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Abstract
Aims/hypothesis The aim of this study was to use lipidomics
to determine if the lipid composition of apolipoprotein-B-
containing lipoproteins is modified by dyslipidaemia in type
2 diabetes and if any of the identified changes potentially have
biological relevance in the pathophysiology of type 2 diabetes.
Methods VLDL and LDL from normolipidaemic and dyslipi-
daemic type 2 diabetic women and controls were isolated and
quantified with HPLC and mass spectrometry. A detailed
molecular characterisation of VLDL triacylglycerols (TAG)
was also performed using the novel ozone-induced dissociation
method, which allowed us to distinguish vaccenic acid (C18:1
n-7) from oleic acid (C18:1 n-9) in specific TAG species.
Results Lipid class composition was very similar in VLDL
and LDL from normolipidaemic type 2 diabetic and control

participants. By contrast, dyslipidaemia was associated with
significant changes in both lipid classes (e.g. increased
diacylglycerols) and lipid species (e.g. increased C16:1 and
C20:3 in phosphatidylcholine and cholesteryl ester and in-
creased C16:0 [palmitic acid] and vaccenic acid in TAG).
Levels of palmitic acid in VLDL and LDL TAG correlated
with insulin resistance, and VLDL TAG enriched in palmitic
acid promoted increased secretion of proinflammatory medi-
ators from human smooth muscle cells.
Conclusions We showed that dyslipidaemia is associated
with major changes in both lipid class and lipid species
composition in VLDL and LDL from women with type 2
diabetes. In addition, we identified specific molecular lipid
species that both correlate with clinical variables and are
proinflammatory. Our study thus shows the potential of
advanced lipidomic methods to further understand the path-
ophysiology of type 2 diabetes.
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Introduction

Individuals with type 2 diabetes have an increased risk of
cardiovascular events [1]. Although the mechanisms behind
this increased risk are still not fully understood, dyslipidae-
mia is common in patients with type 2 diabetes and is an
established risk factor for cardiovascular disease [2]. Fatty
liver has evolved as a key player in the pathogenesis of
dyslipidaemia and we have shown a strong relationship
between increased liver fat, insulin resistance and the over-
production of large (triacylglycerol [TAG]-rich) VLDL par-
ticles [3, 4]. The increased secretion of large VLDL particles
initiates a sequence of lipoprotein changes, resulting in
additional abnormalities observed in dyslipidaemia such as
low levels of HDL and the appearance of small dense LDL
[5]. In addition, hepatic uptake of VLDL and its metabolites
(intermediate-density lipoprotein [IDL] and LDL) is de-
creased in patients with type 2 diabetes, resulting in increased
plasma residence time of these lipoproteins and thus further
contributing to the dyslipidaemia [6, 7].

Traditionally, serum lipids have been studied in terms of
the number of VLDL, LDL and HDL particles, and only the
largest lipid classes have been quantified in an attempt to
further characterise the lipoprotein particle. Although it is
well known that the concentration of apolipoprotein (Apo)-
B-containing lipoproteins (VLDL, IDL and LDL) is a key
determinant of atherogenicity, recent data suggest that com-
positional properties of lipoproteins are also important
[8, 9]. With the advent of powerful analytical tools such as
tandem mass spectrometry it is now possible to perform a
more detailed characterisation of the different lipoprotein
particles. This analysis, which can be performed using a
high-throughput approach [10], provides quantitative data
about highly abundant lipids as well as the less abundant
bioactive lipids. These advances offer an exciting opportunity
for the elucidation of mechanisms and for the identification of
disease-specific lipid-based biomarkers [11].

In this study, we used a lipidomics approach to characterise
lipid classes and lipid species in ApoB-containing lipoproteins
isolated from control individuals and normolipidaemic and
dyslipidaemic individuals with type 2 diabetes. Our aim was
to determine how clinical dyslipidaemia affects the lipoprotein
composition in individuals with insulin resistance and type 2
diabetes. We also wanted to investigate if insulin resistance
without clinical dyslipidaemia in type 2 diabetes was associ-
ated with changes in lipid composition in comparison with a

healthy reference group. Finally, we wanted to determine if
any of the identified changes could have any biological rele-
vance in the pathophysiology of type 2 diabetes.

