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The present paper is an introduction and summary of a thesis com-
prising the following five papers

I.  Kihlberg, A., On the internal degrees of freedom of elementary
particles, Arkiv Fysik 28, 121 (1964).

II. Kihlberg, A., On a class of explicit representations of the
homogeneous Lorentz group, Arkiv Fysik 27, 373 (1964).

I1I. Kihlberg, A., On the unitary representations of a class of pseudo-
orthogonal groups, Arkiv Fysik 30, 121 (1965).

IV. Kihlberg, A., On the unitary irreducible representations of the
pseudo-orthogonal group L (3,3), Arkiv Fysik (1966).

V. Kihlberg, A., Some non-compact symmetry groups for elementary
particles associated with a geometrical model, Arkiv Fysik (1966).



Symmetry plays an important role in physics. Symmetry means
invariance of certain properties under substitutions. The substitu-
tions need for their definition objects which can be substituted. Very
often these objects are coordinates of one or several particles. In par-
ticular this is so for the Poincaré group P (the inhomogeneous Lorentz
group), which is defined as a group of substitutions on the 4-dimen-
sional coordinate system. Another symmetry is expressed as the
permutation symmetry among indistinguishable particles. This latter
symmetry leads to a discrete group of transformations while the
former type in general leads to continuous groups, in fact Lie groups.
The implication of a symmetry group is more involved in quantum
mechanics than in classical mechanics. In quantum mechanics the
presence of a symmetry group implies that the Hilbert space is a
representation space for, generally, a unitary representation of the
group.

Certain symmetry groups such as P or the permutation group S(n)
seem to be firmly established in elementary particle physics. For
others the situation is less clear. The isospin group SU(2) is a good
symmetry group for strong interactions. Since it is a continuous Lie
group one should like to be able to interpret it as a transformation
group on some coordinate space. For SU(3) the situation is even
worse. Not only is the interpretation as a transformation group lacking
but its predictions are not too convincing.

The last two years have seen a very high activity in the search
for higher symmetry groups. One general idea has been to unify the
Poincaré group and the internal symmetry group into a larger global
group. Some authors have aimed at a complete description, i.e. not
only of the kinematics but also of the dynamics. Thus also the mass
spectra should emerge from such a scheme. Others, being more
restrictive, have attempted to put the spin and the internal degrees
of freedom on an equal footing in order to obtain an enlarged internal
symmetry group with more predictive power than SU(3).

It is in the light of this development the present thesis could be
viewed although its main ideas were conceived before the advent of
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SU(6) and its relativistic imbeddings. We aim at a construction of
a global group @ which contains P and some other subgroup § which
can be interpreted as the internal symmetry group replacing SU(3).
However, we consider it important not only to have a group but also
to know what it acts on. Therefore, we do not prescribe S but instead
we try to define a generalized relativistic coordinate space and then
we look for transformation groups on this space. In this way we do
not arrive at SU(3) as the internal symmetry group. Instead we
discuss, three alternatives for S namely SO(2), the rotation group in
two dimensions, L(1,3) the homogeneous Lorentz group and L(3,3)
the pseudoorthogonal group in three space and three time dimensions.

The underlying space should be operationally defined and at the
same time closely connected to the Minkowsky space. By utilizing the
spatial properties as well as the polarization properties of the photon
it is in fact possible to define operationally not only the Minkowsky
space but also to define at each point (x, t) the orientation of a six-
vector (e,, hy) and its length |e,|= |h,|. The vectors e, and h, are essen-
tially the electric and magnetic field strengths of the photon and
satisfy e, - hy=0. Since now directions can be measured strictly at a
point we assume that an elementary particle has coordinates (e, h)
which should be measured relative to (e,, hy) at the point (x, ¢). The
internal coordinate space thus has four dimensions. In this way we
have enlarged the configuration space from the four-dimensional
Minkowsky space to an eight-dimensional space. This construction is
carried out in paper I. Furthermore, using as a guiding principle that
transformations on the reference system, i.e. transformations on (x, )
and (e,, hy) which leave their definition invariant could be symmetry
transformations, ‘we then construct a transformation group iso-
morphic to

Gy=[P &) L(1,3)]/2Z,

where Z, denotes a discrete centre. In addition to this group we also
study the groups

G1=[T> ® 80(2)1/2,
G3=[P—®i(3>3)]/za

which contain internal transformations, i.e. operations on the axis
(e, h) of the particle itself.
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In order to study the consequences for an elementary particle
theory of the assumption that one of the groups @, is a symmetry
group we need their unitary irreducible representations. In paper I1T
a general technique for finding these is developed. The method given
there is of value by itself since it allows us in principle to construct
the unitary representations of a large class of semi-simple noncompact
groups. Paper IV is devoted to the derivation of a number of series
of unitary irreducible representations of L(3,3) by the method of
paper I1I. Similarly, paper II contains the derivation of the unitary
irreducible representations of Z(1,3) by essentially the same method.
This paper was actually written before paper ITI and was in fact the
preamble of paper ITI.

The application of the groups G; to elementary particle physics
is carried through in paper V. Since the groups are homomorphic to
direct products of P and SO(2), L(1,3) and L(3,3), respectively, we
cannot expect to obtain mass spectra within the groups. Rather we
are limited to a less ambitious program. Only the group @, is large
enough to allow for an interpretation of isospin and possibly of hyper-
charge and baryon number. Thus we concentrate our attention to G,
and examine whether the spectra of spin, isospin, hypercharge and
baryon number resemble those found empirically. Although the
number of particles and resonances whose quantum numbers are
known with certainty is not very abundant we think it is fair to say
that some of the spectra given by the group L(3,3) coincide so well
with the experimentally measured ones that one is tempted to go
one step further and evaluate, say, consequences for scattering pro-
cesses. It may be worth while to do this but it should be borne in
mind that it is not so clear that G5 can be considered as a true sym-
metry group of the interaction between particles since it contains
transformations which do not act on the external frame of reference.
In fact the most immediate generalization of G, to a many particle
situation would imply, if taken as a symmetry group, separate isospin
conservation for each individual particle. Therefore, for the moment
we consider (f; just as a spectrum generating group. The groups G,
and G, on the other hand are good candidates for symmetry groups.
While G, has little predictive power @, can be tested as a symmetry
group. At least in our interpretation it does not, however, seem to
give correct predictions.
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On the internal degrees of freedom of elementary particles

By ArNE KIHLBERG

ABSTRACT

We examine the use of a six-vector (e,h), with e-h=0, e?=h?, as internal coordinates for a
particle in addition to its space time coordinates. Using the operational definition of (e,h), we
try to find an appropriate invariance group which can replace the inhomogeneous Lorentz group.
Different choices are conceivable, however, and we discuss in particular the case of a group
which is isomorphic to the direct product of the inhomogeneous Lorentz group and the homo-
geneous Lorentz group. We also speculate about the connection between the quantum numbers
of the elementary particles and the spectra of a unitary representation of the group.

1. Introduction

In recent years several authors [1, 2] have discussed the possibility of using internal
coordinates for the description and classification of elementary particles. They all
assume that a particle is some sort of rotator which should be analyzed in terms of
a vector structure attached to the position coordinates. Vigier ef al. [1] base their
model on the theory of the relativistic fluid, while others [2] take as starting point
the observed spectra of certain quantum numbers such as isospin and baryon number.

In this paper we try to motivate a special model geometrically, i.e., we define all
coordinates in a way similar to the procedure used in relativity. Now relativity is
based on a certain definition of time [3], in which the photon plays a decisive role.
Since we have accepted the privileged position of the photon in relativity it seems
to us that we should make use of its full capacity.

2. Definition of an eight-dimensional reference system

We shall define an eight-dimensional reference system of coordinates in a way
analogous to the manner in which the four-dimensional reference system of space
and time is defined in relativity. Assume that we have a radar station which is capable
of emitting arbitrarily sharp, polarized pulses. After a certain elapse of time the
pulse returns if it is reflected at some point. The station is further assumed to be
located on some massive, rigid body so that the antenna can be turned and translated.
We can then measure three directional angles of the antenna and two readings
¢, and t, of a clock at the emission and reabsorption of the pulse. Two of the angles
and the difference £, —t, can be used to define relative cartesian coordinates (y,%,, ;)
in an obvious way. The local time at the point (2,,2,,2;) at the moment of reflection
is obtained by means of Einstein’s definition ¢=%(¢, +1%,). The third angle specifies
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the polarization of the signal in a plane orthogonal to the direction of emission and
defines at the world point (z,,,2;,t) a reference for a cyclic coordinate y in this
plane. It is hard to imagine any more quantity which could be measured at such a
radar station except possibly the intensity of the pulse. The frequency of the signal
is necessarily undetermined since we use a sharp pulse.

According to our definition the coordinate v is fixed to the radar station. If we
translate the station then y is referred to a different plane, while the local time is
not affected by this operation. This leads us to consider all the three directional
angles as independent coordinates. At every space point (x,,2,,2;) there is thus a
synchronized clock, showing the local time, and two orthogonal three-vectors e and
h of equal length, which can be thought of as the electric and magnetic field vectors
of the radar signal. The length of e and h is obviously related to the strength of the
radar pulse and e X h is directed from the station.

The Einstein definition of the local time is one out of many possible choices.
However, it guarantees that the velocity of light, is constant and that is the physical
principle on which the theory of relativity is based. There is another principle,
although it is not always explicitly stated, that the polarization of a photon does
not change when it is sent from one point to another in empty space. Therefore,
we choose to define our six-vectors (e,h) at different space-points parallel to each
other. Just as the definition of time in relativity guarantees that the velocity of
light is always ¢ our definition of the vectors (e,h) guarantees that the direction of
polarization of a photon is the same in all points it passes.

In this way we have arrived at a reference system containing eight parameters
(@1, @9, 24, ¢, €,h) where (e,h) is a six-vector satisfying e-h =0, e2=h?2. It is then natural
to assume that a particle (at least for the classical case) possesses all these degrees
of freedom, i.e., in total eight coordinates (z,,,,2,,t,e,h). The coordinates z,,,,2;
give the point in space where the particle is and ¢ is the corresponding reading of
the clock at (2;,2,,2;). The vectors (e,h) are finally expressed in components on
the standard directions at (z;,2,, ;).

3. Connection with the classification of Finkelstein

Finkelstein [4] has classified all internal structures of particles within the frame-
work of relativity. He proceeds in the following way. Assume that our theory is
invariant under some group G (the inhomogenous Lorentz group, IHLG) and that
the coordinates of the particle are called . Then every group element g € induces
a transformation in the coordinate space M to which x belongs. Let us call this
transformation A(g),

x—>h(g) .

If furthermore G acts transitively, i.e., every point in M can be reached from x
by means of a transformation induced by a suitable g, then one can show that M
can be identified with a coset space of G. To show this let G, be that subgroup of G
which leaves x invariant,

hg)z=2 for ¢E€G,.
Furthermore let g,, g, €G be such that
hg1)x =y =h(g,)
122
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then h(gs ") higy) z =2,

from which follows that 9=g5'9,€G,,

so that y can be identified with the set {g,9}sec, which is the left coset belonging

to the subgroup G,. Because of transitivity all y € M can be written as h(g)x for some
gEG.

Thus one can classify all coordinate structures by enumerating all coset spaces,
i.e., by enumerating all inequivalent subgroups of G. When @ is the THLG, two
of the most interesting coordinate structures are the one we discussed in the pre-
ceeding paragraph (eight-dimensional), and the one which is identical with the group
space (ten-dimensional). The latter is used by Vigier ef al. in their theory.

4. The symmetry group of the eight-dimensional space

As soon as the local time has been defined in relativity one can ask which coordi-
nate transformations are compatible with the principle of constant velocity of light.
In order to arrive at the IHLG one must restrict oneself to linear transformations
or postulate that massive particles, moving on a straight line, should continue to
do so after the coordinate transformation [3]. In both cases it is also necessary ex-
plicitly to exclude scale transformations.

In order to find the appropriate symmetry group of the eight-dimensional space
we proceed in a similar way. First we look for those transformations which leave
invariant the velocity of light and the parallellity of the six-vectors. It is obvious
that this group of transformations includes the THLG as a subgroup for if we look
at the six-vectors (e,h) from a moving system they appear to be turned and their
length has changed, but the vectors at different points are still parallel to each other.
But we obviously have other possibilities. We can turn the six-vectors arbitrarily and
scale their length, or we can turn them only around e xh and scale their length.
How large the extension beyond the THLG will be depends on the additional restric-
tions we impose on the transformations. For the moment we shall assume that all
uniform rotations of the six-vectors are symmetry operations. If these transforma-
tions together with the transformations of the IHLG are to make up a group we
must accept separate accelerations of the six-vectors as well. In this case we arrive
at a sixteen-parameter group.

Let § and §’ denote the generators of rotations and accelerations of the six-vectors
along given direction in space. Furthermore let (ey,h,) stand for the fixed reference
orientation of the vectors (e,h). They are so to speak the origin of the variables
(e,h). We then have the following expressions for § and §’

SZEOXVeB+h0XVh,a } (1)
§'= —hyX Ve, + € X Vh,
From eqs. (1) we get the following commutation relations
[S1, Sy]= — 8, (cyelic),
[Si, S21=83  (eyelic),
[Sy, Sz]= — 83 (cyeclic),

[Si, S2]= — 83 (cyelic),
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while all other commutators are zero. These relations are of course those of the
homogeneous Lorentz group. However, the only change (ey,h,) undergoes is rotation
and scaling and therefore it must be possible to express S and § in terms of the
operators

A a e
T,=8&,- (hyxVr,) eo=|~e(’)”
o
~ ~ h,
T2=ho-(eoxve") h0=|—h—:], (3)

T3=hy-Ve,— € Vi,
D=%'Ve,+ho'Vh.,,

which are the generators of rotation around ey, h, and e, X h; and scaling of the length
of e, and h,. In fact we have

§=8,T, +hyT,+8, xh, T;,
§'=8,T,—h, T, +8, xhy(D —1).

We get an alternative representation of the operators § and §' by introducing as
independent coordinates the Euler angles ¢,0,y between the six-vector (ey,h,) and
the six-vector (e,h) of the particle, and the scale coordinate s=In|e|/|e,|. Then
T,,T, T, and D take the form

3 7] o cosy 0
T1=-I-smy;—a-i-coswcotﬂa—sinzgap,
: 0 smzp d
T,= +cosip60 smqpcot@aw smﬂafp
4 (4)
Tﬁ“‘:
3 aw
sle
s
while S and S’ are
Sl=——smqy%—cosqy(:013&92 Z:g%
8, = cos sin cot@ s1n<p g
2 "’aﬁ ¢ sm061,u
_9
3 a(p’
sing 0

’ a o
S1= +cos 6 cosgvae+sm<p cotoaw Sn0 6(p+sm9 cosgo(a—s 1)
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, cos'gp 0

Sz = +cos 6 sin ¢ 6'/’ Sn 6 oy +sm6s1n(p(§——l)

—cos @ cotb 0

679
A N R (2 e 1)
P a0 o8

The invariants of the Lie algebra generated by § and 8’ are

R=S2—S’2=—T§+(D—l)2+2(D—1),} )

8§=8-§'=-T,D.

The generators of the inhomogeneous transformations can be written in the form

0
pc:a_t’
Q' 5ESH,
P o (t=1,2,3), (7)
Mi=M?+ S,
N;=N?+48i,
0 4 :
where M1=x26—x3 —xaa—% (cyclic),
0 0
St — o, —
Ni taxi-*_x’at'

From eqs. (1) and (7) it is evident that the Lie algebra of our 16-parameter invariance
group is the direct product of the Lie algebras generated by (p.,p,M? N°) and (S, S’).
Thus the total number of invariants is four namely R, S and

B =P2 _p?:
Q= (b MO~ (p, MO+ X N

@ is identically zero because M° and N° operate on a four-dimensional space.

So far we have discussed a coordinate space and a symmetry group of transforma-
tions which connects different choices of axis in it. All physical laws should be
invariant under this group if it is impossible to distinguish between the different
coordinate systems by means of experiments. The states of a quantal system should
transform according to a unitary representation of the group. Hopefully, the irre-
ducible representations may be connected to the ‘“‘elementary” quantal system or,
in other words, the elementary particles.

