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The present paper is an introduction and summary of a thesis com­
prising the following five papers 

I. Kihlberg, A., On the internal degrees of freedom of elementary 
particles, Arkiv Fysik 28, 121 (1964). 

II. Kihlberg, A., On a class of explicit representations of the 
homogeneous Lorentz group, Arkiv Fysik 27, 373 (1964). 

III. Kihlberg, A., On the unitary representations of a class of pseudo-
orthogonal groups, Arkiv Fysik 30, 121 (1965). 

IV. Kihlberg, A., On the unitary irreducible representations of the 
pseudo-orthogonal group L (3,3), Arkiv Fysik (1966). 

V. Kihlberg, A., Some non-compact symmetry groups for elementary 
particles associated with a geometrical model, Arkiv Fysik (1966). 



Symmetry plays an important role in physics. Symmetry means 
invariance of certain properties under substitutions. The substitu­
tions need for their definition objects which can be substituted. Very 
often these objects are coordinates of on e or several particles. In par­
ticular this is so for the Poincaré group P (the inhomogeneous Lorentz 
group), which is defined as a group of substitutions on the 4-dimen-
sional coordinate system. Another symmetry is expressed as the 
permutation symmetry among indistinguishable particles. This latter 
symmetry leads to a discrete group of transformations while the 
former type in general leads to continuous groups, in fact Lie groups. 
The implication of a symmetry group is more involved in quantum 
mechanics than in classical mechanics. In quantum mechanics the 
presence of a symmetry group implies that the Hilbert space is a 
representation space for, generally, a unitary representation of the 
group. 

Certain symmetry groups such as P or the permutation group S(n)  
seem to be firmly established in elementary particle physics. For 
others the situation is less clear. The isospin group SU(2) is a good 
symmetry group for strong interactions. Since it is a continuous Lie 
group one should like to be able to interpret it as a transformation 
group on some coordinate space. For SU(3) the situation is even 
worse. Not only is the interpretation as a transformation group lacking 
but its predictions are not too convincing. 

The last two years have seen a very high activity in the search 
for higher symmetry groups. One general idea has been to unify the 
Poincaré group and the internal symmetry group into a larger global 
group. Some authors have aimed at a complete description, i.e. not 
only of the kinematics but also of the dynamics. Thus also the mass 
spectra should emerge from such a scheme. Others, being more 
restrictive, have attempted to put the spin and the internal degrees 
of freedo m on an equal footing in order to obtain an enlarged internal 
symmetry group with more predictive power than SU(3). 

It is in the light of this development the present thesis could be 
viewed although its main ideas were conceived before the advent of 
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SU(6) and its relativistic imbeddings. We aim at a construction of 
a global group G which contains P and some other subgroup S which 
c a n  b e  i n t e r p r e t e d  a s  t h e  i n t e r n a l  s y m m e t r y  g r o u p  r e p l a c i n g  S U ( 3 ) .  
However, we consider it important not only to have a group but also 
to know what it acts on. Therefore, we do not prescribe S but instead 
we try to define a generalized relativistic coordinate space and then 
we look for transformation groups on this space. In this way we do 
not arrive at SU(3) as the internal symmetry group. Instead we 
discuss three alternatives for S namely $0(2), the rotation group in 
two dimensions, £(1,3) the homogeneous Lorentz group and £(3,3) 
the pseudoorthogonal group in three space and three time dimensions. 

The underlying space should be operationally defined and at the 
same time closely connected to the Minkowsky space. By utilizing the 
spatial properties as well as the polarization properties of the photon 
it is in fact possible to define operationally not only the Minkowsky 
space but also to define at each point (x, t) the orientation of a six-
vector (e0, h0) and its length |e0|= |h0|. The vectors e0 and h0 are essen­
tially the electric and magnetic field strengths of the photon and 
satisfy e0 • h0=0. Since now directions can be measured strictly at a 
point we assume that an elementary particle has coordinates (e, h) 
which should be measured relative to (e0, h0) at the point (x, t). The 
internal coordinate space thus has four dimensions. In this way we 
have enlarged the configuration space from the four-dimensional 
Minkowsky space to an eight-dimensional space. This construction is 
carried out in paper I. Furthermore, using as a guiding principle that 
t r a n s f o r m a t i o n s  o n  t h e  r e f e r e n c e  s y s t e m ,  i . e .  t r a n s f o r m a t i o n s  o n  ( x ,  t )  

and (e0, h0) which leave their definition invariant could be symmetry 
transformations, we then construct a transformation group iso­
morphic to 

G2=[P®Z(l,3)]/£2 

where Z, denotes a discrete centre. In addition to this group we also 
study the groups 

G^[P®SÖ(2)]IZ2 > 

G3=[P 01(3,3)1/^3 

which contain internal transformations, i.e. operations on the axis 
(e, h) of the particle itself. 
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In order to study the consequences for an elementary particle 
theory of the assumption that one of the groups 6; is a symmetry 
group we need their unitary irreducible representations. In paper III 
a general technique for finding these is developed. The method given 
there is of value by itself since it allows us in principle to construct 
the unitary representations of a large class of som i-simple noncompact 
groups. Paper IV is devoted to the derivation of a number of series 
of unitary irreducible representations of £(3,3) by the method of 
paper III. Similarly, paper II contains the derivation of the unitary 
irreducible representations of £(1,3) by essentially the same method. 
This paper was actually written before paper III and was in fact the 
preamble of paper III. 

The application of the groups Gi to elementary particle physics 
is carried through in paper V. Since the groups are homomorphic to 
direct products of P and S0(2), £(1,3) and £(3,3), respectively, we 
cannot expect to obtain mass spectra within the groups. Rather we 
are limited to a less ambitious program. Only the group G3 is large 
enough to allow for an interpretation of isospin and possibly of hyper-
charge and baryon number. Thus we concentrate our attention to G3 

and examine whether the spectra of spin, isospin, hypercharge and 
baryon number resemble those found empirically. Although the 
number of particles and resonances whose quantum numbers are 
known with certainty is not very abundant we think it is fair to say 
that some of the spectra given by the group £(3,3) coincide so well 
with the experimentally measured ones that one is tempted to go 
one step further and evaluate, say, consequences for scattering pro­
cesses. It may be worth while to do this but it should be borne in 
mind that it is not so clear that Ga can be considered as a true sym­
metry group of the interaction between particles since it contains 
transformations which do not act on the external frame of reference. 
In fact the most immediate generalization of G3 to a many particle 
situation would imply, if taken as a symmetry group, separate isospin 
conservation for each individual particle. Therefore, for the moment 
we consider G3 just as a spectrum generating group. The groups Gx 

and G2 on the other hand are good candidates for symmetry groups. 
While Gi has little predictive power G2 can be tested as a symmetry 
group. At least in our interpretation it does not, however, seem to 
give correct predictions. 
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On the internal degrees of freedom of elementary particles 

By ARNE KIHLBERG 

A B S T R A C T  

We examine the use of a six-vector (e,h), with eh = 0, e2 = h2, as internal coordinates for a 

particle in addition to its space time coordinates. Using the operational definition of (e,h), we 

try to find an appropriate invariance group which can replace the inhomogeneous Lorentz group. 

Different choices are conceivable, however, and we discuss in particular the case of a group 

which is isomorphic to the direct product of the inhomogeneous Lorentz group and the homo­

geneous Lorentz group. We also speculate about the connection between the quantum numbers 

of the elementary particles and the spectra of a unitary representation of the group. 

1. Introduction 

In recent years several authors [1, 2 ]  h a v e  d i s c u s s e d  t h e  p o s s i b i l i t y  o f  u s i n g  i n t e r n a l  
coordinates for the description and classification of elementary particles. They all 
assume that a particle is some sort of rotator which should be analyzed in terms of 
a vector structure attached to the position coordinates. Yigier et al. [1] base their 
model on the theory of the relativistic fluid, while others [2] take as starting point 
the observed spectra of certain quantum numbers such as isospin and baryon number. 

In this paper we try to motivate a special model geometrically, i.e., we define all 
coordinates in a way similar to the procedure used in relativity. Now relativity is 
based on a certain definition of time [3], in which the photon plays a decisive role. 
Since we have accepted the privileged position of the photon in relativity it seems 
to us that we should make use of its full capacity. 

2. Definition of an eight-dimensional reference system 

We shall define an eight-dimensional reference system of coordinates in a way 
analogous to the manner in which the four-dimensional reference system of space 
and time is defined in relativity. Assume that we have a radar station which is capable 
of emitting arbitrarily sharp, polarized pulses. After a certain elapse of time the 
pulse returns if it is reflected at some point. The station is further assumed to be 
located on some massive, rigid body so that the antenna can be turned and translated. 
We can then measure three directional angles of the antenna and two readings 

and t2  of a clock at the emission and reabsorption of the pulse. Two of the angles 
and the difference t2—t1  can be used to define relative cartesian coordinates (x l ,x2 ,x3)  
in an obvious way. The local time at the point (xux2,x?>) at the moment of reflection 
is obtained by means of Einstein's definition t = ^(t1+t2). The third angle specifies 
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the polarization of the signal in a plane orthogonal to the direction of emission and 
defines at the world point (x1,x2,x3,t) a reference for a cyclic coordinate y> in this 
plane. It is hard to imagine any more quantity which could be measured at such a 
radar station except possibly the intensity of the pulse. The frequency of the signal 
is necessarily undetermined since we use a sharp pulse. 

According to our definition the coordinate ip is fixed to the radar station. If we 
translate the station then ip i s referred to a different plane, while the local time is 
not affected by this operation. This leads us to consider all the three directional 
angles as independent coordinates. At every space point (xx,x2,x3) there is thus a 
synchronized clock, showing the local time, and two orthogonal three-vectors e and 
h of equal length, which can be thought of as the electric and magnetic field vectors 
of the radar signal. The length of e and h is obviously related to the strength of t he 
radar pulse and e x h is directed from the station. 

The Einstein definition of the local time is one out of many possible choices. 
However, it guarantees that the velocity of light, is constant and that is the physical 
principle on which the theory of relativity is based. There is another principle, 
although it is not always explicitly stated, that the polarization of a photon does 
not change when it is sent from one point to another in empty space. Therefore, 
we choose to define our six-vectors (e,h) at different space-points parallel to each 
other. Just as the definition of time in relativity guarantees that the velocity of 
light is always c our definition of the vectors (e,h) guarantees that the direction of 
polarization of a photon is the same in all points it passes. 

In this way we have arrived at a reference system containing eight parameters 
(x1,x2,x3,t, e,h) where (e,h) is a six-vector satisfying e-h=0, e2=h2. It is then natural 
to assume that a particle (at least for the classical case) possesses all these degrees 
of freedom, i .e . ,  in total  eight coordinates (x1 ,x2 ,x3 , t ,e,h).  The coordinates x 1 ,x2 ,x3  

give the point in space where the particle is and t is the corresponding reading of 
the clock at (x^x^x^. The vectors (e,h) are finally expressed in components on 
the standard directions at  (x1 ,x2 ,x3) .  

3. Connection with the classification of Finkelstein 

Finkel stein [4] has classified all internal structures of particles within the frame­
work of relativity. He proceeds in the following way. Assume that our theory is 
invariant under some group G (the inhomogenous Lorentz group, IHLG) and that 
the coordinates of the particle are called x. Then every group element g G G induces 
a transformation in the coordinate space M to which x belongs. Let us call this 
transformation h(g),  

x^~h(g)x.  

If furthermore G acts transitively, i.e., every point in M can be reached from x 
by means of a  transformation induced by a suitable g, then one can show that M 
can be identified with a coset space of G. To show this let  Gx  be that subgroup of G 
which leaves x invariant, 

h(g)x = x for g£Gx .  

Furthermore let g l t  g 2EG be such that 

M g i ) x = y = H g 2 ) x >  
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from which follows that 

then M92 1)Mg 1)x = x,  

g=gï1g1^G x ,  

so that y can be identified with the set {g2g}aeG x  which is the left coset belonging 

to the subgroup Gx. Because of t ransitivity all y GM can be written as h(g)x for some 

Thus one can classify all coordinate structures by enumerating all coset spaces, 
i.e., by enumerating all inequivalent subgroups of G. When G is the IHLG, two 
of the most interesting coordinate structures are the one we discussed in the pro­
ceeding paragraph (eight-dimensional), and the one which is identical with the group 
space (ten-dimensional). The latter is used by Vigier et a l. in their theory. 

As soon as the local time has been defined in relativity one can ask which coordi­
nate transformations are compatible with the principle of constant velocity of light. 
In order to arrive at the IHLG one must restrict oneself to linear transformations 
or postulate that massive particles, moving on a straight line, should continue to 
do so after the coordinate transformation [3]. In both cases it is also necessary ex­
plicitly to exclude scale transformations. 

In order to find the appropriate symmetry group of the eight-dimensional space 
we proceed in a similar way. First we look for those transformations which leave 
invariant the velocity of light and the parallellity of the six-vectors. It is obvious 
that this group of transformations includes the IHLG as a subgroup for if we look 
at the six-vectors (e,h) from a moving system they appear to be turned and their 
length has changed, but the vectors at different points are still parallel to each other. 
But we obviously have other possibilities. We can turn the six-vectors arbitrarily and 
scale their length, or we can turn them only around e x h and scale their length. 
How large the extension beyond the IHLG will be depends on the additional restric­
tions we impose on the transformations. For the moment we shall assume that all 
uniform rotations of the six-vectors are symmetry operations. If these transforma­
tions together with the transformations of the IHLG are to make up a group we 
must accept separate accelerations of the six-vectors as well. In this case we arrive 
at a sixteen-parameter group. 

Let S and S' denote the generators of rotations and accelerations of the six-vectors 
along given direction in space. Furthermore let (e0, h0) stand for the fixed reference 
orientation of the vectors (e,h). They are so to speak the origin of the variables 
(e,h). We then have the following expressions for S and S' 

geG. 

4. The symmetry group of the eight-dimensional space 

S = e0xveo + li0xVft„, I 

S = — h0
X Ve0 + ©0 X Vfc0- J 

From eqs. (1) we get the following commutation relations 

( 1 )  

[S v  &,]= -S3  (cyclic), 

[S[,Sz] = S3  (cyclic), 

[<S'i, S' 2]= ~Ss (cyclic), 

[$L, <SY = ~S's (cyclic), 

(2 )  
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while all other commutators are zero. These relations are of course those of the 
homogeneous Lorentz group. However, the only change (e0,h0) undergoes is rotation 
and scaling and therefore it must be possible to express S and S' in terms of the 
operators 

^1 ' e0 ' (hoX Väo) e0 I I' 

^0*(^0XVe0/ "0 

^3 ^0 * Ve0 ^0 * VÄ0> 

D = Cq * Ve0 h0 * VÄ0' 

h =A 
n 'hj (3) 

which are the generators of rotation around e0,h0 and e0 x li0 and scaling of t he length 
of e0 and h0. In fact we have 

S=ê0î,i+h027
2+ê0 xh0T3, 

S'=®0 ̂ -ho^+êoXh^D-l). 

We get an alternative representation of the operators S and S' by introducing as 
independent coordinates the Euler angles q>,6,tp be tween the six-.vector (e0,h0) and 
the six-vector (e,h) of the particle, and the scale coordinate s — In | e | /1 e01. Then 
Tx,T2, T3 and D take the form 

rr, 8 -8 COS W 8 
T , =  + sin w -- -I- cos w cot 6- :—~ —, 

1 T 86 r 8ip sin 6 8(p 

rr, 3 . 8 sin w 8 
T , -  +c ° 8 v i ^ - s i n y c o t e — +  - ,  

T  - i -
3 8y>' 

D = 8 
'8s' 

while S and S' are 

„  .  8  . 8  cos m 8 
S, = — sm œ — — cos w cot ö — + ——f — , 

1 Y 86 r 8(p sin 6 dy 

8 . 8 sin cp 8 
is, = cos m — — sm m cot 6 H ——jr — , 

2 Y 86 r 8<p sinö 8y> 

s*=0-, 

(4) 

n' , n S 
, • i. Û 8 sm cp 8 . , Si = + cos 6 cos w —r + sm m cot 6 ;—r i- sm ö cos œ 

Y 86 r 8xp sm 6 8<p r (H 
124 



ARKIV FÖR FY SIK. Bd 28 nr 12 

$2 = + cos 6 sin ev — — cos w cot 6 — + C°S ^ — + sin 6 sin w | -— 
Y 86 r dip sm 6 8<p 

S2, = — sin 6 — + cos 0 | ̂ 
du (I.-1)-

The invariants of the Lie algebra generated by S and S' are 

R = S2-S'2 = -Tl+(Z>-1)2 + 2(Z>-1), 
(6) 

S = S-S'= -TgD. 

