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Abstract

Circular dichroism (CD) is an important spectroscopic tool for the study of nucleic acids, often used
to monitor changes in their secondary structure. CD is often easily measured, but difficult to
interpret in terms of detailed molecular geometry. When an achiral substance binds to DNA it will
show an induced CD (ICD). The ICD, which is the main subject of this thesis, contains valuable
information on the geometry of the DNA-ligand complex.

This thesis presents calculations of the CD of [poly(dA-dT)], and [poly(dG-dC)],, and their
complexes with achiral small molecules. The matrix formalism of Schellman and co-workers [Bayley,
Nielsen and Schellman (1969) J. Phys. Chem. 73, 228-243] is applied to the calculation of the
induced rotatory strength (IRS) of a DNA-ligand, as a function of the position and orientation of
the ligand relative DNA. Both intercalation and groove-binding is considered. The ligand is
described by a single electric dipole transition moment. The intrinsic CD spectra of the two
alternating purine-pyrimidine polymers is also calculated.

The calculated intrinsic CD spectrum of [poly(dG-dC)], agrees well both with experiment and
previous calculations. The CD spectrum of [poly(dA-dT)], is calculated using recently assigned
transition moments parameters for adenine; for this case the result agrees less well, and the reasons
for this is discussed.

The results of the calculations of IRS show that (1) the magnitude of the IRS for an
intercalator is less than one order of magnitude weaker than that for a groove bound ligand, and,
(2) the IRS of an intercalated ligand depends both on the orientation of the ligand in the
intercalation site, and on its displacement from the helix axis. Both for intercalators and groove-
binders, the IRS is significantly different if the ligand is bound to 5'pyrimidine-3'purine or to
5'purine-3'pyrimidine sites. The signs and magnitudes of the calculated IRS agree well with the
experimental observations.

The calculated results are compared to experimentally observed induced rotatory strengths for
a number of adducts bound to DNA, among them methylene blue, 4',6-diamidino-2-phenylindole,
and Ru(1,10-phenanthroline) 32+. The binding geometries of these adducts bound to DNA are

discussed in view of the calculated results.
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circular dichroism, optical activity, induced circular dichroism, calculation of circular dichroism,
transition moments, DNA, DNA ligand, methylene blue, 4’,6-diamidino-2-phenylindole, Ru(1,10-
phenanthroline) 32+.


















1. Introduction.

The subject of this thesis is the relation of circular dichroism (CD) to the binding
geometry of a DNA-ligand complex.

Throughout the work presented here I have found it consistently problematic
to explain in plain language to friends outside the Department what the meaning
of this simple first statement is. I have often begun by asking if she or he knows
what plane-polarized light is. The answer is usually no, so I simply state that
I am examining a method for studying the geometry of how small molecules
are bound to DNA. This has the advantages both of being true and of giving
room for a motivation of why such a study is interesting, and quite often the
next question is what good it is to know about such things. My answer is that a
number of substances are known to bind to the DNA molecule and the manner of
the interaction is intimately related to the binding geometry of the two molecules.
Examples of substances that interact with DNA are: proteins in the cells of living
organisms; carcinogenic substances that interfere harmfully with the functions of
DNA; cell poisons used in cancer therapy, deliberately designed to sabotage the
DNA functions of cancer cells; and, molecules with known structures that are
used as laboratory models for any of the previous three categories. I round off
the explanation by saying that CD is easily measured, but difficult to interpret
and that there is a need for relating the measured CD to the binding geometry.
However satisfying people may claim this explanation to be, I invariably feel
slightly guilty of not being able to give a full explanation covering all aspects of

my work.

To fully understand CD it is necessary to know something about the electro-

magnetic nature of light, something about quantum mechanics and something



about symmetry. This introduction aside I shall assume that the reader already

has more than an inkling of these concepts.

Circular dichroism is intimately related to optical activity which in turn
is defined as the observed rotation of plane-polarized light when it is passed
through a substance. The term optical activity harks back to the last century
when substances able to rotate plane-polarized light were said to be active in an
optical sense, as opposed to substances which left the nature of the light intact
when it shone through them. The criterion for optical activity can be stated in
terms of the symmetry of the substance. A chiral molecule is one that can be
distinguished from its mirror image, in the same way that we know our left hand
from our right. A pair of chiral molecules that are each others mirror images are
called enantiomers. There is a corresponding chirality of light: plane-polarized
light can be decomposed into a left and a right circularly polarized component.
The simplest way of understanding optical activity is to think of two kinds of
light of different handedness interacting differently with a molecule of a specific
handedness. Optically active media are circularly birefringent, i.e., have different
refractive indices for left (lcpl) and right (rcpl) circularly polarized light. Since
refraction and absorption are closely related, an optically active medium also
absorbs lcpl and repl differently. Circular dichroism is defined as the difference

between the absorption of lcpl and of repl for a substance.

The particular attraction of using CD for studies of biomolecules is that CD
is the only direct probe of the asymmetry of a system. NMR techniques require
either assumptions or additional information about the structure of a system
to resolve the absolute structure of enantiomeric substrates. X-ray diffraction
methods are able to determine the absolute structure of any compound that can
be grown as a crystal. The procedure is quite time consuming and the three-
dimensional structure of the crystal need not be the same as the structure in
the environment of interest. CD contains in principle all information about the
asymmetry of a system, and it is the problem of extracting the resident infor-

mation that has been the main reason for all attempts to calculate the CD of



different systems. Identifying one enantiomer from another may be very im-
portant as is amply illustrated by the case of thalidomide. Thalidomide was
synthesized in 1954 by the Chemie Griinenthal G.m.b.H. in West Germany. The
drug was found to have sedative effects and was soon marketed in a number of
countries under a number of names, among them N eurosedyn [Mellin & Katzen-
stein, 1962]. It soon became apparent that use of the drug during pregnancy
led to teratogenicity, i.e., fetal deaths and malformations [ibid.]. Thalidomide
exists as two enantiomers and it is only the S-(-)-enantiomer that is teratogenic

[Blaschke et al., 1979].

The aim of this work is to relate the CD induced by the DNA base transi-
tions into an electric dipole allowed transition of a ligand bound to DNA. The
motivation is to determine the induced CD as a function of the geometric ar-
rangement of an adduct transition and DNA. To do so a number of assumptions
have been made, both within the theory underlying the program used, and in the
particular choice of input parameters. Most importantly, only # — 7* transi-
tions in the nucleic acid bases have been considered. The intrinsic CD spectra of
some polynucleotides have also been calculated as a simple check of the quality

of the spectroscopic parameters for DNA.