We now assume that the elements of the Hilbert space, in which the representa-
tions operate, are functions of the coordinates. The hermitian generators of the repre-
sentation are taken to be §,= —ip,, P= —ip, MO = —iM°, N°= —iN°, §= —iS§ and
§’= —i8’. These operators form a Lie algebra with the invariants —P, Q, —R and
—8. The invariants are fixed numbers in an irreducible representation. Since all
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symmetry operations are external in the sense that they operate on the frame of
reference, quantum numbers characterizing a particle must be sought among these
invariants. P is usually interpreted as the mass of the particle. £ and S, or alter-

natively 7'5= —iT,; and D= —iD, do not lend themselves to any immediate inter-
pretation. Now the eigenvalue of T,, which may be integer or half-integer, is the
lowest l-value in the reduction of a representation into irreducible representations
of the three-dimensional rotation group generated by S [5]. Thus a particle invariant
under our group does not have a fixed but a lowest spin-value 7'y. This interpretation
presupposes that the spin is connected with rotations of the six-vector (e,h,). One
might as well assume that the spin is something characterizing the system under
the rotation of space coordinates. Then the spin is zero because @ is zero. In this
case we are free to identify 7', with the third component of isospin.

Discussion

On the basis of a generalized light geometry we have tried to motivate an addi-
tional set of coordinates for a particle. These coordinates are four in number and
can be represented by a six-vector (e,h) where e-h=0 and e*=h2 This extension
of the coordinate space suggests an extension of the group under which the physical
laws should be invariant. In this paper we have examined which group one obtains
in case one assumes that, in addition to the transformations of the IHLG, one can
also rotate the six-vectors arbitrarily. The resulting group is the direct product of
the HLG and the IHLG. The analysis in the preceding section of the physical
interpretation shows that this group introduces some unfamiliar features. However,
we consider it more as an example of the many possibilities one has when searching
for new invariance groups.

To mention another possibility one might choose a group generated by p;, p,
M, N and 7. Then § is likely to be interpreted as the spin operator and (.M +

p X N)Z—( M)2 as the square of the spm times the mass. 7'; is again an invariant
and is linked together with the spin since 7'y is an lnteger or half-integer when the
spin is an integer or half-integer. Also the value of T, is less or equal to the value of
the spin. This suggests that we interprete 7', as half the baryomc number.

Another possibility is to widen the coordmate space and invariance group even
more. This could be done by giving a particle a second mechanical, “rigid” structure.
One could then introduce truly internal coordinates in the spirit of Vigier et al.,
which could be defined through the relation between the six-vector and the me-
chanical structure. The internal invariance group may then be chosen as the bilateral
rotation group [1] if it is assumed that the particle is “spherical”. Since these truly
internal coordinates are not accessible to external transformations the states of
this internal group may define different particles. In the case of the bilateral rotation
group one obtains three quantum numbers which could be identified with isospin,
its third component and hypercharge.
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On a class of explicit representations of the homogeneous
Lorentz group

By ArnE KIHLBERG

ABSTRACT

A class of explicit, irreducible, unitary representations of the homogeneous Lorentz group
is given. It is explicit in the sense that the Hilbert space is a certain function space over
a carrier space. As the carrier space we choose the four-dimensional space of restricted six-
vectors (e,h|e-h=0, e2=h?). The class is complete in the sense that any irreducible, unitary
representation is unitarily equivalent to one in the class.

1. Introduction

The unitary representations up to unitary equivalence of the homogeneous
Lorentz group (HLG) are all well known [1]. They can be completely reduced
into irreducible, unitary representations. These are divided into two series. The
main series contains representations which are characterized by two numbers
(ky, ¢), where k, is a non-negative integer or half-integer and c is real. The rep-
resentations of the supplementary series are labelled by one number g, (o= 21c)
where 0<o<2. These latter do not appear in the reduction of the regular
representation into irreducible constituents.

Neumark [1] uses two different function spaces to realize the irreducible rep-
resentations. They are connected to the group itself because the carrier spaces,
on which the functions are defined, are subgroups of the HLG. The general
group element induces a transformation in these subgroups according to a cer-
tain prescription. With a scalar product, suitably defined, the function spaces
become Hilbert spaces and the transformations induced by the group are rep-
resented by unitary operators acting on these Hilbert spaces. It turns out,
however, that different scalar products are required for the main series and the
supplementary series.

In this paper we discuss the realization of the irreducible representations on
a function space which is related to one of the two used by Neumark [1].
Our carrier space is the space of six-vectors (e, h) with e-h=0, e*=h? and thus
four-dimensional. The HLG induces transformations in this carrier space and
consequently in the function space defined on it. The invariants of the HLG
have a simple meaning in this space. Again one has to define different scalar
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products to get the unitary representations of the main series and the supple-
mentary series.

The reason for writing the representations in this explicit form is physical.
We know that the treatment of interaction can have a simple formulation in
one representation but not in another, which is mathematically equivalent. The
best known example of this is the electro-magnetic field which in absence of
interaction can equally well be described by means of the field tensor F* and
the four-vector 4”. Both theories define a representation of the HLG, but the
formulation involving A" seems to be more suited for treating the interaction.
Quite apart from the question of interaction one explicit representation may be
more illuminating and suggestive than another for the interpretation of the
various mathematical expresssions which appear. Elsewhere [2], we have given
arguments for using the restricted six-vector (e, h) as internal coordinates for a
particle and one can make the hypothesis that the carrier space for the repre-
sentation should coincide with the coordinate space of the physical system trans-
forming according to this representation.

To construct the representations we apply the theory of multiplier represen-
tations described by Bargmann [3].

2. Definition of carrier space, function space and the transformations induced
in them by the HLG

Our carrier space is the restricted six-vector F=(e,h|e-h=0, e*=h?. As
coordinates we can use either the six components e,, ..., h, with the restrictions
exhy e hy+e h,=0, e2+e+es=hi+hy+hi or four independent coordinates
(p,0,p,s). These we define through the equations

'eﬂ [ —sin ¢ sin y +cos 0 cos ¢ cos p ]
e, | =¢ cos @ sin g+ cos 0 sin @ cos y
Le, L sin 0 cos p i
(1)
[ ;] [ —sin ¢ cos p—cos 0 cos ¢ sin ]
hy|=¢° cos ¢ cos w—cos 0 sin ¢ sin p

L%, | sin 0 sin p _

For completeness we also introduce

(exh), sin 0 cos ¢
(exh), | =e*| sin 0 sin ¢ (2)
(exh), cos 0

From these equations we see that s=In |e| and that ¢, 0,y are the Euler angles
orienting the triad defined by e,h and exh with respect to some fixed refer-
ence frame.

As the function space we shall take a suitable subset of the set of all func-
tions (real or complex) of (g, 0,%,s) or of F. In the latter case the functions
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are only defined on the hypersurface e:h =0, ¢*=h® The subset must be chosen
so that the function space is a linear space and so that it becomes a Hilbert
space by defining a scalar product. We return to these questions later.

Let us now consider a restricted homogeneous Lorentz transformation defined
by the matrix Qf (Q3>0, det Q= +1). We define the action on F by the
equation

P8 e = QR QL T (3)
0 e, ey ey
—e 0 h, —Ah
where = i z 5 (4)

in analogy with the transformation properties of the electromagnetic field tensor.
The corresponding transformation in the function space we shall define in the
following way

fE) 2 f () = Qg Q5™ F*). (5)

For an infinitesimal transformation we can write

QfF =384 +wf, (6)

where o W + Gup 05 =0. (7)
Eq. 5 then becomes

JE™) > [ () = [(F" = T w0} — B wf). ®)

If we examine separately space rotations and accelerations and write eq. 8

"(F)=(1+ - S){(F),
fF)=01+o )/()} )

fF)=(1+o"-8)[F)

we then get the following expressions for the generators S and §’ assuming that
the function f is differentiable.

S =eXVe+hXVh,} (10)

S =exV,—hxV,.

The commutation relations between the different components of § and §' are
given in ref. 2. If we use the second set of variables (@, 0,w,s) we have
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1 A 0 G cosq;i
S = sin @ —5—cos ¢ cot 0 <st1n0 oy’
: ) o snp o
Sy= cos @ 5 Sln(p00t08<p+sn9 oy’
0
SZ_:
3 a(p

: (11)
69+Sln¢00t061p Zilrig):—{-smﬂcosgv(a 1),

Si=cos 6 cos ¢

cosq98 ; 0
e St ——1}.
oy sm0 % + sin 0 sin "’(as )

S5 =cos 0 sin (pi—COS(pGOtB

a0

Si= —sin 6 30—!-003 0 (——1)

3. The Casimir operators and the irreducibility condition

We have decided to use functions f(g, 0, v, s) in the representation space. Now
we require the space to be irreducible. Such a restriction is obtained if all
functions are eigen-functions of the Casimir operators of the Lie-algebra (11).
It is well known that these are

R= Sz X Slz,
Q = S A sl (12)
In terms of our variables we get
82 62
R= 8? 882 o 1 )
: (13)
s oy os

Thus all functions f in our representation space should satisfy the equations

*f o

P o (r=1){,

oy s
o (14)
&pa;qf

for suitable real » and ¢. The restriction of » and ¢ to real values is motivated
by the fact that we later on introduce a unitarity condition. Now since we
consider both double valued and single valued representations, f must be periodic
in » with the period 47 and we may expand it in a Fourier series
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B, (s) cos %] 5 - (15)

m=0

The functions 4, and B, must then satisfy the following equations

d*4,, m>

e (042 ) 4y
d*B,, m>

d (T+Z—l) Bm—O,

m dA,, ‘ o
E—d__qB’"’

m dB,,

T2 ds s

We see that each equation contains only one m-value so that we may use m
for the enumeration of the different possible solutions.

(I) Suppose m=+0.

Then

where

A,, = CT sin ys— C3' cos vs,

B,,=C% sin vs+ CT* cos s,

=
I
ity

, — oo <y< oo,

so that r and ¢ can take on the values

(IT) m=0.

2
rid —?l;~+v2,
S T

I8

Then only B,(s) remains to be determined and we have three possibilities

(a)

in which case

BO=02 sin s+ O cos vs
— oo <P< 0
r=1+%
q=0;

377



A. KIHLBERG, Explicit representations of homogeneous Lorentz group
— —as S
(b) B—=Dge %1 Dy ef

— 00 << g < o0

with r=1—02
qg=0:
(e) BO=E1+EQS
n which case r=1;
q=0.

The case (ILa) can evidently be incorporated under (I).

We thus arrive at the following conclusion: The irreducible function spaces
can be enumerated by two numbers (m,v). For m integer and » real, the func-
tions depend on u and s as

fp, 0,9,s) =g(0, ¢) sin (% zp—vs) +h(0, p) cos (% y)—vs). (17)

The operators (11) in the Lie-algebra mix the “components” g and A and it is
obviously convenient to introduce the imaginary unit ¢ and write

f=3(h—1ig) exp (l;zp—vs)-l-%(h-l—ig) exp (_%z p+ v.s). (18)

In this way the real space is split into two complex conjugate spaces which
are separately invariant for the Lie-algebra. When m =0 both parts are covered
by letting » take both positive and negative values.

For m=0 and » imaginary but different from zero (»=1ix) the functions
depend on s in the following way

f=90,@)e * +h0, ) e*. (19)

Now the operators (13) do not mix the components ¢ and » and we can keep
the real representation space. Again we have two separately invariant parts
and by letting o take both positive and negative values we may just consider
the functions

f=90,p)e ™. (20)

Finally for m=0 and »=0 there is also the possibility

f=9(0,¢)s+h0, ). (21)
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4. The unitarity condition

In the preceding paragraph we have arrived at restrictions on the numbers
(m,v), which are used to define the irreducible function spaces, from reality
conditions. The result was that either m is a non-negative integer and v real
(this is going to become the main series of the unitary representations) or m
zero and v imaginary but unequal to zero (part of this will constitute the sup-
plementary series of unitary representations). If both m and » are zero there
is a further possibility, but it will turn out that it can be considered as a
limiting case of the main series.

Now we want to see whether unitarity imposes any conditions on m and ».
Unitarity means that S and §' are anti-hermitian. Of course, we must then
suppose that we have defined a scalar product. Then

(fi, 8 fz)z —(Sf], fz)s } (22)

(f, 8'fo) = — (8" 1. 1)

for such f,, f, which belong to the domain of § and §'.
For the main series, i.e., » real and

m
f=exp (72 w—%) 9(0, @)
one can readily verify that one can choose the most natural measure and put

11 2n
e fo fo 926, )92 (6, ) sin 6 dbde, (23)

where g, and g, are periodic in ¢ if m is even and anti-periodic in @ if m is odd.
For m=0 and »=40 it is not possible to satisfy the relations (22) by the

scalar product (23), since terms like o cos 0, a sin  cos ¢ and « sin 0 sin ¢ in

egs. (11) are hermitian. Let us therefore try the most general bilinear form

(f1s fa) = ffffgl 0,9) K(©0,0",¢,¢",)q,(0",¢")sin 0 sin 0'd0d0’ dedg’, (24)

where L=¢“g,0,9), [h=¢*g,(0,9),

and K is a function to be determined by the egs. (22). From the first of these
we find that K can depend only on

y=cos B cos 6’ +sin 0 sin 0’ cos (¢ —¢').
From the second set of relations in eqs. (22) one finds that
B0 (e (25)
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Now the integral (24) converges only if o is positive, since 1—y goes as the
distance between two points on the sphere squared. For the moment we there-
fore consider only such values of «, but later on we shall find that one can
give a meaning to eq. (24) also for negative values of «. We must also make
sure that

(f.1)=0.
For this we expand in spherical functions and Legendre polynomials
f(e: CP) =l§7:r, fln Yln(o’ 99): (26)
T 21+1 ,
(=gt =3 == b P ). (27)
201+1
Thus  (f,)=Cu 3 3 3 5 bufew frow:

f f f f YE (0, )Y (0", ¢") Py(y) sin 0 sin 0" d0’ d0” dg’ dg'.  (28)

The addition theorem for Legendre polynomials yields

AVES PR ACA S UA'D (29)
so that . H= Cal%?nbz finfica= ngzzﬂbz |fal? (30)
since f,=f_n. Thus (£, H=0
if and only if C,b;=0. (31)
From eq. (27) we have g
b= Jll (II_,I%‘ dy. (32)

This integral can be calculated by using the generating function for P,(y).
We get
1o,
(33)
b 21— 2—a)...(I—a)
Ya(lte)2ta)... (Ita)

By choosing C,=a« we see that eq. (31) can be satisfied for |a|<1. For
x—0, C,b,—1, and we get the scalar product (23) as a limiting case. Negative
values of o cause no trouble when we define the scalar product by eq. (30).
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Obviously these values yield measure functions K which are more singular in
angular space than a d-function. Of course, our Hilbert space is complete in
the norm. Thus not all functions g which belong to say the space characterized
by =0 are vectors in the space with negative c.

There remains one function space to be examined, namely the case (IIc).
The functions of this space are

f=s9(0, )+ k0, p).

We make the following ansatz
T (P27
(f: 1) = fo fo [@11 91 92+ @1o Gy hg F gy o oy + @gp By By] sin O dOdg. (34)

Again using the relations (22) one finds that
Ugp= —Gy, @yp=0.

From (f,f)>0 it is obvious that a,;>0. Thus the scalar product

n (27
(ffa) = Jo fo [@11 91 92+ @15 (91 oy — g2 By)] sin 6 dOdg

leads to unitary representations. But all functions f=4(0,p) are equivalent to
the zero vector and consequently the Hilbert space has only one ‘“component’’
namely the one represented by ¢(f, ). The operator 9/ds again acts as the zero
operator.