The generators of the inhomogeneous transformations can be written in the form 

8 
Pt = 

8t 

(i-1,2,3), 

M i  = M°i+S i ,  

Ni = NÏ + S'i, 

(V) 

where M\ = x,——x„ — (cyclic), 
2  8xa  dx2  

v  J  " 

N? = t — + Xi-. 
8Xi 18t 

From eqs. (1) and (7) it is evident that the Lie algebra of our 16-parameter invariance 
group is the direct product of t he Lie algebras generated by (pt,p,M°,N°) and (S, S'). 
Thus the total number of i nvariants is four namely R, S and 

P=p2-pf, 

Q = (p • M0)2 - (ptM° + p x N0)2. 

Q is identically zero because M° and N° operate on a four-dimensional space. 
So far we have discussed a coordinate space and a symmetry group of transforma­

tions which connects different choices of axis in it. All physical laws should be 
invariant under this group if it is impossible to distinguish between the different 
coordinate systems by means of e xperiments. The states of a quantal system should 
transform according to a unitary representation of the group. Hopefully, the irre­
ducible representations may be connected to the "elementary" quantal system or, 
in other words, the elementary particles. 

We now assume that the elements of the Hilbert space, in which the representa­
tions operate, are functions of the coordinates. The hermitian generators of the repre­
sentation are taken to be fjt — — ipt, P = — ip, M°= — iM°, N°= —iN°, S = —iS a nd 
S'= — iS'. These operators form a Lie algebra with the invariants — P, Q, —R and 
— S. The invariants are fixed numbers in an irreducible representation. Since all 
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symmetry operations are external in the sense that they operate on the frame of 
reference, quantum numbers characterizing a particle must be sought among these 
invariants. P is usually interpreted as the mass of the particle. It and S, or alter­

natively T3 = — i Tg and D = — i D, do not lend themselves to any immediate inter­
pretation. Now the eigenvalue of Tz, which may be integer or half-integer, is the 
lowest Z-val ue in the reduction of a representation into irreducible representations 
of the three-dimensional rotation group generated by S [5]. Thus a particle invariant 
under our group does not have a fixed but a lowest spin-value T3. This interpretation 
presupposes that the spin is connected with rotations of the six-vector (e0,h0). One 
might as well assume that the spin is something characterizing the system under 
the rotation of space coordinates. Then the spin is zero because Q is zero. In this 
case we are free to identify T3 with the third component of isospin. 

Discussion 

On the basis of a generalized light geometry we have tried to motivate an addi­
tional set of coordinates for a particle. These coordinates are four in number and 
can be represented by a six-vector (e,h) where e-h=0 and e2=h2. This extension 
of the coordinate space suggests an extension of the group under which the physical 
laws should be invariant. In this paper we have examined which group one obtains 
in case one assumes that, in addition to the transformations of the IHLG, one can 
also rotate the six-vectors arbitrarily. The resulting group is the direct product of 
the HLG and the IHLG. The analysis in the preceding section of the physical 
interpretation shows that this group introduces some unfamiliar features. However, 
we consider it more as an example of the many possibilities one has when searching 
for new invariance groups. 

To mention another possibility one might choose a group generated by p t, p, 
M, -N a nd T3. Then S is likely to be interpreted as the spin operator and (ptM + 

p xN)2 — (p-M)2 as the square of the spin times the mass. T3 is again an invariant 
and is linked together with the spin since T3 is an integer or half-integer when the 
spin is an integer or half-integer. Also the value of T3 is less or equal to the value of 
the spin. This suggests that we interprete T3 as half the baryonic number. 

Another possibility is to widen the coordinate space and invariance group even 
more. This could be done by giving a particle a second mechanical, "rigid" structure. 
One could then introduce truly internal coordinates in the spirit of Vigier et a l., 
which could be defined through the relation between the six-vector and the me­
chanical structure. The internal invariance group may then be chosen as the bilateral 
rotation group [1] if it is assumed that the particle is "spherical". Since these truly 
internal coordinates are not accessible to external transformations the states of 
this internal group may define different particles. In the case of t he bilateral rotation 
group one obtains three quantum numbers which could be identified with isospin, 
its third component and hypercharge. 
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Arkiv för Fysik 

Arkiv för Fysik, the journal of physics issued by the Royal Swedish 

Academy of Sciences, was first published in 1949, having earlier formed 

part of the former Arkiv för Matematik, Astronomi och Fysik. The 

journal aims at making the research work of Swedish physicists known 

to the international public. The Swedish title of the journal—and of 

other such periodicals published by the Academy—by no means 
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On a class of explicit representations of the homogeneous 

Lorentz group 

By ARNE KIHLBERG 

A B S T R A C T  

A elass of explicit, irreducible, unitary representations of the homogeneous Lorentz group 

is given. It is explicit in the sense that the Hilbert space is a certain function space over 

a carrier space. As the carrier space we choose the four-dimensional space of restricted six-

vectors (e, h I e • h = 0, e2 = li2). The class is complete in the sense that any irreducible, unitary 

representation is unitarily equivalent to one in the class. 

1. Introduction 

The unitary representations up to unitary equivalence of the homogeneous 
Lorentz group (HLG) are all well known [1], They can be completely reduced 
into irreducible, unitary representations. These are divided into two series. The 
main series contains representations which are characterized by two numbers 
(k0, c), where Jc0 is a non-negative integer or half-integer and c is real. The rep­
r e s e n t a t i o n s  o f  t h e  s u p p l em e n t a r y  s e r i e s  a r e  l a b e l l ed  b y  o n e  n u m b e r  a ,  ( a  =  2  i c )  
where 0 < a 2. These latter do not appear in the reduction of the regular 
representation into irreducible constituents. 

Neumark [1] uses two different function spaces to realize the irreducible rep­
resentations. They are connected to the group itself because the carrier spaces, 
on which the functions are defined, are subgroups of the HLG. The general 
group element induces a transformation in these subgroups according to a cer­
tain prescription. With a scalar product, suitably defined, the function spaces 
become Hilbert spaces and the transformations induced by the group are rep­
resented by unitary operators acting on these Hilbert spaces. It turns out, 
however, that different scalar products are required for the main series and the 
supplementary series. 

In this papsr we discuss the realization of the irreducible representations on 
a function space which is related to one of the two used bjr Neumark [1]. 
Our carrier space is the space of six-vectors (e, h) with e • h = 0, e2 = h2, and thus 
four-dimensional. The HLG induces transformations in this carrier space and 
consequently in the function space defined on it. The invariants of the HLG 
have a simple meaning in this space. Again one has to define different scalar 
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products to get the unitary representations of the main series and the supple­
mentary series. 

The reason for writing the representations in this explicit form is physical. 
We know that the treatment of interaction can have a simple formulation in 
one representation but not in another, which is mathematically equivalent. The 
best known example of this is the electro-magnetic field which in absence of 
interaction can equally well be described by means of the field tensor F'"' and 
the four-vector Afi. Both theories define a representation of the HLG, but the 
formulation involving Aß seems to be more suited for treating the interaction. 
Quite apart from the question of interaction one explicit representation may be 
more illuminating and suggestive than another for the interpretation of the 
various mathematical expresssions which appear. Elsewhere [2], we have given 
arguments for using the restricted six-vector (e, h) as internal coordinates for a 
particle and one can make the hypothesis that the carrier space for the repre­
sentation should coincide with the coordinate space of the physical system trans­
forming according to this representation. 

To construct the representations we apply the theory of multiplier represen­
tations described by Bargmann [3]. 

2. Definition of carrier space, function space and the transformations induced 
in them by the HLG 

Our carrier space is the restricted six-vector F = (e, h | e • h = 0, e2 = h2). As 
coordinates we can use either the six components ex, ..., hs with the restrictions 
ex hx + e1/hy + ez hz = 0, el + e2 + ef = Af + A2 + hi, or four independent coordinates 
(cp,Q,y>,s). These we define through the equations 

"  e x  '  — sin <? sin ip + cos 6  cos cp cos y > ~  

6 y  = es cos cp sin y> + cos 6 sin <P COS v> 

- - sin 6  cos y> 

" V — sin <P cos y) — cos 0 cos cp sin v~ 
A  y  = es cos cp cos y) — cos 8 sin 9 sin y, 

- K - sin 6 sin tp -

For completeness we also introduce 

"(exh)/ ' sin 6 cos cp ~ 

(exh)v = e2s 
sin 6 sin cp 

- (exh)-g. - cos 6 

From these equations we see that s = ln | e |  and that 90 , 6 , 1 p  are the Euler angles 
orienting the triad defined by e, h and e x h with respect to some fixed refer­
ence frame. 

As the function space we shall take a suitable subset of the set of all func­
tions (real or complex) of (cp, 6, ip, s) or of F. In the latter case the functions 

374 



ARKIV FÖR FY SIK. B d 27 nr 27 

are only defined on the hypersurface e • h = 0, e2 = h2. The subset must be chosen 
so that the function space is a linear space and so that it becomes a Hilbert 
space by defining a scalar product. We return to these questions later. 

Let us now consider a restricted homogeneous Lorentz transformation defined 
by the matrix Q£,'(Qo>0, det Q = +1). We define the action on F by the 
equation 

Ff,va.F'f" = Q.%D.vaFea, (3) 

where Ff" = 

0 ^X ey ^Z 
0 K hy 

-hz 0 

-e-z Jly hx 0_ 

(4) 

in analogy with the transformation properties of the electromagnetic field tensor. 
The corresponding transformation in the function space we shall define in the 
following way 

/(*""•) S. /' (Ff,v) = f(Q~:l" Q;1" Fea). 

For an infinitesimal transformation we can write 

=«?£+<,  

ÇJfio OJg !" (Jfia 0)'a 0. 

(5) 

(6) 

(V) where 

Eq. 5 then becomes 

f(F^) -> /' (F/Jv) = f(F"v - F"a cov
a ~ Fe' cof'). (8) 

If we examine separately space rotations and accelerations and write eq. 8 

/ '  (F)  =  ( l + to-S)/(F), 

/' (F) = (l + o>'-S')/W 
(9) 

we then get the following expressions for the generators S and S' assuming that 
the function / is differentiable. 

S = e x ve + h x Vä, 

S' = e x V;i — h x Ve • 
(10) 

The commutation relations between the different components of S and S' are 
given in ref. 2. If we use the second set of variables (<p, 6, ip, s) we have 
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o • 8 + a 8 > eos V 8 
S , =  — sin w  — — cos w  cot 6  —  +  — x — ,  

1 y 86 ' 8cp sm 6 dip 

o 8 • + « 3 sin 99 8 S 9 =  cos œ — — sm m cot 6 — + ——- —, 
2 Y dd r 8<p sm 0 8ip 

B.-1 

ol a 8 , • 4. a 8 sm <P 8 , • a (8 i \ Si = cos 6 cos m — + sm q> cot 0 ;—-—H sill 6 cos œ I II, 
Y 86 r dtp sm 6 8<p r \8s ' 

oi a • 8 + a 8 , cos V 8 
82 = cos 6 sm <p — — cos <p cot 0 -—h 

8ip sin 6 
+ sin 6 sin m (— — 1 ). 

\ds / 

8 
Sl= — sin 0- + cos 

86 (H-

3. The Casimir operators and the irreducibility condition 

We have decided to use functions f ( c p ,  6 ,  y > ,  s) in the representation space. Now 
we require the space to be irreducible. Such a restriction is obtained if all 
functions are eigen-functions of the Casimir operators of the Lie-algebra (11). 
It is well known that these are 

£ = S2-S'2, 

Q  =  S - S ' .  
(12) 

In terms of our variables we get 

R 8yj2 8S2+1' 
»2 

dtp 8s 

(13) 

Thus all functions / in our representation space should satisfy the equations 

02/ 02/ 

' 8  

8 2 f  

8<p2 0,92 (f 1)f' 

8ip8s 
= Qf 

(14) 

for suitable real r and q. The restriction of r and q to real values is motivated 
by the fact that we later on introduce a unitarity condition. Now since we 
consider both double valued and single valued representations, / must be periodic 
in yj with the period 4 n and we may expand it in a Fourier series 
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/= 2 
m  =  O  

. . . . mip T_ , mw 
-4 m («) sm ~^- + Bm (s) cos (15) 

The functions ^4m and Bm must then satisfy the following equations 

d2A„ 

ds2  

d2B, 

' + ( r  +  T~  X )  A >» 
=  0

> 

c f e 2 + ( r + 4  O " 8 ' "  ° '  

m dA„ 

2 ds 

m dB,, 

2 ds 

({B* ,> 

= qA„ 

(16) 

We see that each equation contains only one w-value so that we may use m 
for the enumeration of the different possible solutions. 

(I) Suppose TOH= 0. 

Then A m = C™ sm vs — C2 cos vs, 

Bm = C™ sin vs + CT cos vs, 

2 q 
where v = —, ~°°<v<°°, 

m 

so that r a nd q can take on the values 

m , 
r = 1 r  +  v  ,  

4 

r 
mv 

(II) m = 0. 

Then only B0(s) remains to be determined and we have three possibilities 

(a) B0 = Cz s in vs + C? cos vs 

— OO < p < CO 

in which case r = l  +  v 2 ,  

g = 0; 
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(b) B0  = Z)1e-"s + D2e x s  

— 00  < x < 0 0  

with r = 1 — a2, 

q = 0: 

(c) B0  = EI + E2S 

n which case r = 1, 

? = 0. 

The case (IIa) can evidently be incorporated under (I). 
We thus arrive at the following conclusion: The irreducible function spaces 

can be enumerated by two numbers (m,v). For m integer and v real, the func­
tions depend on ip and s as 

(TYL \ / 7YL \ 
— ip — vsj +h(6,<p) cos I— f  — vsj.  (17) 

The operators (11) in the Lie-algebra mix the "components" g and h and it is 
obviously convenient to introduce the imaginary unit i and write 

(7YB \ / TYB \ 
-^y>-vsj + i(h + ig) exp I - - xp + v-s \ .  (18) 

In this way the real space is split into two complex conjugate spaces which 
are separately invariant for the Lie-algebra. When m = 0 both parts are covered 
by letting v take both positive and negative values. 

For m = 0 and v imaginary but different from zero (v = ioc) the functions 
depend on s in the following way 

f  = g(d,cp)e-« s  + h(d ;<p)e°< s .  (19) 

Now the operators (13) do not mix the components g and h and we can keep 
the real representation space. Again we have two separately invariant parts 
and by letting cc take both positive and negative values we may just consider 
the functions 

f  = g(d,cp)e-« s .  (20) 

Finally for m = 0 and v = 0 there is also the possibility 
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4. The imitarity condition 

In the preceding paragraph we have arrived at restrictions on the numbers 
(m, v), which are used to define the irreducible function spaces, from reality 
conditions. The result was that either m is a non-negative integer and v real 
( t h i s  i s  g o i n g  t o  b e c o m e  t h e  m a i n  s e r i e s  o f  t h e  u n i t a r y  r e p r e s e n t a t i o n s )  o r  m  
zero and v imaginary but unequal to zero (part of this will constitute the sup­
plementary series of unitary representations). If both m and v are zero there 
is a further possibility, but it will turn out that it can be considered as a 
limiting case of the main series. 

Now we want to see whether unitarity imposes any conditions on m and v .  
Unitarity means that S and S' are anti-hermitian. Of course, we must then 
suppose that we have defined a scalar product. Then 

(22) 
{h, S /a) (S/„ /„), 

(/,, S'/jj) = - (8',/i, /a), 

for such /j, /2 which belong to the domain of S and S'. 
For the main series, i.e., v  real and 

(^Yb 1 - y - v s j  g{ 6 , c p )  

one can readily verify that one can choose the most natural measure and put 

( f v f z )  = f f gx(6, <p)ga  (0,9?) sing dddcp, (23) 
J o  J  o  

where gx  and g% are periodic in cp if m is even and anti-periodic in 99 if m is odd. 
For m = 0 and v = ioc it is not possible to satisfy the relations (22) by the 

scalar product (23), since terms like a cos 6, a sin 0 cos cp and a sin 6 sin q> in 
eqs. (11) are hermitian. Let us therefore try the most general bilinear form 

( / , ,  / 2 )  =  J " J " J "  f *  (0' f) - (̂0> Ç5) f ' ';) 92 (0'j Ç9') sin 0 sin 6' dddd' dcpdqj', (24) 

where f1  = e"as  gx  (0, cp), /2  = erxs  g2  (6, cp), 

and K is a function to be determined by the eqs. (22). From the first of these 
we find that K can depend only on 

y = cos 0 cos 0' + sin 0 sin 0' cos (99 — 99'). 

