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This thesis consists of three papers:

A. O. BranDER: An asymptotic expansion for the Green’s function
of nonrelativistic potential scattering theory and the asymptotic
character of the Born series for the Jost function for large complex
angular momenta; Nuovo Cimento 42 A, 39 (1966).

B. O. BranDER: On angular momentum analyticity in hard cor
potential scattering; Physics Letters 4, 218 (1963).

C. O. BranDER: Asymptotic behaviour of the S-matrix in complex
angular momentum for singular potentials; Arkiv for Fysik 32,
131 (1966).



The interest in potential scattering theory has in recent years
been concerned mainly with the problem of analyticity. The reason
for this can be traced to the importance of dispersion theory for
high energy physics, and to the need for a frame within which
explicit calculations can be made to test the assumptions usually
made in dispersion theory.

The theory of scattering on nonsingular potentials is by now
fairly ' complete. By nonsingular potentials we mean here potentials
less singular at the origin than the centrifugal barrier. One of the
most difficult problems of this theory concerns the asymptotic
behaviour of the scattering amplitude for large complex angular
momenta. This behaviour is of importance for the properties of the
scattering amplitude in the momentum transfer variable, and for the
validity of the Mandelstam representation, a double dispersion
integral representation. Paper 4 contains a detailed study of this
asymptotic behaviour. It is emphasized there that the asymptotic
behaviour for large complex angular momenta depends in a complicat-
ed way on the interrelation between the parts of the potential for
small and large distances and on its smoothness.

The papers B and C are concerned with the theory of scattering
on potentials more singular at the origin than the centrifugal barrier,
a field which has attracted much less attention so far. Paper B is
a note about the influence on angular momentum analyticity of a
hard core of the type often used in nuclear physics, that is, correspond-
ing to an infinite repulsive potential inside the hard core radius.

In paper C the same problem is treated for singular potentials,
as in paper 4 for nonsingular potentials. A new formalism is developed,
leading to an asymptotic series for the Jost function, valid for large
complex angular momenta. The first term of this asymptotic series
is the result obtained in the JWKB-approximation. Asymptotic
formulae are given for the positions and residues of the Regge poles.
Furthermore, it is shown how the asymptotic positions of the poles
depend critically on the behaviour of the potential at the origin,
and that they are very insensitive to changes in the potential else-
where.
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An Asymptotic Expansion
for the Green’s Function of Nonrelativistic Potential-Scattering Theory
and the Asymptotic Character of the Born Series for the Jost Function
for Large Complex Angular Momenta.

O. BRANDER

Institute of Theoretical Physics - Gdteborg

(ricevuto il 13 Agosto 1965)

Summary. — From a generalization of the Langer uniform asymptotic
formula for Bessel functions of large order, an asymptotic expansion
is constructed for the scattering Green’s function. From this expansion
a simple uniform bound for the Green’s function follows, which contains
the well-known nonuniform 1/t bound. This uniform bound is then used
to study the asymptotic properties for large complex angular momenta
of the Born series for the Jost function in nonrelativistic potential scat-
tering theory for a great number of potentials. Among other things the
following result is obtained. If the potential has a meromorphic contin-
uation, with a finite number of complex poles into the half-plane Rer> 0

satisfying the condition f|¢V (r)dr| << oo, J[V r)dr|< oo, 0 <a< oo, on

all rays in this half- plane, then the Born geries for the Jost function is
an asymptotic series in the Erdélyi sense and the Jost function tends
to 1 when |A|— co in any direction in the region |arg i|<m/2. Thus
the Sommerfeld-Watson transformation is allowed for such potentials.
For parallels to the imaginary r-axis the above condition may be slightly
relaxed to include, for instance, the Yukawa potential. Our method
also gives some information about the necessary conditions to be imposed
on the potential in order to make the Sommerfeld-Watson transformation
permissible. Although strict mathematical proof is lacking, the following
conclusions have been reached. The potential must have a smooth con-
nection between small and large values of », and it must not decrease
faster than expomnentially when 7 — co, in order to make the Sommerfeld-
Watson transformation permissible.
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2 0. BRANDER [40]

1. — Introduection.

The asymptotic properties for large complex angular momenta of the Jost
function in nonrelativistic potential-seattering theory have been studied by a
large number of authors (*!2) by several different methods.

Among these methods we shall use the most straightforward one (*1%14),
which involves direct estimates of the terms in the Born series with the help
of uniform approximations to the Green’s function. This method has previously
met with moderate success only, because the nonuniform behaviour of Bessel
functions of high order with respect to their argument makes it difficult to
obtain good uniform bounds for the Green’s function.

However, recent work on the old ILanger uniform asymptotic formula for
the Bessel functions of high order (15-17), including error bounds (¢:*°), has
made it possible to handle those difficulties. In this way we have managed
to obtain a very good uniform bound for the Green’s funection, which makes
it possible, for ingtance, to reproduce and to some extent generalize the strong
results of Martin (1) and Bessis (') concerning the asymptotic properties of
the Jost function.

Section 2 is a short review of the relevant formulae for the Bessel functions,
and in Section 8 the corresponding expressions for the scattering Green’s func-

(*) T. Recee: Nuovo Cimento, 14, 951 (1959).

(3) A. Borrivo, A. M. Loxegont and T. RecGe: Nuovo Cimenlo, 23, 954 (1962).

(3 B. P. Dusar and R. G. NewroN: Phys. Rev., 129, 1445 (1963).

() A. M. JarrE and Y. S. Kim: Phys. Rev., 129, 2818 (1963).

(3) F. Carnocero: Nuovo Oimento, 28, 66, 761 (1963).

() V. o Arraro, E. PrEDAZzI and C. RossErTi: Nuovo Cimento, 80, 522 (1963).

() L. Browx, D. L. F'rver, B. W. Lee and R. F. SAWYER: Ann. of Phys., 28, 187
(1963). ;

(8) A. 0. Barur and J. DicLey: Journ. Math. Phys., 4, 1401 (1963).

(®) R. JAkS1C: Acta Phys. Austriaca, 17, 29 (1963).

(1) A. MarTIN: Nuovo Cimento, 31, 1229 (1964).

(*) D. Bmssis: Nuovo Cimento, 33, 797 (1964).

(12) K. CEapAN and J. Y. GUENNEGUES: Nuovo Cimento, 34, 665 (1964).

R

. G. Newron: The Complex j-Plane (New York, 1964).

(1) E. P. WieNER, Ed.: Dispersion Relations and Their Conmection with Causality
(New York, London, 1964), p. 97.

(1) R. E. LaxGER: Trans. Amer. Math. Soc., 33, 23 (1931); 34, 447 (1932);
67, 461 (1949).

(1%) T. M. CHERRY: Trans. Amer. Math. Soc., 68, 224 (1950).

(1) ¥. W. J. OLver: Phil. Trans., A 247, 307, 328 (1954).

(1%) F. W. J. Orver: Journ. Soc. Indust. Appl. Math., 11, 748 (1963); 12, 200
(1964); Natl. Phys. Lab. Math. Tables, vol. 6 (London, 1962).

(1) C. H. Wircox, Ed.: Asympiotic Solutions of Differential Equations and their
Applications (New York, London, Sidney, 1964), p. 163.

—
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[41] AN ASYMPTOTIC EXPANSION FOR THE GREEN’S FUNCIION RIC. 3

tion are constructed. In particular a simple uniform bound is obtained for the
Green’s function, which contains the usual 1/k bound.

This bound is then used in Sections 4 and 5 to study the asymptotic char-
acter of the Born series for the Jost function when the complex angular
momentum is large. In Section 4 we examine the Jost function for general
potentials, and also for potentials, which very rapidly tend to zero at infinity.
Then we study in Section 5 the Jost function for potentials that have analytic
continuations outside the real r-axis. Finally, in Section 6 we conclude with
a short discussion of the results. An Appendix containg estimates of an
important integral.

2. — Asymptotic formulae for the Bessel funetions.

For our work we shall require approximations to and bounds for integrals
containing Begsel functions of high order and of argument varying from 0 to co.
To obtain such approximations, we start from the uniform asymptotic ex-
pansion (15-17),

3
(2a).- HiM(Ae) = (%) [exp[~~ im[6] H® (Au) z

250,
+ At exp [ i /6](§ u) HES (y“]
which is valid uniformly in # for |argl|<im, |argx|< §m.
The complex variables w and « in eq. (2.1) are defined by

(2.2) w= (e2—1)%, % = w— arctgw ,
and » has the asymptotic form

z—3m + O(x™?) for [0
(2:3) u =1 +w® -+ O(w?) : for |z —1|«1,

[—1In (4 ex) + O(x?)] exp[$ mi sign (arg #)] for el e

The properties of the A-independent functions a, and b, (¢,=1) are dis-
cussed below.

Figure 1 shows the mapping from the right-hand half of the complex z-plane
to the complex u-plane. The origin in the u-plane corresponds to the point
2 =1, and the origin in the z-plane corresponds to the point at infinity in the
direction arg w = 4+ $x in the wu-plane, where the plus sign is to be taken

0
©
=



4 0. BRANDER [42]

for o above, and the minus sign for o below a cut from 0 to 1 on the real
2-axis. In this way the first quadrant of
the a-plane is mapped on an I -shaped
region in a first Riemann sheet 0<
<argu<$m of the w-plane, and the
fourth quadrant on a second Riemann
sheet —3m<argu<0.

These two Riemann sheets can be
mapped on a single sheet of a z-plane,

LA u-plane
| 1-st sheet

b)

)

O=arg u= *ZE

Tig. 1. — @) The complex wz-plane; b) The complex u-plane; ¢) The complex z-plane.

which is also _'given in Kig. 1, by the transformation
(2.4) 2 = (3u)? exp [— iz sign (arg u)] .

In the z-plane, the two lips of the cut in the z-plane have both been mapped
on the real z-axis, and the cut is no longer needed.
In the variable z, eq. (2.1) becomes

i ©
2.8 Hy*0) 2004 |expl in) Ai(exp (o fin1ais) 3
T §=0

A(2)
123 +

+ exp[  i/3] A-3AL (exp [+ §im] A2) 3 Bl(z)] :
§=0

Here Ai and Ai’ are the Airy function and its derivative, defined in the standard
way (see LUKE(%)). The functions 4, and B, (4,=1) are 1-independent

(%) Y. L. Luks: Integrals of Bessel Functions (New York, Toronto, L.ondon, 1962).

©
©
I



[43] AN ASYMPTOTIC EXPANSION FOR THE GREEN’S FUNCTION ETC. 5

analytic functions of z in the region shown in Fig. 1. For |2|— oo within this
region, A,(z) and z* B(2) are finite. Explicit expressions for the functions A,
and B, have been given by OLVER (7).

The Airy function, as well as the factor in front of it in eq. (2.5), is analytic
in z, also at #=0, and from a mathematical point of view the expression (2.5)
is thus preferable to eq. (2.1). However, after having observed that the point
z = 0 is not a singular point, we can very well return to eq. (2.1) in order to
work with the Hankel functions.

The properties of the functions a, and b, of. eq. (2.1) now follow from the
just above mentioned properties of 4, and B,. Thus it is found that a, and b,
are analytic functions of u in the IL-shaped regions of Fig. 1, finite at
u = 0, and that when |u|—oco in the L-shaped region, a,(u) and u¥b, (u) are
finite.

The Bessel functions to be studied usually have the argument kr, where &
is the wave number, and r is the radial variable. Then

(2.6) x= i

and for fixed complex k& and A, and real r varying from 0 to oo, @
varies along a ray in the complex z-plane, as shown in Fig. 1. By the trans-
formations (2.2) and (2.4) this ray is mapped on certain curves in the u- and
z-planes, which curves are also shown in Fig. 1.

In the integrals to be studied, the integrations go over unbounded intervals
of r, and it is thus important for the asymptotic series (2.1) to be uniformly
valid in « for unbounded regions of u. That this is actually the case was
proved by OLVER (V7). The region of validity given by him contains the region we
have given for eq. (2.1), except that he does not include the case arg A= -+ }z.
However, use of the standard continuation formulae for Bessel functions shows
that there is no Stokes line at argl = -+ }z, which could form a natural
boundary for the validity of the asymptotic expansion.

Bounds for the rest terms of expansions like eq. (2.1) have recently been
given by OLVER (1), and therefore, this expansion can, for large A (which
means |A|= 3 according to OLVER), be used to get good numerical estimates
with controllable accuracy.

However, a simple estimate, reproducing the behaviour of the function
qualitatively will also be most useful. Such an estimate can be obtained by
taking the first term of eq. (2.1) and using what is known as the I evinson bound
for Bessel functions of fixed real order. The resulting bound is

(2.7) | HS(Az) | <e[1 4 O(A)]|A| o4, u) exp[F Im (Au)] ,

967



6 0. BRANDER [44]

where ¢ is a constant and

[ Au|?

2.8 olhyu)=—— .

{5 (%) = 1oli3 F [ 2]}

The properties of the function o are studied in the Appendix.
Equation (2.7) is only wvalid if

) — m<arg (Au)<2x for: HL,
(2.9
—2m<arg (Au) <m for H?,

because only then is the Levinson bound valid. The limits of the region (2.9)
correspond to Stokes lines for the asymptotic expansions of H{*(iu), and
outside this region only a weaker statement is possible, namely

(2.7 |H2(Ar) | <e[14 O(A ]| A Fo(4, ) exp [ |Tm(4u)|] .

A lower limit for the constant ¢ can be obtained by comparison with the
asymptotic form when x — co, and an upper limit has been given by BESSIS (1)
in the special case Im (Au) = 0. However, instead of pressing the value of
the constant, we recommend using eq. (2.1) with the Olver bound for the rest
term.

We end this Section with a general remark on asymptotic expansions.