So far we have been able to define scalar products so that our representa-
tions are unitary in case that m is an arbitrary non-negative integer and » real
(the main series of unitary representations) and in case m is zero and »=1io
where 0<|x|<1 (the supplementary series of unitary representations). Now
Neumark [1] shows that one pair of the invariants r and ¢ uniquely determine
one irreducible representation up to unitary equivalence. Therefore we know
that we have obtained all unitary representations up to unitary equivalence
since the invariants can only take on the values [1]

r=1-—k§+c%

q=kyc,
where k, is a non-negative integer or half integer and ¢ is real or k,=0 and
—1<¢*<0, and these values are also obtained by letting m and » vary over
their ranges. Furthermore one sees that for m =0 the representations which

differ in sign of » or « are unmitarily equivalent. This can also be shown by
constructing the isometric transformation, which mediates the equivalence.
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5. Conclusion

We have proposed to write the unitary irreducible representations of the ho-
mogeneous Lorentz group in an explicit form by means of a function space over
the carrier space of restricted six-vectors. Since the rank of the Lie-algebra is
two and we have two invariants, one has to use at least a four-dimensional
carrier space if one wants to see explicitely how the irreducibility condition
enters. If the carrier space can be identified with a coordinate space for a
particle then one may hope to be able to give a meaning to the group in-
variants as well as to the integration in the scalar product. Especially the
scalar product of non-local character for the supplementary series is then of
interest.
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3.65083 Communicated 12 May 1965 by L. HuLteEN and N. SVARTHOLM

On the unitary representations of a class of pseudo-
orthogonal groups

By ArnNeE KIHLBERG

ABSTRACT

A method for explicit construction of the unitary, irreducible representations of the pseudo-
orthogonal groups L(p,q) is presented. It is based on a realization of the elements of the Lie-
algebra as differential operators on a carrier space. This space is the product space of the group
spaces of the maximal compact subgroup K and an Abelian subgroup 4 both in L(p,q). The
Hilbert space is constructed as a function space on the carrier space. In an irreducible representa-
tion the vectors in the Hilbert space have a fixed dependence on the parameters of 4 and the
scalar product is defined in terms of integration over the parameters of K. The method is parti-
cularly simple to apply when ¢ —p is 0, 1 or 2 since then the number of parameters of the carrier
space is equal to the number of labels required to characterize a vector.

1. Introduction

The pseudo-orthogonal group in p+¢q variables is defined as the group of real,
linear, homogeneous transformations which leave invariant the quadratic form

L el O R L)
Ty s il = i — e s (1)

p+
It is a Lie-group of (p 9 q) parameters. We may assume that both p and ¢ are posi-

tive integers for if p or ¢ is zero the group is an orthogonal group. Contrary to the
orthogonal groups the pseudo-orthogonal ones are non-compact. This means among
other things that the irreducible unitary representations are infinite dimensional. The
pseudo-orthogonal groups can just as the homogeneous Lorentz group be divided
into four components [1]. The first is continuously connected with the identity,
while the other three include a reflection in the p first, or in the ¢ last variables, or in
both. In what follows we shall always deal only with the first, the identity component.
For this subgroup we use the symbol L(p,q).

In physical theories the pseudo-orthogonal groups have appeared in many different
connections. Of course the most famous pseudo-orthogonal group is the homogeneous
Lorentz group L(1,3), which needs no further presentation. But also the groups
L(1,4) and L(2,3) have been studied in quite a detail. These groups, usually called the
de Sitter groups, are extensions of the homogeneous Lorentz group with a fifth space-
or timelike dimension. They then allow for the introduction of a curvature constant
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as is suggested by general relativity. The pseudo-rotations in the planes (z;, x;) are
connected with the translations in the four coordinates z;. The de Sitter groups are
thus to be regarded as generalizations of the Poincaré group. In a more indirect way
the group L(1,2) is also of physical interest. When determining the unitary irreducible
representations of the Poincaré group one has according to Wigner [2], to consider
certain subgroups, the little groups. An irreducible unitary representation of the little
group and the mass value determine an irreducible unitary representation of the
whole group. When the mass is imaginary the little group is L(1,2). These representa-
tions with imaginary mass have however so far not been interpreted physically.
Still another example of a pseudo-orthogonal group which has been suggested as a
useful group at various times during the last fifty years is the conformal group. It is
isomorphic to L(2,4).

In the last few years the group theoretical treatment of elementary particle physies
has been concentrated on the problem of finding internal symmetry groups. The
interest has so far been mainly confined to compact groups, and this is presumably
to a certain extent due to the absence of a simple representation theory for non-
compact groups.

In the physical application of all the groups mentioned above one is interested in
their unitary representations. (That the finite dimensional non-unitary representa-
tions of the homogeneous Lorentz group have played such a big role is due to the
fact that the latter is a subgroup of the Poincaré group. Some unitary representations
of this group can be given with the help of the finite dimensional representations of
the homogeneous Lorentz group.) The unitary irreducible representations of the
homogeneous Lorentz group were determined by Gelfand and Naimark [3] and
Bargmann [4] in 1947 and those of L(1,2) by Bargmann [4]. The group L(1,4) was
dealt with by Thomas [5] in 1941 and later on by Newton [6] and very thoroughly
by Dixmier [7]. The de Sitter group L(2,3) has been treated by Ehrman [8] in 1956.
Esteve and Sona [9] have applied the theory of Graev [10] to the conformal group.

In all the solved examples above, except L(2,3) and L(2,4), one has used the techni-
que to determine a representation by reducing it out with respect to irreducible repre-
sentations of a compact subgroup. In the case L(1,3) one uses the compact three-
dimensional rotation group and for L(1,4) the four-dimensional rotation group. Now
it can easily be seen that this method has limitations. It is essential for the technique
that each irreducible representation of the compact subgroup occurs only once. For
this to be the case the subgroup has to be large enough. This can be seen as follows.
In order to label the vectors in the representation space one needs a maximal set of
commuting operators taken from the enveloping algebra of the Lie algebra of the
group. A number of these can be chosen as the invariants. The pseudo orthogonal
group in p +¢q variables has (p +¢—1)/2 invariants if p +¢ is odd and (p +¢)/2it p +¢
ptq

D] +

&

Llprray priel
2 2 2
1[(pt+q\ Pty
2 2 2

is even. The number of parameters is (

Therefore one needs [11]

operators in the odd case and
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in the even case to label the vectors within an irreducible representation and

1[/(p+ g—1
5[(p.)q) -%p% ] (p+q odd),

& &

1[(p+q\ ptq
E[( 9 )+—2— (p+q even)

operators to label the vectors throughout any representation. Now the question is
whether one can find a sufficient number of labels in the maximal compact subgroup.
For the pseudo-orthogonal group the maximal compact subgroup is SO,S0, where
S0, is the rotation group in p dimensions. We have to distinguish the four cases: p +¢
odd or even, p odd or even.

We first consider the case p +¢ odd, p odd, ¢ even (p <gq). Then to label the vectors
within an irreducible representation of L(p,q) with the operators of SO,S0, we

must have ;
Lifpta) pra—it 1Ly p—1f, 1|/q} 4
2|\ 2 7 ~al\e)" 2 | 2l\gl 2

which gives (p—1) (g—1)<0.

This inequality can be satisfied only if p=1.

In the other cases one has similar restrictions and one finds that the reduction
method may work when p=1 (or ¢=1) and in the case p =¢=2.1 Actually it has been
proved that it always works in the case p =1 [12]. In all other cases one has to use
other methods. The de Sitter group L(2,3) does not fulfill these requirements so in
this case one has to use a more general method. In fact Ehrman applies Harish-
Chandra’s general theory for arbitrary semi-simple groups.

In Harish-Chandra’s [13, 14] theory one uses a Hilbert space whose vectors are func-
tions on the maximal compact subgroup. This means that the vectors are functions of
the parameters of that subgroup. One can see that this approach might be more suc-
cessful since now the requirement that the labels within an irreducible representation
should be less numerous than the number of parameters of SO,®S0, reads

1l{p+a\ pte—1 /(p' 'q)
2[( 9 ) 2 ]\ 2)+(2 for p+¢q odd and

1[(p+ta) Ptgq < (P 9)
= e il -p + ¢ even.
) [( 9 ) 5 9 2 for p+q even

Both inequalities are always satisfied. On this Hilbert space Harish-Chandra defines
a set of representations which need neither be unitary nor irreducible. He furthermore
shows that every unitary irreducible representation is equivalent to one which can be
obtained from the set. As can be seen from the paper by Ehrman the last step, namely
the selection of those representations which are irreducible and unitary, is far from
simple. Also the Harish-Chandra theory is rather abstract and physicists would
perhaps like to have a more explicit way of constructing the representations.

It is our purpose to give such a method of constructing the unitary representations
of L(p,q). It will turn out that it is closely connected to the theory of Harish-Chandra.

1 L(2,2) is locally isomorphic to L(1,2)®L(1,2); see appendix.

9: 2 123



A. KIHLBERG, On the unitary representations of a class of pseudo-orthogonal groups

We use the maximal compact subgroup as a carrier space for the Hilbert space and
the invariants are expressed in terms of first order operators which in their turn are
connected to a second subgroup. However we deviate from Harish-Chandra in the
the following respects. The scalar product in the Hilbert space is not given beforehand
but is rather adjusted so that the representation becomes unitary. Thus one of the
problems mentioned above, namely the selection of those representations which are
equivalent to unitary representations is absent in our theory. Furthermore our
approach is based on rather simple considerations of transformations in the group
space which therefore makes it much more limited in application than the general
theory of Harish-Chandra. Nevertheless we think that our treatment might be of
interest in a number of applications simply because the mathematics involved is of
a much less elaborate kind.

In section 2 we derive some properties of the Lie-algebra especially with emphasis
on its enveloping algebra and the invariants. In section 3 we introduce a canonical
division of any semi-simple Lie-group into three subgroups. The property of this divi-
sion makes it possible to map the group elements into certain transformations in
the group space modulo the last subgroup. The group space of the first two sub-
groups will serve as carrier space for the representation space. Thereby the second
subgroup will be used to express the invariants. In section 4 we introduce the scalar
product into the representation space which makes it possible to classify the unitary
representations. Finally in the appendix we determine, as an example, the unitary
representations of L(2,2).

2. The Lie-algebra and its enveloping algebra

The Lie-algebra of the pseudo-orthogonal group L(p.q) can easily be found by
considering the one-parameter subgroups of rotations or pseudo-rotations in all coor-
dinate planes (x;,z;). For instance the subgroup of pseudo-rotations in the (1, p +1)-
plane consists of the matrices

cosh u ! sinh »
1
. i
g(u): S e s e A — oo < Y < o0
sinh u cosh u
1
1

The corresponding element in the Lie-algebra is formed by taking the limit
|
g1

lim =
U—>0 u 1
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The whole Lie-algebra is generated by all matrices

Ol gygioes i Oig -4eilig
—;50
Q3
: QT b s by
Bl e Og1 . OF=fm e
fl‘lo_
by = \Ogg 0

where the numbers a,;, b,;, f;; are real. We can obviously choose a basis L;; in the
following way
Lij=e;;—e; for i,j<p

Lij=—e;;+e;; for ,5>p

L;=e;;+e,; for i1<p,j>p
L —e

= —e;—ey; for 1>p,j<p,

where the matrix e;; has a 1 at the position (¢j) and zeros elsewhere. By introducing
the metric tensor

Yy = g e ’

the commutation relations of the Lie-algebra of the pseudo-orthogonal group can be
written
[Lijs Ll = — e L =y Le +yu Ly + 7 Lur- (2)

The generators L;; for 1, j <p generate rotations in the first p variables. They form a
subalgebra which is isomorphic to the Lie-algebra of the rotation group in p variables.
Similarly L, 7, j>p form the Lie-algebra of rotations in ¢ variables. These two
subalgebras together generate the maximal compact subgroup of L(p,q) which is the
direct product SO,®S0, of the two rotation groups. The generators L;; for i <p, j >p
correspond to accelerations in one “time-like” and one “space-like”” variable. These
generators are the “imaginary” counterparts of the corresponding operators of SO, .,
the compact group belonging to the same complex group as L(p,q).

An important tool for the classification of the irreducible representations of a
Lie-group or a Lie-algebra is the universal enveloping algebra, see e.g. [15]. Its ele-
ments are the equivalence classes of polynomials of the generators of the Lie-algebra.
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Two polynomials are said to be equivalent if they can be transformed into each other
with the help of the commutation relations. The centre of the universal enveloping
algebra consists of those elements which commute with all other elements. This
means that it commutes with the generators of the Lie-algebra. The elements of the
centre are spanned by the invariants of the Lie-algebra. For the rotation group SO,
the invariants are [16] (F;: the generators fulfilling eq. 2 with ,,=0,,)

IP=2>F,F,
i ]
I :\‘Z\F,]F]ka,F”,... (3)

£
i

L
ZFM dady * o Fik—xikl'iki,«

H
“PA

where k=n —1 if n is odd and k =n —2 if n is even. In the case of even n there is one
more invariant
— S Eff PR ! n
IL --?...Eb"’ 1"F,‘|,-__,I‘,3,....F1" e (4)

et
i, in

where &... is the totally antisymmetric tensor in the indices 1...n. The invariants of
L(p,q) are obtained from those of SO,,, by replacing F; by iL,, if i<p,j>p or
1>p,j<pand F; by L in other cases.

The number of terms in I’ grows very fast with j. Instead of /7 one can use another
invariant A’ which involves fewer terms. A’ is defined as the sum of all principal
minors of the order j of the n x n matrix {#;,}. (A principal minor of order j is obtained
as the determinant of the matrix which remains when one removes the corresponding
n —j rows and columns.)

In an irreducible representation of the group L(p,q) the invariants must have con-
stant values. They therefore help to distinguish the different inequivalent irreducible
representations although there may be inequivalent representations which have the
same values for the invariants [3, 4, 8].

3. Realization of a semi-simple group by means of transformations in the group
space. The carrier space for the representation

As pointed out in the introduction L(p,q) is the identity component of the pseudo-
orthogonal group. Further insight into the topological properties of L(p,q) can be
obtained from a lemma by Iwasawa [17] concerning arbitrary semi-simple Lie-groups.

Lemma 1. Let G* be the adjoint group of a real semi-simple Lie-group. Then there
exists a connected and simply connected solvable subgroup /1 and a maximal compact
subgroup K* of G* such that

@x=K* H=HK*, HnK*={e};
i.e., any element g* of G* can be written uniquely in the form

g¥—k* h=h k¥, h, b €H, k*, k¥ €K*
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and A, b’ and k*, k*" depend continuously on g*. Also the space of G'* is the Cartesian
product of the spaces of H and K* of which the former is homeomorphic to an
Euclidean space.

Now the adjoint group G* coincides with the original group @ if this latter does
not have any (discrete) centre. This is the case for L(p,q) unless both p and ¢ are even.
1t is easy to prove that an element of L(p,q) which is in the centre has to be a multiple
of unity. Thus the centre can at most contain two elements +1. However if p or ¢
is odd the element —1 is a reflection in the p first or ¢ last variables. Thus it does not
belong to the connected component. For these groups the lemma is immediately
applicable and we therefore have the useful information that the connectivity is
given by that of the maximal compact subgroup which is SO,&S0,. When p and ¢
are even we have a centre of order two. This is however contained in the inverse
image K of K* in the mapping G —G* [17]. Thus the conclusions of the lemma are
still true if one replaces G* by ¢ and K* by K. Now the group SO, is doubly connected
if p>2 while for p =2 it is infinitely connected. As has been remarked by Wigner [18]
the de Sitter group L(2,3) therefore differs radically from the group L(1,4) in topology
and this has the consequence of introducing an extra invariant in the representations
up to a factor.

The division in lemma 1 can be carried a step further as has been shown by Harish-
Chandra [14].

Lemma 2. Let ¢ be a connected semi-simple Lie group with the Lie-algebra g.
Then g can be written
g=k+h" +n,

where h " is a maximal Abelian subalgebra generated by such elements which become
“imaginary” when passing from the compact semi-simple Lie-algebra to the chosen
non-compact one. h™ forms part of a Cartan subalgebra. k is the Lie-algebra of K* in
lemma 1 and the subalgebra n is generated from a set of operators which are associated
with certain positive roots in the Cartan root diagram. Furthermore let 4 and N be
those subgroups of @ which correspond to h* and n. AN = H is then the subgroup of
lemma 1 and N is an invariant subgroup of H. If furthermore K is the inverse image
of K*, the maximal compact subgroup of G'*, in the mapping G —G*, then every
element g of ¢ can be written uniquely in the form

g=kan, where kEK, a€A4, n€EN.

When applying the result of lemma 2 to the pseudo-orthogonal groups one actually
does not need the whole theory of Cartan’s classification of semi-simple groups. We
have already noted that K =S0,®S0,. For A4 one has just to choose a maximal
Abelian group of accelerations i.e. transformations involving one timelike and one
spacelike variable. Then one quite easily finds out what are the generators of N.
These have to be formed as linear combinations of the accelerations which are not in
A and of generators of K. One has to apply the restriction that N is an invariant sub-
group of H.

