
Det här verket har digitaliserats vid Göteborgs universitetsbibliotek. Alla tryckta texter är OCR-
tolkade till maskinläsbar text. Det betyder att du kan söka och kopiera texten från dokumentet. 
Vissa äldre dokument med dåligt tryck kan vara svåra att OCR-tolka korrekt vilket medför att 
den OCR-tolkade texten kan innehålla fel och därför bör man visuellt jämföra med verkets bil-
der för att avgöra vad som är riktigt.

This work has been digitized at Gothenburg University Library. All printed texts have been 
OCR-processed and converted to machine readable text. This means that you can search and 
copy text from the document. Some early printed books are hard to OCR-process correctly and 
the text may contain errors, so one should always visually compare it with the images to deter-
mine what is correct.



3 zY 

D O K T O R S A V H A N D L I N G A R  
VID 

C H A L M E R S  T EK N I S K A  HÖ G S K O L A  
Nr 55 

ON THE ASYMPTOTIC PROPERTIES 

OF THE SCATTERING MATRIX 

IN COMPLEX ANGULAR MOMENTUM 

A s tudy in potential scattering theory 

B Y  

OLLE BRANDER 

§2tebö§£ 

G Ö T E B O R G  1 9 6 6  





ON THE ASYMPTOTIC PROPERTIES 

OF THE SCATTERING MATRIX 

IN COMPLEX ANGULAR MOMENTUM 

A study in potential scattering theory 

AV 

OLLE BRANDER 
Tekn. lic. 

AKADEMISK AVHANDLING 
SOM M ED TILLSTÅND AV SEKTIONEN FÖR TEKNISK FYSIK 

VID CHALMERS TEKNISKA HÖGSKOLA FRAMLÄGGES TILL 

OFFENTLIG GRANSKNING FÖR TEKNOLOGIE DOKTORS­

GRADS VINNANDE TISDAGEN DEN 24 M AJ 1966 KL. 10.15 Å 

HÖRSALEN I ADMINISTRATIONSBYGGNADEN VID CHALMERS 

TEKNISKA HÖGSKOLA, SVEN HULTINS GATA, GÖTEBORG. 

AVHANDLINGEN FÖRSVARAS PÅ ENGELSKA. 

1 2  0 0 6 6 9 8 6  8  

GÖTEBORG 
ELÄNDERS BOKTRYCKERI AKTIEBOLAG 

1 9 6 6  



v, • -fö •: .•V,-:',;-/ * . '. - «S! 

BSfSiia 
§ÊÈSWSPSSi 

iêâM 
•' ë' i 

• 

mm 

• 

... a..-, <•i'.',j 1 t ,. '̂ «...̂ ..6 

• . ' . 

ISiifiSlilili H '* , *evn*>v n&y t IRiffi 
nm 

• • • • ;  ' • •  

n . < 

. 

V •' '• v. , ..',V-: • " :••••'•• • •' • ; '•' •-SSSS «'-V 
' . , "• .'.. : ' ' / ' , 

mnn «» 
. 

àÊÊàgÊs:m:MM 
/;} j-âs? -;•• •• •• .• i 

:  "  .  ' . . .  • 
®B$;S381 

' . •  ' .  • . . . ' •  1 ' 

•î̂ jèïi 
• . • » • ".'..". 
Wâ̂ ÈMlmm . 1 • -. : ... rflfiS 

SÄSÖiSSlÄÄS®'̂  ̂
®iy$. 

O îte:S iifSÄ : sÄSifii A1SSM.«SffiS!aÄi 
' 

• - - . 
I««!®*»®*»»®1; 

lä 
sOåMISÉåM 

>..,*/.ji, ,,.,.....>.. i "i.  ̂ -.,... .1 Jt. .. . i;:; -V à,;- .; 
•'*& ;  ̂

saisi 
Pullis 

'ïjb& • • 5$ j 
mxåffi '•,,,! 

gMMp 
'V •••:•• ' : •••; " .-. 

Kft iS? '/fö.- .." : ; 
• >•: 

:'"IS'iJi'îC.i 
'»i! Ä:«3W; 

IM yissiiiffiiifëiiiii 1:05® 
-:rv.'....,. «Ii 



D O K T O R S A V H A N D L I N G A R  
V I D  

C H A L M E R S  T E K NI S K A  H Ö G S K O L A  

ON THE ASYMPTOTIC PROPERTIES 

OF THE SCATTERING MATRIX 

IN COMPLEX ANGULAR MOMENTUM 

A study in potential scattering theory 

BY 

OLLE BRANDER 

G Ö T E B O R G  1  9 6 6  
E L Ä N D E R S  B O K T R Y C K E R I  A K T I E B O L A G  



This thesis consists of three papers: 

A. O. BRÄNDER: An asymptotic expansion for the Green's function 
of nonrelativistic potential scattering theory and the asymptotic 
character of t he Born series for the J ost function for large complex 
angular momenta; Nuovo Cimento 42 A, 39 (1966). 

B. 0. BRÄNDER: On angular momentum analyticity in hard cor 
potential scattering; Physics Letters 4, 218 (1963). 

C. 0. BRÄNDER: Asymptotic behaviour of the S-matrix in complex 
angular momentum for singular potentials; Arkiv för Fysik 32, 
131 (1966). 



The interest in potential scattering theory has in recent years 
been concerned mainly with the problem of analyticity. The reason 
for this can be traced to the importance of dispersion theory for 
high energy physics, and to the need for a frame within which 
explicit calculations can be made to test the assumptions usually 
made in dispersion theory. 

The theory of scattering on nonsingular potentials is by now 
fairly complete. By nonsingular potentials we mean here potentials 
less singular at the origin than the centrifugal barrier. One of the 
most difficult problems of this theory concerns the asymptotic 
behaviour of the scattering amplitude for large complex angular 
momenta. This behaviour is of importance for the properties of the 
scattering amplitude in the momentum transfer variable, and for the 
validity of the Mandelstam representation, a double dispersion 
integral representation. Paper A contains a detailed study of this 
asymptotic behaviour. It is emphasized there that the asymptotic 
behaviour for large complex angular momenta depends in a complicat­
ed way on the interrelation between the parts of the potential for 
small and large distances and on its smoothness. 

The papers B and G are concerned with the theory of scattering 
on potentials more singular at the origin than the centrifugal barrier, 
a field which has attracted much less attention so far. Paper B is 
a note about the influence on angular momentum analyticity of a 
hard core of the type often used in nuclear physics, that is, correspond­
ing to an infinite repulsive potential inside the hard core radius. 

In paper C the same problem is treated for singular potentials, 
as in paper A for nonsingular potentials. A new formalism is developed, 
leading to an asymptotic series for the Jost function, valid for large 
complex angular momenta. The first term of this asymptotic series 
is the result obtained in the JWKB-approximation. Asymptotic 
formulae are given for the positions and residues of t he Hegge poles. 
Furthermore, it is shown how the asymptotic positions of the poles 
depend critically on the behaviour of the potential at the origin, 
and that they are very insensitive to changes in the potential else­
where. 
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An Asymptotic Expansion 
for the Green's Function of Nonrelativistic Potential-Scattering Theory 
and the Asymptotic Character of the Born Series for the Jost Function 

for Large Complex Angular Momenta. 

O. BRÄNDER 

Institute of Theoretical Physios - Göteborg 

(ricevuto il 13 Agosto 1965) 

Summary. — From a generalization of the Langer uniform asymptotic 
formula for Bessel functions of large order, an asymptotic expansion 
is constructed for the scattering Green's function. Prom this expansion 
a simple uniform bound for the Green's function follows, whicli contains 
the well-known nonuniform l/k bound. This uniform bound is then used 
to study the asymptotic properties for large complex angular momenta 
of the Born series for the Jost function in nonrelativistic potential scat­
tering theory for a great number of potentials. Among other things the 
following result is obtained. If the potential has a meromorphic contin­
uation, with a finite number of complex poles, into the half-plane Ke r > 0 

a co 

satisfying the condition J \rV(r) dr ]< oo, J |F(r)dr|< oo, 0<a< oo, o n  
u a 

all rays in this half-plane, then the Born series for the Jost function is 
an asymptotic series in the Erdélyi sense and the Jost function tends 
to 1 when [ A | -> oo in any direction in the region | arg X | < ji/2. Thus 
the Sommerfeld-Watson transformation is allowed for such potentials. 
For parallels to the imaginary r-axis the above condition may be slightly 
relaxed to include, for instance, the Yukawa potential. Our method 
also gives some information about the necessary conditions to be imposed 
on the potential in order to make the Sommerfeld-Watson transformation 
permissible. Although strict mathematical proof is lacking, the following-
conclusions have been reached. The potential must have a smooth con­
nection between small and large values of r, and it must not decrease 
faster than exponentially when r -3- 00, in order to make the Sommerfeld-
Watson transformation permissible. 
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1. - Introduction. 

The asymptotic properties for large complex angular momenta of the Jost 
function in nonrelativistic potential-scattering theory have been studied by a 
large number of authors (1_12) by several different methods. 

Among these methods we shall use the most straightforward one p-13-14), 
which involves direct estimates of the terms in the Born series with the help 
of u niform approximations to the Green's function. This method has previously 
met with moderate success only, because the nonuniform behaviour of Bessel 
functions of high order with respect to their argument makes it difficult to 
obtain good uniform bounds for the Green's function. 

However, recent work on the old Langer uniform asymptotic formula for 
the Bessel functions of high order (15_17), including error bounds (18-19), has 
made it possible to handle those difficulties. In this way we have managed 
to obtain a very good uniform bound for the Green's function, which makes 
it possible, for instance, to reproduce and to some extent generalize the strong 
results of Martin (10) and Bessis (X1) concerning the asymptotic properties of 
the Jost function. 

Section 2 is a short review of t he relevant formulae for the Bessel functions, 
and in Section 3 the corresponding expressions for the scattering Green's func-

(X) T. HEGGE: Nuovo Gimento, 14, 951 (1959). 
(2) A. BOTTINT», A. M. LONGONI and T. REGGE: NUOVO Gimento, 23, 954 (1962). 
(3) B. P. DESAI and R. Gr. NEWTON: Phys. Bev., 129, 1445 (1963). 
(4) A. M. JAFFE and Y. S. KIM: Phys. Bev., 129, 2818 (1963). 
(5) P. CALOGERO: NUOVO Gimento, 28, 66, 761 (1963). 
(6) Y. DE ALFARO, E. PREDAZZI a nd C. ROSSETTI : N uovo Gimento, 30, 522 (1963). 
(7) L. BROWN, D. I. FIVEL, B. W. LEE and R. P. SAWYER: Ann. of P hys., 23, 187 

(1963). 
(8) A. 0. BARUT and J. DILLEY: Journ. Math. Phys., 4, 1401 (1963). 
(9) R. JAKSIC': Acta Phys. Austriaca, 17, 29 (1963). 

(10) A. MARTIN: Nuovo Gimento, 31, 1229 (1964). 
(N) D. BESSIS: Nuovo Gimento, 33, 797 (1964). 
(12) K. CHADAN a nd J. Y. G-UENNEGUES: Nuovo Gimento, 34, 665 (1964). 
(13) R. G-. NEWTON: The Complex j-Plane (New York, 1964). 
(14) E. P. WIGNER, Ed.: Dispersion Belationn and Their Connection with Causality 

(New York, London, 1964), p. 97. 
(15) R. E. LANGER: Trans. Amer. Math. Soc., 33, 23 (1931); 34, 447 (1932); 

67, 4 61 (1949). 
(16) T. M. CHERRY: Trans. Amer. Math. Soc., 68, 224 (1950). 
(17) -YY. J. OLVER: Phil. Trans., A 247, 307, 328 (1954). 
(16) P. W. J. OLVER: Journ. Soc. Indust. Appl. Math., 11, 748 (1963); 12, 200 

(1964); Natl. Phys. Lab. Math. Tables, vol. 6 (London, 1962). 
(19) C. H. WILCOX, Ed.: Asymptotic Solutions of Differential Equations and their 

Applications (New York, London, Sidney, 1964), p. 163. 

CO 
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tion are constructed. In particular a simple uniform bound is obtained for the 
Green's function, which contains the usual 1/fc bound. 

This bound is then used in Sections 4 and 5 to study the asymptotic char­
acter of the Born series for the Jost function when the complex angular 
momentum is large. In Section 4 we examine the Jost function for general 
potentials, and also for potentials, which very rapidly tend to zero at infinity. 
Then we study in Section 5 the Jost function for potentials that have analytic 
continuations outside the real r-axis. Finally, in Section 6 we conclude with 
a short discussion of the results. An Appendix contains estimates of an 
important integral. 

2. - Asymptotic formulae for the Bessel functions. 

For our work we shall require approximations to and bounds for integrals 
containing Bessel functions of hi gh order and of a rgument varying from 0 to oo. 
To obtain such approximations, we start from the uniform asymptotic ex­
pansion (15_17), 

(2.1) Hf2)(h)) A->co exp [ft inmSf^{Xu) f + 
s=0 " 

A2s 

co h (y\ 

+ A-1 exp [=t«7T/6](f M)4iT|1,2>(A-M) 2 
s=0 

which is valid uniformly in x for [argA|<|7r, |arga?|<|yr. 
The complex variables w a nd u in eq. (2.1) are defined by 

(2.2) fw=(x 2  — I)4, u = w — arctgw, 

and u has the asymptotic form 

(2.3) u = 

x — I n  +  0 ( x - 1 )  fo r  | « |>1 ,  

Jw3 +0( mj5 )  fo r  \x —•  J .  !  < ;  1  ,  

[— In (I ex) + 0(«2)] exp [f ni sign (arg «;)] for | x | <C1  • 

The properties of the ^-independent functions a s  and b s  (a 0  = 1) are dis­
cussed below. 

Figure 1 shows the mapping from the right-hand half of th e complex «-plane 
to the complex w-plane. The origin in the w-plane corresponds to the point 
x = 1, and the origin in the «-plane corresponds to the point at infinity in the 
direction arg u - :in in the w-plane, where the plus sign is to be taken 
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x-plane 

for x above, and the minus sign for x below a cut from 0 to 1 on the real 
«-axis. In this way the first quadrant of 
the »-plane is mapped on an I-shaped 
region in a first Biemann sheet 0< 
<argM<|7î of the «-plane, and the 
fourth quadrant on a second Biemann 
sh ee t  — f j i< a r gM< 0 .  

These two Biemann sheets can be 
mapped on a single sheet of a «-plane, 

u-plane 
l-sf sheet 

arg x 

arg x 

z-plane 

-yarg x 

0 arg u =s 

Fig. I. - a) The complex cc-plane; b) Th e complex ^-plane; c) The complex 0-plane. 

which is also given in Fig. 1, by the transformation 

(2.4) 0 = (f «)• exp [— in sign (arg u)] . 

In the «-plane, the two lips of the cut in the «-plane have both been mapped 
on the real »-axis, and the cut is no longer needed. 

In the variable z, eq. (2.1) becomes 

4.2 
(2.5) 2 A"Hr£~ exp [B| wr/3] Ai (exp [ -J §in\ Xh) 

A.(g) 

B.{z) 
+ exP[± wr/3] A~iAi'(exp [+ fiji] A'«) ^ —j; 

Here Ai and Ai' are the Airy function and its derivative, defined in the standard 
way (see LUKE (20)). The functions A, and Bs (A0 == 1) are /(-independent 

(20) y. L. LUKE: Integrals of Bessel Fun ctions (New York, Toronto, London, 1962). 
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analytic functions of s in the region sliown in Fig. 1. For |aj~>oo within this 
region,  A s (z )  and z i  Bs (z )  are  f in i te .  Expl ic i t  expr ess ions  for  t he  funct ions  A s  

and Bs have been given by Olver (17). 