Consider a sequence of functions ¢,(x), n =0, 1, 2, ..., which satisfies

(2.10) | @Puia(®) = o(@a()) . as £—> o, .

Such a sequence is called an asymptotic sequence (2!) or scale. Consider
further a function f(x) and suppose that there exist constants a, such that for
each N'= 0/l 2.

(2.11) f(2) — i @, @n(®) = 0(py(2)) as v—>u, .

n=0

Then the formal series

> . @n(2)

n=0

is called an asymptotic expansion of the Poincaré type for f(#) when z — .
Suppose further that there exist functions f,(z), » =0, 1, 2, ..., such that

(2Y) A. Erpfryi: Asymplotic Expansions (New York, 1956).

968



[45] AN ASYMPTOTIC EXPANSION FOR THE GREEN’S FUNCIION ETC. 7

for each N =0, 1,2; ...

(2.12) f(x) ——AS f.(@) = o(@,(x)) as T —x,.
Then the formal series
D fal®)

is called an asymptotic expansion of the Erdélyi (22) type for f(z) with respect
to the scale @,(z) when x— .
The Erdélyi type of expansion is more general than the Poincaré type,
because the limit
llm f7n+7;(5>v).

vy [al®)

is not required to exist. On the other hand, the nice property of uniqueness
of the Poincaré type expansion is not shared by the Erdélyi type expansion.

It should be noted that the expansion (2.5) is not of the Poincaré type,
but can be regarded as the sum of two Poincaré type expansions. It is also
an Erdélyi type expansion with respect to the scale.

(2139 RIS b SRS e B IR

3. — Asymptotic formulae for the Green’s function.
We shall now study the Green’s funection
(3.1) G(ryr') = Yin(rr' ) [HY (kr) HE(kr') —H P (kr') HP (kr)]

for large complex A. Substitution of the first term of eq. (2.1) into this equation
gives

rriuu’
wl

(3.2) Gr,r') = i inf1 0(1—1)]( )é[Hg’(lu)H‘f)(}uu’) — HY (') HP Q)]

which, because of the symmetry of the Green’s function is valid for all values
of arg/ and argk in the interval [— 7, #], uniformly in » and #'. The only
exceptions are the neighbourhoods of the zeros of G, where the error term must
be modified.

(*?) A. ErRpELYI: Arch. Rat. Mech. Anal.,T, 1 (1961); A. ErRpBLyYI and M. WyYMaAN:
Arch. Rat. Mech. Anal., 14, 217 (1963).

=3
©
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8 0. BRANDER [46]

Equation (3.2) is the first term of an asymptotic expansion. This expansion
can be obtained by substitution of the whole expansion (2.1) into eq. (3.1).
This operation is allowed because Poincaré type powers series asymptotic
expansions may be multiplied together term by term (*!), and eq. (2.1) contains
two such expansions. The result is the following combination of four Poincaré
type asymptotic expansions:

3:3) 6,z ootryr) 320 4 gr, ) 3 S0
— ey 2 o;fé‘ + ga(7, 1) 2ﬂ;—’+u) ;
where 5
golry ') = iin ('10:‘0“ ) [HY () HP (') — HP (') HP ()]

— exp [ im/3) HP () HP (1))

! r ;_g K 5‘
gulr, ) = T im (T o ) (;3 | () HY () — (o) B0

ww
and
e (u,u') = gat(u)as-t(u’) :
(3.5) ) = S a) b w)
e(u, w') = i b,(u)b,_,(u') .
1=0

The functions ¢,, d, and e, are uniformly bounded. When « and u’ approach
infinity even w'*d, and w'u'*¢, are bounded. This implies that eq. (3.3) is an
asymptotic expansion of the Erdélyi type as 2 — oo, with respect to the scale

(3.6) , @u(A) = A Ente e>0.

For |A| larger than a given limit, depending on the accuracy required,
the expansion eq. (3.3) can now be used to get good numerical estimates for
the Green’s function. The error can again be controlled with the Olver bound
for the rest term of eq. (2.1).

However, the qualitative behaviour of the Green’s function can be repro-

o
=
=



[47] AN ASYMPTOTIC EXPANSION FOR THE GREEN’S FUNCIION ETC. 9

duced with the bound (2.7) for the Hankel function inserted into eq. (3.1):
(3.7) |G(r, ") | < 3 me[1+ O(A-Y)] | A2 (1) o(2,y w) 0 (A, w') eXD [ |Tm (Aw— 2u')|] .

This bound is valid uniformly in # and 7' when |A| is not too small and
arg A, arg k are in the interval |—wm, z]. The symmetric form of the Green’s
function makes unnecessary the restriction eq. (2.9), which was necessary for
eq. (2.7). This can be shown by using the standard continuation formulae
for the Hankel functions of eq. (3.2). '
Equation (3.7) reproduces the functional form of the absolute value of the
first term of the asymptotic expansion (3.3), except when » and «#' are both
very small, that is when » and 7’ are both near A/k. For such values of »
and ' the two terms of g, cancel each other out so that we have in fact

(3.8) golry ') = const (1) [z — ' + O((x—1)?) + O((@'—1)?)],
with 2 = kr/A, whereas the bound (3.7) gives only
(3.9) |go(r, 7')| < const (rr')¥| 2 |- I e

However, for all other values of » and 7', eq. (3.7) gives a very good bound
for the Green’s function. Thus when r and 7' are both large we obtain

(3.10) |G(r, r') | <const|k|~ exp [(r — ') |[Tm k| ] for r>r">> ’%"

~

which is the well known 1/k bound. When » and ' are both small we get

r

IRe 4| | |
(3.11) | G(r, r')[gconstlﬂ—l(rr’)l’(r) for r'<r« % )

which is the bound used in ref. ().

Our uniform bound is to be compared to that of Newton (Appendix A of
ref. (3)), which is unable to reproduce the 1/k bound, but contains an expo-
nential factor also for real % (%).

Finally, since @ is finite when 1 — 0, and the right-hand side of eq. (3.7)
is different from zero when A — 0, the bound (3.7) must for some finite value

(") Note added in proof. - Compare also V. pE Arraro and T. Rrcer: Polential
Scattering (Amsterdam, 1965), where a bound resembling ours is given.

—
~
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10 0. BRANDER [48]
of the constant be valid for all A. Therefore, we have
(8.7") |G(r, 1) < C| A1) o (2, u) o(Ay u') exp[ |[Im(Au— Au')|],

for all r, 7', k and A.

4. — The Jost function for general potentials.

The Jost solutions f*(r) of the radial Schrodinger equation satisfy the
integral equation

i) fE(r) = fa(r) +fG(r, V() fE(r) dr,
where
(4.2) fE(r) = T Lmkr) HED (kr) 5, exp[ Fikr].

For simplicity, we shall often suppress the variables & and A in the notation.
The resolvent kernel of eq. (4.1) has the Neumann series

(4.3) K(r,r'") =G, ")V (') + zfd71fdrq. fdr Glr, )T

Ti—y (ro=1,7y ,=r)

This series is convergent as soon as the integrals converge, since it belongs
to a Volterra integral equation. We shall derive a bound for its rest term

il
(4.4). Rylr,7) fdﬁ J-dr H G155 1) Vilr) =
i=N Gl

i—1 (Pe=r. =17

(rg=1)

N
ﬁfdrl fd?NH{G g1y 1)V ()} K(rg, 7')
=1
Ty

by using the bound (3.7’) for the Green’s function. For simplicity we then
assume that % is real and positive. This assumption is not necessary, but it
simplifies the reasoning a great deal, and also corresponds to that part of the
Regge trajectories that we want to study.

The simplification of the reasoning comes from the fact that for such £,
Im (Ju) is a monotonous function of r. This fact is most easily seen in the u-plane
of Fig. 1, by noting that |A|-! Im (ix) is the distance from the point # on
the curve to a straight line through the origin making the angle —arg 2 with

o
r~
=3



[49] AN ASYMPTOTIC EXPANSION FOR THE GREEN’S FUNCTION ETC. 11

the positive real axis. If k is real, this line is parallel to the asymptote of the
curve, and I'm (Au) is a monotonous function of 7.
With the notation

(4.5) |G(r, 7)., = C|A|"2(rr") (A4, w')o(2, w) exp [ |Im(Au— Au')|]

as

for the right-hand side of eq. (3.7"), we now find that

(4.6) |G (1, 1) | |Gy 1) o= ClA[T 11 0%(, ) |Gy 1), -

Therefore, the integral equation satisfied by the quantity

Ll )= B o Gy D",

that is
G ? ! 7 g G 1 / as I
@D bl = 2Pl v +[a nve R e v, man
implies that
(4.8) | k(r, ') | <| V(") |+ €| 2]‘1frl 02 (4, wy) | V() || Ky, 7) |dry

T

which, in turn, by a lemma of Titchmarsch (%), implies the following bound
for the resolvent kernel
(4.9) | K(r,r")|<|G(r, ") || V(') |exp [GIM—lfﬁaz(ﬂ, ul)lV(rl)ldn] :

If the integral

«©

(4.10) o(d) = 0| A f 7y o34, ) | V() |y

0

is convergent, the exponential is uniformly bounded, and we arrive at the
bound

(4.11) | E(ryr")|<exp[v(A)]|G(r,r')[,, | V(") |.
For the rest term eq. (4.4) this implies
(4.12) | By(ry )| <[o(A)]" exp [v(A)] |G (7, 7') |, | V(r')] -

(**) E. C. TicuMArscH: Figenfunction Expansions (Oxford, 1946).
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From eq. (2.3) we get the following asymptotic form of o2

i
’E for |z|>1,

(4.13) o%(4, u) ~ |3A| for z ~ 1,
l it for |o|<1.

This, in addition to the observation that o is everywhere finite, gives the fol-
lowing condition for the convergence of the integral of eq. (4.10) (a is a finite
constant =40)

a

(4.14) fr{ V(r)|dr<oco and f| Vi(r)|dr< oco.

0

Let us call the potentials satisfying this condition class A potentials. For
this large class of potentials the Neumann series (4.3) is thus absolutely con-
vergent, and the rest term has the bound (4.12) (*).

Substitution of this Neumann series into

(L15) P (r) = () + f Kr, v fo(r)

now gives the Born series for the Jost solutions

(416) - R =R+ fdn fdmln{e r PPN B

i=0 =1
(ro=1)

For »> 0 all the integrals in this expression converge when the potential
is of class A, and the Born series is absolutely convergcnt This follows from
writing the Green’s function in the form

(4.17) Gir, 1) = o= R MF07) = £ ],

and observing that the crucial point is the convergence at infinity of integrals

(*) Note added in proof. - For potentials not satisfying the first of the condi-
tions (4.14) see O. BrRANDER: Ark. f. Fys. (to be published).
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©

(4.18) ffo r)dr ~ |exp [ ikr]V(r) exp [ ikr]dr,

r—>o

which are absolutely convergent for real k and potentials of the class A.

For r = 0 the integrals of eq. (4.16) diverge. However, this is not serious,
because those integrals are to be compared to the first term of eq. (4.16), which
behaves like

(4.19) fo(r)= O@rt3)

when 7»—0 for Re A>0. What we need to show is thus only that the following
limit exists:

(4.20) ﬁof ( )fK(r, ) falr

To this end we observe that

(4.21) fE(r) = 74P (dakr)d(sin wd) [T (kr) — 052 y(Fr)]
and

(4.22) G(r,r") = i sw(rr') (sinswd) [T _,(kr) I (kr')— T _,(kr')J (kr)] ,

which together with eq. (4.16) gives the following expression for the limit (4.20):

©

(4.23) 13_{%7 - (7"” m—s»(%)"}[ fri'dnJAkn)V(n)ﬁ(m+

+ z d"'x fdrzﬂ”’lt]z kry) V() H {G Ti_1y 15) ("'i)}ﬁ("’iﬂ)] .

i=1 j=2'

0 T
In this equation all the integrals converge for class A potentials because
near r =0
(4.24) 2 (k) fi(r) = O(r) .
Then this series is absolutely convergent like the series of eq. (4.16).

However, eq. (4.23) is nothing but the Born series for the Jost function.
because the Jost function can be defined as the limit

o (s it el
(4.25) e ) = lim 25
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We shall now study the rest term of the Born series for the Jost function,
This rest term,

®

(4.26) A= 1504, 00— = i:ta—é)(%)%[fr% dryJ ,(kry) V(ry) fe(ry) +

0

N_zfdrl fdrz.lwl kr)Vir) 1T 6 -I,r,-)V(M}f:(ml)],

G2

has the following relation to the rest term (4.4),

(4.27) rE(A) = zi‘ﬂ~%>( )fdrlfdo 13, (Fry) V(1)) By_o(71, 75) FE(75)

71

and we are interested in its behaviour when || — co in the right-hand half-plane.

In the rest of this paper we assume that Zis in the first quadrant. This is
no restriction, because the fourth quadrant can be reached by complex
conjugation,

(4.28) : P2, k) = [f¥(2, *)J*

To get a bound for the rest term (4.27) we now use eq. (4.12) and the bounds
of Sect. 2 for the Bessel functions involved. These are for 1in the first quadrant

|J(kr) | <%e| A1 + O(A7Y)]o(A, u) exp[— Im (Au)],
o (< ]/g ¢
kr %

o)l <)/ Z o]

where the absolute value sign in the exponent of the last formula comes from ‘
arg (Au) leaving the region (2.9) so that eq. (2.7') has to be used. In this way
we obtain the bound

3
%’ 1 4 O(A~")]o(4, ) exp [Im(lu)ﬂ“glm "}’

[L+4 O0(AY)]o(A4, u) exp [[Im (Au)|— J; Tm Z] 7

(4.30) [75(A)| <[1 + O(A1)]v* (A)[w(2) ] exp [v(4)],
where

’wu) = »(4),
(4.31) l ol

A) = CM|—1frdr| V(r)|o*(A, ) exp [|Tm (Au) | — Im (Au)] .