This division of L(p,q) into three subgroups of which the first is maximal compact
and the last two together form a noncompact subgroup will now be the basis for a
certain parametrization of L(p,q) and will also make it possible to obtain very con-
venient expressions for the operators of its Lie-algebra. It is well known that an
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arbitrary Lie-group can be represented as a transformation group on its parameters.
This can be accomplished by left multiplication

g%gitg. all gea,

which associates with every element ¢, €/ a transformation of the point ¢ in the group
space. By considering infinitesimal elements g, one can represent the elements of the
corresponding Lie-algebra as differential operators in the group parameters. In
general this procedure leads to very cumbersome expressions and as will be shown
below it is also not necessary to use all parameters of the group. Let us see what
happens to the three subgroups under left multiplication by an element which
belongs to K. We get k' (k,a,n,) = (k'k,) an, if k' € K, by the uniqueness of the division.
Therefore we have a change only in the parameters of K. All generators of the Lie-
algebra of K are therefore differential operators in the parameters (¢,0...) of K.
Denoting a generator by capital L we have

é

L lx((p) ) ’/0( -)6’0'}'.... (

ot
>

Let us next consider multiplication by an element of 4. We get
’
a’ (kyayn,) = Ko iar Miesar @y 0y = Kiiar (Qeiar 1) (i iara, M),

where k. is a function of &, and «’. Here we have used the fact that 4 is a factor-
group of AN. Therefore we get a transformed k,, ¢, and n,. But the transformations
of &, and @, depend only on k, not on @, or », as is seen from the formula. Note that 4
is Abelian. This shows that the infinitesimal generators of 4 can be written

— 1P (e g A 9 . " T T ;
L= 1000 ) — ’<]J AR )dl ool ,/:...1,5...)6'.1 (6)

if the parameters of A4 are denoted A, y... and those of N by r, s.... Finally let us
consider a left multiplication by an element from N,

(k (ll "1) kk,n Wy Mieyne @ ”1 'kk,n'(akm'al) ("‘k.n'a,nl)-

This formula shows similarly that
7 %,
L= 1% (@0 ...) —+ . fol@, 0 ..) =+ oo+ (@, 0. Ay, 8. T et
Ly=fi(p.0 )a(p fulg,0...)2 ful@:0... ...t 8...)— (7)

Thus we find that for all the generators of the Lie-algebra only the derivatives in the
parameters of N have coefficients depending on all group parameters. This means
that we can omit all these terms and still have the same commutation relations.
Expressed in terms of the groups one can say that we realize the group as a group of
transformations in the group space modulo the subgl oup N. The product space of the
group spaces of K and A4 shall be termed the carrier space of the Lie-algebra since
the operators of it are expressed as linear differential operators on this space. Of course
the possibility of considering this reduced carrier space instead of the whole group
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space of ( considerably simplifies the expressions for the generators. The question is
therefore if it perhaps simplifies them too much so that the realization makes it
impossible to obtain all representations. This is what happens when one puts

@ o

AWIW =, é"vt, — X, , T ( : )

for the generators of the homogeneous Lorentz group. Because of the invariant
equation
x"z, =Const.

this is a realization of the generators M, by three parameters. For the homogeneous
Lorentz group one needs a four-dimensional carrier space [19] and therefore it is not
surprising that one does not obtain all representations of L(1,3) from the parametri-
zation (*). In the introduction we found that one needs a carrier space of dimension

l(p+9*—1] if p+gq isodd,
1p+o? if p+gq is even.

Now the dimension of A4 is p if p <gq and therefore the dimension of N is p(g —1) since
in the pseudo-orthogonal group there is pg “imaginary’ operators, the accelerations,
as compared to the corresponding compact group SO, .,. The requirement that the
carrier space has sufficiently many dimensions therefore is
s i< (PTE
tlpte—1]< ( 5 ) —plg—1) ptq odd, p<g,

2 (P T4 =
i(ptq ‘\\( % )*p(q—l) .p+q even, p<gq.

Both inequalities are always fulfilled. We therefore conclude that provided there are
no invariant equations in the remaining parameters one can always take the group
space modulo the subgroup N as carrier space for the transformations of the group and
the Lie-algebra.

The case when one has equality in the above equations is of special interest and we
will mainly be concerned with the corresponding groups in the rest of the paper. The
condition for equality is

p=q—1 if p+qis odd and p<q and

P=q )

if p+gq is even and p<gq.
p—g—2 pTq P=q

The subgroup A4 also plays a special role in the decomposition of ¢ since its para-
meters do not enter into the coefficients of the derivatives in the reduced generators.
Therefore the values of @/dA, ¢/du... can be put equal to constantsa.b.... These
constants will then enter into the invariants of the Lie-algebra. Let us see when the
number of invariants and the number of parameters of 4 coincide. For this to be the
case we must have
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Rg—1

2 Z,;rp if p+q is odd,
+

ZL‘) q:p if p+q is even.

We thus find that for p=¢g—1 and p=¢q, the carrier space has the right dimension
and the subgroup A has the dimension equal to the number of invariants of the
group. In this special case the invariants of the Lie-algebra can all be expressed as
polynomials in the derivatives d/é4, @/dp ..... What about the case p =g —2 when p +¢
is even? In this case there is one invariant more than there are dimensions in 4. But
in this case the subgroup K has one dimension too much since we want to use its
parameters in connection with the labelling of the vectors inside an irreducible
representation. The dimension of K is p*>+p +1 if p =¢ —2 while the required number
to label the vectors is p*+ p. Therefore it should in this case be possible to “move one
parameter from K to A”. In fact, as was stated in lemma 2, 4 is a part of a Cartan
subalgebra the rest of which is to be found in K. Now since the number of invariants
is equal to the dimension of a Cartan subalgebra it must be possible to find in K the
required number of one parameter subgroups which commute with 4. By means of a
suitable parametrization of K one can achieve that the parameters of these also do
not enter into the coefficients of the derivatives.

In all the cases (8) we have found that the Lie-algebra can be given with the help
of differential operators in which the invariants enter merely as parameters a,b....
The invariants themselves are polynomials in @, b.... The special case p =¢ — 2 differs
from the others in that one of the constants a, b... takes only discrete values. This can
be seen from the fact that the corresponding differential operator d/dy is an operator
in a compact variable y of K.

Even in the cases not covered by (8) the parametrization we have described may be
useful. One then however has more parameters than necessary, but this difficulty
might be possible to handle with a suitable constraint.

4. Unitary representations

In physical applications one is as a rule interested in unitary representations up to
a factor. This means that the unitary operators U(g) satisty

Ulgy) U(g2) =(g1,92) Ulgy g2),

where  is a function of g, and g, such that || =1. Now Bargmann [20] has shown
that for the pseudo-orthogonal groups L(p,q) this means that one has to look for the
unitary representations of the universal covering group of L(p,q). The universal cove-
ring group L(p,q) is simply connected. Therefore in the case p>2 and ¢>2 we see
from the lemma 1 that L(p,q) contains four sheets of L(p,q) while for p <2 and ¢>2
it contains two. If p=2 or ¢=2, L(p,q) contains the space of L(p,q) infinitely many
times. The fact that one should study the representations of L(p,q) means that one
has extra invariants for the representations. For the homogeneous Lorentz group
this is the integer or half integer character of the spin-values. For the de Sitter
group L(2,3) this extra invariant has a continuous variation [8, 18].
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From the works of Garding, Harish-Chandra [13] and Dixmier [7]it is known that
the search for unitary irreducible representations of L(p,q) or L(p,q) can be reduced
to the problem of finding the Hermitean, irreducible representations of the Lie-
algebra.

Now we are going to discuss how one may obtain all unitary irreducible representa-
tions of the Lie-algebra of L(p,q) with the help of the parametrization of the carrier
space which we introduced in the foregoing section. We recall that we obtained the
following general form of the generators of the Lie-algebra

o

=1 (e 9 m
ij flj((F,g...)E(p f,,((p,a...)

0 I8
PR
if L;; is a generator of K and

n »

a

T
)
/)

. 7} 0 :
L= i’;(q),f)...)gq)-&f?j(q),@ ) zaF ...T/f,(q;,o...)a

5

"~

in the other cases. The parameters ¢,0... belong to the subgroup K and A,x... are
the parameters of the subgroup A. The functions f5... fi... depend only on the
parameters of K. (In the case p =¢ —2 they do not depend on the last of these para-
meters.)

As representation space we now choose a linear space of functions

f(®.0...2, p...).

By imposing that the space should be irreducible it is necessary (but not sufficient)
that the functions f are eigenfunctions of the invariants. But the invariants are
polynomials of the derivatives d/d4,d/du ... and therefore the functions in an irredu-
cible representation space can be chosen as eigenfunctions of ¢/94,0/du ... i.e. they
have the form

Heps 0 ... Ao ...) =€ e® . flg,0 ...),

where f now is a function only on K and a,b... are arbitrary complex numbers. The
irreducibility condition thus fixes the dependence on the parameters A,u. Those
which are left ¢, 0... will span the carrier space for the Hilbert space. By this we
mean that we are going to define a scalar product involving integration over the
variables k= (¢, 0...). The most general scalar product involves a positive definite
Hermitean kernal M (k,, k,)

(fp /z) = fffl (kl) M(kv kz) fz(kz) dkl dkz’

where dk is the invariant volume element of K. The condition

(fl’ fz) -~ m)

implies Mk, ky)=M(k,, k,),

while the condition (f,f) =0 for all f implies that M is positive definite. Having defined
a scalar product the next step is to define the Hilbert space [ as that linear set of
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functions f(k) which have finite norm. The generators L, of the Lie-algebra are linear
operators in /1. We now require that ¢L,is Hermitean or L,; anti-Hermitean. Since the
L,; are given this means that the kernal M (k,,k,) has to be chosen in a certain form.
It is easy to see what restrictions result from the requirement that the generators of K
are anti-Hermitean. If L, is anti-Hermitean U =¢“/" is unitary. However from the
construction of L, this means that

f(k) - f (k) = (k' k)

has to be a unitary transformation for every &' € K. Thus

J f Fo (K Tey) My, o) o (K fey) dle, dle, = f f fokey) My, k) fo (y) diey des,

which gives after change of variables and using that dk is an invariant measure on K
MR, & T, Bk’ )= M (o k).

Therefore the kernel M(k,,k,) depends only on kk;'. Consequently M has to be an
invariant two-point measure. Of course the ordinary invariant one-point measure is
contained as a special case when M is a d-function in all its variables. However the
two-point measure should be more natural in connection with bilinear constructions
such as Hilbert spaces. It is therefore remarkable that they have not been used to a
larger extent.

The remaining anti-Hermitean generators, which are all accelerations, put further
conditions on M. These conditions are also dependent on the parameters @,b... which
determine the invariants. For some values of @, b... it may be possible to find a
positive definite kernel M, for others not. In this way one finds the possible ranges
for the parameters a, b.... Of course one has to admit kernels which are not functions
but only distributions.

It is a general feature for real semi-simple groups that the irreducible representa-
tions can be grouped into several series [21]. Now it turns out that in one series, the
main series, the kernel M (k,,k,) reduces to a one-point measure, the ordinary in-
variant measure on K, while in the supplementary series the kernel M will depend
onay b

We now give a short summary. A set of representations D(a,b...) parametrized by
the complex parameters @, b ... has been given. From the construction of the measure
function M we know that D(a,b...) is unitary. However it may still be reducible. We
can now compare this set of representations with the one defined by Harish-Chandra.
In fact in his set a representation is parametrized by a linear function on a certain
Jartan subalgebra which then involves parameters corresponding to a,b... Harish-
Chandra chooses the measure M to be a one-point measure and instead he only requires
the representation to be equivalent to a unitary representation. So in fact one can
identify our set with his and then one also knows from his result that the procedure
we have used is perfectly general: every irreducible unitary representation can be
obtained from some D(a,b...) as an irreducible part.
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APPENDIX

In this appendix we want to illustrate our method by constructing the unitary
representations of a pseudo-orthogonal group. The group we choose, L(2,2), is some-
what trivial since its Lie-algebra is the direct sum of the Lie-algebra of L(1,2) with
itself. Anyhow among the groups with p +¢ =4 there is only one more non-compact
one, namely L(1,3). This group has been treated with our method in an earlier paper
[19], although the realization of the Lie-algebra was obtained from a physical starting
point. The groups with p+¢=>5 at once become quite involved. Therefore there
remains only L(1,3) and L(2,2) which are simple enough to serve as illustrations.

The group L(2,2) leaves invariant the quadratic form

92 2 9 9
Xy s — Ty —"T4

It consists of all real 4 x4 matrices B, which are continuously connected to the iden-
tity, and which fulfill

BTy B =y,
where 9 is the matrix

The group has a centre of order two, which consists of the matrices + 7. The basis
elements L;; of the Lie-algebra are given as in section 2. L;, and Ly, generate the
maximal compact subgroup K =S0,&S0,. In order to find the generators of 4, one
has to look for a maximal Abelian subalgebra among the accelerations. This algebra
is two-dimensional, and we choose as its generating elements L,; and L;,. The sub-
group N finally must also be two-dimensional, and it is easy to find that a possible
choice for its generators is N;=1L,3—L;, and Ny=L,, —
The general group element g of L(2, ) can now be parametuzed as follows

g = e'fo: e'}‘L;u el'Lea e"Lu eSNI elNz’
where O0<@, wysS27x, —oco<pu,»,8t<oo,

We have deliberately chosen a parametrization which is not adapted to the decompo-
sition into L™V (1, 2)@L™ (1,2) since this property is special for L(2,2).

To shorten the expressions in the following we write sp for sin ¢, cp for cosg,
Shy for sinhy and Chy for cosh .

The group element n of N has the form

1 — G : S 0
2 42 2 42
e A S

§ l1—=4+=—1 ——= t
2 2 2802

n=eN etV = = k

2 42! 2 42
& b TR

S —21‘5 1‘*‘5—; t

0 t — I
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and is completely analoguous to the Lorentz transformations of second kind studied
by Wigner [2]. The general matrix g is

Chyep+sesp [—sChy+tShy]cp+ Ch/z = (; : )]
2 2
—Chvsp+secy [sChy—tShy]sp+ Ch w— e (; — L) cp
G f e :
—Shysy+secy [sShy—¢Chy] sy + bh =gl (.’ — E) cy
st
Shyeyt+sefsy [—sShy+tChy]ey+ (Sh T (4 (:7 = 2—) sy

_ a2
[sChy —tShy]ep+ |Shy -+ e (s) = t) s Shyep +tesp

[—sChy+tShv]sp + Sh‘u =gt ( cp —Shysp+tecp

_ &g\
[ —sShy +¢Chy]sy + Ch/1,+e."(_s'—'~) cy —Chysyttecy

2 42
[sShy —¢tChy]ey+ |Chu + e (s tz)] sy Chyey +tesy

According to the results of section 3 we now have to multiply g by the inverse g ‘/1' of
an element ¢,- Then all parameters ¢, p, 1, », s and £ get changed to new values ¢’, y’,
u'sv', 8, t'in a new paltmon of the product g, 'g =¢'. But the essential result of section
3 was that the change in ¢, v, u, v depends only on ¢ and y, the parameters of the
maximal compact subgroup K. Now let g, be infinitesimal and generated, say, by
L,,. Thus

gilzeweLan = | ALl ,,,,, s lgl<l,

and we get 16 equations from g; 'g=¢’ which determine ¢’...¢" in terms of ¢...t. For
instance from the first column of ¢’ we get

Chycp+sesp=Chv' cp’ + s e s’
—Chvsp+secp—e[ —Shysy+secy] = —Chy'sp’+ " e ce’
—Shysy+secy—e[ —Chysp+selep]l = —Shy' sy’ +s" e 'cy’
Shyey+sesp=Shy ey’ +s" e sy’
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By dividing these equations by & one gets four equations for the derivatives

@ L . These can be solved to give

(l{;‘ e=0 dé’ e=0
LA —s@s
e lous P
dp| _
e e
d.
Eg £:0=C<Psw,

if one also uses the fact that these derivatives should be independent of 1, », s and ¢.
To determine dp/de one has to use the other columns of ¢’ as well. One finds

du

e e L

Therefore we have the following realization of the generator L,; as a differential
operator on the group spaces of K and A
L=sc6—'csa——cc£—ssg

