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1. Introduction
An understanding of the interaction between neutrons and moder-

ators is of great importance in the development of nuclear reactors.
The first experimental study of t his process was undertaken by Fermi
in 1934 shortly after the discovery of the neutron by Chadwick in
1932, but more extensive studies of the subject were not taken up
until after the discovery of f ission by Hahn and Strassmann in 1939
and the experimental proof of the possibility of a chain reaction in
1942.

The theoretical foundations go back to 1895. In that year Boltz-
mann completed his formulation of the particle diffusion problem.
The linearized classical version of this formalism was first used for
the description of neutron phenomena by Ornstein and Uhlbrich in
1937. Although the Boltzmann equation is well established, exact
solutions can seldom be found in practical cases. This depends on
the mathematical difficulties involved in handling simultaneously the
seven variables of space, velocity and time, and in addition on the
fact that it is not entirely clear how to represent mathematically the
physical situation represented by the scattering kernel, the cross
sections and the boundary conditions.

The interaction between neutrons and moderators has been treated
experimentally by two different kinds of methods, namely differential
measurements where the intention is to clarify the detailed inter-
action between the neutrons and the moderator, and integral measure-
ments where the information is collected in a small number of funda-
mental parameters. A review of the developments in models and
measurements can be found in e.g. Williams [1], where references to
the above-mentioned works are also given.

One of the most widely used experimental methods is the pulsed
neutron source method. The time behaviour of a short burst of fast
neutrons injected into a moderator can be divided into three parts,
the slowing-down period, the thermalization period and the diffusion
period. During the slowing-down period the energy of the neutrons is
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so high that the moderator atoms can be regarded as free and at rest.
In a hydrogeneous moderator this period is followed after a few
microseconds by the thermalization period, during which the motion
and binding of the moderator atoms come into the picture. After
about 15-20 microseconds an energy equilibrium is attained. The
neutrons diffuse and may also reach a spatial equilibrium, asymp-
totically characterized in space by the Helmholtz equation and in
time by a pure exponential. Measurable quantities are the decay
rates during the different periods and the time dependent neutron
distribution.

The basic ideas of the pulsed source method were developed during
the fifties. A review covering this time period is given by von Dardel
and Sjöstrand [2], The work of the sixties is elucidated in reports
from three international conferences, which were partly devoted to
the subject. They are "The Brookhaven conference on neutron ther-
malization" [3], "Pulsed neutron research" [4], and "Neutron ther-
malization and reactor spectra" [5],

The pulsed neutron source method is one of a group of methods
connected with the generalized dispersion law of neutron diffusion:

Z(—k2 , iœ)= 0 • (1)

where k is a wave number-like and œ a frequency-like parameter [6],
The dispersion law depends on the diffusion parameters and can be
written, in conventional notation, as

X=X0+DB2—CBi+O(B 6) (2)

(This is eq. 2.1 of paper G.) Here À is the decay constant ina finite mod-
erator with the buckling B2.

Other types of experiment can be performed by setting up other
initial and boundary conditions. A "poisoning" experiment is a sta-
tionary experiment where B2 is substituted by (— x1) and À by a [7],
Here x is the inverse relaxation length and tx the product of the
velocity and the absorption cross section for the added absorber.

Ä=_Ao+Dx2+CV+0(x6) (3)

If the decay is controlled the part of the dispersion relation corre-
sponding to A>0, B2<0 can be measured [8] (See fig. 1). Finally, if
the frequency parameter is allowed to be complex, we have the ex-
periments involving the propagation of neutron diffusion waves [9].

Inspired by some theoretical work by Case [10], Corngold [11] has
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Continuum region
Corngold l imit

Fig. 1. The generalized dispersion law of neutron diffusion.
The stars denote the limiting values.

shown that the point spectrum of the decay constants disappears at
sufficiently large values of the buckling leaving only a continuum.
The maximum value of the decay constant is given by the minimum
of the product of the velocity and the scattering cross section and is
often called the Corngold limit. The limit is high in hydrogeneous
media, but owing to the Bragg cut-off is low in crystalline media.
Experimental evidence for the limit in Be was given by Fullwood
et a l. [12]. It is interesting to note that they had to follow the decay
for five decades and make a comparison measurement on polyethylene
with the same decay constant before they were able to establish
the effect. In later work [13] the effect was shown to be caused by
"trapping" of neutrons in the low energy region. A measurement of
the time dependent energy distribution gave varying neutron energy
spectra for bucklings higher than the Corngold limit.

The material presented in this thesis can be divided into three parts.
The first part describes a measurement of the slowing-down time by
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a static method (paper A). The second treats the development of an
electronic system, the methods of calculation and the data handling,
for precision measurements obtained by the pulsed neutron source
method (papers B, C and D and some parts of papers E, F and G).
In the third part (papers E, F and G) it is shown that decay constant
variations and trapping effects can be caused not only by the velocity
dependence of th e cross sections as in the case of Be mentioned above,
but also by their space dependence. A special method for eliminating
this delay effect experimentally is treated in paper F.

2. A measurement of the slowing-down time
in water by a static method

The purpose of the work described in paper A was to obtain an
independent check of a measurement of the slowing-down time in
water performed with a pulsed neutron source by Möller and Sjö-
strand [14], For H20 there are three modes of internal vibration
having energies 0.205, 0.474 and 0.488 eV. The thermal effect can
therefore be expected to influence the slowing-down time at neutron
energies lower than about 0.5 eV. Möller and Sjöstrand showed that
a thermal effect exists at 0.2 eV, and in some earlier work [15] we
confirmed the result of DeJuren [16] that the thermal effect is negli-
gible at 0.5 eV. In the work described in paper A the precision was
increased at 0.5 eV and a new measurement was performed at 0.3
eV. The result is in agreement with the conclusions of Möller and
Sjöstrand and has been confirmed since by the calculation of G hatak
and Krieger [17],

3. Measuring system, numerical methods and corrections
for the pulsed neutron source method

One of the important parameters in the pulsed neutron source
method is the fundamental decay constant. It can be determined
from the measured decay curve. Two problems arise however. At
the beginning of the decay the fundamental is mixed with higher
modes. At the end its behaviour is obscured by background. The
higher modes may be resolved by the use of a Fourier technique
[18] or partly resolved by a suitable choice of detector position. The
background is directly connected with the gamma sensitivity of the
detectors. In many situations the BF3 detector has proved to be the
best choice in diffusion experiments. It has an acceptable time resolu-
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tion and a very low gamma sensitivity. In order to avoid time-of-
flight effects, however, the detector volume must be small compared
with the dimensions of the moderator. This gives a low neutron
sensitivity. The provisional siting of our laboratory (an appartment
house) imposes very severe restrictions on the permitted radiation
level in the surroundings. We can not therefore use the full capacity
of t he small accelerator and this must be compensated by the highest
possible neutron sensitivity in the detectors. The Li-glass scintillators
chosen have not only high sensitivity but also small time-of-flight
effects and a good time resolution.

The background can be suppressed by amplitude or pulse shape
discrimination. We have tried both these methods but without
success. Another method has therefore been adopted. The pulse
amplitude distribution around the neutron peak is measured for all
time intervals. The background is then subtracted by a numerical
method which makes use of the difference in shape between the
amplitude distribution of the background pulses and the neutron
pulses. We have found that 32 intervals are needed in order to get
sufficient material for subtraction of t he background. If four detectors
are used, a1024 channel analyzer has only room for eight time intervals.

The problem of using a given number of intervals most effectively
has been studied by Janossy [19]. However, his suggested subdivision
of the measuring time is too complicated to be included in the logics
of the equipment. Another sequence of time interval widths was
therefore chosen, using a logarithmic time scale. It is described in
paper B, and different numerical methods based on this time scale
are analysed in paper C.

The basic principles of the system are described in paper B. The
equipment has since been continuously improved. Since the descrip-
tion of these improvements in the papers following paper B is mixed
with the application for each separate experiment, a summary of
the most important developments will be given here.

One problem connected with the linear circuits of a system designed
for the pulsed source method is that the system must be able to
handle low as well as high intensities. During the neutron burst
the linear amplifiers are near to overloading and therefore the recovery
time must be short. In the work described in paper B a baseline
restorer was incorporated in order to decrease the amplitude shift.

In connection with the work described in paper E the part of the
system which handles the output from the linear amplifiers was re-
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designed. The advantage of the new unit is that the interaction be-
tween the different detectors is minimized. Fast logics working on
the leading edge of the amplified detector pulses activate a gate system
in such a way that only the actual signal is transferred to the analog
to digital converter. The new unit also opens up the possibility of
exchanging the time to digital converter as only one of the four
detector lines is now used. For the best working conditions four
baseline restorers are needed. For economical reasons these were not
included before the work described in paper F. In paper G an example
is given of the flexibility of the system.

The principle behind the main part of the dead-time correction is
given in paper B. A numerical check on the method is described in
papers C and D. In paper C a method based on the coincidences
between the detectors is described for correcting for the extrinsic
dead-time, but a better method is introduced in paper D. The latter
has the advantage of giving an amplitude dependent correction and
it therefore also increases the accuracy of the background correction.

The data handling was performed on an IBM computer. The direct
access method was used with the programs and the intermediate
results stored in a disc memory. The method is practical as the data
handling can easily be altered in order to match new experimental
situations, but it is rather uneconomical as large amounts of data
have to be transferred between the disc memory and the computer.

4. Previous and contemporary work concerning
cavities in moderators

The possibility of using the pulsed neutron method to determine
the buckling was proposed by Sjöstrand et a l. [20], Sawyer [21] used
the method to study a cylindrical assembly with one concentric void
in a water system. He obtained satisfactory agreement with a sta-
tionary theory for small void dimensions but noted deviations for
large values. An extensive study using the same geometry has been per-
formed by Ocasio-Cabanas [22], The result was compared with several
static models, but the agreement was bad, especially at large values
of the void diameter.

Copie et a l. [23] have studied the effect of channels in a plexiglass
system. They obtained a result that deviated widely from the theo-
retical predictions obtained using both the classic method of Behrens
[24] and a static Monte Carlo calculation. During a study of t he condi-
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tions in a bore hole for oil prospecting Mills et al. [25] found that
porosities increase the content of higher harmonics.

The first attempt to include a correction for the delay effects in
the cavities was made by Page [26]. Considering the decay in the
cavity as a source term he obtained good agreement with a static
theory by Leslie [27],

The experiments mentioned so far were performed with hydro-
geneous moderators. Graphite moderators have been studied by Deniz
et al . [28], They included corrections for the delay time in the cavities
and indicated clearly the differences between stationary and dynamic
systems. In spite of this they found systematic differences between
the calculated and measured values of the radial diffusion constant
which are still not explained.

Joshi et al. [29] made measurements on BeO but did not correct
for dynamic effects. This was also the case in the work on graphite
reported by Zezherun [30], The deviations from the theory were not
so large as in the hydrogeneous case. This depends on the lower
values of the decay constant.

Bull [31] and Dance [32] have included the time delay effect in
their analyses. They have also found experimentally variations in the
asymptotic decay constant which they attributed to trapping effects.
The experiments of Dance also show that the time-of-flight effect
can be so strong that no fundamental pseudomode can be found.

It is interesting to compare these results with those from static
sigma pile measurements. Palmedo et al. [33] show that the decay
is not exponential in the direction parallel to plates of Al in H20.
This behaviour has been confirmed theoretically by Williams [34],

5. Studies of the influence of cavities on the decay
of the neutron field

We have approached the subject of cavities from quite a different
point of view, namely the interaction between subcritical assemblies.
A measurement of the interaction by Kiyose et al. [35] using the pulsed
neutron source method gave a result very different from equivalent
measurements with subcritical assemblies [36], In paper E we show
that the difference is caused by the time of fl ight of the neutrons in
the space between the moderators and that this is a dynamic effect
which depends not only on the geometry of the cavity but also on
the decay rate of the system. It is further shown that the gap between

11



the two moderators introduces large variations in the decay constant.
From a theoretical point of view there are good reasons for believing
that a pure fundamental asymptotic decay constant does not exist.

The effect introduced by the inhomogeneity can be looked upon as
a trapping effect. Neutrons moving in directions nearly parallel to
the gap or with velocities near zero have flight times that are long in
comparison with the decay of the system. Experimentally this delay
effect is important in connection with the time-of-flight method for
measuring the velocity distribution of neutrons.

One can also use the arguments of Corngold [11] in order to explain
the effect. In the cavity the Corngold limit is zero. The cavity there-
fore extends the continuum in the spectrum of decay constants down
to zero and a pure asymptotic exponential does not exist. The Corn-
gold limit in hydrogeneous media is about 300,000 s_1. It is therefore
very difficult to establish the limit experimentally in a homogeneous
moderator. However, the cavity introduces a continuum that covers
all positive real decay constants and so offers the possibility of s tudy-
ing the influence of a continuum in hydrogeneous media.

Another way of approaching the problem is to introduce the con-
cept of "importance". The importance of the neutrons in the gap
increases as the field in the moderator decays. On the other hand an
absorber placed in the cavity reduces the number of neutrons. The
time-of-flight effect can therefore be eliminated by introducing a
1/v absorber. This idea was used in the work described in paper F
in order to solve the original problem, the measurement of the static
interaction between two moderators.

The delay effect can be divided into a space effect and a velocity
effect. In the case of plane symmetry the space effect predominates
and in a practical finite system the loss of neutrons through the
cavity complicates the picture. A more well-defined experiment can
be performed by using spherical symmetry. Paper F treats this case
and it is shown that a strong velocity effect does exist. In addition it
is shown that the same kind of time dependence as in the plane ex-
periment occurs in this case also.

Some irregularities detected both with plane and with spherical
symmetry are interesting. They cannot be explained by the quasi-
stationary methods used but might be connected with the theories
of diffusing neutron waves. Such effects have in fact been demon-
strated [37, 38], However, a more careful study of these topics is
needed to confirm and explain the effects.
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Measurement of the slowing-down time of
Ra-Be neutrons in water
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S U M M A R Y

The time for slowing down of Ra-Be neutrons to the cadmium and gadolinium cut-off energies
in water has been measured with a stationary method to 1.60 + 0.07 and 2.47 +0.11 fxs respectively.
The method uses the fact that the cut-off ratio of the total neutron population in a moderating
medium is equal to the ratio between the total mean life time and the mean life time of the neu-
trons above cut-off. For a medium having 1/v absorption the cut-off ratio is directly related to the
slowing-down time. The measurements were performed with a small BF3 proportional counter
and with filters of cadmium and gadolinium having cut-off energies at 0.5 and 0.3 eV respectively.
It is shown that the correction for the flux perturbation of a gas detector can be calculated with
sufficient accuracy using the PI-approximation.

A neutron source with the intensity Q n/s is placed in an infinite moderating me-
dium, where it causes a neutron density n(r,v). The total number of n eutrons N and
the number Na of neu trons with velocity larger than vc in the medium are then

A neutron balance gives us directly the mean life time of the total neutron population

and the mean life time of the neutron population above the velocity vc

Introduction

( 1 )

(2)
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Thus we can write

t N y-jrwrR' (3)

where R is the cut-off ratio of a 1/v detector, i.e. the ratio of t he integrated counting
rates observed without and with a filter having a cut-off at vc. Let us define the slow-
ing-down time (ts) as the average time a neutron spends from birth to reaching the
cut-off energy. The difference between the slowing-down time and the mean life
time is due to the absorption. If the absorption cross section is 1/v dependent and has
the value 2a0 at the velocity v0, a neutron balance for the neutrons above cut-off will
give us

ts= Q~Na-ï^0 (4)

and thus \-—R— 1. (5)
tS

This has in another way been shown by DeJuren [1], who calculated the slowing-
down time to cadmium cut-off using a value of R measured by Walker [2]. The aim
of W alker was, however, only to obtain a correction for the epithermal flux in connec-
tion with a source calibration. For this purpose he got a sufficiently good value with-
out making detailed studies of the disturbance caused by the detector etc.

In this work we have measured the cadmium ratio in order to determine the slow-
ing-down time to 0.5 eV with higher accuracy. We have also measured the gadolinium
ratio in order to get a value of the slowing-down time to 0.3 eV.

Experiment

The experimental arrangement is shown in Fig. 1. The source, 99.7 mC Ra(a, n)Be,
is fixed through an aluminium tube in the centre of a cylindrical aluminium tank
(height 100 cm, diameter 90 cm) filled with water. The BF3 proportional counter uses
boron enriched to about 95 %, has 0.4 mm copper walls and the active dimensions 50 x
13 mm. By an aluminium tube the detector is mechanically and electrically connected
to the preamplifier, which is sliding on two horizontal steel tubes. The distance be-

Table 1.

Distance in cm between
source and detector

Hun from to in steps Filter

0 16.0 35.5 0.5 None
1 2.3 20.0 0.1 None
2 2.4 10.6 0.2 Gd
3 2.4 9.6 0.2 Cd

4 10.0 None, Gd, Cd
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Preamplifier

Timer

Scaler

Amplifier
BF3

Proportional
Counter

H.V. s upply

Fig. 1. Experimental arrangement.

tween detector and source is indicated on a steel scale. The cylindrical filters are made
out of a 600 mg/cm2 cadmium sheet and a 150 mg/cm2 gadolinium sheet.

The measurement was separated into 5 runs according to Table 1. It will be shown
later on that this separation is justified and that drift in the electronics between the
runs will cancel. Every run took about one day. The purpose of r un 0 is to determine
the exponential part of t he total neutron distribution. Runs 1 to 3 give the main part
of the total, the epigadolinium and the epicadmium distribution. Run 4 gives a
comparison between the different distributions.

Data handling

The total cut-off ratio can be written

K =R(a)y, (6)
C

where R(a) is the cut-off ratio at the radius a and

/*00 /»oo

n(r, v) r2 • dv • dr
It = J° j°r , (7)

n(a, v)dv
J o

/»OO /»oo

J o JV c

n(r, v) r2 • dv • dr
• (8)

I n(a, v)dv

In order to evaluate the integrals analytically the measured distributions multiplied
by the square of the radius are fitted by the following function:
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Fig. 2. The function / for the three runs. The curves have been normalized so that/(10) = l.

f(r)= A(1 — e~^r~c)' )e~xr. (9)

The constant a is calculated from the exponential part of the total distribution, and
it is assumed that this value can be used also for the other distributions. This means
that the spectrum at large distances from the source has reached an equilibrium. The
constants A, ß and c are obtained with the method of least squares from the data of
the actual runs.

The goodness of f it is demonstrated in Figs. 3, 4 and 5 where A/ is the difference
between the measured and the calculated values. It is seen that the function excel-
lently represents the data from the measurements with filters. There is some devia-
tion for the first values of the total distribution. The numerical difference is, however,
small and the effect on the integration can be neglected. Another weakness of the
function is that it gives zero for r=c. Also this can be neglected if the integration is
taken from r = cinstead of r = 0.

Another check of t he function j(r) is to use it to determine the age r. For the filter
measurements
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Fig. 3. The difference in per cent between the primary data and the function/for the measurement
without filter.
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with cadmium filter.

J:f ( r ) r2 • d r

T 6 6

and for the measurement without filter

/*cc

J o
f ( r ) d r

(10)

^thermal ^ j
D

where i is the thermal diffusion length. The result is

Tea = 47.4 ±0.7 cm2,

rGd = 48.3 ±0.7 cm2,

^thermal = 50.7 ± 0.6 Cm2.

Table 2.

Run 0 Run 1 Run 2

Filter

(11)

Run 3

Symbol None None Gd Cd

A 255 100
1 800

a -0.10 585
• 0.00 026

254 600 2444 1532
200 10 7

c 0.52 0.41 0.42
0.02 0.04 0.04

ß 0.0167 0.0366 0.0406
0.0001 0.0008 0.0010

I 17.12 17.05 17.23
0.06 0.12 0.12

r2 350 290 285
4 4 4

yfcs(10) 1.0234 1.0245 1.0245
/(10) 68 670 819 519

219



G. GR OSSHÖG, Measurement of the slowing-doivn time of Ra-Be neutrons in water

L2 is here assumed to be 7.67 cm2. ANL 5800 [3] gives seven rather scattered values of
the age to the indium resonance for Ra-Be neutrons. They give the mean value 49.8
cm2 for the age to cadmium cut-off if we take the age between the indium resonance
and the cadmium cut-off to be 0.6 cm2. The agreement is rather good, but of limited
value as acheck of the function / because of the large deviations between the different
measurements of the age to the indium resonance.

The data handling is programmed for the electronic computer FACIT EDB. The
program corrects the primary data for deadtime and for the finite volume of the
detector, determines the constants a, ß, c and A with error limits, makes the integra-
tions, determines r2 and the error limits of I and r2. The result of the calculation is
summarized in Table 2. The figures below each value are the limits of e rrors.