From the second set of relations in eqs. (22) one finds that 

K--Cx(l },rl, (25) 
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Now the integral (24) converges only if x  is positive, since 1 — y  goes as the 
distance between two points on the sphere squared. For the moment we there­
fore consider only such values of a, but later on we shall find that one can 
give a meaning to eq. (24) also for negative values of a. We must also make 
sure that 

( / , / ) >  o .  

For this we expand in spherical functions and Legendre polynomials 

t(0,<p) = 2finn(0,<p), (26) 
I, n 

( i - y r 1 = 2 ~ ^  h P i i y ) -  (27) 
I £ 

27+ 1  
Thus (/, /) = Cx  2 . 2 2 —TT- bl fl-n• fl"n" 

I'n' l" n" I ^ 

Yf .  (0', <p' )  Y f  (0", <p")  (;y)  sin 0' sin 0" dd '  dd"  dtp '  d tp" .  (28) 

The addition theorem for Legendre polynomials yields 

Pi iy) = I ̂  Y?(0', <p') Yrn (0", <p") (29) 

so that (f,f) = Cx22jTbifinfi-n = Cx^27ibi\fin\2 (30) 
l,n l,n 

since f m  =  f i- n •  Thus 

if and only if 

From eq. (27) we have 

( / , / ) >  o  

C K b t >  0. 

i P i  ( y )  

(i - y )  i « d y -

(31) 

(32) 

This integral can be calculated by using the generating function for P t  (y ) .  
We get 

, 2" 
s 

2g(l-q) (2 — q) ... (I-a) 

a (1 + a) (2 + a) ... (I + a) 

(33) 

By choosing CK = a we see that eq. (31) can be satisfied for |a|<l. For 
a-»0, Cxbi~>l, and we get the scalar product (23) as a limiting case. Negative 
values of a cause no trouble when we define the scalar product by eq. (30). 
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Obviously these values yield measure functions K which are more singular in 
angular space than a ^-function. Of course, our Hilbert space is complete in 
the norm. Thus not all functions g which belong to say the space characterized 
by a = 0 are vectors in the space with negative a. 

There remains one function space to be examined, namely the case (He). 
The functions of this space are 

i = sg{Q,(p) + h{d,(p). 

We make the following ansatz 

n2 n 
[«11 9l 92 + «12 9l K + «21 92 hl + «22 hl h2~\ sin 0 d0d9'• (34) 

Again using the relations (22) one finds that 

$12 ^21> ^22 

From (/,/)>0 it is obvious that 0. Thus the scalar product 

n2 n [«119i 92 + «12 (9i K - 92 Al)] sin d dOdcp 

leads to unitary representations. But all functions / = h(0, cp) are equivalent to 
the zero vector and consequently the Hilbert space has only one "component" 
namely the one represented by g(d,(p). The operator d/ds again acts as the zero 
operator. 

So far we have been able to define scalar products so that our representa­
tions are unitary in case that m is an arbitrary non-negative integer and v real 
(the main series of unitary representations) and in case m is zero and v = ioc 
where 0<|a|<l (the supplementary series of unitary representations). Now 
Neumark [1] shows that one pair of the invariants r and q uniquely determine 
one irreducible representation up to unitary equivalence. Therefore we know 
that we have obtained all unitary representations up to unitary equivalence 
since the invariants can only take on the values [1] 

r = 1 — ho + c2, 

q = h0c, 

where k() is a non-negative integer or half integer and c is real or k0 = 0 and 
— K c2 < 0, and these values are also obtained by letting m and v vary over 
their ranges. Furthermore one sees that for m = 0 the representations which 
differ in sign of v or a are unitarily equivalent. This can also be shown by 
constructing the isometric transformation, which mediates the equivalence. 
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5. Conclusion 

We have proposed to write the unitary irreducible representations of the ho­
mogeneous Lorentz group in an explicit form by means of a function space over 
the carrier space of restricted six-vectors. Since the rank of the Lie-algebra is 
two and we have two invariants, one has to use at least a four-dimensional 
carrier space if one wants to see explicitely how the irreducibility condition 
enters. If the carrier space can be identified with a coordinate space for a 
particle then one may hope to be able to give a meaning to the group in­
variants as well as to the integration in the scalar product. Especially the 
scalar product of non-local character for the supplementary series is then of 
interest. 
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On the unitary representations of a class of pseudo 

orthogonal groups 

By ARNE KIHLBERG 

A B S T R A C T  

A method for explicit construction of the unitary, irreducible representations of the pseudo -

orthogonal groups L(p,q) is presented. It is based on a realization of the elements of the Lie-

algebra as differential operators on a carrier space. This space is the product space of the group 

spaces of the maximal compact subgroup K and an Abelian subgroup A both in L(p,q). The 

Hilbert space is constructed as a function space on the carrier space. In an irreducible representa­

tion the vectors in the Hilbert space have a fixed dependence on the parameters of A and the 

scalar product is defined in terms of integration over the parameters of K. The method is parti­

cularly simple to apply when q — p is 0, 1 or 2 since then the number of parameters of the carrier 

space is equal to the number of l abels required to characterize a vector. 

The pseudo-orthogonal group in p + q va riables is defined as the group of real, 
linear, homogeneous transformations which leave invariant the quadratic form 

tive integers for if p or q is zero the group is an orthogonal group. Contrary to the 
orthogonal groups the pseudo-orthogonal ones are non-compact. This means among 
other things that the irreducible unitary representations are infinite dimensional. The 
pseudo-orthogonal groups can just as the homogeneous Lorentz group be divided 
into four components [1]. The first is continuously connected with the identity, 
while the other three include a reflection in the p first, or in the q last variables, or in 
both. In what follows we shall always deal only with the first, the identity component. 
For this subgroup we use the symbol L(p,q).  

In physical theories the pseudo-orthogonal groups have appeared in many different 
connections. Of cours e the most famous pseudo-orthogonal group is the homogeneous 
Lorentz group L(l,3), which needs no further presentation. But also the groups 
L( 1,4) and L(2,3) have been studied in quite a detail. These groups, usually called the 
de Sitter groups, are extensions of the homogeneous Lorentz group with a fifth space-
or timelike dimension. They then allow for the introduction of a curvature constant 

1. Introduction 

4" X 2  . X p  X p  - ) - i  . . .  X p  -|_ Q . (1) 

It is a Lie-group of parameters. We may assume that both p and q are posi-

121 



A. KIHLBERG, On the u nitary representations of a class of pseudo-orthogonal groups 

as is suggested by general relativity. The pseudo-rotations in the planes ( x 5 ,  x t )  are 
connected with the translations in the four coordinates xt. The de Sitter groups are 
thus to be regarded as generalizations of the Poincaré group. In a more indirect way 
the group L( 1,2) is also of physical interest. When determining the unitary irreducible 
representations of the Poincaré group one has according to Wigner [2], to consider 
certain subgroups, the little groups. An irreducible unitary representation of t he little 
group and the mass value determine an irreducible unitary representation of the 
whole group. When the mass is imaginary the little group is L( 1,2). These representa­
tions with imaginary mass have however so far not been interpreted physically. 
Still another example of a pseudo-orthogonal group which has been suggested as a 
useful group at various times during the last fifty years is the conformai group. It is 
isomorphic to L(2,4). 

In the last few years the group theoretical treatment of elementary particle physics 
has been concentrated on the problem of finding internal symmetry groups. The 
interest has so far been mainly confined to compact groups, and this is presumably 
to a certain extent due to the absence of a simple representation theory for non-
compact groups. 

In the physical application of all the groups mentioned above one is interested in 
their unitary representations. (That the finite dimensional non-unitary representa­
tions of the homogeneous Lorentz group have played such a big role is d ue to the 
fact that the latter is a subgroup of the Poincaré group. Some unitary representations 
of this group can be given with the help of t he finite dimensional representations of 
the homogeneous Lorentz group.) The unitary irreducible representations of the 
homogeneous Lorentz group were determined by Gelfand and Naimark [3] and 
Bargmann [4] in 1947 and those of L{ 1,2) by Bargmann [4], The group .£*(1,4) was 
dealt with by Thomas [5] in 1941 and later on by Newton [6] and very thoroughly 
by Dixmier [7], The de Sitter group L(2,3) has been treated by Ehrman [8] in 1956. 
Esteve and Sona [9] have applied the theory of G raev [10] to the conformai group. 

In all the solved examples above, except L(2,3) and L(2,4), one has used the techni­
que to determine a representation by reducing it out with respect to irreducible repre­
sentations of a compact subgroup. In the case .£>(1,3) one uses the compact three-
dimensional rotation group and for L( 1,4) the four-dimensional rotation group. Now 
it can easily be seen that this method has limitations. It is essential for the technique 
that each irreducible representation of t he compact subgroup occurs only once. For 
this to be the case the subgroup has to be large enough. This can be seen as follows. 
In order to label the vectors in the representation space one needs a maximal set of 
commuting operators taken from the enveloping algebra of the Lie algebra of the 
group. A number of these can be chosen as the invariants. The pseudo-orthogonal 
g r o u p  i n  p  +  q  v a r i a b l e s  h a s  ( p + q  —  1  ) / 2  i n v a r i a n t s  i f  p + q  is  o d d  a n d  ( p  + q ) / 2  i f  p  +  q  

is even. The number of p arameters is 

Therefore one needs [11] 

operators in the odd case and 

p + q 

2 
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in the even case to label the vectors within an irreducible representation and 

p  +  q - l  p + q 

2 

v + q 
+ 

2 

p  +  q  

( p  +  q  odd), 

(P + q even) 

operators to label the vectors throughout any representation. Now the question is 
whether one can find a sufficient number of labels in the maximal compact subgroup. 
For the pseudo-orthogonal group the maximal compact subgroup is SOp(x)SOQ where 
SOp  is the rotation group in p dimensions. We have to distinguish the four cases: p + q 
odd or even, p odd or even. 

We first consider the case p + q odd, p odd, q even (p<q). Then to label the vectors 
within an irreducible representation of L(p,q) with the operators of SOp(x)SOQ we 
must have 

n i -

p  +  q  <1 
2 

p  —  1  

2 

1 
.1 

' 2 
+ 

which gives ( P - I )  ( q ~ l ) < 0 .  

This inequality can be satisfied only if p = 1. 
In the other cases one has similar restrictions and one finds that the reduction 

method may work when p — 1 (or q = 1 ) and in the case p=q = 2.1 Actually it has been 
proved that it always works in the case p = 1 [12]. In all other cases one has to use 
other methods. The de Sitter group L(2,3) does not fulfill these requirements so in 
this case one has to use a more general method. In fact Ehrman applies Harish-
Chandra's general theory for arbitrary semi-simple groups. 

In Harish-Chandra's [13, 14] theory one uses a Hilbert space whose vectors are func­
tions on the maximal compact subgroup. This means that the vectors are functions of 
the parameters of t hat subgroup. One can see that this approach might be more suc­
cessful since now the requirement that the labels within an irreducible representation 
should be less numerous than the number of pa rameters of SOp(x)SOQ r eads 

p  +  q \  p  +  q —  I  

2 

p+q\ p + q 

2 

(2) (2) ^or ^ ̂  ̂  oc^ anc^ 

for p + q even. 

Both inequalities are always satisfied. On this Hilbert space Harish-Chandra defines 
a set of representations which need neither be unitary nor irreducible. He furthermore 
shows that every unitary irreducible representation is equivalent to one which can be 
obtained from the set. As can be seen from the paper by Ehrman the last step, namely 
the selection of those representations which are irreducible and unitary, is far from 
simple. Also the Harish-Chandra theory is rather abstract and physicists would 
perhaps like to have a more explicit way of con structing the representations. 

It is our purpose to give such a method of co nstructing the unitary representations 
of L(p ,q). It will turn out that it is closely connected to the theory of Harish-Chandra. 

1  L(2,2) is locally isomorphic to L(l,2)(g)L(l,2); see appendix. 
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We use the maximal compact subgroup as a carrier space for the Hilbert space and 
the invariants are expressed in terms of fir st order operators which in their turn are 
connected to a second subgroup. However we deviate from Harish-Chandra in the 
the following respects. The scalar product in the Hilbert space is not given beforehand 
but is rather adjusted so that the representation becomes unitary. Thus one of the 
problems mentioned above, namely the selection of those representations which are 
equivalent to unitary representations is absent in our theory. Furthermore our 
approach is based on rather simple considerations of transformations in the group 
space which therefore makes it much more limited in application than the general 
theory of Harish-Chandra. Nevertheless we think that our treatment might be of 
interest in a number of a pplications simply because the mathematics involved is of 
a much less elaborate kind. 

In section 2 we derive some properties of the Lie-algebra especially with emphasis 
on its enveloping algebra and the invariants. In section 3 we introduce a canonical 
division of any semi-simple Lie-group into three subgroups. The property of this divi­
sion makes it possible to map the group elements into certain transformations in 
the group space modulo the last subgroup. The group space of the first two sub­
groups will s erve as carrier space for the representation space. Thereby the second 
subgroup will be used to express the invariants. In section 4 we introduce the scalar 
product into the representation space which makes it possible to classify the unitary 
representations. Finally in the appendix we determine, as an example, the unitary 
representations of L{ 2,2). 

The Lie-algebra of t he pseudo-orthogonal group L(p,q) can easily be found by 
considering the one-parameter subgroups of ro tations or pseudo-rotations in all coor­
dinate planes (xuxj). For instance the subgroup of p seudo-rotations in the (1, p + 1)-
plane consists of the matrices 

2. The Lie-algebra and its enveloping algebra 

cosh u 
1 

sinh u 

1 
g(u) = — oo < u < oo . 

sinh u cosh u 
1 

1 

The corresponding element in the Lie-algebra is formed by taking the limit 

1 

u—> 0 U 1 
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The whole Lie-algebra is generated by all matrices 

0 ®13 • • • 

®12 0 

0 

^ffl 

6 U  . . .  & 

W51 ... 

0 

/l»0 

iff 

Off 0 

where the numbers a t j ,  b u ,  f t j  are real. We can obviously choose a basis L u  in the 
following way 

L i j  =  e i j  —  e j i  for i ,  j  < p  

L i j = - e i j  +  e j i  f o r  i ,  j  > p  

I J i j  =  e i j  +  e J i  f o r  i < p , j > p  

L i j = - e i j - e j i  f o r  i > p , j < p ,  

where the matrix e u  has a 1 at the position ( i j )  and zeros elsewhere. By introducing 
the metric tensor 

y  a  

the commutation relations of the Lie-algebra of the pseudo-orthogonal group can be 
written 

[ L a ,  L k i \  =  y l k  L j i  y j t  L i k  +  y u  L j k - \ - y j k  L n .  (2) 

The generators L t j  for i ,  j  <p  generate rotations in the first p  variables. They form a 
subalgebra which is isomorphic to the Lie-algebra of the rotation group in p variables. 
Similarly Ltj, i, j >p form the Lie-algebra of rotations in q variables. These two 
subalgebras together generate the maximal compact subgroup of L(p,q) which is the 
d i r e c t  p r o d u c t  S O p ( ^ ) S O Q  o f  t h e  t w o  r o t a t i o n  g r o u p s .  T h e  g e n e r a t o r s  L t j  f o r  i  ̂ p ,  j > p  
correspond to accelerations in one "time-like" and one "space-like" variable. These 
generators are the "imaginary" counterparts of t he corresponding operators of SOp+Q 

t h e  c o m p a c t  g r o u p  b e l o n g i n g  t o  t h e  s a m e  c o m p l e x  g r o u p  a s  L ( p , q ) .  
An important tool for the classification of the irreducible representations of a 

Lie-group or a Lie-algebra is the universal enveloping algebra, see e.g. [15]. Its ele­
ments are the equivalence classes of polynomials of the generators of the Lie-algebra. 
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Two polynomials are said to be equivalent if they can be transformed into each other 
with the help of the commutation relations. The centre of the universal enveloping 
algebra consists of those elements which commute with all other elements. This 
means that it commutes with the generators of t he Lie-algebra. The elements of the 
c e n t r e  a r e  s p a n n e d  b y  t h e  i n v a r i a n t s  o f  t h e  L i e - a l g e b r a .  F o r  t h e  r o t a t i o n  g r o u p  S0 n  

the invariants are [16] {Fu: the generators fulfilling eq. 2 with y,7=(3i;) 

I '  = 22F t lF„ ] 
i ) 

I ' - I I I  l F „ F n F u F u ,  . . .  ( 3 )  
i j k I 

I k -2 - 2F h t ,F h u . . .F ,„_ l l k F h h <  
ii ik 

where k = n — 1 if n is odd and k = n — 2 if n is even. In the case of e ven n there is one 
more invariant 

/ *  =  2 •  •  •  2 e i ^ - i n F i l  u  Fu  i t . . .  F i n  _ l i n ,  (4) 
<i in 

where E1 ' . . .  is the totally antisymmetric tensor in the indices 1 ...n. The invariants of 
L(p,q) are obtained from those of S0p+ll by replacing Fj;- by iLu if i^p,j>p or 
i >p, j <p and Fi} by Li} in other cases. 