The realizations of L, and L,, is much simpler since K is Abelian. We get
_2

g

d
L=

oy

Of course one can continue to determine the other generators of the Lie-algebra in the
same manner but it is actually simpler to derive the expressions for them by taking
commutators between Ly, and L,,, Ly,. In this way one obtains the following realiza-
tion of the Lie-algebra of L(2,2) on the carrier space of K and 4

12

0
Ly, = ~
P
0
Ly, = e
3

L,,=spc Erj-+c S ﬁf—c ¢ g—s s o
(A1)
L= —cps é——s ¢ -a——s $ 8——0 c 4

) é é 0
Lns— —apczp%vLs<psqp8—w—sq)ctpa;+apsy)a;

a 7] 7] 7,
L24=s<psy)§p—cwcw%—cq)srpa-&sq)czpa.
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The group L(2,2) has p equal to ¢, and therefore the dimension of the subgroup 4 is
the same as the number of invariants. According to section 2 they are apart from a
factor

IP=— L‘i)'z 5 L§4 + L;‘;;; + L.i)'4 o L‘.l)':l s L:ix

It =Ly Ly — Ly Lyy + Loy Ly,

Expressed in the realization of L;, we get

9 2 632
Pelieor 1 i
(é},u ) ov®

I*=(far+1)ﬁ.
au or

According to the results of section 3 the vectors f in the representation space are
functions of ¢, y, © and ». In an irreducible space the dependence on g and » is fixed
by putting for the vectors f

f((P7 w’ s 1,) — et(a i) p etbx- /((Py 1/))’

where @ and b are arbitrary complex numbers. The irreducible space characterized
by (a, b) corresponds to the invariants

IP= —a?-b2-1
It=—qab
Already at this stage is it possible to obtain limitations on (#,b) due to unitarity,
since in a unitary representation 72 and I* have to be real. However we postpone this
discussion till later on. Before determining the scalar product which defines the
Hilbert space it is advantageous to change the parameters of K by the substitution
Pr=9+y
Po=P ¥
and to choose new generators of the Lie-algebra corresponding to L™ (1, 2) and
(1, 2),
Hi=% (Lt Lyg)==—
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From these expressions we see that H,, M, N, and H,, M,, N, both span the Lie-
algebra of L(1,2). The invariants of L (1,2) and L® (1,2) are

B=—-Hi+M;+Ni=—}[(b—a)+1]
L= —Hi+ M3+ Ni= —}[(b+a)’+1],

which are two different combinations of 72 and I*. At this stage it may be appropriate
to discuss the ranges of the angles ¢, p and ¢,, ,. We noticed earlier that the ranges
0<@,yp<2n correspond to a parametrization of L(2,2). Therefore the functions
f(@.p) in the representation space should satisfy the continuity condition

fl@y) =Hgp +27.9) = f(g.p + 27)

it we look for representations of L(2,2). This means that ¢, and ¢, take values in the
intervals (0,47) and ( — 2, 27) respectively, so that we have to look for double-valued
representations of L™ (1,2)®L® (1,2) to find all representations of L(2,2). This
also follows from the fact that L(2,2) contains a center of order 2 while L™* (1,2) ®
L™ (1,2) has no center, and thus L(2,2) covers L? (1,2)®QL® (1,2) twice. It is also
clear that if one looks for the representations of the universal covering group
L2,2)~ LY (1,2)®L*® (1,2) there is periodicity neither in ¢ nor in y.

From now on we just consider the group L(1, 2) since it is obvious how one can build
the representations of L(2,2) from those of L(1,2). By putting

L 1
op

0 g .
M=4.s¢pa—(p—(za+%)c<p (A 3)
N=—c¢ —a—+(ia+1})s

‘Pa(p P

we now have to find a kernel K(g,¢’) such that H, M and N are anti-Hermitean and
such that

ey P B
(f.9) Effo fl@) K(p, ¢') g(¢") dp dg’ (A4)

is a positive definite scalar product. From the anti-Hermiticity of H it follows that
K depends only on ¢ —¢’. We now make the expansion

fp)= % fn €™, (A5)

where m takes the values 0, +1, +2,... or +1 +3 +3, ... depending on whether we
look for single-valued or double-valued representations. A vector is now represented
by a sequence {f,} and the operators of the Lie-algebra act on {f,,} according to
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(Hf)n= —1tm [, 1

m ia 1 ‘m a1
(M/)m_(—g_z"*‘z)/m'l—*_(5_2+4)fm~1 (Aﬁ)

The scalar product takes the form

(f, 9)= 2, fnbulm (A7)

m

where b= Jf- e "M K(p, @) dp dg'. (A8)

0

The anti-Hermiticity of M (or N) now gives the following equations for the coeffi-
cients b,

(m— i@+ §) bs1 = (m—ia+}) by } (A9)

(m+ia+3) by =(m+ia+ })b,.
By taking the difference of these equations one finds
(a+a) bm+l =(a+a) bm'

Therefore if @+a=+0 we get b,,,,=b, and also from eqs. (A9) @=a i.e., a is real.
From eq. (A8) one then finds that

K(p,¢") =Constd(p—¢'),

i.e., we have a one-point measure, and the representation thus defined belongs to the
main series. If on the other hand @ +a =0, i.e. a is imaginary or zero, then one obtains
the following recursion relation for b,,

bmi1=bp———, (A10)

where o= Ima. The positive definiteness of the scalar product requires all b,, to be
positive for all m-values, which appear in the sum (A7). This is possible only if
—4<a<4, when m takes all integer values. The sequences {f,} can however be
bounded from below or above. According to eqs. (A6) one must then have

o= —m+}
and wc=m+%

respectively, where m and m are the lower and upper bounds for m. Then it is seen
from eq. (A10) that all b,, are positive for m =m >0 and m <7 <0 respectively. (It is
also clear that —a« defines the same representation as «, the difference is that now
b,,=0 for m <m or > respectively.) We summarize the results in a table.
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Single- and double-valued representations of L(1,2)

Range of I? =
—H2+ M2+ N2 =

Range of a —a*—} Spectrum of H Type of representation
—oo<a<oo —oco<I?< —} (e 2l D = AR Main series; local scalar product.
or
i s SR
i i -i<I*<0 0, £1, £2, ...  Continuous part of supplementary se-
Ty s, ries; non-local scalar product.
a=Ti(m—13) I2=m(m—1) m,m+1, ... Discrete part of supplementary series,
m integer or half- bounded below; non-local scalar
integer >} product.
a=tTi(m+}) I?=m(m+1) m, m—1, .. Discrete part of supplementary series,
/i integer or half- bounded above; non-local scalar
integer < —} product.

These results may be compared with those of Bargmann [4], and we find that we
have obtained all irreducible unitary representations. It is seen that such a representa-
tion is characterized by the value of the invariant and the spectrum of H. The value
of the invariant is thus not sufficient alone, and the parameter @ has no advantage in
that respect. The two values +a define unitary equivalent representations.
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On the unitary irreducible representations of the pseudo-

orthogonal group L(3.3)

By Ar~NE KIHLBERG

ABSTRACT

The pseudo-orthogonal group which conserves the quadratic form

L4 AP gl a2 a2 o2
7 +x2+1‘3 Ty — X — Ty
together with its Lie-algebra is studied. A number of series of unitary irreducible representa-
tions of the universal covering group is derived with a Lie-algebra method, whose justification
leans heavily on works by Harish-Chandra.

Introduction

One of the most urgent problems in elementary particle physics today is the
explanation of the different states, elementary particles or resonances, in which
matter can appear. For several years one has tried intensively to bring some
order into the relations betwen these states by means of group theory. The group
which has been studied most is SU(3) [1]. It has been assumed that the strongest
interactions are invariant under the transformations of SU(3) and that the particles
or resonances should be grouped into multiplets corresponding to unitary irredu-
cible representations of SU(3).

However, since the predictions of the SU(3)-theory have been moderately suc-
cessful only, one has also considered the possibility of finding other groups which
would better reflect Nature. In this research one has also encountered non-
compact groups. Since a non-compact group has no faithful, unitary, finite-
dimensional representation one has either to give up unitarity or to consider
infinite particle multiplets. Both possiblities involve certain complications which
we will not discuss here. However, one should take notice of a change in atti-
tude towards the problem in several recent papers [2]. It is suggested that the
non-compact group or the corresponding Lie-algebra should not necessarily ex-
press a symmetry of the interaction but that it still could be useful to generate
the spectra of mass, spin, isospin, hypercharge and baryon number operators.

In this paper we shall derive a number of series of unitary, irreducible rep-

resentations of the universal covering group E(3,3) of the pseudo-orthogonal group
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L(3,3). More precisely L(3,3) denotes the component connected to the identity
of the group of real linear transformations which conserve the quadratic form

2 9
24 ai+at—at— i —al.

The physical interpretation is left to a fourthcoming paper. We shall, however,
briefly outline the origin of this group in a geometrical model which we have
proposed earlier [3].

In ref. [3] we defined an 8-dimensional reference system of the following nature
based on the properties of the photon. Four of the coordinates denoted x,, x,, 2,
and ¢ refer to the ordinary space-time manifold and, in addition, at each point
in spacetime there are defined two three-dimensional orthogonal vectors e, and
h, of equal length. These vectors are assumed to be independent of the space-
time point to which they belong. Furthermore, we assume that an elementary
particle may be described in terms of eight coordinates, four of which are (x,,
x,, x5, t). The other four coordinates can be described by two vectors e and h
of the same nature as e, and h,. Instead of e and h one may use the three
Euler angles (¢, 0, ), which define the relative orientation of (e, h) with regard
to (e, hy), and the scale coordinate s=In|e|/|e,|. In ref. [3] we also discussed
the problem of finding the appropriate symmetry group of this space. First of
all, it seems most natural to require invariance under the Poincaré group P.
P acts both on the space coordinates and on the vectors (e, h;). The infinite-
simal generators for time and space translations, rotations and accelerations can
be written

P‘za%,-’ 1=1,2,8
M= — ey (,7;;6 + S,
M,'=ta%i+x,-§;+S{. (1)

The operators S; and S; act on the vectors (e,, hy) or, equivalently, on the
variables ¢, 0,y and s. For these one has the expressions

9.0 - oo @200

242



ARKIV FOR FYSIK. Bd 32 nr 13

oy cp C 0 c 4
As > _ = e——— —_— — — ) Smls Se
2= "o PPHT Py ( )
’ 17 d
Ss=s0 - —ch |——1]).
s =80 20 0 (é)s l) (2)

In addition to the transformations of eq. (1) we now assume that a rotation
of the particle around the internal axis is also a symmetry operation. The cor-
responding infinitesimal generators are

SR e L (R
1 s0 dg sOc‘
m__%po 0 cd o
Ty e o o
d
T,=——. 3
3 oy (3)

It should be noted that the invariance under the transformations of eq. (1) is
motivated by relativity while the invariance under the transformations of eq.
(3) requires some kind of spherical symmetry of the particle. Whether or not
this is the case we shall assume that the generators of eqs. (1) and (3) form
part of the Lie-algebra of a Lie-group. The remaining generators are obtained
by means of commutation. We anticipate the result and introduce the following
notations

8= Ly
8= — L
8= Ly
8i= L,
8= Ly,
Ss= L,
T,= L,
T,= — Ly,
T,= Ly, (4)

Then we find the explicit form of the additional generators from the appro-
priate commutators
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Sy IR IRrS L [ U

Lgs=[M3, Ti]=cy 0 59 sycl 0 0 oy sy sl (88 l)
_ ey 0 2 g mwe . 9 _

L,=[T,, M;] Y 0 P cyel 80+ o0 2 cysh (E)s 1)

: o 0 : ¢
Lys=[M;, T,]=cpcy d; —cpshsy P A 4 3’/’ + (spey + cpcbsy) (:’? = l)

, g, 0 d 0
Ly,=[M;, T,] = spcy 8(?7 —s@slsy %0 +cpsy 51/) — (c@ey — spclsy) (J — 1)

8

My , 0 0 7] 17}
L =[T, M ]= —cpsy %~ cpslcy primla %— (s sy — cpcley) = 1

/ 0 0 9 0
Lyy=[T,, Mi]= —spsy 8_¢p —spslcy 56—%— cpey ap%— (cqsy + spchey) ((;8 = 1).
(5)

These six generators together with the operators M| generate all the operators
S; and 7;. Therefore the generators L,,= —L,, for u,»=1...6 span a subal-
gebra. Its commutation relations are

Vi

[L/wa LQ!T] Vv L/m i Y o Lvo Ve Lu(r Vo L.uw (6)

where y is the matrix

Thus the generators L,, span the Lie-algebra of the pseudo-orthogonal group
L(3,3). By subtraction of S; and S/ from M; and M| in the eq. (1) we find that
the Lie-algebra obtained by starting from the generators of the eqs. (1) and (3)
is the direct sum of the Lie-algebra of the Poincaré group and the Lie-algebra
of L(3,3). The corresponding group is not necessarily the direct product of P
and L(3,3), however in quantum mechanics one is interested in the universal
covering group and the representations of this group are in one-to-one corre-
spondence with the representations of the Lie-algebra. Therefore we shall in the
following limit our attention to the Lie-algebra and in fact to that of I(3.3)
since the unitary representations of the Lie-algebra of P are well known.

The physical discussion in a forthcoming paper will include a discussion of
the difference between the transformations of eq. (1) and eq. (3). If the trans-
formations of eq. (3) are assumed to be symmetry transformations of an interac-
tion, then the particles must be “ spherically symmetric”. If it is assumed that
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the group is just a “spectrum generating group” we are not forced to restrict
the attention only to unitary representations, but we shall always consider only
unitary representations.

Some results regarding the problem of finding the irreducible unitary repre-
sentations of L(3,3) are known in the mathematical literature. Gelfand and
Graev [4) have given three fundamental series of representations of the group
SL[4, R), the group of real, 4 x 4, unimodular matrices. SL(4, R) is locally iso-
morphic to L(3,3) but it is neither isomorphic to L(3,3) nor to L(3,3) since it
has a centre of order two while L(3,3) has no centre and L(3,3) has a centre
of order four. Graev and Gelfand use a very elaborate technique and in our
opinion the form of the representations is not well suited for a physical inter-
pretation. In this paper we shall apply the method of reference [5]. This me-
thod is convenient to apply to all semi-simple groups as long as the order of the
group is not too high.

2. A realization of the Lie-algebra based on the Iwasawa decomposition

The Iwasawa decomposition states that any semi-simple connected Lie-group
can be written as a product of three subgroups [5]

L=KAN. (7)

Here K is the maximal compact subgroup of L, that is SO;® S0, in the case
of L(3,3). A is Abelian and in our case it is generated by the operators L,
Ly, and L,s. The subgroup N, finally, is solvable and for I(3,3) its generators
may be chosen as

Ny=Lyj— Ly
Ny= Ly — Ly,
Ny=Lg; — Ly,
Ny=Lgs— Ly
Ny = Lyg— Ly,
Nog=1Ihs— Ln,. (8)

In passing we note that N is an invariant subgroup of the group AN. It is
convenient to parametrize the group in the following way

q= e‘l‘Lu e—ol-m (‘WL” eflLsn e*ﬂLu e)’le
Z )
AL nL vL
el ghtlss o u,

qNy erN, esNa elN‘ euN,,

e e, 9)
where ¢ is an arbitrary element of the group.

A realization of the group operations can now be given as transformations on
the group parameters induced by left multiplication. However, it is sufficient
to consider the transformations of the parameters of K and 4 only [5]. In
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particular we obtain in this way a realization of the infinitesimal generators
L,, as differential operators on the group spaces of K and 4.

ch o o cp o
TR e SR A S
I ) op o0 oy
ch o 0  sp 0
Lig=—sp— —+cp— -
i P 50 op ol sO oy
-
12 F(P
cp o o ca 0
Ly=ca— —+sot ——— —
wTiex sp oo o op s oy
cff @ 0 s @
L= —st— —+ca—+— —
8 T e Y 9B aB oy
d
T O
56 ot

Ly, =s0cf c*% = SOCwsﬂSy ;w+ COsﬂ E’(/;_ st sysficy (%/
- rOCﬁ%—l—sﬁswsﬂs;} a%—sOctpsﬂcy E)% (10)

The remaining eight generators are most easily obtained by means of the com-
mutation relations. The realization (10) may be compared to the realization of
the egs. (2), (3). (5). In the latter case the carrier space is four-dimensional
whereas the realization (10) is based on a nine-dimensional carrier space. In
principle, the realization (10) will allow us to obtain all unitary irreducible rep-
resentations, whereas the other realization only admits some of these representa-
tions [6].