Corrections

The primary data have been corrected according to the following list.

a. Space independent corrections:
Flux depression,
Leakage through filter.

b. Space dependent corrections:
Finite volume of t he detector,
Unsymmetrical parts of the neutron distribution.

Detector perturbation, theory

The perturbation of detector foils has been investigated very much. A review of
the later results can be found in reference [4], The perturbation of B F3 detectors is,
however, sparsely treated which may be due to the fact that these detectors are not
so well suited to determine neutron fluxes absolutely. The disturbance problem is,
however, simpler for a gas detector than for a foil. This depends on the fact that the
absorption of a foil is concentrated to a point or a thin layer, which is not the case
for a gas detector. The gas detector problem can therefore be treated with elementary
theories of neutron transport.

For the gas volume and the detector walls the energy independent Boltzmann
equation can be written

Ü. • V#', O) + cf>(r, 0)[2s(r) + 2a(r)] = </>0(r, Q)[Ss(r) + 2a(r)]

+ jdQ.'<f>(r, Q')£s(r, — ^d£l'<f>0(r, Q')£s(r, Q'->£2). (12)

For the medium surrounding the detector:

Ü • Q) + Q)[S,(r) + Sa(r)]= JdQ'^(r, Q')S,(r, Q'->Q). (13)

Here <f>0(r,D.) is the unperturbed differential neutron flux of the angle Lï at the space
point r,<f>(r,Ll) the difference between unperturbed and perturbed flux, 2a the absorp-
tion cross section and 2S the scattering cross section.
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From these equations it is seen that the perturbation of the flux is equivalent to
the neutron distribution that should be established around the detector if it produced
neutrons with the source distribution

S(r, Q) = </>0(r, Q)[Z,(r) + 20(r)]- JrfO'^0(r, Q')S,(r, Q'->Q). (14)

The correction factor kp can be defined

_ ^oirLhp
<f>o(r) - <!>(r)

(15)

where the mean values are taken over the gas volume. Using the /^-approximation
and assuming that <f>0(r,Q) is constant and isotropic over the gas volume, that
<f>(rSl) -<<f>a(r,Ll) and that the detector is cylindrical and has an infinite length we
obtain

kp — 1 +- [Xa2(-R-2 ~ Rl) + Sal-Äj] 2 ln (I;) + K0(X3 R2)
X§R2 ^li^sR'2

x\R\ (16)

where index 1, 2 and 3 indicate the gas volume, the detector wall and the surrounding
medium respectively, /i(ern) is the outer radius of t he regions, 2fr(cm ') is the tran-
sport cross section, K0 and K1 are the associated Bessel functions of zeroth and first
kind and x=V3Str2a.

It can be shown that the approximation is good if

e = 3,
Str 2 In I -11 [Sa2(£!- R\)-Sal Rl] -1-4R\ (17)

In our case we get
kp=1.158 e=0.002.

Detector perturbation, experimental

The correction factor can also be written

k„
1

1 + 6
K
<f>d

where <f>d is th e flux at R2.
The perturbation in the outer medium is

>f>(r)= EK0(xar),

(18)

(19)

where E is a constant. These equations have been used to determine the correction
factor experimentally. Two gold foils (0.2 x 150 x 5 mm) were placed according to
Fig. 6 and were activated during one week. The foils were then cut up and the activity
of the foils was determined with a NaJ(Tl) crystal and a one channel pulse height
analyser. Since we measured on the gold peak, the background was low and the
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Source
Counter
Foil (Au-197)

Fig. 6. The experimental arrangement at the gold activation.

influence of any impurities could be avoided. The experiment was repeated with the
detector exchanged for a void, which was realized by an aluminium tube. The differ-
ence between the two measurements is plotted in Fig. 7. The Bessel function is fitted
to the experimental points through the method of least squares. This gives Tc„ =
1.168 + 0.009, a value that is somewhat higher than the theoretical value 1.158.
This can be due to the fact that the theoretical study did not include the materials
at bottom and top of the detector. We have therefore chosen the experimental value
as themost correct and used i t inthe calculat ion of R.

Figure 7 also gives a comparison between the 1',-approximat ion and the experi-
mental result. It is seen that there is no significant disagreement between theory and
experiment, indicating that higher terms give no significant contribution to the flux
depression.

From equation (16) it is seen that the main part of t he correction term is due to the
absorption in the detector, which for neutrons above cut-off is only some per cent of
the total absorption. The correction of the fast neutron flux depression is therefore
about some per mille and can be neglected.

d
15
%

10

5

Fig. 7. The flux depression as a function of distance from the centre of the detector.
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Other corrections

The fact that the detector has to be connected to the preamplifier gives a leakage
of thermal neutrons through the filter. The correction was determined for the cadmium
filter through simulating another identical leak and measuring with and without this
leak. This gave a correction factor kfCå = 1.065 + 0.005. Since the cadmium and
gadolinium filters are geometrically equal we can assume that the same amount of
thermal neutrons leaks into the detector in both cases. This gives a correction factor
for the gadolinium filter of kfGå = 1.040 + 0.005.

The filter leak correction is not strictly space independent since the neutron spec-
trum varies with the distance from the source. The difference is, however, small and
can be neglected.

The finite volume of the detector gives a space dependent correction since the
detector senses a mean value of the neutron distribution in the detector. The shape
of the distribution in the detector changes with position and so does the ratio between
the mean flux value and the flux value at the centre of the detector. Using a Taylor
expansion of the flux around the detector centre (r0) the correction factor (ks) can be
written

rI+^(*)+^)+^(3),<^+ —• «
where r is the radius from centre of the source and the mean values are taken over
the active detector volume. The flux and the derivatives can be taken from the un-
corrected distributions.

Unsymmetrical parts of the flux distribution can be caused by the aluminium
tube holding, the shape of the moderating medium and the shape of t he source. All
these effects must be very small, since the absorption rate in the aluminium tube is
small, since the tank is large and since the source shape is effecting only the measure-
ments close to the source, a region where r is small.

Results

Using 330 + 3mb as the 2200 m/s cross section of h ydrogen we get

£ = 2.06 •10~4 s

and from this
is = 2.47 + 0.11 us for gadolinium,

i s = 1.60 + 0.07lis for cadmium,

where the error limits are calculated from the statistical fluctuations of the measure-
ments. The water temperature was 22°C.

Possible systematic errors can be caused by

impurities in the water,

gamma radiation,
instability of t he electronics.
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Fig. 8. The slowing-down time as a function of neutron energy. The point numbers are explained
in Tables 3 and 4.

We used ordinary tap water as moderator. According to an analysis from the water-
works the total absorption cross section of the impurities did not exceed 0.30 per cent
of the hydrogen cross section and was therefore neglected. Gamma pile-up was avoided
through working with as low detector voltage as possible. The best part of the plateau
could therefore not be used. This may have affected the stability of the electronics.
However, we measured every odd number point in Figs. 3, 4 and 5 moving outwards
and then every even number point when going back in each run. Any long term
instabilities should therefore be seen in the figures.

The effective cut-off energies of neutron filters have been calculated by Stoughton
and Halperin [5]. From their report we get the values 0.5 eV for our cadmium filter
and 0.3 eV for our gadolinium filter. It is not easy to get a reliable value of the error
limits. We have estimated them to less than 10 per cent.

The results are summarized in Tables 3 and 4 together with earlier experimental
and theoretical results. In order to get a comparison we have plotted the most im-

Table 3.

Name Ref. ts(f is) Ec(eV)
Point in

Fig. 8

Möller, Sjöstrand 6 2.7 ±0.4 0.2 1
Profio 7 1.75+0.5 0.4 2
Walker, DeJuren 1, 2 1.54 +0.13 0.5 3
Prel. result 8 1.65 ±0.10 0.50 4
Crouch 9 5.2 0.35 (V
Present work 1.60 ±0.07 0.5 5
Present work 2.47 ±0.11 0.3 6
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Table 4.

Name Ref. ts(M Ec(eV)
Point in
Fig. 8

Krieger, Federighi 10 1.6 0.35 1
Haynam, Crouch 11 5.2 0.025 (2)
Haynam, Crouch 11 1.7 0.35 3
Havnam, Crouch 11 1.1 0.8 4
Haynam, Crouch 11 1.05 1.0 5
Haynam, Crouch 11 0.9 1.2 6
Haynam, Crouch 11 0.85 1.4 7
Haynam, Crouch 11 0.8 1.6 (8)

portant values in Fig. 8 together with the result from the model of free protons at
rest

where the scattering mean free path 1 has been taken to 0.75 cm.
In Fig. 8 we first observe that all the calculated values are lower than the results

from the model of free protons. This may be due to differences in primary data and
uncertainties in the calculations. Next we observe that all the measured values lie
on or above the curve. Crouch's value is probably caused by time-of-flight effects in
the counter. The results from pulsed measurements of Möller and Sjöstrand [6] and of
Profio [7] have rather large limits of e rror. Walker's value has been discussed above.

The difference between the experimental results and the model of fr ee protons can
be due tothe low energy effects, chemical binding and up-scattering. Chemical binding
can influence our values because the vibrational frequencies of the bonds in the water
molecule correspond to energies in the region of interest. Up-scattering has been
investigated theoretically by Krieger and Federighi [10] who found that it can influ-
ence the slowing-down time up to about 0.4 eV.

The conclusion of this experiment is that the low energy effects are small at
0.5 eV but cannot be ignored at 0.3 eV.
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1 . Purpose

The purpose of the system is to determine the time dependence
of 3 . neutron flux with glass detectors. The background is assumed
to be rather high and it is therefore necessary to have it under

control. This can be done by measuring the time dependent ampli-
tude distribution for the pulses from the photomultipliers, since
the amplitude distribution for the background and the neutrons have
very different shapes. The main part of the background comes from
gammas which in tae crystal have a long range compared to the dimen-
sions. The amplitude distribution for the gammas will therefore be a
continuously decreasing function of the amplitude. On the other hand the

neutrons will give a very peaked distribution, since the reaction pro -
ducts of the neutron sensing reaction ( neutrons against lithium - 6 )
have a short range in the crystal.

* ' î-ne amplitude distribution of a L>i~ 6 glass-scintillator,
.Linear intensity scale Î000Q counts/division.



Fig. 2 The amplitude distribution of a Li-6 glass-scintillator.
Logarithmic intensity scale 1 decade/2 divisions.

These effects can be seen i figures 1 and 2. Here only the distribu-
tion in the neighbourhood of the neutron peak is shown. "The s pot on
the bottom of the figures should be read as I 00. 000 counts. It is one

more than the capacity of the memory and was in this experiment the
stop condition for the system.

One possibility to determine the neutron intensity is to extrapolate the
background through the neutron peak. The neutron intensity is then de-
termined as the area between the extrapolated and the measured curve.
This can be done manually or with the help of a computer. Also other
methods, which will be reported elsewhere can be used.

The advantage with this way of measuring the neutron intensity is that
it is independent of the stability of amplifiers, discriminators and high
voltages.
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2. Description of the units.

We will give a short presentation of t he different parts of the sy-
stem, The units ( See fig. 3 ) were constructed and built by

Intertechnique Amplification unit ( A P 1? )

Time measuring unit ( HC 24 )
Amplitude measuring unit { CA ] 3 )

Memory block ( BM 24 )

Converters for in- and output to the
memoryblock

Oltronix High voltage unit

Low voltage units for some of the transistor
circuits

Detectors
Buffer register

High voltage dividing unit
Multiinput scaler

Programming unit

Amplification and pulsforming units

The details of the units from Oltronix and Intertechnique may be found
in their manuals. We will here only present the most important fea-
tures bearing upon this case and some of the modifications done.

THE AMPLIï ICATION UNIT contains four linear amplifiers, one linear
adding circuit and some logical circuits. The amplifiers have a maxi-
mum gain of 400, a rise time of 0. 3jj.s a nd a maximum output pulse-
height of abotit 8 V. The adding circuit provides an analog summing of
the signals from all of the amplifiers.

Institute of Reactor
Physic s
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The logic circuits give a blocking signal if two or more pulses from
different detectors are separated in time less than 2 (is. For each
amplifier the logic circuit gives a standard pulse of 10 volts and 4.5
jxs if an incoming pulse is followed by an enable pulse. The leading
edge of this pulse is used to activate the time measuring unit.

THE TIME MEASURING UNIT measures the time with the help of
a freerunning oscillator of 4 MHz, giving a time jitter of |/4jxs»
The channel width can be chosen to 1, 2, 4, 8,16 or 64 (is. The mea-
suring cycle is activated by a zero time signal. There are four
separate detector lines and each of them can be given a separate
measuring range delayed according to the zero time signal in steps
of 32 times the channel width. The deadtime is modified from origi-

nally 20 to 4 (a s. During the deadtime the time register is stopped,
the content is transferred, the register is corrected for elapsed
time during the stop. At the end of the deadtime the register is put
into operation again. A logical output signal defines the time of inte-

rest as the time during which any of the detector lines is operating.
The number of channels is 256 per detector line.

THE AMPLITUDE MEASURING UNIT uses as input a bipolar pulse.
The amplitude is 0.1 to 10 volt. Conversion from analogue to binary
information is established with the help of a 20 MHz oscillator giving
a conversion time of 3 + 0.0 fiN |t,s where N ié thé channel number. The

capacity of the address is 32 to 2048 and the gain of the conversion can
be set to 64 - 2048 channels per 10 volt. The integral and differential
linearity is for 1024 channels 0» 05 and I per cent respectively. There
is however larger deviations in some channels. These are systematic
and can be corrected for during the data handling.

A time signal, with a jitter of less than 0. 3[is is sent out for every
accepted input pulse. This time signal is used as an enable pulse for
the amplification unit. There are a lot of blocking possibilities for
coincidences and anticoincidences. We have used delayed anticoin-

cidence tor the blocking from the amplification unit and direct anti-

coincidence for synchronization of the deadtimes of the different units.

J
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THE BUFFER REGISTER is a 20 stage binary register with a deadtime of

2.5|JLS. It collects the information from the units above and transfers it to

the memory block.

THE MEMORY BLOCK has 1024 channels and a program time for storing

16 (O.S. We use the parallel input for the information and a pulse at the end

of the program as a signal to the system that the memory block is ready

to take care of a new storing. For each storing one is added to the content

of the actual channel*

THE HIGH VOLTAGE UNIT can give up to 3400 volt and 25 mA. Line stabilisa-

tion is 0. 3 V per 10 per cent line voltage change and 0. 3 V per 50 to 100 per cent

load change.

THE HIGH VOLTAGE DIVIDING UNIT separates the four detectors. The vol-

tage to each detector can be individually set by a ten turns potentiometer.

THE MULTIINFUT SCALER is constructed to meet the need of several scalers

of different capacity. It contains 24 stages which can be divideil into at most

6 parts. Every part can contain arbitrarily many stages with the limitation,

of course, that the sum of them is 24. Each input is gated so that the scalers

can be controlled separately. The deadtime is about 2 ixs.

THE PROGRAMMING UNIT is principally a scaler which shifts a bistable cir-

cuit after a ^redetermined number of counts. The output of the bistable cir-

cuit is connected to the on-off function of the stoting in the memory block and

also to the gates of the multiinput scaler. The unit is fed with pulses either

fröm outside or from a triggering circuit using the line frequency as time sig-

nal source.

THE AMPLIFICATION AND PULSE FORMING UNIT contains 5 amplifiers of

the same type as those in the amplification unit and 5 discriminators.
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3. Principle of Operation.

The working principle of the system is sketched in fig, 3. The

pulses from the preamplifiers are fed into the amplification unit.

This gives an analogue signal which is the sum of t he amplified

input signals. Before entering the amplitude measuring unit this

pulse is differentiated and amplified in the pulsforming unit. At the

zero crossing time of the differentiated analogue pulse the amplitude

measuring unit tests the system in order to see if it is still working

with an earlier pulse. If that is not the case a pulse triggers the lo-

gical circuits in the amplification unit and a logical time signal for the

actual detector is sent over to the time measuring unit.

The capacity of the time measuring unit is 4 times 256 time channels.

The groups of 256 channels can be placed anywhere in the time scale

and as a special case it can handle four detectors of 256 time channels.

The zero time in a repetitive measurement is defined by the zero time

pulse. After the zero time there can be a time delay before the region

of interest during which the unit is working. The time from the begin-

ning of the region of interest is measured and the information is sent

over to the buffer register in form of a 10 bits binary coded word. The
8 9two last bits (2,2 ) are in the four detector case used to determine the

detector.

During the same time as the time measuring unit is determining the

time, the amplitude measuring unit is converting the amplitude of

the pulse into another binary word. This can contain up to 11 bits, of

which we ordinarily' only use 1 0, and is sent over to the buffer register

as soon as the conversion is completed.

The purpose of the buffer register is to collect the information from

the amplitude measuring unit and the time measuring unit. A prede-

termined part of this information is sent over to the memory block

at a time when this is not engaged with possible earlier storing. We

will explain this in more detail later on. For the time being it is enough

to point out that the memory block can not handle a larger word than

10 bits ( 1024 channels). We therefore have to select as output a 10 bits

information from the 20 bits input.
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4. Dead Time Considerations.

There are three types of events during which the system can not take care

of incoming information.

1 . Coincidence between two or more detectors

is recognised.

2. The system time ( defined by the time measuring unit )

is outside the region of interest.

3. Any of the time measuring unit, the amplitude

measuring unit or the buffer register ic. engaged.

Coincidences between the detectors are detected in the logics of the ampli-

fication unit. In the case of coincidence a blocking signal is sent down to

the amplitude measuring unit and the converting is not executed. The time

measuring unit is supplied with a circuit that cancels the transfer if coin-

cidences are recognized.

The deadtime signals are logically added in a circuit in the buffer register.

The output of this circuit blocks the analogue input if any of the measuring

units or the buffer register is engaged. The different deadtimes are 4p.s +

a waiting time ( < the channel width ) for the time measuring .nit, 3+0. 05»

*( channel number ) for the amplitude measuring unit and 5 pts + the waiting

time of the storing of an earlier pulse in the memory block. The maximum

deadtime will occur if an information has been transferred immediately be-

fore the actual pulse. In this case the deadtime of the buffer register can be

18. 5 jj.s.

As the deadtime is a complicated funtion of both intensity and amplitude, of

which the first one is time dependent, it is rather difficult to calculate

the deadtime corrections. There is, however, a simple way to measure it if

one can afford to use one detector line for this purpose. Assume that this detec-

tor is irradiated with a time independent source giving a pulse rate of r counts/sec

For this detector there will then be stored in the memory block

P 4 ( t ) = G ( t ) - r - t • N



pulses, where

t = channel width

N = the number of measuring cycles

G(t) » the transfer function, i.e. the probability that an incoming puis

will be stored.

For another detector we now have

P. ft) = G(t). r. (t) » t . Ni ' i
from, which

P(t)
v - -r À
i K ' ~ * PjJtT' i = 1, 2, 3

where r. ft) is the corrected counting rate of the i:th detector line.
i 1

This method has the advantage that it also corrects for differences in

the channel widths if these are equal in the different detector lines. It

can, however, only be used if the detector lines are parallel in time.
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5» The Buffer Register,,

The buffer register is the brain in the system and we will there-

fore describe it a little more in detail*

The function is illustrated in figure 4»
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T i m e
Inf or mät i on

Fig-. 4 Information map of the system.

The information field is here illustrated as an area built up by the

time on the abscissa and the amplitude on the ordinata. The incoming

information covers the whole area with positive amplitudes and times.

The upper and lower discriminator and the region of interest are those

functions of the system which determine the part of the total field which
will be rejected in the first instance.



The measuring units now convert everything lying inside the region
of interest in time and the converting range in amplitude« This in-

formation is fed into a 20 bits register in the buffer register unit.

20 b i ts regis ter
Ampl i tude Time Detector,

! i i

——— "<•—— —— 1* &

. 1 ; i i i . t i TI I f ! il 1 Li i i
1 1 1

I i J ! 1 Transfer switches 1 ' 1 ' ' '
! i ! . i . ( i . i t i i 1 1 M

1. : i
T j

1 i i ! 1 ! t j I i 1 T J l j l t i i
I I I I i I i i i I ! i I
i t i i i t i i i i I I i
! i ! I ! ! i 1 I i ! I !
Condi t ion swi tches

10 b i ts
output

ÛÛÔÛÛÛÛÈÙÙÙÉÉÉÛÉèéÉÉ
Fig. 5 The buffer register»

As is illustrated in figure 5 ten transfer circuits can be connected
to ten of the bistable circuits with the help of switches. This swit-
ching system is constructed so that the only restriction is that the
bistable circuits must be in the same order as the transfer circuits.