The number of terms in 7; grows very fast with j .  Instead of one can use another 
invariant A; which involves fewer terms. A; is defined as the sum of all principal 
minors of the order j of the nxn matrix {F^}. (A principal minor of order j is obtained 
as the determinant of the matrix which remains when one removes the corresponding 
n — j rows a nd columns.) 

In an irreducible representation of th e group L(p ,q )  the invariants must have con­
stant values. They therefore help to distinguish the different inequivalent irreducible 
representations although there may be inequivalent representations which have the 
same values for the invariants [3, 4, 8]. 

3. Realization of a semi-simple group by means of transformations in the group 
space. The carrier space for the representation 

As pointed out in the introduction L( p ,q )  is the identity component of t he pseudo-
orthogonal group. Further insight into the topological properties of L(p,q) can be 
obtained from a lemma by Iwasawa |17] concerning arbitrary semi-simple Lie-groups. 

Lemma 1. Let G* be the adjoint group of a real semi-simple Lie-group. Then there 
exists a connected and simply connected solvable subgroup II and a maximal compact 
subgroup K* of G* such that 

G*=K* H =HK*, II  n K* = {e},  

i.e., any element g* of G* can be written uniquely in the form 

g* = k* h=h'  k*' ,  h ,  h'  EH, k*,  k*'  £K* 
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and h, h' and k*, k*' depend continuously on g*. Also the space of G* is the Cartesian 
product of the spaces of H and K* of which the former is homeomorphic to an 
Euclidean space. 

Now the adjoint group G* coincid es with the original group G if this latter does 
not have any (discrete) centre. This is the case for L(p,q) unless both p and q are even. 
It is easy to prove that an element of L(p,q) which is in the centre has to be a multiple 
of uni ty. Thus the centre can at most contain two elements +1. However if p or q 
is odd the element — 1 is a reflection in the p first or q last variables. Thus it does not 
belong to the connected component. For these groups the lemma is immediately 
applicable and we therefore have the useful information that the connectivity is 
given b y that of th e maximal compact subgroup which is SO p®SOQ .  When p and q 
are even we have a centre of order two. This is however contained in the inverse 
image K of K* in the mapping G-+G* [17]. Thus the conclusions of the lemma are 
still true if one replaces G* by G and K* by K. Now the group SOp is doubly connected 
if p >2 while for p =2 it is infinitely connected. As has been remarked by Wigner [18] 
the de Sitter group L{2,3) therefore differs radically from the group L( 1,4) in topology 
and this has the consequence of introducing an extra invariant in the representations 
up to a factor. 

The division in lemma 1 can be carried a step further as has been shown by Harish-
Chandra [14]. 

Lemma 2. Let G be a connected semi-simple Lie group with the Lie-algebra g. 
Then g can be written 

g = k + h+ + n, 

where h is a maximal Abelian subalgebra generated by such elements which become 
'"imaginary" when passing from the compact semi-simple Lie-algebra to the chosen 
non-compact one. h forms part of a Cartan subalgebra. k is the Lie-algebra of K * in 
lemma 1 and the subalgebra n is generated from a set of operators which are associated 
with certain positive roots in the Cartan root diagram. Furthermore let A and N be 
those subgroups of G which correspond to h+ and n. AN = 11 is then the subgroup of 
lemma 1 and N is an invariant subgroup of H. If furthermore K is the inverse image 
of K*, the maximal compact subgroup of G*, in the mapping G->G*, then every 
element g of G can be written uniquely in the form 

g  =  k  a  n ,  where k £ K ,  a E A ,  n £ N .  

When applying the result of lemma 2 to the pseudo-orthogonal groups one actually 
does not need the whole theory of C artan's classification of sem i-simple groups. We 
have already noted that K = SOp(^)SOQ. For A one has just to choose a maximal 
Abelian group of accelerations i.e. transformations involving one timelike and one 
spacelike variable. The n on e q uite easily finds out what are the generators of N. 
These have to be formed as linear combinations of the accelerations which are not in 
A and of generators of K. One has to apply the restriction that N is an invariant sub­
group of II. 

This division of L(p,q) into three subgroups of wh ich the first is maximal compact 
and the last two together form a noncompact subgroup will now be the basis for a 
certain parametrization of L (p,q) and will also make it possible to obtain very con­
venient expressions for the operators of its Lie-algebra. It is well known that an 
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arbitrary Lie-group can be represented as a transformation group on its parameters. 
This can be accomplished by left multiplication 

g - g ï x g ,  ail g e G ,  

which associates with every element g 1 & G  a transformation of the point g in the group 
space. By considering infinitesimal elements gl one can represent the elements of t he 
corresponding Lie-algebra as differential operators in the group parameters. In 
general this procedure leads to very cumbersome expressions and as will be shown 
below it is also not necessary to use all parameters of the group. Let us see what 
happens to the three subgroups under left multiplication by an element which 
belongs to K. We get k' (k^a^n^) = (k'kx) axnx if k' £K, by the uniqueness of the division. 
Therefore we have a change only in the parameters of K. All generators of the Lie-
algebra of K are therefore diff erential  operato rs in the parameters (cp ,0 . . . )  of K. 
Denoting a generator by capital L we have 

Ls = fU<p,e + ...)^+ ... . (5) 

Let us next consider multiplication by an element of A. We get 

a (k x( l x  Wj) kfria '  t t fc ia '  T^kid'  0> x^ x  ^fcia '  (@'kia '  ®i)  kia 'ai  ) i  

where k k i a-  is a function of k x  and a' .  Here we have used the fact that A is a factor-
group of AN. Therefore we get a transformed kx, ax and nx. But the transformations 
of k x  and ax  depend only on kx  not on a x  or n x  as is  seen from the formula.  Note that  A 
is Abelian. This shows that the infinitesimal generators of A can be written 

LA  ^fA(<p, 0 . . . )  ̂ ~+ . . .  fA {<p, •••  +f r
A{(p,  0 . . .  hn . . .  r ,s  . . . )  , ^+  . . .  (6)  

if the parameters of A are denoted Xand those of N by r,s . . . .  Finally let us 
consider a  left  multipl icat ion by an element from N , 

71 kfr i n '  Cl k i n '  Whin'  ^kin '  (® k in'  ®i)  kin 'a i  ̂ i )  •  

This formula shows similarly that 

L N  =  f p
N { ( p ,  0  . . . )  +  . . .  f N { ( p ,  0  • • • ) - .  +  • • •  + f r

N ( ( p ,  o ... x,fi ... r, s ...) -d-+ .... (7) 
cXp dX or 

Thus we find that for all the generators of th e Lie-algebra only the derivatives in the 
parameters of N have coefficients depending on all group parameters. This means 
that we can omit all these terms and still have the same commutation relations. 
Expressed in terms of the groups one can say that we realize the group as a group of 
transformations in the group space modulo the subgroup N. The product space of the 
group spaces of K and A shall be termed the carrier space of the Lie-algebra since 
the operators of it are expressed as linear differential operators on this space. Of course 
the possibility of considering this reduced carrier space instead of the whole group 
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space of G  considerably simplifies the expressions for the generators. The question is 
therefore if it perhaps simplifies them too much so that the realization makes it 
impossible to obtain all representations. This is what happens when one puts 

MfW x ,  ̂  x v ^  ( ) 

for the generators of the homogeneous Lorentz group. Because of the invariant 
equation 

afxfl = Const. 

this is a realization of t he generators M / I V  by three parameters. For the homogeneous 
Lorentz group one needs a four-dimensional carrier space [19] and therefore it is not 
surprising that one does not obtain all r epresentations of £(1,3) from the parametri-
zation (+). In the introduction we found that one needs a carrier space of di mension 

i l ( P  + (?)2 — 1] if P  +  q  is o dd, 

l { p  +  q ) 2  if P  + q  is even. 

Now the dimension of A  is p  if p  and therefore the dimension of N  is p ( q  — 1) since 
in the pseudo-orthogonal group there is pq " imaginary" operators, the accelerations, 
as compared to the corresponding compact group SOp+a. The requirement that the 
carrier space has sufficiently many dimensions therefore is 

i [ { p  +  q ) 2 ~  1 ] <  ̂ 2  ? )  - p { q -  i) , P  +  q  odd, p  <  q ,  

ï ( p  +  q ) 2  ^  ̂ 2  ̂  ~ p { q - 1 )  , p  +  q  e v e n >  p ^ q -

Both inequalities are always fulfilled. We therefore conclude that provided there are 
no invariant equations in the remaining parameters one can always take the group 
space modulo the subgroup N as carrier space for the transformations of th e group and 
the Lie-algebra. 

The case when one has equality in the above equations is of special interest and we 
will mainly be concerned with the corresponding groups in the rest of t he paper. The 
condition for equality is 

p  =  q  —  1 if p  +  q  is odd and p  <  q  and 

(8) p  —  q  .  
if p  +  q  is even and p ^ q .  

p  =  q  —  2  

The subgroup A  also plays a special role in the decomposition of G  since its para­
meters do not enter into the coefficients of the derivatives in the reduced generators. 
Therefore the values of d/SÀ, djdfi... can be put equal to constants a,b... . These 
constants will th en enter into the invariants of the Lie-algebra. Let us see when the 
number of in variants and the number of pa rameters of A coincide. For this to be the 
case we must have 
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^—I  -  p  if p  +  q  is odd, 

—— — p  ii p  +  q  is even. 

We thus find that for p  =  q  — 1 and p  =  q ,  the carrier space has the right dimension 
and the subgroup A has the dimension equal to the number of invariants of the 
group. In this special case the invariants of the Lie-algebra can all be expressed as 
polynomials in the derivatives d jdX ,  d /d /u  What about the case p=q  — 2  when p  +  q  
is even? In this case there is one invariant more than there are dimensions in A.  But 
in this case the subgroup K has one dimension too much since we want to use its 
parameters in connection with the labelling of the vectors inside an irreducible 
representation. The dimension of K is p2 +p + 1 ii p=q — 2 while the required number 
to label the vectors is p2 +p. Therefore it should in this case be possible to "move one 
parameter from K to A". In fact, as was stated in lemma 2, A is a part of a Cartan 
subalgebra the rest of w hich is to be found in K. Now since the number of invariants 
is equal to the dimension of a Cartan subalgebra it must be possible to find in K the 
required number of one parameter subgroups which commute with A. By means of a 
suitable parametrization of K one can achieve that the parameters of these also do 
not enter into the coefficients of th e derivatives. 

In all the cases (8) we have found that the Lie-algebra can be given with the help 
o f  d i f f e r en t i a l  o pe ra to r s  i n  which  t he  inva r i an t s  en t e r  m ere ly  a s  pa rame te r s  a ,b . . . .  
The invariants themselves are polynomials in a, b.... The special casep=q — 2 differs 
from the others in that one of the constants a, b... takes only discrete values. This can 
be seen from the fact that the corresponding differential operator d/dyi is an operator 
i n  a  compac t  va r i ab l e  xp  of  K.  

Even in the cases not covered by (8) the parametrization we have described may be 
useful. One then however has more parameters than necessary, but this difficulty 
might be possible to handle with a suitable constraint. 

4. Unitary representations 

In physical applications one is as a rule interested in unitary representations up to 
a factor. This means that the unitary operators U(g) satisfy 

U{ g x )  U(g 2 )=w{ g 1 , g 2 )  U{g l g 2 ) ,  

where w is a function of g l  and g 2  such that |eo| =1. Now Bargmann [20] has shown 
that for the pseudo-orthogonal groups L(p,q) this means that one has to look for the 
unitary representations of the universal covering group of L(p,q). The universal cove­
ring group L(p,q) is simply connected. Therefore in the case p> 2 and q> 2 we see 
from the lemma 1 that L(p,q) contains four sheets of L (p,q) while for p< 2 and q >2 
it contains two. If p = 2 or ç = 2, L(p,q) contains the space of L(p,q) infinitely many 
times. The fact that one should study the representations of L (p,q) means that one 
has extra invariants for the representations. For the homogeneous Lorentz group 
this is the integer or half integer character of the spin-values. For the de Sitter 
group L(2,3) this extra invariant has a continuous variation [8, 18]. 
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From the works of Gå rding, Harish-Chandra [13] and Dixmier [7] it is known that 
the search for unitary irreducible representations of L (p,q) or L(p,q) can be reduced 
to the problem of finding the Hermitean, irreducible representations of the Lie-
algebra. 

Now we are going to discuss how one may obtain all unitary irreducible representa­
tions of t he Lie-algebra of L(p,q) with the help of t he parametrization of the carrier 
space which we introduced in the foregoing section. We recall that we obtained the 
following general form of t he generators of the Lie-algebra 

if L u  is a generator of K and 

- /S (ç . ,  0 . . . )  — +  / !!  ( ? ,  8 . . . ) |+ . . .+ /&(? ,  0  • • . ) !+• • •  

in the other cases. The parameters cp ,0 . . .  belong to the subgroup K and are 
the parameters of the subgroup A.  The functions f? j ... fy... depend only on the 
parameters of K. (In the case p=q — 2 they do not depend on the last of these para­
meters.) 

As representation space we now choose a linear space of fu nctions 

f (<p ,Q . . .X ,  /u . . . ) .  

By imposing that the space should be irreducible it is necessary (but not sufficient) 
that the functions / are eigenfunctions of the invariants. But the invariants are 
polynomials of the derivatives 8/8À, 8/8/u... and therefore the functions in an irredu­
cible representation space can be chosen as eigenfunctions of 8l8X,8/8/u... i.e. th ey 
have the form 

l (<p,  6 . . .  X , / i  . . . )  =  . . .  H f ,  0  . . . ) ,  

where / now is a function only on K and a ,b . . .  are arbitrary complex numbers. The 
irreducibility condition thus fixes the dependence on the parameters Those 
which are left <p,Q... will span the carrier space for the Hilbert space. By this we 
mean that we are going to define a scalar product involving integration over the 
variables k = (cp, 0...). The most general scalar product involves a positive definite 
Hermi tean  ke rna l  M(k v k 2 )  

(/i> /2) = J J f x  ( k i )  M ( k i>  K)  /2  (K)  d k i  d K 

where dk  is the invariant volume element of K.  The condition 

(/i,/2) = (/2>/I) 

implies M{k v  k2 )  =  M(k 2 ,  k x ) ,  

while the condition (/,/) >0 for all / implies that M is positive definite. Having defined 
a scalar product the next step is to define the Hilbert space H as that linear set of 
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functions f ( k )  which have finite norm. The generators L t j  of t he Lie-algebra are linear 
operators in H. We now require that iXi;isHermiteanor Li; anti-Hermitean. Since the 
Lu are given this means that the kernal M(k1,k2) has to be chosen in a certain form. 
It is easy to see what restrictions result from the requirement that the generators of K 
are anti-Hermitean. If Ltj is anti-Hermitean U = eEijLii is unitary. However from the 
construction of L i} this means that 

f ( k ) ± f ' ( k )  =  f ( k ' k )  

has to be a unitary transformation for every k '  6 K.  Thus 

^ f 1 ( k ' k l )M{ k v  k2 ) f 2 ( k ' k 2 )dk 1  dk t  = j M(k v  k2 )  f 2 {k 2 )dk x  dk 2 ,  

which gives after change of variables and using that dk  is an invariant measure on K 

M(k 1 k '~ 1 ,  k 2 k '  1 )  =  M(k 1 , k 2 ) .  

Therefore the kernel M(k 1 , k 2 )  depends only on k \ k21. Consequently M has to be an 
invariant two-point measure. Of course the ordinary invariant one-point measure is 
contained as a special case when M is a (5-function in all its variables. However the 
two-point measure should be more natural in connection with bilinear constructions 
such as Hilbert spaces. It is therefore remarkable that they have not been used to a 
larger extent. 

The remaining anti-Hermitean generators, which are all accelerations, put further 
conditions on M. These conditions are also dependent on the parameters a, b... which 
determine the invariants. For some values of a,b... it may be possible to find a 
positive definite kernel M, for others not. In this way one finds the possible ranges 
for the parameters a, b.... Of cou rse one has to admit kernels which are not functions 
but only distributions. 