The enveloping algebra of the Lie-algebra is of some help for the classifica-
tion of the irreducible representations. The group L(3,3) has the following three
invariants which then generate the centre of the enveloping algebra [5]

12 i 7”9 ?’m Luv L@ﬂ = L/w r-
L= I T, I
i o (11)

After the insertion of the explicit expressions (10) for L,, and some rather long
calculations one obtains!

1 I am grateful to prof. N. Svartholm for some lemmas which facilitate the calculations con-
siderably. (Internal report of the Institute of theoretical physics, Géteborg).
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1,:48(£~2) (»f —1) 2 (12)
: A /] \ou ] ov

Note that A, u and » are the parameters of the subgroup A.

3. Choice of representation space and the determination of the scalar product

In the realization (10) of the Lie-algebra it is tacitly assumed that the space
on which the elements of the Lie-algebra act is a linear space of differentiable
functions on the topological product K x A. Now this space has to be some-
what more specified. It is clear that we shall have to introduce a scalar product
in order to obtain a Hilbert space. However, before doing this we shall specify
the dependence of the functions an the parameters of A. This is possible since
the coefficients of the derivatives in a generator L,, do not depend on 2, u and ».
Or expressed in another way, the operators (f/dl ()/(),u and 9/0v commute with
the Lie-algebra and, therefore, we can choose elements in the representation space
which are eigenfunctions of ¢/04,9/0u and 0/ov. The eigenvalues are denoted
(ta+2), (¢b+1) and idc respectively where @, b and ¢ are complex numbers.
Thus, a general element in the representation space has the form

.0, iy ) = 54720 D g, 6, p, 1, B, ), (13)

where f is a function on K. The values of the invariants in this space charac-
terized by @, b and ¢ are

I,=2(a®+b*+c*+5)
I,=2(a*+b*+c') + 4 (a® + b2+ %) — 14
1, =48 iabe. (14)

In an irreducible representation the invariants have constant values. Furthermore,
in a unitary representation /, and I, must be real and 7, imaginary. The restric-
tions on a, b and ¢ which follow from this requirement are not sufficient to
determine the allowed values of @, b and ¢. This has to be done by intloducing
the scalar product which makes the generators L,, anti-Hermitean, In ref. [5]
it was shown that this requirement implies that the scalar product can be \\I‘ltt(‘ll
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(F fo) = ffll(kl) M (ky, key) fo (ko) dky dky, (15)
KxK

where k stands for a point in the group space of K, dk is the invariant measure
on K, and where the kernel M has to satisfy

M(kh kz) = M(kzv kl)
M(ky k, ko k)= M(k,, k,), (16)

i.e. M is an invariant hermitean two-point measure on K. The relations (16)
follow from the anti-hermiticity conditions of the compact operators only. To
determine M completely one has to require that also L, is anti-hermitean and,
furthermore, that M is a positive definite kernel. L,, contains the parameters
a, b and ¢ and. therefore, we obtain restrictions on these at the same time.
Instead of working with the functions f(¢,0,...,») and the realization (10) of
the generators it is at this stage advantageous to introduce a basis i.e. a suit-
able function system on K or rather K=_S80;®S80; since we are looking for

representations of L. A natural choice is at hand, namely, the functions

Tlmrl (‘P, 07 w) Dilk(aa ﬁ, }/), (17)
where 21=0,1,2,..., —Il<m,n<l
2/=0,1,2,..., —j<hk<j

+ s
0<6,p<m, S(p w<4n,~2n<q) w<27t.
axt+y =
T, denotes the Iﬂtrix element in an irreducibie representation [, of a finite
transformation of SO; described by the Euler angles ¢, 0 and y. We know that
the set {T',,,,,} is a completi orthogonal set of functions on SO, with respect to

the invariant measure on SO, Similar properties hold for {Dj},}. The defining
relations and various properties of these functions are given in an appendix.
Let us now represent an arbitrary function f(p,0,9,«, ,7) by the sequence
{f(Imnjhk)} according to the expansion

f= 3 f(lmnjhk) Th, Dy (18)
(Imnjhk)
The operators L,, can now be considered as operators acting on the indices
(lmn jhk). The explicit formulae are easily obtained from eqs. (A4) of the appen-
dix. The scalar product (15) takes the form

(fpiz)z 2 f1(l1m1n1j1h1k1)

(yminyivhiky)
(amangjahaks)

* M(Lymyny gy by by | Lymgnyjohoksy) fo(lymynyjahyky) (19)
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where the summation is extended over suitable ranges which will be determined
when the question of irreducibility is discussed. The positive definite hermitean
matrix M has to be determined so that the L,,’s are anti-hermitean. From the
requirement that L, and L;, are anti-hermitean it follows that M is nonzero
only for m;=m, and h, =h,. The anti-hermiticity of L,;; and L, then yields

M(Imnjhk|Um' n' § k' k') = (21+ 1)1 (25 + 1) 8y Oy Omme O My (nk| ' k). (20)

This formula could have been obtained also from eq. (16). The reduced matrix
M, (nk|n' k') has to be determined from the antihermiticity of L,,. The rela-
tions obtained from this requirement are given by the eqs. (A5, A6, A7, AS,
A9, Al0).

We can now discuss the different series of irreducible representations on the
basis of these equations. It was noted earlier that an irreducible space is charac-
terized by the values of the parameters a, b and c. From the eqs. (A4, ..., A10)
it can be seen that the Hilbert space which is spanned by all functions f(lmn jhk)
and for which the scalar product is given by eq. (20) decomposes into eight in-
variant subspaces Hs, 2., Where 2p,=n+k mod. 2 and 27,=n—k mod. 2. They
are listed in table 1.

Table 1

Invariant Values of

subspace (n, k) 1 ]
Hg, sal(0,700 (2, 1), (G =25 0, %1, £2 0, 1,552
Hy  wili=bd b, & -5 43, 3. +4 +3..
Hy, .(-%-3), &b & -d... 2 +3... £} +§..
Hy, wenl(0y =1); 1(150), (s =2)e.s 0, +1, 2. 0, £1, +2..
Hyy (=31, 3,2), 3,0)... o sl 0,551, k2
Hyy (0,%), (1,3), (1, =3)... 0,+1,+2... +3 +%.
Hyy  ...(0, -8, (LY, 1, -D... (195 o (T I o PN
Hyy w(=3,0, (1,1, 3, -1)... +3 +3.. 0,761 k2 :

The representation induced in the subspace H,,., and characterized by the
parameters a, b and ¢ will be denoted V(gg, 7o, @, b, ¢). To classify the different
series of irreducible unitary representations one has to find the values of a, b
and ¢ for which the eqs. (A5, ..., A10) have a solution with a positive definite
matrix M (nk|n'k’). In general this will be a complicated task because the
equations are difference equations with many terms, However, if one looks for
solutions of the form

mu("klnl k') = Bk Onn Opac (21)
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and puts a,=Rea
a,=Ima
e;=Re(b+c)
e,=Im'(b+c)
d,=Re (b—c)
dy=1Im (b—c) (22)
then one finds from eq. (A10)
y 1k Byjpye =0
(n+k+1— €) Bynsips1= (0t k1 e).Bu
(mn—k+1—dy) Byjpirx-1=(n—k+1+d,) Byn
€1 Bijni1ki1= € Byjnk
dl Bljn:]krlzdl Bljnk' (23)

Let us divide the discussion of these equations into two cases according to
whether By, is different from zero only for (n, k)= (0,0) or other (n, k) values
also appear. It is easily seen that one can have limitations on n+k or n—k
but not on n or k separately. Therefore the second case implies @, =0 according
to the first of the eqs. (23).

Case 1. (n, k) not limited to (0, 0)

Besides the eqs. (23) there are also the following relations which are obtained
from the eqs. (A6, ..., A9)

Bnu»lm.-:Bl/nk
sz-u;nk o kBljnk
n Bji1nc= 1 Bijp. (24)

Therefore, By, is independent of both I and § except possibly for n=0 or k= 0.
However, one cannot have a limitation to n=0 separately and since the egs.
(23) allow us to determine By, from some By and By is independent of j it
follows that also By, is independent of j. The same is true for /. Thus we see
that as long as (n, k) is not limited to (0,0) the measure By, is independent
of I and j and all (/,§) values appear which belong to a given subspace Hy, s,

Let us now examine the dependence of By, on n and k. This dependence
is given by the last four of the egs. (23). We see that the equations containing
n+k are separated from those containing n— k. It is therefore possible to study
just two equations at a time (put Byyw=Fo, 20=n+k, 2r=n—k).

(2o+1—e) Fyi1:=(20+1+e) Fy
61FQ Ht:engz- (25)

One can first distinguish the case ¢;+0. It then follows that e,=0 and that F,,
does not depend on g. Furthermore, all p:s belonging to a given space Ha,, 2y,
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. ¢ d‘=-7

Fig. 1

appear. If e;—=0 then e, can be different from zero. Furthermore, if e, is suf-
ficiently small one still has the full range of p-values but F,, will depend on p.
The limitations are

leg| <1 if 20,=0
les] =0 if 29,=1
leo] <3 if 20,=%
if 20,=3. (26)

e

(S

|e,] <

There is also the possibility of limitations on p. First of all there is the pos-
sible solution F,,=0 unless p=0. This requires e,= —1. But one can also have
a lower positive bound g or upper negative bound g for o. The value of e, is
then given by

ey = -~1+2Q
or ey=—1=—2p. (27)

The corresponding possibilities come out for the variables 7, d; and d, by using
the other two equations (23). Some typical diagrams for the allowed (n, k) values
are shown in fig. 1. Besides these restrictions on »n and k there is, of course,
always the conditions |n|<1, |k|<j. The explicit dependence of By, on n and
k can, of course, be obtained from the eqs. (23). We do not give the expressions
but we observe that for e, +0 or By, independent of all its indices the corre-
sponding measure M (k,, k,) in eq. (15) is an ordinary one-point measure. We have
previously called this series the main series [5].

Case I1. Degenerate series

In dealing with case I we excluded the possibility that (n, k)=(0,0), i.e., By
is different from zero only for n=k=0. It can be included among some degenerate
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series obtained in the following way. Consider the equations (A4). By putting
n=k=0, 1+4%=0, c=0 and :

T, Dho=|ljmh) (28)
the action of the operator L, is given by

Ly, I lymh)

o NE+m+ 1) ((-m+1)(+h+1)(—h+1) LI
=(2+1ia+1+7) CIESCIESY [I+ 17+ 1mh)

; Nl+m+1)(I—m+1)(G+h) (-
kshiaslo) 21+ 1)(2j+1)

h)|l+ 1j—1mh)

Vil+m)y(l—m)G+h+1)(j—h+ 1)”_

+(1+ia—1+7) N Eit1)

15+ 1mh)

V(l+m)(L—m)(G+h) (G

SRy i
21+ @5+ 1) [l—1j—1mh). (29)

+ (ia—1—7j)

Together with the expressions for the compact operators we thus have a realiza-
tion of the Lie-algebra on vectors which span representation spaces of the com-
pact subgroup. Furthermore, there is nothing to prevent us from using this
realization also for half-integer values of ! and j. But it is then known from
some general theorems on analytic vectors [7] that the algebraically irreducible
hermitean representations of the Lie-algebra correspond to irreducible, unitary
representations of the universal covering group. As a matter of fact these theorems
form the basis for all our calculations.

The measure matrix is now defined as in eq. (20) with the omission of the
indices n, k, n',k’. The reduced matrix M is therefore diagonal and depends
only on I and j. Denote its elements by D,. The equations corresponding to
the eqs. (A6, ..., Al0) are now quite simple

Dy; real and >0

(2—4@+1+9) Dyy1541=(2—ta+1+7) Dy.

(1—ta@a+1—9)Diyy1j-1= (1 —a+1—73) Dy. (30)
We notice that J,=[+j and J_ =1[—j are changed in steps of order two so
that the irreducible spaces are first of all characterized by J, mod. 2 and J_

mod. 2. Fig. 2 shows the (I, j)-values of the eight different subspaces.
By taking real and imaginary parts of eqs. (30) we get

2+1+j—a,) Dyy1je1=(2+1+j+a,) Dy
(1+l—9—ay) Dyy1j-1=(1+1—j+a,) Dy
@y Dyi1ji1=0ay Dy
@, Dy15-1=a, Dy;. (31)
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[

Fig.

Fig. 3 Fig. 4

If a,+0 then it follows from these equations that a,=0. Then also D, is in-
dependent, of I and j and the (I, j)-contents of an irreducible representation are
given by any of the subspaces in fig. 2. If a, =0 these subspaces may still be irre-
ducible provided a, is sufficiently small. On H, for instance |a,| <1 guarantees
that D,.;; ; has the same sign as D;. On the other subspaces H; the interval
is smaller. The discrete series are obtained as follows. For a,= —1.D; can be
different from zero only if /=j. In this way we obtain two representations with
the (I, j)-contents of fig. 3. )
Furthermore, J _ can have an upper bound J_ <0 or a lower bound J >0.
This requires !
ay=—1—=J_

and ay=—1+dJ_ (32)

respectively. These series are illustrated in fig. 4.

We have summarized some properties of the different series of representations
in the tables 2 and 3. It is clear that all our representations are irreducible
because reducibility would mean that there must exist other solutions for the
matrix B or Dy which project out a space of lower dimension. However, by
construction the solutions for B and D are minimal in the obove sense.
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Table 3. Degenerate series of representations characterized by b=1, ¢=0.

Series of representations characterized by the ranges of a, and a,
and restrictions on 1+jand 1—7
Continuous series Discrete series
Representation space as=0 a, =0 a, =0 a;=0
l+7=0,2,4, ag=13, ... ag=—1

H,y: ~00<a, <00 | 0<|ay|<1 . . ;
1—5=0, 2, 4, ... l—j< —1l-agorl—j=1+a, [I—j=0
l+3=1,3,5, a3=0,2, ...

H,: O<|al|<0<> empty d . empty
1-j=+1,+3 1-j< —1-agyorl-j>1+a,
1+i-358 ,

Hg: g 31 5 —00<q, <00 O<|n,|<2 empty

] 2929 2
=4, ,
H,: P 1871 =PRI =00 0<|"E|<2 empty
] 2y 29 2y
1+7=4.%%
25 25 25 1
Hs seas 187 -0 <@ <0 0<|n,|<§ N empty
] 21292 ¢
lei=5i 1 a;=1%3 a 18

Hg: I e g 1 —oo<a, <00 0<|(1,!<% e ! U empty
l—j=i=55.% =)< =l—ay | I—-921+a;
l+j=1,83,5, . gy =18 ag= —1

H,: ) —oo<a <0 0<|(1,|<1 . ) .
1—5=0; £2, +4,... l—j< —1—qgorl—j=1+a, |I1—j=0

H l+7=2,4, 6, o | | ay=0,2, ... .

: <|a| <o empty X em
®ol-j=41,43, ... - £ l—9< = 1—agorl—g=1+a, R

In addition to the series of the tables 2 and 3 there are certainly others which
require a non-diagonal M-matrix. It seems to be very difficult to solve the gen-
eral recursion relations for the 7M-matrix. Some more series can be obtained by
varying the parametrization (9). Then one would get new equations for the M-
matrix and the diagonal solutions do not coincide with those we have calculated.
However, since one does not reach all representations even after this modifica-
tion and since we already have a large number of representations which may
lend themselves to physical interpretation we have not considered it worth while
to carry out this program at the present stage.

Finally, we want to stress that we have not examined the unitary equivalence
of the representations of the tables 2 and 3. Some information can be obtained
from the values of the invariants. When the invariants take on different values
then the corresponding representations are clearly inequivalent. The same is true
when the (,7) contents of two representations are different. However, the ques-
tion of unitary equivalence is more a mathematical problem than a physical one.