A condition for transfer can also be put in for every bistable. The
condition circuit is a logical and ~ c ircuit into which one of the sides

of the bistables may be connected. The condition for one of the bi-
stables can therefore be on, off or independent. The condition cir-
cuit will inhibit the transfer if the condition is false»

By using the condition for all bistables not used for transfer, any part
of the measured range can be transferred. It is therefore possible to
use the full resolution of the measuring units but, of course, on the
expense of the dimensions of the stored range«,
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6. Tlie Logarithmic Time Scale Converter.

In the field of the pulsed neutron source one is faced with the problem
of accurate measurements of the logarithmic decay of a counting rate.

In order to get a correct value of t he lowest decay constant even if the
measured values are influenced by .higher modes it is necessary to have
a good resolution at the same time as one measures on a very long time

scale. We have also the problem that if e.g. 32 channels are used for

the amplitude and we have four detectors there are only 8 channels for
the time. In order to meet these requirements the buffer register con-
tains a possibility to shift the time scale into a logarithmic one. The

principle is shown in figure 6.

Linear scale

0 1 2 3
Logari thmic s cale

ï ig. 6. Comparison between the linear and the logarithmic
time scales.

The channel 0 is not used, Channel 1 is converted into channel 0,
channels I and 3 into 1, channels 4, 5, 6, 7 into 2 and so on. This
corresponds to the truth table in table ].
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linear scale logarithmic scale

2° 2> ,2 23 24 25 ?6 z7 2 '> -, 1c 2 t
f
\ 0 0 0 0 0 o 0 G 0 0 0}
/V Î 0 0 0 0 0 0 0 0 0 0)

X 1 0 0 0 0 0 0 •1 0 0

X X ] 0 0 0 0 0 0 i 0

X X X 1 0 0 0 0 ) 1 0

X X X x 1 0 0 0 0 0 ?

X X X X X 1 0 0 s 0 1

X X X X X X 1 0 0 ] 1i
X X X X X X X 1 1 1 I
a b c d c f R h A B G

Table- 1* Numerical comparison between the linear and the logarithmic
time scales® X ~ 1 or .0«

•>

If w e use the notations of the table, we can get the following logical ex-
pressions:

A ~ b.c.d. e.f. g. h + d.e.17g.h + £, g.h -I- h

B = c.d.e.f.g.h + d.e.f» g.h 4- g.h + h

C = e.f. g.h + f. g.h f g. h + h

which are very- simple to convert into a logical circuit. Above we have

not taker; into account the difierenc.es between the linear channels 0 and
1» This depends on the fact that the time measuring unit gives wrong
results in the first two channels. We can therefore not use the logarithmic
channel number 0 without doing a correction. The complication of taking
the difference of the channels into account is therefore of rather little
importance.
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7. The Detectors

The detectors are composed of four parts:

a Glass scintillator

b Neutron absorber

c Light pipe

d Multiplier tube { RCA 444] )
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Fig, 7. Neutron detector.

We have two types of neutron sensing glass scintillators.

One of them, contains 7. 8 % Li enriched, to 96 % Li-6 and the

other contains 2» ? % natural Li. As a neutron detector the last

one will be transparent and measures therefore the neutron den-

sity, the other one is " black " and measures the neutron flux. The

thickness of the scintillators is 1 /B", which will give a very low time

of flight effect in the detector.

The neutron absorber shall protect the scintillator for neutrons coming

from the backward direction. It has the thickness 1/4" and is made of

glass mixed with 8 % Li-6.

The need of light pipe can be seen in figures 8 and 9* The amplitude

spectrum of a detector without any light pipe contains at least two

peaks caused by the neutrons.



8. Amplitude distribution for a detector without any

lightpipe.

9, Amplitude distribution for a detector with lightpipe



This depends on the fact that the photo cathode of the photomultiplier
does not sense the light equally over the whole area. By using a light-
pipe the light will be distributed approximately in the same way over
the photo cathode for every scintillation.

In figure 9 we have used a lightpipe of 2 cm acryl plastic together with
the neutron absorber mentioned above. The effect of double peaks has
disappeared here. The acryl plastic was chosen because it has about
the same properties as glass and is rather easy to work with.



8. Conclusions .

The system is built to handle glass scintillators as neutron detectors.

Another use of it could of course be the measurement of short lived

isotopes. In the latter case one should, however, wish to have better

amplifiers and avoid the complexity of more than one detector. Owing

to the design of the adding circuit not only the signals are added but also

the noise. As an example of the use of the equipment we will give an very

short presentation of measurement of decaying neutron field in a moderator

The moderator is a polyethylene cube with the side 4 cm. A burst of neu-

trons is injected into the mediüm during 32jj.s. The region of interest be-

gins 32 [i,s a fter the end of the pulse. The time channel width is 1 |j,s and

the logarithmic converter has been used. At the medium there are three de-

tectors, two black and one transparent. Detector number four is a Nal-crystal

counting a constant source of gammas from Cs-137.

The results are shown in figure 1 0 and 1 1. In figure 1 0 there is a three di-

mensional representation of detectors 2 and 3. The intensity is on the ordi-

nata, the amplitude on the abscissa and the time is advancing in the direc-

tion into the paper. Some lines for constant amplitude and the curve showing

the last time interval are enlighted. In figure 11 we have all the detectors

in another representation. The time is on the ordinata and the amplitude to-

gether with the detector number on the abscissa. The lighting up of the spot

is proportional to the logarithm of the intensity.
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Fig. 10. The amplitude distribution for detector 2 and 3

Fig. 11. Time - amplitude distribution for four detectors
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I. INTRODUCTION.

The main problems when one wants to determine fundamental decay-

constants with the pulsed neutron method are higher modes and back-

ground.Those(TV.)problems are also conflicting in the sense that the

higher modes call for long waiting times but the background calls for
short.

In this work we have tried to find a method to solve this problem for an

experiment with detectors placed outside the moderator and using a low
intensity neutron source. The main features of the method are;

a. Logarithmic time scale.

b. Rotating moderator.

c. Amplitude analysis for background subtraction.

d. More than one detector in the same experiment.

e. Auto correlation of t he time distributions.

The method is applied to a cylindrical polyethylene moderator, earlier

measured by SJÖSTRAND et al. 1 j . The reason for choosing this is

that it gives the possibility of a direct comparison with an independent

experiment on the very same moderator. Some recent calculations
made by GRJFFING L2j make a remeasurement of t hese assemblies
interesting.
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2. EXPERIMENTAL ARRANGEMENT.

A sketch of the experimental arrangement is given in figure 2. 1. The

moderator is composed of up to eight 2.2 cm thick polyethylene discs

with a diameter of 18 cm. This gives an experimental series of cylinders

with heights from 2. 2 to 17.6 cm in steps of 2.2 cm. The corresponding
- 2bucklings go from 1.48 to 0.098 cm . The moderator is contained in

an aluminium box and is shielded by boron carbide. Three detectors are
placed close to the moderator, the first and third at positions where the se-

cond mode of the cylindrical functions is zero, and the second at the maxi-
mum point of the fundamental mode.

The whole arrangement is rotated around the axis of symmetry in order

to keep the contribution of the higher modes low. Owing to the cables the

direction of rotation is shifted after every revolution. The height of the

table is adjusted so that the target always is at half the height of the mo-
derator.

Two series of experiments have been done. In the first we have crystals

" black " to thermal neutrons in detector 1 and 2 and a background crystal

in detector 3. In the second series detector number 1 contains a black, 2 a

transparent, and 3 a background crystal.

The crystals are glass-scintillators with Li-6 as the neutron sensing nu-
clide. The black contains 7.8 % Li enriched to 96 % in Li-6, the transpa-

rent contains 2.7 % natural Li and the background crystal contains 7.8 % Li
enriched to 99.999 % in L.i-7. The black crystal then gives a pulsrate pro-

portional to the thermal neutron flux whilethc price rate cf the transparent is
proportional to the neutron density.

It could be seen during the experiment that the background detector did not
give correct information about the background. Two reasons for «.his have

been found. First, the baseline shift makes it very difficult to find the cor-

rect setting of the high voltage, second, there is an influence from the traces

of Li-6. Therefore,the background subtraction has been done by the method

outlined in chapter 5, and the results from the background detector have only
been used for comparisons.
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3. THE ELECTRONIC SYSTEM.

The electronic system is composed of eight head units:

1. 150 kV neutrongenerator ( SAMES )

2. Neutron detectors and preamplifiers

3. Amplifying and mixing unit ( INTERTECHNIQUE AP 17 )

4. Analog-to-digital converter ( INTERTECHNIQUE CA 13 )

5. Time-to-digital converter ( INTER TECHNIQUE HC24 )
6. Buffer memory

7. Memory block ( INTERTECHNIQUE BM24)
8. Programming unit

Moreover, it contains amplifiers, baseline restorer, linear gate and di-

scriminator from ORTEC and HV supply from OLTRONIX. Some scalers

and a ratemeter are used to measure certain quantities and to give an ex-

ternal check on the system during the experiment. The principles of the
system are sketched in figure 3. 1.

The neutron generator is a 150 kV accelerator with an ion current of

maximum 1 mA. During the whole experiment it has worked with the

D-D reaction. We use this reaction for two reasons. First, the 2 MeV

neutrons give less gammareactions than the 14 MeV neutrons from the
D-T reaction. Second, the number of neiîtrons captured by the mode-

rator in relation to those going into the surroundings is higher for the
2 MeV neutrons.

The accelerator is controlled by a multivibrator, so that the width of the
neutron burst is continuously variable down to 2 microseconds. The

rise and decay times are approximately 1.5 microseconds. In order to
have low neutron production between the bursts the beam is swept and the
ion source is keyed synchronously.

The measuring cycle is started at the end of the neutron burst by the

condition that the end of the ion current is in coincidence with a signal
from the multivibrator. This signal is the end of the control signal, de-
layed 3 microseconds in order to take into account the drift time of the

ions and the propagation times in cables and amplifiers. As the coinci-
dence time is short, spurious starts are kept to a minimum.

»
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The start pulse (TQ) passes a prt*gr«anttefcng unit, which controls the
measuring time. It is switched on manually and off either by the con-

dition that it has reached a preset number of measuring cycles or by

the condition that there is an overflow in any of the channels in the
memory block.

The purpose of the system is to measure the time and amplitude distri-

bution from four detectors simultaneously. The capacity of the memory

block is 1024 channels, which can be arbitrarily subgrouped in binary

steps for the three parameters: number of detectors, amplitude channels

and time channels. In this experiment we use the subgrouping ( 4x32x8),

which means 4 detectors, 32 amplitude intervals and C time intervals. The

division in amplitude is linear but in time it is logarithmic.

The pulses from the detectors are amplified and added in the amplifier unit
( FA ). The signal from the addition circuit is fed into an amplifier ( AMP,

Ortec 440 A), which has two outputs,one direct and one delayed. The de-

layed output is over a base line restorer connected to the direct current

input of the analog-to-digital converter (ADC). If the system is not busy

the pulse from the direct output passes a linear gate and activates a dis-

criminator, which triggers the ADC and the logic circuits in FA. From

these a signal in the actual detector line starts the time-to-digital con-

verter (TC). From now on the conversion proceeds in both ADC and TC. The

conversion time is fixed to 4 microseconds in TC but depends on the ampli-
tude in ADC. The result of the conversions is loaded into the buffer memory,

where it is kept until both the conversions are ready and the memory block

has completed a possible preceding storing cycle. TC gives the time infor-

mation in a linear scale. A conversion to the logarithmic time scale is rea-
lized during the transfer of the information to the memory block.

The system busy signal to the linear gate is calculated in the buffer memory.
It signals busy if ADC or TC or the buffer memory is engaged or if the

time is outside the actual time interval. The overall deadtime of the system is

depending on the amplitude, the time channel width and the intensity. The mini-

mum deadtime for a stored pulse is 8 microseconds.

Six scalers are incorporated in the system. They are counting different para-

meters chosen so that a direct check on the system can be done. The



scalers are gated either with the programming unit or with the signal

marking the time period during which the system is active (RI). The
purpose of the different scalers are given in table 3. 2.
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TABLE 3.1 Abbreviations used in text and fig. 3.1.

MV Multivibrator

ACC Accelerator

Exp Experimental assembly

DL Delay line

Sn Scaler number n

Dn Detector number n

PG Pulse generator

FA Amplifiers and mixing circuits

AMP Head amplifier

Dir Direct output

Del Delayed output

BR Baseline restorer

LG Linear gate

DI Head diskriminator

ADC Analog-to-digital converter

TC Time-to-digital converter

BM Buffer memory

PU Programming unit

MB Memory block

BT Blocking signal from the time converter

BA Blocking signal from the amplitude converter

PI Signal giving the actual time interval

BS Blocking signal for the whole system

BMB Blocking signal from the memory block

COI Coincidence unit
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TABLE 3, 2 Scalers.

Scaler Purpose Gate

31 Test pulses to 4 *;h detector

1f

HHPH

52 Coincidences between de-
tectors RI

S3 Multivibrator pulses PU
S4 Monitor pulses from BR

counter PU
S5 Measuring time PU
S6 Active measuring time

"

i

i

RI 1
J

1



4. DEADTIME CORRECTIONS

As a counting equipment grows in complexity, the problem of doing an

exact correction for the pulse losses will be more and more difficult.

One has therefore reasons to keep the correction as low as possible by-

having short conversion times and using a buffer memory before the

often slow memory block. The consequence of this is, however, that the

losses will depend not only on the intensities but also on the time and ampli-

tude distribution of the stored pulses. Although it is difficult, it is quite

possible to correct for these effects, since all information about them is

contained in the measured distributions. There are, however, other ef-

fects that we know nothing about. These arise from those pa.rts of the spectrum

which are rejected in different places of the equipment by discriminators or

by the buffer memory. So we are forced into some method by which we can

measure at least the main part of the correction.

A schematic picture of the equipment from the view of deadtime losses is

given in figure 4. 1. Through a summing amplifier the pulses from the de-

tectors are presented to a unit containing a discriminator and a gate. This

unit will put the system into action, if the amplitude of the incoming pulse
is above the threshold of the discriminator and if the system is not working

with a preceding signal. In the block marked " system " in the figure we have
collected all parts that have the same influence on the dead time for all of
the detectors.

In order to give the system information about which of the detectors that is

responsible for the actual signal, all amplifiers are followed by a one bit me-

mory ( monostables marked MSI to MS4 in the figure). One of the first ac-

tions taken by the system after the arrival of the pulse is to read this in-

formation, As every monostable is controlled directly by its own detector,
this part of the equipment will have a deadtime that depends on the pulse
rate in the respective detector.

For these reasons the deadtime correction is divided into two parts and can
be written

P. (a,t ) = C . (R.) ( 4 . , )
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wher e

f\ = stored number of pulses for detector i

R = incoming number of pulses for detector ii °

H = system transfer function

G, = transfer function for detector line i1

t s time

a = amplitude

Suppose now that we have a known distribution of well sèparated pulses

in one detector line (e.g. 4 ), In that case ~ 1 arid

P4 ( a, t ) = H * R4 ( a, t ) (4. 2)

from, which

H ( t )

a•» u

P (a, t)da
{4. 3)

u

R (a, t) da
a l

where a, and a are the amplitude limits.1 u

The functions G. are the probabilities that a pulse, which arrives: during

a time period when the system is not busy, will ,be stored. The contrary might

happen for two different reasons .In figure 4 ..Z th e monostable and the sy-

stem blocking signal after the arrival of a pulse are presented.t is the

on-time for the monostable and d is the time delay between the two signals.

It is quite clear that a pulse arriving during the time d in the same detector

line will not be stored and will not affect the system blocking signal.

The other reason is that the sensing point of the monostables and the head

discriminator is not the same ( see figure 4.3 ), That means that pulses

between these two limits will turn the monostable on but will not start the

system. Moreover, if such a pulse has arrived in a period r before the

actual pulse, then none of them will be recorded. Therefore we get the in-

dividual corrections

/'HD ,
{* i Ii (4.4)

G. - exp { - ( T ^ .R,(a;da - d j R (a)da } rp J

aT.yfQ awn



1 1

where

aHD - amplitude limit for the head discriminator

aMS = arnP^^ut^e limit for the monostable

T '•= total measuring time

In this connection it should be pointed out that a coincidence between pulses

from any of the detectors during the time period d will have the result that

none of them is stored. This is, however, taken care of by the system and

contained in the function H.

We do not know the number of pulses with amplitude lower than (Rj)

and must therefore estimate it. We assume that is proportional to

P.^ , where P is the number of pulses stored in a representative ampli-

tude channel, and that the proportionality constant K is the same for all

of the detectors. This means that they have the same discriminator set-
ting.

The number of coincidences during the whole experiment { C ) is then appro-

ximately given by

4

C - ?" ) { R . + K • P.. ) ( R . + k- P,. }^ L j v SX 11' x Sj li ' i
1 , 3 - 1
i t j

where

Rg ~ j R ( a ) da
aHD

t - the coincidence time

T = the total measuring time.

(4. S)

TJie„coincidences between more than two detectors are neglected. As the number

t>r coincid ences is counted we can calculate K from equation 4, 5 and tnen

get an estimate of

The test pulses needed for the measurement of H according to equation 4. 3

are generated by a free running pulse generator. If the measuring time is

long the errors involved will depend mainly on the total number of collected

pulses. We can approximately, write
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where

T . Pm t
H - 1 - - y ™ ( 4 , 6 )

c

t - mean deadtimem

P, ~ stored number of pulses

t •= channel widthc

N s number of repetitions

If P is Poisson distributed we have
' , 2

Var { H } ={ ) • Pt

and the standard deviation

<rTT S iLrJS. « ( 1 - H ) Jh. ( 4 . 7 )
'H rsç- %

where o* is the standard deviation of the total number of incoming pulses

(Rt ) • From this equation we can conclude that the error from the correc

tion can be neglected if H is not far from 1 .

The above method has been checked with a rather simple numerical model.

This model uses the fact that if the channel width is small, the effects from

the amplitude converter will predominate. We assume also that the transfer

time between the buffer register and the memory block is zero. The dead-

time can now be separated into two parts. The first is the sum. of all con-

stant waiting times (,DT}, the second is proportional to the converting time

and therefore also to the amplitude. The relation between the deadtime cal-

culated in number of channels after the arrival of the pulse (k) and the ampli-
tude (a) can then be written

k ~ D T + c * a { a > , o ) ( 4 . 8 )

where c is a proportionality constant that depends on the settings of the

amplitude converter. The inversion of this equation is

, , , k - DT t . ^ ,r^ .a ( k ) - — ( k ^ D T ) ( 4 ^ 9 )

a ( k ) = 0 ( k < DT )
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The probability S(j) that a channel j is closed is then

QO
y s V

s(j) = / / . P (a (k)-1 ) ( j > M
i ~ 1 k = j - i ( 4 . 1 0 )

S ( j ) -- 0 ( j = 1 }

p ( a, i ) is the probability of ! a pulse in the linear time channel i and ampli-

tude channel a. It can be calculated approximately from the stored distri-

b u t i o n s { P (a , i ) ) a s

P(a, i)
p (a, i) = ( a ; inside the measured range )

N 1

{4. n )
p ( a, i ) = 0 elsewhere

where N is the number of repetitions. It is assumed that the system is open

in the beginning of each cycle and that all pulses above the discriminator

level are stored. The correction is finally*

k H ( i ) = = ~ . y ( 4 . 1 2 )

The result of a. calculation with this method is shown in figure 4.4. The

distributions are taken from an ordinary experiment with eight logarith-

mic time channels and 32 amplitude channels. The calculation is made in

a linear time scale but the result is transferred back to the logarithmic

scale. Time channel number one is zero, as the system always is consi-

dered to be open at that time, number two is constant because DT is larger

than the channel width. The other curves show plateaus and transients. With

32 amplitude channels the deadtime variation is 1.6 microseconds, which

gives transients in the channel limits that last over a period of 3.2 micro-

seconds. The shapes of the transients are determined by the amplitude di-

stribution.

We have also compared the model with experiments where the correction

factor has been measured by the method mentioned in the beginning of the

chapter. The result is shown in figure 4, 5, The input to the experiment is

a neutron and gamma field where the neutrons give a dominant peak in the

actual experiment decreasing with a decay constant of approximately 8500

s 1 . The difference between the runs is that they have different starting

times, which gives the different initial intensities noted in the figure. The
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relative accuracy of the experimental points is better than 1 %. From the

figure we conclude that there is satisfactory agreement between the model and

the experiment in the intermediate part>but there are deviations both in the

beginning and the end part of the curves. We shall, however, keep in mind that
all common effects are included in the experimental values. In the beginning

there are transients, which have not been accounted for in the model. The ef-

fects in the end part are more difficult to explain. The corrections are, how-

ever, low and second orders corrections as channel jitter, buffering and

storing times may come into the picture.