Methods

Lipid annotation For an explanation of lipid annotation, see
the electronic supplementary material (ESM).

Study participants The individuals in this study were all 64-
year-old white women with the same ethnic background
(Swedish) who originally participated in the Diabetes and
Impaired glucose tolerance in Women and Atherosclerosis
(DIWA) study [12]. From this population, we randomly chose
20 women per group according to the following criteria: (1)
control individuals (HOMA <1.35) with normal blood lipids
(TAG <1.7 mmol/l and HDL-cholesterol >1.29 mmol/l); (2)
individuals with normal blood lipids (TAG <1.7 mmol/l and
HDL-cholesterol >1.29 mmol/l) but with type 2 diabetes as
defined by WHO [13], insulin resistance (HOMA >1.35) and
glutamic acid decarboxylase antibodies <4.6 U/ml; and (3)
individuals with dyslipidaemia (TAG >1.7 mmol/l and HDL-
cholesterol <1.29 mmol/l), but otherwise the same inclusion
criteria as the second group (Table 1). None of the individuals
included in the study was using any medication for diabetes or
dyslipidaemia. In addition to the three groups above, we also
complemented our characterisation with a group of non-
treated dyslipidaemic non-diabetic individuals (Table 1). The
study protocol was approved by the local ethics committee
and each participant provided written informed consent.

Lipoprotein isolation VLDL (including IDL) (d<1.019) and
LDL (d01.019−1.063) were isolated from 500 μl plasma by
ultracentrifugation [14]. The ApoB concentrations were mea-
sured using a Konelab 20 autoanalyser (Thermo Electron,
Vantaa, Finland).

LDL sizing using gel electrophoresis LDL particle size was
measured using non-denaturing polyacrylamide gel electro-
phoresis (2–16% gradient gels; Alamo, San Antonio, TX,
USA) [15]. The gels were stained with Coomassie Brilliant
Blue (Merck, Darmstadt, Germany), scanned and analysed
using the Quantity One software (Bio-Rad, Richmond,
CA, USA). The mean LDL size was measured as described
[15].

Lipid extraction Lipids were extracted according to Folch et
al [16]. Internal standards were diluted in chloroform and
added during the extraction procedure.

Lipid analysis Lipids were analysed using a combination of
HPLC and mass spectrometry. For details see the ESM.
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Cell culture and lipoprotein incubation Fresh human smooth
muscle cells (Lonza CC 2571; Lonza, Basel, Switzerland)
were seeded onto six-well tissue culture plates after two pas-
sages. Cells were cultured in Lonza’s special medium cc318s
and incubated for 24 h with VLDL (45 μg/ml) containing
either high or low levels of TAG-palmitic acid or in media
with both free palmitic acid (100 μmol/l) [17] and VLDL (45
μg/ml) containing low levels of TAG-palmitic acid. All media
contained 2 mg/ml BSA (fatty acid free and low endotoxin).
Cytokine levels in the cell culture medium were analysed
with a SECTOR Imager 2400 reader (MesoScale Discovery,
Gaithersburg, MD, USA). For further details see the ESM.

Statistical evaluation ANOVA analysis followed by Tukey’s
post hoc test was used for comparisons between groups.
Correlation analysis was performed using the Pearson corre-
lation coefficient. To determine the false discovery rate of
large number of tests, q values were calculated from the
unadjusted p values using QValue software package for R
[18].

Results

Basic characteristics of participants The dyslipidaemic
type 2 diabetic individuals showed several features of dia-
betic dyslipidaemia including hypertriacylglycerolaemia
and low HDL-cholesterol (Table 1). There was a stepwise
significant increase in BMI and waist size between the
control, normolipidaemic and dyslipidaemic type 2 diabetic
groups but no significant differences in HOMA or HbA1c

between the two groups with type 2 diabetes (Table 1). Levels
of plasma TAG, HDL-cholesterol and LDL-cholesterol were
the same in the normolipidaemic type 2 diabetic and control
groups (Table 1).