The Airy function, as well as the factor in front of i t in eq. (2.5), is analytic 
in z, also at z=0, and from a mathematical point of view the expression (2.5) 
is thus preferable to eq. (2.1). However, after having observed that the point 
z = 0 is not a singular point, we can very well return to eq. (2.1) in order to 

work with the ITahkel functions. 
The properties of the functions a s  and b s  of . eq. (2.1) now follow from the 

jus t  above ment ioned proper t ies  of  A s  and B s .  Thus  i t  i s  found that  a s  an d b s  

are analytic functions of u in the L-shaped regions of Fig. 1, finite at 
u = 0, and that when |«|-^oo in the L-shaped region, as(u) and u^b^u) are 

finite. 
The Bessel functions to be studied usually have the argument 7«r, where k 

is the wave number, and r is the radial variable. Then 

and for fixed complex 7c and 2, and real r varying from 0 to oo, x  
varies along a ray in the complex a?-plane, as shown in Fig. 1. By the trans­
formations (2.2) and (2.4) this ray is mapped on certain curves in the u- and 
2-planes, which curves are also shown in Fig. 1. 

In the integrals to be studied, the integrations go over unbounded intervals 
of r, and it is thus important for the asymptotic series (2.1) to be uniformly 
valid in x for unbounded regions of u. That this is actually the case was 
proved by Olver (17). The region of validity given by him contains the region we 
have given for eq. (2.1), except that he does not include the case arg A = ± i71 • 
However, use of the standard continuation formulae for Bessel functions shows 
that there is no Stokes line at arg 2 = dz which could form a natural 
boundary for the validity of the asymptotic expansion. 

Bounds for the rest terms of expansions like eq. (2.1) have recently been 
given by Olver (18'19), and therefore, this expansion can, for large Å (which 
means -J A | ^ 3 according to Olver), be used to get good numerical estimates 

with controllable accuracy. 
However, a simple estimate, reproducing the behaviour of the function 

qualitatively will also be most useful. Such an estimate can be obtained by 
taking the first term of e q. (2.1) and using what is known as the Levinson bound 
for Bessel functions of fixed real order. The resulting bound is 

(2.7) !<d'l. -V 0( /r L )}  "/ .  ] '*«•(/., u)  exp[=F: Im (Aw)] , 

f-eo 
Q> 
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where c is a constant and 

I Xu\ ° 

The properties of the function a are studied, in the Appendix. 
Equation (2.7) is only valid if 

(2.9) 
- 7T<arg (Am)<2ti for If11», 

-2:?T<arg ( X u )  <7r for i?<3), 

because only then is the Levinson bound valid. The limits of the region (2.9) 
correspond to Stokes lines for the asymptotic expansions of 3^2)(Xu), and 
outside this region only a weaker statement is possible, namely 

(2.7') \H^\Xx) |SJc [1 + 0(A-1)] [ XI a(u) exp [ |Im(Aw) |] . 

A lower limit for the constant c can be obtained by comparison with the 
asymptotic form when x oo, and an upper limit has been given by BESSIS (1J) 
in the special case Im (Xu) = 0. However, instead of pressing the value of 
the constant, we recommend using eq. (2.1) with the Olver bound for the rest 
term. 

We end this Section with a general remark on asymptotic expansions. 
Consider a sequence of functions <pn(cs), n = 0, 1, 2, ..., which satisfies 

(2.10) q)n+i(œ)' = o(<p„(oo)) .  as x->x0 .  

Such a sequence is called an asymptotic sequence (21) or scale. Consider 
further a function f(x) and suppose that there exist constants an such that for 
each .V = 0, 1, 2, ... 

N-1 

(2.11) f(x) — ^ancpn{x) = o(cpN{x)) as x-^x0  . 
n=0 

Then the formal series 
CO 

^ dri Çpn{ 

n —  0 

is called an asymptotic expansion of the Poincaré type for f(x) when x-^x0 .  

Suppose further that there exist functions f„(x), n = 0,1, 2, ..., such that 

(21) A. EKDÉLYI: Asymptotic Expansions (New York, 1956). 

CO 
<© Oi 



[45] AN" ASYMPTOTIC EXPANSION FOB THE GREEN'S FUNCTION ETC. 7 

for each X--. 0. 1,2.... 

(2.3-2) f(x) — J fjvc) = o(cpN(x)) as x x0. 
n= 0 

Then the formal series 
CO 

2 f n { x )  
n =0 

is called an. asymptotic expansion, of the Erdélyi (22) type for /(>) with respect 
to the scale cp n{x) when x—>x0. 

The Erdélyi type of expansion is more general than the Poincaré type, 
because the limit 

/»+1(®) 
lim 
® >«0 Jn\^) 

is not required to exist. On the other hand, the nice property of uniqueness 
of the Poincaré type expansion is not shared by the Erdélyi type expansion. 

It should be noted that the expansion (2.5) is not of the Poincaré type, 
but can be regarded as the sum of two Poincaré type expansions. It is also 
an Erdélyi type expansion with respect to the scale. 

(2.33) q>n{X) = 2.~ l~n+s , n = 0, 1, 2, ... ; e > 0 ; I -> oo . 

3. - Asymptotic formulae for the Green's function. 

We shall now study the Green's function 

(3.1) G(r, r') = 

for large complex X. Substitution of t he first term of eq . (2.1) into this equation 
gives 

(3.2) G(r, r') = j ix\\ -f Of/1)] - Hf(Åur)Hf(Åu)], 

which, because of the symmetry of the Green's function is valid for all values 
of arg A and argfc in the interval [— n, n~\, uniformly in r and r'. The only 
exceptions are the neighbourhoods of t he zeros of G , where the error term must 
be modified. 

(22) À. ERDÉLYI: Arcli. Bat. Meoh. Anal., 7, 1 (1961); A. ERDÉLYI and M. WYMAN: 
Arch. Bat. Meeh. Anal., 14, 217 (1963). 
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Equation (3.2) is the first term of a n asymptotic expansion. This expansion 
can be obtained by substitution of the whole expansion (2.1) into eq. (3.1). 
This operation is allowed because Poincaré type powers series asymptotic 
expansions may be multiplied together term by term (21), and eq. (2.1) contains 
two such expansions. The result is the following combination of f our Poincaré 
type asymptotic expansions: 

(3.3) G(r,  r')A~œ g 0 (r ,  r ' )  J  -  + 9i(r ,  r ' )  f  -
s=0 A s=0 /L 

d 8 (u r ,  u )  
-  9i( r ' i  r )  2  ps+i 

+ gz(r ,  r ' )  2  
e s (u ,  u ' )  

- t f s+2 ' 

where 

(3.4) 

1 . 
So(r ,  r ' )  =  -  m  ̂ -^J[Hf(Xu)  Hf(Xu' )  -Hf(Xu' )S f (Xu)]  ,  

(^7(Hi[exp -
— exp [~ ïre/3] E f  (Xu ' )  H f  (A«)] , 

g t {r ,  r ' )  =  - 4 w I  ,  

9i{r ,  r ' )  =  |wr  

and 

(3.5) 

c s (u ,  u ' )  =  J f t iWVtK)  ,  

d s (u ,  u ' )  =  2  «*(«)  bs- t{W) ,  

e s (u ,  u ' )  =  2  b t (u)b s _ t (u ' )  .  

The functions c s ,  d s  and e s  are uniformly bounded. When u and u'  approach 
infinity even u'ids and uiu'ies are bounded. This implies that eq. (3.3) is an 
asymptotic expansion of the Erdélyi type as A -> oo, with respect to the scale 

(3.6) cp n {X)  =  X h  £ > 0 . 

For [ XI larger than a given limit, depending on the accuracy required, 
the expansion eq. (3.3) can now be used to get good numerical estimates for 
the Green's function. The error can again be controlled with the Olver bound 
for the rest term of eq. (2.1). 

However, the qualitative behaviour of the Green's function can be repro-

o 
CS 
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duoed with the bound (2.7) for the Hankel function inserted into eq. (3.1): 

(3.7) I G(r, r') |<|7rc2[l+ 0(A_1)] | A ̂(rr'^-aiA, u)a(A, u') exp [|Im(/kt— Au')j] .  

This bound is valid uniformly in r and r' when \A\ is not too small and 
arg A, arg k are in the interval [—n, n~\. The symmetric form of the Green's 
function makes unnecessary the restriction eq. (2.9), which was- necessary for 
eq. (2.7). This can be shown by using the standard continuation formulae 
for the Hankel functions of eq. (3.2). 

Equation (3.7) reproduces the functional form of the absolute value of t he 
first term of the asymptotic expansion (3.3), except when u and u' are both 
very small, t hat is when r and r' are both near A/Jc. For such values of r 

and r' the two terms of g0 cancel each other out so that we have in fact 

(3.8) g0(r, r ') = const (rr')*\_x— x' + 0((x — I)2) + 0((x'— I)2)] ,  

with x = Ter I A, w hereas the bound (3.7) gives only 

(3.9) \do(r ,  r')\< const (rr')* [ A for ,r «r 1 . 

However, for all other values of r and r', eq. (3.7) gives a very good bound 
for the Green's function. Thus when r and r' are both large we obtain 

(3.10) i^?(r) r') I < const I k I-1 exp [(r — r') |Im k\ ] for r>r'^> 

which is the well known l//c bound. When r and r' are both small we get 

/ y \ I Re AI 7 

(3.11) 'G{r. >•') ! >,onslj/.' !(/ >• )-(-.71 f°r ir '<*r<C 

which is the bound used in ref. (3). 
Our uniform bound is to be compared to that of Newton (Appendix A of 

ref. (13)), which is unable to reproduce the 1/fc bound, but contains an expo­
nential factor also for real 7c (*). 

Finally, since G is finite when A->0, and the right-hand side of eq. (3.7) 
is different from zero when A-£ 0, the bound (3.7) must for some finite value 

(*) Note added i n proof. - Compare also Y. DE ALFAKO and. T. BEGGE : Potential 
Scattering (Amsterdam, 1965), where a bound resembling ours is given. 
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of the constant be valid for all X .  Therefore, we have 

(3.7') \ G ( r ,  r ' )  \  < 0 | X \ ~ 1 ( r r ' ) i a ( X ,  u ) a ( X ,  u ' )  exp[ \ lm . ( X u  —  X u ' )  | ]  ,  

for all r ,  r ' ,  k  and X.  

4. - The Jost function for general potentials. 

The Jost solutions f ± ( r )  of the radial Schrödinger equation satisfy the 

integral equation 
CO 

(4.1) /±(r) = f t ( r )  + rG ( r ,  r')^(r')/±(r') dr', 

where 

(4.2) fg(r) = \nkrfE^ ( k r ) r~œ expj y i k r \ .  

For simplicity, we shall often suppress the variables k  and X  in the notation. 
The resolvent kernel of eq. (4.1) has the Neumann series 

r„ r3 r' 

(4.3) K ( r ,  r ' )  =  G ( r ,  r')F(r') + £ fdn fdr2... j dr* JJ G ( r ^ ,  r})F(r3.) . 
i - l j  J J  3 = 1  

r Tx ri-x (r0=r,r i+1=r') 

This series is convergent as soon as the integrals converge, since it belongs 
to a Yolterra integral equation. We shall derive a bound for its rest term 

r2 r'  

co  c  f  <+i 
(4.4) Ej,(r, r') = 2 dri — IT ri)v(r>) = 

i = * N j  J  j - 1  

r r i-1 (r0=r,r i+1=r"> 

=Jdr1...Jdri?n {<?(r3_x, r,)F(r,)}K ( r s ,  r ' )  ,  

r »-jy-! (r0-r) 

by using the bound (3.7') for the Green's function. For simplicity we then 
assume that k is real and positive. This assumption is not necessary, but it 
simplifies the reasoning a great deal, and also corresponds to that part of the 

Begge trajectories that we want to study. 
The simplification of the reasoning comes from the fact that for such k ,  

Im (Xu) is a monotonous function of r. This fact is most easily seen in the w-plane 
of Fig. 1, by noting that IA]-1 Im (Xu) is the distance from the point u on 
the curve to a straight line through the origin making the angle — arg X wit h 

r— Ci 
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the positive real axis. If h is real, this line is parallel to the asymptote of the 
curve ,  and  Im ( lu)  i s  a  monotonous  fu nc t ion  o f  r .  

With the notation 

(4.5) 1G(r ,  r ' )  | a s  = G \Å\~ 1 ( rr ' ) i a(A,  u ' )a( / . ,  u )  exp | Trn(/.w lu ' )  | ]  

for the right-hand side of eq. (3.7'), we now find that 

(4.6) 'G(r ,  \G(r t ,  r') [as=^(7 r t a 2 (À ,  ùJ \G(r ,  r')|a? . 

Therefore, the integral equation satisfied by the quantity 

k(r ,  r ' )  =  K(r ,  r ' ) \G(r ,  r ' ) \~ B
l ,  

that is 

!«•" - |̂ n.m +h' r -m r ' )W^ k { r " r ' ) i r '  ( 
r 

implies that 
r 

(4.8) I k(r ,  r') I <| F(r') | + G |X I^Jr x  o*(Å,  u t )  \  V(r t )  j \  k {r u  r' )  |d^ 

r 

which, in turn, by a lemma of Titchmarsch (23), implies the following bound 
for the resolvent kernel 

r 

(4.9) ' ! /i"(r, r ' )  ] < |  G(r ,  r ' )  |as| F(r') |exp 

If the integral 
CO 

(4.10) v{/ . )  =  G IA ! 1 Jrt OHA,  II, )  \  V  ( r t )  | dr, 

0 

is convergent, the exponential is uniformly bounded, and we arrive at the 
bound 

(4.11) I K(r ,  r ' )  | < exp [®(A)] | G(r ,  r ' )  | a s  |  F\ r ' )  \ .  

For the rest term eq. (4.4) this implies 

(4.12) |i?if(f,r')|-<[v(A)]Jvrexp[v(A)]|G!(r,r')|aB |F(r')| . 

(23) E. C. TICHMARSCH: Eigenfunction Expansions (Oxford, 1946). 
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From eq. (2.3) we get the following asymptotic form of a2 

(4.13) u)  

A 
j 1er 

[Ö;i 

1 

for Mill, 

for x m I, 

for I x I -c 1 • 

This, in addition to the observation that a is everywhere finite, gives the fol­
lowing condition for the convergence of the integral of eq. (4.10) (a is a finite 
constant =£ 0) 

a co 

(4.14) I V(r) I dr < oo and J* j F(r) | dr < co . 

Let us call the potentials satisfying this condition class A potentials. For 
this large class of potentials the Neumann series (4.3) is thus absolutely con­
vergent, and the rest term has the bound (4.12) (*). 

Substitution of this Neumann series into 

(4.15) f  ' ( r )  = fUr )  +J-KI(r, r ' )  f î (r ' )  d r ' ,  

now gives the Born series for the Jost solutions 

r2 CD 

(4.16) fV) = f t ( r )  + 2 fd?-!... fdri+1 XJ {G(r^ x ,  r ^V i r ^ f ^ r^ )  . 
i=0 j  J  j< =l  

r  T i  ( r 0 = r)  

For r> 0 all the integrals in this expression converge when the potential 
is of class A, and the Born series is absolutely convergent. This follows from 
writing the Green's function in the form 

( ^ •17)  G{r , r ' )  =  ~  (r ' )  f t ( r ' )  fô ( r ) ' \  ,  

and observing that the crucial point is the convergence at infinity of integrals 

( *)  No te  add ed  i n  proo f .  - For potentials not satisfying the first of the condi­
tions (4.14) see 0. BRANDER: Arle. /. Fy s. (to he published). 