Though this is not the proper forum for a lengthy consideration of CD I
wish to name some relevant references. There are a number of books on the
subjects of optical activity and circular dichroism. I have found ”The molecular
basis of optical activity” by Elliot Charney [1979] quite informative. I have also
found a manuscript of John Schellman’s for a book on CD very useful indeed,
especially in providing a thorough presentation of the matrix formulation of the
CD calculations; I am indebted to many of the limpid explanations given in this
unpublished textbook. A copy of the manuscript was very kindly given to me
by John Schellman during his six months stay at our department in 1986. Two
sources for the quantum mechanics that I have often consulted are ”Molecular
Quantum Mechanics” by P.W. Atkins [2nd ed., 1986] and ”Quantum Chemistry”
by Eyring, Walter & Kimball [1944]. The necessary descriptions of the nature



of polarized light and electromagnetic radiation are often covered in the same
text books as optical activity. A thorough exposition of polarized light is found
in the monograph by Shurcliff [1962]. The symmetry aspects mentioned will not
be dwelt on here, but are very useful for understanding and discussing the CD of
many systems. Symmetry can be treated very powerfully by group theory; this
has been extensively discussed in papers by Schellman [1966; 1968] and Schipper
[1978].

This thesis is divided into chapters dealing with the background, the theory,
and the results. Chapter 2 is a brief review of previous calculations both of the
intrinsic CD of DNA molecules, and of the induced CD of ligands bound to DNA.
Chapter 3 deals with the theory. Between the extreme alternatives of merely
citing the relevant references or writing a text book on CD theory, I have opted
for a chapter of the kind I myself would have liked to read when I started the
work. In chapter 4 the input parameters to the program are discussed. Chapters

5 and 6, finally, constitute the presentation of the results and the conclusions.



2. Background.

Circular dichroism is the method of choice for monitoring the secondary structure
of nucleic acids in solution, and has been so ever since the first CD measurement
on nucleic acids nearly thirty years ago [Brahms & Mommaerts, 1964]. It is sin-
gularly sensitive to the conformation of nucleic acids, and measurements can be
made on relatively small amounts of material. Unfortunately, its usefulness in
actually determining or defining structural details of nucleic acids is still limited,
though progress has been made over the years. Consequently the CD of nucleic
acids and nucleic acid systems is most often used in an empirical manner [John-
son, 1985], and catalogues of CD spectra of DNA have been compiled [Johnson,
1990]. A number of approximate methods for calculating the CD of DNA have
been formulated. Many of these works have increased the understanding of the

CD of the nucleic acids, and they are briefly reviewed in section 2.2 and 2.3.

2.1 Optical activity and the rotatory strength.

Throughout my undergraduate years I lived under the delusion that all optical
activity was ”caused” by asymmetric carbon atoms. Instead, optical activity
results from the chiral currents of electrons which are generated in molecules
by radiation fields. In 1928 Rosenfeld [Rosenfeld, 1928] derived a quantum
mechanical formula for optical activity in non-absorbing regions. He did it by
treating the radiation field classically, deriving the electric moments induced in a
quantized system by the time derivative of the magnetic field, and the magnetic
moments induced by the time derivative of the electric field. The kernel of

Rosenfeld’s work is the rotatory strength

R = Sm (u'f - mf?), (2.1)



where Sm() means the imaginary part of the expression contained within the
parentheses. This fundamental equation, which holds also in absorbing regions,
relates the rotatory strength, R, to the matrix elements for the electric dipole
transition moment (edtm), '/ = (i|u|f), and for the magnetic transition dipole
moment (mdtm), m = (f|mli), belonging to the i — f transition of a mole-
cule.t

For a transition to be optically active it is necessary that the transition
is accompanied both by a linear displacement of charge, otherwise the electric
dipole moment, y'f, is zero; and by a net circular flow of charge, otherwise the
magnetic dipole moment, m’*, will be zero. The presence of the dot product
in the formula guarantees that a component of the circular flow is around the
direction of the linear displacement of charge. The result can be seen as a helical

displacement of charge.

We shall not delve into the mysteries of electromagnetic radiation here.
Suffice to say that circularly polarized light is defined as radiation in which
the field vectors have constant amplitude, and change orientation in a uniform
circular motion. The simplest way to distinguish between left and right circularly
polarized light is to follow the tip of the field vector in space; chirality is a spatial,
not a temporal property. For right circularly polarized light the tip describes a
right handed helix in space. It is then not so hard to imagine that the interaction
of the helical rotation of photons with the helical rotation of electrons will depend
on their relative chirality. Rigorous expositions of polarized light are found in

Shurcliff [1962] and in Schellman & Jensen [1987].

In principle, Equation 2.1 contains all the necessary information for calcu-
lating the optical activity of any system. Calculations of optical activity can be

made in two fundamentally different ways, depending on whether the molecule

T Throughout the rest of the thesis the following abbreviations are used: edtm = electric
dipole transition moment; mdtm = magnetic dipole transition moment; eda/mda = elec-

tric/magnetic dipole allowed; edf/mdf = electric/magnetic dipole forbidden.



can be divided into specific groups which have little or no electronic exchange. If
this division into groups is not possible the Schrédinger equation must be solved
for the entire molecule; the solution gives the electric and magnetic dipole mo-
ments for all transitions of interest and the corresponding rotatory strengths can
be calculated using Eq. 2.1. If, on the other hand, the molecule can be divided
into electronically independent groups another approach to the calculations is

possible.

The second method, sometimes called the independent systems approach,
is less exact but has proven useful for understanding the CD of many systems.
The basic premise is that the molecule is optically active and can be divided
into chromophores. An ideal chromophore is a group of atoms which remains
structurally intact when combined with other groups, and which interacts with
radiation as a separate unit independent of the nature of the other groups. There
is no interchromophoric exchange of electrons, and the perturbing interactions
of the constituent chromophores gives rise to optical activity. An example of
such a system is DNA where the chiral arrangement of the DNA bases in the
helix is the major source of circular dichroism for the molecule, at least for
wavelengths longer than 200 nm [Moore & Wagner, 1974; Johnson, 1990]. The
planar DNA bases themselves are optically inactive. Clearly, the first method
is inappropriate for systems the size of a DNA-molecule for the simple reason
that even a short fragment of DNA is far too large to be handled effectively by
direct quantum mechanical calculations. An added advantage of the independent
systems approach, in contradistinction to direct calculations, is that the results

can be transferred to other systems.

When circular dichroism is interpreted it is often thought to arise from one or
more of three basic models for optical activity. The division into different models
for optical activity is heuristically motivated, as a perturbation expression to the
first order for the rotatory strength of an eda transition leads to three different

terms which can be understood to arise from different interactions in the system.



