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The problem of interest is grain-size-dependent hardening in polycrystalline metals. We study the mul-
tiphysics problem of heat conduction coupled to gradient crystal plasticity and investigate the tempera-
ture field on the grain level for adiabatic loading. The underlying equations for the thermomechanical
coupling are derived for a crystal plasticity model with gradient hardening. The influence of the temper-
ature field on misorientation of the slip directions between adjacent grains is investigated. Additionally,
the influence of the loading velocity and the size of the grain structure are examined. Numerical simula-
tions are presented and analyzed.
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1. Introduction

Due to the increasing significance of newly developed materials
and/or materials with improved properties, materials characteriza-
tion and simulation become more and more powerful tools and
important. In this contribution, we focus on microstructured solids
undergoing forming processes. Rapid processing is important for
the competitiveness of the industry. Examples of rapid processing
are adiabatic cutting and adiabatic forming. The heating in thin re-
gions with localized plastic deformation and the followed material
softening explains how the adiabatic process can work. We aim at
increasing the understanding the initiation of these phenomena on
the grain level of metals (�lm).

To model the material behavior at the grain level crystal plastic-
ity is a well-established tool (see e.g., Hill, 1966; Rice, 1971; Asaro,
1983). The crystal plasticity models have been extended to gradi-
ent crystal plasticity models in order to capture grain size depen-
dence (see e.g., Gurtin, 2000; Cermelli and Gurtin, 2001; Evers
et al., 2004; Anand et al., 2005; Ekh et al., 2007; Svendsen and
Bargmann, 2010). The physical motivation for including gradient
effects is that movement of dislocations (plastic slip) is affected
by the grain boundaries in a polycrystal. In the present paper we
will investigate how the thermal field on the grain level will be af-
fected by grain boundaries using an extended version of the crystal
gradient plasticity model proposed in Ekh et al. (2007). There exist
some contributions taking a temperature-dependent initial yield
ll rights reserved.

).
stress into account, however, without modeling heat conduction
inside the material (cf. e.g., Evers et al., 2004; Nemat-Nasser
et al., 2001; Voyiadjis and Beliktas, 2005). Lately, Al-Rub and Faruk
(2011) studied temperature effects on size-dependent yield
strength and strain hardening of small metallic volumes.

The framework for consistently deriving the heat generation
due to dissipation of a crystal plasticity model was formulated by
Håkansson et al. (2008). In Håkansson et al. (2008) crystal plastic-
ity was used to model the macroscopic heat generation of a poly-
crystal using a Taylor assumption for the displacement field on
the grain level. However, in the current paper we will on the grain
level allow for a fluctuating displacement and temperature field.
The fluctuation of the temperature field is of significance in appli-
cation areas such as rapid processing or for large grain size of the
polycrystal such as superalloys.

Most works devoted to gradient extended crystal plasticity only
deal with the mechanical issue (which is challenging enough).
However, thermal effects play a non-negligible role in different
cases and should therefore be taken into account. In general, for
slow as well as for rapid strain rates the stress–strain response de-
pends on the local temperature (e.g., Nemat-Nasser et al., 2001;
Zhou and Clode, 1998).

One example is that, in context of macro- as well as microform-
ing processes, the material’s temperature slightly decreases before
the yield point and increases when yielding starts. The tempera-
ture change between the drop and the increase is a relatively sharp
kink, whereas the temperature rise is linear afterwards. In forming
technology it is still an unresolved issue on how the temperature
influences the exact determination of the yielding point. During

http://dx.doi.org/10.1016/j.ijsolstr.2012.11.010
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http://www.sciencedirect.com/science/journal/00207683
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Fig. 1. We consider a polycrystal with domain B0 which consists of multiple grains.
Each grain b occupies a domain B0;grainb with B0 ¼

S
bB0;grainb . To the specimen’s

boundary (i.e., the dashed line) we refer as the outer boundary. Those grain
boundaries C0;grainb which are not part of the outer boundary we name inner
boundaries (i.e., all solid lines). For example, C0;grain2 is an outer boundary, while
C0;grain2;1, C0;grain2;3 and C0;grain2;4 are inner boundaries.
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the forming process, the temperature of the specimen rises due to
heat generated by plastic deformation. Another example is the
interaction of temperature and microstructure in the other direc-
tion, i.e., the microstructure influences thermal properties: grain
boundaries decrease the thermal (and the electrical) conductivity,
depending on the number of misfit dislocations.