It is a general feature for real semi-simple groups that the irreducible representa­
tions can be grouped into several series [21], Now it turns out that in one series, the 
main series, the kernel M(kl,Jc2) reduces to a one-point measure, the ordinary in­
variant measure on K, while in the supplementary series the kernel M will depend 
on  a ,  b . . . .  

We now give a short summary. A set of rep resentations D(a ,b ...) parametrized by 
the complex parameters a, b... has been given. From the construction of th e measure 
function M we know that D(a,b...) is unitary. However it may still be reducible. We 
can now compare this set of representations with the one defined by Harish-Chandra. 
In fact in his set a representation is parametrized by a linear function on a certain 
Cartan subalgebra which then involves parameters corresponding to a,b... Harish-
Chandra chooses the measure M to be a one-point measure and instead he only requires 
the representation to be equivalent to a unitary representation. So in fact one can 
identify our set with his and then one also knows from his result that the procedure 
we have used is perfectly general: every irreducible unitary representation can be 
obtained from some D(a,b...) as an irreducible part. 
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APPENDIX 

In this appendix we want to illustrate our method by constructing the unitary 
representations of a pseudo-orthogonal group. The group we choose, L(2,2), is some­
what trivial since its Lie-algebra is the direct sum of t he Lie-algebra of L( 1,2) with 
itself. Anyhow among the groups with p + q=4 there is only one more non-compact 
one, namely L(l,3). This group has been treated with our method in an earlier paper 
[19], although the realization of the Lie-algebra was obtained from a physical starting 
point. The groups with p + q = 5 at once become quite involved. Therefore there 
remains only L( 1,3) and L(2,2) which are simple enough to serve as illustrations. 

The group L(2,2) leaves invariant the quadratic form 

2 i 2 2 2 
X\ + 2*2 ~ xi ~~ xi • 

It consists of all r eal 4x4 matrices B, which are continuously connected to the iden­
tity, and which fulfill 

BTyB=y, 
where y is the matrix 

1 
1 
-1 

- 1 

The group has a centre of order two, which consists of the matrices ±1. The basis 
elements Lu of the Lie-algebra are given as in section 2. Ll2 and Lu generate the 
maximal compact subgroup K = $02®$ö2. In order to find the generators of A, one 
has to look for a maximal Abelian subalgebra among the accelerations. This algebra 
is two-dimensional, and we choose as its generating elements 2>23 a nd Lu. The sub­
group N finally must also be two-dimensional, and it is easy to find that a possible 
choice fo r i ts  generators is N 1=L1 3  L l 2  and N2^L2 i—L.3 i .  

The general group element g of L( 2,2) can now be parametrized as follows 

g = e^1 2  ev L a i  e"L 23  e v L l i  es N l  e t N \  

where O^cp, xp^2ji ,  ~ °° </<, v, s,  t  < °°.  

We have deliberately chosen a parametrization which is not adapted to the decompo­
sition into -L ( 1 )(l ,  2)(x)L ( 2 )  (1,2) since this property is special  for L(2,2).  

To shorten the expressions in the following we write scp for sin qo, cy for cosço, 
Sh/7 for sinh// and Ch^ for cosh/<. 

The group element n of N has the form 

1 — s s 

1 
^
 ̂
 

+
 t2 s2  t2  

s 1 
^
 ̂
 

+
 

2 2 2 

s 1 
^
 ̂
 

+
 

i 

t2  

2 

0 t  - t  
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and is completely analoguous to the Lorentz transformations of second kind studied 
by Wigner [2]. The general matrix g is 

Ch v cq) + s e''sq) [ — s Ch v + t Sh v] ccp + 

Ch vs(p + se''c<p [5 Q\w — t Sh v] scp + 

Ch n — e 

Ch// 

s* V 

2  ~ 2  

s2 t2 

e' i 
2 2 

scp 

cop 

— Sh v sxp + s e^cxp [s Shr — t Chr] sxp + 

Sh v cxp + se''sxp [ — s Sh v +1 Chr] cxp + 

[5 Ch v — t Sh v] cep + 

[ — s Ch v + t Sh v] sep + 

Sh fx 

Sh /ii 

Sh/z + e' ( o o 

Sh pi + e" I -1-0. 

t 

2 ~2 ' CXP 

s2 t2\\ 

2 ~ 2 j \  Sy) 

sep Sh vc(p + te''s(p 

ccp — Sh v sq> +1 e''ccp 

[ — s Sh v + t Ch v] syj + 

[s Sh v — t Ch v] cxp + 

CV + e"l£-' 
Ch pi + é' 

2 t2 

2 
2 t2 

2 2 

cxp — Ch v sxp + te'1 cxp 

sxp Ch v cxp +1 e'1 sxp 

According to the results of section 3 we now have to multiply g  by the inverse g x
Y  of 

an element gv Then all parameters cp, xp, /u, v, s and t get changed to new values cp', xp', 

pi', v', s', t' in a new partition of the product gïlg =g'. But the essential result of section 
3 was that the change in q), xp, pi , v depends only on cp and xp, t he parameters of the 
maximal compact subgroup K. Now let gx be infinitesimal and generated, say, by 
L9O. Thus 

g i 1  =  e e L l  

— £ 

£ *<1,  

and we get 16 equations from gx 
1g = g' which determine cp' ...t' in terms of 90...t. For 

instance from the first column of g' we get 

Ch vcq) +s e'lscp = Ch v' ccp' + s'e'1' sq)' 

— Chr sq + se''ccp — e [ — Sh v sxp -\- se'1 cxp] = — Chv' scp' + s' e'1 ccp' 

— Sh vsxp + se'1 cxp — e [ — Ch vscp + se^ccp] = — Sh v' sxp' + s' e^cxp' 

Sh v cxp + se'1 sxp = Shi/ cxp' + s' e'' sxp'. 
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By dividing these equations by e one gets four equations for the derivatives 
dcp 

de 

dt 

de 
. These can be solved to give 

dv 

de 

dcp 

de 

dip 

de 

— scp sip 

scp cip 

ccp sip, 

if one also uses the fact that these derivatives should be independent of pi, v , s and t. 
To determine d/u j de one has to use the other columns of g' as well. One finds 

dpi 

de 
ccp cip. 

-^12 

Therefore we have the following realization of the generator L2Z as a differential 
operator on the group spaces of K and A 

The realizations of L 12 and L3i is much simpler since K is Abelian. We get 

d_ 

dcp 

L 
34 dip' 

Of cou rse one can continue to determine the other generators of the Lie-algebra in the 
same manner but it is actually simpler to derive the expressions for them by taking 
commutators between L23 and Ll2, L3i. In this way one obtains the following realiza­
tion of the Lie-algebra of L (2,2) on the carrier space of K and A 

L12 = -f 
12 dcp 

dip -^34 

L23 = S(p cip 
dcp 

ccp sip —— ccp cip - — scp sip - -

d d d d 

dcp 
S(pcv^p-- s c p s i p d - - ccp cip-

d d d d 

dcp S(p^dV 
-scpcip- + ccp sip -Ll3 = — ccp cip 

( A i ;  
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The group L(2,2) has p equal to q, and therefore the dimension of the subgroup A is 
the same as the number of invariants. According to section 2 they are apart from a 
factor 

I°- =~L\z- LI 4 + Ll, + Lf t  + if, + Ll 

I- L12L3 4 -^13 "^24 "^23 "^14-

Expressed in the realization of Lu we get 

/2 = d_ 

d/u 

8 

1 + 
8vz 

CfJL 

8_ 

dv 

According to the results of section 3 the vectors / in the representation space are 
functions of < p, ip, ju an d v. In an irreducible space the dependence on ix and v is fixed 
by putting for the vectors / 

% , ^ , v )  =  e i ( a + i ) ' V ö ' 7 ( 9 > ,  y , ) ,  

where a and b are arbitrary complex numbers. The irreducible space characterized 
by (a, b) corresponds to the invariants 

P= —a2 — b2 — l 

= — ab 

Already at this stage is it possible to obtain limitations on (a, b ) due to unitarity, 
since in a unitary representation 12 and have to be real. However we postpone this 
discussion till later on. Before determining the scalar product which defines the 
Hilbert space it is advantageous to change the parameters of K by the substitution 

(p i==(p+y )  

9)2=cp-ip, 

and to choose new generators of the Lie-algebra corresponding to La> {1 , 2 )  a n d  
L(2)( 1, 2), 

— I (^12 -^34) 

IL (A, -^34) 

&Px 

_e_ 

d(f2 

r 2 ( ̂ 23 

M2 — ~~ i (-^23 -^14) 

— a 1 

2 + 2 

S9?2 
09?2 

CÇ9i 

r 
C(p2 

Ai — 2 (-^13 -^24) ^ 2 
a 1\ + 2j 

L2i) - C(P 2 

_e_ 

d(p2 

b + a 1 
scp2. 

(A2) 
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From these expressions we see that H v  M x ,  N l  and H 2 ,  M 2 ,  N2  both span the Lie-
algebra of L( 1,2). The invariants of L a) (1,2) and Lr2) (1,2) are 

I \ =  - H î  +  Ml  +  Nî =  - i [ ( ö - a ) 2 + l ]  

1\ = -Ht + Ml + N%= — i [(& + a)2 H-1], 

which are two different combinations of I 2  and I K  At this stage it may be appropriate 
to discuss the ranges of th e angles cp, r p and cpv cp2. We noticed earlier that the ranges 
0^(p,ip<2ji correspond to a parametrization of L(2,2). Therefore the functions 
f{(p,ip) in the representation space should satisfy the continuity condition 

f (< P > V> )  = f ( ( p  +  2 n, y ) ) = f { ( p , y )  +  27 i )  

if we look for representations of L ( 2 , 2). This means that cp 1  and ç?2 take values in the 
intervals (0,4jr) and ( — 2ji,2ti) respectively, so that we have to look for double-valued 
representations of La) (l,2)(g)jL<2) (1,2) to find all representations of L(2,2). This 
also follows from the fact that L(2,2) contains a center of order 2 while La) (1,2) <S> 
Lvi) (1,2) has no center, and thus L(2,2) covers La) (1,2)(x)L(2> (1,2) twice. It is also 
clear that if one looks for the representations of the universal covering group 
£(2 ,2 )  & L a )  (1 ,2 )@.L ( 2 )  (1 ,2 )  the re  i s  pe r iod ic i ty  ne i the r  in  ( p  nor  in  x p .  

From now on we just consider the group L (  1,2) since it is obvious how one can build 
the representations of L (2,2) from those of £(1,2). By putting 

I I  
d cp  

M  —  —  s ep  ( i a  +  \)  cc p  (A3) 

N  =  —  c< p  ~ — h  ( i a  +  J )  sc p  

we now have to find a kernel K { ( p , c p ' )  such that I I ,  M  and N  are anti-Hermitean and 
such that 

* r l n   
( f , 9 ) =  f ( < p ) K { ( p , v ' )  g ( ( p ' ) d c p d ( p '  (A4) 

J  J o  

is a positive definite scalar product. From the anti-Hermiticity of H  it follows that 
K depends only on <p — çp'. We now make the expansion 

/(?>) = 2/»«•"', (A 5) 
m  

where m takes the values 0, +1, +2,... or +|, +|, +|,... depending on whether we 
look for single-valued or double-valued representations. A vector is now represented 
by a sequence {/m} and the operators of the Lie-algebra act on {/m} according to 
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{ H f ) m  f m  

( M f ) ,  
_  i  m  i a  1 \  i m  i a  1 \  
_ \ 2 ~ ¥ + 4 /  ' m ~ 1  +  \ 2  +  4 /  ' m  +  1  

,  m  . a  1 \  ,  .  (m  . a  1 \  ,  
( N F ) M  —  I  I  ~ W ~  1 Ö  +  ~ A )  F ™ - 1 ~  L \ ' Ö  ~  1 Ö  +  ~ A )  F "  

( A  6 )  

2  "  4 / ' m  1  "  \ 2  " 2  4 )  1   

The scalar product takes the form 

( f , 9 )  =  2 f m b m g m  (A 7) 
m 

where ^m = .fl* e~iM'P(P)^^(P,(P^(P^(P'' (A 8) 

The anti-Hermiticity of M  (or N)  now gives the following equations for the coeffi­
c ients  b m  

( A  9 )  
( m  -  i d  +  I )  bm + 1  =  (m-  i a  +  $ )  b m  

{ m  +  ia  +  ± ) b , n + 1  =  { m  +  i ä  +  % )  b m .  

By taking the difference of t hese equations one finds 

( ä  +  a )  b m + 1  =  ( ä  + a ) b m .  

Therefore if ä+a + 0 we get b m + l = b m  and also from eqs. (A9) ä=a  i.e., a  is real. 
From eq. (A8) one then finds that 

K { c p , c p ' )  =Const(5(ç9 — c p ' ) ,  

i.e., we have a one-point measure, and the representation thus defined belongs to the 
main series. If on the other hand ä-\-a = 0, i.e. a is imaginary or zero, then one obtains 
the  following recurs ion re la t ion  for  b m  

b,^=bm
m-±^, (A 10) 

m  +  \  —  -

where a =  Ima .  The positive definiteness of the scalar product requires all b m  to be 
positive for all m-values, which appear in the sum (A7). This is possible only if 
— £<<*<£, when m takes all integer values. The sequences {/m} can however be 
bounded from below or above. According to eqs. (A6) one must then have 

a = — m  +  \  

and a = m + \ 

respectively, where m and m are the lower and upper bounds for m. Then it is seen 
from eq. (A10) that all bm are positive for m>m>0 and m<m<0 respectively. (It is 
also clear that — a defines the same representation as a, the difference is that now 
bm = 0 for m <m or >m respectively.) We summarize the results in a table. 
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Single- and double-valued representations of L( 1,2) 

Range of a  

Range of 1 2 = 
-  H 2  +  M 2  + jV2 = 

— «2 _ 1 a t Spectrum of H  Type of r epresentation 

— oo < a < oo - oo < /2 < 0, ±1, ±2, ... 
or 

± h  ± h  • • •  

Main series; local scalar product. 0, ±1, ±2, ... 
or 

± h  ± h  • • •  

i  i  
~ - < a < -

2 2 

-  J <  I 2  <  0 0, ± 1, ±2, . .. Continuous part of s upplementary se­
ries; non-local scalar product. 

a  =  +  i ( m  —  £ )  

m integer or half-
integer > £ 

1 2  =  m ( m  —  1 )  m ,  m  +  1, ... Discrete part of supplementary series, 
bounded below; non-local scalar 
product. 

a  =  + i ( m  +  £ )  

m integer or half-
integer < — J 

I 2  =  m ( m  +  1 )  m ,  m  —  1, . . .  Discrete part of supplementary series, 
bounded above; non-local scalar 
product. 

These results may be compared with those of Bargmann |4], and we find that we 
have obtained all irreducible unitary representations. It is seen that such a representa­
tion is characterized by the value of th e invariant and the spectrum of H. The value 
of th e invariant is thus not sufficient alone, and the parameter a has no advantage in 
that respect. The two values +a define unitary equivalent representations. 
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On the unitary irreducible representations of the pseudo-

orthogonal group L(3,3) 

By ARNE KIHLBERG 

A B S T R A C T  

The pseudo-orthogonal group which conserves the quadratic form 

T2 j. T2 x T2 _ r2 _ T2 _ ~2 
12 3 4 5 6 

together with its Lie-algebra is studied. A number of series of unitary irreducible representa­

tions of the universal covering group is derived with a Lie-algebra method, whose justification 

leans heavily on works by Harish-Chandra. 

Introduction 

One of the most urgent problems in elementary particle physics today is the 
explanation of the different states, elementary particles or resonances, in which 
matter can appear. For several years one has tried intensively to bring some 
order into the relations betwen these states by means of group theory. The group 
which has been studied most is SU(3) [1]. It has been assumed t hat the strongest 
interactions are invariant under the transformations of SU( 3) and that the particles 
or resonances should be grouped into multiplets corresponding to unitary irredu­
cible representations of SU(3). 

However, since the predictions of the SU(3) -theory have been moderately suc­
cessful only, one has also considered the possibility of finding othe r groups which 
would better reflect Nature. In this research one has also encountered non-
compact groups. Since a non-compact group has no faithful, unitary, finite-
dimensional representation one has either to give up unitarity or to consider 
infinite particle multiplets. Both possiblities involve certain complications which 
we will not discuss here. However, one should take notice of a change in atti­
tude towards the problem in several recent papers [2]. It is suggested that the 
non-compact group or the corresponding Lie-algebra should not necessarily ex­
press a symmetry of the interaction but that it still could be useful t o generate 
the spectra of mass, spin, isospin, hypercharge and baryon number operators. 