0
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In the Appendix the function (1) is studied for large 1, and it is shown that
it approaches zero,

(4.32) v(A) = o(1) when || — o0,
for all potentials of the class A. Tf the potential also satisfies

(4.33) V(r) = O(r==%) when 7 — oo,
for some positive o, it is further shown that

: O(2~%) if a<<1,
(4.34) o(3) =
o) if o >-1,
when 1->oco.
The eqs. (4.30)—(4.32) now imply that the Born series for the Jost function
ft(4, k) is an asymptotic series of the Erdélyi type when 1 — co in the first qua-
drant with respect to the scale »

(4.35) @ul(2) = [o()]*~*, £>0.
In particular, we find that
(4.36) fr(4, k) =1+ O(v(4))

when A — oo in the first quadrant.

However, for f~(1, k) we cannot say so much in general, because without
knowing more about the potential than that it belongs to class A, we can only
draw the conclusion from eq. (4.31) that

(4.37) v=(A)<v(A) exp[= Iml],

because Im (Au) in the exponent of eq. (4.31) becomes negative for large » and
approaches — (7/2) Im A. This result is not sufficient to prove anything about
the asymptotic character of the Born series for f~(4,k) when 2 — co in a complex
direction in the first quadrant.

However, the change of sign of Im (Au) for Im A << z/2 — ¢ occurs as can be
seen in Fig. 1, at a value of » slightly less than |A/k|, say at y1. Then

<)

(4.38) v=(A) <o(d) + C| A" exp [ Im A] | rdr| V(r) |o2(2, ) ,

va
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16 0. BRANDER [54]

and we see that if only the potential goes sufficiently fast to zero at infinity,
we will have

v=(2) = O(v(2))

when A->ooinarg A€[0, (w/2) —¢], so that eq. (4.36) will be valid also for
(4, k), except for parallels to the imaginary axis.

«Sufficiently fast » is here taken to be faster than any exponential exp [—pur],
because then the above argument is valid for all values of y > 0, that is all k and
e. We thus define: a potential is said to belong to class B if

B.1) it belongs to class A, and
B.2) it approaches zero at infinity faster than any exponential exp [— ur].

When arg A=m/2, we find that Im (Au) = — (7/2) Im A for all », and the pre-
ceding arguments are not applicable. In fact, for fast-decreasing potentials the
Jost function will grow indefinitely when 1 — oo parallel to the imaginary axis.
This is a well-known fact for square-well potentials and potentials with an
abrupt cut-off, but as we shall see it is also valid for more regular class B poten-
tials, like the Gauss potential exp|— p2r2].

For the Born approximation to the Jost function when Im A — co we find

G wexp|—imd] r .
(4.40) ol By L= == | e V() T3R)
0

For the Gauss potential the integral in this expression can be calculated (24),

-

0
1 [ ek? \22
:0[1(4;:22) ] as I}.I'%‘OO,
which means that for this potential
3 1
(4.42) |f3(4, k) Il_:fw const-—l—ﬂ exp[zImAi],

where the constant can be shown to be different from zero.
We believe the exponential growth of f~ along the positive imaginary axis

(2 G. N. Warson: A Treatise on the Theory of Bessel Functions (Cambridge, 1922).
p. 395.
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[55] AN ASYMPTOTIC EXPANSION FOR THE GREEN’S FUNCTION ETC. 17

to be common to all class B potentials. However, this is difficult to prove,
because a proof has to use lower bounds to integrals with oscillating integrands,
and such bounds are much more difficult to find than upper bounds.
Therefore, let us content ourselves with the rigorous result (4.42), the well-
known result for cut-off potentials, and the following qualitative explanation:
1f the potential decreases fast at infinity, contributions from small and
medium values of » will dominate in the integral for v—(1), and also in the integral
of eq. (4.40). However, for small and medium values of » and A — co, the asymp-
toticform of J, contains a factor /™-'(1+ ). This factor has the property of
going fast to zero at infinity in all directions of the right-hand half-plane,
except in directions parallel to the imaginary axis, where it grows exponentially.
To conclude, we find that when 4 — oo in the first quadrant,

(4, k) =1 4 O(v(4)) for arg e [0,; :
(4.43) (A4, k) =1+ ()(v(l)) for arg e [O, f—: - 5] ;
f(4, k) = o (exp [z Im A]) for arg A = 7; ;

for all class B potentials. Further we know that the exponential growth in
the last equation cannot be eliminated for square-well potentials, cut-off poten-
tials and the Gauss potential. Neither can the exponential growth be elim-
inated, in our opinion, for any other class B potential or for potentials with
discontinuities.

However, it is a well:-known fact that there are potentials, like the Yukawa
potential and superpositions of Yukawa potentials, for which the exponential
growth in the last of eqs. (4.43) can be eliminated.

In the next Section we shall show how this comes about. We do this not only
to show the power of our uniform bounds, but also to emphasize how the behav-
iour of the Jost function in the complex A-plane, and especially on the imag-
inary axis, depends in a complicated way on the interrelation between the
parts of the potential for small and large 7.

5. — The Jost funetion for meromorphic potentials.

As we pointed out in the preceding Section, a change of sign of Im (Au) in
the integration interval of eq. (4.31) made it difficult to obtain a sharp enough
bound for the rest term of the Born series for the Jost function.

However, if the potential has a meromorphic continuation into the right-
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18 0. BRANDER [56]

hand half of the complex r-plane, it may be possible to change the integration
contour and overcome this difficulty.

In the complex u-plane the integration along the real r-axis corresponds
to integration along the curve €, shown in Fig. 2. This figure shows the com-

5 § u-plane . T

2-nd sheet

N

—5m=arg u=0 @)

§

Fig. 2a¢) and b). — Integration contours in the complex w- and #-planes for
0<arg 1< m/2.

plex - and 7r-planes for 0 < arg 1 <=z/2, and it iy clear from it that Im (Au) is
positive for small », goes through zero for a value of r slightly less than |1/k]|,
and is negative for all larger ». This suggests that the integration contour
should be changed to €', on which Im (i) is nonnegative.

In the figure, ¢' is shown also in the r-plane, and it lies there in the sector
0 < argr < arg A <<m/2. Therefore, for this change of contour to be allowed,
first of all the potential has to have an analytic continuation into this sector
at least for large ». Second, the integral on the curve ¢, in Fig. 2 has to go
to zero when the distance of ¢, from the origin goes to infinity.

To meet this need we construct the following potential class: A potential V(r)
is said to belong to class C if

C.1) it belongs to class A,

C.2) it has for large r an analytic continuation into the sector
|arg r| < (7/2) —e¢, for any ¢> 0, and

(C.3) in any direction in this sector the continuation satisfies

fIV('r)dr[< 0.

For a class C potential, we now prove that the integral on C, approaches
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zero. The crucial integral is

B:1) IF = [rhdr Iy (k) V() ()

0y

When » — co with fixed A we find that

-
r @ 2

J Jy(kr) ~ (i—z 7"7‘)_2008 (kr'— 37A —%m) ,
1 fE(r) 72 o (r) 52, exp [F ikr] ,

and thus the integrability condition (.3 for the potential is sufficient to make
I approach zero when the distance of C, from the origin approaches infinity.
Now we can.make the whole analysis of Sect. 4 once again with all the
integrations on the curve C' instead of on the real r-axis. The result will be
formally identical, but with »(2) and v»*(2) replaced by the quantity

(5.3) (A) = C|M*‘f!7‘(:2(l, w)V(r)dr|.

o
In the same way as in the Appendix for »(4), it can be proved that for all

class ¢ potentials

(5.4) v(4) = o(1)

when 1 -+oco in |arg | < (w/2) —e. Then for all those potentials, the Born series
for f7(Z, k) is an asymptotic series of the Erdélyi type with respect to the scale

(5.5) @A) =[], >0,

when 72— oco in |argl|<(w/2) —e.
If further

(5.6) V(r) = 00— , ; x>0,
when r — oo in |arg r|<(w/2) —e, we find as before for »(4) that

!mkﬂ T T
(5.7) () = )
[ 0(2™) i

when A — oo in argl| < (=/2) —e.
We still have to discuss the case of 1 approaching infinity in directions
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parallel to the imaginary axis. For arg A =(=z/2), the complex u- and r-planes and
the integration contours ¢ and ' are shown in Fig. 3. Tn order for Im (Au)
to be nonnegative on €', ¢ and ¢’ now have to be different also for small r.
Therefore, we now have to require the potential to be continuable into the
whole right-hand half of the r-plane, with the possible exception of a finite
number of complex poles. We also have to require the potential not to be too
singular for small r, so that the integral on the curve (', in Fig. 3 is zero in the
limit when (', shrinks to the origin in the 7r-plane.

C, § u-plane

2—-nd sheet
\ 1-st <+ 2-nd rﬁfﬁZZr
\ 5
N 5
2T
2
\ c le!
N\ c a) b)

Fig. 3a) and b). — Integration contours in the complex - and r-planes for arg 4 — =/2.

We now construct the following class of potentials: A potential V(r) is
said to belong to class D if

D.1) it belongs to class A,

D.2) it has a meromorphic continuation into the half-plane Re r > 0,
with a finite number of complex poles, and

D.3) in any direction in this half-plane, including parallels to the imag-
inary axis, the continuation satisfies

f|'rV(r)dr§<oo, f|V(r)dr|< oo,

Class D is contained in class C, because the poles must, as they are fnite in
number, all be within & finite distance from the origin. Thus the meromorphic
continuation is analytic for large |r|.

The change of integration contour from ¢ to €' is permitted for all potentials
of the class C, if due care is taken of the contribution from the complex poles
of the potential. This follows exactly as for arg 4 <7/2, except that we now also

[
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have to discuss the integral
(5.8) Iy = f ridrd,(kr) Vi(r) f£(r) .
Cq
When » — 0 we find that

(5.9)

Jl(kr) = 0",
f:t ri 1)

and thus the integrability condition D.3 for the potential is sufficient to make
']2i approach zero when (', shrinks to the origin in the r-plane.

Repeating now the analysis of Sect. 4 once more, with the modified inte-
gration contour €', the result will again be formally identical, and the quantity
that replaces v(1) and »*(1) this time is

(5.10)  #(4) = C|A|"t]|ro*(A, w)V(r) dr| +
i

—|—2n(}’l)ﬁ[—1z|ra (4, u;) Res V(r,) |exp [|Im (Aw,;) | — Im (Au,)] .

In this expression the last term is the contribution from the complex poles
of the potential. These poles are A-independent, and therefore, in the limit
A — oo both ¢? and the exponential factor approach 1, so that the contribution
from the poles is O(171).

Exactly as for the class C potentials, it now follows that

(5.11) B(A) = o(1)

as A— 4 dioco for all class D potentials. Thus for those potentials, the Born
series for the Jost function is an asymptotic series of the Erdélyi type with
respect to the scale

(5.12) @o(2) = B, >0,

when A1 - co in any direction in Re A>0
If further

(5.13) Vir) = 0@y, a>0,

when 7 —oco in |argr|<m/2, we obtain in the same way as before

00— if a<1,
(5.14) B(A) =
003~ if o>1,

when 21—+ oo in |argl|<n/2.
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We now turn our attention to the Yukawa potential, which belongs to
class €, but not to class D, because it does not go fast enough to zero at infinity
in directions parallel to the imaginary r-axis.

However, the treatment used above for class D potentials also gives some
information for the Yukawa potential. In fact, the estimates of the Appendix,
applied to ¥(A) with the integration contour of Fig. 3, give for the Yukawa
potential

(5.15) o(A) = 0(1) when 14— + ico,
or
(5.16) (2, k) = O(1) when A-— 4 ¢co.

This result is not sufficient to show that the Born series is an asymptotic
series, it only shows that the higher-order Born terms do not dominate when
A—1oco. Tt is also insufficient for proving that the Sommerfeld-Watson trans-
formation is allowed, because eq. (5.16) does not exclude the possibility of
f —0 when 1 —ico.

These difficulties are exactly the same as those encountered by MARTIN (19).
This is not surprising, because when we changed to the integration contour C'
of Fig. 3, our method became very similar to that of MARTIN.

The method of improving eq. (5.16) given by MARTIN can be used in our
formalism also. It consists in iterating the integral equation once, and obtain-
ing a better bound for the new inhomogeneous term.

However, the asymptotic properties of the Born series for the Jost funec-
tion with the Yukawa potential when 1—4¢oco are known from the work of
CALOGERO (5). His result is that the Born geries is an asymptotic series in the
Erdélyi sense with respect to the scale

Py(A) = S e> 0,

when A-—>ioco. This result cannot be improved by using our method.

6. — Discussion.

We have shown above, that using uniform asymptotic estimates obtained
from the formula (2.1) for Bessel functions, we get a very straightforward
and powerful formalism for the study of asymptotic properties for large complex
angular momenta. Within this formalism we can study the asymptotic char-
acter in the right-hand half of the complex A-plane of the Born series for the
Jost function for many different potentials, both fast decreasing and slowly
decreasing.

For slowly decreasing potentials with analytic continuations, our method
becomes very similar to that of MARTIN (19) and BESSIS (1!). However, we make

-
on
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slightly weaker assumptions about the potential (our class D), and we also
study the whole Born series.

The bounds of Bessis for the location of Regge poles could possibly
be improved by a modification of our method. Taking explicitly one or more
terms of the asymptotic expansions, and using the Olver (1*) bound for the
rest term, one should even be able to calculate the location of the outer Regge
poles (say with |4]|=3) with controllable accuracy.