The numerical algorithm chosen in this paper, for the gradient
plasticity, is based on the dual mixed method proposed in
Svedberg and Runesson (1998) and applied in Ekh et al. (2007)
for a gradient crystal plasticity model. Further, in Ekh et al.
(2007) the grain structure is numerically divided into grains
(domain decomposition) and the field problems (displacement
and gradient of plastic slip) are solved for in each grain separately
for given displacements at the grain boundaries. The global field
problem is then reduced to finding the displacements on the grain
boundaries. In the current paper this algorithm has been extended
to together with the displacement field also solve for the temper-
ature field in a monolithic fashion.

The paper is organized as follows: in Section 2 the notation and
the kinematics are introduced. The governing equations are de-
rived in a thermodynamically consistent fashion from fundamental
balance principles in Section 3. The restrictions that arise from the
reduced dissipation inequality stipulate the thermodynamically
consistent form of the constitutive equations. This framework is
then utilized to determine the response of the polycrystal in Sec-
tion 4. The numerical solution algorithm is described in Section 5.
The theory is implemented into a two-dimensional finite element
code. This is done within the context of a dual-mixed finite ele-
ment method. Section 6 is devoted to the boundary conditions of
the problem at hand. Finally, some numerical examples are dis-
cussed in Section 7 and, subsequently, Section 8 concludes this
contribution.

2. Kinematics

The motion of particles X in the reference configuration B0 of
the solid body with boundary C0 is described by the time-depen-
dent vector field of the nonlinear spatial deformation map

u : B0 � Rþ ! Bt with uðX; tÞ :¼ x; ð1Þ

where x denotes the spatial position of the particle X in the de-
formed (spatial) configuration Bt at time t. The body B0 consists
of several grains. The boundary of each grain is denoted by Cb;grain,
see also Fig. 1.

The deformation gradient F is defined by

F : T B0 ! T Bt with F :¼ r0uðX; tÞ: ð2Þ

The I-th component of the nabla operator is defined as
r0ð�ÞI ¼ @ð�Þ=@XI. The deformation gradient is assumed to be mul-
tiplicatively split into an elastic Fe (reversible) and a a plastic (irre-
versible) part Fp:

F ¼ Fe � Fp; ð3Þ

see e.g., Kröner (1960), Lee (1969). The Jacobian of the deformation
gradient is denoted J ¼ det F. Useful deformation measures are the
right Cauchy–Green and Finger tensors which are defined as follows

C :¼ F t � F; Ce :¼ ½Fe�t � Fe; be
:¼ Fe � ½Fe�t : ð4Þ

Moreover, we make use of the velocity gradient l which can be ex-
pressed as follows by using the multiplicative split of the deforma-
tion gradient

l :¼ _F � F�1 ¼ le þ lp ð5Þ

with
le
:¼ _Fe � ½Fe��1

; lp
:¼ Fe � _Fp � ½Fp��1 � ½Fe��1

: ð6Þ

The rate of deformation tensor d which is defined as the symmetric
part of the velocity gradient, i.e.,

d :¼ 1
2

lþ lt
h i

: ð7Þ

Clearly, then the rate of deformation tensor can also be additively
decomposed as d ¼ de þ dp where both de and dp are the symmet-
rictively decomposed as d ¼ de þ dp where both de and dp are the
symmetric part of the corresponding velocity gradients le and lp. Fi-
nally, a result that we need later is the time derivative of the elastic
Cauchy-Green deformation Ce that can be written as

_Ce ¼ 2½Fe�t � de � Fe: ð8Þ
3. Thermodynamic framework

The first law of thermodynamics states the conservation of total
energy, in terms of balance equations this is also referred to as the
balance of energy. We assume conservation of mass and make use
of the balance of momentum

q0 _v ¼ DivP þ q0b; ð9Þ

with P and b being the first Piola–Kirchhoff stress tensor and the
volume force, respectively. The divergence operator is defined as
Div ð�Þ ¼