In this paper we shall derive a number of series of unitary, irreducible rep­
resentations of the universal covering group L(3,3) of the pseudo-orthogonal group 
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L(3,3). More precisely £(3,3) denotes the component connected to the identity 
of the group of real linear transformations which conserve the quadratic form 

The physical interpretation is left to a fourthcoming paper. We shall, however, 
briefly outline the origin of this group in a geometrical model which we have 
proposed earlier [3]. 

In ref. [3] we defined an 8-dimensional reference system of the following nature 
based on the properties of the photon. Four of th e coordinates denoted x1 ,  x2 ,  x3  

and t refer to the ordinary space-time manifold and, in addition, at each point 
in spacetime there are defined two three-dimensional orthogonal vectors e0 and 
h0 of equal length. These vectors are assumed to be independent of the space-
time point to which they belong. Furthermore, we assume that an elementary 
particle may be described in terms of eight coordinates, four of which are (x1 }  

x2, x3, t). The other four coordinates can be described by two vectors e and h 
of the same nature as e0 and h0. Instead of e and h one may use the three 
Euler angles (cp, 0, ip), which define the relative orientation of (e, h) with regard 
to (e0, h 0), and the scale coordinate s = In |e|/|e0|. In ref. [3] we also discussed 
the problem of finding the appropriate symmetry group of this space. First of 
all, it seems most natural to require invariance under the Poincaré group P. 
P acts both on the space coordinates and on the vectors (e0, h0). The infinite­
simal generators for time and space translations, rotations and accelerations can 
be written 

The operators St  and S( act on the vectors (e0, h 0) or, equivalently, on the 
variables qo, 6, ip and s. For these one has the expressions 

2 i 2 i 2 2 2 2 XI + X2  + XI — XI -  XI — Xq. 

(1) 

cd 8 8 ccp 8  

cd 8 8 sep 8 

86 sO 8 xp 
ccp 

8<p 
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, s<p 8 8 cd 8 18 
1 =s8 ë<p~ v se"1"10 djftp~ v 

, _ cçp 8 
S o =  -

sö 8<p 

n 8 cO 8 . (8 , 
SVC6M + C(p7ddy>-S<psd [Fs~l 

Sz = sO j jQ - cd ( - 1 (2) 

In addition to the transformations of eq. (1) we now assume that a rotation 
of the particle around the internal axis is also a symmetry operation. The cor­
responding infinitesimal generators are 

n. cw 8 8 cO 8 
1 " ~JÖ8y + SXP 8Q + sö 8y 

... sw 8 8 cO 8 
2 ~ ~76ty~CVd6 + SW ddif 

T,= -4-- (3) 
dip 

It should be noted that the invariance under the transformations of eq. (1) is 
motivated by relativity while the invariance under the transformations of eq. 
(3) requires some kind of spherical symmetry of the particle. Whether or not 
this is the case we shall assume that the generators of eqs. (1) and (3) form 
part of the Lie-algebra of a Lie-group. The remaining generators are obtained 
by means of commutation. We anticipate the result and introduce the following 
notations 

Sl= -^23 

8t = 

s3 = -^12 

Lu 

S 2 = ^24 

Sz = -^34 

7\ = ^45 

T2 = _ -^46 

T3 = ^56 

Then we find the explicit form of the 
priate commutators 

16:2  

additional generators from the appro-
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t  t m '  m i  d  a  d  C V  d  a ( d  i \  
T t]  =CV ̂ -«P'6 ä~lé äV-S V S° 1)  

,  cd 6 d sip 8  n(8 \  
L 3S=IT 2 ,  M3]=-«W 7 e~-CWC6 CV ,0  -  l j  

3 3 3 (  3 \  
L1 5  = [M[, T1]  = ccpcxp — -  cysQsxp — -  — + (sçjcy + ccpcdsy) -  l j  

3 3 3 13 \  
L lh— \.M*> ̂ l ]  = sycy) - -  -  scpsdsxp — + — -  (cç>cy> -  scpcdsf)  -  1 ) 

^ 3 3 i  3 \  
^l]  =  _  c<p*y> ̂  -  ccpsdcip — -  s<pc^ — -  («9?^ -  ccpcOcxp) -  i  j  

0 ^ 3 (  3 \  
^26 = [^2'^i]=  ~s(psxp--s(ps6cyj— + c(pcip —  +  (C(psy) +  sycOcy) -  l j .  

(5) 

These six generators together with the operators M[ generate all the operators 
St and Ti. Therefore the generators L/1V = ~LVfl for /u,v = 1...6 span a subal-
gebra. Its commutation relations are 

-^Qcr] YVQ> Llia Yfi<T> I*VQ y/ jQi-^vcr yvtr'-^uQ 

where y is the matrix 

(6) 

- 1 
- 1 

- 1 

Thus the generators L j t v  span the Lie-algebra of the pseudo-orthogonal group 
L(3,3). By subtraction of St and from Mt and M[ in the eq. (1) we find that 
the Lie-algebra obtained by starting from the generators of the eqs. (1) and (3) 
is the direct sum of the Lie-algebra of the Poincaré group and the Lie-algebra 
of L(3,3).  The corresponding group is not necessarily th e direct product of P 
and L(3,3), however in quantum mechanics one is interested in the universal 
covering group and the representations of this group are in one-to-one corre­
spondence with the representations of the Lie-algebra. Therefore we shall in the 
following limit our attention to the Lie-algebra and in fact to that of L(3,3) 
since the unitary representations of the Lie-algebra of P are well known. 

The physical discussion in a forthcoming paper will include a discussion of 
the difference between the transformations of eq. (1) and eq. (3). If the trans­
formations of eq. (3) are assumed to be symmetry transformations of a n interac­
tion, then the particles must be " spherically symmetric". If it is assumed that 
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the group is just a "spectrum generating group" we are not forced to restrict 
the attention only to unitary representations, but we shall always consider only 
unitary representations. 

Some results regarding the problem of finding the irreducible unitary repre­
sentations of L(3,3) are known in the mathematical literature. Gelfand and 
Graev [4) have given three fundamental series of representations of the group 
&L[4, R), the group of real, 4x4, unimodular matrices. SL(4, R) is locally iso­
morphic to L(3,3) but it is neither isomorphic to L(3,3) nor to £(3,3) since it 
has a centre of order two while L(3,3) has no centre and L(3,3) has a centre 
of order four. Graev and Gelfand use a very elaborate technique and in oui-
opinion the form of the representations is not well suited for a physical inter­
pretation. In this paper we shall apply the method of reference [5], This me­
thod is convenient to apply to all semi-simple groups as long as the order of the 
group is not too high. 

2. A realization of the Lie-algebra based on the Iwasawa decomposition 

The Iwasawa decomposition s tates that any semi-simple connected Lie-group 
can be written as a product of three subgroups [5] 

L = KAN. (7) 

Here K is the maximal compact subgroup of L, that is S03®S03  in the case 
of L(3,3). A is Abelian and in our case it is gen erated by the opera tors LZi, 
L25 and Lu. The subgroup N, finally, is solvable and for L(3,3) its generators 
may be chosen as 

N1  = Lu  — L13  

-^2 -^24 -^23 

-^3 = "^35 — -^45 

-^4 = -^36 ~ -^46 

^5 = ̂ 26 ~~ ^56 
N, = Llb-L12. (8) 

In passing we note that N is an invariant subgroup of the group AN. It is 
convenient to parametrize the group in the following way 

g — g — 01,13 gV 1̂2 ga-̂ 56 g-ßLit 

0qNi DrN2  ßsN3  0tN, ßuNS/ >vN l l  (9) 

where g is an arbitrary element of the group. 
A realization of the group operations can now be given as transformations on 

the group parameters induced by left multiplication. However, it is sufficient 
to consider the transformations of the parameters of K and A only [5], In 
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particular we obtain in this way a realization of the infinitesimal generators 
L / l v  as differential operators on the group spaces of K and A. 

cd 8 8 cm 8 
23  =  C(p  sd ftp ' S( p  86 ~ ~s0 ~ 8xp 

cd 8 8 sep 8 
L"=~S(p7d~8y + C(p8d + ~sd8rp 

L = —d-
8cp 

"^56 

T cß 8 8 ccx. 8 
la5 = ca -r + 7>1T 

sß da 8ß sß 8y 

cß 8 8 see 8 
sß 8a a  8ß sß 8y 

8 

x>4g = — sa — + ca — + 

8a 

LM = sdcß sQcipsßsy Qy + cQsß sOsxpsßcy ^ 

+ edeß—— + sBsxpsßsy ^— sQcipsßcy (10) 

The remaining eight generators are most easily obtained by means of the com­
mutation relations. The realization (10) may be compared to the realization of 
the eqs. (2), (3), (5). In the latter case the carrier space is four-dimensional 
whereas the realization (10) is based on a nine-dimensional carrier space. In 
principle, the realization (10) will allow us to obtain all unitary irreducible rep­
resentations, whereas the other realization only admits some of these representa­
tions [6]. 

The enveloping algebra of the Lie-algebra is of some help for the classifica­
tion of the irreducible representations. The group L(3,3) has the following three 
invariants which then generate the centre of the enveloping algebra [5] 

/4  = LMV L VQ Le a  Lat l  

Ii = eWrnL^LeaLXJl. (11) 

After the insertion of the explicit expressions (10) for L l v  and some rather long 
calculations one obtains1 

1 I am grateful to prof. N. Svartholm for some lemmas which facilitate the calculations con­
siderably. (Internal report of the Institute of theoretical physics, Göteborg). 
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Note that X, / u  and v are the parameters of the subgroup A. 

3. Choice of representation space and the determination of the scalar product 

In the realization (10) of the Lie-algebra it is tacitly assumed that the space 
on which the elements of the Lie-algebra act is a linear space of differentiable 
functions on the topological product K x A. Now this space has to be some­
what more specified. It is clear that we shall have to introduce a scalar product 
in order to obtain a Hilbert space. However, before doing this we shall specify 
the dependence of the functions an the parameters of A. This is possible since 
the coefficients  of  t he derivatives in a  generator  L , do not  depend on X, /LI and v.  
Or expressed in another way, the operators d/dX, d/ëfi and d/dv commute with 
the Lie-algebra and, therefore, we can choose elements in the representation space 
which are eigenfunctions of d/dX, d/d[i and d/dv. The eigenvalues are denoted 
(ia + 2), (Î6 + 1) and ic respectively where a, b and c are complex numbers. 
Thus, a general element in the representation space has the form 

J(<p,  e , . . . .  X,  n ,  v)  -  e'""  2 n  e 1 " » - 0 ,  y > ,  a,  ß,  y) ,  (13) 

where / is a function on K. The values of the invariants in this space charac­
terized by a, b and c are 

/2 = 2 (a2 + b2 + c2 + 5) 

/4 = 2 (a4 + &4 + c4) + 4 (a2  + b2 + c2) - 14 

/j = 48 iabc.  (14) 

In an irreducible representation the invariants have constant values. Furthermore, 
in a unitary representation /2 and /4 must be real and I^ imaginary. The restric­
tions on a, b and c which follow from this requirement are not sufficient to 
determine the allowed values of a, b and c. This has to be done by introducing 
the scalar product which makes the generators L/JV anti-Hermitean, In ref. [5] 
it was shown that this requirement implies that the scalar product can be written 
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(/ i , /2)  
= JJ f A k i ) M { k v  kj f 2 { k 2 )d k x dk 2 ,  (15) 

K ^ K  

where k  stands for a point in the group space of K ,  dk  is the invariant measure 
on K, and where the kernel M has to satisfy 

M ( k x ,  k2 )  =  M ( k 2 ,  kx )  

M ( k 1  k ,  k2  k )  =  M ( k x ,  k2 ) ,  (16) 

i.e. M  is an invariant hermitean two-point measure on K .  The relations (16) 
follow from the anti-hermiticity conditions of the compact operators only. To 
determine M completely one has to require that also L3i is anti-hermitean and, 
furthermore, that if is a positive definite kernel. L3i contains the parameters 
a, b and c and. therefore, we obtain restrictions on these at the same time. 

Instead of working with the functions f { ( p ,6 ,  . . . , y )  and the realization (10) of 
the generators it is at this stage advantageous to introduce a basis i.e. a suit­

able function system on K or rather K = S03®S03 since we are looking for 

representations of L. A natural choice is at hand, namely, the functions 

T l m n { ( p , 0 , y )  D' h k ( oc ,  ß , y ) ,  (17) 

where 2Z = 0, 1, 2, ..., 

2 7  =  0 , 1 , 2 , . . . ,  - j < h , k < j  

0 ^ 6 , ß < n ,  - 2 j i < ( p ~ y ) < 2 T Z .  
on + y ci. — y 

T l
m n  denotes the matrix element in an irreducibie representation I ,  of a finite 

transformation of S03 described by the Euler angles (p, 0 and xp. We know that 

the set {Tl
mn} is a complete orthogonal set of functions on S03 with respect to 

the invariant measure on S03. Similar properties hold for {D^}. The defining 
relations and various properties of these functions are given in an appendix. 
Let us now represent an arbitrary function j{cp, 0, xp, a, ß, y) by the sequence 
{f(lmnjhk)} according to the expansion 

/ =  2 f ( l m n j h k )  T l
m n  D{ k .  (18) 

( . I mn j h k )  

The operators L / l v  can now be considered as operators acting on the indices 
(Imnjhk). The explicit formulae are easily obtained from eqs. (A4) of t he appen­
dix. The scalar product (15) takes the form 

( / i >  J i )  =  2  f x  ( ^ i  m i  n i  j i  ^ i )  
(Zi m i Ti i h h i k i )  
(/2^2^2 .72^2^2) 

x M { l t  m x  j 1  h 1  k x  \  l 2 m2n 2  j2  h 2  k 2 )  /2  ( l 2  m 2 n 2  j2  h 2  k 2 )  ( 1 9 )  
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where the summation is extended over suitable ranges which will be determined 
when the question of irreducibility is discussed. The positive definite hermitean 
matrix M has to be determined so that the L 's are anti-hermitean. From the 
requirement that L12 and L56 are anti-hermitean it follows that M is nonzero 
only for ml = ra2 and hl = h2. The anti-hermiticity of L13 and Li6 then yields 

M(lmnjhk\ l '  m'  n  j '  h'  k ' )  =  (21+ 1)_1 (2j  + l)-1 <5;i< ô j r  ôm m •  ôh h •  7Hij {nk\n'  k ' ) .  (20) 

This formula could have been obtained also from eq. (16). The reduced matrix 
Tnu(nk I n k') has to be determined from the antihermiticity of L3i. The rela­
tions obtained from this requirement are given by the eqs. (A5, A6, A7, A8, 
A9, A10). 

We can now discuss the different series of irreducible representations on the 
basis of these equations. It was noted earlier that an irreducible space is charac­
terized by the values of the parameters a, b and c. From the eqs. (A4, ..., A10) 
i t  can  be  seen tha t  the  Hi lber t  space  which is  spanned by al l  funct ions  f ( lmn jh k)  
and for which the scalar product is given by eq. (20) decomposes into eight in­
variant subspaces H2eo2T„ where 2g0 = n+k mod. 2 and 2r0 = n — k mod. 2. They 
are listed in table 1. 