The Yukawa potential is just outside our potential class D, and is in a way
the limiting case between the slowly decreasing and fast decreasing potentials.

For potentials decreasing faster than exponentially, that is of class B, we
have shown above that the Born series for the Jost function is an asymptotic
series when Re A — oco. This is the same result as that obtained for class C©
potentials, and therefore, we expect it to be common to a very large class of
potentials, almost as large as class A.

However, when /->ico it seems to be impossible for the Jost function to
approach 1, except for smooth potentials which do not go faster to zero at
infinity than exponentially, that is potentials like the Yukawa potential or
the class D potentials. This is because, as we have seen, the inner parts of the
potential tend to give contributions to the Jost funection that grow expo-
nentially on the imaginary axis, and these contributions must be counterba-
lanced by contributions from the outer parts of the potential. For this com-
pensation to be effective, the outer parts of the potential must not be too small,
and they must also have a smooth connection to the inner parts.

It thus seems likely that the Sommerfeld-Watson transformation is not
allowed for any fast-decreasing potentials. We shall now give some further
independent support for this supposition.

The partial-wave expansion for the scattering amplitude,

f(l‘f“za k) _fﬁ(l‘f“'flz"k)

P T OV
FUTE B L

1 @
(6.1) il :—,-2 (21+1)
1=0

can be tested for convergence with our uniform bounds. Since f~ approaches
1 on the real A-axis, what we need for this test is an estimate of the dif-
ference Af = f+—f~ on the real axis.

For this difference eqs. (4.21) and (4.23) give the expression

(6.2) Af(4, k) =— infrdrV(r)Ji(kr) - infr%drfr’%dr’Jl(kr)V(T)K(T, ') (kr') ,’

0

and eqs. (4.11) and (4.29) give when applied to this equation the bound

(6.3) ]Af(l,.k)lg[l -+ O(2~Y)]ve(A)[1 + v(A) exp [v(A)]],

Y-
2
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where

@

(6.4) Vp(A) = ’_{-tncﬂ}ll-lfrdr[ V(r)|o*(A, u) exp[— 2 Im (Au)] .

0

This integral can now be estimated for different potentials. As an illustrating
example we take a potential decreasing so fast that the contribution from small
r dominates, which probably means faster than exp [— 2krIn7]. Then we get

(6.5) Af(2, k) = O(v4(1)) = O(2~*%) when A — -} oo.

The partial-wave expansion is thus convergent in the whole complex cos 6-
plane for such potentials. This means that the Lehmann ellipse covers the
whole plane, and the scattering amplitude is an entire function of the momentum
. transfer squared.

We now test this entire function for its order (*). For large z, P,(z) behaves
like 2!, and the partial-wave expansion becomes almost a power series. There-
fore, the order of the entire function can be obtained by the formula (%)

n Inn
6.6 — i el
09 S e e

where «, is the coefficient of 2" in the power series. Thus the order is o —
for the scattering amplitude as an entire function of the momentum transfer
squared, if the potential decreases faster than exp[— 2kr In7]. This result agrees
with the result of Nussenzveig (2¢) for cut-off potentials.

For a potential decreasing slower than exp [— 2krIns], but still belonging
to class B, eq. (6.5) will not be satisfied, and the scattering amplitude will be
an entire function of the momentum transfer squared of order larger than i.
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APPEND1X

In this Appendix we shall study bounds for large complex A of the integral

©

(A1) v(A) = C|/l|"1fd'r7'§ V(r)|o%(4, u),
- 0
where
X = | Au|®
(A.u) O'(}», u/) = ]'Ll} 5(1_—}—-W .

According to eq. (2.3) the function ¢ has the following asymptotic form
(@ = Er[A)

lml—%ll +0 (,i—,,) +0(,w-2>] for a1,

(A.3) o (A u) = 3 |3A|[1L + O(w?) + O(Aw?)] for |z — 1|« 1,
1
~1—1—0(-1—11—00) for |le|<1.

When r varies from 0 to oo, ¢ thus varies from 1 through a maximum
for finite 7 to zero in the limit »—>oo. If the quotient A/k is real, this maximum
is |3A|* and occurs at r—= 2/k. For nonreal A/k the maximum is smaller,
because, as can be seen from eq. (A.2), ¢ cannot be large unless w is small.

Therefore, the integral (A.1) is largest for real A/k, and to get a bound valid
for all arg A we need only consider such A/k.

From the asymptotic forim of ¢ we saw in Sect. 4 that if the integral (A.1)
is to be convergent, the potential has to be of the class A, namely it must
satisfy eq. (4.14).

We shall now show that for any potential of class A, (1) approaches zero
when A —co.

To do this, we cut the integration interval into four,

(A.4) [0, al, [a, (;)ﬂ], [(%)5, %(1+s)], [2 (1 =g}y oo] )

where a, # and ¢ are positive constants, f< 1, and number the corresponding
parts of »(1) with an index 7=1, 2, 3, 4. Further we observe that

(A.5) 02(A, u) < I_i’_l !
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Despiﬁe its singularity at 2 = 1, this bound is useful because it is integrable.
From the first interval we get the contribution

@

(A.6) v(2 C}Zl—l[l+0(1 (; ) )] fdrr]V(rH,

0

which approaches zero as |A|~* when A — co.
For the contribution from the second interval we get the following bound:

(A7) By(d) < C| A lﬂ V(‘) )| ar<

a
©

<C|k|- ﬁlM—HﬁI:] 40 (( ﬁ)lln(l/ ))]f|v(,~);d7.’

a

which approaches zero when 1 — co, provided p< 1.
For the contribution from the third interval we get the bound

14-¢ 1te
rV(r |-« 2 da
(A.8) 03(A) < 0|75|~1J. \/v—‘ !d <C|7‘| HrV ()| e f m ) )
(b1 0

which approaches zero when A — co, provided f> 0, because of the integra-
bility condition for |V(r)|. -
Finally, in the fourth interval we observe that

1 i 1

A9 £ e o
o [w] ~ (@ —1) > (2e et 7

where » is a finite constant when ¢>0. Thus

©

(A.10) vy(A) < pC |k I“‘fl V(r)|dr,

AR (14-8)

and the contribution from this part of the integration interval also (mpproacheb
zero when A — oco.
This concludes the proof that

(A.11) »(A) = o(1) when |[A]|— oo

for all class A potentials.
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We now also want to show how fast v(4) approaches zero when the potential
is not only integrable, but also satisfies

(A.12) V(r) =0(r-1-=), x>0, when r — oo,
that is, that there exist constants b, B such that
(A.13) |V(r)| <Br-« for r>b.

For this potential, we take the common endpoint of the second and third
intervals (A.4) as (1 —&')A/k instead of (A/k)f. In the second interval we
then find that

it

A.14
( ) ]

g TED e for 0<&'<1,

in analogy with eq. (A.9). For the contribution to »(4) from this interval
we thus get the bound i

WK (1—8")

v ’ —1 | p—a — 7,0 -1 % ) l_a_ 1-o
(A15) A<y C|A] fr dr |1—°‘|M| }[k(l s)] a*|,

provided a is chosen larger than the b of eq. (A.13). Equation (A.15) implies

0(A—=) if x<1,
(A.16) vi(A) = {

0(A1) if «a>1,

when 4 — oo.
The contribution to v»(A) from the new third interval can be estimated
with eq. (A.8) with =1 to be

(A17) vi(2) = 0(A-2) when 2 —> oo,

The last two equations, together with eqgs. (A.6) and (A.10), now imply that
for a potential satisfying eq. (A.12)

0(7-2) if x<1,
(A.18) v(A) =
/ 0(-1) if x>1,

when A — oco.
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RIASSUNTO (%)

Da una generalizzazione della formula asintotica uniforme di Langer per funzioni
di Bessel di ordine superiore si costruisce uno sviluppo - asintotico della funzione di
Green per lo scattering. Da questo sviluppo segue un semplice limite uniforme per la
funzione di Green, che contiene il ben noto limite non uniforme 1/k. Si usa poi questo
limite uniforme per studiare le proprieta asintotiche per grandi momenti angolari
complessi della serie di Born per la funzione di Jost nella teoria dello scattering non
relativistico del potenziale per un gran numero di potenziali. Tra l'altro si ottengono
i seguenti risultati. Se il potenziale ha una continuazione meromorfica, con un
numero finito di po]j complessi, nel semipiano Rer > 0, che soddisfa la condizione

bf]frV(r dr|< oo, f]V 7)dr|< oo, 0 < @< oo, su tutti i raggi di questo semipiano,

allora la serie di Born per la funzione di Jost & una serie asintotica nel senso di Erdélyi
e la funzione di Jost tende ad 1 quando |A|— co in ogni direzione nella regione
|arg 2| <m/2. Cosi & permessa per tali potenziali la trasformazione di Sommerfeld-
Watson. Per parallele all’asse » immaginario la suddetta condizione puo essere un pod
mitigata in modo da includere, per esempio, il potenziale di Yukawa. Il nostro metodo
da anche alcune informazioni sulle condizioni necessarie da imporre al potenziale per
rendere lecita la trasformazione di Sommerfeld-Watson. Sebbene manchi una dimo-
gtrazione matematica rigorosa, si & giunti alle seguenti conclusioni. Il potenziale deve
avere una connessione uniforme fra piccoli e grandi valori di » e non deve decrescere
pit rapidamente che in modo esponenziale quando 7— co perché¢ sia permessa la
tragformazione di Sommerfeld-Watson.

(*) Traduzione a cura della Redazione.
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Recently Predazzi and Regge 1) and, indepen-
dently, Limic 2) have studied potential scattering
in the presence of analytic hard cores, which for
small 7 behave like 7%, « > 2. Predazzi and Regge
showed that in the presence of an analytic hard core
the S-matrix can be continued in a trivial way to the
half plane Re X < 0 by means of the formula

S(-X) = S(A) exp (-2imA) . (1)

In this note it will be shown that this result holds
also in the case of the usual non-analytic hard core,
that is the one that corresponds to a potential = + «
for 7 < 7. As is well known (e.g., ref. 3)), a hard
core of this form is equivalent to the boundary con-
dition
o®

‘p(x9k’1’0)=0 ’ W(Aykylro):l (2)
for the wave function ¢. Because this boundary con-
dition is independent of the angular momentum 7 =
X - 3, and the Schrédinger equation contains X only
through A2, it follows at once that ¢ is an even func-
tion of A.

With the notation of Froissart 4) we can write the
integral equation corresponding to the Schrtdinger
equation with the boundary condition (2) in the fol-
lowing way

(p()\,k,’}") = k-1 G)\(k’}’,k”}"o)

i«
+ B°L [ Gy(kr,kr) V(') o(X, By 7)) drt . (3)
7o

As usual, the S-matrix is defined through the
asymptotic behaviour of o

o\ k) = (21k)1 [Wo(h, ) D)

+ WL R) 2] L (@)
to be
Wo(X, k)
S(A,R) = W—i(k,_ki : ®)

Now 5)

218

$Der) = et 1Dy

(2)
h-A

(6)
() = e I 1By

and therefore, because ¢ is an even function of A,
eq. (1) holds also with our hard core.

To find the analytic properties of the S-matrix
we can use the method of Froissart 4) on the inte-
gral equation (3). Iteration of (3) gives for Wy the
following formal expression

wy =k )+ 2 0 [

n=l g <ri<i . Srysw

hg\l )( kry,)

n
X Wl Ak s B m-1) V) Ay ()
m=

In this equation there are no divergence problems
at the lower limit of integration (75 > 0). Therefore,
W1 is an entire function of A for any fixed 2 # 0
which does not cause the integral to diverge at in-
finity. For the % dependence the considerations of
Froissart go through unchanged, to give the fol-
lowing final result:

Provided eH?” V(7) is finite from the edge of the
hard core to infinity for some positive p, the S-
matrix for potential scattering with a hard core is
meromorphic in the topological product of the finite
A and % planes, except for the following branch
points in the & plane

=0 and Fk=zx[(m+l)/2i] 2P, (8)

where 2 is the set of singularities of

uq) = Vir)e 9 dr. (9)
7o

At infinity, the hard core will cause essential
singularities for the S-matrix both in X and &.
Those singularities will prevent one both from
making a Sommerfeld-Watson transformation, and
from writing down a Mandelstam representation.
However, by subtracting the contribution from a
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pure hard core one can go around this difficulty.
The details about this procedure will be published
elsewhere.
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Asymptotic behaviour of the S-matrix in complex angular

momentum for singular potentials

By O. BRANDER

ABSTRACT

Using the theory for the asymptotic solution of differential equations, initiated by Langer
and recently developed in great detail by Olver, the asymptotic properties of singular potential
scattering theory are studied. More detailed results are obtained than those arrived at earlier
(Jaksié and Limié; Tiktopoulos) with the JWKB-method. In particular, explicit formulae for
for the positions and residues of the Regge poles are obtained. For potentials behaving at the
origin like #—2-™, m >0, or like —»~ 2 In », explicit calculations are made. It is shown that all
potentials having an analytic continuation into the right hand half r-plane satisfying

-]
f |V(r)dr|<oco and fl[V('r)-r‘z‘m]rl'”"'/z)drkoo
0

in all directions of this half plane, except possibly for parallels to the imaginary axis, have the
same asymptotic distribution of Regge poles as #~27™, For potentials with a logarithmic singu-
larity at the origin the corresponding conditions on the analytic continuation are

flV(r)dr|<°° and fl[vmw-ﬂnr](—1m)%rdr|<oo
0

in all directions of the half-plane, including parallels to the imaginary axis, in order that V(r)
shall have the same asymptotic distribution of Regge poles as —7"2Inr.