The result of this investigation is that a check of the experimental method has

been obtained. The rather simple model gives correct results in the main part

of the experiment but not in the limits. The model is also expensive by con-

suming rather long computing time. It is therefore not attractive to expand

the model by putting more routines into the computer program. We will there-

fore in the following use the experimental method.
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5. BACKGROUND SUBTRACTION

The detectors are thin glass-scintillators ( 1/8"x 1 l/4") loaded

with Li-6 as the neutron sensing part. We have chosen these de-

tectors in order to compensate the low intensity of the neutron source
with high sensitivity of the detectors. As a drawback we have that the

scintillators have a sensitivity of gamma radiation, which can not be

neglected. We have therefore tried to keep the gamma intensity as

low as possible. Thus, the neutron shield is made of boron carbide,
and aluminium has been used as construction material through most
of the experimental area.

An investigation on which materials contribute to the background ra-

diation with large time constantfcce been done by two students (Lars
Moberg and Xåre Olsson ) and their result is summarized in table 5. 1.

Such a background will cause a variation during an experiment and during

* series of experiments. The time of one experiment is some hours
and a series takes weeks. It gives, however, no measura' le variation

during the measuring cycle which is in the order of milliseconds.

There is also a faster variation. In figure 5. 1 and 5. 2 the amplitude

and time distributions of a representative experiment is shown. Only

the most interesting channels have been plotted. The time dependence
of the background can be seen in figure 5.2, since the main part of

the time variation of amplitude 3 origins from the background. If we

compare this with amplitude channel 13, which mainly comes from the

neutron distribution, we find that the background has a time dependence,

not constant and not proportional to the neutron distribution. It is there-
fore not correct to assume, which often is done, that the background is
constant.

The main contribution to the background shown in the figures can be di-
vided into four groups:

1. Capture gamma in the experiment ( mainly 2.3 MeV from
hydrogen).

2. Capture gamma in the shielding.

3. Capture and decay gamma in construction materials
and in the surroundings.

4. Noise in the system.
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The first point is no problem if we are interested only in the fundamental

mode. The second contains one part proportional to the outgoing neutron

stream from the experiment and one part depending on neutrons scattered

back from the surroundings. The third contains all energies, has rather

low intensity, but will give a limit on how far we can follow the neutron

decay. The fourth, where we include noise from the crystal and all elec-

tronic phenomena, contributes in the low part of the amplitude distri-

bution, partly because it overlaps the other effects and partly because

it is added from all of the detectors in the analog summing amplifier.

The ordinarily used methods to avoid background areto discriminate either

directly on the amplitude distribution or on some quantity related to the

shape of the pulse. The first of this is usable only if the ratio between

the neutrons and the background is high for pulses above the threshold. The

other will give a mere complicated structure to every detector line. Another

method is to measure the background with a scintillator that is insensitive

to neutrons. There are two drawbacks of this method. Firstly, we must have

the background detector in a position symmetric to the neutron detector close

to the moderator, secondly this detector line must be adjusted to give exactly

the same amplification as the neutron detects". This is not easy because at

high intensities there will be baseline shifts, and at low intensities the sta-

tistics and the drift of the electronics come into the picture. For these rea-

sons we have tried to do an analysis of the amplitude distribution in order

to subtract the background directly.

Figure 5.3 is an experiment with no moderator but with all other parameters

the same as in the other experiments. So, with the exception of backscattered

neutrons that penetrate the shielding, this experiment contains only the back-

ground distributions. We conclude from the figure that the background can be

divided into two parts, one transient in the lower part of the spectrum and one

exponential, which covers the main part of the distribution. If this figure is

compared to figure 5. 1 one can see that within the neutron peak, an exponen-

tial is a good approximation to the background. The problem is now to deter-

mine the amplitude of this exponential. This could be done in those parts of

the spectrum where the neutrons can be neglected, vz. in the high amplitude

region. Two drawbacks make this method uncertain. Firstly, the accuracy

will be low owing to the low pulserate in this region, secondly pile - up con-

tributes.



We must therefore put some information about the neutrons into the

picture. The ampli tude distr ibution of the neutrons may, as can be

seen in figure 5. 1, be approximated by a gaussian distr ibution. A

more careful invest igat ion shows that a correct ion has to be incorpoi

ted in order to account for a small distort ion in the distr ibution. We

therefore approximate the distr ibution with

P(I) = A exp {er { —liny.
X. + k • (1 + 0. 5} ' x + k • ( I 4-0.5)o c v m o c m

+ B e x p { - a l }

where A, B, er, y anc* are constants and

is the lower l imit of the ampli tude range converted (V),

is the conversion factor (V/channel ) .

I is the amplitude in number of channels .

I is the ampli tude where- the neutron distr ibution reaches them
maximum va.lue.

We write the distr ibution in the form shown above in order to have con-

stants that do not deoend on baseline displacements. As x and k areo c
determined by the sett ings of the converter we have six constants to de-

termine. As we have only about 25 measured values to our disposal in

one experiment, we cannot expect to get good estimates on al l these con-

stants from.one ampli tude distr ibution, so we divide the est imation into

three steps:

1 . a is determined from a series of background experiments.

2. c and v are calculated from a distr ibution with as low bach-

ground as possible. Among a long series of experiments i t

is always possible to find a good distr ibut ion for this pur-

pose.

3. Free to be determined are now onlv A, B and I
m

These are determined from the actual dis tr ibu-

tion with the other parameters fixed.

We have left I to be determined in the last step because we have found
m
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that I has a variation through a high intensity experiment that cannot be

neglected. In a low intensity experiment, however, this parameter is near-

ly constant. Forthis reason we have incorporated the possibility to deter-

mine I from that time channel which has the highest number of registra-
ÏÏ1

tions and then keep it constant through this experiment. In this case we

gain statistic accuracyby the fact that we estimate only two parameters.

Through the whole calculation we use the leastsquares method to deter-

mine the parameters.

As an example of the results of a calculation, the maximum amplitude of

the neutron distribution is plotted in figure 5.4 together with the corre-

sponding value of the background distribution. The actual moderator is 8.8 cm

high and the measured time range is delayed 0, 128 , and 256 microseconds

elfter the end of the neutron burst. From this figure we can see that the

background is low in the main part of the experiment but that it reaches a

value of about 0. 8 times the maximum neutron amplitude at the endpoint. If

we compare the neutron curves we find that they all have the same asympto-

tic shape and conclude that the method has worked well even in this case.

In these experiments we have also a detector that is loaded with Li enriched

to 99.999 % L.i-7 according to the manufactor. The result from this detector

in the actual case is plotted in figure 5.5. Experiments 68051002 and 68051003

agree rather well with the results in 5.4. There is, however, a difference in

experiment 68051001. This may be caused by the transient part of the back-

ground, since a comparison of the amplitude distributions shows that the

agreement is bad in the transient part. The neutron intensity is, however,

high in this region and the background is not so important. It should be pointed

out that relations between the different experiments agree very well with those

of figure 5.4 for the last channel.



Table 5. 1 Dominating gamma radiation in the laboratory.

1

D-D neutrons D-T neutrons

Energy Half-life Material ,Energy Half-life Material
MeV MeV

0.51 13 h Cu 0. 51 10 m 13 h f Gu
0.83 5. 1 m Cu o a C

O 9.5 m AI
0.84 291 d Fe 0.05 2.6 h Fe
1.04 5. 1 m Cu 1. 02 9.5 m AI
1.46 stable K 1. 37 15 h AI
1.75 stable (Bi) 1.73 3.5 h (Fe)
1.78 2.3 m Al 2, 25 14 h (3n,Fe)
2. 16 stable (Sn) 2.75 15 h AI
2.60 stable ( B i )
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6. THE DETERMINATION OF DECAY CONSTANTS.

The number of counts {P. ) in. a channel i of a time analyser is, if the

channel, begins at time t, and ends at time t. , , and the inout has a pure
i J. T i '

exponential time dependence with a decay constant X and amplitude A:

T, f»t;i 4 1 . -Xt , A , ~ X t< -X î-i + ] .P. = I A e dt = "X" ( e * - e 'r 1 J

i - , - ... i 7 \
^ Ä- *"**' * J, w» fj « L ;•

Usuaily

fci-i i " Ci = tc { 6 .2}

where t. is a constant channel width. With the transformation
C

-X f;.
x = « 1.0 « x <C 1 } (6.3)

we .have

P. = -&• x1 ( 1 - x ) (6. 4)
X /v '

Another alternative is to do a transform to logarithmic time scale

t. = t * 21 ~ *
5- c * c6 a 5}

from which

P = Â -f
1 X * i

? i ~ I „ i - 1
~~ x - ( 1 - X ) (6 .6

For small values of the exponent we have

P. = A t 2
i c

i " 1 ( 6 . 7 )
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A sketch of the function f. is given in figure 6, I «

The problem of m easuring fundamental decay constants is that in the be-
ginning we have a time distribution containing higher modes. In the end

we have background and problems with low intensity. The advantage of

using equation 6.6 instead of 6.4 is then that we more effectively cover
the whole range of d ecay constants with few time channels.

The transformation of equation 6.5 can be done directly in the time ana-

lyser but in order to avoid a modification of this we have put a converting
matrix in the buffer memory. With the transformation chosen as equation

6. 5 the logics of the matrix are rather simple, We then look upon it as a
data reduction, and the merits of i t "are that we can reduce 256 linear chan-
nels to 8 logarithmic without losing any important information.

We are now faced with the problem to determine X or x from the distribu-

tion given by the experiment. We will here report three methods, two with
differential and one with integral structure.

The first method is simply to divide two adjacent channels with each other.
We then, have

( 6 . 8 )

(6.2)

where R. - —ilJJ,i

o- — the standard deviation

_ t . i
t <r — t C*i c

The relative standard deviation is shown in figure 6. ?.. The ordinate is chosen
to make the standard deviation of Peierl's method equal to 1» The standard de-

viation . is rather high and the only merit of this method is that there is no corre-

Xi - t: log i ( \!1 + 4R.S- 1 ) }
i ^

arid if the information in each channel is Poisson distributed

1 2 i''7" Ri ( 1 + "Rj) V

°"xi ~ H fpp' iTTTRP ( rT+4R? -1 )
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latiori between every second channel.

The second method is the summation method, II we sum the equation 6.6

from i to N we get

s . - x < h - « N + 1 i

N
\
L
jSi

,i-i
+ g

N +1 x 0}

Kf
P'°N+

From these we have

2 .. r Si* E

i, j = " ( . 2J ) t iog * sTe" ^ ( j <i ) (6.11)
c J

where E =

and if we can neglect E

?. j .1 _ ±
Vi t c ( z i - 2 J ) I S . S

( 6 . 1 2 )

The standard deviation for i=-1 i s drawn in figure 6. 3, We have used the

same normalization as in. figure 6.2. We find that the standard deviation

is low and that the available channels can be chosen to give accurate in-

formation. from all channels.. The drawback is that the different values of

l'amodia are not independent, and higher modes and background may, in a

systematic way, have an influence on all of {he lambda values.

The endterm E is small and can easily be taken into account by solving

6. 11 iterative!-/. Higher modes are studied in figure 6.4, from which



the shift in the calculated X, (AX) can be found-..

The number of counts coming from the higher mode ( ) and those

coming from the lower one ( n Q ) together with the corresponding decay-

constants (X 2 a n c^ ^ j ) are supposed to be known. The formula given in

the figure is correct only for small values of mn/n-. It can be seenU
from the figure that the shift can be high and that it has an influence on

all the calculated values of X .

The third method uses a correlation between two experiments 1 and 2,

which are different in respect to the amplitudes of the joining modes. If

we assume that two modes are included in the experiments, we can

write

R . = a, 1 f . + a f . +6. .
l , i 1 1 1 , i 1 2 2 , i 1 , i

R0 • a„ 1 f_ . *f a ~~f0 . -1* 5 _ .2 , i 2 1 1 , i 2 2 2 , i ( 6

where R = the number of pulses stored in the actual

experiment and time channel

a„= the j:th amplitude of the i: th experiment

f = the corresponding functions as defined in ea. 6.6

5 = the deviations from the measured values.

We can easily transform equation 6.13 to 6.14

f, .= a, ,R. . + a 1 0R0 . - E , .
1 , i 1 1 1 , i 1 2 2 , 1 l , i

f2,i~ a21 R1,i + a22R2,i " £2,i .(6

where the matrix of a is the inverse of a and z is the deviation from the

functions f.e e and 6 are connected by thetransform a . We multiply now

this equation with 'f> . , R . and , . The equations for the sums« $ 3- • ) 3- c fl
are then
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f , . - a , , S f . , . R « . - a E l . R , . = S c . "1,1 Î ! 1,1 1,1 12 I , i 2,1 3-

Z i 1 , i Ä t , i " a 1 1 S B ' 1 , i a 1 2 'L 1, i a2, i

2
S f. - R_ , •- a SR R„. . - a _ S E„ .1 , 1 2 , i i ! 1 , i 2 , i 1 2 £ , i

(6.15 )

We have here assumed that the .correlations between e and the R.;s are. sero

We can write an identical system of equations for the second equation in

6.14 and will therefore in the following drop the first index of f . We nor-
malize the elements of 6.15 by introducing the following quantities

D,
T TR R4j - , • -y •

JL
n

i
( î R U ) ( f R i i }

D.
S f. R. -
i . i J L l L •jrxr̂

s
i

I i f.

We shall now seek for solutions where d is minimum. If the detei

minant

(6 « 16 }

i

Fi
I 12

D1 2
0

there will always be a solution for d (x.) w hich can be calculated

f r om

D-

D, D.,

D.1 2 I

(6.17)



This is a conic section from which we explicitly can get. ci as

(D.,

2 (

+ D )
2J
D,

(D
L.

2( 1

D )
2.Ï { 6 . 1 8 )

AB D, and D are functions of x we can with a computer calculate d (x)
12

and seek the maxima. It should be pointed out that thé quantities .0,l7,

D , D and d are close lo 1 in a practical case, d must therefore be
1 u

calculated with great numerical care.

As soon as the two values of x are determined, we can. easily go hack,

calculate the a :s from 6. 1 5, and do an inversion in order to get the

amplitudes (a ). The resulting Quantities are therefore the two lamöda
ii ' •

values and the four amplitude values.

We havs only treated the case of two lambdas, because in the main part

of our experiment we have a strong fundamental mode mixed with a rather

small part of the higher modes. The latter is in our case more or less a

correction. It is, however, rather simple to extend the method by intro-

ducing more experiments into the analysis in order to get more lambda

values and a more correct fundamental mode. The result of a calcula-

tion with this method will be found in chapter 8, ,
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î

1
i -
j j•4 -j- •

! j

i > i

.

7
' i

i /
II i

HL.
o

j C

< J

Ö5

oj <o

t -

_ L _J i
t—» O
Ö o"



40

7. DATA HANDLING.

The output from each experiment is a paper tape containing 1024 values and

approximately 40 manually read parameter values. The analysis of these data

is dcsxe on an 13M comput:;;* ( system 360 model 50 H). The actual programs

are listed in table 7. 1. The philosophy in the organization of the programs

and the files has been to achieve a system with comparable small parts in-

dependent of each other. The merii of this is that different parts of the ana-

lysis can be tested separately, which is valuable both during the test period

of the program and during the actual analysis. Moreover, some parts of the

analysis can easily be exchanged in order to take into account developments

in methods and equipment.

The drawback is that the result has to be stored between the programs and

that every job step in the computer has a rather long initial time lag before

the control is transferred to the actual program.

The intermediate results are stored with the direct access method. The files

are listed in table 7.2. This method is very valuable because we can stop the

analysis at a predetermined point, check the results and recompute only those

parts where changes have to be done* Files 1 0 and 11 are parameter files used

through the whole sequence of programs, 13 and 14 are files for the entire

spectrum, 12 contains the time distribution after background subtraction, 15

and 16 are result files.

The first program, KEMSINP, checks the tape very carefully and reads the

information. We do not have any parity check on the tape and have there-

fore chosen a code where the punching sequence can be checked before and

during every number. PARIN reads the parameters from punched cards. The

maximum number of counts in a channel is 99, 999. Sometimes it is necessa-

ry to have a higher number in some channels. With OWCO we can correct

for this. The rest of the programs are directly related to the methods out-

lined in this report. In table 7. 1 references are given to those equations which

form the main part of the respective program. The program language is main-

ly PL,/l and in some cases FORTRAN.



Table ?» 1 Programs.

Program Method Input file Output file

REMSINF Experiment
input 10, 13

PARIN Parameter
input

- 10, 11

oweO Owerflow
correction 13 13

DTFAKT eq. 4.3 13 i 1

DECORR eq. 4.3 1 1 , 1 3 14

C OAPC O eq. 4. 4
eq, 4. 5

14 14

BAGM.SU eq,5, S 14 12

SIMLAM / i*ïe q . o . b 12 15

SUM.LAM e q . 6 . 1 1 12 15

C OB.LAM
iî
1

e q . 6 . 18 • 1 2 1 6



Table 7, 2 Data files.

File no. Number of
records

' Records
per'

Variables
per record

Attributes

10 32 1 32 Bin fixed (31)

1 ! 32 i 0,O Bin float(single)

12. 1 28 4 16 ? ?

.

13 1 28 4 256 Bin fixed (31)

14 128 4 256 Bin float(single)

15 128 4 16 5!

16 1 28 4 16 i r
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8. RESULTS.

The differentialwaluatin^ methods mentioned in chapter 6 have been

used through the whole experiment in order to check it for systematic

errors. The outcome from it is the same as from the correlation method

but because this has better accuracy and gives better possibilities to

survey the whole experimental series, we will limit the discussion to

the results from this method.

The main input features of the series are collected in table 8. 1. The

channel widths are chosen to match the different decay constants in

order to get the lowest possible standard deviation as given by figure

6. 3. The neutron burst is long compared to the half-life in order to get

the fundamental mode developed as much as possible. The ratio bet-

ween the fundamental and the higher modes increases with increasing

burst length, but the ratio between the fundamental mode and the back-

ground from outside neutrons and gammas goes in the opposite direction .

The waiting times can be altered in steps of 32 times the channel width.

Owing to the low intensity of the neutron source, we are limited to a few of

the lowest settings.

The results of a time correlation on this experimental series are collected

in figure 8.1. We observe that the scale of the ordinate is altered for each

experiment. We can first conclude that the agreement between the points

for each detector is good. We have also plotted the result of the smoothing

effect of a three parameter fit for each detector and can see from these

that the consistency through the series is good.

The most striking effect is, however, the difference between the detectors.

Detector 1 was placed in a position where the contribution from the second

radial mode should be minimal. Detector Zwasplaced at the maximum of the

first fundamental mode. One would therefore expect that detector 2 is more

influenced by higher modes than detector 1. This seems also to be true. There

are more variations in the values of detector 2.

The difference between the values of the detectors is plotted in figure C.3.

Here we can establish that the main trend is that the difference goes towards

zero with increasing waiting time and that the relative difference increases
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with buckling. The reasons for this can be that the higher modes are more

lumped together in a flat system. This means that longer waiting times are

necessary to get the fundamental decay constant. From the trend of the points

we can see that this time must be considerable if we intend to use the result

from detector 2. There are exceptions from this main rule. One may ask

why the 1-3 correlation through the whole experimental series gives a lower

difference than the 2-3 correlation. From the second series and the calcula-

tions of Griffing 12? we have learned that energy modes cannot come into the

picture. The answer must then be a mixed set of positive and negative mo-

des, some kind of continuum or a systematic error.

In figure 8. 1 the values of Sjöstrand et al. j[ 1] are also plotted. Although

their values are a little more scattered, the overall agreement with de-

tector 1 is good and we can conclude that this work is a confirmation of

their measurement.

The theoretical values of Griffing show a rather small but systematic de-

viation. From the figure and the discussion above we can conclude that

the correct value should be close to the result of detector 1 but between the

result of the two detectors. However, it is in this case better to do the com-

parison in buckling instead of decay constants. The difference has there-

fore been transformed to a buckling difference and is plotted in figure 8. 2

for the mean values of detector 1 and 2 ( the mean value is calculated from

all correlations but the 1 - 2, in experiment 68G516 the only available value

is taken ) and the values of Sjöstrand et al. The difference, which with the

values of Sjöstrand is rather scattered, is in our case more stabilized around

a value of approximately 2 %. As the relative deviation in buckling is pro-

portional to the relative deviation in the extrapolated height, the difference

can, at least for the smaller moderators, easily be explained as an error

in the extrapolated distance. The points indicate, however, a dependence

between the height and the extrapolation distance.

The diffusion parameters are listed in table 8. 2. The values of detector 1

should be taken as the result of this work. The deviations are those given

by the least-squares method and therefore no systematic errors are taken

into account. The result of detector 2 is listed only to underline how Ber ;"~

tive all the parameters are for higher modes in the experiment.



