and add the penalty term sV (V - (eE)), similarly as with equation (7). We choose the time
step T = 0.02 corresponding to the CFL condition (44), while the penalty factor is always set to s = 1.

7.1.1. Test1

In this test we use the domain decomposition method with the coefficient £(x) defined as a function inside Qpgm such
that

1+Asin? 2 st 0<x<3, —3<y<0,
£(x) = 3 3 (46)
1, at all other points,

with amplitude values A = 3,12,26,37,51, see Figure 3 a) for this function in the case when amplitude A = 3 in (46).

First we perform computations on the mesh with mesh size h = 0.125. Figures 4 demonstrate the continuity of the
computed components of the vector field (E;, E;) across the Finite Difference/Finite Element mesh in the domain de-
composition method with A = 3 in (46) at different times. We observe that the components of the vector field (E;, E3)
remain smooth across the FE/FD interface at all times. We also observe that the exact components of the vector field
look very similar to the computed ones, compare Figures 4.

Figures 5 show the vector field (E7, E;) of the computed solution in the domain decomposition method compared with
the exact ones at different times. We observe the smoothness of the vector field when computing with A = 3 in (46).
Figure 10 shows the time evolution of the intensity of the exact electric field |E| = /E7 + E5 compared with the

simulated solution
|En| =/ En? 4 Eb3. (47)
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Scalar result

4
. 36667
33333

3 3
| 26667 26667

123333 | 23333
2 2

1.6667 1.6667
1.3333 13333

a) maxe =4 in Test 1 b) € =4 in Test 2

Scalar result

4
. 36667
33333

Figure 3. Coefficient ¢(x) in different tests.

The solution is presented at different points of the computational domain Qrgm. Figure 11a) shows correspond-
ing to Figure 10 computed relative Ly-norms in Qrgm during time T = (0,20). Relative L,-norms are defined as
| E = Enlly@een) /N E | o (@pen). Where E and E, are the exact and computed intensities of the electric fields, correspond-
ingly. Figure 11b) shows the computed L,-norms of E — E, in Qpgm during time T = (0, 20). From Figures 4-8, 11 we
can conclude that the computed solution E, is very close to the exact one E as long as values of the coefficient € are
not too big (A < 26 in (46)), and the final time T is also not very large (T < 10).

Let us compare Figure 9 with Figure 8. In Figure 8 we observe the appearance of the spurious modes when computing
the domain decomposition method on the mesh with the mesh size h = 0.125, with large times (T > 8) and with large
amplitude values (A > 12) in (46). However, these spurious solutions are removed as the mesh is refined, see Figure 9.

7.1.2. Test2

In this test we use the domain decomposition method when € = 1 in Q except for one small square in Qpgp, where e = A
with A = 3,12,26,37,51, see Figure 3b) for example of this coefficient in the case when € = 4 inside the small square.
In other words, the coefficient € is defined inside Qrgpm as

{1+A, 0<x<3, -3<y<0,
elx) =

1, at all other points,

with amplitude values A = 3,12, 26, 37,51.

In this case we have similar behavior of the electric field as in Test 1 even in case of discontinuous coefficient € in the
model equations. In all cases of this test we have continuity of the computed solution across FEM/FDM mesh, and
its behavior is very similar to the behavior of the solution presented in all figures related to Test 1. Thus, we do not
present these solutions again. From this test we can conclude that the computed solution Ej, on the mesh with mesh
size h = 0.125 is very close to the exact solution E as long as discontinuity in the coefficient € is not big (e < 26)
and the computational time T is not very large (7 < 10). However, when the mesh is refined these spurious solutions
disappear, even when computing the model problem with large values of the amplitude A in a small square in Qpgm.
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e) analytical E in Qrgm f) analytical E in Qrgm

Figure 5. Test 1. Behavior of the computed vector electric field £, = (Ej,, E25) and the analytical one in the domain decomposition FEM/FDM at
time moments t = 4.0 and t = 8, respectively. We show in a) and b) the computed vector electric field £, = (E1j, E2p) in the domain
decomposition FEM/FDM in Q. In c) and d) the computed vector electric field £, = (E1p,, E2p) is shown in Qrgm. Ine) and f) the analytical
vector field E = (E4, E,) is presented in Qrpm.