CERN, Geneva, and Institute of theoretical Physics, Giteborg, Sweden. February 1966
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APPENDIX

The functions
0<6<nmw

O<gptyp<dn

T (@, 6, ),
201=0,1,2,...,

—I<m,n<l —2a<@p—yp<S2n

have the following properties

T (@, 0, p) = €™ Pl (cO) €',

Py (c8) =

where

(=1t V(W
28L—n)! T (@+n)! I—m)!"

l-m

(1—66) (m n)/2(1 =5 60) (m+n)/2 hd

d(ch)~ = [(1 —cB)' "™ (1 + ) *"].

By introducing the matrix

I l/(l—m)(hm%T) V(z+m+1)(l—

m) V(l+ m)(_l-i_-;nf}jl;
(20+1)(21+2) 2001+1)

21(21+1)

(I+m+ I)Tl”— m?l)

m

g @I+ 1)(+1)

Vi +1)

_V(l—l—m)(l——m)

1(21+1)

(+m)(L+m+1) l/
(21+1)(21+2)

one has the following relations

200+

(+m)(l—m+1) l/(l——m)(l—m—'r'l);
(eer ;

20(21+1)

s0 «To T =(n—med)T ,— V(I+m)(l—m+1)s0e® T ;. ,
OTh, = O OB Ty, + O O T+ O O THY,
20 o, = O OR1 T4 + O OB T4, ,+ O OB T

V2

0 7 m - -
Tl = CIP OF Thh + O OB Th o + O CH T
102 VT = O3 O T + O3 Ol T, + O3 Ol T,

0

[ i) ‘ Tm nHl = (wlm Tlm 1n + (‘vlm C Tlm n + Clm Cm Tlm ]n
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The functions 7', satisfy the orthogonality relations

n f4n
ff f s0dOd (¢ + y)d(p — y))T,,,,",(q),O Y) Tna (@, 0, 9)

16 7*

2l1+ 1 6‘111 6mmu i 6"1":' (A3)

The action of the operators L, on the basis functions 7%, D) is given by
Ly, Tlm.n Djh.k = —im Tlm.n D’h.k

Lig Thn D=3 (VI m+ 1) (—m) Thsrn
—Vl+m)(—m+1) T,y .} Dhs

Ly Thoie D =% {V(l+ m+1)l—m) Thirn

+VA+m)A—m+ 1) T 10} D
Lse Tlm.n D’h.k = —1h Tlm.k -Djh.k
Lyg T n D=4 T {V G+ B+ 1) (= 1) Dy,
—VG+R) G—h+1) Dh_yi)
5; P VG AT G Do e

+V(j+h j_"Tl)D’n—lk}

Ly T o Db = + (2 +ia+1+4j) CLr O O OF T, DL
+(2+ I+ 1) CRCRCLOkETE DY,
+(2+ia+1—j— 1) O Ch Cif CH T, Dy
+(2+ia +5—1) Cif Ch C3 L T, D'R

+(2 +ia+2) CECHB CH O T n D i
+(2+ia—j— 2) C O C O T, Dy 1
+(2+ia—1+j—1) OOl ool T, DL
+(2+ia—1—2) OOt o CUT’,,,'I,ID,,_,C
+(2+1a—1—j—2) ROk CECKT L Di i
+i(—n—k—1—1ib—ic) sOe"" sﬁe"' T Dy
+}(m—k+1+ib—ic)s0e sfe" T, , D i
+3(—n+k+1+1b—ic) s0e¥ sBe” T, , D
+3(n+k—1—ib — ic) s06" spe” T, , Dy . (A4)

L45 Tlm,n D’n, =
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A unitary representation of L(3,3) is characterized by the matrix M, (nk|n'k’)
which satisfies

My (nk | n'k') =My, (n'k' | nk), (A5)

@—da+l+jVl+n+l)l—n+1)(G+k+1)G—k+1) M, (nk|n’ k)

(—2+ia—1—VI+n + 1)@ —n' T 1) G+ +1)(—k + 1) My (nk|n'k)

3 (—n—k—1+d+i)Vl+n+1)I+n+2)G+k+1)G+k+2)
X Myr1je1(n+1k+1|n' k)

i Ak —1=ib—ie)V(l+n )@ +n' +1)(G+E)(G+E +1)Mynk|n =1k —1)

F—w' =k —1—ib—ic)V(I—n'y(I—n'+1)(j— k) G~k +1) My(nk|n' + 1k +1)

+im+k—1+ib+ie)/l—n+1)(—n+2)(G—k+1)([j—k+2)
X Mirrse1(n—1k—1|n" k')

—Im—k+1—=db+ie)/l+n+l)(l+n+2)(G—k+1)([—k+2)
X M1y (n+1k—1|n'k)

— (K1 —ie) /()0 + 1) K) G- +1)
X My (nk|n' — 1k +1)

—t =K +F1+ib—ic)/I—n')I—n +1)G+ )G+ + 1) Mynk|n’ + 1K —1)

—H(—ntk+1—ib+ie)/l-—nt+t1)l—n+2)G+k+1)(+k+2)
X Mi1501(n—1k+1|n'¥)
=0, (A 6)
(—ia+1+ 1) VI+n+1)@—n+1) k- My (nk|n k)
+la—1—-1)VA+n +1)(I—n' + 1)K - My, (nk|n’ k')

—3(~n—k—1+b+i)/ITnt )@ +nt2)G-R)G+E+1)
X ml'*l} (n+ lk’i‘lliL’k’)

— 1+ ~1—db—ic) V@ +n) I+ +1)(G+E) G-k +1)
x My (nk|n’ — 1% — 1)

+3(=n' =k —1—db—ic)V@—n)(I—n"+1)(+K +1)(—k)
x My (nk|n'+ 1% +1)

+im+k—1+ib+ie)/(I—nt)(—n+2)(rh)G—k+1)
X M1y (n—1k—1|n'k)
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—tm—k+1—ib+ie) VI +n+1)I+n+2)(G+k)G—k+1)
Xm,”,(n—i'lk—'lln'k’)

3wt F1+ib—ie)Vl+n )l +n +1)(GHE +1) (k)
x My, (nk|n' — 1k +1)

+i =k +1+ib—ic) VI—n)(I—n'+1)(G+E) G-k —1)
x My (nk|n'+ 1k —1)

FH(—ntk+1—d+ie)Vi-—n+)(l—n+2)G+k+1)G—k)

X ml’fl] (71 = 1k+ llnlk’)
=0, (A7)

(I—ia+1—)VI+n+1)G—n+1)G+k)(G—k) M (nk|n' k)

+(=1+ia—l+j)V(I+n' +1)@—n'+1)(G+E)(G— k) My(nk|n' k')

~}(—n—k—1+ib+ie)V@i+tn+1)l+n+2)(j—k—1)(j—k)
Xml+lj_1(n+1k+ll7l/,k’)

— 3 K —1—b—dc)VI+n)A+n' +1)(G—k)(G— & +1)
x My (nk|n' — 1k —1)

—}(—n' =K —1=db—ic)VI—n)(l—n +1)(+EK)[G+k +]1)
x My (nk|n'+ 1k +1)

—Ymt+k—1+db+i)Vl-—n+1)(l—n+2)([(+k—1)(+k)
X Myrs-1(n —1k—1|n'¥)

tin—k+1—db+ie)/@+n+1)@+n+2)G+k—1)G+k)
X mH”_l(n*i‘lk— lln'k')

+3(—n kA 1+ib i) I+ )+ 1) GHE)G+ K+ 1)
X My (nk|n' — 1& +1)

i =K+ 1+ib—idc)VI—n)I—n"+1)[G—K) G-k +1)
x My(nk|n' + 1k —1)

t3(—nt+k+1=db+ie)V/i—n+1)(l—n+2)G—k—1)G—k)

X m,“,_l(n— 1]C+ lln’k’)
=0 (A8)
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(1—da+)nV(j+k+1)(—k+1) My (k| k')

(=1 +ia—f)n' VG+k +1)G—k + 1) My, (nk|n’ k)

—}(—n—k—1+db+iE)Vl+tn+t1)(l—n)@+Ek+1)([f+E+2)
X Mysa(n+1k+1|n' k)

—1(n +k—1—db—ic) VI+n)l—n'+1)[G+E)(G+E +1)
x My (nk|n' — 1k —1)

+imtk—1+ib+ie)/@+n)l-—n+1)G—k+1)(G—k+2)
X Mys1(n—1k—1|n' k')

+3(=n'—K—=1—-b—de)Vl+n' +1)(I—n)—Kk)([G—Kk +1)
x My (nk|n’ + 1k +1)

+im—k+1—b+ie)Vl+n+1)(I—n)(G—k+1)([G—k+2)
X Mys1(n+1k—1|n' k')

+3(—n' +E+1+ib—ic) VI+n)@—n +1)(—K) G-k +1)
x My (nk|n’ —1& +1)

—3 =k +1+ib—ic)VI+n +1)(I=2)(G+E)[G+E +1)
X My (nk|n' + 1k —1)

—I(—n+tk+1—b+ie)Vl+n)@—n+1)G+k+1)(G+k+2)
X Mya(n—1k+1|n' k)
=0, (A9)
(—iank +ian' k') My(nk|n' k')
+3(—n—k=1+b+i)V(l+n+1)(l—n)((+Ek+1)(—k) Myn+1k+1|n'k)

+i Ak —1—db—ic)V(I+n)@—n' +1)(+E)G—K +1) Mynk|n' — 1k —1)

+3 (-0 K -1—db—ic) V({l+n'+1)(I—n) G+ K +1)(G— &) My(nk|n' + 1k +1)

+im+k—1+d+ie)Vi+n)(l—n+1)G+E)G—k+1)My(n—1k—1|n" k)

+in—k+1—db+ie)Vl+n+1)l—n)(G+k)G—k+1) Myn+1k—1|n"k)

3 (= FEF1+ib—ie)VI+n)(l—n +1)(+E +1) (k)
X My (nk|n’ — 1k +1)

+3 =K+ 1+ib—ie) /(I +n +1)(I—n)(G+E)G— K + 1) Mynk|n’ + 1K —1)

+3(—n—k+1-db+ie)Vl+n)(l—n+1)([+Ek+1)G—k) Myn—1k+1|n" k)
=, (A10)
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Some non-compact symmetry groups for elementary particles
associated with a geometrical model

By ArNE KIHLBERG

ABSTRACT

Three Lie-groups containing the Poincaré group and one of the groups SO(2), L(1, 3) or L(3, 3)
respectively, are studied with respect to their ability of reproducing the spectra of the internal
quantum numbers. Their use as interaction symmetry groups is discussed.

1. Introduction

The lack of a consistent dynamical theory which can explain all processes in
elementary particle physics has motivated the search for symmetries which would
impose restrictions on the interactions among the particles and resonances. Some
symmetries are well known and find their natural explanation in the theory of
relativity. More precisely, we think of the symmetry of all physical laws under
translations and rotations of the four-dimensional coordinate system. Since these
symmetries have an unrestricted validity it is comforting that they have a geometrical
explanation. Other experimentally observed symmetries, mostly referred to as
internal symmetries, have a more restricted domain of validity. In recent years
these internal symmetries have been discussed primarily within the frame-work of
the group SU(3) [1]. However, the SU(3) theory is purely phenomenological and it
does not seem to emerge naturally from any simple geometrical model. One might
possibly argue that a basic theory of internal symmetries cannot be geometrical since
the SU(3) symmetry is valid only for the very strongest interactions. Electromagnetic
and weak interactions and also the weaker part of strong interactions violate this
symmetry. However, there is an objection to this reasoning. A geometrical explana-
tion may in some way be connected to, say, electromagnetism and then the symmetry
transformations might well cease to be symmetry operations for the electromagnetic
interactions.

One can proceed along different lines when one tries to find basic explanations for
the internal symmetries which are found experimentally. Either one takes the
groups SU(3) for granted and tries to find a geometrical or dynamical interpretation
of it, or one may look for possible extensions of the space-time symmetry group, that
is the Poincaré group P. The latter procedure might not lead to SU(3) as the internal
symmetry group but rather to some other group. Presently one has some confidence
in SU(3), but its capacity is not so great that one should give up the hope of finding
other groups which better reflect the basic properties of Nature. Of course, one may
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question whether the regularities of the elementary particle interactions should nec-
essarily be explained on the basis of a group. In the past, however, this idea has been
very successful.

During the last couple of years there has been a vivid interest in the possibility
of merging the internal and the external (i.e. space-time) symmetries into one large
symmetry group. Most investigations have led to negative results [2], or to proposals
which are hard to interpret [3]. Others seem somewhat more promising [4] and the
model which has been studied most extensively is the relativistic version of the SU(6)
theory [5]. In that case the global group, which contains both P and SU(3), is either
ISL(6, C) [6], SU(6, 6) [7] or some even larger group. One difficulty with all these
groups is that they require the introduction of an euclidean space of very high dimen-
sion which is difficult to interpret physically.

Theories based on geometrical considerations have been discussed by many
authors. All those theories deal with the conventional space-time or some extension
of it. Frohlich [8] has tried to find new symmetries defined on space-time. Allcock
[9] and Vigier et al. [10] have used a space defined by the coordinates of a rotator-like
structure. In a number of papers [11] Rayski has examined the possibility of extend-
ing space-time by two extra time-like dimensions. The resulting space is thus the
pseudo-euclidean space with the signature (+ + + — — —). The spin is assumed to
emerge from the three-dimensional rotation group acting on the space coordinates
whereas isospin has a similar relation to the time coordinates. Just like the relativistic
versions of the SU(6) theory it has the unattractive feature of introducing un-
observable coordinates and additional assumptions must be made to prevent them
from being observed.

More recently several authors [4] [12] have proposed the use of groups not for
expressing symmetries but merely to account for the spectra of various quantized
observables. This idea is a natural extension of the observation that the energy
spectrum of the hydrogen atom can be generated by the non-compact group L(1,4)
[13]. The group is then called a spectrum generating group.

In a previous paper [14] we have defined an extended coordinate space for an
elementary system by utilizing both the spatial and the polarization properties of the
photon. We were then led to an eight-dimensional coordinate space. Four of the
coordinates span space-time, three angles define the orientation of the particle at
each point in space-time and the eighth coordinate is a scale-factor.

To change the basic manifold from the usual four-dimensional Minkowski-space to
an eight-dimensional manifold necessarily implies a revised theory of the elementary
particles. The study of such an altered elementary particle theory could carried out
in two steps

A: a study of transformation groups on the eight-dimensional manifold and their
use as symmetry groups.

B: the construction of a dynamical theory, eventually in the form of a quantized
field theory based on the eight-dimensional space.

With regard to point B we just want to mention that similar programs have been
proposed with the aim of using the ten-dimensional group space of the Poincaré group
as the basic manifold [15]. We willl devote future work to the development of point B.

The line of investigation of point A has been followed in a sequence of papers, here-
after referred to as paper I, I1, ... IV [14] [16]. In paper I we introduced the eight-dimen-
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sional space and made a preliminary study of the transformation groups. Paper 11
demonstrated the possibility of using part of the space for an explicit realization of the
unitary representations of the Lorentz group. Paper III contains a general study of
the pseudo-orthogonal groups (L(p, ¢) and their unitary representations. The purpose
of that paper is to find suitable methods to study the group L(3, 3), which is one of
the transformation groups of interest. The detailed study of the group L(3, 3) is made
in paper IV.

The present paper contains the conclusions which can be drawn from the results
of the papers I to IV. In Section 2 the definition of the eight-dimensional space is
reviewed and a derivation of three possible transformation groups is outlined. These
groups are interpreted as global symmetry groups containing both the Poincaré
group and the internal symmetry group. In Section 3 a more detailed examination of
the third group is made.

2. Three transformation groups in the extended coordinate space

To define the Minkowsky space in relativity it is necessary to have a clock, which
shows local time, and a “radar’ station, which can emit very sharp electromagnetic
signals. With this equipment it is possible to measure three-dimensional distances
and also to synchronize clocks at various points in space. To do this from one single
position of the radar station the station has to be attached to a massive body so
that the antenna can be turned. It is proposed that one may also utilize that informa-
tion of the electromagnetic radiation which is related to its stated polarization. At
each point on the path of the wave packet the polarization can be used to orientate
a triad defined by, say, the electromagnetic field strength e, the magnetic field
strength h and the cross product ¢ x h. By translating and rotating the radar station
it is possible to have all triads lined up in the same way so that whenever an electro-
magnetic pulse passes through any point in space it always has the same polarization
relative to the local triad. In this way we have obtained an eight-dimensional mani-
fold defined by the four space-time coordinates z;, z,, #; and ¢ and the four para-
meters which specify the six-vector (e, h). From now on we denote by (e,, h,) the six-
vector which serves as the reference for any six-vector (e, h). Additional degrees of
freedom are introduced by attaching such interval coordinates (e, h) to any elemen-
tary system. As independent coordinates one may choose the three Euler angles be-
tween the six-vector (e, h,) and the six-vector (e, h) and the scale coordinate
s=tnlol/[e,].