Table 8. I Characteristics of the experimental series.

Experiment-
no.

Moderator
height cm

Channel
width jjis

Neutron burst
length [xs

Waiting time
fit. s

68050601 1 7 , 6 4 200 0

68050602 I 28

680506 03 256

6805070Î 15, 4 4 200 0
680507 02 128
680507 03 256

»

68050801 13, 2 4 200 0
68050802 1 2 8
68050803 256

68050901 ! 1 0! , V 4 O O 0
68050902 . 1 28
68050903 256

68051001

OÖ00

4 200 0
68051002 1 28

68051003 256

68051401 6 , 6 2 100 0

68051402 64'
68051403 1 28
68051404 1 9 2

68051501 4, 4 2 100 0
68051502 64

68051503 128 i
68051504 1 9 2 !

68051601 2 , 2 1 50 0

68051602
...

32
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Table 8.2 Diffusion parameters.

———*——- — iirimn mm M tr , ,

1 X s" 1
0

! ——^—-
! D cm'"/si, o /

26830
] 79

f 4 /G cm /s

Detector !
Standard dev.

I
5818

13

! ——^—-
! D cm'"/si, o /

26830
] 79

i - .. ....

1 2152
186

Detector 2
Standard dev.

o008
2?

246 03
2 1 6

1471
191

GRIFFING 5761 27799 2368

SJÖSTRAND
Standard dev.

59 00

90
26500

6 00

f

26 00

800
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DEAD TIME CORRECTIONS IN A TWO-PARAMETER SYSTEM

CONTAINING FOUR DETECTORS

Gudmar Grosshög
Department of Reactor Physics

Chalmers University of Technology
Gothenburg, Sweden

Summary

A study of the deadtime correction in
a complicated counting system is performed.
It is shown how the transfer of information
can be divided into extrinsic and intrinsic
transfer. The intrinsic transfer depends on .
the total information flow from all detectors
and has been treated with an experimental
method, which is compared to a numerical
model. The extrinsic transfer depends on
the information flow in each detector line.
It is shown that this effect can be studied
through pile-up.

Introduction

Q Qi*\

As a counting equipment grows in com-
plexity, the problem of doing an exact correc-
tion for the pulse losses will be more and more
difficult^- . One has therefore reasons to keep
the correction as low as possible by having short
conversion times and using a buffer memory be-
fore the often slow memory block. The consequ-
ence of this is, however, that the losses will de-
pend not only on the intensities but also on the
time and amplitude distribution of the stored
pulses. Although it is difficult, it is quite pos-
sible to correct for these effects, since all in-
formation about them is contained in the mea-
sured distributions. There are, however, other
effects that we know nothing about. They arise
from those parts of the pulse spectrum, which
are rejected in different places of the equipment
by analog or digital data reduction. So we are
forced into some method by which we can mea-
sure at least the main part of the correction.

The system

The purpose of t he system is to mea-
sure the time and amplitude distribution from
four detectors simultaneously. The capacity
of the memory block is 1024 channels, which
can be arbitrarily subgrouped in binary steps
for the three parameters: number of detectors,
amplitude channels and time channels. The
method is applicable to different combinations
of these parameters. Results are given for
the subgrouping 4 detectors, 32 amplitude
intervals and 8 time intervals. The division
in amplitude is linear but in time it is loga-
rithmic ^

Dir. D »[

l

Fig. 1. Principles of the equipment.

The principles of the system are
sketched in figure 1. A repetitive start
pulse (TQ) passes a programming unit,
which controls the measuring time. It
is switched on manually and off either
by the condition that it has reached a
preset number of measuring cycles or
by the condition that there is an over-
flow in any of t he channels in the memo-
ry block.

The pulses from the detectors (Dn)
are amplified and added by an summing ampli-
fier in the amplifier unit (FA). The signal
from the addition circuit is fed into an am-
plifier (AMP)with two outputs, one direct
and one delayed. The delayed output is over
a base line restorer (BR) connected to the
direct current input of the analog-to-digi-
tal converter (ADC). If the system is not
busy, the pulse from the direct output pas-
ses a linear gate (LG) and activates a di-
scriminator (DI), which triggers the ADC
and the logic circuits in FA. From these
a signal in the actual detector line starts
the time-to-digital converter (TDC).
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From now on the conversion pro-
ceeds in both ADC and TDC. The conver-
sion time is fixed to 4 microseconds in TDC
but depends on the amplitude in ADC. The
result of the conversion is loaded into the
buffer memory (BM), where it is kept un-
til both the conversions are ready and the
memory block (MB) has completed a pos-
sible preceding storing cycle. TDC gives
the time information in a linear scale. A
conversion to the logarithmic time scale^
is realized during the transfer of the in-
formation to the memory block.

The system busy signal (BS) to
the linear gate is evaluated in the buffer
memory from the signals BA,BT,RI and
BMB. It signals busy if ADC or TDC or
the buffer memory is engaged or if the
time is outside the actual time interval.
The overall deadtime of the system de-
pending on the amplitude, the time chan-
nel width and the intensity. The minimum
deadtime for a stored pulse is about 8
microseconds.

Deadtime losses

A schematic picture of the equipment
from the view of deadtime losses is given in
figure 2. In the block marked " system " we
have collected all parts that have the same
influence on the deadtime for all of the de-
tectors.

In order to give the system informa-
tion about which of the detectors that is re-
sponsible for the actual signal, all ampli-
fiers are followed by a one bit memory
( monostables marked MSI to MS4 in the fi-
gure ). One of the first actions taken by the
system after the arrival of the pulse is to
read this information. As every monostable
is controlled directly by its own detector,
this part of the equipment will have a dead-
time that depends on the pulse rate of the
detector in question.

So we see that two different types of dead-
time appear in the system. The first depends on
the pulse rate in each detector line, the second
depends on the summed pulse rate and the pul-
se amplitude distribution from all detector lines.
We will in the continuation use the attributes
extrinsic and intrinsic for these effects.

We can now write

P . ( a . t ) = G i ( R i ) . H ( i S 1 B i ) . R. ( a , t ) ( 1

•> r

'Z "o «;

o ~ •— UJ oz in

Fig. 2. Working principle for deadtime
cons iderations.

In this equation we have assumed that the
intrinsic and extrinsic transfer functions are in-
dependent of each other. Owing to the effects of
overlapping this is generally not true. The equa-
tion is, however, a good approximation if, for
a given i, any of the functions is not far from
1.

Intrinsic transfer.

Experimental method

Suppose that we have a known distribu-
tion of well separated pulses in one detector
line i. g. 4. In that case = 1 and

P4 (a,t) = H- Ra ( a, t)

from which

4

a

where
P, = stored number of pulses for detector

i
R = incoming number of pulses for

detector i
H = intrinsic transfer function
Gj= extrinsic transfer function for

detector line i
t = time
a = amplitude

I P4 ( a, t

H ( t)
a! 4

) da

( 2 )

( 3 )

S R ( a , t ) d a
M

where a^ and a^ are the amplitude limits.
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The transfer function given by this
method contains the effects of all the de-
tector lines but the test line. This depends
on the fact that the test pulses are well se-
parated and not Poisson distributed. We
use this method in order to have G equal
to one and because the test pulses can in
this case easily be generated by an ordi-
nary pulse generator. With a constant pul-
se rate of 72 pulses per second in the test
channel the influence of this is approxima-
tely one per mille.

So, we can measure the intrinsic
transfer function simply by exchanging the
detector in one detector line with a pulse
generator. The numerator of equation 3
is then recorded in the analyser and the
denominator can be counted in a scaler
gated by a signal, which gives informa-
tion about the time of interest.

Error analysis

The statistical errors of the me-
thod depends primarly on the variations
of the recorded number of counts from
the test line. In order to investigate this
variation a series of runs was made with
H (t) 5 0 and the number of i nput pulses
going from 15 to 65 • 1 0^. It was found
that the standard deviation varied in
the some way as that of a Poisson di-
stribution. In 75 % of the runs the dif-

ference was less than 3 %. As an example
the distribution of the channel contents
for one run with 5.8 • 1 0 pulses is gi-
ven in figure 3.

Numerical model

The method has been checked
with a rather simple numerical model.
This model uses the fact that if the channel
width is small, the effects from the ampli-
tude converter will predominate. We as-
sume also that the transfer time between
the buffer register and the memory block
is zero. The deadtime can now be separa-
ted into two parts. The first is the sum
of all constant waiting times (t ) , the
second is proportional to the converting
time and therefore also to the amplitu-
de. The relation between the deadtime
calculated in number of channels af-
ter the arrival of the pulse (k) and the
amplitude (a) can then be written

k = t + c * a ( a ^ . 0 ) ( 4 )
w v

where c is a proportionality constant that
depends on the settings of the amplitude
converter. The inversion of this equation
is

k - t

Mean value 1120 'channel
Standard dev. A8 c/ channel

Pulses
nierval

Measured

Poisson

Fig. 3. Probability density function of
the test line.

a (k) = ( k >; t )v w ( 5 )

a ( k) = 0 ( k < t )
N \xr '

The probability that a channel j is closed
is then

j - 1 00

S(j) = ^ ^ p (a (k),i ) (j>1)

i = 1 k = j-i (6)

S (j) (j =1)

p (a, i) is the probability of a pulse in the
linear time channel i and amplitude chan-
nel a. It can be calculated approximately
from the stored distribution P (a, i) as

(a, i inside the
p 4 ) - - P(a.i) measured range)

N

p (a,i) = 0 (elsewhere )
( ? )

where N is the number of repetitions. It is
assumed that the system is open in the be-
ginning of each cycle and that all pulses
above the discriminator level are stored.
The intrinsic transfer function is finally

H ( i ) = 1 - S ( i ) ( g )
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Channel width = U ps

Initia! intensi ty s 20000c/s

Decay constant 8500^/s

Log time

Fig. 4. Calculated correction factor as
a function of t he deadtime t .

w

The result of a calculation with this
method is shown in figure 4. The distribu-
tions are taken from an ordinary experi-
ment with eight logarithmic time channels
and 32 amplitude channels. The calcula-
tion is made in a linear time scale but the
result is transferred back to the logarith-
mic scale. Time channel number one is
zero, as the system always is considered
to the open at that time, number two is
constant because t is larger than the chan-
nel width. The other curves show plateaus
and transients. With 32 amplitude channels
the deadtime variation is 1.6 microseconds,
which gives transients in the channel limits
that last over a period of 3.2 microseconds.
The shapes of the transients are determined
by the amplitude distribution.

We have also compared the model to
the correction factor obtained from mea-
surements using the above method. The re-
sult is shown in figure 5. The input to the
experiment is a neutron and gamma field,
where the neutrons give a dominant peak
decreasing with a decay constant of ap-

proximately 8500 l/s. The difference bet-
ween the runs is that they have different
starting times, which gives the different
initial intensities noted in the figure. The
relative accuracy of the experimental
points is also indicated in the figure.

From the figure we conclude that there
satisfactory agreement between the model and
the experiment in the intermediate part, but
there are deviations both in the beginning and
the end part of the curves. We shall, however,
keep in mind that all common effects are in-
cluded in the experimental values. In the be-
ginning there are transients, which have not
been accounted for in the model. The effects
in the end part may depend on uncertainties
in the gating signal to the scaler needed for
the denominator in equation 3. The correc-
tion is, however, low and second orders
corrections may also come into the picture.

The result of this investigation is
that a check of the experimental method
has been obtained. The rather simple mo-
del gives correct results in the main part
of the experiment but not in the limits. The
model is also expensive by consuming
rather long computing time. It is there-
fore not attractive to expand the model
by putting more routines into the com-
puter program.

correction EXPERIMENTAL
SYMBOL

INITIAL
INTENSITY^RUN

7700
2600

STANDARD DEV.
CALC. VALUES

Timechannel No.

Fig. 5. Comparison between measured
and calculated values of the in-
trinsic deadtime correction.
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Extrinsic transfer

In the detector lines we have to take two
effects into account. Firstly, there is the ef-
fect of p ile-up in the amplifier chain, secondly,
the monostables have a time period during which
they can not be reactivated. So, the system we
have to study here is two serial connected blocks
If the deadtimes of these are t^ and t^, we can
state the following about the resulting deadtime
t .m

a. If t , >. t_ then t = t ,
12 ml

b. If t , < t_ then t , +t-> t > t_
I 2 1 2 m 2

( t depends on intensity)

c. If t , << t then t« tI 2 m 2

From these statements it is clear that
it is favourable to have the largest deadtime
in the beginning of the chain. This presup-
poses that all irrelevant information can be
sorted out at this early stage, which often
is not possible. One is therefore left with
a compromise and must try to sort out as
much irrelevant information as possible
to the lowest price in deadtime.

In our case the deadtime of t he mono-
stables is of t he same order as that of the pile-
up effects. As the pile-up effects are reflec-
ted on the amplitude distributions, we will
use them to study the extrinsic deadtime ef-
fects.

Pile-up is a coincidence in the ana-
log parts of the system between two different
pulses. The result is an analog addition bet-
ween the two pulses, which gives a pulse with
strange shape'. If w e can assume that the re-
sulting pulse has a definite length (T) we can
write

Pm ^ da = P (a) d a + t (I, -I2) da

OO 00

^"1 ~ y y § (aj > a2' a) P (aj) P (a^^i^a^
o o

*2 = P (a) Jj P (a )da

o

where

counts

V corrected distr ibution

O measured distribution

amplitude

Fig. 6. Comparison between a measured
and a corrected amplitude distri-
bution.

p (a) = the measured distribution in
counts per second and ampli-
tude interval.

p (a) = the corrected distribution

g(a^, a^, a) = the probability that a pulse
with the amplitude a and
a pulse with the amplitude
a^ is stored as a pulse with
the amplitude a.

The function g depends on the pulse shape
and on how the ADC treats strange pulse shapes.
As a simple model we assume that the undistur-
bed pulse has a rectangular shape with ampli-
tude a and length t /2 . Then we can write

g (a], a2, a) = 6 ( a - ea; - ea2 ) (10)

where 6 is the Kronecker delta function and
e is a parameter to be determined.

Equation 9 can easily be solved by-
iteration, starting with p (a) as the first
approximation for p (a). mFor ordinary
values of t he pulse rate the iteration con-
verges in few steps.

Errors in the parameters e and x
give distortions in the resulting amplitude
distribution. The parameters can there-
fore be determined by trial and error with
the condition that the distortions shall be
out. In our case we have found e = 0. 9and
t = 3 microseconds.
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Another problem is the low part of
the amplitude distribution, which is not
measured. In order to take this into ac-
count we have to extrapolate the distri-
butions down to zero.

It should be pointed out that pile-
up caused by pulses from different detec-
tor lines is sorted out by a coincidence cir-
cuit . The result of this operation is a block-
ing of the whole system. Therefore, the
deadtime caused will be contained in the in-
trinsic deadtime.

As an example the amplitude distri-
bution before and after correction is given
in figure 6. The intrinsic correction is 20 %
and the local intensity is 40, 000 counts per
second.
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SUMMARY

The possibility to use the pulsed neutron method in the study of two in-

teracting moderators has been investigated. It is found both through theory

and experiment that transport effects have a dominant influence on the decay

constants.

The decay constants have been measured in a system consisting of two

polyethylene discs separated along the symmetry axis. The discs had a

diameter of 18 cm. Two series were measured. In the first the discs had a

height of 2. 2 cm. They were separated by a distance that was varied up to

13. 2 cm in steps of 2. 2 cm. In the second the height of the- discs was 4.4 cm,

the maximum separation distance was 8.8 cm, and the step length was the same

as in the first series. The experiments cover a range in decay constants that

goes from 1 0. 000 to 40. 000 s . The reliability of the measurement is checked

in the limit of zero separation distance and in the limit of no interaction.

It is found that in all of the experiments, with the exception of those in the

limits, the decay constants are drifting in time. Therefore they cannot,

within the scope of the experiments in this report, be looked upon as reliable
pseudomodes.

The result found can be extended to include all experiments with the pulsed neu-

tron method applied to moderators containing cavities or having concave boundari-

es. A method to eliminate the drifting effect through the incorporation of absor-
bers in the cavities is suggested.
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1. INTRODUCTION

The ordinary way to calculate the neutronic interaction between assem-

blies is to define an interaction parameter p a s the fraction of t he out-

going neutrons from one of the assemblies that reaches the other one.

If t he interaction takes place between two plane surfaces we can write

\ J ( S i ) f (¥ ,6)d S] d S2 cos O/s2 (j. i)

J (S ) d 3
T 1

where J(S^) d = the total outward current at dS^

s = the distance between dS^ and dS„,

S^,S„, = the plane surfaces

f (f , 0) = the angular distribution of the neutrons at the surface

normalized in the range : (0,2 it) (0,-5- ) !
1«, £* J

¥ , 0 = the spherical polar angle coordinates of

dS^ relative to dS ^

f(¥ , 0) may be expressed by a Legendre series. If i t is independent of H we can

write
f (Y ,0) = ) al P1 (c o s e) (1.2 )

1--o

In the diffusion approximation this takes the form

• f ( ï , 9 ) = ~ ( 1 + - L ^ c os 0 )

A 2 Ti ( 1 + -It , ) (1.3)

2D S cj>
where r) = y cjj § x at the surface

2D = the diffusion constant ( cm /s )

v = the neutron mean velocity ( cm/s )

Trie o rdinary way to evaluate p i s to use a cosine angular distribution corre-

sponding to the second term of the expansions 1. 2 or 1. 3. The result of such a
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calculation is shown in figure 1.1, which gives p as a function of the

separation distance ( d ) between two identical cylindrical discs with

the diameter 18 cm. In the lower curve the variation of the neutron current

over the surface of the discs has been approximated with a constant, in

the upper with a parabola. Explicit expressions for the two cases can be

found in reference 1.

In order to give a correct picture of the neutron angular distribution at a

free surface many terms are generally needed in the series expansion.

Most of these are, however, required in order to take into account the

fact that there are no incoming neutrons. Therefore, if we are interested

in only the outgoing part, the first two terms give a rather good estimate

of the angular dependence 12 fig. 9.6j .

In figure 1.2 the result of a calculation for the first two terms is shown.

Expression 1.1 has here been evaluated numerically on a computer. As

the radial distribution a zeroth order Bessel function has been used. The

agreement between the curve for the second term approximation in figure

1. 2 and the upper curve in figure 1.1 is excellent, which shows that the dif-

ference in the radial distribution is not so important.

If one now does an experiment in order to measure p as a function of the
separation distance d for two identical discs one would expect p ( d) to be
somewhere beetween the curves for the first and second term in figure

1.2. It should be close to the first term for low d where the backscattered

neutrons create rather symmetrical angular distribution and more close

to the second term for high values of the separation distance d. This be-

haviour 's confirmed by measurements on subcritical assemblies 3.?. There

is one exception in the material presented by Clark and that is in the limits
of v ery small separation distances. However, the magnitude of the difference

is small and may be explained by the influence of epithermal neutrons or by
some systematic error in the comparisons between experimental and calcu-

lated values.

Kiyose et al. 1 have suggested that the pulsed neutron method could be used

in order to measure the interaction parameter. They have also made an ex-

periment with graphite discs ( diameter 150 and thickness 50 cm ). The result
of this measurement is, however, very puzzling. For separation distance

up to 30 cm they have got good agreement with the approximation



that has a parabola as current distribution and uses the second term in

equation 1.2 as angular distribution. For larger separations the mea-

surement gives higher values than the mentioned approximation. These

results are in direct contradiction to the material of Clark. Although

higher terms in the angular expansion (1.2) can explain the high values
at large d, the behaviour is unexpected.

As we could not find any resonable explanation of the discrepancy, we

suspected that there might be something wrong in the application of the

pulsed neutron method to this case. Therefore, we have made a careful

study of the method and a measurement with polyethylene discs and thus
checked the experiment with another material and another set-up.
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2. THEORY

We consider first the stationary diffusion approximation. With the geo-

metrical parameters as given by figure 2.1 the neutron flux for the posi-

tive part of z can be written

= -V ( sin (Yz ) - tg ( y e ) cos (yz ) ) (2. 1 )

where we have used the boundary condition cj> = 0 at z = e.

Following diffusion theory we have the input and output currents at z=d/2

J. = iL - JO. /_5jL\
2v '5z /+ 4 2v

j - JL D.
- ~ 4 2v fê?) <2-2 '

As the problem is symmetric with respect to z = 0 we have by definition

J
p = ( 2.3 )

from which

1 " P = _2D_ / _6£— ) — T] ( 2. 4 )
1 + p v <j> 5 z 2 = d/z

If we check this expression in the limits we find that p = 0 gives rj = 1 ,

which is correct within the limits of diffusion theory. A better value

at this limit is, however,

*i = —T~ ro = 0,7104 ( 2-5)
0 o '

In order to correct for this we rewrite equation 2.4

1 " " - , ° t i = V ( 2 . 6 )
1 +P

We then have an expression, which in the limits is consistent with an or-

dinary measurement with one and two discs respectively.