The three mechanisms are often called ’static coupling’, ’"dynamic coupling’ and

the coupled oscillator mechanism.

Optical activity due to static coupling is caused by the presence of a chiral
static field surrounding the transition of interest on the (otherwise) achiral chro-
mophore. The perturbation mixes the states on the achiral chromophore so that
the chromophore behaves as though it were intrinsically chiral. Static coupling
is also known as the ’one-electron-mechanism’, from an analogy with an electron
moving in a chiral field. The model was originally derived by Condon, Altar &
Eyring [1937].

Dynamic coupling is caused by the circular motion of electrons in mda
transitions in the surroundings of the achiral chromophore. The circular motion
of the electrons induces some helical character into the eda transitions on the
achiral chromophore. This mechanism is also known by the name pm-coupling.

It was originally considered by Kauzmann et al. [1940].

The coupled oscillator mechanism corresponds to the coupling of eda transi-
tions that are chirally arranged in space. It is often referred to as Kirkwood-Kuhn
coupling, after J.G. Kirkwood [Kirkwood, 1937] and W.A. Kuhn [Kuhn, 1930].

None of these three mechanisms provides a general description of optical
activity by itself; in any real system all mechanisms are operative simultaneuosly,

together with effects arising from higher order interactions.

2.2. Calculations of intrinsic CD of DNA.

The early years of the decade 1950-59 saw the discovery of the ordered structures
of both proteins (the a-helix and the S-sheet) and the Watson-Crick helix for
DNA [Pauling et al., 1951; Watson & Crick, 1953]. In 1956 Moffitt presented
a theoretical study on the optical rotatory dispersion of helical polymers [Mof-
fitt, 1956]. The study extended Kirkwood’s treatment [1937] to allow for the
nondegenerate interactions of eda transitions. Moffitt conceived of the a-helix

as a one-dimensional crystal with a screw axis and treated the helical polymer



as a degenerate exciton system. The treatment leads to a qualitatively correct
description for the origin of CD arising from strong transitions in helices similar
to the o-helix, but, unfortunately, transition moments that are perpendicular to
the helix axis do not contribute at all to the rotatory strength of the polymer.
The exciton approach to the optical activity of helices was further developed by
Moffitt, Fitts & Kirkwood [1957], and by Tinoco [Tinoco et al., 1963; Bradley et
al., 1963; Tinoco, 1964]. Bradley et al. calculated the CD of poly A with only

interactions between nearest neighbours [1963].

Another approach was taken by Tinoco in a paper from 1960, and in the
systematic investigation of the optical activity of polymers published in 1962
[Tinoco, 1960;1962]. The aim was to formulate a method for the calculation
of a polymer’s optical properties from the properties of the constituent groups
and the polymer’s geometry. Relations between polymer wave functions and
group wave functions were derived, assuming that no exchange of electrons be-
tween groups occur. In the course of the derivation expressions for the rotatory
strength, including all major mechanisms (Cf next chapter), were presented. For
computational convenience in the derivation first order perturbation theory was
used. Also, the potential energy from the Coulombic interactions was expanded
in terms of 1/r, and only pairwise interactions were considered. The resulting

expressions are instructive but unwieldy to implement and have not been used

in their full form to calculate the CD of DNA.

DeVoe presented a classical model for the frequency dependence of absorp-
tion, refraction and optical rotation of polymers in terms of complex polariz-
abilities [DeVoe, 1964; 1965]. The incident light induces electronic polarizations
of the constituent monomer units, and the polymer polarization is modified by
Coulombic interactions between the monomers. Each monomer transition is de-
scribed by a complex frequency-dependent polarizability, which is derived by

Kronig-Kramer transforms from the absorption properties of the monomer.
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Bush & Brahms made partial use of Tinoco’s derivations [1962] to discuss
the contribution to the CD of single stranded oligonucleotides by 7 — 7* tran-
sitions. They also considered the effect of tilting the base planes with respect
to the helix axis [Bush & Brahms, 1967]. Bush also investigated the optical
activity of n — 7* transitions in polynucleotides [Bush, 1970], and concluded
that the contribution of n — 7* transitions to the polynucleotide CD was small,

but noticeable.

A simple theory of polynucleotide CD was presented by Tinoco in 1968
[Tinoco, 1968]. It was applied by Johnson & Tinoco in 1969 for the calculation
of the CD of RNA and DNA [Johnson & Tinoco, 1969a]. The CD of a polynu-
cleotide is considered as the sum of two fundamental contributions: one related
to interactions among the electronic transitions in the bases in the wavelength
region of interest, and one related to the coupling of these transitions with tran-
sitions outside the region, such as all unknown far-UV transitions. The CD,
as a function of frequency, was expanded in a Taylor series about the average
frequency in the region of interest (260 nm), and the CD was calculated for the
wavelength region 220-300 nm. The interactions between the base transitions
were calculated using first order perturbation theory and the monopole approx-
imation of London [1942] and Haugh & Hirschfelder [1955]. The interactions
with transitions outside the range of interest were calculated using group polar-
izabilities. A problem with the method, shared with other methods mentioned in
this section, is that it requires transition moments for the transitions of interest.
The most common source for the transition moments is experiment, although
theoretically calculated values have occasionally been used. The results of the
calculations were surprisingly successfull, considering the simplicity of the the-
ory. The low CD intensity of natural DNA and RNA (in the region 220-300 nm)
was found to be explained by cancellation of a great number of CD bands of
opposite signs. The method fails to predict the maxima of the CD bands, and it

fails to reproduce the CD spectra of polynucleotides of repeating sequences. CD



spectra with more than one peak and one trough seemingly cannot be accounted

for by this approximation.

This method of Johnson & Tinoco [1969a] was subsequently used by Moore
& Wagner in two papers [Moore & Wagner, 1973; 1974], and by Studdert &
Davis in a series of three papers [Studdert & Davis, 1974a-c]. The studies are
applications of the method and present no new theory. In the first study Moore &
Wagner calculated the CD of DNA and RNA considering only m — 7* transitions
of the DNA bases [1973]. The polymer CD spectrum was found to depend on
the distance between the transition moments and the helix axis. In their second
study they investigated the contribution of the sugar-phosphate transitions to
the CD spectrum of DNA, and found them to be negligible [1974]. Studdert
& Davis examined the effects on the DNA CD of 7 — 7* transitions alone
[1974a] and including n — 7* transitions [1974b], and of the choice of wave
functions to describe the monomer properties [1974c]. They found the overall
agreement with experiment to be moderately good. The calculations show a
strong dependence on the geometrical parameters that define the helicity of the
polynucleotide, i.e., the distance of the base pairs from the helix axis and the
tilt of the base pairs [1974a]. Inclusion of the n — 7* transitions improves some
spectra [1974b]. Studdert & Davis added terms for the n — 7* transitions from
Tinoco’s treatment [1962] to their rotatory strength expressions. They concluded
that the largest contributions of n — 7* transitions to the CD of double helical
DNA are comparable in magnitude to those of 7 — 7* transitions only where
the CD is weak. They found the DNA CD due to the pm-coupling mechanism
to be one order of magnitude weaker than the CD due to the coupling of the
7™ — m* transitions, and one order of magnitude stronger than the CD due to

the ’one-electron-mechanism.’