C5 
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like 
CO CO 

(4.18) J/o ( r )V ( r )  f „ ( r )  drr~œJexp[=f i k r \V { r )  exp [=p i k r ]  dr, 

which are absolutely convergent for real k  and potentials of the class A. 
For r  = 0 the integrals of eq. (4.16) diverge. However, this is not serious, 

because those integrals are to be compared to the first term of e q. (4.16), which 

behaves like 

(4.19) j f ( r )  =  0(rw) 

when r-> 0 for Be A>0. What we need to show is thus only that the following 

limit exists: 
CO 

(4.20) lim tt~7 r \ K ( r ,  r ' )  f „ { r ' )  å r '  .  
r-o f * ( r )  J  

r  

To this end we observe that 

(4.21) /*(r) = iT<A-*>(^7rfcr)i(sin7iA)-1[<7_A(fcr) — i±2VA(fcr)] 

and 

(4.22) G ( r , r ' )  =  \ i  n { r r ' ) * ( s i n nX ) ~ x { J ^ ( k r ) J x { k r ' ) — -  J _ x ( k r ' )  J ! < J tr ) ' ]  ,  

which together with eq. (4.16) gives the following expression for the limit (4.20) : 

oo 

(4.23) lim —( r -  =  i ± a ^ { ß l j '  j r l â ^ j ^ k r j v i r j f î i n )  +  

0 
r 2  œ  

+ X fdri - fdr<+irÎJA(fcri)F(ri) fl {<?(r3-a, r i ) V ( ï j ) } f $ ( r i + ]  x )  .  
i-lj J 3=2 

0 T i  

In this equation all the integrals converge for class A potentials because 

near r = 0 

(4.24) r h J Å ( ] c r ) f ^ ( r )  =  0 ( r )  .  

Then this series is absolutely convergent like the series of eq. (4.16). 
However, eq. (4.23) is nothing but the Born series for the Jost function, 

because the Jost function can be defined as the limit 

(4.25) /±(A,fc) = lim|g. 
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We shall now study the rest term of the Born series for the Jost function, 
This rest term, 

(4.26) r|U) = f (A ,  ft) - 1 - i±^(~y=| Jr|dr1J,(fcr1)F(r1)/^(r1) + 

0 
r2 co 

+ 2  fd»"i -  fd^+irf J^krJVirJ  JJ  {G(r^ 1 }  r : f )V(r s ) } /J(rj+1) 
4 = 1 v t/ j =2 

0 

has the following relation to the rest term (4.4), 

f 2 CO 

(4.27) r±(A) = Jd^Jd^ r \  JA(fcr1)7(r1)E2y_2(r1, r2)/±(r2), 

0 rj 

and we are interested in its behaviour when j A \ -» oo in the right-hand half-plane. 
In the rest of this paper we assume that A is in the first quadrant. This is 

no restriction, because the fourth quadrant can be reached by complex 
conjugation, 

(4.28) M*, I') = Cm ft)]* . 

To get a bound for the rest term (4.27) we now use eq. (4.12) and the bounds 
of Sec t. 2 for the Bessel functions involved. These are for A in the first quadrant 

(4.29) 

j J x (kr )  I < Je] A|-*[l + 0(/H)]cr(A, u)  exp[ — Im (Aw)] , 

fo i r) I  <  /kc  
71 

I /o (^) I < 1/ 77 e 

fr 

1er  
7 

ftr 
T 

[1  +  0( A~ 1 ) ]c j (A,  u )  exp 

[1  +  0(Ar 1 )]a(A ,  u )  exp 

Im (Aw)+ - Im A 
Z 

I Im (Au)  j — - Im A 

where the absolute value sign in the exponent of the last formula comes from 
arg (Au) leaving the region (2.9) so that eq. (2.7') has to be used. In this way 
we obtain the bound 

(4.30) 

where 

(4.31) 

|r*(A)|<[l + 0(A- 1 ) ' \ v ± (A) \y (A)y  1 exp [u(A)] , 

v+(A)  =  v(A)  ,  
oo 

v~(A)  =  G IA |_1JVdr| V(r)  \  a 2 (A ,  u )  exp [|Im (Au)  j — Im (Au)]  .  



[53] AN ASYMPTOTIC EXPANSION F OK THE GREEN'S FUNCTION ETC. 15 

In the Appendix the function v  ( A )  is studied for large A ,  and it is shown that 
it approaches zero, 

(4.32) v ( A )  = o(l) when |A|->oo, 

for all potentials of the class A. If the potential also satisfies 

(4.33) V ( r )  = 0(r~1_a) when r->oo, 

for some positive x, it is further shown that 

[ 0(?rcl) if a < 1 
(4.34) v ( A )  =  \  

0 ( A ~ 1 )  if a> 1, 

when A  -> oo . 
The eqs. (4.30)-(4.32) now imply that the Born series for the Jost function 

f+(A, k) is an asymptotic series of the Erdélyi type when A -> oo in the first qua­
drant with respect to the scale 

(4.35) r/,v(/.) ft(/)r % e > 0 . 

In particular, we find that 

(4.36) /(/./,'. : • 1 •; 0 ( v ( A ) )  

when A  oo in the first quadrant. 
However, for f ~ ( A ,  k )  w e cannot say so much in general, because without 

knowing more about the potential than that it belongs to class A, we can only 
draw the conclusion from eq. (4.31) that 

(4.37) v ~ ( A ) < v ( A )  expfrclmA], 

because Im ( A u )  in the exponent of eq. (4.31) becomes negative for large r and 
approaches •• •(rr/2) I'm/.. This result is not sufficient to prove anything about 
the asymptotic character of the Born series forf~{A,k) when A oo in a complex 
direction in the first quadrant. 

However, the change of sign of Im ( A u )  for Im A  < jr/2—e  occurs as can be 
seen in Fig. 1, at a value of r slightly less than \A/k\, say at y A. Then 

CO 

(4.38) <v(A) + C I AI-1 expfrc Im A]Jr dr | V ( r )  \  o 2 { h ,  u ) ,  

y A 
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and we see that if only the potential goes sufficiently fast to zero at infinity, 
we will have 

v~( / . )  =  0(v (A) )  

when A -> ooin arg Ae[0, ( j c / 2 ) —e], so that eq. (4.36) will be valid also for 
/-(A, It), except for parallels to the imaginary axis. 

« Sufficiently fast » is here taken to be faster than any exponential exp [—(xr\ 
because then the above argument is valid for all values of y > 0, that is all 7c and 
e. We thus define: a potential is said to belong to class B if 

B.l) it belongs to class Ä, and 

B.2) it approaches zero at infinity faster than any exponential exp [—^r]. 

When arg A = ?r/2, we find that Im (Au)  = — (tt/2) Im A for all r ,  and the pre­
ceding arguments are not applicable. In fact, for fast-decreasing potentials the 
Jost function will grow indefinitely when A -> oo parallel to the imaginary axis. 
This is a well-known fact for square-well potentials and potentials with an 
abrupt cut-off, but as we shall see it is also valid for more regular class B poten­
tials, like the Gauss potential exp [— p2r2]. 

For the Born approximation to the Jost function when Im A -> oo we find 

CO 

(4.40) f~ (A ,  J. - j rà rV(r )JKkr )  .  

0 

For the Gauss potential the integral in this expression can be calculated (24), 

CO 

(4.41) j*exp [— p2r2] J \(hr )  r  dr = exp 

0 

= 0 

which means that for this potential 

(4.42) I f~ (A ,  k )  I x ~ a  const • exp \ n  Im A] , 

where the constant can be shown to be different from zero. 
We believe the exponential growth of f~  along the positive imaginary axis 

(2i) G. N. Watson: A Treatise on the Theory of Bessel Funct ions (Cambridge, 1922). 
p. 395. 

CO 
o 

le2  

2p2 

1 / efc2 V*! 
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to be common to all class B potentials. However, this is difficult to prove, 
because a proof has to use lower bounds to integrals with oscillating integrands, 
and such bounds are much more difficult to find than upper bounds. 

Therefore, let us content ourselves with the rigorous result (4.42), the well-
known result for cut-off potentials, and the following qualitative explanation: 

If the potential decreases fast at infinity, contributions from small and 
medium values of r will dominate in the integral for v~(X), and also in the integral 
of eq. (4.40). However, for small and medium values of r and X -> oo, the asymp-
toticform of contains a factor /""1(1+ X). This factor has the property of 
going fast to zero at infinity in all directions of the right-hand half-plane, 
except in directions parallel to the imaginary axis, where it grows exponentially. 

To conclude, we find that when X oo in the first quadrant, 

(4.43) 

f + ( X , k ) = l  +  0 { v( X ) )  

f ~ ( L  k )  - 1 :f 0(r(/.)) 

f ~ ( X ,  k )  =  o  (exp \_ 7 i  Im A]) 

for arg X  e  

for arg X e 

»•1 

A 7 1  

' 2 ~ 6 

for arg X  

for all class B potentials. Further we know that the exponential growth in 
the last equation cannot be eliminated for square-well potentials, cut-off poten­
tials and the Gauss potential. Neither can the exponential growth be elim­
inated, in our opinion, for any other class B potential or for potentials with 

discontinuities. 
However, it is a well-known fact that there are potentials, like the Yukawa 

potential and superpositions of Yukawa potentials, for which the exponential 
growth in the last of eqs. (4.43) can be eliminated. 

In the next Section we shall show how this comes about. We do this not only 
to show the power of o ur uniform bounds, but also to emphasize how the behav­
iour of the Jost function in the complex A-plane, and especially on the imag­
inary axis, depends in a complicated way on the interrelation between the 
p a r t s  o f  t h e  p o t e n t i a l  f o r  s m a l l  a n d  l a r g e  r .  

5. - The Jost function for meromorphic potentials. 

As we pointed out in the preceding Section, a change of sign of Im ( X u )  in 
the integration interval of eq. (4.31) made it difficult to obtain a sharp enough 
bound for the rest term of the Born series for the Jost function. 

However, if the potential has a meromorphic continuation into the right-
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hand half of the complex r-plane, it may be possible to change the integration 
contour and overcome this difficulty. 

In the complex w-plane the integration along the real r-axis corresponds 
to integration along the curve C, shown in Pig. 2. This figure shows the com-

Fig. 2«) and b). - Integration contours in the complex u- and r-planes for 
0 < arg A < t i /2. 

plex u -  and r-planes for 0 < arg A  < rr/2, and it is clear from it that Im ( A u )  is 
p o s i t i v e  f o r  s m a l l  r ,  go e s  t h r o u g h  z e r o  f o r  a  v a l ue  o f  r  s l i g h t l y  l e s s  t h a n  \ A / k \ ,  
and is negative for all larger r. This suggests that the integration contour 
should be changed to C", on which Im (Au) is nonnegative. 

In the figure, C '  is shown also in the r-plane, and it lies there in the sector 
0 < arg r < arg A < nj2. Therefore, for this change of contour to be allowed, 
first of all the potential has to have an analytic continuation into this sector 
at least for large r. Second, the integral on the curve G1 in Pig. 2 has to go 
to zero when the distance of G± from the origin goes to infinity. 

To meet this need we construct the following potential class: A potential V ( r )  
is said to belong to class C if 

C.l) it belongs to class A, 

C.2) it has for large r an analytic continuation into the sector 
arg/-' (rr.2)—e, for any e>0, and 

0.3), in any direction in this sector the continuation satisfies 

For a class 0 potential, we now prove that the integral on Cj approaches 

r-plane u-ptane 
2-nd. sheet 

CO 

V ( r )  dr I < oo. 

O oo Ci 
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zero. The crucial integral is 

(5.1) • l f = j r i d r J x { k r ) V ( r ) f ± ( r )  .  

Ol 

When r  oo with fixed X  we find that 

(5.2) 

JA(fcr)r^o ̂ 7 cos ~ \ t t X  — \ r i )  , 

f{r) r~ /f (r) r~ exp [=p Mr] , 

and thus the integrability condition 0.3 for the potential is sufficient to make 
if approach zero when the distance of G1 from the origin approaches infinity. 

Now we can make the whole analysis of Sect. 4 once again with all the 
integrations on the curve C instead of on the real r-axis. The result will be 
formally identical, but with v(X) and v±(X) replaced by the quantity 

(5.3) v ( X )  =  CI Al-1 J I r a2 ( X ,  u ) V { r )  dr|. 

In the same way as in the Appendix for v ( X ) ,  it can be proved that for all 
class G potentials 

(5.4) v ( X )  =  o(l) 

when in |argX j < ( n / 2 )  — s .  Then for all those potentials, the Born series 
for f ~ ( X ,  7c) is an asymptotic series of the Erdélyi type with respect to the scale 

(5.5) < p N { X )  =  [®.(A)]f~®' ,  e '  >  0 ,  

when X  —^ oo in arg/. <(.t/2) — s .  

If further 

(5.6) 1» = ( ) ( r  '  * )  ,  a >  0 ,  

when r-> oo in jarg r  \  <  ( n / 2 )  — e, we find as before for v ( X )  that 

(5.7) v ( X )  
0(A-a) if a < 1 , 

0(A"X) fi a > 1 , 

when X^oo in argA[ < (jr/2)—e. 
We still have to discuss the case of X  app roaching infinity in directions 
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parallel to the imaginary axis. For arg A =(tï/2), the complex u-  and. r-planes and 
the integrat ion con tours  G and C are  sho wn in  Fig.  3 .  In  order  for  Im (Au)  

to be nonnegative on 6", C and G' now have to be different also for small r. 
Therefore, we now have to require the potential to be continuable into the 
whole right-hand half of the r-plane, with the possible exception of a finite 
number of complex poles. We also have to require the potential not to be too 
singular for small r, so that the integral on the curve 0, in Fig. 3 is zero in the 
limit when C2 shrinks to the origin in the r-plane. 

Fig. 3a) and b). — Integration contours in the complex u- and r-planes for arg A= jt/2. 

We now construct the following class of potentials: A potential V{r)  is 
said to belong to class D if 

D.l) it belongs to class A, 

D.2) it has a meromorphic continuation into the half-plane Ee r > 0, 
with a finite number of complex poles, and 

D.3) in any direction in this half-plane, including parallels to the imag­
inary axis, the continuation satisfies 

Class D is contained in class C, because the poles must, as they are finite in 
number, all be within a finite distance from the origin. Thus the meromorphic 
c o n t i n u a t i o n  i s  a n a l y t i c  f o r  l a r g e  j r j .  

The change of integration contour from C to C'  is permitted for all potentials 
of the class C, if due care is taken of the contribution from the complex poles 
of t he potential. This follows exactly as for arg X < nj2, except that we now also 

u-plane 
2-nd sheet 

r-plane 
2-nd u-sheet 

CO 

0 
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have to discuss the integral 

(5.8) i f  = j r i àrJ^{ l c r )V(r )f± ( r )  .  

C J 

When r^O we find that 

\  J, ( I rr )  =  0(r Å )  ,  
(5.9) \ 

[ /±(r) = 0( r l  A ) ,  

and thus the integrability condition D.3 for the potential is sufficient to make 
if approach zero when C2 shrinks to the origin in the r-plane. 

Repeating now the analysis of Sect. 4 once more, with the modified inte­
gration contour C1, the result will again be formally identical, and the quantity 
that replaces v(X) and v±(X) this time is 

(5.10) •<?(/.) = V j / !~1 j*! /vr-( A, u )V' ( r )  dr | + 

C' 
+ 2JZC 111"1 2 i'V'"(Â ut) Bes Vi/',) |exp [|Im !/.'/,•) | — Im (Am,)] . 

i 

In this expression the last term is the contribution from the complex poles 
of the potential. These poles are A- independent, and therefore, in the limit 
A -> oo both a2 and the exponential factor approach 1, so that the contribution 
from the poles is 0(A~1). 

Exactly as for the class C potentials, it now follows that 

(5.11) v (X)  = o(l) 

as A -» + i oo for all class D potentials. Thus for those potentials, the Born 
series for the Jost function is an asymptotic series of the Erdélyi type with 
respect to the scale 

(5.12) ^(A) = [£(!)]*-% s > 0 , 

when A->oo in any direction in BeA>0. 
If further 

(5.13) V(r )  = 0(r_1~a), a>0, 

when r—> oo in ?|.argr| we obtain in the same way as before 

\ 0(?ra) if a < 1 , 
(5.14) $(A) = 

[ OiA"1) if a > 1, 

when A->oo in [argAjcrc/2. 
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We now turn our attention to the Yukawa potential, which belongs to 
class C, b ut not to class D, because it does not go fast enough to zero at infinity 
in directions parallel to the imaginary r-axis. 

However, the treatment used above for class D potentials also gives some 
information for the Yukawa potential. In fact, the estimates of t he Appendix, 
applied to v(X) with the integration contour of Fig. 3, give for the Yukawa 
potential 

(5.15) v (X)  =  0(1 )  when A-> + ico, 

or 

(5.16) / (/,. k) - 0( 1 ) when A-*f ioo. 