T) ca n be calculated from equation 2.1, which gives

2 D Y'n = -
tg (tt- y (b +6) ) ( 2.7 )
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We can now outline a method to determine p. Lambda is measured. From

the inversion of the buckling expansion

X = X + DBZ - CB4 (2.8)
o

we get the buckling

2 ( \ - \ )v o '

B2
/

D ( 1 + V 1 - -J )
-L'

A C < X - \ i \ ( 2 . 9 )

y is then determined by

B2 - a2 ( 2. 10 )

where
2 , 2.405 v

a = — 'r + o

Finally we have
1 - V

2

? = l + V ( 2 - 1 1 )

We can interpret p as the albedo of the other disc. ,r| an d -q ' maybe con-

sidered as loss coefficients. The method outlined is the came as that

used by Kiyose et al. [l^j with the exception of the correction for the

boundary effect. Equations 2. 7 to 2. 11 are illustrated in figure 2.. 2 for

the interaction of two 2. 2 cm thick polyethylene discs and in figure 2. 3

for two 4.4 cm discs. The radius of the discs is 9 crn. The standard

deviations of p relative to the deviations of l ambda are shown in figure

2.4 and 2.5. As lambda can be measured with an accuracy within a few

per cent, the curves show that from these considerations the experiment

should give accurate values on p f or all values of d with the exception

of v ery large separation distances.

So far we have considered only the stationary interaction between the discs.

In an ordinary pulsed experiment this is the usual method. However, an in-

spection of t he Boltzmann eq\iation for the region between the discs shows

that the wave properties plays an imx:>ortant role. Therefore, we must re-

consider the transfer between the discs and take the time lag into account.

We first assume that all neutrons have same velocity and a direction parallel!

to the symmetry axis of the lises. Taking into account the fact that the in-

coming neutrons were transmitted a time earlier we can write

V * - 7 >
P J ( t ) ( 2 . 12 )
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If both of the moderators have an exponential time dependence this gives

J+ ( 4 v±
p = j ( t ) ° v p p < 2 - 1 3 >

where p is the stationary transfer coefficient as calculated before and pst _ rp
is a coefficient taking into account the exponential decay of the neutron

field.

From equation 2.13 we find that o " v-end.3 on the velocity. Therefore, we'p y .
must do a more careful investigation and take the velocity distribution into

account. We will consider exponential decay and can write with M (v) as the

velocity distribution .

, CO

J e !,i M ( v ) dvout o ! v 'J
O ( 2 . 1 4 )

x t œ ——
J. ( t ) = J e C M ( v ) e V p . dv

in ' o j d s t

v =j-

oo X d
from which Ç M ( v ) e v dv

V:-d/t
i5„ ~ c oP

7

T v =d/t
where

v^ = the most probable velocity

£
X d

VT

( 2.15 )

f M ( v ) dv
i

With a Maxwell velocity distribution this gives

œ , V T 2

p p ^ # j e - ( v T ) d v ( • ° )

The velocity distribution of the incoming neutrons is shown in figure 2. 6

and o is drawn in figure 2. 7.' 'Q
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From equation 2.16 we realize that depends on the time. Moreover it

is singular for infinite times. Therefore, the measured lambda value will

also be time dependent and a fundamental mode does not exist. The same

conclusion can be drawn from any reasonable velocity distribution.

We can compare this with the results of Corngold L4j„He has found that

above a certain limit, ( vS ) . for X. .a fundamental mode does not
nun

exist. In our case we have a domain inside the experimental assembly

where this limit is equal to zero. Therefore, also from this aspect we

may expect that a fundamental mode does not exist.

Vfe must, however, be careful here. K we are going with the separation

distance into an inteiatcmic range we could also conclude that a funda-

mental mode never exists, which obviously is wrcag. Our model is, how-

ever, a three region macroscopic model with transport theory in one and

diffusion theory in two of the regions. Therefore, it should not be used

to draw conclusions in the interatomic range.

Measurements on graphite and beryllium have been done above the Corngold

limit j5 < (and experimentally welldefined fundamental modes have been

established. The explanation of this is the appearance of pseudomodes in

i-Vip.fji-i-i nrrra 1.4, 6^ . Therefore, the question about the existence of pseudomo-

des is natural also in this ease. An inspection of figures2.6 and 2.7 gives

the result that one can expect pseudomodes for small values of d where the

distortion of the spectrum is not so tremendous.

The definition of pseudomodes is not quite clear. From a theoretical stand-

point they are caused by discrete exponentials embedded in a continuum or

by the fact that the continuum has peaks. The experimentalist measures

the time dependence of the decaying neutron field. The appearance of a

pseudomode causes here an exponential decay, that lasts for some period.

The strength of the pseudomode is reflected in the time during which the

logarithmic time derivative can be looked upon as a constant. In order to have

an experimentally well defined ps^udomode this time period must be of the

same order as for a discrete mode mixed with higher modes and background.

So it is in the measurements on beryllium and in order to accept pseudomodes

we require the same here.
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We have treated p more or less as a correction. However, as can be seen
p

from figure 2.7, it is an essential parameter. As it is difficult to calculate

we have to realize that it will introduce a large error in the resulting p .

The problem is, however, interesting in itself and therefore we will con-

centrate the experimental analysis to the appearing lambda values.
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3. THE MEASUREMENT

The experimental arrangement is shown in figur 3.1. As moderators we used

polyethylene discs, which were separated by three thin aluminium bars and

shielded by boron carbide. ^Three glass scintillators were used as neutron

detectors. The first detector had l/v response, the other ones were black.

The tritium target was placed at the symmetry planje-^z »; 0 in fig. 2. 1) and the

assembly was rotated around the cylindrical symmetry axis.

A description on the headpart of the electronics can be found in reference 7.

One part of the system has, however, been reconstructed, namely that

which controls the information about which of the detectors is responsible

for an incoming pulse. In analogy to the digital converter (ADC) we name

this unit detector to digital converter (DDC). In the old version pulses

could be cut off by the blocking signals, coincidences between different de-

tectors blocked the whole system durjng 10 microseconds and the noise from

different detectors was added in the summing amplifier. The new unit was

constructed in order to avoid these drawbacks.

The block diagram of the new unit is shown in figure 3. 2. The principle

can be used for any number of detectors. In the figure only one of the de-

tector lines is sketched. The interconnections with other detector lines are

indicated with empty arrows.

The input signal turns on a Schmitt trigger. The front of the signal gives a

50 nanosecond trigger signal, which tries to shift on a corresponding bi-

stable circuit. It will succeed if the bistable is not blocked by an external

signal or if any of the other lines contains an on-condition in either the

Schmitt trigger or the bistable circuit. If the bistable circuit goes on it opens

a linear gate in order to send a delayed linear pulse into the summing ampli-

fier.

The important features of the circuit are that during the same time more than

one gate is never opened and that the opening always occurs so that the pulses

are not cut. If two pulses arrive with the leading edges in coincidence within
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50 nanoseconds, no gate will be opened. If they are separated by more than 50

nanoseconds but less than the deadtime of the system, the first one arrived

will be treated, and if they are separated by more than the deadtime of the sy-

stem, both of them will be taken care of.

Two series of measurements were done, the first one (D series ) with 2. 2

cm thick polyethylene discs and a separation distance going from 13.2 to 0

in steps of 2. 2 cm. In the second ( E series ) we used 4.4 cm discs and the

separation distance varied from 8. 8 to 0 with the same step length. The dia-

meter of the discs was 18 cm in both of the series. For each distance we made

three measurements with different delay times between the end of the neutron

burst and the beginning of the measurement. In the D series the delay time was

10, 30 and 50 microseconds, in the E series it was 20, 60 and 100 microseconds.

The length of the neutron burst (D-T reaction in a 150 kV 3AMES neutron gene-

rator ) was adjusted so that the channel with the highest intensity was nearly

filled during a measurement of 80 minutes. The length of the neutron burst

was varied up to 20 microseconds in the E series and up to 50 microseconds in

the D series.

The measured distributions were corrected for deadtime and background. The

decay constants were then calculated with a correlation method. The programs

used were REMSINP, PARIN, OWCO, DTFAKT, DECORR, PILEUP, BAGMSU

and CORLAM. The methods used by the programs are described in the re-

ferences 7 and 8.
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4. RESULTS

The results given by the program CORLAM contain information about ampli-

tudes, correlation coefficients, decay constants and standard deviations. We

will here mainly use the information about the decay constants and their er-

ror limits.

Some remarks must be done about the principles and limitations of CORLAM.

As input we use two different measurements on the decaying neutron inten-

sity. These measurements are done with a channel width that varies in the

sequence 1, 2, 4, 8 .... in order to cover the entire measurable part of decay

with few channels. The program correlates two measurements against each

other and tries to determine two decay constants. If the modes are sharp

the program will find both of them. No information is, however, given

whether the first found or the second is the fundamental one. This deci-

sion must be done manually from the amplitude values or other indications.

During this experiment the program has always found a first mode. It is
difficult for the program to find the second mode if it is close to the first,

if it has low intensity, if it is not sharp, or if the two series are nearly

proportional to each other. In these cases the program does an estimate
on the second mode. It has been found by experience that these estimates often

are rather good. The amplitudes calculated are, however, often bad. This
depends on an inversion of a matrix that tends to be singular in these cases.

It can be seen from the equations in reference 7 that if the two series are pro-

portional to each other only one decay constant can be found. The estimate

of this is then equivalent to the least-squares method. Therefore, the abscence

of a second mode may be caused either by the fact that the two experiments

are too close in time or space or by the lack of a second mode.

The error limits calculated by the program will be the statistical standard

deviation if the modes are sharp. If the modes are drifting (the logarithmic

time derivate of the neutron distribution is not constant in time), the effect

of this will be included in the error limits.

The experimental series E and D contain for each separation distance three
m e a s u r e m e n t s w i t h d i f f e r e n t d e l a y t i m e s b e t w e e n t h e e n d of t h e n e u t r o n b ur s t

and the beginning of the measurement. This gives three correlations, which
we will name the 1-2, 1-3, and 2-3 time correlations. During the whole experi-

ment we used three detectors. A correlation between detector T and 2 gives
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information about energy transients because they are symmetrically placed

but have different energy sensitivity. Therefore, we call this an energy corre-

lation. The last correlation is a correlation between detector one and three.

As these two detectors have different space positions, the first at the zero

place of the second radial mode and the third at the symmetry axis, they

give information about the changes in the space distribution. Therefore, this

correlation is called a space correlation.

The result of the experiment is presented in figure 4. 1 to 4.18. The first mode

found by the program is marked by a cross, the second by a circle. In most

of the cases the first one is also the fundamental one. An estimate of the se-

cond mode is marked by parantheses and no marking is done in the cases when

the program has failed tcfind the second mode. The standard deviations are

only marked in those places where they are of special interest. The standard

deviation of the fundamental mode is in the logarithmic diagrams less than

the symbols. The lines drawn are only inter-connections between the mea-

sured values.

TheEseries contains 6 measurements, the D series 8. We will in the following

refer to the different measurements with serial letter D and E and experi-

mental number 1 to 8 and 1 to 6 respectively.

E6 and D8 are measured with one of the interacting media removed. This

means that D1 is identical to E6. They represent, however, two different

measurements and serve as a link between the two series.

Figures 4. 1 and 4.2 give the energy correlation. If we compare the checkpoints

E6 and D1 we find that the latter one is more stable in time. The reasons for

this may be that D1 contains a sharper second mode, which has been included

in the fundamental in E6. The same reason may be behind the drifting in the

l i m i t El . T h e m o s t st r i k i n g f e a tu r e o f t h i s c o r r e l a t i o n i s, h o w e v e r , t h e c e -

cond mode found in the D series at the shortest delay. With the exception of

D2 and D3 it is rather independent of the separation distance. It must be iden-

tified as the thermalization time constant and gives a thermalization time of

4. 8 microseconds. As a comparison, the Nelkin model gives for water 4 micro-

seconds ' 9 page 228.

The thermalization effect appears only at delays of 10 microseconds. This depends

on the high decay rate of this mode a,nd therefore it may be neglected for all

correlations that do not include the 10 microseconds delay.
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The space correlations are plotted in figure 4. 3 and 4.4. The checkpoints

are not so stable here as in the energy correlation. Especially the modes

lower than the fundamental in D 1 give reasons to suspect some influence of

background.

During the measurement there was a slow but rather serious drift in the

amplification factor of the third detector. It was manually compensated by

changes in the high tension to the photomultiplier. but as a matter of the fact the

program of background subtraction had a more complicated case to handle than

normal. One of the results of this is that D4 with delay 30 microseconds is

missing. A comparison between Eé and D1 shows that there really is a diffe-

rence that does not depend on the experimental set up.Altbougu.we shall have

this defect in mind, it will have no influence on the general conclusions drawn from

the experiment.

Space modes are more difficult to handle than energy modes. This is underlined

by the results of this correlation. Two bands of decay constants are formed.

The higher can be identified as the second radial mode. The drift of the decay

constant mtist be explained by the mixing of modes in the direction of the symme-

try axis. With the exception of one case (D5) the energy effects are removed.

The point D5 indicates, however, that there may be some influence in the cases

of 10 microseconds delay.

The time correlations are plotted in figure 4.5 to The space and energy

correlations separated some special effects. The characteristic of the time corre-

lations is that they give information about the local effects of each detector.

Therefore, we have to expect that slow local transients which cannot be ac-

counted for by the crude model of two decay constants, give a drifting effect.

This effect is seen in the third detector. As we irradiate the cylinder through

the curved boundary this detector is the last one that reaches the equilibrium

decay . From the measurements El, E6,D1 and DS we find that considerable

time is needed. The dominating higher mode has negative amplitude, a fact

that has been found earlier 17.''-As the transparant detcctor has rather low

sensitivity, the best asymptotic values are measured by detector two. The

agreement with earlier measurements is good for the values from this detector.

This fact verifies the reproducibility of the methods and the eouipment.
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5. DISCUSSION
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The fundamental mode as seen by the experiment varies rather much.

There is, however, a systematic tendency that goes through the whole

material. The decay constant has a trend against low values in D2 and E2

and high values in D4 and E4. As this trend does noti depend on the series

it is difficult to explain. It may be caused by the variations instroduced by

the adjustments of the neutron burst length and amplified through the insta-

bility of the decay constants. One can, however, not] completely remove

the suspicion of some kind of resonance effect.

As a summary on the question of pseudomodes, we conclude, that within

the scope of this experiment there are no useable pseudomodes. The drift

of the modes is systematic in energy for low values of the separation di-

stance but elusive in space.

As we found that this method can not be used to determine the stationary

interaction we seek for a method to cancel the dynamic influence. The in-

t e g r a l B o l t z m an n e q u a t i o n c a n be w r i t t en [ 2 e q . 9 . 8 a j
oo
P

oo

f(x, E,0,t) = \ds[exp{- . /Z ( x -s'1, E)dsj}] q (x-sT2,E, Q,t-s/v (
J 'J
O o

where the symbols used are defined in reference 2. A .-c^ssary condition

for an exponentially decaying field is that the integrajl is bounded. This

means that the condition

s
n

v ^ S ( x - s'Q, E ) ds'

must hold for all transfers within the convex boundary of the system,

that is for all x, E and 0. In our case the condition is met v/ithin the

two discs but not for all transfers between them. However, if an ab-

sorbing disc is placed between the moderators the condition 5. 2 is

fulfilled if the following condition holds.

( 5 .

Xd < T,' d
v ^ a a ( 5

where d is the thickness and J! the absorption coefficient of the absorber.
a a T

Equation 5.3 shall be fulfilled for all values on v. Attractive is the case

of an 1 / v absorber. We then have

X» d
d > -
a T! *v• cLO O



44

where T. is the absorption cross section at the veloci
ciO
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6. CONCLUSIONS
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SUMMARY .

The stationary interaction parameter between the plane surfaces of two

identical, cylindrical, polyethylene discs has been measured with the

pulsed neutron method. It was shown possible to overcome the delay ef-

fect caused by the flight of the neutrons in the gap between the moderators

by means of the insertion of absorbers. In the measurements the ratio of

separation distance to diameter was varied between 0, 06 and 0. 77, and

the corresponding interaction parameter went from 0.93 to 0.24. Using

two different thicknesses of the discs two series of measurements were

performed, one covering decay constants between 10, 000 and 17, 000 s ^

and the other the range 17, 000 to 40, 000 s"1. Although full equilibrium of

the neutron distribution was not reached in all cases in the last series,

the resulting values of the two series show a general agreement. A cal-

culation based on a zeroth order Bessel function as radial distribution arri

( cos 0 )/tr as angular distribution of the neutrons leaving the interact ng

surfaces gives too large interaction parameter for all separation distances.

However, the overestimate seems to be small when the surfaces are close
together.



1. INTRODUC TION.

An essential parameter in the criticality control of f issile materials

is the interaction parameter Ç ( 1 ). For an assembly of b odies, which

interact through the interchange of neutrons, the interaction parameter

is defined as the probability that a neutron coming from one body hit
another one.

The interaction parameter depends on the shape and position of the inter-

acting surfaces, on the angular distribution and on the velocity distribu-

tion of the outgoing neutrons. For simple systems approximate expres-

sions for the interaction parameter are available ( 1,2 ). These expres-

sions are often conservative in the sense that they give an overestimate

of the interaction. For more complex assemblies it is difficult to calculate

the interaction parameter and therefore experimental determinations are
needed.

One method often used to measure the interaction relies on determination

of the reactivity of a multiplying assembly ( 1 ). Another course of action

is to use the pulsed neutron method ( 3 ). We have earlier shown that this

method can be used only at small values of a parameter £ defined as

i1-1*

where

K = the decay constant

s = the length of the flight path of a neutron betwee

the interacting surfaces
v = the velocity of the neutron

andthenonly if a correction is incorporated, which takes into account the

time the neutrons spend in the space between the interacting media ( 4 ).

We have also shown experimentally that this delay effect is so strong that
it at large values of £ affects the basic concept of the pulsed neutron method,
which means that no stable asymptotic decay can be found.

The breakdown of the classical pulsed neutron method is caused by two

effects. At finite voids it is caused by a singularity, which appears at the

low energy part in the energy distribution of the transferred neutrons. One

can explain this through the fact that a memory cycle that tends to be infinite
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at zero energy has been incorporated into the system. This means that the

spectrum of decay constants contains a continuum that goes down to zero.

A theoretical study starting directly from the Boltzmann equation is needed

in order to get a complete understanding of this phenomenon.

The same ideas can be applied to infinite channels or plane infinite spacings.

A singularity appears here for all energies when the angle of the flight path

tends to be parallel to the channels or the surface of the plane spacing (5).

There is a close analogy between this type of measurements and a stationary

experiment. PALMEDO et al. ( 6 ) have recently shown that a measurement

in an assembly of Al-H^O plates does not give an exponential decay in the

direction parallel to the plates. This is in agreement with numerical pre-

dictions by CLANCY et al.( 7 ) and theoretical by WILLIAMS { 8 ). In this

case the limit of the appearing continuum is determined by the properties

of aluminium.

Another way to look upon the effect is to establish that the flight of neu-

trons creates an energy and space dependent importance function, which

favours the low energy part of the energy distribution of the transferred neu-

trons. The delay effect can then be cancelled if we introduce a medium,

which has such properties that it, together with the delay effect, gives an

importance function identi cally equal to 1.

The purpose of this work is to apply these ideas to an assembly constructed

of two circular polyethylene discs separated along the symmetry axis, and

to determine the stationary interaction parameter for the transfer between

the plane surfaces of the discs.
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2. THE METHOD

The stationary interaction parameter for two interacting surfaces can
be written

Pst =
n <dSjdS2 J ( S1 ) £ (Ï.6) (cos 0 ) /s

Î d S1 J ( ST )

( 2 . 1 ;

where

J (Sj) dS^ = the total outward current at dS

S1S2
£ ( f , 0 }

¥ , e

i
= the distance between dS, and dS„I 2
= coordinates in the surface
= the angular distribution of the

outgoing neutrons, normalised over

all outward directions
= the spherical polar angle coordinates

of dS relative to dS.2 f

In a pulsed system the interaction parameter depends not only on the angular

distribution of the outgoing neutrons but also on the velocity distribution and

the time the neutrons spend in the space between the moderators. Thus we
write

IIIdS 1 d S ? J ( S , } f (f , 0 ) M (v) g (t,) (cos 9) /s

IdS J ( s 1 )

( 2 . 2 )

where

Pd
M ( v )

( V

= the dynamic interaction parameter
= the velocity distribution of the

outgoing neutrons
= the importance of the neutrons when they

arrive at a surface in relation to the im-
portance when they left the other one

= the time a transferred neutron spends
in the space between the intracting sur-
faces.