P
I@ð�Þ=@XI . Then, the first law reduces to the balance of

internal energy in its conservative formZ
B0

q0 _edV ¼ �
Z
B0

DivQdV þ
Z
B0

P : _FdV þ
Z
B0

q0rdV ; ð10Þ

where e is the mass specific internal energy density, r is the external
heat supply per unit mass and Q is the material heat flux vector. The
spatial counterparts of the first Piola–Kirchhoff stress P and the
heat flux Q are obtained via the Piola transformations

r ¼ J�1P � Ft ; q ¼ J�1Q � F t; ð11Þ

where r is the Cauchy stress and q is the spatial heat flux.
The point of departure, for formulating a constitutive model, is

the entropy inequality in combination with the second law of ther-
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modynamics which ensure the non-negativity of the internal en-
tropy production:Z
B0

q0 _gdV �
Z
B0

q0r=hdV þ
Z
B0

DivðQ=hÞdV P 0; ð12Þ

where g denotes the entropy density and h is the absolute temper-
ature. Inserting the definition of the Helmholtz free energy
w :¼ e� gh and subsequently balance equation (10) into Eq. (12)
leads toZ
B0

P : _FdV �
Z
B0

q0
_wdV �

Z
B0

q0g _hdV �
Z
B0

r0h �
Q
h

dV P 0: ð13Þ

The framework is complemented by constitutive equations which
are introduced in Section 4. At this point, we assume that
the following independent variables define the state space S:
the elastic Cauchy-Green deformation tensor Ce, the hardening
variables m ¼ ðm1; . . . ; mnslip

Þ, the gradients of the hardening vari-
ables r0m ¼ ðr0m1; . . . ;r0mnslip

Þ and the (absolute) temperature h.
Thus, the Helmholtz free energy w depends on the state
space S ¼ fCe; m;r0m; hg and we obtain w ¼ wðCe; m;r0m; hÞ. Next,
we insert this assumption into Eq. (13), rearrange and make
use of the fact that inequality (12) must hold for all thermody-
namical processes. This motivates the following constitutive
assumptions:

g ¼ � @w
@h

; s ¼ 2q0Fe � @w
@Ce � ½F

e�t; ð14Þ

where s :¼ Jr is the Kirchhoff stress. In addition, we obtain the re-
duced dissipation inequality:

D :¼
Z
B0;grain

s : dp � q0@w
@m
� _m � q0@w

@r0m
: r0 _m �r0h �

Q
h

dV

P 0: ð15Þ

We split the total dissipationD ¼ Dmech þDtherm P 0 into a mechan-
ical and a thermal contribution

Dmech ¼
Z
B0;grain

s : dp þ j � _mdV þ
Z

C0;grain

jðbÞ � _mdA;

Dtherm ¼ �
Z
B0;grain

1
h

Q � r0hdV ; ð16Þ

where we introduced the microstresses j ¼ ðj1; . . . ;jnslip
Þ and

jðbÞ ¼ ðjðbÞ1 ; . . . ;jðbÞnslip
Þ as follows

jb ¼ �
q0@w
@mb

þ Div
q0@w
@r0mb

� �
in B0;grain;

jðbÞb ¼ �N � q0@w
@r0mb

on C0;grain; ð17Þ

with b ¼ 1;2; . . . ; nslip. Note that the microstress inside the grain as
well as on the boundary naturally arise from the theory. In particu-
lar, the later motivates the micro boundary conditions. Both dissi-
pations Dmech and Dtherm have to be non-negative. The mechanical
dissipation Dmech can be rephrased as

Dmech ¼
Z
B0;grain

M : Lp þ j � _mdV þ
Z

C0;grain

jðbÞ � _mdA ð18Þ

by introducing the Mandel stress

M ¼ 2Ce � q0@w

@Ce ð19Þ

and the plastic velocity gradient (on the intermediate tangent
space)