7.2. Numerical studies with a plane wave

In the tests of this section we solve problem (31)—(33) in Q during time T = [0, 20] in two dimensions with the plane
wave f(t) defined as

(48)

() = sin(wt), if te (0 2n/w),
o, if t> 271w
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b)A=51T =4

e)A=26T=20 f)A=51,T=20

Figure 8. Test 1. Behavior of the computed vector electric field E, = (E1j, E2p) in the domain decomposition FEM/FDM in Q at different time
moments. We show the electric vector field for different amplitude values A in (46) in Q.
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b)A=37,T=20

A=51,T =20

Figure 9. Test 1. Removal of spurious solutions on the finer mesh with the mesh size h = 0.05. We show the be h ior of the computed vector
electric field E, = (Eqy E ) th d omain decomposition FEM/FDM in Q tT 20. The electric t r field for different values
of the mplt ude A in (46) is presented in ). Compare with Fg e 8, wher p s modes appea d already at time T = 8 (there

computations were performed on the coarser mesh with mesh size h = 0. 125)

In Qrpm our coefficients are € = =1, and in this domain we have to solve the following problem:

E.:—AE =0, in Gx(0,7),
E«(x,0) =0, in G,

E(x,00=0
=0, Ex(x, t) = £(1), on 0 x

E ]

x (0, 4
(49)
0,E(x, t) = —0u(x, ), on 0 x(ty,
0,E(x,t) = —0,u(x, t), on 90, x(0,T),
x (0, T

Odhu(x, t) =0, on 0Q3x )

7).
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Figure 10. Test 1. Behavior of the exact and computed (47) solutions to equation (45) during T = (0, 20): a) at the point (0.0, 0.5), which is located
at the center of the computational domain Qrgwm; b) at the point (0.0, —3.5), which is located at the bottom boundary of Qrgwm; ¢) at the
point (0.5, 1.0), which is located close to the center of Qrgpm; d) at the point (0.5, —3.0), which is located at the lower part of Qrgpm. We
show the comparison of solutions with amplitude values A = 4,12, 26, 37,51 in (46). Here, the horizontal axis denotes the computation

time.

and in Qrgm we have to solve

PE, 0 [0E, O 9 [0(eE)  O(eEy)
bl T (e o N - o)
o Ty ( ox  dy ) ®ox ( x oy ) 0 o RrEmy
PE, 0 [0E, OE, 0 [0(cE) O(eEy)
9% 9 (92 9=} o9 —0, Qrew, s
92 ox ( x oy ) * 3y ( x | ay ) n Aremy (50)
E(x,00=0,  E(x0) =0, in Orens

E(x, 1) [aﬂ;EMT = E(x, 1) [aﬂMOT~

We choose the time step T = 0.02 in all tests corresponding to the CFL condition (44). The penalty factor s is always
chosen to be 1. In the initialized plane wave (48) we take w =7 in all tests.

First, in Test 3 we demonstrate that our computed solution Ej in the domain decomposition method approximates very
well the exact solution E in the case when € = p =1 in Q. Next, in Test 4 we demonstrate the validity of our method
by simulating problem (49)—(50) in the presence of the function g(x) # 0 in Qpgm.
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Figure 12. Different coefficients ¢(x) defined by (53) used in tests with a plane wave.

7.2.1. Test3

In this test we compare our computational solution obtained in the domain decomposition method with the analytical
solution. We compute problem (49)—(50) on two different meshes with different mesh sizes h, with h = 0.125 and with
h = 0.05. The plane wave is defined as in (48).

The analytical solution to problem (49)—(50) with € = p =1 reduces to the solution of the homogeneous wave equation

and is given by the following formula, see [8]:

0, it te(0a—y).
Exy. t) = {sinw(t—a+y), if te(a—y, a—y+21/w), (51)
0, if t>a—y+2n/w.

Here y is the vertical coordinate and we consider (49)—(50) on the domain R, = {y < a}, a = const > 0, while E; = 0.