This result is not sufficient to show that the Born series is an asymptotic 
series, it only shows that the higher-order Born terms do not dominate when 
X~>ioo. It is also insufficient for proving that the S o mm erf el d-Wat s on trans­
formation is allowed, because eq. (5.16) does not exclude the possibility of 
f->0 when X -> i oo. 

These difficulties are exactly the same as those encountered by MARTIN ( 10). 

This is not surprising, because when we changed to the integration contour C 
of Fig. 3, our method became very similar to that of MARTIN. 

The method of improving eq. (5.16) given by MARTIN can be used in our 
formalism also. It consists in iterating the integral equation once, and obtain­
ing a better bound for the new inhomogeneous term. 

However, the asymptotic properties of the Born series for the Jost func­
tion with the Yukawa potential when À -»• i oo are known from the work of 
OALOGERO ( 5). His result is that the Born series is an asymptotic series in the 
Erdélyi sense with respect to the scale 

%i(4) = X~ i N + % s>  0, 

when X -> i  oo. This result cannot be improved by using our method. 

6. - Discussion. 

We have shown above, that using uniform asymptotic estimates obtained 
from the formula (2.1) for Bessel functions, we get a very straightforward 
and powerful formalism for the study of as ymptotic properties for large complex 
angular momenta. Within this formalism we can study the asymptotic char­
acter in the right-hand half of the complex A-plane of the Born series for the 
Jost function for many different potentials, both fast decreasing and slowly 
decreasing. 

For slowly decreasing potentials with analytic continuations, our method 
becomes very similar to that of MARTIN (10) a nd BESSIS F11). However, we make 



[61] AN ASYMPTOTIC EXPANSION FOR THE GBEEN'S FUNCTION ETC. 23 

slightly weaker assumptions about the potential (our class D), and we also 
study the whole Born series. 

The bounds of Bessis for the location of Begge poles could possibly 
be improved by a modification of our method. Taking explicitly one or more 
terms of the asymptotic, expansions, and using the Olver (18) bound for the 
rest term, one should even be able to calculate the location of the outer Begge 
poles (say with | À | > 3) with controllable accuracy. 

The Yukawa potential is just outside our potential class D, and is in a way 
the limiting case between the slowly decreasing and fast decreasing potentials. 

For potentials decreasing faster than exponentially, that is of class B, we 
have shown above that the Born series for the Jost function is an asymptotic 
series when Be A oo. This is the same result as that obtained for class C 
potentials, and therefore, we expect it to be common to a very large class of 
potentials, almost as large as class A. 

However, when oo it seems to be impossible for the Jost function to 
approach 1, except for smooth potentials which do not go faster to zero at 
infinity than exponentially, that is potentials like the Yukawa potential or 
the class D potentials/ This is because, as we have seen, the inner parts of the 
potential tend to give contributions to the Jost function that grow expo­
nentially on the imaginary axis, and these contributions must be counterba­
lanced by contributions from the outer parts of the potential. For this com­
pensation to be effective, the outer parts of t he potential must not be too small, 
and they must also have a smooth connection to the inner parts. 

It thus seems likely that the Sommerfeld-Watson transformation is not 
allowed for any fast-decreasing potentials. We shall now give some further 
independent support for this supposition. 

The partial-wave expansion for the scattering amplitude, 

(6.1) A», <,) - ± i p.,+^ f i l ; > ' | p , ( c ° s  » ,  

can be tested for convergence with our uniform bounds. Since f ~  approaches 
1 on the real 2-axis, what we need for this test is an estimate of the dif­
ference A/ = f+—f~ on the real axis. 

For this difference eqs. (4.21) and (4.23) give the expression 

CO f' CO 

(6.2) A/(A, /.•) -- - ijcjrårV(r) J\{hr) — i.7zj?' iårjr l iår ,Jx(lcr)V{r)K(r, r')Jx(kr') ,  

0 Or 

and eqs. (4.11) and (4.29) give when applied to this equation the bound 

(6.3) [Af(A, fc)|<[l + 0(A-1)]»o(A)[l + v(Å) exp [®(A)]j , 
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where 

CO 

0 

This integral can now be estimated for different potentials. As an illustrating 
example we take a potential decreasing so fast that the contribution from small 
r dominates, which probably means faster than exp [—2kr In r\. Then we get 

The partial-wave expansion is thus convergent in the whole complex cos 8-
plane for such potentials. This means that the Lehmann ellipse covers the 
whole plane, and the scattering amplitude is an entire function of the momentum 
transfer squared. 

We now test this entire function for its order (26). For large», P t (z )  behaves 
like zl, and the partial-wave expansion becomes almost a power series. There­
fore, the order of the entire function can be obtained by the formula (25) 

t a  c i  . .  I i i  ' i l  (o.b) Q = lim sup _ ,—r , 
n—^ co — 111 J (tn I 

where a n  is the coefficient of z n  in the power series. Thus the order is Q = \ 
for the scattering amplitude as an entire function of the momentum transfer 
squared, if the potential decreases faster than exp [—- 2kr In r]. This result agrees 
with the result of ïfussenzveig (26) for cut-off potentials. 

For a potential decreasing slower than exp [—• 'Ihr In /•], but still belonging 
to class B, eq. (6.5) will not be satisfied, and the scattering amplitude will be 
an entire function of the momentum transfer squared of order larger than J. 

The author wishes to express his gratitude to Prof. N. SVARTHOLM f or his 
kind interest in this work and for valuable suggestions. A grant from the 
Swedish Atomic Research Council is gratefully acknowledged. 

(25) R. P. BOAS: Entire Functions (New York, 1954). 
(26) H. M. NTJSSENZVEIG: Ann. of Phys., 21, 344 (1963). 

(6.5) Afß, lc) = <)(,:„(?.)) = 0()r~Å) when A + oo. 

to 
CO C5 
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AP P E N D I X  

In this Appendix we shall study bounds for large complex A of t he integral 

CO 

(A.l) ?;(/.) = G  [ A h1j d r  r  |  V ( r )  \  o * ( Å ,  u ) ,  

where 

(A.2) CT(A, u) 
j Xu\ t 

]  w  j }(1 + I Am| )* 

According to eq. (2.3) the function a  has the following asymptotic form 
( x  =  k r ß )  

(A.3) a ß ,  u )  =  

\ X \ - i  
1 + 0 U + 0 ^  

|U|*[1 + 0(w2)+0(Aw3)] 

1 + 0 ( M 
\ln x j  

for I x  I >  1,  

for I ./'v. 1 i 1. 

f o r  I  x  I  < c  1 .  

When r  varies from 0 to oo, a  thus varies from 1 through a maximum 
for finite r to zero in the limit r->oo. If the quotient A/fc is real, this maximum 
is |£A|* and occurs at r ~ X\k. For nonreal 1/7« the maximum is smaller, 
because, as can be seen from eq. (A.2), a cannot be large unless w is small. 

Therefore, the integral (A.l) is largest for real A/fc, an d to get a bound valid 
for all arg A we need only consider such /. 'I:. 

Prom the asymptotic form of a we saw in Sect. 4 that if the integral (A.l) 
is to be convergent, the potential has to be of the class A, namely it must 
satisfy eq. (4.14). 

We shall now show that for any potential of class A, v(A) approaches zero 
when A oo. 

To do this, we cut the integration interval into four, 

(A.4) [0, a ] ,  r a, — j . w . 
A\/5 A 
k  ' k  

(1,+ e) (1 + e), oo 

where a ,  ß  and s  are positive constants, ß < l ,  and number the corresponding 
parts of «(A), with an index i =1,2, 3, 4. Further we observe that 

(A.5) ff2(A, u )  <  -
\ w \  
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Despite its singularity at x — 1, this bound is useful because it is integrable. 
Prom the first interval we get the contribution 

(A.6) 1 + 0 

a 

(iMÂ/ï))]/4"1™!' 

which approaches zero as when A->oo. 
For the contribution from the second interval we get the following bound: 

(A.7) 

Ull:)'1  

r V ( r )  
dr < 

w 

ISRIfc 
1  +  0 ( ( T ^ » 1 h W » ) ] J , F W | d r -

which approaches zero when Å - > o o ,  provided ß < l .  
Por the contribution from the third interval we get the bound 

1+e l+s 

(A.8) -
J ! Vas2 - 1  i  J  "  

d® 

V c o 2  - 1  

which approaches zero when X  -> oo, provided /5 > 0, because of the integra-
bility condition for | F(r) |. • 

Finally, in the fourth interval we observe that 

(A.9) < 
1 

\ w \  ( ® 2 - l ) 4  ( 2 e  +  s 2 ) i  

where y is a finite constant when e>0. Thus 

CO 

(A.10) <  y C \  k  | _ 1 J *  I V ( r )  |dr , 

U'»<l+e> 

and the contribution from this part.of the integration interval also approaches 
zero when À oo. 

This concludes the proof that 

(A.11) 

for all class A potentials. 

v ( X )  = o(l) w h e n  | A | o o  



[65] AN ASYMPTOTIC EXPANSION FOE THE GREEN'S FUNCTION ETC. 27 

We now also want to show how fast v  ( A )  approaches zero when the potential 
is not only integrable, but also satisfies 

(A.12) V ( r )  =  0 ( r - x - K )  , a>0, when r  - >  oo, 

that is, that there exist constants b ,  B  such that 

(A.13) |F(r)| for />&. 

For this potential, we take the common endpoint of the second and third 
intervals (A.4) as (1 — e')A/k instead of (Ajk)P. In the second interval we 
then find that 

<"41 taoci'ci, 

in analogy with eq. (A.9). For tlie contribution to v  ( A )  fro m this interval 
we thus get the bound 

a lic) (1—e') 

(A.15) ®a(A)< y'G lAI"1 \ r - x å r  =  -r—^  ,  |/l|_1 

J  I 1  - « I  

\ A  1—a 
— a1-01 

provided a  is chosen larger than the b  of eq. (A.13). Equation (A.15) implies 

(A.16) v ' s ( A )  =  
0(A-") if x < l ,  

OiA-1) if «>1, 

when A oo. 
T Tie contribution to v { A )  fr om the new third interval can be estimated 

with eq. (A.8) witb ß=l to be 

(A-17) v ' 3 ( A )  =  0 ( A ~ X )  when A  ooä 

The last two equations, together with eqs. (A.6) and (A.10), now imply that 
for a potential satisfying eq. (A.12) 

(A.18) v ( A )  =  

when A -i- oo. 

0(A~X )  if a< 1, 

O (A-1) if a > 1, 
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R I A S S U N T O  ( * )  

Da una generalizzazione della formula asintotioa uniforme di Langer per funzioni 
di Bessel di ordine superiore si eostruisce uno sviluppo asintotico della funzione di 
Green per lo scattering. Da questo sviluppo segue un sempliee limite uniforme per la 
funzione di Green, elle eontiene il ben noto limite non uniforme 1/fc. S i usa poi questo 
limite uniforme per studiare le proprietà asintotiche per grandi momenti angolari 
oomplessi della serie di Born per la funzione di Jost nella teoria dello scattering non 
relativistico del Potenziale per un gran numéro di potenziali. Tra l'altro si ottengono 
i seguenti risultati. Se il Potenziale lia una continuazione meromorflca, con un 
numéro finito di poli complessi, nel semipiano lie r > 0, che soddisfa la condizione 

a œ 
f \ r V [ r )  dr |< oo, f ] V ( r )  dr |< oo, 0 < a< oo, su tutti i raggi di questo semipiano, 

0 a 
allora la serie di Born per la funzione di Jost è una serie asintotica nel senso di Erdélyi 
e la funzione di Jost tende ad 1 quando |A|->oo in ogni direzione nella regione 
|arg XI < ji/2. Cosi è permessa per tali potenziali la trasformazione di Sommerfeld-
Watson. Per parallele all'asse r immaginario la suddetta condizione puô essere un pö 
mitigata in modo da includere, per esempio, il potenziale di Yukawa. Il nostro metodo 
dà anche alcune informazioni sulle condizioni necessarie da imporre al potenziale per 
rendere lecita la trasformazione di Sommerfeld-Watson. Sebbene manchi una dimo-
strazione matematica rigorosa, si è giunti aile seguenti conclusioni. Il potenziale deve 
avere una connessione uniforme fra piccoli e grandi valori di r e non deve decrescere 
più rapidamente che in modo esponenziale quando r-> oo perché sia permessa la 
trasformazione di Sommerfeld-Watson. 

( * )  T r a d u z i o n e  a  c ur a  d e l l a  R e d a z i o n e .  
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Recently Predazzi and Regge 1) and, indepen­
dently, Limic 2) have studied potential scattering 
in the presence of an alytic hard cores, which for 
small r behave like r'a, a > 2. Predazzi and Regge 
showed that in the presence of an analytic hard core 
the S-matrix can be continued in a trivial way to the 
half plane Re X < 0 by means of th e formula 

S(-X) = S(X) exp (-2iffX) . (1) 

In this note it will be shown that this result holds 
also in the case of th e usual non-analytic hard core, 
that is the one that corresponds to a potential = + « 
for r < r0. As is well known (e.g., ref. 3)), a hard 
core of th is form is equivalent to the boundary con­
dition 

^(M,*-o) = 0, fJ(M,r0) = 1 (2) 

for the wave function <p. Because this boundary con­
dition is independent of the angular momentum I = 
X - \, and the Schrödinger equation contains X only 
through X2, it follows at once that <p is an even func­
tion of X. 

With t he notation of F roissart 4) we can write the 
integral equation corresponding to the Schrödinger 
equation with the boundary condition (2) in the fol­
lowing way 

<p(X,fe,r) = fe-1 G x {kr , kr 0 )  

r  
+ fe - *  /  G^{kr ,kr ' )  V(r ' )  <p(X,£,r') dr '  . (3) 

*o 

As usual, the S-matrix is defined through the 
asymptotic behaviour of < o 

<P(M,r) TOM) h^\kr) 

to be 

Now 5) 

S( \ , k )  = 

+  W 1 ( \ , k )h^ \ kr ) ]  , (4) 

W 2 (X ,k )  

W'!(X,fe) • (5) 

h^(kr )  = h^\kr )  

h^ (kr )  = e _ i 7 7 ^  h^ \kr )  
(6) 

and therefore, because <p is an even function of X, 
eq. (1) holds also with our hard core. 

To find the analytic properties of t he S-matrix 
we can use the method of Froissart 4) on the inte­
gral equation (3). Iteration of (3) gives for the 
following formal expression 4) 

W 1  = k 1  h^\kr Q )  + 2  k~n f  
n r o <  r l < •  •  - < r n <  ° °  

fS}\krn) 

x 1 f k^m-l) V(rm) • CO 
m= 1  

In this equation there are no divergence problems 
at the lower limit of integration (r0 > 0). Therefore, 
W j is an entire function of X for any fixed k * 0 
which does not cause the integral tö diverge at in­
finity. For the k dependence the considerations of 
Froissart go through unchanged, to give the fol­
lowing final result: 

Provided e^r V(r )  is finite from the edge of th e 
hard core to infinity for some positive jn, the S-
matrix for potential scattering with a hard core is 
meromorphic in the topological product of the f inite 
X and k planes, except for the following branch 
points in the k plane 

k  = 0 and k  = ± [(m+l)/2i] 9  , (8) 

where is the set of s ingularities of 

i (q )  =  /  V(r )  e 1 r  dr 

^o 
(9) 

At in finity, the hard core will cause essential 
s ingu la r i t i e s  fo r  the  S-mat r ix  bo th  in  X and  k .  
Those singularities will prevent one both from 
making a Sommerfeld-Watson, transformation, and 
from writing down a Mandelstam representation. 
However, by subtracting the contribution from a 

218 
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pure hard core one can go around this difficulty. 
The details about this procedure will be published 
elsewhere. 