If the neutron population in the bodies decreases exponentially the importance
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function is given by

g = exp { X s / v ) (2.3)

where

X = the decay constant

v = the velocity-

It is easily seen that the integral over the velocity in equation 2. 2 will be

unlimited with this importance function for any reasonable velocity distri-

bution. However, if an absorbing filter is placed between the two surfaces

we get

g = exp ( X,s /v - 2 a sa ) ( 2.4 )

where

s = the flight path in the absorber«Hr
2^ = the absorption cross section

If we assume that the absorber has a l/v - cross section, we can transform

equation 2.4 and thus we get

g = exp ( - a T vT / ( v cos 6 ) ) (2.5)

aT = da SaT "X d /vt ( 2.6 )

where

v ,̂ = the most probable velocity

^aT = a^>sorPt^ori cross section at the

most probable velocity

d = the thickness of the absorbera
d = the separation distance.

Through the incorporation of the absorber we have got a possibility to control

the importance function. If we put g from equation 2. 5 into 2. 2 we see that the

velocity integration in 2. 2 will give a limited value for a ^ 0 and that a ^= 0

makes equation 2.2 identical to 2. 1.

As a ,p depends on X , it can only be approximately estimated prior to the mea-

surement. Therefore, we measure the dynamic interaction parameter (a^,)

for some points in the neighbourhood of a ^, = 0 and interpolate or extrapolate in
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order to determine the stationary interaction.

Pst = ( 0) (2.7)

The method used to determine is based on the knowledge of the diffusion

parameters and the validity of the diffusion theory. The details are described in
reference 4 and 9, so we only reproduce the formulae.

I +,
p 2 k Dv

v tg ( * -v ( H + 6) )
( 2 . 8 )

where

B

P
k
D

v
H
6

2
Y
B2

R

X«

= \ b2. (_L405
1 R 4 6 1

2 ( V - X 0 )

D ( 1 +\1 1 - 4 C ( X - X0) /D )

the interaction parameter

a correction factor
the diffusion constant
the mean velocity
the thickness of the discs
the extrapolation distance
the buckling along the symmetry axis
the total buckling

the radius of the discs
the decay constant at zero buckling
the diffusion cooling constant

( 2 . 9 )

( 2 . 1 0 )



3. THE MEASUREMENT.

The experimental arrangement is shown in figure 3. 1. The same assembly-

was used as in the work described in reference 4. The moderators were

polyethylene discs with diameter 18 cm and height 2, 2 cm. They were

separated along the symmetry axis by three aluminium bars. The de-

tectors were glass scintillators loaded with Li. One was placed at the

symmetry axis and the other tv/o at the zero of the second order radial

mode. As the latter give the best representation of the asymptotic decay,

the result of the first has only been used to check the measurement. The

assembly was shielded by boron carbide. The assembly was irradiated with

neutrons from the D-T reaction in an 150 keV neutron generator and rotated

during the measurement around the symmetry axis.

The filter was made of fine grade silver plates. In order to have as low delay

effect as possible from the backscattering in silver, the filter was divided into

two equal parts placed one at each surface. Each filter was composed of up

tofour plates. The thickness of these was varied in powers of two. There-

fore, we got 16 combinations with an approximately linear dependence bet-

ween filter combination and absorption. Owing to the symmetric arrangement

the step length was determined by twice the thinnest plate. The thickness of

this, in turn, was fixed by the manufacturer, who couldn't roll thinner than

0.25 millimeters.

The thickness and effective absorption are listed in table 3. 1. The filter

combination is given as a four bit binary word where a bit equal to one de-

notes that the respective plate is included. The significance of the bits is

associated to the thickness of the plates. The effective absorption given

in the table is the thickness of the absorber times the macroscopic absorp-

tion cross section at 2200 m/s. The values are corrected for the scattering

of neutrons. The scattering cross section of silver at 2200 m/s is approxima-

tely 10 per cent of the absorption cross section. In order to correct for this

we assume that half the scattered neutrons go into the forward direction and

half into the backward direction. This is a crude approximation but it gives

sufficient accuracy for our purpose.

We have earlier shown that an experiment of this type without filters ( 4 ) de-

pends very strongly on the decay constants involved. Therefore, we have made

two series of measurements:

a) The D series with 2. 2 cm polyethelene discs, which gives

a range in the decay constant from approximately 17, 000
- 1

to 40, 000 s



b) The F series with 4.4 cm polyethylene discs, which

gives a range in the decay constant from approximately

1 0 , 0 0 0 t o 1 7 , 0 0 0 s - 1 i

The delay time between the neutron burst and the beginning of the mea-

surement is 64 microseconds for the D series and 192 microseconds for the

F series. This shall be compared with the time spent by a 2200 m/s neu-

tron in the gap between the moderators. The distances used are given in

table 3.2 together with the number of possible flights between the surfaces

for a 2200 m/s neutron. From the table we conclude that the delay time is

sufficient to give a good exchange of neutrons between the discs in the

F series* It is, however, too short in the last experiments- of the D series.

On the other hand, another step in the delay time will give a too low intensity.

In order to give support to the extrapolation in ( equation 2. 7 ) at least

three measurements with increasing filter thickness were made for each

distance* The lowest filter combinations used are given in table 3. 2.

The electronic equipment is described in references 9 and 10. The most

important improvement since the completion of these works is that every

detector line has got a baseline restorer of its own in order to get a better

individual amplitude resolution. Also the data handling has been modified

since the previous work(9, 10 and Î1 ) . Especially v/eighting factors pro-

portional to the variance of the collected channel contents have been inclu-

ded in the program of background subtraction. The merits of this are that the

program now is less sensitive to the amplitude limits chosen. The new ver-

sion of the background program is named BAZI. A new program named SIFI

has been written in order to calculai-. the interaction parameters. It is based

on the equations 2.8, 2.9 and 2. 10. The programs used in the data handling

are then REMSIFP, PARIN, OWCO, DTFAKT, DECORR, PILEUP, BAZI,

CORLAM and SIE 1.



Table 3. 1

Combination

0000

0001

0010

0011

0100

010Î
0110

O l l ii
1000

1001

1010

1 ion
i n o o

1101
'

1110
! 1 1 1 1

Effective
absorption

0. 000
0. 199
0, 392
0« 591
0. 765
0.964
1. 158
1. 356
1. 53?
1. 736
1.930
2. 129
2. 302
2. 501
2.695
2. 893

Thickness
(cm )

i 0. 000
0.051
0. 101

I 0. 153
0. 198
0.249
0.299
0.351
0.397
0.449

I 0.499
0.550

j

0.595
0. 646
0.696
0.748



Table 3. 2

Experiment
number

Separation
distance

Possible
number of fl ights

Lowest fil ter
combination

Experiment
number

Separation
distance

before be-
ginning of
experiment

before end
of experi-
ment

Lowest fil ter
combination

! :
DI 2. 2 6.4 32 0001
D2 4.4 3. 2 16 0011
D3 6.6 2. 1 11 0110
D4 8.8 1.6 8 1000
D5 11. 0 1.3 6.4 1010
D6 13. 2 1. 1 5.3 1100

Fl 1. 1 38. 4 140.8 0000
F2 2. 2 1.9.2 70.4 0000
F3 4. 4 9. 6 35.2 0001
F4 6. 6 6. 4 23.4 0010
F5

•
!

8. 8 4. 8 17.6 0011
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Dimensions in mm.
-Pf® amplifier.
Photornultiplier.
Light pipe.
Shield (glass* Li).
Crystal.

-to*

-Filter (Ag }

Distance
bars.

Support ( Al )

Î8Q

Polyethylene

t—

FIG. 3.1 EXPERIMENTAL ARRANGEMENT.
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4. RESULTS.

The resulting decay constants from a correlation between detector 1 and 2

are plotted in figure 4, 1i The different measurements are here represented

by three characters* The first of these is a letter representing the series

( F or D ), the second and third are digits representing the experiment number

and the measurement number. We will in the following use this notation. The

last digit will be omitted when we refer to a whole experiment.

Experiment FO and F6 are included in the F series in order to have comparisons

at zero and infinite separation distance. In experiment FO the discs were sepa-

rated only by the filter, in experiment F6 we measured with one of the modera-

tors removed. The figure shows that the decay constants increase with increasing

filter thickness and that they at large thicknesses approach a limiting value,

which agrees with the decay constant of a single moderator. The first experi-

ments cover most of the available range but the last use only a small part in

the neighbourhood of the upper limiting value. The figure shows only the F-

series where we have most measurements for each separation distance. The

D series contains only three measurements per experiment but gives a similar

result.

In order to determine the interaction parameter we need the diffusion parameters

for polyethylene. They have been calculated by GRIFFING ( T 2 ) and measured

by SJÖSTRAND et al. ( 13 ) and by GROSSHÖG ( 10 ) ( marked RF 16 in the fi-

gure ). The corresponding " dispersion curves " are drawn in figure 4.2. From

the figure we realize that the different curves give rather different values within

the actual range. Now, equation 2. 8 is singular at
tr

Y = H+5

that is, when the interaction parameter is small. Therefore, the determination

of will depend strongly on the chosen diffusion parameters.

In reference 10 we have found that for flat systems very long waiting times

are needed in order to remove the influence of higher spatial modes. Also

the choice of extrapolation distance and its buckling dependent variation comes

into the picture.

From the above facts we find it necessary to have a very accurate relation bet-

ween decay constant and buckling. So measurements were also performed cor-

responding to the limiting points p = 0 and p = 1 of the two series, i. e. the de-

cay constant was determined for one single disc, and for two and four discs
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close together and without filter. These results served as our main cali-

bration points. In connecting them we could have used the curvature obtained

from the earlier measurements given in figure 4. 2. However, in the actual

range the influence of the diffusion cooling is smaller than the difference bet-

ween the curves in the figure. It is also doubtful whether the curvature should

be the same for our open geometries. Therefore, we chose to approximate the

dispersion curve with a straight line going through the two limiting values.

With this method and using eqs. ( 2„ 8-10 ) was obtained from the measure-

ments, and the results are shown in figure 4. 3 for the F series and 4. 4 for
the D series. The error limits are based on those obtained by the program

CORLAM, which evaluates the decay constants. The lines are only inter-
connections between different measurements in an experiment. The experiment

number arid, within parantheses, the distance between the innermost surfaces
of the filter are given for each experiment.

In order to have a comparison material we have calculated the a ^ dependent

interaction parameter for the actual distances. We used equation 2. 2 with M ( v )

as a Maxwell distribution and g ( t^) as given by equation 2.5. The angular depen-

dence was ( cos 9 ) /IT and the radial distribution was assumed to be a zeroth

order Bessel function. The numerical integration in velocity was carried out

over 20 energy groups with an interval of 0.2 v^,. The number of intervals in
angle was between 10 and 20 depending on the distance between the discs. The

result of this calculation is shown in figure 4. 5. As a comparison the result

is also drawn for a one group calculation for the distance 2.2 cm. This shows

that when the energy distribution is taken into account a lower interaction occurs

at small values for but a higher at larger ones. This is caused by the harde-

ning of the spectrum in the absorber. The values for a rr,< n emends strongly on1 °
the number of velocity groups owing to the singularity in the intergrand, and

therefore the curves are dashed in this part of the figure.

A systematic difference between the curves in figure 4. 5 and the experimental

series is that the distance between the moderators is equal to the values given
in figure 4. 3 and 4. 4 plus the thickness of the filter for the experimental values.

The curves in figure 4. 5 are, however, calculated for the indicated distance
between the moderators. This will have a negligible effect on the results for
all experiments except FO as the variation of the filter thickness is small in
comparison to the separation distance.
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The general trend of the result from the F series agrees rather well with

the theoretical model. Deviations in the individual measurements can, however,

be seen especially at large values on a . The result of the first measurement

in the FO experiment is put equal to 1 as we have calibrated the series in this

point. The decreasing trend of FOÎ and F 02 can be explained by the increase

in thickness of the filter, which in this experiment is equal to the separation

distance, but F03 and F04 give unexpectedly low results. Experiment Fl

agrees very well with the shape of the corresponding theoretical curve and so

does experiment F2, although the values are somewhat more scattered in this

case. A clear downward trend can be seen in F3 at lax^e a ^ values. F4 and F5

agree in general with the theory, but the last measurement of F5 gives a lower

value than expected.

The error limits indicated in the figure 4. 3 do not include the errors in the

calibration points and errors due to the approximation of the dispersion curve.

These errors can easily give an explanation to the behaviour shown in the fi-

gure. Another fact that may influence, mostly as an upscattering of the values,

is differences in the piling of the assembly, which had to be done between all

experiments in connection with the exc?aange of the filters.

Figure 4.3 gives a somewhat wrong impression owing to the fact that the above

errors are amplified by the factor exp ( a^,). As the errors come into the pic-

ture mostly at large values of a T, we can expect that the values are rather

good when a ^ is in the neighbourhood of zero a fact which is confirmed by

the behaviour of the experimental values in this range.

The stationary interaction is estimated by a manual interpolation of the ex-

perimental values in order to get the value at a ^ = 0. The calculated behaviour

of each experiment is then taken into account. The er .imated values are marked

with circles in figure 4.3. The error limits take into account the error limits

of the individual measurements and the deviations in shape between the experi-

mental values and the curves in figure 4. 5.

The result of the D series is plotted in figure 4.4. The most striking feature

of these values is that they do not behave as expected from the theoretical mo-

del. Two reasons for this will be stated. The first is that the dispersion curve

is less well known in this range and the approximation with a straight line may

be worse than in the F series. The second is that the neutrons have not reached
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an asymptotic spatial distribution in all cases. The effect of this on the appa-

rent decay constant can be positive or negative depending on whether the out-

flow or inflow of neutrons preponderates. However, as the mean energy of the

neutrons first arrived is higher than the energy of the later ones a behaviour

like that in figure 4.4 1 an be expected.

For these reasons the values estimated at a - 0 in the D series are exti a-T
polated or interpolated from the measured values without taking the theoretical
behaviour according to figure 4.4 into consideration. The difference between F

and D serie« may ;hen be connected to a difference in mean energy between the
two series. As the values can not be considered as asymptotic as in the F series

we have there a lé rger risk of systematic errors. This has not been included
in the indicated errors limits.

The resulting vr lues for the interaction parameter are plotted in figure 4. 6.
The different c- r ves drawn as a comparison are calculated in the following

way . p ^ and pj are obtained from equation 2. 1 with

respectively

in diffusion theory we can write according to reference 9

f (¥ , e ) = (1 + 3 r\ ( cos e ) /2 ) / A

A = ?.tt ( 1+ 3 y) / 4 )

(4. 1 )

where
( 4 . 2 )

With this angular distribution equation 2.1 gives

(4.3 >

from which

=

a (1 + \l 1 !4b/.a2<) { 4 4 )

vi)ere
4 o + 3 p T Ir o r J

3 ( 1 -f-P} )

4 ( 1 - p 0 ) .
b =

3 ( 1 + )
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Equation 4.3 with-q from eq. 4,4 defines the curve in figure 4*6,

The experiment clearly indicates that the calculation with ( cos 0 ) / tr

as angular distribution gives an overestimate of the interaction through

the whole measurement. On the other hand diffusion theory gives a slight

underestimate and the 1 /Z tt angular distribution gi"es a large underestimate.

It is interesting to note that the value at 1. 1 cm separation distance is close

to the - curve. This type of behaviour can also be noted in stationary experi-

ments ( Î ).It is somewhat puzzling as one expects diffusion theory to be more

accurate here than in the other part of the experiment. The explanation may be

that already a small spacing gives a loss of neutrons with directions nearly

parallel to the surface to such an extent that the angular distribution is bet-

ter x*epresented by a ( cos 9 ) - distribution than by the one given by diffusion

theory. To this we can add the fact that diffusion cooling comes into the picture

in such a way that the buckling concept is of limited validity in this case. That

is, as the diffusion cooling takes place mostly in the neighbourhood of the

free surfaces, it will not vary in the same way when we increase the buck-

ling by decreasing the volume of the moderator as when we increase the buck-

ling by the splitting of the moderator.

The agreement between the two series is excellent at 2.2 and 4.4 cm separation

distance but not so good at 6.6 and 8.8 cm. The differences are probably caused

by the systematic errors discussed above. Therefore, the results from the D

series are more reliable in these cases. The trend towards the curve for

the D series may be caused by the fact that we have not reached the asympto-

tic decay..

The above discussion shows that the method is sensitive to systematic errors.

Therefore, we have considered it necessary to investigate this point more care-

fully. Systematic errors may be introduced through:

a) Uncertain diffusion parameters,

b) The fact that the asymptotic state is not reached

c) Backscattering of neutrons from the shielding,

the detectors and the aluminium walls

d) Scattering in the filter

e) Different positions of the target in relation to one of the

discs.
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f) Leakage of neutrons through slits in the shielding

g) Systematic errors in the data handling

Item a and b have been discussed earlier. In order to check mainly item

d but also to some extent the others, check runs were made in series D

with the same conditions as in the main experiment but with one of the

moderators removed. The resulting decay constants are plotted in figure

4C'7. The calibration point DO is also included in the figure. It gives a

somewhat higher value than the mean value of the check measurement but

the difference is inside the error limits* As no systematic trend can be

foxlnd in these measurements, we conclude that item a and b in the above

list are the most serious sources of systematic errors. These errors

influence both series at large values of the separation distance. One can ex-

pect that item a is most serious in the F series and b in the D series.

The resulting values of the interaction parameter are given in table 4.1

together with the extrapolated values of the distances between the modefators.
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FIG. 4. 2 DISPERSION CURVES FROM MEASURED AND

CALCULATED DIFFUSION PARAMETERS.
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Table 4. 1 Resulting values of t he interaction parameter.

Distance Series F Series D
between
filters
(cm )

Distance
between
moderators

(cm )

Interaction
parameter

Distance
between
moderators

(cm )

Interaction
parameter

.1.1 1.1 0.93 + 0. 01
f
i

2.2 2.2 0.79 + 0. 02 2.3 0. 76 + 0 . 03 1
4.4 4.5 0* 59 i 0. 02 1 4. 6 0.59 ± 0.01 j
6.6 6.8 0.38 + 0. 02 7.0 0.44 + 0.01
8.8 9. 0 0.31 + 0.02 9.2 0. 34 + 0.01

11. 0 11.6 0. 29 + 0. 02
13.2

'

13.9 0. 24 + 0. 02
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5. CONCLUSIONS.

The conclusions from this work are that the method of i ntroducing
absorbers in order to get an equivalence between pulsed systems

and stationary systems works satisfactorily. The restxlting interaction

parameter for two circular surfaces shows that the ordinary approxi-

mation ( cos 0) /ir as the angular distribution (14)) gives a large over-

estimate in most of the measured range. The overestimate is, however,

small at small separation distances, a fact that should be observed by

those, who are concerned with the safety of i nteracting subcritical assemblies.

In this work the choice of dimensions and arrangements has been limited by

the use of an already existing assembly. The experience from the work is
that the measurement can be improved through}

S.) A better knowledge of the diffusion parameters

b) A choise of the moderator dimensions so that the

decay is slow enough to allow a complete interaction
before the intensity is outside the measurable range.

c) The use of a mechanical construction that gives a bet-

ter reproducibility of the separation distance, the fil-
ter position and the moderator dimensions.

d) The possibility to have higher intensity in the neutron
bursts.
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I

SUMMARY

The decay of a neutron field in a spherical light water moderator with a

central cavity has been studied. Measurements were performed for two

values on the moderator radius, 1 0, 0 and 4.6 cm. The radius of the ca-

vity was varied from 0 to 8. 2 and from 0 to 4, 1 cm respectively.

It v/as found that the cavity creates an instability in the logarithmic decay

rate and that the instability increases with the cavity radius in an irregular

way. A comparison with a simple diffusion model showed that the general

trend could be explained for the larger moderator radius but not for the

smaller one.

An important conclusion from the work is that measurements with the pulsed

neutron method in heterogeneous media must be corrected for time depen-

dent effects also if the ratio of the cavity to moderator volume is small.