Figure 14 presents a comparison between the exact solution given by (51) and the computed solutions for (49)—(50),
at different points of the computational domain Q). We show the computed domain decomposition solution on different
meshes with mesh sizes h = 0.125 and h = 0.05. We observe that the exact and computed solutions differ mainly at
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Figure 13. Test 3. Numerical comparisons of the computed L,-norms for ||E|| and || E,|| on different meshes with mesh sizes h = 0.125 and
h = 0.05, respectively. We show computed L,-norms during time T = (0, 20) in Qrgm. Here, the horizontal axis denotes the number of

time stepsin T = (0, 20).

the bottom of the computational domain Qpgm. This can be explained by the fact that the computational error grows
with computational time. Comparing a) &b) with ¢) &d) in Figure 14 we observe that the computed solution Ej on the
mesh with mesh size h = 0.125 has amplitude approximately twice smaller than the exact solution E, but the computed
solution on the mesh size h = 0.05 approximates more accurately the exact solution. The same observation is confirmed
by Figure 13a), which shows the comparison of the exact norm ||E||q.,, and the computed norm ||E,||qeg,, on different
meshes with mesh sizes h = 0.125 and h = 0.05 during time T = (0, 20).

This test shows that the FEM scheme used in the domain decomposition method is second order convergent in space
and time, and the underlaying a posteriori error analysis for (50) is similar to the one developed in [2].

7.22. Test4

The goal of this test is to explain why in some real-life experiments with the electromagnetic plane wave that propagates
in the medium with the coefficient € # 0 it is still possible to approximate Maxwell's system with the wave equation

(E
ot?
Ei(x,0) =0, in Q,
E(x, t) = f(t), on 90y x (0, t], (52)
0,E(x, t) = —0:u(x, 1), on 0Qyx(t, T),
0,E(x,t) = —0:u(x, 1), on 00, x(0,T),
dpu(x, t) =0, on 903x(0,7).

—AE =0, in Qr,

E(x,0) = fo(x),

Such a model is considered in our recent publications [5, 18], where the spatially distributed dielectric constant was
reconstructed from experimental data via a hybrid globally convergent/adaptive algorithm. In [5, 18] there were some
discrepancies between the computational model and real-like experiments: instead of considering the globally convergent
method for Maxwell’s system (6), in [5, 18] we used the model of the single wave equation (52). Moreover, it was not
known which one of the three components of the electric field was measured in experiments. The fact that in [5, 18]
a very accurate reconstruction of the dielectric constant still was obtained demonstrates validity of the approximated
model. Our tests below in 2D and 3D demonstrate an explanation of the experiment performed in [5, 18]
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Test 3. Comparison of the analytic and computed solutions in the domain decomposition FEM/FDM during time T = (0, 20) with

e = p = 1. We show computed domain decomposition solutions on different meshes with mesh sizes h: a) on the mesh with
h = 0.125 at the point (0.5, 3.0), which is located at the upper part of the computational domain Qggpm; b) on the mesh with h = 0.125
at the point (0.5, —3.0), which is located at the lower of Qrgpm; ¢) for the mesh size h = 0.05 at the point (0.5, 3.0); d) for the mesh size

h = 0.05 at the point (0.5, —3.0).

In this test we initialize a plane wave f as in (48) that is similar to the time-resolved electromagnetic signal used in the
experiments of [5, 18]. Next, we solve the problem (49)—(50) with coefficient € in Qpgym defined as

1+ 0.5sin? . sin’ LEl

3 3
€= 1+0.551n2%-sln2%,

TTX T
14+ Asin® == ~sin2—y

3 3’

—3<x<0, -3<y<3
0<x<3, 0<y<3, (53)
0<x<3 —-3<y<0,

where A = 4.0,12.0,26.0, see Figure 12. Figures 17 show how the plane wave propagates in Q, with € in Qrgm given
by (53) with A = 4.0, see Figure 12a). We observe that the plane wave f is initialized at the top boundary 0Q; and
propagates into Q for t € (0, #;]. First order absorbing boundary conditions [12] are used on the top dQ; x (t;, T] and
the bottom 9Q; x (0, T] boundaries, and the Neumann or mirror boundary condition is used on dQ3x (0, T]. Figures 17
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Figure 15. Test 4. Behavior of the computed solution £, = (Eyj, E25) during time T = (0, 20) for equation (50) at different points at the FEM/FDM
boundary: a) at the point (1.0, —3.5); b) at the point (1.5, —3.5). Here, the mesh size is h = 0.125 and the horizontal axis denotes the
number of time steps during time T = (0, 20). In this figure components of the electric field are defined as E1 = E,, E;, = Eq, E3 = E;.
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Figure 16. Test 4. Comparison of the computed L,-norms for || £1,|| and for || E2, || on different meshes with mesh sizes h = 0.05 and h = 0.125,
respectively. L,-norms are shown during time T = (0,20) in Qrgm. Computations are performed with different amplitudes A in the
definition (53) of the coefficient £(x) inside Qrpnm. Here, the horizontal axis denotes the number of time steps during time T = (0, 20).

demonstrate also the continuity of the numerical solution in the domain decomposition method across the FD/FE mesh.
We observe that the computed electric field £, = (Eyp, E2,) remains smooth across the FE/FD interface.