The author wishes to thank Dr. J. S. Bell for 
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and to Dr. J.Nilsson for stimulating discussions. 
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Asymptotic behaviour of the »S-matrix in complex angular 

momentum for singular potentials 

By O. BRÄNDER 

A B S T R A C T  

Using the theory for the asymptotic solution of d ifferential equations, initiated by Langer 
and recently developed in great detail by Olver, the asymptotic properties of singular potential 
scattering theory are studied. More detailed results are obtained than those arrived at earlier 
(Jaksic and Limic; Tiktopoulos) with the «JWKB-method. In particular, explicit formulae for 
for the positions and residues of the Regge poles are obtained. For potentials behaving at the 
origin like r-2-m, m> 0, or like — r-2 In r, explicit calculations are made. It is shown that all 
potentials having an analytic continuation into the right hand half r-plane satisfying 

J \ V ( r ) d r \ < o a  and J | [ V  ( r )  -  r ~ 2 - m ]  r l  +  ( m / 2 )  d r  |  <  

in all directions of t his half plane, except possibly for parallels to the imaginary axis, have the 
same asymptotic distribution of Regge poles as For potentials with a logarithmic singu­
larity at the origin the corresponding conditions on the analytic continuation are 

J "  \  V ( r ) d r \ < o a  and J" | [ V( r )  +  r ~ 2  In r] ( —In r ) i  r  dr | < oo 

in all directions of the half-plane, including parallels to the imaginary axis, in order that V  ( r )  
s ha l l  h ave  t he  same  a sympto t i c  d i s t r i bu t i on  o f  Regg e  po l e s  a s  — r  2  I n  r .  

1. Introduction 

The theory of scattering for potentials with a singular repulsive core has been 
the subject of a large number of investigations in the last few years. The main 
reason for this seems to be a hope to learn more about unrenormalizable field 
theories from their connection with singular potentials [1]. Other reasons are the 
possible use of those potentials to explain the high-energy large-angle behaviour 
of the proton-proton scattering amplitude [2, 3], and a desire to investigate the 
somewhat unusual analytic properties of the scattering amplitude from such po­
tentials, first stressed by Predazzi and Regge [4], 
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The simplest singular potentials to study are those with a nonanalytie hard 
core, like those which have been used since many years as phenomenological 
nucleon-nucleon potentials. The analytic properties of the scattering amplitude 
for such potentials were discussed in ref. [5]. 

The analytic properties for general singular potentials have been investigated 
by a great number of authors [6]. The l/r4-potential, for which the Schrödinger 
equation reduces to the Mathieu equation [7], has been studied most exten­
sively. 

A powerful method for the explicit construction of the .S'-matrix for singular 
potentials has been developed by Cornille [8], An interesting approximation 
method has been studied by Calogero [9]. 

Some mathematical aspects of the theory of scattering from singular potentials 
were recently discussed in ref. [10]. 

It is the purpose of this paper to examine in detail the asymptotic properties 
with regard to the complex angular momentum of wave functions, Jost func­
tions and /S-matrix in nonrelativistic potential scattering theory with singular 
potentials. We shall also discuss the limit of large, positive energies. 

The method to be used can be described as a generalisation of the JWKB-
method, giving an asymptotic series, of which the usual JWKB-approximation 
is the first term, and also giving at each order of approximation bounds for 
the rest term. The method is due to Langer, Cherry and Olver [11], and it was 
originally used to obtain an asymptotic series for Bessel functions of large order, 
valid uniformly in the argument of the function. This latter series for the Bessel 
functions was used in ref. [12] by the present author to discuss the asymptotic 
properties in the complex angular momentum plane for non-singular potentials. 
References to earlier work can be found there and in Olver [11]. 

In the present investigation we first concentrate on the power potential 
r 2-"', m>0. For this potential the Schrödinger equation is, in section 2, solved 
asymptotically by the Olver method, and asymptotic series are obtained for the 
wave functions. These asymptotic series are valid uniformly in the radial vari­
able, and they have well defined asymptotic properties when the angular mo­
mentum, the energy or the strength of the potential goes to infinity. 

In section 3 we extract information concerning the asymptotic form of the 
Jost functions and the ^-matrix in the complex angular momentum plane from 
the series which were previously obtained for the wave functions. In particular, 
we obtain explicit formulae for the positions and residues of the Regge poles. 

Finally, in section 4 we discuss to what extent the power potential can be 
modified without changing the asymptotic distribution of Regge poles. Results 
pertaining to potentials with logarithmic singularities at the origin are also given 
there. 

Five appendices containing mathematical details end the paper. 

2. Asymptotic solution of the Schrödinger equation 

In this section we shall use the method of Olver [11] to solve asymptotically 
in a large parameter the Schrödinger equation for a singular potential. 

Consider a potential V ( r )  m ore singular at the origin than the centrifugal 
barrier and satisfying the conditions 
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(1) F(r) >0 when 0 < r < Ö for some positive ô. 

( 2 )  1 v  Vir )  l/+U(r)7 + V(r)  

(3) r 2 V(r ) monotonie for 0 <r< Ô.  

(4) F(r) has an analytic continuation into the right-hand half r-plane outside 
the origin, satisfying 

dr  [1 /FW I F"(r) 
<C OO. 

r \V( r )dr \< 

in all directions of this half-plane, except possibly for parallels to the 
imaginary r-axis. 

Conditions 1 to 3 are the Limic conditions [6], which ensure that the poten­
tial is repulsive and nonoscillating at short distances. Condition 4 is weak enough 
to include most of the physically interesting potentials, but strong enough to 
avoid complications with our method. 

The most interesting singular potentials are those which at the origin behave 
like r~2~m, m> 0 or r 2( — In r)"\ m > 0. Those potentials can be represented in 
the following way 

F(r) = r"2-m!(r) (2.1) 

and V(r)  = r~2( — In r )m  |(r). (2.2) 

The function f(r) is an analytic function in the right-hand half-plane and it 
approaches the value 1 at the origin. At infinity £(r) must not grow too fast 
in order that condition 4 shall be satisfied. 

In the rest of this section, and in the next, we shall consider a "power po­
tential" 

V{r)  =  r -° -m ,  m> 0, (2.1') 

as explicit calculations are simple for this potential. However, the theory applies 
equally well to the potentials (2.1) and (2.2), as will be discussed in section 4. 

For the power potential (2.1') the Schrödinger equation reads, 

72 
22? — 2  + Å2 P{r;g ,k ,Å)  +  ~2  <p(r )  =  0, (2.3) 

dr 3 v "" ' ' 4r _ 

where = — — ^ r~2"m, (2.4) 

and the 'coupling constant' g2 is a measure of the strength of the potential. 
It is expedient to introduce the following new variable (Bertocchi etal. [6]): 
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2/(2+m) 

because then 

with 

and 

r°=\k! 

^  +  ^ p ( s ;  f )  +  ̂ - g2 f ( r 0 s )  =  0  

p ( s - f )  =  f- s ~ 2 - f s ^ m   

f = Å~1g2K2+m)kml&+m\ 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

so that, formally, we have just two independent parameters, A and /. However, 
to interpret the result we shall return to the physical parameters. 

We observe [3] that for g and k constant, and Å approaching infinity, we 
have /—*•(), which according to eq. (2.8) corresponds to the weak coupling limit. 
On the other hand, for A a nd g constant and k approaching infinity we have 
/ • > ex:, ; which is the strong coupling limit. We shall obtain formulae valid both 
in the weak and the strong coupling limits. 

It is well known from the theory of the JWKB-approximation that the zeros 
of p(s; /), the turning points, play a fundamental role. Therefore, we begin by 
examining the location of those points. 

It is easy to see that for large / and integer mp has 2 + m simple zeros dis­
tributed around the unit circle. When m is not an integer, then we make a 
cut along the negative real s-axis and a number of zeros appear also on other 
Riemann sheets. 

It is also easy to find the zeros when / is small. Two of them can be found 
near the points + / 1, whereas the other m zeros are found near the origin. 

Let s0 be that zero, which is near /_1 for / small, and let be the zero 
which is near the origin for / small and which has the smallest positive argu­
ment for real positive g, k and 1. Then 

so=r1[i+!/2+m+o(/4+2m)], 

^ — gin/m j2lm Y _[_ _  g-2in/m y:2+4Im _|_ Q^+S/m^ 
(2.9) 

in the limit / > 0. 
In Fig. 1 we illustrate for m = 2 how the two zeros s0 and s1 move when / 

is varied for some fixed values of arg /. We see that when | /1 , s0 approaches 
unity for | arg /1 < tz/(2 + m), but for — arg / > TT/(2 + m) it is the zero that 
approaches unity. When | /1 °° we have the asymptotic formulae 

1 + -
2 +m 

/-2 + 0(/~4) for |arg/|<-
71 

e' l2zji/(2 + m) 1 + e 
2 + m 

2 + m 

-4iJi/(2+m) j-2 _|_ „ 7Z .  3 7Z 
for < — arg / < 

2 + m  2 + m  

& in I (2+m) i + -8in/(2 + m) 1-2 

2 + m 
r + o ( n  for 

3TT 

2 + m 
< " arg / < 

5 71 

2 + m 
etc. 

(2.10 a) 
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/ 
/ 

-9CP 

Fig. 1 A Fig. 1 B 

Fig. 1 A. For arg f  fixed and | /1 varying from 0 to oo, the zero s0 moves in from infinity to a 
point on the unit circle. Figure drawn for m, = 2. 

Fig. 1 B. For arg / fixed and | f  | varying from 0 to oo, the zero moves out from the origin to 
a point on the unit circle. Figure drawn for m= 2. 

We see that if we vary | /1 and keep arg / constant, s0 stays within that sector 
of width 2TT/(2 + m) from which it originated for small /. 

For -s, we have the asymptotic formula 

when I /1 -> oo. 
The situation is now the following. We have a second order differential equa­

tion with two irregular singular points at 0 and oo and a number of turning 
points, which move when the parameters are varied. Except for the Mathieu 
equation, corresponding to m = 2, there is as yet no general theory of such 
equations (Fubini etal. [6]). 

However, we shall show that, when one parameter is large, e.g. A, t hen it 
is possible to use the method of Olver [11-13] to obtain asymptotic series for 
the solutions of such equations, and these series are valid uniformly in the 
variable in a region containing the two singular points and one of the turning 
points. This is accomplished by transforming the differential equation in such a way, 
that the irregular singular points fall at + °o, and that the conditions at infinity 
for the application of theorem B of Olver [11] are satisfied. The rest is then 
a straight-forward application of this theorem. The difficulties which are encoun­
tered are mainly related to the complicated nature of the transformation. 

We shall use different transformations of the differential equation depending 
on at which of the two turning points .s0 and we want the expansion to be 

e2iJi/(2+ m )  l  + _ L _e-4J*/(2+ m )  f- 2  + g y - i ,  f()r Q < - arg / < 
2 -t- m 2 4-m 

(2.10b) 

1  +  — ^ —  /  2  +  0 ( f  
4 )  f o r  — —  <  —  a r g  /  <  ̂  

2+m 2+m 2 
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Fig. 2 A, B, C and D. The complex s- and w-planes for arg sx> arg s0. Figure drawn for m = 2, 
f — 0.5 exp ( — inja). 
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valid. The two transformations are obtained by introducing the new independent 
variables z and y, respectively, where 

z =  - ( § « ) * ;  u =  f  p i ( s ; f ) d s ,  (2.11) 
J So  

and y = ~ (  ff)®; v  —  j  p ^ ( s ; f ) d s .  (2.12) 
J Si 

To make p* single-valued, we introduce cuts from each of the zeros of p to 
the origin. We consider only the right-hand half r-plane, that is, assuming r0 

to be real, the right-hand half «-plane. 
The transformations (2.11) and (2.12) are conformai mappings of the complex 

«-plane onto the complex z- and «/-planes, respectively, except for the zeros of p. 
At those points the mapping is not conformai. However, the mapping (2.11) is 
conformai as s0 and the mapping (2.12) is conformai at sy due to the exponent f. 
This is shown in appendix A. 

In appendix B the transformations (2.11) and (2.12) are studied, and formulae 
valid in the asymptotic regions are derived. For the special case of small | /1 
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s-pldne 

ne 

r HC 
<?//////////////////< 

v H.B 

Fig. 3 A, B, C and D. The complex s-  and w-planes for arg s x< arg s0 .  Figure drawn for m = 2, u-s-
/ = 0.5 exp ( — 2 mi/6). 2 0. 

the form of the mapping (2.11) is illustrated in the Figs. 2-5, and that of the 
mapping (2.12) in the Fig. 6. The v-plane is not shown separately, since it 
differs from the w-plane only by a shift of the origin. 

Also, the »/-plane is not shown for the case I, when arg s, > arg s0. In this 
case the mapping (2.12) is not 1 — 1 on any region containing the whole posi­
tive real s-axis and the turning point slt and, therefore, it can not be used for 
our purpose. On the other hand, when arg .s, > arg s0 ,  that is for |  arg /j  < n/(2 + m),  
then the transformation (2.11) will give all the results we need. It is only for 
arg ^ < arg s0 that we will need both transformations to get the complete asymp­
totic behaviour of the $-matrix. 

For large |/| and for j arg /1 < n/(2 + m) the mapping (2.11) is illustrated in 
Fig. 7 and (2.12) in Fig. 8. For - % n < arg / < - TC/{2 + m) and |/| large is 
the zero close to unity according to eq. (2.10 b) and the «/-plane will look like 
the 2-plane of Fig. 7. 

Introducing the new dependent variables 

V(2)=(^) <p(r0s) and X ( y )  =  < p { r 0 s ) ,  (2.13) 
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I A  

I. B 

Fig. 4. The image in the complex z-plane of the regions I. A and I. B of Fig. 2. 

z-plane 
n.c n.A 

rr.A 
n.A 

Fig. 5 A and B. For arg s ±  < arg s0 the mapping is 1 — 1 between the s -  and z-planes for the re­
gion shown. The region is chosen to contain in its interior the point s0 and the real s-axis. 

y-p lane  

ÜB 

6. The image in the complex «/-plane of the regions II. A and II. B of Fig. 3. 
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s-plane 
V /  '  

i ic / I ' IA 
% 

I 
1 

I.B 

IA 

w  
^ z- plan» 

Vr 
ZM 

I. A 

I. B 

z. 

Fig. 7 A and B. The s- and z-planes for large | /1. 

y-plane 

Fig. 8. The y-plane for large | /1 

the differential equation (2.6) is given by 

d \  

dz2 

W ( z ; f )  

^ - [ f z + W i z ;  f )] v ( z ) ,  

where 
z p " ( s ; f )  +  5 z [ p ' ( s ; f ) f  

16 z  4 f p ( s ; f )  4[ p ( s ; f ) f  16 [ p( s ;  f ) ]  

(2.14) 

(2.15) 

Primes denote differentiation with respect to s .  Analogously, the transformation 
(2.12) gives 

y 
~ = [ } ? y  +  w { y , f ) m y ) ,  (2.16) 

where w(2/;/) = T̂ 2+ 
y  y p " ( s ; f )  + 5  y [ p ' { s ; f ) f  

162/ 4s 2 p ( s ; f )  4 [ p ( s ;  f ) ] 2  1 6 [ p ( s ; f ) ]  
(2.17) 
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The functions W  and w  are singular at the zeros of p ,  except for W  at the 
ze ro s0, corresponding to z = 0, and for w at the zero s1, corresponding to y = 0. 
This is shown in appendix A. Before going into further details we shall now 
give theorem B of Olver in the form best suited for our application. In this 
form it is more general than the theorem stated in Olver (1954) [11] but less 
general than, and contained in, that given in Olver (1958) [11]. 

Put arg X = 0 and insert 

À  =  Q ew ,  z  =  z ' e~ i i 9  (2.18) 

into eq. (2.14). Then the following equation is obtained 

0 = [eV + e-*wW(e-*ifV; /)] v, (2.14') 

where Q , 0 are real parameters and / is a complex parameter. We assume that 
Q takes on a large positive value and we allow 0 and / to vary over a certain 
region 0. 

Let Dz ( 0 , f )  be an open, simply connected region of the z'-plane, in which W  
of eq. (2.14') is regular. As indicated by the notation, we allow the boundaries 
of the region to vary when 0 and / vary over 0, but they are not allowed to 
come  c lo se r  t o  t he  o r ig in  t han  some  f ixe d ,  pos i t i ve  d i s t a nce  b .  