A general method for calculating the CD of any molecular system that can
be divided into chromophores, i.e., groups of atoms with no electronic exchange,
was presented by Schellman and co-workers in 1967 [Schellman & Nielsen, 1967],
and developed in a paper from 1969 by Bayley, Nielsen & Schellman. The method

11
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is used throughout the thesis work presented here and it is described in some
detail in the next chapter. The method has mainly been used for calculations
of polypeptide CD [Bayley et al., 1969; Hooker & Schellman, 1970; Madison &
Schellman, 1972; Goux & Hooker, 1980]. With the exception of the work of Cech
[1975, vide infra] it was not applied to calculations of nucleic acid CD until 1984
[Rizzo & Schellman, 1984].

Johnson & Tinoco published a second method for calculation of nucleotide
CD in 1969 [Johnson & Tinoco, 1969b]. The division of the monomer properties
of DNA into transitions above and below 220 nm is retained, but the interactions
between the dimers are considered explicitly using expansions of the polymer
wave functions in a restricted basis set. The result is a method reminiscent
of the method of Bayley et al. [1969]. The method was used on dinucleoside
phosphates [Johnson & Tinoco, 1969b]. Johnson & Switkes used the method to
calculate the CD of a number of dinucleotides [1978].

In the thesis of Cech [1975], and in two following papers [Cech et al., 1976:
Cech & Tinoco, 1977] the all-order, coupled-oscillator polarizability theory de-
veloped by DeVoe [1964; 1965] was applied to calculations of polynucleotide CD.
Cech compared the results of the calculations with sample results calculated by
the matrix method of Bayley et al. [1969]. Cech disregarded the absorption
properties of the sugar-phosphate backbone and the n — 7* transitions, but in-
cluded a set of ”background oscillators” intended to mimic the host of unknown
transitions in the far-UV. The use of such background oscillators was originally
suggested by Fitts & Kirkwood [1957]. These consisted of three mutually perpen-
dicular polarizabilities, arbitrarily placed at 119 nm, and their magnitudes were
estimated on the basis of model compounds. In the study Cech found an effective
dielectric constant, twice that of vacuum, to give the best results. The problem
of inconsistent representations of transition moments was also discussed. In the
papers by Johnson & Tinoco [1969a-b], and in the work of Cech, the transition
moments used to calculate the rotatory strength of the polymer were repre-

sented by polarizabilities, but the Coulombic interactions of the transitions were



most often calculated using transition density monopoles [Tinoco, 1962; London,
1942]. These transition monopoles were taken from semi-empirical calculations
by Hug & Tinoco [1973] on the nucleic acid bases. Cech thought the choice of
monopoles to be one of the most critical factors in predicting correct CD pat-
terns [Cech et al., 1976]. The results of the calculations of polynucleotide spectra
were uneven: agreement with experiment was remarkably good in some cases
and disappointing in others [Cech & Tinoco, 1977]. Cech also discussed the dif-
ferences between the polarizability approach of DeVoe and the matrix method
of Schellman. The matrix method does not take bandshapes of monomers or
polymers into account; these have to be assigned more or less arbitrarily and
can only be thought of as representations of the bands. The DeVoe method,
on the other hand, requires integrated polarizabilities from absorption proper-
ties, and consumes more computer time as a result of the explicit calculation of
point-by-point spectra [Cech et al., 1976]. An extension of the DeVoe model for
the calculation of CD in helical polymers was presented by Levin & Tinoco in
1977 [Levin & Tinoco, 1977].

Redmann & Rhodes [1978] made use of linear response theory in the decor-
relation approximation to calculate the CD of single stranded poly A in a helical
conformation. The method has the advantage that spectral band shapes of the
polymer arise naturally from those of the monomer, and from the geometry
dependent interactions in the helix. The polymer CD spectrum was found to
depend on the monomer bandshape. Rabenold has used linear response theory
together with time dependent Hartree theory for the CD of unordered [1974]
and helical [1990] polymers. Rabenold and Rhodes have presented joint papers
on the CD, both of short and long, helical polymers [Rabenold & Rhodes, 1976;
1977]. In a paper from 1987 they reach the conclusion that the CD bands for
infinitely long helical polymers are composed of two parts: a derivative shaped
band, plus an ordinary Gaussian band. The paper can be seen as a more rigorous
theoretical justification of the method of Johnson & Tinoco [1969a], mentioned

above.

13
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In a series of papers Moore & Williams treated the problem of obtaining
electronic transition moment parameters for the calculation of polynucleotide
CD spectra [Moore, 1980; Williams & Moore, 1983; Moore & Williams, 1986].
They combined DeVoe’s and Kirkwood’s polarizability concepts, and calculated
the CD of cyclic nucleotides in energy minimized conformations. They also
optimized the transition moment parameters from CD calculations of cyclic nu-
cleotides. These optimized parameters were found to result in better agreement
with experimental CD spectra than did transition moments obtained from po-
larized spectra of the nucleic acid bases in crystals or stretched films. In order
to achieve better results, the polarizations of the first two transitions of guanine

were switched, a procedure that has been criticized by Callis [1983].

In 1984 Rizzo & Schellman presented matrix method calculations of ab-
sorption, LD and CD spectra of DNA. Their input consisted largely of the same
parameters as were used by Cech, and wave-functions and transition moments
parameters were extensively borrowed from the works of Johnson and Tinoco. In
order to avoid the inconsistent representations of the transition moments in the
calculations of Coulombic interaction and rotatory strength, Rizzo & Schellman
optimized the transition density monopoles so that their directions agreed with
the directions of the transition moments in the expressions for rotatory strength.
Rather than calculating the CD of the polynucleotide as a function of structure,
they chose to calculate the CD of polynucleotides for a great number of exper-
imentally determined or proposed structures. The results of the calculations
were an improvement over most earlier calculations, but failed to identify the
CD spectrum of Z-DNA with the high salt CD spectrum of [poly(dG-dC)],. Us-
ing the program of Cech [Cech, 1975], Vasmel & Greve [1981] found the Z-DNA
structure to result in a CD spectrum that corresponded to the high salt CD spec-
trum of alternating GC. Rizzo & Schellman concluded that the problems could
arise from not using the right coordinates or from a need for improved tran-
sition parameters [1984]. Williams et al. [1986] used the matrix method with

improved transition moment parameters, still excluding sugar-phosphate and



n — 7* transitions. Their calculations included a number of far UV monomer
transitions, making it possible to calculate the CD down to 160 nm. The results
agree well with experiment, especially for alternating GC, and are consistent
with the observations of Sutherland and co-workers that the vacuum-UV CD
spectra of DNA are sensitive to helical handedness [Sutherland et al., 1981 ;
Sutherland & Griffin, 1983].