Table  1  

Invariant Values of 
subspace (n, k)  1 j  

W o o  . . . ( 0 , 0 ) ,  ( 1 ,  1 ) ,  ( 1 ,  - 1 ) , . . .  0 ,  ± 1 ,  ±2  . ..  0 ,  ± 1 ,  ±2  

H 0 1  • * • (  -  h è )  ( i '  i ) »  ( è >  - ? ) > • • •  +  1  + 3  IL 2»  —  2  +  1  + 3  X  2»  x  2  •  •  

H 1 0  - è ) >  (hb'  " ! ) • •  +  i  + a  ±  2 »  —  2  4 - 1  + 3  X  2 '  —  2  

. . . ( 0 ,  - 1) ,  ( 1 , 0 ) ,  ( 1 ,  - 2 ) . . .  0 ,  ±  1,  ± 2  . ..  0 ,  ± 1 ,  ±2  

H i i  . . . ( - i l ) ,  ( i  2 ) ,  ( i  0 ). . .  +  1  + 3  T 2 .  Î 2  0 ,  ± 1 ,  ±2  

H i î  •  • • ( 0 , è ) ,  ( 1 , 1 ) ,  ( 1 ,  - 1 ) . . .  0 ,  ± 1,  ±2  .. .  ± i ± f  • •  

. . . ( o ,  - i ,  ( i , i ,  ( i ,  -§ ) . . .  0 ,  ± 1 ,  ±2  . ..  ± i  ± f  • •  

1 

H
W

 O
 

I +  1  + 3  X  2»  X  2  0 ,  ± 1,  ±2  

The representation induced in the subspace H2o02z0 and characterized by the 
parameters a, b and c will be denoted V(q0, r0, a,b, c). To classify the different 
ser ies  of  i r reducible  un i tary  representa t ions  one  has  t o  f ind  t he  values  of  a,  b  
and c for which the eqs. (A5, ...,A10) have a solution with a positive definite 
matrix 7Hij(nk I n'k'). In general this will be a complicated task because the 
equations are difference equations with many terms, However, if one looks for 
solutions of the form 

THij in^n k' )  =  Bl j n k ôn n-ô k k '  (21) 
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and puts a x  = Re a 

a 2  = Im a 

ex = Re (b + c)  

e2  = Im (b  + c)  

d± = Re (b — c) 

d2  = Im (b  — c)  (22) 

then one finds from eq. (A10) 

a2  nk Bu  n k  0 

(n + k+1 -  e 2 )  B l j n + l k + 1  = (n + k + 1 + e 2 )  B I j n k   

(n  k  4 "  1  d 2 )  B i jn i  {n k  ~ i ~  1  ~ r  d 2 )  Bi jn k  

®l-®yn+lfc+l—  ^i^ljnk 

d x  Bijn + j  _j  d i  B l j n k .  (23) 

Let lis divide the discussion of these equations into two cases according to 
whether Bijnk is different from zero only for (n, k) = (0, 0) or other (n, k) values 
also appear .  I t  is  easi ly  seen that  one can have l imitat ions on n + k or  n — k  
but not on n or k separately. Therefore the second case implies a2 = 0 according 
to the first of the eqs. (23). 

Case I .  (n,  k)  not  l imi ted to  (0, 0) 

Besides the eqs. (23) there are also the following relations which are obtained 
from the eqs. (A6, ...,A9) 

Therefore, B t j n k  is independent of both I  an d j  except possibly for n = 0 or k = 0. 
However, one cannot have a limitation to n = 0 separately and since the eqs. 
(23) allow us to determine Bijok from some Bmk and Bmk is independent of j it 
follows that also Bijok is independent of j. The same is true for I. Thus we see 
that as long as (n, k) is not limited to (0, 0) the measure Bljnk is independent 
of I and j and all (I, j) values appear which belong to a given subspace H2Qo2t0-

Let us now examine the dependence of Bijnk on n and k. This dependence 
is given by the last four of the eqs. (23). We see that the equations containing 
n + k are separated from those containing n — k. It is therefore possible to study 
just  t wo equat ions a t  a  t ime (put  B l j n k  = Fe r ,  2 Q = n + k,  2 r  = n-k) .  

One can first distinguish the case e x=t=0.  It then follows that e2 = 0 and that F Q T  

does not depend on q. Furthermore, all q:s belonging to a given space H2QoZto 

•Bi + ij+ink Bijnk 

kBHljnk = kBljnk 

W* l j  + lnk ^  link '  (24) 

(2 q + 1 - e2) FQ + l r  = (2 £ + 1 + e 2 )  F Q X  

e iFe+iT •F 'q t  (25) 

250 



ARKIV FÖR F YSIK. Bd 32 n r 13 

h 

h 

Fig. 1 

appear. If ej = 0 then e2  can be different from zero. Furthermore, if e2  is suf­
ficiently small one still has the full range of ^-values but Fm will depend on q. 
The limitations are 

There is also the possibility of limitations on q . First of all there is the pos­
sible solution Fer = 0 unless p = 0. This requires e2 = — 1. But one can also have 
a lower positive bound q or upper negative bound q for q. The value of e2 is 
then given by 

The corresponding possibilities come out for the variables r,  d1  and d2  b y using 
the other two equations (23). Some typical diagrams for the allowed (n, k) values 
are shown in fig. 1. Besides these restrictions on n and k there is, of course, 
always the conditions |w|<Z, The explicit dependence of Bmk on n and 
k can, of course, be obtained from the eqs. (23). We do not give the expressions 
but we observe that for e^O or Bmk independent of all its indices the corre­
sponding measure M(k1, k2) in eq. (15) is an ordinary one-point measure. We have 
previously called this series the main series [5]. 

Case II .  Degenerate s eries 

In dealing with case I we excluded the possibility that (n,k)^(0,0), i.e.. B l j n k  

is different from zero only for n = k = 0. It can be included among some degenerate 

(26) 

or 

e2-  -1 +2q 

e2  — — 1 — 2q. (27) 
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series obtained in the following way. Consider the equations (A4). By putting 
n = k = 0, 1 + ib = 0, c = 0 and 

T l
m o D L=\ l jm K> (28) 

the action of the operator L 3 i  is given by 

L 3 i \ l jm h)   

Together with the expressions for the compact operators we thus have a realiza­
tion of the Lie-algebra on vectors which span representation spaces of the com­
pact subgroup. Furthermore, there is nothing to prevent us from using this 
realization also for half-integer values of I a nd j. But it is then known from 
some general theorems on analytic vectors [7] that the algebraically irreducible 
hermitean representations of the Lie-algebra correspond to irreducible, unitary 
representations of the universal covering group. As a matter of f act these theorems 
form the basis for all our calculations. 

The measure matrix is now defined as in eq. (20) with the omission of the 
indices n, k, n , k'. The reduced matrix m is therefore diagonal and depends 
only on I an d j. Denote its elements by Dtj. The equations corresponding to 
the eqs. (A6, ...,A10) are now quite simple 

Du real and > 0 

(2 — i d  +1  +  j )  Di + i j + i  = (2 — i a  +1  +  j )  D i j .  

( l - i ä  +  l - j )D l + l j - 1  =  ( l - ia  +  l - j )D l j .  (30) 

We notice that J  +  =  I  +  j  and — j  a re changed in steps of order two so 
that the irreducible spaces are first of all characterized by J+  mo d. 2 and J_ 
mod. 2. Fig. 2 shows the (I, ?')-values of the eight different subspaces. 

By taking real and imaginary parts of eqs. (30) we get 

( 2  +  1  + j -  a 2 )  D l + 1  j + 1  = (2 +  l  +  j  +  a 2 )  D u   

( 1  +  l - j -  a 2 )  A+ü - i  =  (1  +  1  ~ j  +  « 2 )  A ;  

aiDi+ij+i = a1D tj  

ai A + l; 1 = al Ar (31) 
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2  4  

I 
5  7  
I 

-3 -

3  2  

8  5  

7  6  

-3  — 2-

Fig. 2 

a =r — 7 

/ <2 

Fig. 3 lig. 4 

1 " T -

If + O then it follows from these equations that a2 = 0. Then also D t j  is in­
dependent of I and j and the (I, ?)-contents of an irreducible representation are 
given by any of the subspaces in fig. 2. If ax = 0 these subspaces may still be irre­
ducible provided a2 is sufficiently small. On Hl for instance |a2|<l guarantees 
that Di+lj-j has the same sign as Dtj. On the other subspaces H t  the interval 
is smaller. The discrete series are obtained as follows. For a2 = — 1 Dt j  can be 
different from zero only if l = j. In this way we obtain two representations with 
the (I, ?')-conte nts of fig. 3. 

Furthermore, J  -  can have an upper bound < 0 or a lower bound J  > 0 .  

This requires 

and 

, =  - 1  - J -

=  —  1  +  J  _  (32) 

respectively. These series are illustrated in fig. 4. 
We have summarized some properties of the different series of r epresentations 

in the tables 2 and 3. It is clear that all our representations are irreducible 
because reducibility would mean that there must exist other solutions for the 
matrix Bi jnk or Dlk which project out a space of lo wer dimension. However, by 
construction the solutions for B and D are minimal in the obove sense. 
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Table 3. Degenerate series of representations characterized by b = i, c = 0. 

Series of r epresentations characterized by the ranges of 
and restrictions on 1 + j and 1 — j 

and a2 

Continuous series Discrete series 

Representation space «2=0 a = 0 «i = = 0 ax = 0 

H1: 
I + 0, 

= 0, 

2, 4, 

±2, ±4, ... 
— oo < a x < oo 0< «2 < 1 

a 2 = 1 

l - j <  -  1  -a2 

3, ... 

or I — 1 +a2 

a2 = - 1 

Z - j = 0 

H2: 
I + = 1, 3, 5, 

= ± 1, ±3, 
0<|a1 |<oo empty 

a2 = 0 

I - j < - 1 - a2 

2, ... 

or Z — ? > 1 + a2 

empty 

H3: 
Z + i -  2> 

5 9 
2» 2' 

3 
• 2» 

l 
2' 

5 
2» * * • 

— OO < fl x < oo 0< «2 <1 
„ = _1 3 a2 2> 2' • • • 

I - j < - 1 - a2 

a = -1 3  a g 2, 2, ... 

Z-? > 1 -a2 

empty 

Ht,: 
Z + 3 

2» 
7 11 
2' "2"' 

1 
• ~ 2' 

3 
2» 

7 
2» ••• 

— oo < ax < oo 0< «2 <1 
n = -1 3 
«2 2'2' ••• 

I - j < - 1 - a2 

„ = 1 5  a 2 2> 2» 

Z — / > 1 + a2 
empty 

H 
I + = 1 5 9 

2- 2' 
1 
2 

3 
2' 

7 
2' '  • • 

— oo < a1 < oo 0< s <1 
n = -12 «2 2'2' ••• 

I - j < - 1 - a2 

a =1 5 
2 2' 2» 

Z — j > 1 + «2 
empty 

H6: 
I + 3 

~~ 2' 
7 11 
2' 2 > 

3 
• 2' 

1 
2' 

5 
2> ••• 

— oo < a1 < oo 0< «2 <1 
« =1 5 «2 2'2» 

I - j < - 1 - a2 

„ = _I 5 
2 2' 2' •• • 

Z - / >  1  +  c r 2  

empty 

H7: 
1 + = 1 

= 0 

3, 5, 

±2, ± 4,... 
— oo < ax < oo 0< a2 < 1 

a2= 1 

l ~ j <  —  1 —  « 2  

3, ... 

or Z - j > 1 + a2 

a2 = — 1 

Z - j = 0 

H8: 
I + = 2, 4, 6, 

'= ± 1, ±3, 
0 < |ai 1 < oo empty 

«2=0 

- l-a2 

2, ... 

or l — j> 1 +a2 
empty 

In addition to the series of the tables 2 and 3 there are certainly others which 
require a non-diagonal W-matrix. It seems to be very difficult to solve the gen­
eral recursion relations for the W-matrix. Some more series can be obtained by 
varying the parametrization (9). Then one would get new equations for the 7YI-
matrix and the diagonal solutions do not coincide with those we have calculated. 
However, since one does not reach all representations even after this modifica­
tion and since we already have a large number of representations which may 
lend themselves to physical interpretation we have not considered it worth while 
to carry out this program at the present stage. 

Finally, we want to stress that we have not examined the unitary equivalence 
of the representations of the tables 2 and 3. Some information can be obtained 
from the values of the invariants. When the invariants take on different values 
then the corresponding representations are clearly inequivalent. The same is true 
when the (I, j) contents of two representations are different. However, the ques­
tion of unitary equivalence is more a mathematical problem than a physical one. 

CERN, Geneva, and Ins titute of the oretical P hysics, Göteborg, Sweden. Feb ruary 1966 
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APPENDIX 

The functions 
T l mn(<p ,0 , y ) ,  0 < 0 <7Z  

21=0,1 ,2 , . . . ,  0<^(p  +  ip<:4 :7 l  

— — i p ^2n  

have the following properties 

6 ,  y , ) - * " * J " ,  

m  ,  m  (  -  1) '  "  1 / ( l -n ) \ ( l  +  my .  
where pm„ <cfl) = ^ (A1> 

j Z-m 
(1 -c0)-(m~n)/2(l + c0)-(m+n)/2——t— [(1 - c d ) l ~ n ( l+cd ) l + n ] .  

d ( cO)  

By introducing the matrix 

|/(Z — m)  (I  — m  +  1) i I  ( I  +  m  +  1) ( I  — m)  j/(Z + m)  (Z + m + 1) 
y  ( 91 .+  1  \ ( 9 l  +  9\  V 9111+  n  '  

C" 

(2Z + 1) (2 Z + 2) ' 2Z(Z+1) ' 2Z(2Z+1) 

j I  ( I  + m + 1) (Z — m +  1) m i/ ( l  +  m) ( l  — m)  

y  ~ (2/+i)(i+i) i/j(j+T) ~ ' m + i )  

j/(Z + ra) (Z — ra + 1) i/( 
_ r 9.1.(14-1 \ r 

(Z + m) (Z + m + 1) i/(Z + ra) (Z — ra+ 1) i/(Z — m) (I — m + 1) 

(2Z+l)(2Z + 2) '  21 (1+1 )  y  21 ( 21+  1 )  

one has the following relations 

sd  ™ T' m  B  =  (n  -  med)  T \ n .  n  -  V( l  +  m)  ( l -m+T) sO e i ( f i  T l
m . h n  

a t )  

„Q ml  _  f i l m  /"fZn /77Z+I i f i lm  f i ln  ml  i f i lm  f i ln  m l -1 
J m.n  — ^21 < -'21 - 1  m,n ^ ~  ^22 ^22 -*  m .  n  ^ u23 ^23 J m, n  

sß J®  ml  f i l m  f i ln  m l  +  1  i / ^ Z m f i ln  ml  i  f i lm  f i ln  m l -1  7= e J m- l ,  n  — ^31 ^21 1  m,  n  '  ^32 ^22 1  m. n  ̂  u33 <^23 J-  m . n  
H  

sß ml  f i lm  f i ln  ml  +  1  i f i l m  f i ln  ml  i f i lm  f i ln  m l -1  
e  J-  m ,n - l  ^ 11 ^ 21 - * -  m ,  n  '  ^  12 ^22 - ' -m .n  ' ^13 ^ 23 J m, ra 

V2 

sß „iw mZ /"iZm /-(Zn mZ + 1 1 /^rZm /^/Zn /71Z 1 /"rZm /^Zn ml-1  
~7= e 1 m,n-l~ '-'21 ^31 ^ m.n ' ^22 (-/32 1  m . n  ̂  ̂23 <-^33 J m, n 
1/2 

<tß T '  f i lm  f i ln  m l  +  1  1 f i lm  f i ln  ml  1 f i lm  f i ln  m l -1  /A  o \  ^=6 - I  m .n+1  ~  ̂ 21 '-'11 1  m.n  '  ^22 ^1 2 1  m. n  ^ ̂ 23 <-13 1  m.n -
V2  
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The functions T'mn satisfy the orthogonality relations 

m2 TI 
sOddd(<p + tp) d{cp -  xp) T l^ l U l  (99, d, y>) T„2  {cp, 6,  xp) 

-2 71 

= <W<W<5»,»,- (A3) 

The action of the operators L t , v  on the basis functions T l
m n  D j

n k  is given by 

-^12 ^m, n k — — im Tl
m% n D}

h It 

L13 T l
m >n  D' h tk  = \{V\l + m+ 1) (l-m) T l

m + hn  

- V { l  +  m ) { l - m +  1) Tl
m-h n}D j

h t k  

L2 3  T lm.n D i
f l i k=Y i{ V(1 +m + 1) (I -  m) T l

m + h n  

+ V(l + m) (l-m+1) T l
m- l  n] D{ i k  

^56 n DSh, k — — ih T l
m%  k  D j

h t  k  

L„ Z*„. „ Di. „ = 1 T'm ,  „ { YJj + h+1) (j-h) D<» +  1 .  »  

- 1(7" + A ) (j - A + 1 

^5 Tm.n Di. k = 2i » { K(? + Ä + 1) (j  — A) Di -j h 

+ t 0" + A) (;' - /t +1 ) Di_1-fe} 

£34 2"».« K k - + (2 + ia +1 + j) Cg C'A Cg Cg Tgi D>t\ 

+ (2 + ia + i + 1) Cg Cg Cg Cg 2"; « Di, k 

+ ( 2 + i « + 1  -  j  - 1) c,t cg cg cg ztti Dt i 

+ (2 + ia + j -  1 ) Cg Cg Cg Cg n.  « D 'k.1 

+ (2 + ia + 2) CgCg Cg Cg T'm, „ Di. » 

+  ( 2  +  i a - j - 2 )  Cg Cg Cg Cg T ' m ,  „  D ' „ : l  

+ (2 + ia. -1 + j - 1) CgCg Cg Cg Ztr.1» Djft 

+ (2 + ia -1 - 2) CgCg Cg Cg ZV, Di.» 