Lp ¼ _Fp � ½Fp��1
: ð20Þ
Next, we aim at deriving the governing equation for the thermal
problem. We insert the definition of the Helmholtz free energy
and subsequently relations (14) and (18) into balance equation
(10). In each grain B0;grain we obtainZ
B0;grain

q0c _hdV ¼
Z
B0;grain

�DivQ þ q0rdV þDmech

þ
Z
B0;grain

q0h
@2w

@h@Ce : _Ce þ @2w
@h@m

� _m þ @2w
@h@r0m

: r0 _m

" #
dV :

ð21Þ

Here, c ¼ �h@2w=@h2 denotes the non-negative specific heat. Next,
we apply the divergence theorem and theorem of Gauss which
leads toZ
B0;grain

q0c _hdV ¼
Z
B0;grain

�DivQ þ q0rdV þDmech

þ
Z
B0;grain

q0h
@2w

@h@Ce : _CedV

þ
Z
B0;grain

q0h
@2w
@h@m

� Div
@2w

@h@r0m

 ! !
_m

" #
dV

þ
Z

C0;grain

@2w
@h@r0m

� N � _mdA: ð22Þ
4. Constitutive assumptions

From now on, we assume the following free energy w of the
Neo–Hookean type

q0w : ¼ l
2

Ce � I
� �

: I þ k
2

ln2J � l ln J þ 1
2

X
b;i

Hl
bimbmi

þ 1
2

X
b;i

lblir0mb �Hg
bi � r0mi þ q0c h� h0 � h ln

h
h0

� �

� 3a½kþ 2=3l� h� h0½ � ln J
J

ð23Þ

with k and l denoting the Lamé constants and a is the thermal
expansion coefficient. Moreover, c and h0 denote the non-negative
specific heat and the reference temperature, respectively. Further-
more, Hl

bi denotes the local hardening modulus and lb and li are
internal length scales. Moreover, the counterpart for the gradient
contribution, i.e., Hg

bi, accounts for cross-hardening effects as well:

Hg
bi :¼ ½�sb � �si�hbiH

g
0; ð24Þ

with Hg
0 being the gradient hardening modulus and �sb;�si are slip

directions. hbi are coefficients where the diagonal terms (b ¼ i)
are related to gradient self-hardening of the slip systems b, whereas
the off-diagonal elements (b – i) induce gradient latent hardening
between the slip systems b and i. For now, we assume that both,
Hl

bi and Hg
bi, are temperature independent.

The choice of Helmholtz’ free energy in Eq. (23) results in

s ¼ l be � I
� �

þ k lnðJÞI� 3a½kþ 2
3
l� h� h0½ � 1� lnðJÞ½ � I

J
;

M ¼ l Ce � I
� �

þ k lnðJÞI� 3a½kþ 2
3
l� h� h0½ � 1� lnðJÞ½ � I

J
;

jb ¼ �
X

i
Hl

bimi þ
X

i
lbHg

biliDiv �sbr0mi � �si
� 	

;

jðbÞb ¼ �
X

i
lbHg

biliN � sbr0mi � si
� �

; ð25Þ

when combining Eqs. (14), (17) and (19). For the heat flux Q we as-
sume Fourier’s classical law of heat conduction



902 S. Bargmann, M. Ekh / International Journal of Solids and Structures 50 (2013) 899–906
Q :¼ �kr0h ð26Þ

with k denoting the material’s thermal conductivity. We adopt the
standard crystal plasticity yield function on each slip system b as

Ub :¼ sb � jb � Yb; ð27Þ

where sb is the Schmid stress defined as the projection of the
Kirchhoff stress s on the crystal system

sb :¼ sb � s � nb: ð28Þ

The vectors sb and nb are the slip direction and the normal of the
slip plane, respectively. The Schmid stress can also be expressed
in quantities defined on the intermediate tangent space as

sb ¼ �sb �M � �nb ð29Þ

with �sb and �nb defined from the pull-back operations

�sb ¼ ½Fe��1 � sb and �nb ¼ nb � Fe: ð30Þ

Note that we adopt the isoclinic assumption that the slip directions
on the intermediate and the reference configurations coincide. The
evolution equations for the internal variables are defined in an asso-
ciative fashion as

Lp ¼
Xnslip

b¼1

_cb
@Ub

@M
¼
Xnslip

b¼1

_cb½�sb � �nb�;