In the eight-dimensional space so defined one can now consider the problem of
finding the appropriate symmetry group of transformations. As was noted in paper 1
there is no canonical way of arriving at a unique group when the space is given.
Rather, we will define three such groups and discuss their possible interest for physics.
Just as the Poincaré group leaves the basic time-definition invariant in relativity our
extended group should also leave the parallellity of the six-vectors (e,, h,) at different
points unchanged. But even so we are quite free to choose our group. We start by
listing the infinitesimal generators of the Poincaré group. We shall in general discuss
only the infinitesimal generators of the group. This does not imply any restriction
since in quantum mechanics it is usually not the original group which is of interest,
but rather some covering group, and the universal covering group is closely related
to the Lie-algebra. Thus, we define the generators
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for space rotations and accelerations. The accelerations and rotations clearly act
both on the space-time variables (x, t) and on the six-vector (e,, hy). The expressions
for S; and S; can be given in terms of the Euler angles
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For convenience there are some changes in the notations of this paper as compared
to paper I. Also the operational definition of S; and 7'; given in paper I is different
from the one used here and in paper 1V.

Let us now introduce the following generators
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They generate transformations of the Euler angles but now acting on the six-
vector (e, h). Thus 7, 7T, and 73 commute with S;, S, and S;. The operator 7', is
distinguished since it commutes also with S;.

We shall first consider the transformation group @; which is characterized by the
generators of the eqgs. (1) and (2) and 7';. The group @, is thereby defined up to a
discrete centre and has the structure

P®302)

Gy = Z,

(5)

where P is the universal covering group of the Poincaré group P, W(Z) is the uni-
versal covering group of the rotation group in two dimensions and Z, is some discrete
centre of P®S0(2). If one does not regard the group @, as an a,bstract symmetry
group but rather considers the explicit realization of it on the coordinate space then,
of course, one obtains a specific group.

As a first step towards a discussion of G, let us determined its unitary irreducible
representations. This is easily done since such a representation is the direct product of
a unitary irreducible representation U(m, s) of P and a unitary irreducible representa-
tion U(b) of SO(2) which maps Z, on the unit operator. The real parameter b charac-
terizes the one-dimensional representation of 8O(2), m is the mass and s is the spin
and these two quantities label the irreducible representation of the group P. Let us
now discuss the possible use of these representations in elementary paxtlcle physics.
It is clear that if Z; consists only of the unit element of P @ SO(2) then # is completely
unrelated to m and s. In this case there is no obvious physical interpretation of b.
However, if Z, consists of the elements

{(e, )} ={(0, 0), (27, 2x), (0,4 %), (27, 67)....}

where o denotes an angle of rotation in P and § an angle of rotation in SO(2), then it
follows that b must be integer or half-integer and furthermore that

b+s = integer (6)

This relation suggests the identification b= B/2 where B is the baryon number.

Returning to the explicit expressions (1), (2), (3) and (4) for the generators of the
group and further assuming that the physically interesting representations should
be obtained on the covering space of our eight-dimensional manifold then relation (6)
follows automatically. To show this we introduce the Wigner functions D5, (g, 0, )
as a spin basis in the rest frame. Then the eigenvalue of the generator 7', of SO(2)
is ib and b evidently fulfils eq. (6). In fact one also has

|b] <s (7)

Both relations (6) and (7) are satisfied for all known particles and resonances.
Besides these two relations there is not much more that can be said about the
spectra of quantum numbers. Clearly it is highly suggestive to extend G; to be not
only a spectrum-generating group but also a symmetry group since B is rigorously
conserved. But the Clebsh-Gordon decomposition of a direct product is almost
trivial and would not give more restrictions on, say, scattering amplitudes than the
Poincaré group and the baryon group do separately. However, in a dynamical model
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expressed in the form of a field theory where the fields depend on all eight coordinates
the explicit realization of G, may possibly give more.

In paper I we also discussed a second transformation group G,. This is obtained
if one assumes that besides the transformations of the egs. (1) and (2) one is also al-
lowed to perform independent rotations of the six-vector (e, h,). This means that the
operators S; in eq. (3) are also generators of the group. By working out the commuta-
tion relations it is then found that the Lie algebra is the direct sum of the Lie algebra
of P and that of the Lorentz group L(1, 3). Thus

PRL(1,3
Gz=—®Zi——’ (®)

This group considered as an abstract group or restricted to the special realization on
the eight-dimensional space ought to be a good candidate for a symmetry group.
This is so because all group operations are transformations on the external coordinate
space and these transformations are in accordance with the basic definitions of the
space. If G, is viewed as an abstract group then a unitary irreducible representation
of G, is the direct product of U(m, s) and a unitary irreducible representation U (k,, »)
of L(1, 3) [17] which maps Z, on the unit operator. The parameter k, is integer or
half-integer and is equal to the j-value of the lowest SU(2) representation which
occurs in U(kg, »). The choices for Z, are either only the unity,

{(o, )} ={(0,0); (0,2 7)}, {(«, B)} ={(0, 0), (27, 0)}
{(e, B)} ={(0,0), 2m, 2m)},

{(e, )} = {(0,0), (0.2 7), (27, 0), (27, 27)}

or

where o again is a rotation angle in P and f is a rotation angle in L(1, 3). Only the
last two-element centre relates the representation (U(m, s) to U(k,, ) and we have

8+ k,=integer 9)

As stated before the only known elementary particle quantum number which is
related to the spin in this way is B/2. We next turn to the interpretation of the label j
which fulfils j >k, No other quantum number than s seems to have this property.
For this reason we do not find any interesting interpretation of ¢, as an abstract
group. What about the explicit realization on the eight-dimensional space? Then P
in eq. (8) acts only on the space coordinates while the transformations §;, S; are in
L(1, 3). It would certainly not be possible to identify S,, S, and S; for a moving
particle with its spin components since then the invariance under ¢, and thus under
L(1, 3) would mean conservation of j i.e. the spin. Under those circumstances the
reactions N*— N +x and g —z +x would be forbidden. However, in the rest system
we could identify S,, S, and S; with the spin components and then define the spin
in a moving system by means of a “physical’’ Lorentz transformation [18]. Therefore,
let us look at the spectra of quantum numbers. A representation of &, is now
characterized by three numbers the mass m, k, and the continuous parameter .
By fixing k,=B/2 we then find that the representation of the physical Poincaré
group (whose generators are given in egs. (1) and (2)) is reducible and contains the
spin values B/2, B/2+1, ... each value once. This group then suggests a multiplet
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characterized by the mass and the baryon number and containing an infinite
number of spin states. Although the presently known particles and resonances seem
to appear in such strings of spin multiplets, e.g. the nucleon resonances, we feel that
the evidence is not very convincing. So far we have only considered G, in the rest
system or rather just as a spectrum generating group. The question is whether G,
taken as a symmetry group for particles in motion gives restrictions on scattering
amplitudes which agree with experiments. To examine this one has to calculate
Clebsch-Gordon functions for a product of two representations. This has been done
by Bisiacchi and Frondsdal [19] and they find that the reaction ¢ — 7 -+ is forbidden
if p belongs to a representation with %,=0. This is so in our interpretation and we
shall not examine the group @, further because of this negative feature and also
because there is no room for the important isotopic spin quantum number ¢ in the
formalism.

In order to be able to include also the quantum numbers ¢ and hypercharge ¥
one evidently has to take a group larger than G,. Let us start again by the infinitesi-
mal transformation of the Poincaré group, the eqs. (1) and (2). By adding the three
generators of eq. (4) and taking all commutators it has been shown in paper V that one
obtains a Lie algebra which is the direct sum of that of P and that of L(3, 3), the

pseudo-orthogonal group with the signature (+ + + — — —). Thus one has
p e 3) (10)
Zy

where Z, is some centre of P® L(3, 3). Just as in the case of G; or G, we can conceive
(3 in an abstract way i.e. independent of its realization on the eight-dimensional space
and look for all its unitary irreducible representations. Then one would refer the spin
to P. Now L(3, 3) contains two compact SO(3) groups and from their definition in
terms of the generators of the eqs. (3) and (4) it is rather natural to assume that they
are the rotation groups of spin and isospin in the rest frame. (Note that 7';, 7', and 7,
operate on the internal coordinates (e, h) of the particle and that 7', is distinguished
in the same fashion as the third component ¢; of the isospin is distinguished by the
electromagnetic interactions.) Thus one would have two spin groups. Also it is hard
to associate S;, S, and S; to any other quantized operators than just the spin. There-
fore, we shall not consider G, in the abstract way any further but instead use the
explicit realization (1) and (3) for the Poincaré group. Then the spin is referred to
L(3, 3) since S;, S; are 6 of the 15 generators of L(3, 3). For L(3, 3) we shall consider
both the possibility that 9 of its generators are given explicitly by the eqs. (3) and (4)
and also the case when one looks for general representations of L(3, 3). As soon as the
spin is referred to the group L(3, 3) it is clear that one cannot identify one of the
SO(3) subgroup with the spin group and still claim that G, is an invariance group.
Just as in the case of G, one would then have spin conservation forbidding well-
known reactions. The situation may perhaps be saved by defining the spin operators
in the rest system and then applying a Lorentz transformation so that for the particle
in motion the spin operators are in the enveloping algebra rather than in the Lie
algebra. In any case an examination of this kind has to be preceded by a calculation of
the Clebsch-Gordon series for L(3, 3). Irrespective of this point we can always con-
sider the group G5 as a spectrum generating group and see if the experimentally
observed spectra can be convincingly interpreted in terms of irreducible representa-
tions. This will be the subject of the next section. Let us also point out that although
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we have a group with the signature (+ + + — — —) we do not introduce a six-dimen-
sional euclidean space as Rayski does. Thus we need not explain why the additional
time coordinates cannot be observed.

3. Investigation of G;= P.L(3,3) as a spectrum generating group
In this paragraph we shall examine in detail the group
Gs =P-L(3,3) (11)

where the dot means semi-direct product. We also have

G; =P’ ®L(3, 3) (12)

but then P’ contains only the spatial part i.e. the transformations on 2, @,, @; and ¢
according to the eqs. (1) and (2). Having specified this we can forget about P’, it
defines just the mass and the momentum of the particle. Furthermore, we consider
L(3, 3) as a spectrum generating group and identify the maximal compact subgroup

K =80(3)®80(3) (13)

with the product of the spin group and the isospin group.

As was shown in paper IV a vector in an irreducible representation space must be
labelled by six indices denoted (I, m, n, §, k, k). The numbers I and j characterize an
irreducible unitary representation of K while m and A are the ‘“‘third components”
of [ and j, respectively. The labels n and k are a sort of degeneracy indices and they
always fulfil

n=—1l, —1+1,..,1, (14)

k=—7,7+1,....,5

Paper IV contains the derivation of several series, both degenerate and non-degene-
rate, of unitary, irreducible representations. Each series is characterized by certain
restrictions on the labels [, 7, n, and k. In the non-degenerate series the restrictions
are on n+k% and n—k while ! and j range from 0 to co or from } to oo in integer
steps. In the degenerate series the labels » and k are absent and thus a vector in the
Hilbert space has only 4 labels. Here the different series are characterized by bounds
on [ —j. The reader is referred to paper IV for a more detailed description.

Let us now turn to the physical interpretation. We recall that Gy is to be considered
as a spectrum generating group. Now the quantum numbers in elementary particle
physics which correspond to operators which have non-trivial spectra are, besides
the mass the spin s and its third component s,, the baryon number B, the isospin ¢
and its third component #; and, finally, the hypercharge Y. The operational definition
of the group strongly indicates that we should make the identifications

t=j (15)
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For » and k we have no such indications. However, it is well known that Y /2 is integer
when # is integer and half-integer when # is half-integer. We have noted the same con-
nection between B/2 and s earlier. Therefore one could tentatively put

Bi2&n (16)
Y2=k

However, because of the limitations (14) such an identification is not in accordance
with the assignment of hypercharge and isospin of QQ~. But it should be remarked
that this assignment is based solely on SU(3) and not on experimental facts. Turning
to the series of non-degenerate representations one finds that some of these are
characterized by upper or lower bounds on n+% or n —k. If one makes a plot of B
and Y of the presently known particles and resonances one finds, however, no indica-
tion of upper or lower bounds on B+ Y. We have also tried to construct a mass for-
mula without any success. Therefore, we are inclined to abandon the identification
(16). This means that we give up the goal of finding the spectra of all quantum
numbers and instead concentrate on the spin and isospin spectra. One may even say
that this is a natural restriction since ¥ was introduced first in connection with
strong interactions while our space is based on the properties of the photon. Also one
has then free access to the degenerate representations of paper IV. Some of these are
particularly interesting since they are characterized by bounds on I —j.

The degenerate representations are realized in eight different subspaces H,...H
characterized by 747 mod 2 and !—j mod 2. Let us therefore put the presently
known particles and resonances at their places in the spaces H,. We use only those
resonances for which the spin and isospin values are known with reasonable certainty
[20]. The space parity is also indicated in the figs. The subspaces Hy and Hg shall
not be considered in the following discussion since they contain only one particle
each. Also the non-strange mesons are not very abundant. However, it seems natural
to put % and g in the representation @, = —1,1=j of Table 3 in paper IV. This represen-
tation is indicated in fig. 1 by a line. Note that % and ¢ have the same space parity.
In the subspace H, we do not suggest any specific representation. For the baryons
and baryon resonances we have a much larger material. In subspace H, we propose
a representation a,= —4%, I —j=>1 which will then accommodate the four particles
A(1115), Y (1815), ¥,(1383) and Y,(2065) all with the same hypercharge and parity.
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Similarly all particles in subspace H, have parity + 1. Despite this we propose to put
the nucleon and the nucleon resonance N *(1236) in a representatlon ay=—1, I=j,
and the other two nucleon resonances N*(1688), N*(1924) in a representat,lon
a,=1, 1—j>2. The E-particle at the same place as the nucleon must belong to a
third representation since there can be only one state at each point. In the subspaces
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H, and Hy the number of established particles is again somewhat meagre but an
assignment of representations which groups together particles of the same hyper-
charge and parity is again rather natural. Notice that as soon as a particle with the
“wrong” parity or hypercharge appears then it always appears at a point already
occupied by a particle of “right” hypercharge and parity. Thus it has to belong to a
different representation.

Having assigned the presently known particles and resonances to different degene-
rate representations of L(3, 3) what can be said in favour of this group as a spectrum
generating group? The most astonishing fact is that the particles are grouped into
multiplets of the same parity. For the mesons even the G-parity is the same. From
a theoretical point of view it is interesting to note that we have representations of the
type 1=7 (which can be obtained from the explicit realization of L(3, 3) on the four-
dimensional internal space) giving rise to strings of resonances

PoosiPiviLasiiess
Pz 112 Paz 312, Pojzsioe -

Such strings are indicated in bootstrap calculations. Also one sees that an irreducible
representation contains for a given isospin only spin values differing by 2 units in
accordance with the Regge recurrency. It is perhaps justified to conclude from this
that there are some rather strong indications that the group L(3, 3) could be a spec-
trum generating group. We feel, however, that one has to wait for the discovery of
more resonances before anything conclusive can be said.

4. Concluding remarks

In this paper three groups G, G, and G5 have been examined as spectrum generat-
ing groups. Especially the last group G5 shows some interesting features. The groups
G, and G, only allow for the introduction of the baryon number. G, can certainly be
conceived as an invariance group of interactions while this is not so probable for G,.
If new experimental data tend to support our proposed classification it may be
worth while to examine G also as an invariance group.

One should also remark that the negative conclusions concerning the possibility
of identifying B/2 and Y /2 with n and k may be a consequence of non-completeness of
the table 2 of non-degenerate representations in paper IV.
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