Using Figures 1617 we can conclude that the maximum of the component E,, where the plane wave was initialized,
is about three times higher than the maximum of the component E; at all times. Figure 13 b) shows the comparison of
the computed norms || Eq,,|| and ||E2, | during time T = (0, 20) in Qpem. In these computations we have used amplitudes
A =4,12,26 in the definition (53) of the coefficient € inside Qrgpm. From Figure 13 b), we can conclude that the computed
solution Ej, does not contain spurious solutions as long as values of the coefficient € are not too big (the amplitude
A <12 in (53)), and the final time T is also not very large (T < 12).
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3D case

In this test we again initialize a plane wave f as in (48) and repeat the test of three-dimensional computations of [5, 18].
However, instead of the model of the wave equation of [5, 18] in Qrgm, now we consider the model of Maxwell's equations
for the electric field E. The computational domain in the test of this section is

G = [—4,4]x[-5,5]x[-2.4,2].
We represent this domain as G = Qrgm U Qppm, where the finite element subdomain is
Qrem = Q = [-3,3]x[-3,3]x[-2,1.4],

and the surrounding domain Qrpym is where we use the finite difference method. The space mesh in Qpgm consists of
tetrahedra and in Qppnm of cubes with mesh size h = 0.2 in the overlapping regions. Thus, in Qrpm we solve problem (49)
and in Qrgm we have to solve

2
s%—tf+V(V-E)—v.(VE)—sv(v.(eE)) =0, in Oem,,
E(x,00=0, E(x0)=0 in Qrey,

E(x, 1) [BQFEMT = E(x, 1) faomw~

The coefficient € inside Qpgpm is defined as follows: € = 4 inside a small cube with sizes [1,2]x[-2, —1]x[—1, 0], and
€ =1 at all other points of the computational domain.

Figures 18 show reflections of all computed components of the electric field £ in Q at time moments T = 9.42,11.14.
These figures demonstrate also continuity of the numerical solution in the domain decomposition method across the
FD/FE mesh. Figures 19 show behavior of all computed components E;,, Ezp, E3p, of the electric field E at different
points of the computational domain Qpgpm over time. These points are located at the bottom boundary of Qrgm. Using
the results of Figures 18 and 19 we make the same observation as in the two-dimensional test above: the maximum of
the computed component E;;,, where the plane wave was initialized, is about three times larger than the maximum of
other computed components £y, E3, at all times. Figure 19b) also shows a numerical comparison between all computed
components Ey,, Eup, E3p of the electric field £ (solid lines) versus the computed solution of the acoustic wave equation
(dashed line). We observe that all reflections corresponding to the solution of the acoustic wave equation approximate
the reflections from the computed component E;, of the electric field very well. Thus, we can conclude that all meaningful
reflections from the coefficient g(x) are from the component E;, while reflections from the other components of the electric
field E4, E5 are negligible compared with reflections from the component E,. This fact explains why in the experiments
of [5, 18] it was only possible to measure the single time-resolved signal and why the other two components in our 3D
test of [5, 18] could not be measured — reflections from these remaining components were negligible. Because of the
above observations as well as results of Figure 19b), we have approximated in [5, 18] our model problem of Maxwell's
system with a single wave equation.

8. Conclusion

The modified stabilized domain decomposition FEM/FDM of this paper can be applied to the solutions of the coefficient
inverse problems, for example, to reconstruct the dielectric permittivity function g(x) of the medium under investigation
with the condition that the electric permeability p(x) = 1 in the whole domain. Applications of the proposed modified
domain decomposition FEM/FDM for solutions of CIPs are broad, from airport security to the imaging of land mines. In
all such applications we need to reconstruct the relative dielectric constant &, of explosives, which are 3-5 times higher
than ones of reqular materials, see http://www.clippercontrols.com.
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Test 4. Behavior of the computed electric field E, = (Eqp,, E2p, E3p) at different points of the computational domain Qrgm: a) during

time T = (0,12) (in this figure components of electric field are defined as £y = E;, E; = E;, E3 = E3); b) during time T = (0, 24). In a)
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