Callahan & Hooker [1987] have also performed matrix method calculations
of DNA CD. For their calculation of the CD of B- and Z-form DNA, they used
crystal structures taken from the Protein Data Bank [Bernstein et al., 1977],
and an effective dielectric constant that was a function of the distance between
the interacting units. They found that the agreement between experiment and

calculation was improved by the use of such a function.

The influence of basic optical parameters was investigated by Richterich &
Pohl who calculated the CD for a tetramer of alternating GC in the A, B and Z
forms of DNA [Richterich & Pohl, 1987]. They used the classical polarizability
theory of DeVoe and the point dipole approximation. The spectra show only
moderate agreement with experiment, and they concluded that the transition
moment directions of the nucleic acid bases are the most important parameters

in their calculations.

A method for estimating the nearest neighbour base pair content of RNAs
using CD and absorption spectroscopy has been presented by Johnson & Gray
[1991a; 1991b]. The nearest neighbour content is estimated by linear combina-
tions of a large number of known CD and absorption spectra. The method is
reminiscent of the methods for determining the secondary structures of proteins.
By fitting the spectra of a basis set containing 58 CD and 58 absorption spectra
to the CD of an RNA molecule of known sequence, Johnson & Gray were able to
determine the fractions of each of the nearest neighbour base pairs [1991a]. They

have also applied the method to RNA molecules of unknown sequence [1991b)].
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2.3. Calculations of DNA induced CD.

In his review of induced CD in biopolymer-dye systems Hatano [1986] mentions
only one theoretical or computational study of DNA induced CD: that of Schip-
per, Nordén & Tjerneld [1980]. Comparatively few such studies of the DNA
induced CD have been made, and these are almost exclusively concerned with
intercalators. That intercalators have been the subject of interest to a much
higher degree than groove binders is not surprising. Since Lerman’s proposal
in 1961 of intercalation as a possible binding mode, intercalation has attracted
widespread interest as a mechanism of potential biological significance. It is not
until the last decade that groove binding of drugs to DNA has been recognized.
With improved NMR and foot-printing techniques more time and interest have

been spent on elucidating the binding geometries of groove binders to DNA.

The aforementioned study of Bradley et al. [1963] is an early example of
the calculation of the CD of a DNA-dye system. Their calculations could not,
however, reproduce the induced CD of Acridine Orange bound to DNA. The
same system of Acridine Orange and DNA has been considered by Imae & Ikeda
[1976] and Imae et al. [1987], who used the exciton model of Moffitt, Fitts &
Kirkwood [1957]. They considered the degenerate interaction of dye molecules

bound to the polynucleotide which was seen merely as a helical framework.

Ito & I’'Haya have also been interested in the DNA-Acridine Orange system.
They have made use of linear response polarizability theory to calculate the
induced CD of Acridine Orange bound to DNA in varying phosphate/dye ratios
[1979]. In a later paper they investigated the dependence of the CD bandshapes
on the interaction between the dye and DNA [1989).

The induced CD of proflavine bound to DNA has been treated by Kamiya
who used a Frenkel exciton model for the dye-polymer interaction [1979]. Kamiya
also used linear response theory to investigate the optical activity for DNA-dye
systems [Kamiya, 1980; 1988a-b]. Some of this work is based on the more general

formalism of Philpott, who has formulated an exciton theory for the electronic
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DNA was modelled as an helical array of transitions placed on the helix axis,
and the ligand was defined by a single eda transition. All transitions were de-
scribed by point dipoles, and the CD was calculated from pairwise interactions.
Fair agreement with experimental magnitudes was noted. In order to avoid end
effects for the induced CD of the ligand it was necessary to include three full

turns of DNA in the calculations.

The studies on DNA induced CD by Schipper & Nordén have in common
that they aim to find general results which can be applied to any system of
DNA and ligand. It is in that spirit this thesis work has been carried out. The
Papers I-IV comprise an extensive study of the DNA induced CD of achiral
DNA ligands, where the induced CD of an adduct bound to DNA has been
systematically investigated as a function of the binding geometry. The adduct
was represented by a single eda transition, and only interactions between eda
transitions are considered. The DNA was represented by the known 7 — =*
transitions of the bases, and the transitions were placed in the center of each
base. The DNA transitions were taken from experiment, primarily from the
studies of polarized reflection by Clark and co-workers [Clark, 1977; Clark, 1989;
Clark, 1990; Novros & Clark, 1986; Zaloudek et al., 1985]. For the calculations
the matrix method [Bayley et al., 1969] was used. The matrix method has, so
far, produced the best agreement between experiment and calculation for the
intrinsic CD of DNA [Williams et al., 1986]. In the work presented here only

the interactions of electric dipole allowed transitions are considered.



3. Theory.

In section 2.1 it was said that calculations of optical activity can be character-
ized by whether the molecule of interest was divided into chromophoric groups
or not. A number of methods for such calculations were mentioned in the pre-
vious chapter and most of them assume that there is no electronic exchange
between chromophores. Obviously there are a number of ways to implement cal-
culations of optical activity under this assumption. A straightforward method
is to make use of first order perturbation theory to calculate the perturbed elec-
tric (edtm) and magnetic (mdtm) dipole transition moments of the molecule.
Another method, the one used in this work and which will be presented in this
chapter, is the matrix method derived by Schellman and co-workers [Schellman
& Nielsen, 1967; Bayley et al., 1969]. Before presenting this method, an expres-
sion for the rotatory strength due to coupled edtms on different chromophores
will be derived by first order perturbation theory. The result serves to illustrate
how the CD can be seen to arise, and provides a formula that can be used in

discussions of the induced CD.

3.1 Coupling of electric dipole transition moments.

The use of perturbation theory demands that the transition of interest is lo-
cated in an achiral chromophore, whilst the perturbing surroundings may or
may not consist of intrinsically chiral chromophores. For a system of achiral
chromophores in the absence of coupling the rotatory strength is zero, since by
symmetry the transitions of such chromophores are either electric dipole forbid-

den (edf), magnetic dipole forbidden (mdf), or, have perpendicular electric and
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magnetic transition moments. Consequently, any rotatory strength of a transi-
tion in such a system must be the result of the perturbation of that transition

by the interactions with surrounding chromophores.