T. INTR OD HC TION,

An important property of the Boita a.ann equation is that when rime-de-

pendent neutron transport problems are treated ooth a Laplace transform

there results an equation which is identical with that of a corresponding

stationary case. This eqxxivaleace is of great significance in the use of

the pulsed neutron method, a ; v. a-, f irst pointed out by £3östrand ( 1 ) . Thus,

results from pulsed co-arcq OH «rurevnc*US on hernoge.no ovis moderators can

be directly applied to critical, etationary r,ysterne, e.g. reactors ( 2 ).How-

ever, for heterogeneous système the situation i& not so uimpie» It was

recently observed h~r Bu ll ( 3 }, Dance ( 4 }, Denis et al,- { 5 ) and by the
author ( 6 ) that in the case of a - .oderate- containing cavities a delay ef-

fect appears, which depends on vho logarithmic decay rate, This means that

the analogy between the stationary and dynamic case is not complete and

it also means that the pulsed assembly docs not give a clean asymptotic

decay constant,

The delay effect depends on the time the neutrons spend in the cavity. In

open geometries, i. e, moderators containing gap3 or channels penetra-

ting the moderator, the neutrons may be trapped if they have directions

nearly parallel to the surface of the cavity. We have earlier studied this

effect ( 6 ) and found that the appearing logarithmic decay constants were
unstable in time and very far from, the vaines that could be expected from

stationary diffusion theory. ïn a later work { 7 ) we showed that the delay

effect can be eliminated by introducing absorbers in the cavity.

The neutrons may also be trapped in the cavity if they enter it with velo-
cities not far from aero» In an open geometry this effect is mixed with

the effect mentioned above. In this work . diave tried to isolate the velocity
effect by the use of a spherical water moderator with a central cavity. This
closed geometry offers also the benefit of no neutron losses through the

cavity.

The spherical homogeneous light water moderator has in our laboratory been

carefully studied by Slkert ( 0,9 )- Wo have in the present experiment used
the same technical arrangement for which the details can be found in his

reports. It had been advantageous to use also h"s small BF, detectors, but

their low sensitivity reouired a larger source etrenght thai:, could be accep-

ted from the radioprotertion point of view0 Therefore we were forced into

a measurement with glass-scintillators '.ob had to accept a corresponding-

ly higher background. A specie! .sobnique was used in order to keep the
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2. SOME REMARKS ABOUT THE ANALOGY BETWEEN HSTZ^pG^JSTSOUS

STATIONARY AND DYNAMIC SYSTEMS.

A Laplace transform of the Boltzmann equation gives an equation for the

Laplace transform of the flux that is identical to the stationary Boltzmann

equation in the case of a homogeneous moderator with convex boundaries. The

three parameter expansion of the " dispersion curve "

\ = X + D B2 - CB4 ( 2.1 )o o v

where

X = the absorption rate

D = the diffusion constanto

C = the diffusion cooling coefficient

2B = the geometric buckling

implies then experiments for determining either the diffusion parameters or

the buckling. The quantities so found are supposed to be used in stationary-

problems or compared with quantities received from stationary experiments.

The purpose of this chapter is to underline that this course of action is not

strictly correct if one is dealing with heterogeneous moderators.

The Boltzmann equation can be written

V = - O -VF -S F -S F + KF + S ( 2. 2 )v dt — a s x '
where

v = the neutron velocity

F = F (r,Q>E!,t) = the neutron flux

SJ £JE ) = the scattering cross section

Z! = Z ( r,F ) = the absorption cross section
cl cl

K- the scattering operator

S = S ( r,0, E,t ) = the neutron source distribution

In a pulsed system we assume a zero source distribution and make the

substitution

F ( r , Q , E , t ) = F ( r , Q , E ) e " X t ( 2 . 3 )
F

This gives

Q*V F + te + S - T~)F = K F— p v s a v' p p ( 2 . 4 )
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Equation 2.4 is formally stationary and there is no problem before one
tries to include the boundary conditions. However, the heterogeneities

introduce time - dependent boundary conditions ( 11 ) , and therefore the

direct analogy with a stationary solution is lost. An excellent example

on the experimental use of this behaviour was given by Arai and Küchle

(10 ) when they measured the " imaginary "part of the dispersion curve

( \>0,B2 <0 ).

The term X /v in equation 2.4 is often called time absorption. Because of

its sign in the pulsed neutron method a better name would be " time multi-

plication Multiplied with the flux it acts as a source. But from the static

point of view it is a very unusual source. It amplifies every incoming neutron

with a factor proportional to \ /v but it does not change the direction of t he

neutron. In one-group diffusion theory there is a direct equivalence bet-

ween X /v and the multiplication but the analogy is only fictive which can

b e s e e n f r om t h e e q u a t i o n ( 2 . 4 )
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3. A ONE-GROUP DIFFUSION MODEL.

In spite of the remarks in the preceding chapter we will here solve the

problem of the spherical symmetric assembly containing a central ca-

vity with stationary diffusion theory. The delay effect of the cavity will

be incorporated as a boundary condition. The model can then serve as

a comparison material to the measured values of the logarithmic decay

rate,

The solution of the spherical diffusion equation with zero neutron flux at

the outer extrapolated bou ndar v { R ) is
v \ o

cj> ( r ) - —- ( sin (3r) - tg ( T i.\. ) cos ( Br ) ) (3.1)

At the inner surface ( r = E. ) we write

8 cN
^ v ~qT ~g~r~ )j^. (3„ 2 )

where 5 is the extrapolation distance ( 2 D/v ), andri is a loss coeffici-

ent defined by

• n = 0 - p ) / 0 + p ) ( 3 . 3 )

p is the interaction parameter, that is the number of incoming neutrons
per outgoing neutron through an element of the surface between the mo-

derator and the cavity, The eigenvalue equation for B is then

Bit = (1 +n R/S ) tg { B { P„ - Ro)} (3.4)

The interaction parameter depends on the logarithmic decay rate of the

neutron field, the mean distance travelled by the neutrons in the cavity

and the velocity of t he neutrons. Using the mean cord length in the cavity

( 12 ) we can write

p - exp { ( 4 p R. X ) / ( 3 v ) } (3.5)
JL

where we have incorporated a free tsarameter p to be determined later. In-

sertion into equation 3,, 4 gives

BP. • =( 1 - (R./ 3) tanh : ( 4p R, X ) / { 3 v } } ) * { 3-. 6 )

J- .... \ T"> / v-» \ 1- tk • t it -• & .?.

An interesting limit is small values of It » A power expansion of 3,6 with

p - ' give o
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BR = TT +o ( BR. )3 ( 1 -X / ( DB 2) ) / 3 + 0 ( (BB, )5) ( 3.7 )

The expansion shows that the delay effect is present in the same order

of approximation as the stationary effect. It depends on X and must be

accounted for not only at large but also at small cavities.

The primary solution is drawn for the actual geometries in figure 3.1. In-

specting equation 3.6 one finds that the buckling will be imaginary if

The peak indicated for p = 0 but excluded for other values of p depends on

the three term expansion of \ where we used the diffusion parameters given
2

by Elkert ( 9 ). If X is a continuously increasing function of B the limiting

values of B are

B - > I T / ( 2 ( R - R ) ) when ( R -*R , R )/ v v o i i o o
B -> TT /R' o when ( R -»• 0 )
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4. EXPERIMENTAL ARRANGEMENTS.

In this work we have used the same mechanical support, the same spheri-

cal aluminium shells and the same shielding as in the measurement on

diffusion parameters for light water in spherical geometries by Elkert

(8,9 ). In order to arrange the central cavity the largest shell was cut

into two equal halves, a smaller one was mounted on a screw and then

the outer shell was repaired with tape. Finally, the space between the two

shells was filled with distilled water.

As detector we used a Li-glass scintillator ( 13 ). We have earlier mea-

sured the decay in moderators with open cavities and found that the lo-

garithmic decay rate was not stable ( 14 ). In those measurements we chose

a logarithmic time scale, with which we were able to cover the entire mea-

sureable part of the decay with 8 time intervals. A very accurate background
subtraction could then be done by the use of 32, channels for the measurement

on the amplitude distribution of the detector pulses. This gave a good preci-

sion in the determination of the decay constant but the details of the decay

curve was lost. In this experiment we were interested in the time variation

of the logarithmic decay. Therefore, we wanted a linear time scale with

as many time intervals as possible. This had to be done at the expense of

the number of amplitude intervals. As the exchange of channels between am-

plitude, number of detectors and time only could be done in powers of two

we chose: one detector, two amplitude intervals and 256 time intervals. The

remaining part of the analyzer memory ( 512 channels ) was used to measure

the deadtime.

We have earlier found that the amplitude distribution can be approximated

with a Gauss distribution for the neutrons and an exponential -or the back-

ground ( 14 ). It is easily realized that the lowest background to neutron

ratio in a one channel analyzer is achieved if a small window is placed at

the maximum of the neutron distribution. Decreasing the window width will

then cause both the neutron and background sensitivity to go to zero but the

ratio between them will remain approximately constant. A necessary condi-

tion in a time dependent system is that the gain does not depend on the time

or the intensity. In order to be able to check this we placed the limit bet-
ween the two amplitude intervals on the maximum of the neutron peak. Our
criterion on approved measurements was then that both the channels should

have the very same time dependence. It was possible to fulfil this criterion

during the whole measurement, thanks to the recently incorporated base

line restorers.
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5. THE MEASUREMENT.

The experiments were performed in three series. During the A and B

series we used the largest shell to define the outer radius ( 10,0 cm ).

The inner radii were 8. 2, 6« 7, 5. 6, 4. 8, 4. 1,3.7,3.4,3. 0,2.6 and 0. 0 cm.

In the A series two measurements were performed with inner radius 8.2 cm,

one in the beginning of the series and one at the end. This served as a

check on the reproducibility of the measurements. In the A series the de-

tector was placed on the outer shell in 90 degrees angle to the target, but

in the 3 series it was placed opposite to the target. The tim® interval width

was 8 microseconds and the measurement period started 1 0 microseconds

before the 4 microseconds wide neutron burst.

The C series was performed with 4.6 cm as outer radius. The inner radii

were 4. 1,3.7,3. 4, 3. 0 and 2. 6 cm. The time interval width was 4 micro-

seconds and the detector was placed in the same position as in the A series.

In all the series a background measurement was included. It was identical

to the other measurements in the series but no moderator v/as present.
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6. CORRECTIONS.

The deadtime correction was made with the same basic method as de-

scribed earlier ( 7 5 ). In order to adapt the method to the linear time

scale some modifications were introduced. The procedure was as fol-

lows.

Two detector lines were used, the first for the neutron detector and the

second for pulses from a pulse generator. First the sum of the two ampli-

tude intervals was formed. This gave 256 channel contents for each of the

detector lines. l/7e denoted them P^(i) and PL(i) were i is the channel num-

ber running from 0 to 255. Then, the frequency of the testpulses ( f t )
was determined from the 16 last channels. As the detector line frequency-

was low here we could write

255

f t = ( J P t ( i ) ) / 16 ( 6 . 1 )
i'"= 240

which gave the frequency in number of pulses per channel. The correction

formula is then

pdc(i ) = H pd (i))/(Pt (i) ktp (i)) ( 6.2 )

where (i) is the corrected number of pulses in the detector line and a

correction factor for the time spent by the test pulses in the system.

Vi) = ' Vc> <6-3>

where

t = the time used to handle a test pulsem
N = the number of neutron burstss
t = the channel widthc

This correction term was neglected in the earlier version of the deadtime

correction because then we used a very low rate of test pulses. In the pre-

sent measurements we increased the test pulse rate and therefore the cor-

rection had to be included.

The correction in eq. 6.2 corresponds to the intrinsic transfer discussed

in reference 15. The extrinsic transfer could not be calculated with the me-

thod given in the reference owing to the few amplitude channels ' :s3.. In
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spite of the fact that it had some influence on the beginning of the de-

cay we decided to neglect it.

The background measurements showed three typical parts. The first

one was a reproduction of the neutron burst followed by a very fast de-

cay, a typical thermalization process. The second was a decay, which

unluckily enough had approximately the same logarithmic decay rate

as that of series A and B. Therefore, it was carefully investigated by

a measurement with several amplitude channels in the actual interval.

It was found that within the accuracy of the measurement no sign of neu-

trons could be detected. Therefore we explain it as the capture gamma from

the absorption of the thermal neutrons in the shielding.

The third part was constant in time but proportional to the neutron intensity.

The main part of it was assumed to come from short lived activities. Taking

the differences in intensity into account, the background was subtracted

from the measurements.

The result from the background subtraction with the above method was also

compared to a background subtraction with the assumption that the background

was constant in time. Although a small difference could be noted, we found

that the difference was small compared to the standard deviations of the re-

sulting logarithmic decay rate and therefore it could not affect the general

conclusions from this work.

The corrections were done by two computer programs LILA and BALA. The

latter determined also the logarithmic decay rate. The mechanical structure,

the screw that supports the inner Al-shell and the outer Al-walls have not

been corrected for. The screw was kept in position during the measurement

of the homogeneous moderator and it can be seen by a comparison with the

values of Elkert that it gives a neglectable correction ( fig. 7. 4 - 7. 10 , ex-

periment 1 ). Elkert has shown that the correction for the outer wall is small

(8). The inner wall may give an influence on the decay rate but only through

the very low energy part of the neutron distribution, which penetrates the

cavity.
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7. RESULTS.

In this chapter the result of the measurements will be presented first in

three diagrams, figure 7. 1 to 7.3, where the most characteristic decay-

curves of the series A. B and C are plotted. We will then follow the time

o f t h e l o g a r i t h m i c d e c a y r a t e f o r t h e s e r i e s A an d B i n t h e f i g u r e s 7 . 4 t o

7 . 9 . F i n a l l y t h e t i m e v a r i a t i o n o f t h e G s e r i e s i s pr e s e n t e d i n f i g u r e 7 . 1 0 .

During the measurement of each series the intensity of the accelerator

was held as constant as possible. This gave an approximate normaliza-

tion to the decay curves within the same series, and therefore we are

able to compare not only the logarithmic decay rate but also the ampli-

tudes. The three plotted decay curves in figure 7. 1 correspond to experi-

ment AI , A5 and AI 0. The inner radii are 0, 4. 5 and 8. 2 cm. The values

are corrected for deadtime and backgrounds Experiment AI shown a decay

with a rather well defined decay constant. A5 is worming around Al and

A10 shows how the moderator loses a lot of neutrons into the cavity during

the first ten microseconds. These neutrons then cause the deca.y to be so

s l o w t h a t t h e i n t e n s i t y a t 9 0 0 m i c r o s e c o n d s ( a b o u t c h a n n e l n u m b e r 1 2 0 ) i s

comparable to that of the homogeneous moderator.

Series B ( figure 7. 2 ) gives a result not far from series A. A notable ef-

fect is the peak at channel number 6 in the experiment B10, An explanation

for this can be found in the fact that the detector is placed in a position where

the initial neutron flux is low. Therefore the thermal neutrons coming

through the cavity will give a. no ticeabjio effect .The time lag of the peak is

approximately 3Â microseconds, which gives a thermal neutron distance

of about 7 cm. As this value is low in comparison to the cavity diameter we

conclude that the neutrons at this stage have not reached thermal equili-

brium. There is a small sign of a repeated peak at channel number 15. How-

ever, an increased statistical accuracy is needed in order to get confirma-

tion on the existence of this peak.

The three experiments plotted in figure' „3 correspond to experiment CI with

0, C2 with 2. 6 and C6 with 4. 1 cm inner diameter. As the moderator volume

here is less than in the preceding experiments we get a higher influence of

background. This causes the values to be more scattered, and approximations

in the background subtraction are more serious. As in the B1 0 experiment

we can recognise an indication of a peak, in this case at channel 9 in the

C6 experiment, but the peak is too weak to give any relevant information
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about the time lag.

The general conclusion so far is that the cavity introduces a very long

damped oscillation. The decay might gc over into a pure exponential

decay but we do not reach that state within the experimental time range.

In figures 7.4 to ?. 10 the decay constants from the A and B series are plot-

ted as a function of the inner radius. The decay constants are calculated from

the 16 consecutive time intervals beginning with the time interval noted in

the figures. Some of the curves from the one-group model are included in

the figures as a comparison material.

The figures show a general trend that can be interpreted as a convergence

to the one group model with a p of about 0.6. The convergence is slow but

this is also to some extent the case for the homogeneous moderator. Dis-

regarding the general trend we can find some irregularities, which must

be considered as systematic as they appear in both the independently mea-

sured series. Figure 7.4 ( time 17 ) shows a convex structure for low

values on R. and a very low value at experiment 9. Figure 7. 5 ( time 33 )

gives an impression of a rather smouth relation between the decay constant

and the inner radius. Figure 7. 6 ( time 49 ) contains peaks at experiment

number 4 and 6 for both the series. In figure 7.7 there is a tendency of

peaks at experiment 6 for both the series and at 4 for the B series but the

A s e r i e s c o n t a i n s h e r e a n i n d i c a t i o n o f a m i n i m u m . I n f i g u r e 7 . 8 a n d 7 . 9

the statistics is poor, but remarkable are the high values of the decay con-

stants for both series at experiment number 4 in figure 7. 8 and the low

v a l u e s a t t h e s a m e p l a c e i n f i g u r e 7 . 9 .

The significance of the deviations is poor, but combining these observations

with those done in the study of two interacting moderators ( 6 ) leads to the

conclusion that there exist effects which can not be explained by a simple

theoretical model. The behaviour indicates an oscillating neutron wave that

goes into resonance with special values of the inner radius.

If one follows the time development of the decay constant in experiment AI 0

one finds that it varies up and down. This behaviour is confirmed by the in-

dependent check measurement and gives support to the theory of oscillation

or propagation effects.

The decay constants from series C are plotted in figure 7. 10. Our diffusion

model is here not at all able to represent the experimental values. A reso-

nance effect, more pronounced than in the A and B series, is indicated.
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S. DISCUSSION.

Summing the experiences from these measurements we can describe

the decay process in a moderator with a closed cavity by the following

items.

1 . The therealisation period. The neutrons seem to behave almost as

in a homogeneous moderator. However, our time intervals are too

long to give detailed information on this process.

2. The filling period. The neutrons diffuse into the cavity, and the neu-

tron distribution in the moderator decreases almost as if the cavity was

an absorber.

3. The reentrant period. The first thermal neiitrons have crossed the ca-
vity and give a positive contribution to the neutron population in the modera-

tor. The result may be a peak in the time dependent distribution.

4. The oscillation period. The process in item 2 and 3 is repeated. A

damped oscillation may result. The oscillation seems in this experiment

to be aperiodic at the 90 degree position of the detector but two periods

can be observed at the 180 degree position. It should be pointed out that

the detector only senses the outward flux from the moderator. The situation

in the interior may be different.

5. The pre-"asymptotic" period. The decay constant varies clov/ly with

time to an asymptotic value. This may be described as an aperiodic oscil-

lation but it has a longer period than that of the oscillation period.

6. The " asymptotic" period. This is the period where the picture of
pseudomodes ( in analogy to the fundamental decay constant of a homo-

geneous moderator ) may give a constant logarithmic decay rate. Evi-

dently there are some long range oscillations also during this period. These
oscillations depend very strongly on the radius of the cavity.

7. The post-"a.symptotic" period. During this period the logarithmic
decay is expected to • lecrease slowly to zero. Dance (4) asserts that
he has found such a period in the case of open heterogeneous systems. W e

have looked for a corresponding effect here, but we can not get clear evi-

dences for it. The problem is that this period is very sensitive to the back-

ground subtraction, and a too low amplitude on the background gives al-
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ways a tendency towards low values on the logarithmic decay. As we

do not h ave the possibility to separate the two effects unambiguously in

this experiment the question about the existence of this period must be

left open.

The different periods overlap in the experiment. The most interesting

question is the existence of pseudomodes. We can directly from the fi-

gures conclude that they are not so well defined as in the case of a homo-

geneous moderator. The question of existence is then a matter of defini-

tion. The figures indicate a rather good stability in the A series, but it

is not so good in the B series and bad at least for large cavities in the

C series.

The comparison between the one-group model and the A and B series indi-

c a t e s a v a l u e o n t h e p a r a m e t e r p o f a b o u t 0 . 6 . A c c e p t i n g e q u a t i o n 3 . 5

we conclude that the assumed mean cord length is too high or the velocity

is too low. The first of these alternatives is not probable. Regarding the

second a velocity increase occurs at the boundary of a pulsed water mo-

derator (16) but it can not explain the whole deviation unless it is ampli-

fied in the case of these interacting surfaces. Another explanation might

be that we have not reached the asymptotic period, but in that case the lo-

garithmic decay rate approaches the pseudomode so slowly that it is ex-

perimentally very difficult to measure.



9. CONCLUSIONS.

The conclusion from this work is that a closed cavity in a moderator

creates a dela.y effect that depends on the decay rate of the system. The

appearing logarithmic decay rate is drifting in time and reliable pseudo-

modes can not be found for large values on the inner radius.

The decay rate for a given time varies with the inner radius in a way that

can not be described by a simple theory. The irregularities are small but

systematic and indicate a resonance effect or that the point spectrum of

the decay constants is different for different values on the inner radius.

The experiment indicates that measurements in heterogeneous systems

with the pulsed neutron method should not be interpreted from static diffu-

sion theory, but that dynamic effects must be considered.
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