1. Introduction

The theory of scattering for potentials with a singular repulsive core has been
the subject of a large number of investigations in the last few years. The main
reason for this seems to be a hope to learn more about unrenormalizable field
theories from their connection with singular potentials [1]. Other reasons are the
possible use of those potentials to explain the high-energy large-angle behaviour
of the proton-proton scattering amplitude [2, 3], and a desire to investigate the
somewhat unusual analytic properties of the scattering amplitude from such po-
tentials, first stressed by Predazzi and Regge [4].

9:2 131



0. BRANDER, Asymptotic behaviour of S-matrix

The simplest singular potentials to study are those with a nonanalytic hard
core, like those which have been used since many years as phenomenological
nucleon-nucleon potentials. The analytic properties of the scattering amplitude
for such potentials were discussed in ref. [5].

The analytic properties for general singular potentials have been investigated
by a great number of authors [6]. The 1/r*-potential, for which the Schrodinger
equation reduces to the Mathieu equation [7], has been studied most exten-
sively.

A powerful method for the explicit construction of the S-matrix for singular
potentials has been developed by Cornille [8]. An interesting approximation
method has been studied by Calogero [9].

Some mathematical aspects of the theory of scattering from singular potentials
were recently discussed in ref. [10].

It is the purpose of this paper to examine in detail the asymptotic properties
with regard to the complex angular momentum of wave functions, Jost func-
tions and S-matrix in nonrelativistic potential scattering theory with singular
potentials. We shall also discuss the limit of large, positive energies.

The method to be used can be described as a generalisation of the JWKB-
method, giving an asymptotic series, of which the usual JWKB-approximation
is the first term, and also giving at each order of approximation bounds for
the rest term. The method is due to Langer, Cherry and Olver [11], and it was
originally used to obtain an asymptotic series for Bessel functions of large order,
valid uniformly in the argument of the function. This latter series for the Bessel
functions was used in ref. [12] by the present author to discuss the asymptotic
properties in the complex angular momentum plane for non-singular potentials.
References to earlier work can be found there and in Olver [11].

In the present investigation we first concentrate on the power potential
r* ™ m>0. For this potential the Schrodinger equation is, in section 2, solved
asymptotically by the Olver method, and asymptotic series are obtained for the
wave functions. These asymptotic series are valid uniformly in the radial vari-
able, and they have well defined asymptotic properties when the angular mo-
mentum, the energy or the strength of the potential goes to infinity.

In section 3 we extract information concerning the asymptotic form of the
Jost functions and the S-matrix in the complex angular momentum plane from
the series which were previously obtained for the wave functions. In particular,
we obtain explicit formulae for the positions and residues of the Regge poles.

Finally, in section 4 we discuss to what extent the power potential can be
modified without changing the asymptotic distribution of Regge poles. Results
pertaining to potentials with logarithmic singularities at the origin are also given
there.

Five appendices containing mathematical details end the paper.

2. Asymptotic solution of the Schrédinger equation

In this section we shall use the method of Olver [11] to solve asymptotically
in a large parameter the Schrodinger equation for a singular potential.

Consider a potential V(r) more singular at the origin than the centrifugal
barrier and satisfying the conditions
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(1) V(r)>0 when 0<r<d for some positive 9.

" ° dr [l_i_ (V/ (7*))2+|V” () |] gl
(2) V¥ () L* \ V() V(r) ‘

(3) 7V (r) monotonic for 0<7<4.

(4) V(r) has an analytic continuation into the right-hand half r-plane outside
the origin, satisfying

fool V(r)dr|< oo

in all directions of this half-plane, except possibly for parallels to the
imaginary r-axis.

Conditions 1 to 3 are the Limié conditions [6], which ensure that the poten-
tial is repulsive and nonoscillating at short distances. Condition 4 is weak enough
to include most of the physically interesting potentials, but strong enough to
avoid complications with our method.

The most interesting singular potentials are those which at the origin behave
like » 2™ m>0 or r >(—Inr)", m>0. Those potentials can be represented in
the following way

V) =258 (s (2.1)
and V(r)=r"2(—Inr)"&@r). (2.2)

The function &(r) is an analytic function in the right-hand half-plane and it
approaches the value 1 at the origin. At infinity &(r) must not grow too fast
in order that condition 4 shall be satisfied.

In the rest of this section, and in the next, we shall consider a “‘power po-
tential”’

P20 ans0, 2.1)

as explicit calculations are simple for this potential. However, the theory applies
equally well to the potentials (2.1) and (2.2), as will be discussed in section 4.
For the power potential (2.1’) the Schrédinger equation reads,

&, 1
= 5 W=t = 5)
[d7'2 - 22P(r;9, k, }*)"'47,2] @(r)=0, (2.3)
fob = FL e s b
where P(r; g,k,l)=?—r—2—ﬁr S (2.4)

and the ‘coupling constant’ ¢* is a measure of the strength of the potential.

It is expedient to introduce the following new variable (Bertocchi etal. [6]):
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2/(2+m)

Lt e
o= el i

¥ g 1
because then st +A%p(s; f)+ 15 @(re8)=0 (2.6)
with p(s;f)=f—s2—fstm (2.7
W f= A1 gRI@Em pmi@em (2.8)

so that, formally, we have just two independent parameters, A and f. However,
to interpret the result we shall return to the physical parameters.

We observe [3] that for g and k constant, and A approaching infinity, we
have f—0, which according to eq. (2.8) corresponds to the weak coupling limit.
On the other hand, for 4 and g constant and % approaching infinity we have
f— oo, which is the strong coupling limit. We shall obtain formulae valid both
in the weak and the strong coupling limits.

It is well known from the theory of the JWKB-approximation that the zeros
of p(s;f), the turning points, play a fundamental role. Therefore, we begin by
examining the location of those points.

It is easy to see that for large f and integer mp has 2+m simple zeros dis-
tributed around the unit circle. When m is not an integer, then we make a
cut along the negative real s-axis and a number of zeros appear also on other
Riemann sheets.

It is also easy to find the zeros when f is small. Two of them can be found
near the points +f !, whereas the other m zeros are found near the origin.

Let s, be that zero, which is near f ' for f small, and let s, be the zero
which is near the origin for f small and which has the smallest positive argu-
ment for real positive g,k and A. Then

so=fT L+ O],
8y =il [1 + il o 2imim f24im 0(f4+81m):| (2.9)
1 o . :

in the limit f—0.

In Fig. 1 we illustrate for m =2 how the two zeros s, and s; move when f
is varied for some fixed values of arg f. We see that when |f|— oo, s, approaches
unity for |arg f|<a/(2+m), but for —argf>mn/(2-+m) it is the zero s, that
approaches unity. When |f|—>cc we have the asymptotic formulae

| R, = 7
e el + SOk S A
1+2+mf o(f* for |argf|<2_|_m
— 1 2im@+m) L ani@tm 8 -4 ¢ 7z 37
L Lt orm® O o g = e <
oy | 1 . 3 57
4im/(2+m) —8imj(2+m) 4—2 -4 s 3ic 0
e [1+—2+me 12R0(f )] for L argf<2+m ete.
(2.10 a)

134



ARKIV FOR FYSIK. Bd 32 nr 8

s-plane s-plane /

Jf=1

o]

Fig. 1 A Fig. 1 B

Fig. 1 A. For arg ffixed and |f| varying from 0 to oo, the zero s, moves in from infinity to a
point on the unit circle. Figure drawn for m = 2.

Fig. 1 B. For arg f fixed and |f| varying from 0 to oo, the zero s; moves out from the origin to
a point on the unit circle. Figure drawn for m = 2.

We see that if we vary |f| and keep arg f constant, s, stays within that sector
of width 27/(2+m) from which it originated for small f.
For s; we have the asymptotic formula

1 1 g 7
2in/(2+m) ), —4in/(2+m) 4—2 —4 < —
e [1 +2+me f2+0(f )] for 0 a,rgf<r+m
8= (2.10Db)
1
+——f2+ 0
1 5 Oo(f*) for

7 s <7
G A Sy
when |f|—oco.

The situation is now the following. We have a second order differential equa-
tion with two irregular singular points at 0 and co and a number of turning
points, which move when the parameters are varied. Except for the Mathieu
equation, corresponding to m =2, there is as yet no general theory of such
equations (Fubini etal. [6]).

However, we shall show that, when one parameter is large, e.g. A, then it
is possible to use the method of Olver [11-13] to obtain asymptotic series for
the solutions of such equations, and these series are valid uniformly in the
variable in a region containing the two singular points and one of the turning
points. This is accomplished by transforming the differential equation in such a way,
that the irregular singular points fall at + oo, and that the conditions at infinity
for the application of theorem B of Olver [11] are satisfied. The rest is then
a straight-forward application of this theorem. The difficulties which are encoun-
tered are mainly related to the complicated nature of the transformation.

We shall use different transformations of the differential equation depending
on at which of the two turning points s, and s; we want the expansion to be
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’% s-plane

u-plane @U'Pldne

1.cC
B

ALY

>

\\ 3

\
%
o

Fig. 2 A, B, C and D. The complex s- and u-planes for arg s, > arg s,. Figure drawn for m =2,
f=0.5 exp (—127/6).

valid. The two transformations are obtained by introducing the new independent
variables z and ¥, respectively, where

=Bt um ,r pE(s; ) ds, (2.11)

and y=—(i)Y w =fsp*(s; f)ds. (2.12)

S1

To make p! single-valued, we introduce cuts from each of the zeros of p to
the origin. We consider only the right-hand half r-plane, that is, assuming 7,
to be real, the right-hand half s-plane.

The transformations (2.11) and (2.12) are conformal mappings of the complex
s-plane onto the complex z- and y-planes, respectively, except for the zeros of p.
At those points the mapping is not conformal. However, the mapping (2.11) is
conformal as s, and the mapping (2.12) is conformal at s, due to the exponent 3.
This is shown in appendix A.

In appendix B the transformations (2.11) and (2.12) are studied, and formulae
valid in the asymptotic regions are derived. For the special case of small |f|
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/ s-pldpe u-plane
me A
/S me -
S, Pe
// e
s, ZW/
oA
\ Z
} u-plane } u-plone

II.B

Fig. 3 A, B, C and D. The complex s- and u-planes for arg s, <arg s,. Figure drawn for m =2,
/=0.5 exp (—217/6).

the form of the mapping (2.11) is illustrated in the Figs. 2-5, and that of the
mapping (2.12) in the Fig. 6. The wv-plane is not shown separately, since it
differs from the w-plane only by a shift of the origin.

Also, the y-plane is not shown for the case I, when arg s;>args, In this
case the mapping (2.12) is not 1—1 on any region containing the whole posi-
tive real s-axis and the turning point s;, and, therefore, it can not be used for
our purpose. On the other hand, when arg s, > arg s, that is for |arg f| <x/(2 +m),
then the transformation (2.11) will give all the results we need. It is only for
arg s, <arg s, that we will need both transformations to get the complete asymp-
totic behaviour of the S-matrix.

For large |f| and for |arg f|<m/(2+m) the mapping (2.11) is illustrated in
Fig. 7 and (2.12) in Fig. 8. For —}n<argf< —=xn/(2+m) and |f] large s, is
the zero close to unity according to eq. (2.10b) and the y-plane will look like
the z-plane of Fig. 7.

Introducing the new dependent variables

ds\ % ds\ ¥
'”(z)=(£) p(rys) and x(y>=(d—;) g(ros), (2.13)
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z-plane

IA

T

Fig. 4. The image in the complex z-plane of the regions I. A and I. B of Fig. 2.

% s~plane z-plane
1.e Io.A
2 J
. 7 mB -

So e \
ot 2 \1 44
i Bl NN
7

NI
N\

Fig. 5 A and B. For arg s, <args, the mapping is 1 — 1 between the s- and z-planes for the re-
gion shown. The region is chosen to contain in its interior the point s, and the real s-axis.

y-plane

Fig. 6. The image in the complex y-plane of the regions II. A and II. B of Fig. 3.
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Fig. 7A and B. The s- and z-planes for large | f|.
y-plane
Fig. 8. The y-plane for large |f].
the differential equation (2.6) is given by
dZ
=+ W Ny, (2.14)
" 2 e 2
where Wz )= 2 e A0 + S2lp’(s:/)] . (2.15)

1622 4ep(s /) AlpsHE 16[p(s; N

Primes denote differentiation with respect to s. Amnalogously, the transformation
(2.12) gives

d2
#= A%y +w(y; H] (), (2.16)

b e 8D y  yp"(s:f) | Bylp'(s NI
e D =162 tipe ) Alp(s P 16[ps NI

(2.17)
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The functions W and w are singular at the zeros of p, except for W at the
zero s,, corresponding to z=0, and for w at the zero s, corresponding to y =0.
This is shown in appendix A. Before going into further details we shall now
give theorem B of Olver in the form best suited for our application. In this
form it is more general than the theorem stated in Olver (1954) [11] but less
general than, and contained in, that given in Olver (1958) [11].

Put arg 2=0 and insert

A=pe?, 2=z ¢ 1% (2.18)

into eq. (2.14). Then the following equation is obtained

2

dz}: =[0*2' + e YW (e 2 )y, (2.14)

where p, 6 are real parameters and f is a complex parameter. We assume that
o takes on a large positive value and we allow 6 and f to vary over a certain
region ©.

Let D,(0,f) be an open, simply connected region of the z’-plane, in which W
of eq. (2.14') is regular. As indicated by the notation, we allow the boundaries
of the region to vary when 6 and f vary over ©, but they are not allowed to
come closer to the origin than some fixed, positive distance b.

Let us further assume that for some constant ¢

[W(e ¥ f)| < ez, 00, (2.19)

1 kL |zr|;_,+a’

for all 2’ €D,(0,f), (0,f)€O.
Next, we define G.(6,f) to be a closed subdomain of D,(6,f), having the
properties

(i) G,(0,f) contains the circle |2’ |<b.