There are two basic possibilities: the transition in question is electric dipole-
allowed (eda), but mdf; or, it is magnetic dipole-allowed (mda), but edf. In
the former case the transition becomes optically active by virtue of an induced
magnetic moment, Smf: R = Sm (uif - ém7*). In this work we are only

concerned with the coupling of eda-mdf transitions.

Consider a system consisting of two chromophores. For the sake of simplicity
we shall assume that the transitions on these chromophores are non-degenerate.
As the chromophore concept presupposes that there is no electronic exchange
between the two units we can write the zeroth order wavefunction as a product
of the electronic wavefunctions for A and B. Let rg 4 be the vector from A to B.
We shall examine the rotatory strength of an eda transition on chromophore A.
As this transition is mdf by assumption we need to evaluate the first non-zero
contribution to the magnetic transition. The perturbation is assumed sufficiently

weak that only terms to the first order need be considered.

The magnetic dipole transition moment operator can be written [Bayley,

Nielsen & Schellman, 1969]

e

9em (TBA X P4), (3.1)

m=my+mpg+

where m, is the mass of the electron, the first two terms represent the intrin-
sic magnetic moment operators for the two chromophores, and where p repre-
sents the electronic momentum operator. The matrix elements of the electronic
momentum and electric dipole moment operators are related by the so-called
dipole-velocity relation

if _ Zme

T eh

(E: — Ey) u¥, (3.2)



where E; and Ey are the respective energies of states ¢ and f. First order non-
degenerate perturbation theory gives the wavefunctions for the ground state and

the state with chromophore A in its first excited state as

ab | V| 00)

_ o
| 0405 > = | 00) aEb B, 1 E, | ad) (3.3a)
and
_ (ed | V| 10)
| 140 > = | 10) cgd B+ B, E, | cd), (3.3b)

where the ground state energies of A and B are taken to be zero. Here sharp bras
and kets are used for the perturbed states and round ones for the zeroth order
states. Also, the position in the bras and kets indicates whether the wavefunction
belongs to chromophore A or B, with A henceforth to the left of B. The sums
are understood to be taken so that the denominators are non-zero. We wish
to find the non-zero terms to the first order for the mdtm associated with the

transition 0 — 1 on A. This is given by

<1AOB|_TQ|0AOB>=<10|m|00>=

(ab| V | 00)
(1OIM|00)—GZJW(10|m|Gb)—

(ed | V| 10) )
cd|m|00) + (Higher order term), 3.4
> B E g (1m0 + WHigher order term), (34

where the higher order term is of second order in V and therefore discarded. It

can be shown that the sought magnetic transition moment can be written as

<10|m|00>= mY+ (3.52)
1. (PO ]V | 00) no (PO ]V |10)
—ZmA T_ZmA “E,—FE, (3-5b)

n#0 n#l
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- myp W(0n|V|10) (3.5¢)
n#l 1
E,E, -
hz( 15 2(0 n|V1]10) rg, x p% (3.5d)
n#l n

The first term, mY?, is the zeroth order magnetic dipole transition on chromo-
phore A which is zero by assumption. Before the rotatory strength for the eda
transition on chromophore A can be calculated we need an expression for the
perturbation V. V is described by Coulombic interaction and expanded in terms
of % Only the leading dipole-dipole term of the multipole expansion [Hinchliffe
& Munn, 1985] is retained

1 ‘&10 . ‘L_LnO 3 MIO T &nO T
(On I 174 | 10) — 5 ( A ;? _ ( A BA) (5 B BA) , (3.6)
Ir 54l Irpal

where € is the dielectric constant for the medium, and |rg,| is the (absolute)
distance between chromophores A and B. With this choice of interaction the

rotatory strength of the 0 — 1 transition on A can be written

R=Sm (uf -m) =

1 E\E,
~ 4meh E2 — F? Vea Opa (3.7)

n#1

+(Terms corresponding to 3.5b and 3.5¢),

where Vp4 is the corresponding dipole-dipole interaction energy already given
within the large parentheses in Equation 3.6, and where the factor Op4 depends
on the geometrical arrangement of the interacting electric dipole transition mo-
ments, g’ and p%

Opa =rpa-(up x uy) (3-8)

The summation in Equation 3.7 is over all transitions from ground to excited

state on chromophore B. In a system where magnetic transitions can not be



disregarded, the terms corresponding to 3.5b and 3.5¢ in Equation 3.5 must be
included. Inclusion of the term 3.5b leads to a CD due to the mixing of states
on chromophore A by perturbation from B. This is the one-electron mechanism
of Condon, Altar and Eyring [1937]. Inclusion of the term 3.5¢ leads to the
coupling of a mdtm on chromophore B with the edtm on A. This is the so called
pm-mechanism [Schellman, 1968]. The term 3.5d leads to a CD due to chirally
arranged eda transitions; this is the coupled oscillator mechanism. Equation
3.7 is often called the Kirkwood-Kuhn formula for optical activity [Kirkwood,
1937; Kuhn, 1930]. Note that it is not applicable to the coupling of degenerate
transitions. To handle degenerate transitions it is necessary to derive yet another

formula [Moffitt, 1956].

The main value of the Kirkwood-Kuhn formula (Eq. 3.7) lies in its simple
description of the CD arising from the non-degenerate coupling of eda transition
moments. In all Papers contained in this thesis the DNA-adduct is represented
by a single eda transition, well removed in energy from the DNA transitions,
and magnetic moments have been disregarded altogether. For these systems
Equation 3.7 is helpful in discussing the results. The reason for disregarding mda
transitions in the DNA is mainly that no mda transitions have been assigned
with any degree of confidence in the nucleic acid bases, and calculations with eda
transitions alone have proven quite successfull [Williams et al., 1986]. Also, the
terms 3.5a-3.5c give rise to rotatory strength expressions inversely proportional
to |r% 4], whereas the rotatory strength in Eq. 3.7 depends on the inverse of
Ir% 4]- The exclusion of n — 7* transitions can be questioned, though. Studdert
& Davis found the contribution of n — 7* transitions to the DNA CD to be
one order of magnitude weaker than the CD due to the coupling of the 7 — 7*

transitions of the bases.

2.3 The matrix method.

To use first order perturbation methods for calculations on DNA or DNA-adduct

systems is questionable because of the multiple near degeneracies of the nucleic
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acid transitions. Also, if the perturbation approach is to be used with systems
where more than one mechanism is operative each mechanism must be treated
separately. Perturbation formulas capable of dealing with all mechanisms, as
well as both degenerate and non-degenerate transitions have been developed

but are quite unwieldy to apply [Tinoco, 1962].