_mb ¼ _cb
@Ub

@jb
¼ � _cb: ð31Þ

Finally, we assume that the slip rate _cb is governed by a viscoplastic
hardening law via a Perzyna-type regularization

_cb ¼
1
tH

hsb � jb � Ybi
C0

m

; ð32Þ

where hxi ¼ 1=2½xþ jxj�. The drag stress, the relaxation time and the
constant rate sensitivity are denoted C0, tH, m, respectively. At this
point, C0 and tH are chosen to be constant for the sake of clarity.
However, they might as well depend on the temperature and/or
on the slip system b.
5. Finite element algorithm

A finite element method is applied to numerically solve the
highly nonlinear and coupled boundary value problem: the linear
momentum equation (9), the transient heat equation (22) and
the gradient problem (32). Following our earlier works on isother-
mal gradient crystal plasticity (Ekh et al., 2007; Bargmann et al.,
2011), we introduce the gradient of the plastic slip along the slip
direction gb as a field variable

gb :¼ r0cb � sb: ð33Þ

In spirit of the dual mixed finite element algorithm, we solve for the
temperature h, the mechanical displacement u and the directional
gradient gb. The plastic slip cb is treated as a dependent variable
and solved on the local element level. The time interval of interest
is discretized with a backward Euler scheme and we denote quan-
tities at time tn with a superindex nð�Þ while quantities at time
tnþ1 is for convenience written without any superindex. Before pro-
ceeding to the FE equations, we summarize the underlying time dis-
cretized field equations

q0c
h�nh
Dt
¼ k Div r0hð Þ þ s : dp þ j � _m þ h

1
2
@Se

@h
: _Ce þ h

@j
@h
� _m; ð34Þ

q0 _v ¼ Div P þ q0b; ð35Þ
gb ¼ r0cb � sb: ð36Þ
Note that we used the localized version of Eq. (22) that can be ob-
tained by disregarding the boundary contributions. The motivation
for this is given in the next section where boundary conditions for
the plastic slip field cb are introduced. Next, the domain is decom-
posed, i.e., the grain structure is numerically divided into grains
(domains), see also Fig. 1. The unknowns are solved for in a stag-
gered iterative fashion on two levels: on the outer level we iterate
for the unknowns on all grain boundary nodes inside the specimen
(given the values at the outer boundary); for each iteration step on
the outer level, the field variables are solved for in each grain (for
fixed values at all grain boundaries). The plastic slip cb is calculated
on the element level in the Gauß points.

In the numerical examples we assume a quasistatic balance of
momentum whereby the weak form of these equations becomeZ
B0;grain

q0c
h�nh
Dt

dhdV ¼
Z

C0;grain

kr0h � NdhdA�
Z
B0;grain

kr0h � r0ðdhÞdV

þ
Z
B0;grain

s : dp þ j � _m þ h
1
2
@Se

@h
: _Ce þ h

@j
@h
� _m

� �
dhdV ; 8dh ð37Þ

0 ¼
Z

C0;grain

N � P � dudA�
Z
B0;grain

P : r0ðduÞdV; 8du

Z
B0;grain

gbdgbdV ¼
Z

C0;grain

cbN � �sbdA�
Z
B0;grain

cbr0ðdgbÞ � �sbdV; 8dgb:

The approximations of h, u and gb are assumed to be linear and the
nonlinear coupled equations are solved in a monolithic fashion.

6. Boundary conditions

Different type of boundary conditions have to be formulated.
First, mechanical boundary conditions are proposed.

6.1. Mechanical boundary conditions

We choose Dirichlet boundary conditions on the entire outer
boundary C0. Consequently, the boundary conditions for the spec-
imen read as follows

uðXÞ ¼ u0 8X 2 C0: ð38Þ

We set the displacement field inside the grains and on the inner
grain boundaries unconstrained in order to better capture the
underlying physics.