(ii) The distance between each boundary point z; of (0, f) and each bound-
ary point of D,(6,f) is not less than d/|z|*, where d is a positive con-
stant, assignable independently of 0 and f.

(iii) For some path lying wholly in G,(0,f)

f ﬁ%a—‘ < const, o¢;=min (o, $),,
0

uniformly in 2’, 6 and f.
Using the notation
Py(x)=Ai (;2); 01=1, @a3=e€*%", (2.20)
where Ai stands for the Airy function, we can now state the following theorem [11]:
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Olver’s theorem. The differential equation (2.14) possesses solutions ;(z; 4, f)
with the properties

&oda(® e
wiesh = Bata)| 3 20 op-av)

X N~1Bn : 1
HA%P’U&Z)[Z (zf)+1+]zl*

i lzn

0(,1-”“)] (2.21)

as p=|A|>oco, valid when 2’ =e#2€H.(0,f), (0,f)€O, the O’s being uniform
with respect to z, 6 and f. Here N is an arbitrary positive integer and v, is
independent of N. A similar formula holds for the derivative dy;/d z.

In stating the theorem, we have returned to z and A instead of using 2’, p
and 0, because the theorem is slightly simpler in that formulation.

The coefficients 4, and B, are defined as follows,

A=1,

B,(zf)=%z1 fo 2 H[W(z f) An(2; f) — A% (2 f)]dz, (2.22)
Api1zf)=—3Baz )+ %fW(Z; 1) Ba(z f) dz,

and the region H (0, f) comprises those points 2z’ of G.(f,f) which can be joined
to a point a;(f,f), in G,(0,f) or at infinity, by a path P, having the following
properties

(i) P; lies in G,(6,f).

(ii) P, comprises a finite number of Jordan arcs, each with a parametric
equation of the form ¢=i(z), where 7 is the real parameter of the arc;
t"(7) is continuous and #'(r) does not vanish. If a;(0,f) is at infinity it
is on a straight line C; in G.(6,f), and P, coincides with C; for suffici-
ently large |t|.

||
(iii) fp. 1F |t|l+m< const
7

uniformly in 2’, 6 and f.

(iv) As ¢ traverses D; from a;(0,f) to 2, |exp {} (o;)!}| is monotonic decreas-
ing, where p; is defined by eq. (2.20).

As the point a;(0,f),7=1,2,3, we take a point at infinity in the corresponding
sector §;: |arg (9;A¥z)| <3 m. §; is the sector in which the solution y; is asymp-
totically small.

Next we must investigate the transformations (2.11) and (2.12) to see whether
the conditions for the application of Olver’s theorem are satisfied.

Asymptotically, eqs. (2.7) and (2.11) imply that
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fs as |s|—> oo

(2.23)

4 iigfs‘"”z as |s|—>0
m

s

for the “power potential”’. Together with eqs. (2.11) and (2.15) this gives that

{O(zf‘zs'z) =0@2% as z—>+oo
Wiz f)= (2.24)

O(zf %2s™)=0(z"% as z—> — oo,

which shows that the condition (2.19) is satisfied, provided D,(0,f) does not
contain the turning points z;, 1=1,2, ..., corresponding to the zeros s; of 2(s;f)
or the immediate neighbourhood of those points. As we have already discussed,
there is no singularity of W at z=0 corresponding to the zero s,.

The remaining point to prove now is that there exists a simply connected
region of the z-plane containing

(i) the circle |z|<b and

(ii) the whole image of the positive real r-axis.

After a rotation through the angle %0 this region is to be used as D,(0,f). The
condition (i) is necessary for the Olver theorem to be applicable, the condition
(ii) is necessary in order for the resulting series to be valid uniformly in
7€ (0, o).

For small f the two conditions above are satisfied by the regions given in
the Figs. 4 and 5 for arg s;>or <arg s,, respectively, except for the fact that
for large m one might have to restrict the range of arg s when s is small so
that the regions will be simply connected.

The allowed values of arg f for small f are

|a1‘gf|<g—e, e>0, small |f], (2.25a)

where the ¢ is introduced to exclude the neighbourhood of the point z,, where
W is singular.
For large f the restriction of arg f is

|arg f|<’2+Lm, large |f/, (2.25b)

because in that domain of |f| the construction of Fig. 5 is not possible, since
the image of the positive real s-axis will not be contained in the same Riemann
sheet as the image of the point s;. In the two equations above we still assume
that arg »,=0. !

When D,(0,f) has been chosen as discussed above, G.(f, f) can be obtained
from D,(0,f) just by slicing off a thin strip along the boundary according to
the prescription (ii) for G, (0, f).
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Finally, H.(6, f) is to be constructed according to the prescriptions (i-iv) above.
To ensure that the origin and the whole image of the real positive r-axis will
remain inside H’(, ) we must restrict the angle 6 such that the point z, and
the image of small, real, positive r fall inside the sector §;. The restrictions
(2.25) together with this restriction for 6 yields that Olver’s theorem is appli-
cable in the z-plane provided (0, f) is inside one the following two regions,

7
|arg fl <57
0,: § any |f| (2.26a)
7T 7T
b Ly el
2 v 2
7T
g el = LK==
Tk arg f &€
and O5:4 |fl<ay (2.26b)
7 7
S ey
2 i 2 by,

where @, and b, are positive numbers and b,—0 if a,—0.

Let us now consider the y-plane. For small f the y-plane is shown in Fig. 6.
For large f it is shown in Fig. 8 for 0< —arg f<z/(2+m) and in Fig. 7 for
7/(2+m)< —arg f<}m Constructing now regions D,(0, f), G,(0, f) and H’,(0, f) in
the y-plane in complete analogy to the construction above with regard to the
z-plane, we find that Olver’s theorem is applicable in the y-plane if (6, f) is in-
side the following region,

i AR <
EL i
0,: 1 any |f| (2.27)

4 T
LTgige T
i~z

Let us now define the physical wave functions ¢* and @, as those solutions
of eq. (2.3), which satisfy the boundary conditions

(pi(T) e e?ikrzewlfs (228)

r—>oo

and for the “power potential”,

r=>0

@r(r) ~ r@*™4 exp { — %7 7 *m} = (ry8)® ™" exp {— %f S*%m}; (2.29)

respectively.
From the asymptotic form of the mapping from r to 2, eq. (2.23), it then
follows that ¢ is asymptotically small in the same sector as y;, ¢ in the
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same sector as ; and ¢~ in the same sector as v, Therefore, according to
eq. (2.13) we must have the following relations between ¢ and v,

£
70 = 0N (- 2) weo (2.30)

: -
and 0= 0.t (~5) v 2.31)

The functions Cp and O, are independent of r and z, and P is given by eq. (2.4).
Similarly, application of Olver’s theorem to eq. (2.16) gives

1), ~ Pty 3 D s par

ba (ys
] —;an), (2.32)

in8

with the same meaning of the index j as above, with ¢y=1 and

RS f ot Bty =t A,

(2.33)
@i (3 )= — $baly; )+ %jw(y; Noa(y; 1) dy.
The analogues of the egs. (2.30) and (2.31) are
Y t
Pr(r)=czr(4,f) (—j,') %1 (y) (2.34)
= y\*
and pr(r)=cy (LI‘)(—*I;) X3,2(y)- (2.35)

It now remains to determine the factors Cy . and cg . This can be done by
comparing the asymptotic forms of the two sides of the egs. (2.30), (2.31),
(2.34) and (2.35).

To do this we need the following formulae from appendix B

kr—3aA+0(A,f) as r—oo

T 2.36

¥ ii—fr"‘f’"+6o(l,f)+A(l,f) as 70 S
kr—3mA+0(A,/)—A(4,f) as r—>oo

d v~ 2.37)

s ¢ 2gr M4 504, f) as r—0. sl

Here, 02, f)= lim (Au — kr + L =A) (2.38)
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is the usual JWKB phase-shift,
! 248
Oo(y, /)= lim |Av—¢ —= "7}, (2.39)
r=>0 m
and A, f=Au—Iv= Af lp‘} (s; ) ds. (2.40)

Further, the following limits are involved

an(f) = lim An@f)i on(f)= Hm ay(y: )

(2.41)
o (f)= lm An(zf); aun(f)= ygqﬂman (1)
Pin(f)= lim 2 Ba(zf);  fen(f)= lm y*ba(y; f);
and S SR (2.42)

Ban(f)= lim 2 Bu(z:f); fan(f)= lim ybu(y:f)-

That these limits exist is shown explicitly in Lemma 1 of Olver (1954) [11].
For each n>0, two of the four a’s can be chosen equal to zero by ajusting the
integration constants of eqs. (2.22) and (2.33), say og, = oy, =

The following formulae are obtained for the (s

ORI, ~ = rgtn b ks [1 +3 a5 f;’;(fl)]
i/” s (2.43)
0;1(1,]‘) :wmr(’f b )-Ye g @10 pFIOAS) [ z= ggzgl]
and
G f) ~ V iniaegnan(i+ 5 ol 5 Ball]
v - (2.44)
2. }c) l/_ f *Z‘”‘V“ e) ?ié(ﬂf)izA(lf)I: z ﬂ2"+1]

The derivation of these formulae is given in appendix C.

The egs. (2.21), (2.22), (2.30), (2.31) and (2.43) now give the complete as-
ymptotic series of the physical wave functions as |A|—>co, considering f as a
free parameter. The series is valid uniformly in 7 € (0, o) and (0, f) €@,, and is an
asymptotic series in the sense of Erdélyi [12] with respect to the scale

A== 0, (2.45)

as |A|—oo.
Now let us express these results in terms of the physical parameters ¢, k
and 4. Then f varies with A in such a way that the coefficients of the as-
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0. BRANDER, Asymptotic behaviour of S-matrix

ymptotic series become A-dependent, and the series is very far from being a
Poincaré type asymptotic series. However, due to the uniform validity in f,
the series is still an Erdélyi type asymptotic series with respect to the scale
(2.45).

Eqgs. (2.32-35) and (2.44) also give an asymptotic series for the physical wave
functions as |1|— oo, valid uniformly in 7€ (0, o) and (6,f) €@,. This series is
an Erdélyi type asymptotic series with respect to the same scale (2.45) as the
preceding series.

Just as the asymptotic series for the Bessel functions the asymptotic series
for the wave functions have asymptotic properties also for |f|- oo [3, 13] with
finite 1. According to eq. (2.8) this limit corresponds to the strong coupling or
high energy limit.

In order to study the asymptotic properties when |f|—co we consider the
bounds for the rest term of the expansion (2.21), given by Olver in ref. [13].
We do not need to reproduce their detailed form here, because our considera-
tions only use the fact that the error bound is proportional to the total varia-
tion of the coefficient of the first neglected term over the path P, of Olver’s
theorem, and is thus proportional to

U;(An)=f I%{An(t;/‘)} dt’ (2.46)
P
or vj(ziBn)=f ’i{z*Bn(t;f)}dtl. (2.47)
o, dt
Now, when |f|-ce,
»(s; /)f_:ofz(l —g & 0 (2.48)
so that iy f : (L—s 2 ™)k ds (2.49)
and thus we have that
Wz f)=0("%) as |f[>oo. (2.50)

These expressions are to be inserted into the recursion formulae (2.22).
To see the effect of this, we make the following scale transformations in
eq. (2.22)
215, g
g LN o (2.51)
z>flz; W—f3iW.

Then the coefficients transform in the following way

{ An_>f_2nAn:

(2.52)
2B, 2" 122 B,.

Thus, the eqs. (2.48-50) imply that when |f|— o then
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{ Aa(z /)= 072", (2.53)

22 Ba(z: f)=O(f*"7Y),

uniformly in z. The same behaviour for large |f| is true for the total varia-
tions (2.46) and (2.47), and the asymptotic series is an asymptotic series in the
Erdélyi sense with respect to the scale

@nH"", n>0, (2.54)
as |f]> oo
Combined with eqs. (2.8) and (2.45) this gives the scale

Fld| [ entet sttt ., g =10, (2.55)

for the Erdélyi type asymptotic series for the wave functions. This was proved
by Tiktopoulos [3] for the error in the JWKB approximation, that is, for n=1.

3. Jost function, S-matrix and Regge poles

The asymptotic formulae for the wave functions, which were derived in the
preceding section, can be used to obtain asymptotic formulae for the Jost
functions.

Let us define the Jost functions as the coefficients f5 of the following connec-
tion formula,

Pr(r)= [@“*fo(l Do) =i 5 (A, ) e- ()], (3.1)

between the regular and the asymptotically in- and outgoing wave functions.
Between the Airy functions used in the preceding section there exists a linear
relation,

Ai () =€} Ai (e ) + e ¥ Al (¥ ), (3.2)

which implies that the asymptotic formulae of section 2 satisfy eq. (3.1) with
the coefficients given by

fo@. 1), ~ 23ki=*""" Cp (2, /) Cx' (4, f) (3-3)
when eqgs. (2.28) and (2.29) are used, or _
fo@. 1) ~ 2ki* "0 cx (4, e (4, f) (3-4)

when eqs. (2.34) and (2.35) are used for the wave functions. Using eqs. (2.43)
and (2.44) we get the following asymptotic formulae for the Jost functions

e, /) ~ 2@]" b+im [1 -+ Z yl"(/)] £10C, 1)~ 1AR, N ~iboh, 1) (3.5)

n=1
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with 1+ 2 2 1 (h_ [1 + E %n (f z Pin f)]_l[l - z 53"(”] (3.6)

1211 Azn +1 il 2.27”—1
oF 10, /) 2] gzkréﬂ-m [1 o 217’2;(”] 16, HFIAG ) —~160A f) (3.7)
with 1+ 320 1y Sl 5GBTSl g

Here the eq. (3.5) is to be used when (0,7)€0®, and the eq. (3.7) when
(0,7)€0,. We note that the expressions for fy(4,f) only differ by the coeffi-
cients of the series inside the square brackets. However, those series are Poincaré
type asymptotic series when A—oco for any fixed f, and since such asymptotic
series are unique, we must have

YIn(f) =y2n(f)=7n(f) (39)

in order for eqs. (3.5) and (3.7) to represent the same function fj(4,f). Thus
the asymptotic formula

i@, f)l:m%krg*'l’" ¢ an [1 + gl”-"zfl—f)] SIABHARD (3.10)

is valid both in @, and O,.