In 1969 Bayley, Nielsen and Schellman presented a procedure that incorpo-
rates all the considered mechanisms in a systematic way. The method operates
entirely by matrix transformations spanning a chosen basis of wavefunctions.
With this procedure there is no need to distinguish between degenerate and
non-degenerate interactions and the result is equivalent to ”all-order” pertur-
bation calculations. The procedure was named the matrix method not because
of its extensive use of matrix algebra, but because of its likeness to the original
Heisenberg matrix formulation of quantum mechanics.t Most of the remainder
of this chapter is based upon the paper by Bayley, Nielsen and Schellman [1969]
where the matrix method is presented in its entirety. Further details of the ma-
trix method are given by Madison & Schellman [1972], Goux & Hooker [1980],
and Rizzo & Schellman [1984].

Consider a molecule which can be subdivided into chromophores. The chro-
mophores have independent electronic eigenstates which are perturbed in the
molecular framework. These interactions can include all CD mechanisms briefly
outlined at the end of the previous section. The products of the chromophore’s

wave functions are taken to be the initial basis functions for the non-interacting

T With the matrix formulation of quantum mechanics direct consideration of the wave
functions is suppressed and emphasis is placed on the coefficients which define the state of
a system in terms of a set of eigenstates, and on the transformation equations which are
required to go from one set of eigenstates to another. The original references are: Heisenberg,
W., [1925], Born, M. and Jordan, P., [1925], and, Born, M. et al., [1925]. A more modern

reference is Merzbacher [1970].
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matrix elements for the electric dipole and magnetic dipole operators in the in-
teracting system are obtained from the same transformation which diagonalizes
H.

p=Cc1LlC;, M =cCciMc, (3.12)

where u® and M° are the electric and magnetic transition moment matrices in
the original representation. In other words, the new (polymer) transition mo-
ments are obtained as linear combinations of the original (monomer) transition
moments. Both u® and M° are assumed to be known experimentally or to be

pre-calculated. The rotatory strength matrix for the molecule is given by
R = Sm{p: M'} (3.13)

Rry = Sm{ur;-M; 5},

where the symbol ”:” means that scalar products are formed element by element
and the prime indicates transposition. Capital indices without superscripts des-
ignate states in the final (diagonal) energy representation. Equation 3.13 con-
tains implicitly all the mechanisms discussed briefly at the end of section 3.1
and in section 2.1. Equations 3.9-3.13 constitute the entire theory and if the
original basis were a complete set for the Hamiltonian, it would be an exact
theory for the model. For practical reasons these equations are limited basis

approximations to the complete formalism.

3.2.1 Advantages of the matriz method. The advantages of the matrix method
are: 1) It treats degenerate and non-degenerate states, as well as all the mech-
anisms mentioned in sections 2.1 and 3.1, simultaneuously with a single formal-
ism. 2) It is an ”all-order” calculation, whereas first order perturbation theory
is restricted to terms that are first order in the off-diagonal elements of the
Hamiltonian. 3) Digital computers are especially well suited to handle matrix

manipulations.

3.2.2 Restriction of the basis. The electronic states of individual chromophores

are limited to a finite set. Usually, only states involved in well-characterized
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Only the ground state and states with a single excitation are considered,
and the mixing of the ground state with the excited states is assumed sufficiently
small to be ignored. As a result only the boldfaced integrals of Table 3.1 are
retained, and the dimensions of the matrix C may be reduced from N+1 to
N dimensions by removing the ground state from consideration, where N is
the number of single excitations in the basis.} In addition the matrices for u°
and M are contracted to N dimensional row vectors. Consequently, when the

Hamiltonian is to be diagonalized only the matrix

(H& + Va2 (lo|]V|mo)  (lo|[V]on)  (lo|V|op) \

(mo|V]lo) HY + Va3 (mo|V|on) (mo|V|op)

H=H'4+V = (3.14)

(on|V]lo) (on|V|mo) HY, + Vi (on|V]op)

\(opIVllo) (op|V|mo)  (op|V|on) H§5+V55/

need be considered, where the diagonal energies are of the form given in Eq. 3.10.
The remaining elements in the interaction matrix 3.14 represent implicitly the
specialized CD mechanisms mentioned at the end of section 2.1. An instructive
illustration for the case of two chromophores, with one eda transition and one
mda transition each, is found in the paper of Bayley, Nielsen & Schellman [1969].
The outcome is that at the level of dipole-dipole coupling all one needs to know
is the array of transition dipoles in the molecule. As in previous studies we
incorporated only eda transitions [Johnson & Tinoco, 1969a-b; Cech, 1975; Rizzo
& Schellman, 1984; Williams et al., 1986].

i This reduces the size of the problem to tractable dimensions: K chromophores with k
excited states each have Kk functions in a single excitation basis and (1 + kK + kK(K-1)/2)
functions in a double excitation basis. For the AT polynucleotides in Paper II K=20 and k=10,

which gives 200 single excitation functions but ca 190000 double excitation functions!



$.2.3 Input. The input consists of: (1) the three dimensional structure of the
molecule, determining position and orientation of all chromophores; (2) posi-
tion vectors for the transitions; (3) energies for each transition; (4) transition
moments for each transition, obtained from experiment or calculation; (5) and,
estimates of the transition monopole densities. for the calculation of the off-
diagonal elements of the Hamiltonian. The input is described in detail in the

next chapter.

3.2.4 Off-diagonal interaction terms. Because of the multiple near-degenerate
transitions in the DNA bases where the stacking interactions are strong it is
questionable whether the multipole expansion converges properly. The distance
between the bases in DNA is smaller than the extension of the bases them-
selves, and if a multipole expansion shall be used it is probably necessary to
include higher order terms. A more practical method for calculating these short
range interactions is the London method of monopoles [London, 1942; Haugh
& Hirschfelder, 1955; Tinoco, 1962]. Instead of using a multipole expansion,
monopoles are used to represent the charge interactions. A number of ways of
modelling such charge distributions have been used [Hooker & Schellman, 1970;
Stigter & Schellman, 1973; Cech et al., 1976]. In the manner of Rizzo & Schell-
man [1984] we have used transition monopoles centered on the atoms. These
are available from the transition density matrix, which can be calculated from

LCAO wave functions.