Dyslipidaemia is required to induce significant alterations
in lipoprotein lipid class composition Using a combination

of HPLC and mass spectrometry, we quantified eight lipid
classes in both VLDL and LDL and showed that the lipid
class composition was very similar in lipoproteins from
normolipidaemic type 2 diabetic and control individuals
(Fig. 1a,b). By contrast, we showed that the VLDL and
LDL from dyslipidaemic type 2 diabetic individuals

Table 1 Clinical characteristics
of the study participants

Values are mean ± SD

*p<0.05 vs CRTL; †p<0.05
vs individuals with type 2
diabetes; ‡p<0.05 vs individuals
with type 2 diabetes and
dyslipidaemia

T2D, type 2 diabetes; T2D+DL,
type 2 diabetes and dyslipidae-
mia; DL, dyslipidaemia,
no diabetes

Characteristic Controls (n020) T2D (n020) T2D+DL (n020) DL (n09)

BMI (kg/m2) 24±3.3 28±2.7* 32±4.5*† 29.4±2.7*

Waist (cm) 85±6.0 96±8.7* 107±8.5*† 98±6.1*‡

TAG (mmol/l) 1.0±0.2 1.2±0.3 2.8±1.2*† 2.1±0.3*†

HDL-cholesterol (mmol/l) 1.9±0.2 1.7±0.3* 1.1±0.2*† 1.1±0.1*†

LDL-cholesterol (mmol/l) 3.3±0.7 3.1±1.1 4.0±1.0† 4.6±1.4*†

HOMA 0.85±0.3 3.8±1.6* 5.4±3.7* 2.2±0.9‡

HbA1c (%) 5.5±0.3 6.2±0.7* 7.0±1.6* 5.6±0.3‡

HbA1c (mmol/mol) 37±2.9 45±7.5* 53±18* 38±3.6‡

ApoC-III (g/l) 0.13±0.03 0.12±0.03 0.18±0.06*† 0.16±0.04

C-reactive protein (nmol/l) 14±12 23±36 36±43 33±35

Smoker (n) 0 0 0 2

4,000
a

b

3,000

2,000

1,000

0

2,500

A
m

ou
nt

 (
nm

ol
/m

g 
A

po
B

)
A

m
ou

nt
 (

nm
ol

/m
g 

A
po

B
)

2,000

1,500

1,000

500

0

CE

TAG FC PC SM

DAG

CER

LP
C

CE

TAG FC PC SM

DAG

CER

LP
C

150

100

†

†

† †

‡

†

†

†
† †

†

50

0

60

40

20

0

Fig. 1 Lipid class composition of VLDL (a) and LDL (b) isolated
from control individuals (black), type 2 diabetic individuals (grey),
dyslipidaemic type 2 diabetic individuals (white) and non-diabetic
dyslipidaemic individuals (hatched). Values are mean±SD. *p<0.05
vs control; †p<0.05 vs type 2 diabetic individuals; ‡p<0.05 vs dysli-
pidaemic type 2 diabetic individuals
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displayed significant changes in lipid class composition
compared with VLDL and LDL from the other two groups
(Fig. 1a,b). In VLDL, diacylglycerol (DAG) was signifi-
cantly increased and the membrane lipid sphingomyelin
(SM) was reduced (Fig. 1a). The changes in LDL were more
profound: in parallel with VLDL, we observed increased
DAG and decreased SM, but we also measured significantly
reduced amounts of the core lipid cholesteryl ester (CE) and
the membrane lipids free (non-esterified) cholesterol (FC)
and ceramide (CER) (Fig. 1b). The most abundant membrane
lipid, phosphatidylcholine (PC), was unchanged, indicating an
altered membrane composition.

To test the hypothesis that the compositional differences
of LDL are linked to their size, we analysed the correlation
between the lipid composition and size of LDL. We showed
that LDL isolated from dyslipidaemic type 2 diabetic indi-
viduals was smaller than LDL isolated from the normolipi-
daemic groups (Fig. 2a–h). Furthermore, the size of the LDL
correlated negatively with the amount of TAG and DAG and
positively with the amount of CE, FC, SM, CER, PC and
lysophosphatidylcholine (LPC).