6.2. Microboundary conditions

The gradient hardening boundary conditions must be defined
for all the grain boundaries and not only for the outer boundary
of the grain structure. In the literature, there mainly exist two
types of micro boundary conditions, namely micro-hard and mi-
cro-free. The latter correspond to a vanishing microstress jb,
whereas the first one assumes that the plastic slip cb vanishes on
the grain boundaries:

cb ¼ 0 on C0;grain b micro-hard b:c: ð39Þ

jb ¼ 0 on C0;grain b micro-free b:c: ð40Þ

An additional type of boundary conditions, the micro-flexible ones,
have been supplemented by Ekh et al. (2011). In comparison to the
established micro-hard and micro-free conditions, the micro-flexible
conditions are physically more realistic. In detail, micro-flexible
boundary conditions depend on the angle of misorientation
between to neighboring grains and contain the micro-hard as well
as the micro-free conditions as limiting cases. Consequently, the
grain boundary resistance depends on the degree of mismatch be-
tween the slip systems. The micro-hard condition corresponds to
a boundary through which dislocations cannot pass, whereas the



Table 1
Material parameter values adopted for the crystal gradient plasticity model. The
mechanical parameters are from Ekh et al. (2011) whereas the thermal parameters
are from Håkansson et al. (2008).

Parameter Symbol Value

Young’s modulus E 200 [GPa]
Poisson’s ratio m 0:3
Local hardening modulus Hl 10 [GPa]

Gradient hardening modulus Hg
0 4 � 104 [GPa]

Internal length scale l 0.01 [lm]
Initial yield stress Yb 1000 [MPa]
Rate sensitivity parameter m 1
Drag stress C0 1 [MPa]
Heat source r 0
Material density q0 7800 [kg/m3]
Heat capacity c 450 [J/kg K]
Thermal conductivity k 30 [W/m k]
Thermal expansion coefficient a 10�5 [K�1]
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micro-free condition corresponds to a boundary through which dis-
locations can flow freely without any resistance.

Grain boundaries decrease the thermal (and the electrical) con-
ductivity, depending on the number of misfit dislocations. There-
fore, it is reasonable to assume a dependence of the angle of
misorientation. To be precise, micro-flexible boundary conditions
(defining the relation between the plastic slip cb and the micro-
stress jC;b) read as follows

cb ¼ CC;bðuab;bÞjC;b on C0; grain b micro-flexible b:c:; ð41Þ

with

CC;bðuab;bÞ :¼ CC
1

tanðuab;bÞ
ð42Þ

where CC is the flexibility constant, and uab;b is the angle of mis-
match between slip direction �sb in grain a and the most compatible
slip direction in grain b. To be specific, the angle of mismatch uab;b is
defined as

uab;b ¼ min
i
farccos j�sa

b � �sb
i jg; i ¼ 1; . . . ;Ngrain: ð43Þ

Note that the micro-flexible boundary condition is continuous with
respect to the angle of mismatch.

6.3. Temperature boundary conditions

For the thermal problem, we assume Neumann boundary con-
ditions on the entire boundary

Q � N ¼ 0 on C0: ð44Þ

Physically, this corresponds to an adiabatic boundary, i.e., a bound-
ary that is impermeable to heat transfer.

Another possibility would be to adopt periodic boundary condi-
tions for the thermal (as well as mechanical) problem which would
be especially efficient if a representative response of the grain
structure would be the main objective.
0.4
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7. Numerical results

In this section we investigate the temperature fluctuation in a
grain structure during fast loading. The main purposes of this sec-
tion are to show how large the temperature fluctuation field might
be and what magnitude the loading rate must be in order to obtain
such a fluctuation field. Although the loading rate is very high we
will for simplicity neglect inertia effects and assume quasi-static
loading conditions (cf. Eq. (37)2).The model is applied to a poly-
crystalline metal. The material parameters are listed in Table 1
and it is assumed that all material parameter values are indepen-
dent on the temperature.1Clearly, the choice of parameter values
should be further investigated to get more realistic results for a
specific choice of material. In this paper we restrict the study to a
choice of parameter values that give qualitatively realistic stress–
strain response for a polycrystalline metal. However, the influence
of varying the gradient hardening Hg and the relaxation time t	 is
investigated. In all the numerical examples plane stress condition
(in every Gauss point of the grain structure) is assumed.
1 In this particular case, i.e., with the constitutive assumptions listed, Eq. (22) can
be written in local form as follows