Unfortunately, theory and experiment seldom agree on the energies and di-
rections of the transition moments [Callis, 1983; Matos & Roos, 1988; Petke
et al., 1990]. Calculated transition monopoles correspond to transition moment
directions that often disagree with experimentally determined directions. Par-
ticular heed must be paid both to the phase and to the direction of transition
moments. Phases are arbitrary and are selected at the beginning of a problem;
once phase conventions are established they must be unconditionally adhered
to. In particular, it is desirable that the transition monopole representations in

the Hamiltonian have the same phase as the transition moments in Eq. 3.13. In
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some cases calculations have been carried out where transition monopole rep-
resentations and transition moments have had different polarizations. For this
reason Rizzo & Schellman [1984] used Lagrangian multipliers to bring about
a minimum variation in the LCAO coefficients, subject to the constraints that
intensities and transition moment directions must agree with the experimental
assignments. No doubt more sophisticated methods than Lagrangian multipliers

can be used to optimize the monopoles.

3.2.5 Bandwidths. The matrix method calculates integrated intensities, and if
spectra are to be calculated, band shapes and bandwidths must be assigned
to each transition. We have used Gaussian shapes and have assumed the band-
widths to be the same as for the isolated chromophore. The assumption of Gaus-
sian bandshapes is merely a practical representation of the bandshape [Schell-
man, 1975]. The assumption that the isotropic absorption spectrum and the CD
spectrum of the same transition have the same band shape ultimately relies on
the assumptions that the motions of the nuclei and the electrons can be sepa-
rated, and that the transition is sufficiently strongly allowed. This assumption
has been discussed in the literature [Simpson & Peterson, 1957; Weigang, 1965;
Schellman, 1975].

3.2.6 The dielectric constant. Coulomb’s law requires a dielectric constant in
condensed media and this generates an inescapable difficulty in all such calcu-
lations. A dielectric constant is not really defined for distances of the order of
atomic radii, and should depend on position in the molecule as well as on con-
formation and solvent. The problem is intractable, and is bypassed by assuming
an effective dielectric constant and using it indiscriminately for all interactions.
We have used a value of twice the vacuum dielectric constant. This value was
found by Cech et al. [1976] to give acceptable results, and the value has been
used by Schellman and co-workers for a number of years [Rizzo & Schellman,

1984].
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Figure 4.5. Nucleic acid bases.

molecules and the so called Devoe-Tinoco convention used to define the in-plane

transition moment polarizations of the bases [Devoe & Tinoco, 1962].

4.2.1. Transition moments of guanine and cytosine. The transition moments
and other parameters for guanine and cytosine used in Papers III-IV are pre-
sented in Paper III and in the paper of Rizzo & Schellman from 1984. The
parameters used in Paper I for guanine and cytosine are presented in Figure 4.6
and Table 4.1. We used the data presented by Williams et al. [1986], which
in turn are based upon crystal studies of guanine and cytosine [Clark, 1977;
Zaloudek et al., 1985]. The bandwidths necessary for calculation of the CD
spectra were estimated by fitting Gaussian bands to the experimental spectra of
the monomeric DNA units dGMP and dCMP [Sprecher & Johnson, 1977]. The
intensities and energies of the transitions as given by Williams et al. [1986] were
strictly adhered to. The results of the fitting are presented in Figure 4.6 and
the bandwidths used to generate the fitted bands (dotted spectrum) are listed
in Table 4.1.

4.2.2. Transition moments of adenine and thymine. The transition mo-

ments for adenine and cytosine used in Papers III-IV are presented in Paper III
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be seen that the spectrum above 220 nm is virtually unaffected by the inclusion
or exclusion of the far-UV transitions in the basis set. Calculations for [poly(dG-
dC)]; lead to the same observation [not shown|. It would thus seem that only
the best characterized DNA base transitions need be included in the basis set,
for the CD above 220 nm to be represented with acceptable accuracy. Also,
including the far-UV transitions improves the agreement between the calculated

CD spectrum and the experimental spectrum.

5.2 Induced Circular Dichroism

The induced circular dichroism of an eda transition in an adduct bound to DNA
was calculated as a function of the position and orientation of the transition.
The results of the calculations are presented in contour maps throughout Papers

I-III. These results can be seen as "sector rules” for the DNA-induced CD.

The application of these ”sector rules” demands consideration. The transi-
tion of the DNA adduct should have a well known polarization, and also be well
separated in energy from the DNA transitions. By the same token the adduct
transition must not have any magnetic character, or the adduct be chirally de-
formed upon binding. For obvious reasons such adducts have to be fairly small
systems; if larger molecules are to be considered only specific chromophores can

come into question.

In Paper III and IV, where comparison with experiment were made, we chose
to calculate the circular dichroism of the adduct transition assuming Gaussian
bandshapes. In the later Papers (I-II) we chose instead to present the results
in terms of rotatory strengths. For the record, the headings of the subsections
below will be ”Induced CD...”, but the terms IRS (induced rotatory strength)
and ICD (induced circular dichroism) will be used in the text to specify which

of the properties is presented.
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(perpendicular) polarization in the ligand molecule. It must be remembered
that a structure can not be concluded from the CD data alone; by itself CD may
possibly exclude geometries from consideration, but it is in combination with

other methods that the potential for using CD can be realized.

It is often difficult to decide whether the CD induced in an achiral chro-
mophore upon binding to DNA is caused by chiral deformation, or by one or
more of the perturbation mechanisms discussed at the end of section 3.1. This
problem is more pronounced for groove binders than for intercalators, since it is
in the nature of an intercalator to be planar and hence achiral. Two methods for
addressing this question is that of Krueger & Prairie [1991], and that of Man-
ning & Woody [1986]. Krueger & Prairie investigated the binding properties of a
natural antitumor antibiotic known as CC-1065 and concluded that the induced
CD of the drug is the result of a delocalized chiral electronic transition, i.e., the
molecule is chirally deformed upon binding to DNA [Krueger & Prairie, 1991].
They reached their conclusion by comparing the ICD spectra of CC-1065 to the
measured CD spectra of a number of analog compounds bound to DNA. Man-
ning & Woody did molecular orbital calculations for netropsin bound to DNA
and found that a chiral deformation of the ligand could not explain the features
of the experimentally observed CD. They concluded that a change of conforma-
tion was not the dominant source of ICD for netropsin bound to DNA [Manning
& Woody, 1986]. In both cases it is clear that in addition to the information of
how the ligand is bound to DNA, circular dichroism may provide information
of whether the ligand is conformationally changed upon binding. The results

presented in this work should be helpful in such discussions.

Finally, the question of further work shall be considered. The understanding
of the CD of nucleic acids, and of the relation of CD to the structure of the
polymer in aqueous solutions, has reached a stage where specific questions both
about the assumed DNA structures and about the spectroscopic properties of the
monomeric nucleic acid bases can be discussed. The most obvious extension is to

investigate the effects of n — 7* transitions, the sugar-phosphate backbone, and
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