Dyslipidaemia amplifies alterations in PC and CE species
composition observed in lipoproteins from type 2 diabetic
individuals We comprehensively characterised the lipid spe-
cies within each lipid class of the isolated lipoproteins using
quadrupole time-of-flight (QTOF) mass spectrometry (ESM
Table 1). These analyses revealed significantly increased
relative amounts of PC 16:0–20:3 (in VLDL and LDL)
and PC 18:0–20:3 (in LDL) in lipoproteins from normolipi-
daemic type 2 diabetic individuals compared with controls
(Fig. 3a). These alterations were even more significant in the
dyslipidaemic type 2 diabetic group, which also had a rela-
tively increased amount of PC 16:0–16:1 The alterations in
the PC fatty acid composition observed in lipoproteins from
dyslipidaemic type 2 diabetic participants were reflected in a
similar change in the CE lipid class with significant
increases in CE 16:1 (in VLDL and LDL) and CE 20:3 (in
LDL) (Fig. 3b). A comparison with basic characteristics
showed that the relative amount of PC species containing
C16:1 and C20:3 fatty acids correlated significantly with
important clinical variables such as BMI and HDL-cholesterol
levels (ESM Table 2).

Dyslipidaemia is associated with increased palmitic-acid-
containing species in VLDL and LDL TAG and DAG Mass
spectrometric analysis also revealed several significant
changes in lipid species in the DAG and TAG fractions of
VLDL from dyslipidaemic type 2 diabetic individuals (ESM
Table 1; Fig. 4). In DAG, these consisted mainly of in-
creased palmitic acid (C16:0)-containing species such as
DAG 16:0–16:0, DAG 16:0–16:1 and DAG 16:0–18:1.
Similar patterns were observed in the TAG lipid class with

significantly increased palmitic-acid-containing species
such as TAG 16:0–16:0–16:0, TAG 16:0–16:0–16:1 and
TAG 16:0–16:0–18:1. In contrast, lipid species containing
longer and more unsaturated fatty acids, especially linoleic
acid (C18:2), were unaltered or decreased (with the excep-
tion of an increase in the doubly saturated TAG 16:0–16:0–
18:2 and TAG 18:0–16:0–18:2). All changes detected in
VLDL were closely mirrored in the LDL (ESM Table 1).
A comparison with basic characteristics revealed several
highly significant correlations between molecular TAG
and clinical variables (ESM Table 3). A confirmatory
GC/flame ionisation detector (FID) analysis of fatty acid
methyl esters (FAME) from VLDL TAGs was also per-
formed, which showed similar increases in the relative
amount of palmitic acid and reduced amount of linoleic
acid (ESM Table 4).

Dyslipidaemia without type 2 diabetes is associated with
alterations in VLDL and LDL lipid composition As the
results show that dyslipidaemia in type 2 diabetic individuals
is associated with an altered VLDL and LDL lipid composi-
tion, we also performed a complementary analysis on a group
of dyslipidaemic non-diabetic individuals (Table 1). The anal-
ysis of the VLDL and LDL lipid class composition showed
alterations that were similar to the changes observed for the
dyslipidaemic type 2 diabetic individuals when compared
with the control group (Fig. 1).

A characterisation of molecular lipid species in the dysli-
pidaemic non-diabetic individuals showed increased levels
of C16:1 and C20:3 containing species in the CE and PC
lipid class compared with the controls. However, the
increases were not as pronounced as for the dyslipidaemic
type 2 diabetic individuals (Fig. 3). In the TAG and DAG
lipid class there was a tendency towards increased levels of
palmitic-acid-containing species compared with the control
group. However, the results are not as prominent as for the
dyslipidaemic type 2 diabetic individuals (Fig. 4).

Dyslipidaemia is linked to increased content of vaccenic
acids in a specific molecular TAG Despite the lack of sig-
nificant alterations of vaccenic acid when analysing total
fatty acids using FAME (ESM Table 4), we wanted to
investigate whether the increased levels of palmitic acid
and palmitoleic acid observed in VLDL TAG from the
dyslipidaemic group were reflected by increases in vaccenic
acid in specific TAG species. For this we used a combina-
tion of collision-induced dissociation (CID) and the novel
ozone-induced dissociation (OzID) technology (see ESM
for details). The results show that in a specific TAG, indi-
viduals with type 2 diabetes have an increased incorporation
of the C18:1 fatty acid into the sn-2 position (Fig. 5a).
Furthermore, dyslipidaemic type 2 diabetic individuals have
a higher amount of vaccenic as compared with oleic acid
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(Fig. 5 b), and this fatty acid is preferably incorporated into
the sn-2 position of the investigated TAG (Fig. 5 c).