Let us further assume that for some constant c 

\ W ( e - * u > z ' ; f ) \ < 1 + ° z , p + a ,  < r >  0, (2.19) 

for all 2' 6 D a (0 , / ) ,  (0 , / ) G 0 .  
Next, we define Grz ( ß , f )  to be a closed subdomain of D2(0,/), having the 

properties 

(i) G r z ( d , f )  c ontains the circle [«'|<6. 

(ii) The distance between each boundary point Zo of (1,(0, /) and each bound­
ary point of D2(0,/) is not less than d/\ 2,', |-, where d is a positive con­
stant, assignable independently of 0 and /. 

(iii) For some path lying wholly in 62(0, /) 

Jo r+jip51 <const' °"i=m'n 
( ° >  D" 

uniformly in z  ,  6  and /. 

Using the notation 

P j ( x )  =  Ai (Q J X ); gi = l, e2.3 = e±|m. (2-20) 

where Ai stands for the Airy function, we can now state the following theorem [11]: 
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Olver's theorem. The differential equation (2.14) possesses solutions y>j(z-,X,f) 

with the properties 

y)j(z;A,f) = Pj(Aiz) 2  
An(z;f) + 0(1 2i AT — 1 \ 

_n= 0 

+r*p;(A*z) + 
1 + 2 

o(r (2.21) 

as g = |A|^°°, valid when z = e%iBz eWz (0, /), (0, /) 6 0, the O's being uniform 
with respect to z, 0 and /. Here N is an arbitrary positive integer and xpj is 
independent of N. A similar formula holds for the derivative dyjdz. 

In stating the theorem, we have returned to z and X instead of using z', Q 
and 0, because the theorem is slightly simpler in that formulation. 

The coefficients An and Bn are defined as follows, 

' A0=l, 

Bn(z;f) = iz-t J z-*[W(z;f)An(z;f)-A'n(z;f)]dz, ^ ̂  

An+1(z;f)= — \ B'n(z; /) + %  ( w (z; f) Bn(z; f) dz, 

and the region H^(0, /) comprises those points z of &z(d,f) which can be joined 
to a point a;(0,/), in G2(0, /) or at infinity, by a path p7 having the following 
properties 

(i) pj lies in Gs(d,f). 

(Ü) Pi comprises a finite number of Jordan arcs, each with a parametric 
equation of the form i = i(r), where r is the real parameter of the arc; 
t"(r) is continuous and t'(r) does not vanish. If <1,(0, f) is at infinity it 
is on a straight line £,• in (t2(0. /), and p7 coincides with C, for suffici­
ently large |f|. 

f \At\ 
(in) Jp#l + ^r-<COnSt 

uniformly in z', 0 and /. 

(iv) As t traverses p; from «7(0, /) to z , | exp {§ (&• t)~] | is monotonie decreas­
ing, where Qj is defined by eq. (2.20). 

As the point af(Q, /), j = 1, 2, 3, we take a point at infinity in the corresponding 
sector S,-: | arg (o, )•} z)\< n. S,- is the sector in which the solution ip, is asymp­
totically small. 

Next we must investigate the transformations (2.11) and (2.12) to see whether 
the conditions for the application of Olver's theorem are satisfied. 

Asymptotically, eqs. (2.7) and (2.11) imply that 

141 



o. BRANDER. Asymptotic behaviour of S-matrix 

u~ 

f s  as I s  I -*  oo 

+  i  — s~ m l 2  as I s I -> 0 
: 2/ „-m/2 ... (2-23) 

for the "power potential". Together with eqs. (2.11) and (2.15) this gives that 

[  0{z f~ 2 s~ 2 )  =  0(z~ 2 )  as + oo 
W(z;f) = \ (2.24) 

[0(2/ s m )  =  0 ( z  ) as 2->-co: 

which shows that the condition (2.19) is satisfied, provided D2(0,/) does not 
conta in  the  turning points  z u  i  = 1,  2 ,  . . . ,  corresponding to  the  zeros  s t  of  p(s ;  f )  
or the immediate neighbourhood of those points. As we have already discussed, 
there is no singularity of W at 2 = 0 corresponding to the zero s0. 

The remaining point to prove now is that there exists a simply connected 
region of the 2-plane containing 

(i) the circle | z \ <  b  and 

(ii) the whole image of the positive real r-axis. 

After a rotation through the angle § 6 this region is to he used as D3(0, /). The 
condition (i) is necessary for the Olver theorem to be applicable, the condition 
(ii) is necessary in order for the resulting series to be valid uniformly in 
rÊ(0, oo). 

For small / the two conditions above are satisfied by the regions given in 
the Figs. 4 and 5 for arg st > or < arg s0, respectively, except for the fact that 
for large m, one might have to restrict the range of arg s when s is small so 
that the regions will be simply connected. 

The allowed values of arg / for small / are 

I a,rg /1 < ? — £, e>0, small |/|, (2.25a) 
A 

where the e is introduced to exclude the neighbourhood of the point z v  where 
W is singular. 

For large / the restriction of arg / is 

I  & T S f \ < ^ Z , '  l a r ë e l / l >  ( 2 . 2 5 b)  
~T~ Tib 

because in that domain of |/| the construction of Fig. 5 is not possible, since 
the image of the positive real .s-axis will not be contained in the same Riemann 
sheet as the image of the point s0. In the two equations above we still assume 
that arg r0 = 0. 

When Dz ( 0 , f )  ha s been chosen as discussed above, (iz(0, /) can be obtained 
from Dz(d,f) just by slicing off a thin strip along the boundary according to 
t h e  p r e s c r i p t i o n  ( i i )  f o r  ( « , ,  ( 0 ,  f ) .  

142 



ARKIV FÖR FYSI K. B d 32 nr 8 

Finally, 111(0, f )  is to be constructed according to the prescriptions (i-iv) above. 
To ensure that the origin and the whole image of the real positive r-axis will 
remain inside H',(0, /) we must restrict the angle 0 such that the point z1 and 
the image of small, real, positive r fall inside the sector Sj. The restrictions 
(2.25) together with this restriction for 0 yields that Olver's theorem is appli­
cable in the «-plane provided (0, /) is inside one the following two regions, 

0o : 

I arg /|<-
71 

any 

71 

2 

(2.26a) 

and 00' : 

TL . 71 

2H-m — arg 2 e 

l / l  
71 . < 

(2.26b) 

where % and b1  a re positive numbers and b }  0 if a x  -> 0. 
Let us now consider the .'/-plane. For small / the »/-plane is shown in Fig. 6. 

For large / it is shown in Fig. 8 for 0 < — arg / < jt/{2 + m) and in Fig. 7 for 
tt/(2 + m) < — arg Constructing now regions D„(0, /), &v(d, /) and Wv(0, /) in 
the «/-plane in complete analogy to the construction above with regard to the 
«-plane, we find that Olver's theorem is applicable in the «/-plane if (0, /) is in­
side the following region, 

0X :  

TC . - 7t 

Ï T ^ < ^ a r g / < 2  

any I /1 (2.27) 

Let us now define the physical wave functions cp^ and qjB as those solutions 
of eq. (2.3), which satisfy the boundary conditions 

^ ( r )  ~  e  Tiki- _ çTilfs (2.28) 

and for the "power potential", 

<Pn(r) ~ r' 
r -> 0  

,(2 + m)/4 
expi 

(2+m)/4 I „-im 
eXPi m 

8 (2.29) 

respectively. 
From the asymptotic form of the mapping from r to z, eq. (2.23), it then 

follows that <pB is asymptotically small in the same sector as xpx, cp+ in the 
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same sector as y>3  and q> in the same sector as ip2 .  Therefore, according to 
eq. (2.13) we must have the following relations between <p an d ip,  

<Pr ( r)  CR (X 

and <P±(r)  = C±(X 

y > i ( z )  

V3,2(Z)-

(2.30) 

(2.31) 

The functions CH  and C±  are independent of r and z,  and P is given by eq. (2.4). 
Similarly, application of Olver's theorem to eq. (2.16) gives 

% j ( y )  ~  y ) 2 n2n +  ̂  *j \A Z)  i o2n '  
A->oo n= o A n=0 '» 

with the same meaning of the index j  as above, with a0 = 1 and 

(2.32) 

ry 
b n ( y , f ) =  % y ~ i \ o  y ~ h V w ( y > i )an( w , f ) - a "n(v,f) ' \dy,  

® n + i  ( « / ;  / )  =  -  iK ( y ,  f )  +  f )  h n  ( y ,  t )  d y .  

(2.33) 

The analogues of the eqs. (2.30) and (2.31) are 

9?i t( r)  ~ cB ( Â  

and 

•»By X i  ( y )  

: ( r )  =  c ± ( A , f )  - -  X s . 2 ( y ) .  

(2.34) 

(2.35) 

It now remains to determine the factors CB i± and cB  ± .  This can be done by 
comparing the asymptotic forms of the two sides of the eqs. (2.30), (2.31), 
(2.34) and (2.35). 

To do this we need the following formulae from appendix B 

and 

Here, 

Xu ' 

Xv • 

hr—\7iX + ô(X,f)  as r->oo 

i H r - i n  +  d  J X , f )  +  A ( X , f )  as 0 
m 

kr— \nX + ö(X, /) — A(A, /) as r-> oo 

i H r - i m  +  d  n , f )  a g  r ^ o .  
m 

ô ( X ,  f )  = lim ( X u  —  k r + \  j i X )  

(2.36) 

(2.37) 

(2.38) 
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is the usual JWKB phase-shift, 

ô 0 ( y ,  t )  =  l i m  ( h ) - i  —  ,  
r->0 \ Ï H  J  

and A(A,/) =  A M —  A^  =  A  p i ( s ; f ) d s .  f J S o  

(2.39) 

(2.40) 

Further, the following limits are involved 

and 

x l n ( f ) =  lim A n ( z ;  /); «2re(/)= lim a n ( y ; f ) ;  
z  —>+oo y  —>+oo 

a3n(/)= lim A n ( z ; f ) ;  o c i n ( f ) =  lim a n ( y ; f )  
<!->—OO 2/ OO 

ß \ n ( f ) =  h m  z i B n ( z ; f ) ;  ß 2  „(/)= lim y i  b n ( y ;  f )  ;  
Z  —>+ oo 2/->+oo 

ß s n ( f ) =  lim z i B n ( z - , f y ,  ß i n ( f ) =  lim y i b n ( y ; f ) .  

(2.41) 

(2.42) 

That these limits exist is shown explicitly in Lemma 1 of Olver (1954) [11]. 
For each n > 0, two of the four a's can be chosen equal to zero by ajusting the 
integration constants of eqs. (2.22) and (2.33), say oc3n = ain = 0. 

The following formulae are obtained for the C ' s  

C'Aif) 

c~M) 

2 i n  

1 

Å — > OO 2 V: 

r ~ i m 2 ~ 1 / s  i + y «!»(/) y M) 
o2n + l ^ o2n ^ oi n = l n=0 ^ 

TT 

i + y M)" 
1 •" Z* i2n + l 

n = 0  ̂  

(2.43) 

and 

c/ A , / )  
A —>oo 2 l/jr 

, , v v M)' 
o2n ^ i2n + l n = l  h  n = 0 ^  

ci1 (A,/) ~ —^r|/̂ r1/'i±<,J,')«TiiA/)±iA(,',) 
A-»00 2 K 71 

M)' 
-o A; 

1 + 2 n + l 

(2.44) 

The derivation of these formulae is given in appendix C. 
The eqs. (2.21), (2.22), (2.30), (2.31) and (2.43) now give the complete as­

ymptotic series of the physical wave functions as | A | 00, considering / as a 
free parameter. The series is valid uniformly in r 6 (0, oo ) and (0, /) £ 0O, and is an 
asymptotic series in the sense of Erdélyi [12] with respect to the scale 

as 1A1 
A-"-', »7 > 0, (2.45) 

Now let us express these results in terms of the physical parameters g ,  k  
and A. Then / varies with A in such a way that the coefficients of the as-
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ymptotic series become /-dependent, and the series is very far from being a 
Poincaré type asymptotic series. However, due to the uniform validity in /, 
the series is still an Erdélyi type asymptotic series with respect to the scale 
(2-45). 

Eqs. (2.32-35) and (2.44) also give an asymptotic series for the physical wave 
functions as |A|-*oo, valid uniformly in r G (0, oo) and (0, /) G0,. This series is 
an Erdélyi type asymptotic series with respect to the same scale (2.45) as the 
preceding series. 

Just as the asymptotic series for the Bessel functions the asymptotic series 
for the wave functions have asymptotic properties also for |/|-»-oo [3,13] with 
finite 1. According to eq. (2.8) this limit corresponds to the strong coupling or 
high energy limit. 

In order to study the asymptotic properties when | /1 -*• oo we consider the 
bounds for the rest term of the expansion (2.21), given by Olver in ref. [13]. 
We do not need to reproduce their detailed form here, because our considera­
tions only use the fact that the error bound is proportional to the total varia­
tion of the coefficient of the first neglected term over the path p; of Olver's 
theorem, and is thus proportional to 

. f d ,  
ly  

d t  
IA n ( t ;  / )}  d t  

V ,  

Now, when | /1 -* oo, 

'Mn)  = 

J P.  

i ^B n )  -  {z i B n ( t ; f )}  

p(s; f )  ~  
/-»•OO 

dt  

so that 

and thus we have that 

u ~  t  f  ( l -«- 2 -" 1 )*  ds  
J  S„ 

W ( z ; f )  =  0 ( j ~ * )  as |/|->oo. 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

These expressions are to be inserted into the recursion formulae (2.22). 
To see the effect of this, we make the following scale transformations in 

eq. (2.22) 
î p ^ f p ;  u ^ f u ;  

Z ^ / l  2 ;  W-+f-*W.  

Then the coefficients transform in the following way 

A H» A n T n ,  , 2  52 > 

z^B n  —>y- 2 n _ 1  B n .  

Thus, the eqs. (2.48-50) imply that when |/|-»-oo then 
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A n ( z ;  f )  =  0 ( / ~2 " ) ,  

z * B n ( z ; f )  =  0 ( f -2 n ~ 1 ) ,  

uniformly in z .  The same behaviour for large |/| is true for the total varia­
tions (2.46) and (2.47), and the asymptotic series is an asymptotic series in the 
Erdélyi sense with respect to the scale 

Wrn+", r]> 0, (2.54) 

as I /1 -*• oo. 
Combined with eqs. (2.8) and (2.45) this gives the scale 

{ \ X \  +  \ g2 k m \ m i + m y n + r i ,  r ) >  0, (2.55) 

for the Erdélyi type asymptotic series for the wave functions. This was proved 
b y  T i k t o p o u l o s  [ 3 ]  f o r  t h e  e r r o r  i n  t h e  J W K B  a pp r o x i m a t i o n ,  t h a t  is ,  f o r  n =  I .  

3. Jost function, S-matrix and Regge poles 

The asymptotic formulae for the wave functions, which were derived in the 
preceding section, can be used to obtain asymptotic formulae for the Jost 
functions. 