For fy(,f) we get different exponential factors in the egs. (3.5) and (3.7).
This implies that the correct asymptotic expression for f;(4,f) is a sum of two
contributions, each asymptotically dominating in its region of 6 and f.

f(;(l, f) <5 2ik70§+}me——iéu(l,f) [1 1 oi %(f_)il e—tﬁ(l.f) [eiA(l,f)+e—iA(1.f)]. (311)
A—>c0 n=1 &

On the boundary between these two regions, that is, on the curve Im A=0
there appear zeros of fq(4,f) at those points of @,U @, for which

A H)=(nt+Hn, n=0,1£1,%2,.... (3.12)

For the S-matrix we get

fO (2 f) eZié(l )
S, f)= i, f)z-> 1 T EAan? 0,))€EO,U O,. (3.13)
Let us now return to the physical variables g,k and A and assume that ¢
and %k are real and positive and such that arg f= —0. Then the range of 0

becomes 0<60<z/2 and from appendix B, eq. (B. 17), we have that

A(l,f)l:wi[( )unz Aln e’“ fnl 629 @;‘f]qLou T

148



ARKIV FOR FYSIK. Bd 32 nr 8

A-plane

Fig. 9. The asymptotic distribution of Regge poles for the power potential.

Together with eq. (3.12) this gives an asymptotic formula for the distribu-
tion of the Regge poles of the S-matrix in the first quadrant of the A-plane.

The asymptotic form of the S-matrix in the other quadrants follows from the
following two relations,

[ (A, NI* =15 (A%, f*) (3.15)
and (=2, —H=e""fF@A, D, (3.16)

which are both consequences of eq. (3.1), and the form of the boundary condi-
tions for the wave functions. One finds that to each pole A, in the first quadrant
there corresponds a pole in the third quadrant at —A, and two zeros at A,
in the second and fourth quadrant, respectively.

In Fig. 9 we illustrate the asymptotic distribution of Regge poles for fixed
and real g and k£ and a few different m-values.

There are several important facts that one should note about those Regge
poles for the “power potential” (2.1°):

(i) The poles are infinite in number.

(ii) Seen from the origin the angle between the imaginary A-axis and a pole
An approaches zero when n-—co.

(ili)) The poles are not bounded to the right by any vertical line, that is,
when n— ~ we have that Re 4, co.

(iv) The residue of the S-matrix at the pole 4, is
Res, S~ 3i[A’ (An, fn)] * €200nTw, (3.17)

where the derivative of A is taken with respect to A, with g and £ held
fixed, and f varying with .

(v) When m increases from a value near zero to a large value all the Regge
poles move out from the neighbourhood of the imaginary A-axis to certain
positions, which they reach asymptotically when m— co. These asymp-
totic positions coincide with the positions of the Regge poles (Berendt
[5]) for the nonanalytic hard core potential
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oo for r<R
V(r)= 3.18
) { 0 for r>R. ( )

for R=1.

This last fact is most easily proved in the following way. It is well known
that the Regge poles for the potential (3.18) are the zeros of the Hankel func-
tion HP (kR). Writing

HP (kR)= (¢ sin wA) ' [¢™ J(kR) — J _;(kR)] (3.19)

and observing that (Watson [14], p. 225)

s by 5 S G| amaiameenre
J;,(lcR)l_)w T [1 Figl l’] e 5 (3.20)
we find that the zeros of the Hankel function are asymptotically given by the
eqs. (3.12) and (3.14) for m = co and R=1. One should also note that the ‘“‘power
potential” (2.1’) approaches the hard core potential (3.18) as m—oco for R=1.
The first three of the points above, (i-iii), have been proved before by a
number of authors [6], the fourth point was proved in the special case of m =2
by Vogt and Wannier [7], but the points (iv) for general m and (v) seem to
be new results.
It was pointed out by Tiktopoulos in ref. [3] that eq. (3.12) is equivalent to
a Bohr—Sommerfeld phase-integral condition.

4. Other potentials

In this section we shall discuss to what extent the theory of the preceding
two sections is applicable when the potential is not a simple ‘“‘power potential”
as in (2.1").

Let us first discuss the conditions at »=0. Consider a potential of the type (2.1),

Vi =r— 020,

where &(r) approaches 1 when r—0. It follows from the discussion of section 2
that the Limié conditions imply the condition (2.19) for the applicability of the
Olver theorem.

For a potential of the type (2.2),

Viry=r %" §(r)

the second of the Limié conditions is satisfied only for m>2. However, the
condition (2.19) is valid for all m >0, as is shown in appendix E. Therefore,
we can get a slight generalization for this potential and a closer adaptation to
the present method by replacing the second of the Limié conditions by the less
explicit condition

Wz f)=0E"4"), a>0, (4.1)

when z— — oo,
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In appendix D the asymptotic forms of » and » are calculated for the po-
tential (2.1) in the limit f—0. In order that % and » shall not deviate too much
from their values for the “power potential”’ (2.1’), we assume that

waV(r)dr| < oo and f [[V()—r 2 ™" dr| < co. (4.2)
0

If these conditions were not satisfied, the asymptotic form of the wave func-
tions would be different, and we would have to change the boundary conditions
used in section 2. However, neither one of the conditions (4.2) is necessary for
the applicability of the theory of this paper.

In fact, for eq. (2.19) to be satisfied at »= oo it would be sufficient to have
only V(r)—~0 as r—oco. This follows from the same argument as that leading
to eq. (2.24). Thus, the theory could be applied to potentials with a Coulomb
tail, provided that the boundary condition at infinity is modified accordingly.

For potentials satisfying eq. (4.2) we prove, in appendix D, that

ek 2A. eg imA
= W]+o(1) (4.3)

A, f)=1 [(1 +1%) Alnl—A4iln
as A—oco. This is a very important result, since it implies that the whole class
of potentials satistying eq. (4.2) have the same asymptotic distribution of Regge
poles as the ‘“power potential” (2.1'). Let us call this class of potentials the
power potential class:

A potential is said to belong to the power potential class if

(1) as a function of 7 ‘it has an analytic continuation into the whole right
half-plane outside the origin, and

(2) in all directions in the half-plane, except possibly for parallels to the im-
aginary axis, this continuation satisfies eq. (4.2).

Now let us turn to the potentials (2.2) which have a logarithmic singularity
at the origin. We begin with &(r)=1 and transform the Schrédinger equation
by introducing the new variable s,

e oratd
g v (4.4)
The new equation reads
A28 sk mh v almine 108 v
[ﬁﬂi e 2 ] ¢(s) =0, (4:0)

and in this form the energy dependence enters only through the potential term.
Let us for simplicity consider only the case m=1. Then we can put

v=12—gtlnr, f=v"1g, (4.6)
and write the Schréodinger equation in the form
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@&, 1
LEQ"F'V P(&f)"“?sé] @(s)=0 (4.7)
with psH=F—82+fs%ns. (4.8)

Eq. (4.7) is in the correct form for the application of the theory of section 2
with » corresponding to A and with f as a free parameter in the same sense as
there.

The asymptotic series, which is obtained in this theory, will be asymptotic
as y—>co or as yf—>co or, to be more precise, the series obtained for the wave
functions will be an asymptotic series in the Erdélyi sense with respect to the scale

flol+

as |A|—>o0, |k|—> o0 or |g|—>co.
A similar but nonrigorous consideration for m=+1 would give the scale

{I9|+

For the zeros of the p(s;f) of eq. (4.8) we obtain when f is small

{sozf‘l[l .+O(f2 In f)],
sy =exp (1) {L+O[exp (2 )]}, Re[><0.

k
A+g% In-
g

¥ -nin
} S im0 n=12,..., (4.9)

12_*_21 @m%—n-m 2 3
q ng 5 05 =L 2 4.9")

(4.10)

When Re f >0, that is when |arg f|<1x then s, is the only zero of p(s;f).
In fact, s, is important only for f very near the imaginary axis because as can
be seen from the equation

arg s, =Im f*=|f|* sin (— 2 arg §), (4.11)

8, is in the first quadrant only for
7 o
—Z <argf< —24+Z|fE+ 0. j
J <amgf< -2+ IIF+O() (4.12)

Thus, for most values of argf s; is far away in other Riemann sheets.
In order to make p?(s;f) single-valued we make cuts from s, and s; to the
origin. According to eq. (4.11) these cuts coincide for

argf=—~2-—l-g|f|2—g|f|4+0(f6), (4.13)

and for all values of argf between this value and —3}x we have that
arg s; <arg 8.
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7, Lane z-plane
4 woi
1.8/
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IB —-
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Z

Fig. 11. The complex y-plane for the potential —7 2 In r.

In appendix E the asymptotic form of the transformations (2.11) and (2.12)
for small f is calculated for the logarithmically singular potential (2.2) with
m=1. The result is illustrated in the Figs. 10 and 11. It is clear that appro-
priate regions D,(0, f), G.(0,f) and HL(f,f) can be constructed as in section 2,
provided arg s, > &>0 which for real g means

0<arg v<g—%e]f|2+0(f6). (4.14)

On the other hand, the corresponding y-regions can be constructed when
arg s, <arg s, that is, for

T Tt JT TT
E_Z|f|2+§|f|4+0(f")<mgy<-2-_ (4.15)

These two regions overlap. This is necessary for the theory of section 3 to
be applicable also in this case. Finally, fixing an appropriate boundary condi-
tion for the regular function at the origin,
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A-plane

Fig. 12. The asymptotic positions of the Regge poles for the potential —»~21n r are close to the
imaginary axis.

(r) ~ const (—In7) tex = ) (—In T)g_flj (—In r)‘l’} (4.16)
™ P17 3» qv '

we can conclude that egs. (2.30-35), (2.40-45) and (3.1-13) are valid also for
the potential (2.2) with m=1 provided that the A, 6 and §, of appendix E
are used.

This time the Regge poles are localized to a curve near the imaginary A-axis,
shown in Fig. 12. Using eq. (E. 13),

A(’V,g) =1 I:iz »¥—pln y:l +0(A ' In?%) as p—> oo,
v 39 eq

2
we get arg }.=7—2r—z[%\ +O0(A *In?3) (4.17)

as |A|—>co. Since |»|—>oo also when k- oo for finite 2 we can get also the high
energy behaviour from eq. (E.13). The result is that the Regge poles move
asymptotically towards the imaginary axis also in this limit.

The main difference from the “power potential”’ case is that this time the poles
are bounded to the right by some vertical line. Moreover, this is valid uni-
formly for all energies.

This result is very interesting since it indicates that a Mandelstam representa-
tion with a finite number of subtractions might be valid for those potentials.
We intend to discuss this more fully in a future publication.

Let us define the following class of potentials: A potential V() is said to belong
to the logarithmic potential class if

(1) as a function of r it has an analytic continuation into the whole right
half-plane outside the origin, and

(2) in all directions in the half-plane, including parallels to the imaginary
axis, this continuation satisfies

J‘w | V(r)dr|<eo, f [[V(@)+r2Inr] (—Inr)irdr| <oco. (4.18)
0
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All those potentials have the same asymptotic distribution of Regge poles, namely
the distribution illustrated in Fig. 12. A brief proof of this statement is given
in appendix E.
Yukawa behaviour at infinity,
V(r)=0(@"'e ™) as r-—>oco, (4.19)
is not allowed by the conditions (4.18). For such a potential we get from eq.

(E.7) the following modified form of eq. (E. 13)

gy ol 2 5 2y
A(v,v) 1{39211 v In eg}-l—O(lnv). (4.20)

The larger error term of this equation as compared to eq. (E. 13) does not
affect the asymptotic form of the curve on which the Regge poles lie,

‘ +0(A*1n 2), @.17)

but it may very well affect the exact positions of the poles on the curve. How-
ever, the important point is that the poles are bounded to the right by a ver-
tical line also when we allow Yukawa behaviour at infinity.
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APPENDIX A
In this appendix we shall show that the transformation (2.11) is conformal

at s=s,, corresponding to z=0, and that W(z; f) is analytic at 2=0.
Consider the Taylor expansion of p(s; f) around s=s,

psH=a,x+Ea, 22+ 0%, z=s—s, (A.1)

This expansion is uniformly and absolutely convergent inside a circle of positive
radius, say b>0. When inserted into eq. (2.11), eq. (A.1) gives

z %
u=a]*f [1 +2——; x+ O(x )] dz = %at l(;zfﬁ 22+ 0(x') (A.2)
i

0
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Ay
10a,

and z=—alzx [1 + x+ O(xg)] : (A.3)

Thus z as a function of s has no branch point at s=s,, it is analytic, and the
mapping is conformal.
Next consider W, defined in eq. (2.15). Put

Wz f)= +20Q(8; /), (A.4)

R
16 22

and derive from eq. (A.1) the power series expansion of () around s=s, A
straightforward calculation gives

5 3
Q(s; f)=mx_3[1 —ﬂ)%—lm-FO(xz)], (A.5)

which together with eq. (A.3) implies that

1 s s 5 5 _ 3a, 1 1
zW(z, 1) 1623+16a1x3[1 10a1x+0(x )] O(x)’ (A.6)
that is : Wz f)=0(1) as z—0. (A.7)

Thus W has no pole at z=0 and W, being a rational function of functions ana-
Iytic in a neighbourhood of z=0, must be analytic at s=0.