Increased palmitic acid in VLDL TAG is associated with
increased proinflammatory activity To assess the biological
significance of the increased palmitic acid in VLDL TAG,
we investigated the effect of high and low VLDL TAG-
palmitic acid on the inflammatory activity of human smooth

muscle cells. We showed that cells incubated with VLDL
containing a high proportion of TAG-palmitic acid had a
highly significant increase in the secretion of several cyto-
kines involved in endothelial activation (Fig. 6a–i). Cells
incubated with a combination of VLDL with low TAG-
palmitic acid levels and free palmitic acid (100 μmol/l) also
showed increased secretion of inflammatory markers. How-
ever, the response was, in most cases, lower than for the
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response generated by incubation with VLDL containing
high proportions of TAG-palmitic acid.

Assessment of 10 year risk of coronary heart disease from
lipid data The 10 year risk for CHD was calculated using
the UK Prospective Diabetes Study (UKPDS) risk engine in
the type 2 diabetic individuals [19]. Calculation of the
UKPDS score is based on blood pressure, HbA1c, total
cholesterol and HDL-cholesterol as well as age of onset
and duration of type 2 diabetes, ethnicity, smoking and
sex. Correlations between anthropometric data, blood lipids,
selected lipid species and classes and CHD score were
calculated (ESM Table 5). By definition, HbA1c (r00.82,
p<0.001) and LDL-cholesterol (r00.68, p<0.001) was pos-
itively associated, and HDL-cholesterol negatively associated

(r0−0.62, p<0.001) with CHD risk. In addition, total ApoB
(r00.90, p<0.001), total TAG (r00.84, p<0.001) and total
ApoC-III (r00.68, p<0.001) showed strong associations with
CHD risk. Furthermore, LDL-cholesterol SM (r0−0.62, p<
0.001), CER (r0−0.61, p<0.001), FC (r0−0.59, p<0.001)
and DAG (r00.56, p<0.001) as well as VLDL CER (r00.55,
p<0.01) were also associated with CHD risk. Interestingly
most of these measures were more strongly associated with
CHD risk than HOMA (r00.59, p<0.001), waist circumfer-
ence (r00.37, p<0.05) and BMI (r00.26, NS). Furthermore,
using a multivariate approach, combining the levels of several
lipids and BMI, waist circumference and HOMA (variables in
the UKPDSmodel [HDL-cholesterol and total cholesterol], or
variables highly correlated with these [ApoB, ApoA1 and
plasma TAG] were excluded), we obtained a high correlation
(adjusted r200.72) with the UKPDS score; variables in model
were: LDL-cholesterol total CER, waist circumference,
VLDLTAG 18:1–18:1–18:1 and VLDL palmitate. Including
only lipid variables, we obtained a correlation that was almost
as strong (adjusted r200.69); variables in the model were:
LDL-cholesterol total CER, LDL DAG 18:0–18:0, VLDL
CE 16:1, VLDL total DAG and VLDL DAG 16:1–18:1.

Discussion

In this study, we used a lipidomics approach to characterise
ApoB-containing lipoproteins from control, and from nor-
molipidaemic and dyslipidaemic individuals with type 2
diabetes. We show that dyslipidaemia in individuals with
type 2 diabetes is associated with significant changes in
specific lipid classes and molecular species in VLDL and
LDL. We identify several enriched molecular species in
dyslipidaemic VLDL and LDL that correlate with clinical
variables and we also show that palmitic-acid-enriched
VLDL TAG promotes inflammation.

Small dense LDL is a common characteristic of the
dyslipidaemic state [5], and LDL isolated from the partic-
ipants with dyslipidaemic type 2 diabetes in our study
indeed had a smaller particle size compared with LDL from
the normolipidaemic participants. A reduced particle size
would explain reductions in the membrane lipids CER,
SM and FC. However, the most abundant membrane lipid,
PC, was unchanged, indicating that LDL would have an
altered membrane composition. Because CER, SM and FC
have all been shown to positively affect a closer lateral
packing in LDL [20, 21], the altered lipid composition of
LDL isolated from dyslipidaemic type 2 diabetic individuals
could be associated with higher membrane fluidity and
higher freedom in lateral moving of lipoprotein-associated
proteins. Although the metabolic consequences of the re-
duced lipoprotein SM levels remain to be elucidated, it has
been proposed that a decreased SM:PC ratio could render
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these particles more susceptible to modifications by phos-
pholipase A2 activity [22, 23].