Let us define the Jost functions as the coefficients /o of the following connec­
tion formula, 

< P R ( r )  =  j r j c [ i X , ~ i  f ö t t ,  f ) q > + { r ) - i ~ l ~ i f o  (A,/)ç>_(r) ], (3.1) 

between the regular and the asymptotically in- and outgoing wave functions. 
Between the Airy functions used in the preceding section there exists a linear 

relation, 
Ai ( x )  =  e i K i  Ai ( e ~  ̂  x )  +  e ~  Ai (e** x ) ,  (3.2) 

which implies that the asymptotic formulae of section 2 satisfy eq. (3.1) with 
the coefficients given by 

f i H X , f )  ~ 2 i k i ± ^ C B ( l f ) G l 1 ( k , f )  (3.3) 
A->oo 

when eqs. (2.28) and (2.29) are used, or 

/o (^> /) ~ 2iki^-^cBa,f)c-±\Å,f) (3.4) 
Å-*oo 

when eqs. (2.34) and (2.35) are used for the wave functions. Using eqs. (2.43) 
and (2.44) we get the following asymptotic formulae for the Jost functions 

n-1 A" J 

10:2 147 

f U h f )  ~  2 i k r 0
i  +  i "  

A-*oo 



o. BRANDER, Asymptotic behaviour of S-matrix 

with 

or 

with 

1 + 2 
y i n ( f )  

==1 K1 
1+ 2  «!»(/) 

- 2 
ß m ( f )  1  

/o (A, /) ~ 2ikr\ + lm  

OO 

r„A2 

y2n(/)' 

1 + 2  Ä»(/)l 
^ 52 71=0 

2 71 = 1 /-
0  ±i<5(A, /) Ti A(A, /) —iô o(A, /) 

1 + 2  y2n(/). 
^ 2n 71 = 1 A 

, , v Û_ V &»(/)' 
1 ' ^ i 2ti Z/ ^ 02 

n  =1 ^ 32 71 =0 ^ 
1 + 2  

. ( /)" 
^ 72  

71=0 A 

(3.6) 

(3.7) 

(3.8) 

Here the eq. (3.5) is to be used when (0,/)6 0o and the eq. (3.7) when 
(0, /) E ©!• We note that the expressions for /o (A, f) only differ by the coeffi­
cients of the series inside the square brackets. However, those series are Poincaré 
type asymptotic series when A -> °° for any fixed /, and since such asymptotic 
series are unique, we must have 

yin(/)=y2n(/)=yn(/) (3.9) 

in order for eqs. (3.5) and (3.7) to represent the same function /o(A,/). Thus 
the asymptotic formula 

f o ( X , f )  ~  2 i k r t i m  e ~ i â ° ( l f )  

A-> OO 
1+ 2  Yn( f )  

1 A" 
Md.n-iAa.f) (3.10) 

is valid both in 0O and 0t. 
For /o(A,/) we get different exponential factors in the eqs. (3.5) and (3.7). 

This implies that the correct asymptotic expression for /o (A, /) is a sum of two 
contributions, each asymptotically dominating in its region of 0 and /. 

/o (A,/) ~ 2 ikr0
i  +  ime~ml f )   

Å->00 
1 + 2  Y n d )  

I  x n .  

i<5(A,/) rJA(A,f) 2|_ g-iA(A,/> >[e: "']• (3.11) 

On the boundary between these two regions, that is, on the curve Im A = 0 
there appear zeros of fö (A, /) at those points of 0O U 0 , for which 

A(A, /) = (n + -J) T I ,  n = 0, + 1, + 2, ... . 

For the /S-matrix we get 

S ( X , f ) -
„a ida.f) /o+(A,/) _ 

(0,/)Ê0oU01. 

(3.12) 

(3.13) 

Let us now return to the physical variables g, k and A a nd assume that g 
and k are real and positive and such that arg / = — 0. Then the range of 0 
becomes 0 < 0 71/2 and from appendix B, eq. (B. 17), we have that 

A (A,/) 
A-> oo 

(>+1) 
A m ! 2 m 2 m, 

+ 0(A" (3.14) 
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A-plane  
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O O 

Fig. 9. The asymptotic distribution of Hegge poles for the power potential. 

Together with eq. (3.12) this gives an asymptotic formula for the distribu­
tion of the Regge poles of the jS'-matrix in the first quadrant of the A-plane. 

The asymptotic form of the jS-matrix in the other quadrants follows from the 
following two relations, 

[/oU,/)]*=/o(A*,/*) (3.15) 

and fU-l = (3.16) 

which are both consequences of eq. (3.1), and the form of the boundary condi­
tions for the wave functions. One finds that to each pole in the first quadrant 
there corresponds a pole in the third quadrant at — A„ and two zeros at + A* 
in the second and fourth quadrant, respectively. 

In Fig. 9 we illustrate the asymptotic distribution of Regge poles for fixed 
and real g and k and a few different m-values. 

There are several important facts that one should note about those Regge 
poles for the "power potential" (2.1'): 

(i) The poles are infinite in number. 

(ii) Seen from the origin the angle between the imaginary A-axis a nd a pole 
An approaches zero when n ->1». 

(iii) The poles are not bounded to the right by any vertical line, that is, 
when n -* we have that Re An -»• . 

(iv) The residue of the ^-matrix at the pole An is 

Res„ S ~ i i [A' (An, /„)]-* e2iåa-f"\ (3.17) 

where the derivative of A is taken with respect to A, with g and k held 
fixed, and / varying with A. 

(v) When m increases from a value near zero to a large value all the Regge 
poles move out from the neighbourhood of the imaginary A-axis to certain 
positions, which they reach asymptotically when m -> oo. These asymp­
totic positions coincide with the positions of the Regge poles (Berendt 
[5]) for the nonanalytic hard core potential 
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V(r)  

for R = 1.  

CO for r  <R 

0 for  r> R.  
(3.18) 

This last fact is most easily proved in the following way. It is well known 
that the Regge poles for the potential (3.18) are the zeros of the Hankel func­
tion Hf'(kE). Writing 

Hf\kR)  = ( i  sin J^lcR)  -  J-X (kR)]  

and observing that (Watson [14], p. 225) 

J*(kR)  V 2 7CÅ 1 + 2  Ti  Z-, 1 I 
1=1  A  

—A In Å+Å In (ekRJ 2) 

(3.19) 

(3.20) 

we find that the zeros of the Hankel function are asymptotically given by the 
eqs. (3.12) and (3.14) for m= oo and R= 1. One should also note that the "power 
potential" (2.1') approaches the hard core potential (3.18) as m-»• oo for R= 1. 

The first three of the points above, (i-iii), have been proved before by a 
number  of  authors  [6] ,  the  four th  point  was  proved in  the  specia l  case  of  m = 2 
by Vogt and Wannier [7], but the points (iv) for general m and (v) seem to 
be new results. 

It was pointed out by Tiktopoulos in ref. [3] that eq. (3.12) is equivalent to 
a Bohr-Sommerfeld phase-integral condition. 

4. Other potentials 

In this section we shall discuss to what extent the theory of the preceding 
two sections is applicable when the potential is not a simple "power potential" 
as in (2.1'). 

Let us first discuss the conditions at r  = 0. Consider a potential of the type (2.1), 

V(r)  r~ ' l m  !(r), 

where f(r) approaches 1 when r-*0.  It follows from the discussion of section 2 
that the Limic conditions imply the condition (2.19) for the applicability of the 
Olver theorem. 

For a potential of the type (2.2), 

F(r)  =  r~ 2 (  — In r)m i ( r )  

the second of the Limic conditions is satisfied only for m >2.  However, the 
condition (2.19) is valid for all m> 0, as is shown in appendix E. Therefore, 
we can get a slight generalization for this potential and a closer adaptation to 
the present method by replacing the second of the Limic conditions by the less 
explicit condition 

W(z;  f)  =  0(z~ i ~ a ) ,  (T > 0, (4.1) 
when g -*• — oo . 

150 



ARKIV FÖR FYSIK . Bd 32 nr 8 

In appendix D the asymptotic forms of u  and v  are calculated for the po­
tential (2.1) in the limit /-»-O. In order that u and v shall not deviate too much 
from their values for the "power potential" (2.1'), we assume that 

J* I V(r )  d r  I < oo and J" |[l^(r)" -2-lîi] rl + im^r I < (4.2) 

If these conditions were not satisfied, the asymptotic form of the wave func­
tions would be different, and we would have to change the boundary conditions 
used in section 2. However, neither one of the conditions (4.2) is necessary for 
the applicability of the theory of this paper. 

In fact, for eq. (2.19) to be satisfied at r  =  it would be sufficient to have 
only F(r)^0 as This follows from the same argument as that leading 
to eq. (2.24). Thus, the theory could be applied to potentials with a Coulomb 
tail, provided that the boundary condition at infinity is modified accordingly. 

For potentials satisfying eq. (4.2) we prove, in appendix D, that 

A(A, /) = i  (1+1) A m l  
X In A 

. ,  ek  2X ,  eq  inX  
- A l n -  I n f   

2  m  2  m  
+ 0(1) (4.3) 

as X -*00. This is a very important result, since it implies that the whole class 
of potentials satisfying eq. (4.2) have the same asymptotic distribution of Hegge 
poles as the "power potential" (2.1'). Let us call this class of potentials the 
power potential class: 

A potential is said to belong to the power potential class if 

(1) as a function of r  it has an analytic continuation into the whole right 
half-plane outside the origin, and 

(2) in all directions in the half-plane, except possibly for parallels to the im­
aginary axis, this continuation satisfies eq. (4.2). 

Now let us turn to the potentials (2.2) which have a logarithmic singularity 
at the origin. We begin with £(r) = 1 and transform the Schrödinger equation 
by  in t ro duc ing  t he  new va r i ab l e  s ,  

=  r n  = -

The new equation reads 

\~ U2 
2 2  — 1  

+ ff2 ^ -
, ( — In s — In r0) 

<p(s )  = 0, 

(4.4) 

(4.5) 

and in this form the energy dependence enters only through the potential term. 
Let us for simplicity consider only the case m = 1. Then we can put 

v 2  = X2 -g 2 l n r 0 ,  f  =  v î  

and write the Schrödinger equation in the form 

(4.6) 
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d% „ . .. . 1 
<t* + v2p(S''f) + ±s> 

with 

<p(s) = 0 

p (s; f )=f — s~z + f s~2 In s. 

(4.7) 

(4.8) 

Eq. (4.7) is in the correct form for the application of the theory of section 2 
with v corresponding to A a nd with / as a free parameter in the same sense as 
there. 

The asymptotic series, which is obtained in this theory, will be asymptotic 
as or as or, to be more precise, the series obtained for the wave 
functions will be an asymptotic series in the Erdélyi sense with respect to the scale 

+ A2 + a2 In 
J") -71+») 

,  r j >  0,  » = 1 ,2 , . . . ,  (4.9) 

as IAI or | £71 00 • 
A similar but nonrigorous consideration for m + 1 would give the scale 

\ 9 \  +  A2 + ( (-9" 
n -n+7] 

, fj> 0, 71 = 1,2, ... (4.9') 

For the zeros of the p(s; f) of eq. (4.8) we obtain when / is small 

U0 = r1[l + O(/2ln/)], 

[«! = exp (/~2) {l + 0[exp (2/ 2)]}, Re /~2 < 0. 
(4.10) 

When Re/~2>0, that is when |arg /1 < j-t t  then s0 is the only zero of p ( s ; f ) .  
In fact, Sj is important only for / very near the imaginary axis because as can 
be seen from the equation 

arg Sj = Im / 2 = 

s1 is in the first quadrant only for 

sin ( — 2 arg /), 

7t . 71 71 i 
- -  < a r g / <  -

2 4 

(4.11) 

(4.12) 

Thus, for most values of arg / s1 is far away in other Riemann sheets. 
In order to make ^(s;/) single-valued we make cuts from s0 and s, to the 

origin. According to eq. (4.11) these cuts coincide for 

a r g / = - f + j i / i 2 - ;  (4.13) 

and for all values of arg / between this value and — | n we have that 
arg si < arg Sq. 
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i-plane 

I. B/ 

XA 

IB 

Fig. 10. The complex z-plane for the potential — r 2 ln r. 

ir.A 

Fig. 11. The complex y-plane for the potential — r 2 ln r. 

In appendix E the asymptotic form of the transformations (2.11) and (2.12) 
for small / is calculated for the logarithmically singular potential (2.2) with 
m= 1. The result is illustrated in the Figs. 10 and 11. It is clear that appro­
priate regions D2(0, /), (J,,(61. /) and Wz(d, f) can be constructed as in section 2, 
provided arg s> 0 which for real g means 

0 < a r g ^ - | e | / | 2  +  0 ( / 6 ) .  ( 4 . 1 4 )  

On the other hand, the corresponding «/-regions can be constructed when 
arg < arg s0, that is, for 

^ - J l / | 2  +  ̂ l / | 4 + 0 ( / 6 ) < a r g v < J  ( 4 . 1 5 )  

These two regions overlap. This is necessary for the theory of section 3 to 
be applicable also in this case. Finally, fixing an appropriate boundary condi­
tion for the regular function at the origin, 
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A-p/ar>& 

Fig. 12. The asymptotic positions of the Regge poles for the potential — r 2 In r are close to the 
imaginary axis. 

2 q A2 

wR(r)  ~ const ( — In rY i  exp •! ( — In r)* ( — In r)* 
- 3 v gv 

(4.16) 

we can conclude that eqs. (2.30-35), (2.40-45) and (3.1-13) are valid also for 
the potential (2.2) with m= 1 provided that the A, à and <50 of appendix E 
are used. 

This time the Regge poles are localized to a curve near the imaginary A-axis, 
shown in Pig. 12. Using eq. (E. 13), 

2 g 2v 
—s v — v In — 

eg.  
+ 0(A 1 In 2v) as v -*• 0 0 ,  

we get 
, 7Î 3T 

a r g ^ 2 " 4  + 0(A"4 ln2A) (4.17) 

as \A\  -* 00. Since | v \ >  ̂  also when A:-> oo for finite X we can get also the high 
energy behaviour from eq. (E. 13). The result is that the Regge poles move 
asymptotically towards the imaginary axis also in this limit. 

The main difference from the "power potential" case is that this time the poles 
are bounded to the right by some vertical line. Moreover, this is valid uni­
formly for all energies. 

This result is very interesting since it indicates that a Mandelstam representa­
tion with a finite number of subtractions might be valid for those potentials. 
We intend to discuss this more fully in a future publication. 

Let us define the following class of potentials: A potential V(r) is said to belong 
to the logarithmic potential class if 

(1) as a function of r it has an analytic continuation into the whole right 
half-plane outside the origin, and 

(2) in all directions in the half-plane, including parallels to the imaginary 
axis, this continuation satisfies 

00 /* 
I V  (r  ) dr  I <  OO ;  I [V(r)  + r 2lnr] (  — hir)^rdr\  < oo. (4.18) 

J o 
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All those potentials have the same asymptotic distribution of liegge poles, namely 
the distribution illustrated in Fig. 12. A brief proof of this statement is given 
in appendix E. 

Yukawa behaviour at infinity, 

F(r) = 0(r_1 e"'"") as r->°°, (4-19) 

is not allowed by the conditions (4.18). For such a potential we get from eq. 
(E. 7) the following modified form of eq. (E. 13) 

A [v, Q = i j~-2 v3 - v In + 0 (In v). (4.20) 

The larger error term of this equation as compared to eq. (E. 13) does not 
affect the asymptotic form of the curve on which the Regge poles lie, 

- 7t 7t 
arg Å = + 0(r3 In A), (4.17') 

but it may very well affect the exact positions of the poles on the curve. How­
ever, the important point is that the poles are bounded to the right by a ver­
tical line also when we allow Yukawa behaviour at infinity. 
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APPENDIX A 

In this appendix we shall show that the transformation (2.11) is conformai 
at s = s0, corresponding to 2 = 0, and that W(z; /) is analytic at z = 0. 

Consider the Taylor expansion of p(s; /) around s = s0, 

p(s; f) ~a1x+ \ a2x2 + 0(x3), x = s — s0. (A. 1) 

This expansion is uniformly and absolutely convergent inside a circle of positive 
radius, say b > 0. When inserted into eq. (2.11), eq. (A. 1) gives 

u = a\ f x^ [ 1 + ~~ x + 0(x2) 
J o L 2 ai 

dx = % ai x% + x'u + 0(x!'2) (A. 2) 
31 10 a\ x v 
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and - af x 1 + 
10 ax 

x + 0(x2  (A. 3) 

Thus z as a function of s has no branch point at s = sg ,  it is analytic, and the 
mapping is conformai. 

Next consider W, defined in eq. (2.15). Put 

W& /) = ̂ 2 + zQ(s; /)' (A. 4) 

and derive from eq. (A. 1) the power series expansion of Q around s = s0 .  A 
straightforward calculation gives 

(A. 5) 

which together with eq. (A. 3) implies that 

W ( z ;  / )  =  ! + 

16 s3 16% x 
1 — a'1 x + 0(x2) 

10% 
= 0 

that is W ( z ; f )  =  0 (  1) as «^0. 