q0c _h ¼ �DivQ þ q0r þ s : dp þ
X

b

jb _mb �
3aðkþ 2=3lÞ ð1� logðJÞÞh

2 J
ðCeÞ�1 : _Ce:
7.1. Influence of loading rate

First, numerical results for a simple shear test for a grain struc-
ture consisting of four grains are presented. We consider this sim-
ple but illustrative example as it already clearly demonstrates first
abilities of the proposed model. A maximum shear deformation of
�c ¼ 0:05 with three different loading rates _�c are applied. In these
results the relaxation time t	 is thought of as a regularization
parameter for crystal plasticity, i.e., chosen as small as possible
to give (close to) rate independent mechanical response. The par-
ticular choice of the relaxation time is therefore changed with
the loading rate as t	 ¼ 50= _�c. The numerical results now only show
rate dependence response due to different temperature fields.

The temperature field is initiated as homogeneous with
h ¼ 293 K everywhere. Furthermore, random triple slip is assumed
to allow for multiple active slip systems and micro-hard conditions
are assumed CC ¼ 0. The four grains are discretized with 228, 240,
264 and 292 elements. The mechanical response in terms of stress–
strain curve and accumulated plastic slip field

ffiffiffiffiffiffiffiffiffiffiffiffiP
bc2

b

q
are shown in

Figs. 2 and 3. These results are the same independent on the load-
ing rate (due to the adopted choice of t	). However, if we study the
increased (from 293 K) temperature field in Fig. 4 then we observe
that the loading rate has a significant influence during a short time
period. The lower the loading rate is the more homogeneous the
temperature field becomes. For _�c ¼ 5 � 104 s�1 the temperature
field is close to homogeneous.

The relation between the plastic slip cb and the temperature h is
nontrivial. The more plastic slip arises, the more heat is generated.
0 0.01 0.02 0.03 0.04 0.05
0

0.2

Fig. 2. Stress strain curve for a simple shear test of 4 grains.
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Fig. 5. Stress strain curve for a simple shear test of 16 grains.
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Fig. 6. Distribution of accumulated plastic strain in the grain structure.
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The comparison of Figs. 3 and 4 reveals that the temperature rises
in the parts of the grains with the highest accumulated plastic slip.
The temperature evolution happens at a different speed when
compared to the speed of the plastic slip development. This finding
can also be seen in the examples below.

Now we adopt the same assumptions for a larger grain struc-
ture with 16 grains. Each grain is discretized with 250–300 ele-
ments. The stress–strain curve and the accumulated plastic slip
field are shown in Figs. 5 and 6 whereas the temperature fields
for different loading rates are shown in Fig. 7. The same conclu-
sions as for the four grain example can be drawn here, i.e., for
the lower loading _�c ¼ 5 � 104 s�1 then the temperature field be-
comes close to homogeneous.

In the next results we allow also the mechanical behavior to
be rate dependent. To be specific, we subject the grain structure
to three different loading rates but now with the same relaxa-
tion time t	 ¼ 10�4 s. This means that the model’s viscosity influ-
ences the mechanical response. The resulting stress–strain
response for _�c ¼ 5 � 105, 5 � 106 and 1 � 107 s�1 are shown together
with the plastic slip field for _�c ¼ 5 � 106 in Figs. 8 and 9. From
the latter result, we can compare with the plastic slip field in
Fig. 6 and conclude that the plastic slip now is smaller due to
the larger strain rate.

In addition, the temperature fields for the different loading rates
are shown in Fig. 10. Here, we observe that a slow loading rate al-
lows the heat to spread more in the grain structure. But also that
for the highest loading rate the overall temperature raise is slightly
smaller. It should be noted that if we instead would have compared
the temperature distribution for the same stress level (and not
strain level) then the difference between the overall temperatures
would have been larger.
Fig. 4. Temperature distribution h� 293 K at �c ¼ 0:05 for, from left to r
7.2. Influence of grain size and boundary conditions