VLDLs are metabolically heterogeneous, and the liver
can secrete both large TAG-rich VLDL1 and smaller
cholesterol-rich VLDL2. Variations in plasma TAG concen-
trations are mainly accounted for by differences in VLDL1.
We have earlier shown that increased liver fat in type 2
diabetic individuals is associated with increased VLDL1

production and dyslipidaemia [3]. A possible explanation
for the reduced SM/PC, CER/PC and FC/PC ratio observed
in dyslipidaemic type 2 diabetic individuals could be a
disturbed hepatic lipid metabolism that results in increased
secretion of large VLDL1 particles with a different lipid
composition from the VLDL2 particle.

Another explanation for the altered membrane composi-
tion is that lipoproteins from type 2 diabetic individuals with

dyslipidaemia are potentially more susceptible to modifica-
tions occurring in the circulation. Studies have shown that
sphingomyelinase (SMase) activity is elevated in the serum
of patients with type 2 diabetes [24], and also that LDL
isolated from type 2 diabetic individuals is enriched with the
SMase activator ApoC-III [25]. Depletion of cell-surface
SM with SMase results in a simultaneous loss of FC [26],
and thus increased SMase activity will result in parallel
decreases in SM and FC.

Although TAG was slightly increased in VLDL and LDL
isolated from dyslipidaemic type 2 diabetic individuals, the
differences were not significant. We expected to see greater
changes in TAG, but it is likely that large TAG-rich VLDL
characteristic of dyslipidaemic individuals is rapidly metab-
olised to TAG-poor VLDL. Furthermore, our VLDL fraction
did not differentiate between VLDL and IDL and therefore
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some of the changes in TAG may have been masked. By
contrast, we observed clear increases in DAG in VLDL and
LDL isolated from dyslipidaemic type 2 diabetic individuals.
A role for DAGs has been implicated in the aetiology of
insulin resistance in the liver through a mechanism involving
activation of protein kinase C-ε [27, 28]. However, it remains

to be determined if hepatic uptake of DAG-enriched lipopro-
teins could contribute to this pathway.

We also showed that the PC lipid class in VLDL and
LDL isolated from dyslipidaemic type 2 diabetic individuals
had increased levels of C16:1 and C20:3 that were reflected
in the CE. These parallel increases in PC and CE may be
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explained by the fact that CE can be synthesised by the
lecithin–cholesterol acyltransferase-catalysed transesterifi-
cation of FC with the fatty acid attached to the sn-2 position
of PC [29]. Increased levels of C16:1 and C20:3 esterified to
PC and CE have previously been observed in individuals
with type 2 diabetes [30, 31], and here we show that the
relative amount of PC and CE species containing C16:1 and
C20:3 correlated significantly with clinical variables.

Analysis of the lipid species composition of the DAG and
TAG lipid classes revealed that VLDL and LDL from dys-
lipidaemic type 2 diabetic individuals were enriched in
palmitic acid (C16:0) whereas linoleic acid (C18:2) was
mainly unaffected or reduced. A recent study showed that
serum TAGs containing palmitic acid correlates positively
with insulin resistance whereas serum TAGs containing
linoleic acid correlate negatively with insulin resistance
[32]. Furthermore, they also showed that TAG 16:0–16:0–
18:1 and TAG 16:0–18:1–18:0 are better markers of insulin
resistance than total serum TAG concentration [32]. We also
showed that palmitic acid in TAG from VLDL and LDL
correlated positively with insulin resistance whereas linoleic
acid correlated negatively. However, both of these correlations
were weaker than the correlation between total plasma TAG
and insulin resistance in our study.

Using a combination of CID and the novel OzID techni-
ques, we showed an elevation of vaccenic acid in dyslipi-
daemic type 2 diabetic individuals, specifically in TAG
16:0–16:0–18:1. Furthermore, our results suggested that
the sn-2 position of the glycerol backbone is the preferred
position for its incorporation, which is in accordance with
previously published data [33]. As hepatic fat accumulation
is associated with dyslipidaemia in type 2 diabetes [34], we
hypothesise that the increased content of vaccenic acid is an
indication of altered hepatic lipid metabolism and a marker
of hepatic steatosis. However, the reason for the selective
incorporation into specific TAG or its potential role as a
biomarker demands further investigation.