(A. 6) 

(A. 7) 

Thus W has no pole at 2 = 0 and W, being a rational function of functions ana­
lytic in a neighbourhood of z = 0, must be analytic at s — 0. 

It is clear that the above considerations apply equally well to the transforma­
tion (2.12) at s = s1 corresponding to y — 0, and to w defined in eq. (2.17) at 
y = 0. 

APPENDIX B 

In this appendix we shall study the asymptotic forms of the transformations 
(2.11) and (2.12) for the "power potential". 

Let us begin with the asymptotic forms of the transformations when /->• 0. 
By writing 

p(s; f) = s2~l~f so m )  -  f  ~ s 0
m )  (B. 1) 

(FI »-IB _ „-RN \ 

7  ( f 2 s 2  ( B - 2 )  

we obtain for small / a good approximation to p- in a large environment of 
the point s = s0 .  

As we are interested in u ,  which is the integral of p - ,  we need an estimate 
of the integral of the error term in eq. (B. 2), 
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• f  J  s  o  s (s2- So ) 1  

o  

o 

(«iß 
M» 

= 0(f + m )  for M>K| 

= 0(f) for [s|>l. 

(B. 3) 

We note that the singularity of the integrand at -s = - - s(l is integrable, and 
does not affect the result above. 

It follows that 
/7 o 
~(/V-l-/2

So"m)* + 0(/2) (B.4) 
I S „  °  

u  =  J' J  S0 

for all s  outside a circle of radius 0(1) around the origin. 
The integral in eq. (B.4) is easy to calculate and we obtain 

u  =  f ( s 2  -  -  f s 0  arctg - 1 + 0 ( f )  (H! 

+2 111 1 + (1-S
2/S

2)i 
+ 0(/2). (B.5) 

The phase factor of this last equation is to be taken as 

exp {| i  n  sign (arg s - arg s0)}. 

T h i s  i m p l i e s  t h a t  f o r  l a r g e  s  

u  =  { s  —  \  0 ( f + m )  +  0 ( s ~ 1 ) ,  (B.6) 

where we used the stronger form of the error term according to eq. (B.3). This 
in turn implies that the JWKB phase-shift 

satisfies 

ô ( X ,  f )  = lim ( X u  —  l f s + \ n X )  
S  — > o o  

Ô ( À ,  t )  =  0( l f + m )  

as /-> 0. 
For small s  we try another approximation 

p i  ( s ;  f )  =  s - 1  ( / 2  s i  -  1  -  f  a ~ ' " ) *  +  0  ( t  ,  

(B.7) 

(B.8) 

(B. 9) 

analogous to eq. (B.2) but this time constructed to be well behaved near the 
point 5 = .̂ We note that the error term is large near the points s = s1 exp 
(2 n i n / m ) ,  n  = + 1. +2 However, it is integrable also at those points and we 
get for the error in v  
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i J Si 

sf — s2 

Thus 

KI/*) 
s 1 + i m  ds\  = 0(f2 + i l m)  for I s I < I «i 

0 ( f )  for < 1 .  

» = /1 -(s lm-s-m)* + 0(f)  

(B. 10) 

(B-11) 

for s inside a circle of radius 0(1) around the origin. Calculation of the inte­
gral in eq. (B.ll) gives 

2 / j  v = — -j — s  
m W~ ([©"- 1] t+(r I) '*)}+0 < / ! ) '  (B12 )  

In particular, with the stronger form of the error term according to eq. (B. 10), 
we obtain for small s that 

,2 /. v = ±i-^-s- i m  + 0(f2 + i l m)  + 0{si m) ,  
m 

(B. 13) 

the sign being sign ( — arg s + arg 
This implies that for the function 

we have that 

Ô A X , f )  =lim ( x v  + % 
s —>0 \  m J 

ö 0 ß , f )  =  O ( l f + i l m )  

(B. 14) 

(B. 15) 

as /—>0. 
Eqs. (B. 5) and (B. 12) have a common region of validity around s = 1. There­

fore, these two equations can be used to calculate the function A, defined by 

A(A, f ) = X u  —  Å V  =  Å \  p i(s- , f )ds.  f J So 

(B. 16) 

A straightforward calculation gives 

&(Å,n= ±iï \ l  I + - ) l n ~ - -
[\  m J ef  i  

+  0 { X f  (B. 17) 

as / -*• 0, where the sign is to be taken as sign (arg ,s0 — arg .s, ). 
Let us define the functions ô, ô0 and A by eqs. (B.7), (B. 14) and (B. 16), 

respectively, also when / is not small. Then the following asymptotic formulae 
are valid for all /, 
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f s —  \n  +  X  1 ö ( Å , f )  +  0 ( s  1) as s^oo 

i ^ - s - i m  +  X - 1 ä k ( k , f )  +  Å . - ' 1 d 0 ( Å , f )  +  O { a i m )  as s ^ O  
m  

(B. 18) 

and 

f s — \ 7 i  + X  1 <5(A,/) — A 1A(A, f )  +  0 ( s  *) as 

i 2 !  s- * m +  k - 1 ö 0 ( Å , f )  +  O ( s i m )  as «->0. 
m 

s-> oo 

(B. 19) 

The asymptotic forms of ô, <50 and A as /->0 are given by the eqs. (B. 8), (B. 15) 
and (B. 17). As /-»-oo, u and v become proportional to / and 

ô { k , f )  =  0 ( k f )  

Ô 0 ( X  , 1 ) ~ 0 ( X f )  

A  ( X , f )  =  0 ( X f )  

as /- (B. 20) 

APPENDIX C 

In this appendix we shall give the derivation of the formulae (2.43) and (2.44) 
of the text. 

We begin by studying the asymptotic form of the expression 

Ai(e^^z) 2 A^f) 

n = 0  A  

B n ( z \  i )  
+ cT»"'r* Ai2 

n  = 0  A  

when s -> oo. 

From appendix B we have that 

M ~ /«—•Jjr + A M(A ,/) 

and using the fact that 

Ai ( z )  

Ai'(2) 

I* I-*» 2 /tt 

1 

— z 1 exp ( — §«-) 

z* exp ( — 12-) 
* I-"00 2 

we obtain after a straightforward calculation the result 

B)' V > 3 ,  2 (Z) 
1 

i , v 1 ̂  i2n+l 
n =0 h ' a^.00 2 j/jr 

s —* oo 

The functions ß  of this equation were defined in eq. (2.42). 

(C.l) 

(C.2) 

exp { +  i X f s } .  

(C.3) 
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Using eqs. (2.28) and (C. 3) on the left and right hand sides of eq. (2.31) we 
now get that 

Cl\X,t )  ~ -7=r$/-*r,/-
.i->-oo 2 \  n 

1 , v Ml 1 ' Z, i2ra+l 
71=0 

(A-1/#) gTida,/)^ (C.4) 

The expression in the square brackets is an asymptotic series of the Poincaré 
type when X -> (or when / -> °o, as follows from the discussion at the end of 
section 2 above). This is in contrast to e.g. eq. (C. 1), where the series is only 
asymptotic in the Erdélyi sense. We will use this observation in section 3. 

The same technique can now be used to obtain the functions c± ,CR  and cB   

of the eqs. (2.35), (2.30) and (2.34). 
Using the formula 

v ~ fs-% it  

from appendix B, we get 

a-»oo 2 yn 
rl f  -  /T1/s i , v ålLiîï 1 ' Z, 1271+1 Zw 02 

n  = 0  "  

^±(A-l/6) eTiôa, f)±iA&J) (C. 5) 

Similarly, from 

we get that 

u ~ i^8-*m  + A-1A(A,/)  + A-1a0(>l, /) .  
s —>0 

\  f] A->oo 2 

y «!»(/) v M/)' 
^ i2tî Z- i2n+l 1=0 7Î =0 h 

si(2+m) exp 

which implies that 

Gn1 (;.,/) 
A-»oo 2 )/jj 

r0 im f -n ^ t2ti Z* i2n+l _7l = 0 ^ 71=0 ^ 

m 

jAa,f)+iô 0aj)  

(C. 6) 

(0.7) 

Finally, from „ ~ + „(A,/) 
s-»o m 

we obtain in the same way 

1 
Cr (A,  / )  

1 2 )/; 
ro-im/-ir

1,
t 

TT 

'S «2nj/)_ S j8a,(/y 
o2n ^ i2n+l .71 =0 " 71=0 A 

(C. 8) 

The expressions within the square brackets in eqs. (C. 5-8) are Poincaré type 
asymptotic series, just as the corresponding expression in eq. (C.4). 
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APPENDIX D 

In this appendix we shall study the influence of the factor <f(r) of eq. (2.1) 
on the calculations of appendix B for the "power potential". 

To this end we put 

p(s;  f )  - s-2[/V - 1 - fsö 'm  !(s0)] - fs-2 [s~m  m -  so
mÇ(s 0 ) ]  (D. 1) 

and observe that £(s)  =  o(s1 + m )  as oo (D.2) 

and that s 0  =  / [ 1  +  o ( / ) ]  a s  / - »  0 .  ( D . 3 )  

Using the method of appendix B we get also here eq. (B.5) for u,  but this 
time with the error term 

(D.4) 

for I s I > I s01 and / -> 0. Here we used condition 4 of section 2 on the potential 
at infinity. For |s|<|s0| we instead split p(s; f) in the following way, 

p{s;  /) = s"2[/V- 1 - f  s~m ]  - f2s-*-m  [|(a) - 1], (D.5) 

By neglecting the last term we make the following error in the calculation of u, 

f  £  d s  S
{ sy n f i { S )

s -m  ) ]  =  0 (/£  I V(s)  <fe| )  =  0( f )  if \s \> l ,  (D. 6) 

as /-»- 0. From the first term of eq. (D.5) we then get the same u as in appen­
dix B, eq. (B.5). 

Also for small s the splitting (D.5) of p(s;  f )  is effective, but in order for the 
error, made by neglecting the second term, to be small, |(s) has to approach 1 
sufficiently fast, such that the integral (D.6) is convergent at s = 0. The condi­
tion for this is 

I 1]|= I |dss1+im[F(s)-s"2~m]| 
J o  J o  

<°o. (D. 7) 

This is a condition on how much the potential may deviate from the power 
potential near the origin, and still have the same asymptotic properties. 

When eq. (D. 7) is satisfied, we have 

1] 
(s2-/ 2- s""1)* 

o ( / [ i " - H ' [ i ( ' ) - l ] ) = » ( / )  i f  M  S k i  

o( / 2 J  ^ s [ F ( s ) - « - 2 ~ m ] ^  =  0 ( / 2 s )  i f  k l ^ M ^ W  

(D.8) 
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as /-»• 0. From the first term of eq. (D.5) we then get the same v  as in appen­
dix B, eq. (B. 12). 

This last assertion as well as the corresponding one after eq. (I). 6) is true 
only if we can neglect the differences between this appendix and appendix B 
with regard to the lower limits of integration for u and v. To justify this we 
first observe that eq. (I). 7) implies that 

% — ei3I/m /2,m [1 + o(/)]. (D. 9) 

It then follows from eqs. (A. 1) and (A.2) together with eqs. (D.3) and (D.9) 
that the differences of lower limits of integration only correspond to an error 
o ( f i )  i n  u  a n d  v .  

We have thus proven that the asymptotic forms of appendix B for u  and v  
in the limit /-> 0 are changed at most by o(f) if a £(r) such that 

J  \ V ( r ) d r \ < o o  and j" |[F(r) — r~2_m] r1+im d r  \  <  o o .  (D.10) 

is inserted. 
Joining the expressions for u  and v  at some point s ,  1 < |s| < |s0|, we now 

get the following expression for A(A, /), 

as / —>0. This is the same result as in appendix B, except for a change of the 
error term. For the JWKB phase-shift there is also a change in the error term, 

ö ( Å , f )  =  o ( Å f )  as /->0, (D. 12) 

but for ö0 eq. (B. 15) is still valid. 
If we happen to know more about the behaviour of the potential at infinity 

than what is contained in the condition 

f* oc 
|F(r)cür| < OO } 

then the error bounds may be sharpened. Say, for example, that we have the 
physically plausible situation that a Yukawa potential is dominating at infinity, 
that is, 

V ( r )  =  0 ( r - 1 e ~ l x r )  (D. 13) 

as r->oo. Then eq. (D.4) instead reads 

'L?)-ou^'"") (IX 141 
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and thus ô  (A, /) = O  ̂exp j — (D. 15) 

when and eq. (B. 17) is valid for A. 

APPENDIX E 

In this appendix we shall consider potentials with a logarithmic singularity 
at the origin. 

For a potential of the form (2.2), 

F(r) = r~2( —In r) m £ ( r ) ,  

with £(»•)-»• 1 as r-^0 we have that 

- it r 
•0 J 

f j  r  2 1  f  
— (-In r ) i m  — J - ( - h i r ) 1 + * m  (E.l) 
r  r-> o 2 + m 

and thus z  ~ const ( — In r)i(2+m). (E.2) 
r->0 

In order to test the condition (2.19) at r = 0 we calculate the asymptotic form 
of W ( z ; f ) .  Observing that cancellations take place between the largest terms, 
we obtain 

W ( z ;  f )  =  0 [ z (  - In r)-2-m] + 0 [ z r (  -  In r)~mf' (r)] + 0 [ z r 2 ( -  In r)"m|" (r)] (E. 3) 

as r-*- 0, 2 -> oo. Only assuming the very reasonable condition 

r|'(r) = 0[(-lnr)-1], r2|"(r) = 0[( - In r)"1], (E.4) 

it follows that 
TF(z; / )  =  0 [ z (  -  In r)"1""1] = 0 { z m'w+2"») (E. 5) 

as and eq. (2.19) is satisfied in this limit for any m>0. 
Let us now specialize to m =  1, i ( r )  =  1 and calculate the asymptotic forms when 

/-»• 0 of the variables M and v explicitly. 
We begin by writing 

p ( s ;  /) = s~2(/2s2 — 1 + /2 In s0) + f  s ~ 2  In — , (E. 6) 
s o  

and estimate the error in u  from neglecting the last term of eq. (E.6) to 

01/2 In2 — j for any s 

/ r J  st  

d s  In ( s / s0) 

s (s2— /_2 + ln s0)* 
(E.7) 

O(/ J |F(s) = o(/) as «, 

when f - >  0 .  
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Thus, we have that outside a circle of radius not less than |s0| exp ( — | /1 = ) 
and centered at the origin u is given by 

M =  / ( s '!-So)2-/Soarctg^ s | - 1 j  + o ( f ) .  (E.8) 

Except for the error term this is the same expression as in appendix B. 
To get an approximation for very small s we write 

p(s; f) = — s~2(l — /2 In s) + f (E. 9) 

and estimate the error in v from neglecting the last term of eq. (E.9) to 

r s d s  f0( f s \ )  if M<|Sl| /JSl(/-2-ln«)i {0 ( f )  if M<1 ( • ) 

as /—>0. 
Thus inside a circle of radius 0(1) and centered at the origin v is given by 

* = - f p ( l - / 2 l n S ) î  +  0( / 2 ) .  ( E . l l )  

In particular, we obtain that for small / 

v = 2 i f {  - In s)* - i f ~ \ -  In «)* + 0[/ 3( — In s)"4)] + 0 ( f  sf) (E. 12) 

as s->0. 
For A( v , f )  we obtain from the eqs. (E.7), (E.8) and (E.ll) 

2 , 2 
A{ v , f ) =  ± w — In —J + 0 ( v f  In2 /), (E.13) 

as /->0, where the sign is to be taken as sign (arg -s, — arg -s,,). 
Allowing now a factor £ ( s )  in the potential (2.2) with m  — 1 we still get eq. 

( E . 8 ) ,  p r o v i d e d  | F ( s ) |  i s  i n t e g r a b l e  t o  in f i n i t y .  F o r  t h e  b e h a v i o u r  a t  s m a l l  s ,  
we get in analogy with appendix D that eq. (E.ll) is valid with the error term 
o(f), provided the potential satisfies 

L I [F(r) + r~2 In r] ( — In r)* r dr\ < °o. (E. 14) 
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