It is clear that the above considerations apply equally well to the transforma-
tion (2.12) at s=s; corresponding to y=0, and to w defined in eq. (2.17) at
y=0.

APPENDIX B

In this appendix we shall study the asymptotic forms of the transformations
(2.11) and (2.12) for the “power potential’.

Let us begin with the asymptotic forms of the transformations when f—0.
By writing

P =P =1~ PFa™) s s " —g") (B.1)
and %(s-f)=s*1(f282—1—f23-'")%+0(f—2 B e ) (B.2)
g ? s (Fe—1-Fami)’ ‘

we obtain for small f a good approximation to p?! in a large environment of
the point s=s,.

As we are interested in u, which is the integral of p*, we need an estimate
of the integral of the error term in eq. (B.2),
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S d. :
o [olrsn] %) =0t tor 151214
Sdss™—gp™ so S
= ‘4 i
' 0( sglf slf,,,)=0(/2) for |s|=1.

So

We note that the singularity of the integrand at s= —s, is integrable, and
does not affect the result above.
It follows that
s
u=f B(pst—1-pami+ o) (B.4)

for all s outside a circle of radius 0(1) around the origin.
The integral in eq. (B.4) is easy to calculate and we obtain

2

u=f(s* —s)* — fs, arctg (z?, = 1)% +O(f%)
The phase factor of this last equation is to be taken as
exp {34z sign (arg s —arg s,)}-
This implies that for large s
u=fs—}m+ O™+ 0™, (B.6)

where we used the stronger form of the error term according to eq. (B.3). This
in turn implies that the JWKB phase-shift

o4, f)=lim (Au— Afs+ % 7A) (B.7)
satisfies 8(A, f)=O0(fF™™) (B.8)

as f—0.
For small s we try another approximation

2 o2
P =5 (PE—1-Ls™i+0 (ﬁ T jm)é), (B.9)

analogous to eq. (B.2) but this time constructed to be well behaved near the
point s=s;. We note that the error term is large near the points s=s; exp
(2min/m), n=+1, +2,.... However, it is integrable also at those points and we
get for the error in »
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O(fsﬁf s'l"'*mds)=0(f2“””) for |s|<|s|
e 0 (B.10
- s (sl—m_s—M)«} ” . )
O(fsl’"f sds)=0(f2) for |s|s1.

S1

ds

3 (s1™—s~ ™+ 0(f) (B.11)

s
Thus v=f

for s inside a circle of radius O(1) around the origin. Calculation of the inte-
gral in eq. (B.11) gives

R [ REC [ R R

In particular, with the stronger form of the error term according to eq. (B.10),
we obtain for small s that

v= ii%fs-w+0(/2+4"")+0(s%m), (B.13)

the sign being sign (—arg s+ arg s,).
This implies that for the function

8, (2, f) =lim (zviiws-*'"), (B.14)
s->0 m
we have that 8o(2, f) = O(AFTH™) (B.15)

as f—0.
Egs. (B.5) and (B.12) have a common region of validity around s=1. There-
fore, these two equations can be used to calculate the function A, defined by

A(l,]‘)=lu—lv=lf pt(s; f)ds. (B.16)
So
A straightforward calculation gives

’ 2 2 ix
—il ot o G 2 ¢
A(4, f) _M{(l +m)lnef m}-l O(Af*) (B.17)
as f—0, where the sign is to be taken as sign (arg s,—arg s,).
Let us define the functions §,d, and A by eqgs. (B.7), (B.14) and (B.16),
respectively, also when f is not small. Then the following asymptotic formulae

are valid for all f,
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fs—ta+2710(A, ) +O0™") as s—>oo

CT) s AR )+ A0 )+ 0 as 80 tBAe)
fs—3ma+A0H—ATAM, )+ O0EY) as s—>oo
and D= o (B.19)

i% §IME 2718, (A, /) + O(st™) as s—0.

The asymptotic forms of 4, §, and A as f—0 are given by the egs. (B.8), (B.15)
and (B.17). As f->oo, u and v become proportional to f and

0 (4, /)= O0(4f)

0o(A, /)=O0(Af)  as f—>oo. (B.20)
A2, f)=0(4f)
APPENDIX C

In this appendix we shall give the derivation of the formulae (2.43) and (2.44)
of the text.

We begin by studying the asymptotic form of the expression

z\1 2z oises 2 A4,
=2 wa-z(z’szrg(‘p(s;f)) [A“ i
+e¥ 7% Ajf (eT871 1¥ ) Z }.“f)] (C.1)
n=0

when s— oo,
From appendix B we have that

u ~ fs—3n+2A7"0(4,f)

§—=> 00
and using the fact that
Ai(z) ~ —2 texp (—g2!
@), 5727 Lo (i)
(C.2)
1
i’ PO e PP — 2,3
Ai (z)lzl-»o 2V7_zz exp (— 3z¥)
we obtain after a straightforward calculation the result
z\1 1 X . 2 (f) ARy
(—1—0) ys,2(2 )s:‘;';r Vnrof k) Huga =Yg g1 [1 + Z ‘?;Ml]exp {Fiafs}.
(C.3)

The functions f of this equation were defined in eq. (2.42).
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Using eqs. (2.28) and (C.3) on the left and right hand sides of eq. (2.31) we
now get that

C (&)~ EV——TOf byt [1 ¥ Z /i’;';gl)] = A1) (IS, (C.4)

The expression in the square brackets is an asymptotic series of the Poincaré
type when A—co (or when f— oo, as follows from the discussion at the end of
section 2 above). This is in contrast to e.g. eq. (C.1), where the series is only
asymptotic in the Erdélyi sense. We will use this observation in section 3.
The same technique can now be used to obtain the functions c., 0y and cp
of the egs. (2.35), (2.30) and (2.34).
Using the formula

v ~ fs—}m+A100, H—ATAM )

§—> 0

from appendix B, we get

cz' (4, Pul 5

12n+1

‘1/ r*f R [1 < Z 5471 (f)] » & (A—=1/g) e:Fié(Z.f)iiA(l.f). (0_5)

Similarly, from

w ~ z~2—’fs m i ATTAL D+ A16,(A, ),

s—=>0

we get that

1
“ ! ~1/g JIAQ,f)+iG6(A, .
(_f)) (z;_,oogl/ 1}]« i) la A S)+100A. 1)
s—>0 7

x[w an(f) z Bun (f ] i exp{ 22 %m}, (C.6)
n=0

227» lZn +1 m

which implies that

R (A f)AN 2:/* rodm kg [§ an (f) _ Z P ( f)] JAGD HOGD) (C.7)
>0 7T

s }.Zn }.2"+1
n=

Finally, from v~ i%‘s‘*’"+l“160(1,]‘)

s—=>0

we obtain in the same way

ro_*mf‘_*ﬂ.'l/‘ I:E 052n(f) 2 /327; ] 1&0(1,/)‘ (C.S)

= ZZn 22n+

) 1
¢z (4, o T

T

The expressions within the square brackets in egs. (C.5-8) are Poincaré type
asymptotic series, just as the corresponding expression in eq. (C.4).
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APPENDIX D
In this appendix we shall study the influence of the factor &(r) of eq. (2.1)

on the calculations of appendix B for the ‘“power potential”.
To this end we put

p(8 ) =828 —1— Pag™ E(sp)] — [P 2[s7™ &(8) — 85 ™ &(8,)] (D.1)
and observe that E(s)=o0(s'"™) as s> oo (D.2)
and that Be=T ' [T+6lf]] &5 f50 ", (D.3)

Using the method of appendix B we get also here eq. (B.5) for u, but this
time with the error term

ff dss” '"E é;o);"f(so (f IVs)dS)_O(f) (D.4)

for |s|=|sy| and f>0. Here we used condition 4 of section 2 on the potential
at infinity. For |s|<|sy| we instead split p(s;f) in the following way,

=t e =1 PP pa TR EG—1} (D.5)

By neglecting the last term we make the following error in the calculation of u,

ff e mf[_g(s)_m)% (f V(s ds) of) if |s|z1,  (D.6)

as f—>0. From the first term of eq. (D.5) we then get the same u as in appen-
dix B, eq. (B.5).

Also for small s the splitting (D.5) of p(s;f) is effective, but in order for the
error, made by neglecting the second term, to be small, &(s) has to approach 1
sufficiently fast, such that the integral (D.6) is convergent at s=0. The condi-
tion for this is

f(,'ds sTITim[E(g)—1]| = f0|ds g P(8) —872 ]| < o0, (D.7)

This is a condition on how much the potential may deviate from the power
potential near the origin, and still have the same asymptotic properties.
When eq. (D.7) is satisfied, we have

O(ffdss'1'*'"[f<s)—1])=o(f> it |s|s|a]

g ’"[E S)—l]

f = s M)i s
(,m f dssms)_s—w])=o<ﬁs> if |5y <] <ol

(D.8)
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as f—~0. From the first term of eq. (D.5) we then get the same v as in appen-
dix B, eq. (B.12). _

This last assertion as well as the corresponding one after eq. (D.6) is true
only if we can neglect the differences between this appendix and appendix B
with regard to the lower limits of integration for # and ». To justify this we
first observe that eq. (D.7) implies that

8y= MM LInE) Loof)), (D.9)

It then follows from eqs. (A.1l) and (A.2) together with eqs. (D.3) and (D.9)
that the differences of lower limits of integration only correspond to an error
o(f!) in » and .

We have thus proven that the asymptotic forms of appendix B for « and »
in the limit f—0 are changed at most by o(f) if a &(r) such that

fle(r)dr|<oo and f|[V(r)—r—2""']r“*’"dr|<oo. (D.10)
0

is inserted.
Joining the expressions for % and v at some point s, 1<|s|<|s,|, we now
get the following expression for A(4,f),

AU =50 {(1 +%) 1n—f—f—%}+ o(f) (D.11)

as f—0. This is the same result as in appendix B, except for a change of the
error term. For the JWKB phase-shift there is also a change in the error term,

O(A, f)y=o0(Af) as f—0, (D.12)
but for d, eq. (B.15) is still valid.

If we happen to know more about the behaviour of the potential at infinity
than what is contained in the condition

fw|V(r)dr|< o,

then the error bounds may be sharpened. Say, for example, that we have the
physically plausible situation that a Yukawa potential is dominating at infinity,
that is,

V(r)=0(@"te ") (D.13)

as r—~oo. Then eq. (D.4) instead reads

[} asTEGZR LD o (jmee) [ §) -0y a1
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and thus oA f)=0 (exp { - %}) (D. 15)

when A— oo, and eq. (B.17) is valid for A.

APPENDIX E
In this appendix we shall consider potentials with a logarithmic singularity
at the origin.
For a potential of the form (2.2),
V(r)=r2(—Inr)"&(r),
with &(r)—>1 as r—0 we have that

"dr 4 2zf

~ 1 — = 3 1+3im

ur_)ozf r( In 7) b 2+m —1In 7) (E.1)

and thus z ~ const (—In 7)3&T™, (E.2)
r=>0

In order to test the condition (2.19) at »=0 we calculate the asymptotic form
of W(z;f). Observing that cancellations take place between the largest terms,
we obtam

Wz )=0[z(—Inr) 2™+ O0[zr(—Inr) ™& ()] +O[z*(—Inr) "E (1] (B.3)
as 70, z—>co. Only assuming the very reasonable condition

€ (r)=0[(—Inr)™], P& (r)=0[(—Inr], (E.4)
it follows that
Wiz )= Ol( =Inn)-h =0 i ™ aam) (E.5)

as z—oo and eq. (2.19) is satisfied in this limit for any m>0.

Let us now specialize to m =1, &£(r)=1 and calculate the asymptotic forms when
f—0 of the variables » and v explicitly.

We begin by writing

p(s; ) =8 2(fPsP— 1+ In s) + P52 1nsf, (E.6)

0

and estimate the error in % from neglecting the last term of eq. (E.6) to

0(/‘2 In? i) for any s
f In (s/so) L (8/80) So <
1) s @=F s . (E.7)
O(ff |V(s)ds|)=o(f) as §—> oo,

when f—0.
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Thus, we have that outside a circle of radius not less than |s,| exp (—|f|?)
and centered at the origin  is given by

2

u=f(s*—s5)t — fs, arctg (23— 1)% + o(f). (E.8)

Except for the error term this is the same expression as in appendix B.
To get an approximation for very small s we write

)= —s 1= Ins)+f (E.9)

and estimate the error in v from neglecting the last term of eq. (E.9) to
8 sds O(f*st) if [s|<|s]
f 2 _ T 2y (KA
aAf2—lnel% | Oy “af~ |8 21
as f—0.
Thus inside a circle of radius O(1) and centered at the origin v is given by

v= —33;2 (1—7F2Ins)t+ O(f). (E.11)

In particular, we obtain that for small f

v=—2if(—Ing)t—if Y(—Ins)t +O[f3(—1Ins) ¥)]+ O(fs} (E.12)

as s—>0.
For A(v,f) we obtain from the eqs. (E.7), (E.8) and (E.11)

A, f)= i‘iv{g—i—z—ln 6—2f}+0(vf2 In® f), (E.13)

as f—0, where the sign is to be taken as sign (arg s, —arg s,).

Allowing now a factor &(s) in the potential (2.2) with m=1 we still get eq.
(E.8), provided |V(s)| is integrable to infinity. For the behaviour at small s,
we get in analogy with appendix D that eq. (E.11) is valid with the error term
o(f), provided the potential satisfies

f|[V(r)+r.21nr](—mr)érdr|<oo. (E.14)
0
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