In addition to TAG 16:0–16:0–18:1, which was the TAG
species that was most significantly changed between the
dyslipidaemic type 2 diabetic individuals and controls, we
also did a similar characterisation of the most common TAG
species, TAG 18:1–18:1–16:0. Here we saw no alteration in
the n-7:n-9 ratio. This result might be the reason for not
detecting a difference in n-7:n-9 ratio when analysing
FAME using GC/FID. In that analysis, selective fatty acid
incorporation into certain molecular TAG species will be
masked by the signal from highly abundant, non-changing,
C18:1 n-7 and C18:1 n-9 containing TAG species (e.g. TAG
18:1–18:1–16:0).

It has previously been shown that VLDL isolated from
individuals with dyslipidaemia is proinflammatory and re-
sponsible for the upregulation of several pathways involved
in endothelial activation [35]. Although the mechanisms

behind this are poorly understood, the composition of the
particle might play an important role. For example, TAG-
rich lipoproteins (TRLs) isolated after a meal are more
proinflammatory if enriched in saturated fatty acids rather
thanmono- and polyunsaturated fatty acids [36]. Furthermore,
palmitic acid (in its free form) has been shown to be bioactive
and proinflammatory [37, 38]. Because the TAG in the VLDL
particles isolated from dyslipidaemic individuals in our study
was enriched in palmitic acid, we tested the hypothesis that
this would increase the proinflammatory properties of these
particles. Incubation of smooth muscle cells with VLDL rich
in TAG-palmitic acid resulted in a highly significant increase
in the secretion of several important inflammatory mediators.
However, although this supports our theory, we cannot ex-
clude the possibility that other intrinsic factors of the VLDL
particle could be responsible for the results.

In an attempt to evaluate the clinical relevance of our
results, we correlated several of the lipid variables to CHD
risk as calculated by the UKPDS engine. Interestingly, the
analysis shows that many of these correlations were more
strongly associated with CHD risk than traditional risk
markers such as HOMA, waist and BMI. Furthermore, even
stronger correlations could be obtained if several lipids were
used in a multivariate approach. However, as this is not a
definite estimate, further studies involving a larger cohort
are needed to evaluate the importance of these variables
compared with the traditional risk factors.

We also performed a complementary analysis of lipopro-
teins isolated from a group of dyslipidaemic individuals
with normal glucose tolerance, with the aim of further
clarifying the role of dyslipidaemia for the observed changes
in lipoprotein lipid composition. However, such a compar-
ison was hampered by the fact that less than 5% (n09) of the
individuals with normal glucose tolerance and no lipid-
lowering treatment fulfilled the dyslipidaemia criteria. Both
hypertriacylglycerolaemia and low HDL-cholesterol are
well-known predictors of diabetes [39]. Furthermore, all
individuals had abdominal obesity with waist girth above
88 cm, seven out of nine individuals had insulin resistance,
and 56% (n05) had a first-degree relative with diabetes,
compared with 18% (n033, p00.016) in those without
dyslipidaemia. As all the mentioned characteristics are
strong predictors of type 2 diabetes, it is obvious that these
individuals with dyslipidaemia represent a group with pre-
diabetes, albeit still without hyperglycaemia. This conclu-
sion is supported by the striking similarity between the two
dyslipidaemic groups with and without diabetes regarding
obesity, degree of dyslipidaemia, and levels of C-reactive
protein and ApoC-III (Table 1). In line with these observa-
tions we found that, overall, the lipid aberration in the
dyslipidaemic non-diabetic group was similar to that in
the dyslipidaemic type 2 diabetic group, although not as
pronounced. Taken together these data support previous
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suggestions that dyslipidaemia may precede the develop-
ment of type 2 diabetes.

A possible limitation of our study is that only women of a
certain age are included. Therefore it is not obvious that
these results can be directly translated to the male population.
However, the cohort of women that was investigated in the
present study is of considerable interest given that diabetes
prevalence starts to increase steeply in this age category in
women [40]. In addition, the diagnosis of diabetes is associ-
ated with a very high relative risk of future cardiovascular
death in women that is much higher than among men [41].
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