Another important model parameter is the size of the grain
structure. For the 16 grain example in SubSection 7.1 the side
length was assumed to be 20 lm. If we now decrease the side
length to 10 lm then the gradient crystal plasticity model predicts
a more stiff result. Moreover, the accumulated plastic slip field is
affected by this change of hardening but also the temperature field
will be affected. The accumulated plastic slip and temperature field
for the side length 10 lm are shown in Fig. 11 at �c ¼ 0:05 for the
loading rate _�c ¼ 5 � 105 s�1 and relaxation time t	 ¼ 10�4 s. These
results should be compared to Fig. 5 and 10 (left). The width of
grain boundary affected plastic slip field is similar for the two grain
structures. In addition, we can observe that the smaller side length
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Fig. 7. Temperature distribution h� 293 K at �c ¼ 0:05 for, from left to right, _�c ¼ 5 � 104 s�1, _�c ¼ 5 � 105 s�1 and _�c ¼ 5 � 106 s�1, respectively.
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Fig. 8. Stress strain curves for a simple shear tests with different loading rates of
grain structure with 16 grains.
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Fig. 9. Distribution of accumulated plastic strain in the grain structure for the
loading rate _�c ¼ 5 � 106 s�1.
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Fig. 10. Temperature distribution h� 293 K at �c ¼ 0:05 for, from left to right, _�c ¼ 5 � 105 s�1, _�c ¼ 5 � 106 s�1 and _�c ¼ 1 � 107 s�1, respectively.
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Fig. 11. Left: accumulated plastic slip and Right: temperature distribution h ¼ 293 K at �c ¼ 0:05 for the side length of the grain structure 10 lm.
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boundary conditions.
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gives a slightly more homogeneous temperature distribution with
lower maximum temperature.

Finally, we investigate the influence of the boundary conditions
on the plastic slip field as discussed in Section 6. In Fig. 12 the tem-
perature fields for micro-free CC ¼ 1 (in the computer implemen-
tation the finite value CC ¼ 106 lm/N is chosen) and microflexible
CC ¼ 1 lm/N at �c ¼ 0:05 conditions at inner grain boundaries are
shown. It can be observed that, by comparing to Fig. 10 (left), that
the temperature distribution now becomes more homogeneous.

8. Concluding remarks

We extended our non-local, geometrically nonlinear crystal
plasticity framework by taking heat conduction into account. The
governing equations were derived in thermodynamically consis-
tent framework and include couplings between the mechanical
and the thermal problem. Moreover, the phenomenological flow
law for the plastic slip (Eq. (32)) is temperature-dependent via
the constitutive equation for the Kirchhoff stress tensor s as stated
in Eq. (25)1. Moreover, changes in the temperature field influence
the deformation field and vice versa, i.e., the coupling is twofold.
The temperature development inside the grain depends on the ac-
tive slip systems and, therefore, on the slip directions, see Eq. (22).
Consequently, some grains are better orientated for heat generated
by plasticity than others, in other words heat will distribute differ-
ently in grains with different preferred slip directions.

The numerical algorithm is based on a domain decomposition
where in each grain the coupled field equations for the displacements,
temperatures and the gradient hardening are solved for in a monolithic
fashion. This is done for given displacements and temperatures on the
grain boundaries. These displacements and temperatures are solved in
the outer global problem. In order to take the two-folded coupling of
the balance of linear momentum and the heat equation fully into ac-
count, we solve the system of equations monolithically with the help
of the Newton–Raphson solution strategy. The numerically efficient fi-
nite element algorithm is suitable for parallelization as this is rele-
vant for polycrystalline examples.

The work presented in this paper contributes to the ongoing re-
search direction on extended crystal plasticity theories, suggesting
a way on how to consider the coupled thermomechanical problem.
Different aspects of the response of polycrystalline specimen have
been studied. The influence of the loading rate on the temperature
field in a polycrystalline model has been studied. It is concluded
that for high strain rates�105 s�1 and grain sizes� 10 lm the tem-
perature becomes clearly inhomogeneous. In engineering many
metals are used (e.g., casted metals) with larger grain sizes where-
by the significance of the inhomogeneous temperature field is of
importance for lower strain rates. Finally, for the same polycrystal-
line model different boundary conditions on the plastic slip have
been adopted and results showing their influence have been
shown.
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