+ (2 + ia -1 -  j -  2) CgCg Cg Cg Tg,1, Di;ä 

+ J ( — n — k — 1 — ib —ic) sOe i v  sße'y  T l
m_ nD j

h t k  

+ l(n-k+l+ib- ic) ade» sßi i y  T l
m ,  nD\,k  

+ ±(-n + k+\+ib-ic) sOé i v  sße i y  T\n_ nD\< k  

+ l(n + k—l-ib- ic) sOê'v sßeiY Tl
m, nDj

htk. (A4) 
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A unitary representation of £(3,3) is characterized by the matrix 7 H u  ( n k  \  n ' k ' )  
which satisfies 

7 Hi j ( n k \ n ' k ' )  =  7 U i j { n ' k ' \ n k ) ,  (A5) 

(2 — i ä  + 1  +  j  \  [l  +  n  +  1)  ( I  —  n  +  1)  ( j +  k  +  1)  ( j  —  k +  1 )  T H i  i j + i  ( n k \ n  k ' )  

( - 2 + i a  - 1  -  j )  V { 1  +  n  +  1)  ( I  -  n '  +  1)  { j  +  k '  +  1 )  ( j  -  k'  +T) W ^ n k  | n ' k ' )  

+  J  (  —  n  —  k  —  1  +  i b  +  i c )  V ( l  +  n  +  1 )  ( I  +  n +  2) (/ + k  +  1 )  ( ;  +  k  +  2) 

x  J Y l i + i j + i { n  +  l k  +  l\ n '  k ' )  

I  { n  +  k '  -  1  -  i b  -  i c ) \  { l  +  n ' ) { l  +  n ' +  1 )  { j  +  k ' )  ( j + k '  +  l)  7 n u { n k  |  n '  -  1  k '  -  1 )  

£  (  —  n '  —  k '  —  1  —  i b  —  i c )  V ( l  —  n )  ( I  —  n '  +  1)  ( j  —  k ' )  ( j  —  k '  +  1)  7 H u ( n k  \  n  +  1  k '  +  1)  

+  i  { n  +  k  -  1  +  i b  +  i c )  \ / { l - n + l ) ( l - n  +  2 ) { j - k + l ) ( j - k  +  2 )  

x T M i + i j + i i n -  I k  —  \  \r i  k ' )  

—  l ( n  —  k  +  I  — i b  +  i c )  V  ( 1  +  n  +  1 )  ( I  +  n  +  2) ( j  —  k  +  1 )  ( /  —  k  +  2) 

x l f } \ l + x ;+i ( n  +  1  k  —  1 1  n ' k ' )  

- l ( - n '  +  k '  +  l + i b - i c )  ] / { l  +  n ' ) { l  +  n ' +  1 )  ( j  -  k ' )  ( j - k '  +  l )  

x 7 n , j { n k \ n ' -  l k ' +  1 )  

—  J  { n  — k '  +  1 +  i b  ̂  i c )  f ( l  -  n ' ) ( l  - n ' +  1) { j  +  k ' )  ( j  +  k '  + 1) T W ^ n k  \  n '  + 1 k '  -  1) 

_ i 
4 ,  +  1  —  i b  +  i c )  V ( l  —  n  +  1 )  ( I  —  n  +  2) ( j  +  k  +  1 )  ( j  +  k  +  2) 

x T Y h fi^+i ( n  —  1  k  +  1 1  n ' k ' )  
= 0, (A 6) 

(  —  i ä  +  l + l ) V ( l  +  n  +  l ) ( l  —  n + l )  -  k -  7 H i + n  ( n k \ n '  k ' )  

+  { i a  —  I  —  1 )  V {1  +  n  +  1)  ( I  —  7 i  +  1)  k '  •  7 H l j ( n k \ n '  k ' )  

—  \  (  —  n  —  k  —  1  +  i b  +  i c ) \  ( l  +  n +  1  )  ( Z  +  n  +  2) ( j  —  k )  ( j  +  k  +  1  )  

x T M i + i j  ( n  +  1  k  +  11  n  k' )  

—  \  ( n  +  k '  —  1  —  i b  —  i c )  \  ( l  +  n )  ( I  +  n  +  1)  ( j  +  k ' )  ( j  —  k '  +  1  )  

x T H i i i n k l n ' -  l k ' ~  1 )  

+  I  (  —  n '  —  k '  —  1  —  i b  —  i c )  V ( l  —  n ' )  ( I  —  n '  +  1 )  ( j  +  k '  +  1)  ( j  —  k )  

x T Hu i n k l n ' + l k '  +  l )  

l ( n  +  k —  1  +  i b  +  i c )  Y  ( I  —  n  +  1 )  ( I  —  n  +  2) ( j  +  k )  ( j  —  k  +  1)  

x 7 H i + i j  ( n — \ k — \ \ n '  k ' )  
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—  %  (  r i  —  k  +  l  —  i b  +  i c )  V  ( l  +  n  +  1  )  ( l  +  n  + 2) ( j  +  k )  ( j  —  k  +  1  )  

x 7 H i + i ) ( n + l k  —  1 1 r i k ' )  

-  i  (  -  r i  + k '  +  1  +  i b  -  i c)  V ( l  +  ri ) ( l  +  ri  +  l ) ( j  +  k '  +  l ) ( j  —  k ' )  

x 7ni, ( n k \ n ' - l k '  +  l )  

+  i  (r i  —  k '  +  1 +  i b  —  i c )  V  ( l  —  r i )  ( l  —  r i  + 1) (j  + k ' )  ( j  —  k '  —  1) 

x 7 H i j { n k \  r i  + 1 k '  —  1) 

+  I  (  —  n  +  k  +  1  —  i b  +  i c )  V ( l  —  n  +  1  )  ( l  —  n  + 2) ( j  +  k  +  1  )  ( j  —  k )  

x  T H i  h i j  ( n  —  1  k +  1 1  r i  k ' )  
= 0, (A7) 

( 1  —  i ä  + 1  —  j )  | / ( £  +  n  +  1 )  ( j  —  n  +  1 )  ( j  +  k )  ( j  —  k )  ( n k \  r i  k ' )  

+  (  —  1 + i a  —  l  +  j )  \  ( l  + r i  +  1) ( l  —  r i  + 1) (j  + k ' )  ( j  —  k ' )  7tiij( n k \ r i  k ' )  

—  I  (  —  n  —  k  —  1  +  i h  +  i c )  V ( l  +  n  +  1 )  ( 1  +  n  +  2) (; — k  —  1 )  ( / —  k )  

x  7f t i + i j - i  ( n  + 1 k  +  1 \ r i  k ' )  

—  J { r i  + k '  —  1 —  i b  —  i c )  V ( l  +  ri )  ( 1  +  ri  +  1) ( j  —  k ' )  ( j  —  k '  +  1) 

x 7 n i j { n k \ r i - l k ' - l )  

—  I (  ~  ri  — k '  —  1 —  i b  —  i c )  / (? — r i )  (l  —  n ' +  1) ( j  +  k ' )  ( j  +  k '  +  1) 

x 7ni j { n k \ r i  +  l k ' +  1) 

—  \  { n  + k  —  1 +  i b  +  i c )  \ \ l  —  n +  1  )  ( I  —  n  +  2)  ( j  +  k  —  1  )  ( j  +  k )  

x 7 ) î i + i j - i ( n  -  1 k  —  l \ r i  k ' )  

+  l ( n  —  k  +  1  —  i b  +  i c )  ] /  [ I  +  n  +  1)  ( l  +  n  + 2) ( j  +  k  —  1 )  ( j  +  k )  

x 7 H i + i j - i ( n  + 1 k  -  1 \ r ik ' )  

ï  (  —  r i  + k '  +  1 +  i b  —  i c )  V  ( l  +  r i) ( l  +  ri  +  1) ( j  +  k ' )  ( j +  k '  +  1) 

x T H i j  (n k  I r i  —  1 k '  +  1 )  

£  ( r i  —  k '  +  1 +  i b  —  i c )  V ( l  — r i )  ( l  —  r i  + 1) ( j  —  k ' )  ( j  —  k '  +  1) 

x 7 ï \ i j { n k \ r i  + 1 k '  —  1) 

+  i  (  —  n  +  k  +  1 —  i b  +  i c )  ] / { l - n  + 1) ( l - n  + 2) ( j  —  k  —  1) ( j -  k )  
x  1 k  + 1 \ r i  k ' )  

= 0, (A8) 

17:2 259 



A .  K I H L B E R G ,  U nitary irreducible representations of pseudo-orthogonal group 

( 1  —  i ä  +  j ) n  V ( j  +  k  +  1 )  ( j  —  k  +  1 )  7 H i j + i ( n k \ r i  k ' )  

+  (  —  1  +  i a  —  j ) r i  ] / { j  +  k '  +  1)  ( j  —  k '  +  1)  T f l u ( n k \ n  k ' )  

—  ï  (  —  n  —  k  —  1  +  i h  +  i c )  Y  ( I  +  n  +  1)  ( I  —  n )  ( j  +  k  +  1)  ( j  +  k  +  2) 

x  7 t l i } + \ { n  +  1  k - r  1 1  r i k ' )  

—  \  ( r i  +  k '  —  1  —  i b  —  i c )  \ ' ( l  +  n ' ) ( l  —  r i  +  1) ( j  +  k ' )  ( j  +  k '  +  1) 

x 7 H i j ( n k \ r i  — 1 k '  —  1) 

+ 1  ( n  +  k  —  1  +  i b  +  i c )  V  ( I  +  n )  ( I  —  n  +  1)  ( ;  —  k  +  1)  ( j  —  k  + 2) 
x  7f t i j  +  i ( n  —  1  k  —  1 1  ri  k ' )  

+  ï  (  —  ri  —  k '  —  1  —  i b  —  i c )  \ \ l  +  r i  +  1 )  ( I  —  r i )  ( j  —  k ' )  ( j  —  k '  +  l )  

x 7 H i j { n k \ r i  + 1 k '  +  1) 

+  l (n - k + \ - i b  +  i c )  I  ( H  n  +  1)  ( I  - n ) ( j - k + l ) ( j  —  k  +  2) 

x 7 t i i ) + i { n +  I k  —  \  \ r i  k ' )  

+ 1 (  — ri  +  k '  +  I  +  i b  —  i c )  V  ( I  +  r i) ( l  —  r i  +  1 )  (j  —  k ' )  ( j  —  k '  +  l)  

x J H i j ( n k \ r i  —  1 k '  +  1) 

—  \ ( n '  —  k '  +  l  +  ib  —  i c )  V ' ( I  +  r i  +  1 )  ( I  —  r i )  ( j  +  k' ) ( j  +  k '  +  1 )  

x T ï l i j  (n k  I r i  + 1 k'  —  1 )  

—  \  (  —  n  +  k  +  1  —  i b  +  i c )  V ( l  +  n )  ( I  —  n  +  1  )  ( j  +  k  +  1  )  ( j  +  k  + 2) 

x 7 H i ) + i { n  —  1 k  + 1 \  r i  k ' )  
= 0, (A9) 

(  —  i ä n k  +  i a r i k ' )  7 H i j { n k \ r i  k ' )  

+ 1 (  —n  — k  —  1  +  i b  +  i c ) Y  ( 1  + n  +  1 )  ( I  — n )  ( j  +  k  + 1 )  ( j  —  k )  7 H i j { n  +  1  k  +  1  \ r i  k ' )  

+  i  { r i  +  k'  — 1  — ib  — i c )  V( l  +  r i)  ( l  — n '  +  1 )  ( j  +  k ' )  ( j  — k '  +  1 )  7H u {nk \ r i  — 1  k'  — 1 )  

+ \ ( - r i -k ' - l—ib- i c )  Y  { l  +  ri  +  1 )  ( I  — r i )  ( j  +  k'  +  1 )  ( j  — k ' )  7 fhj (nk \ r i  +  lk '  +  1 )  

r  \  ( n  +  k—  1  +  i b  +  i c )  Y  ( I  +  n )  ( I  —  n  +  1)  ( j  +  k ) ( j  —  k +  1 )  7 Y l i j ( n  —  1  k  —  1 1  r i  k ' )  

+  i  { n  —  k  +  1  —  i b  +  i c )  y  ( I  +  n  +  1)  ( I  —  n )  ( j  +  k )  ( j  —  k  +  1)  7 H i } { n  +  1  k  —  1 1  r i k ! )  

+  \  (  —  r i  +  k '  +  \  +  i b  —  i c )  Y ( 1  +  r i )  { I  —  r i  +  1)  ( j  +  k '  +  1)  ( j  —  k ' )  

x T t î i j ( n k \ r i  —  1 k '  +  1) 

+  ï  ( r i  —  k ' + \ + i b  —  i c )  y  ( I  +  ri  +  l ) ( l  —  r i )  ( j  +  k ' )  ( j  —  k !  +  1 )  J H l j ( n k \ r i  +  1  k'  —  1 )  

+  l (  —  n  —  k  +  1  —  i b  +  i c )  \  (I  +  n )  ( I  —  n  +  1)  ( j  +  k  +  1)  ( j  —  k )  T f h j  ( n  —  1  k  +  l \ r i  k ' )  

= 0. (A10) 
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Some non-compact symmetry groups for elementary particles 
associated with a geometrical model 

By ARNE KIHLBERG 

A B S T R A C T  

Three Lie-groups containing the Poincaré group and one of the groups SO(2), L(l, 3) or L(3, 3) 

respectively, are studied with respect to their ability of reproducing the spectra of the internal 

quantum numbers. Their use as interaction symmetry groups is discussed. 

1. Introduction 

The lack of a consistent dynamical theory which can explain all processes in 
elementary particle physics has motivated the search for symmetries which would 
impose restrictions on the interactions among the particles and resonances. Some 
symmetries are well known and find their natural explanation in the theory of 
relativity. More precisely, we think of the symmetry of all physical laws under 
translations and rotations of the four-dimensional coordinate system. Since these 
symmetries have an unrestricted validity it is comforting that they have a geometrical 
explanation. Other experimentally observed symmetries, mostly referred to as 
internal symmetries, have a more restricted domain of validity. In recent years 
these internal symmetries have been discussed primarily within the frame-work of 
the group SU(3) [1]. However, the SU(3) theory is purely phenomenological and it 
does not seem to emerge naturally from any simple geometrical model. One might 
possibly argue that a basic theory of i nternal symmetries cannot be geometrical since 
the SU(3) symmetry is valid only for the very strongest interactions. Electromagnetic 
and weak interactions and also the weaker part of strong interactions violate this 
symmetry. However, there is an objection to this reasoning. A geometrical explana­
tion may in some way be connected to, say, electromagnetism and then the symmetry 
transformations might well cease to be symmetry operations for the electromagnetic 
interactions. 

One can proceed along different lines when one tries to find basic explanations for 
the internal symmetries which are found experimentally. Either one takes the 
groups SU(3) for granted and tries to find a geometrical or dynamical interpretation 
of i t, or one may look for possible extensions of the space-time symmetry group, that 
is the Poincaré group P. The latter procedure might not lead to SU(3) as the internal 
symmetry group but rather to some other group. Presently one has some confidence 
in SU(3), but its capacity is not so great that one should give up the hope of f inding 
other groups which better reflect the basic properties of Nature. Of course, one may 
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question whether the regularities of the elementary particle interactions should nec­
essarily be explained on the basis of a group. In the past, however, this idea has been 
very successful. 

During the last couple of years there has been a vivid interest in the possibility 
of merging the internal and the external (i.e. space-time) symmetries into one large 
symmetry group. Most investigations have led to negative results [2], or to proposals 
which are hard to interpret [3]. Others seem somewhat more promising [4] and the 
model which has been studied most extensively is the relativistic version of t he SU(6) 
theory [5]. In that case the global group, which contains both P and SU(3), is either 
ISL(6, C) [6], SU(6, 6) [7] or some even larger group. One difficulty with all these 
groups is that they require the introduction of an euclidean space of very high dimen­
sion which is difficult to interpret physically. 

Theories based on geometrical considerations have been discussed by many 
authors. All those theories deal with the conventional space-time or some extension 
of it. Fröhlich [8] has tried to find new symmetries defined on space-time. Allcock 
[9] and Vigier et al. [10] have used a space defined by the coordinates of a rotator-like 
structure. In a number of p apers [11] Rayski has examined the possibility of e xtend­
ing space-time by two extra time-like dimensions. The resulting space is thus the 
pseudo-euclidean space with the signature ( + + H ). The spin is assumed to 
emerge from the three-dimensional rotation group acting on the space coordinates 
whereas isospin has a similar relation to the time coordinates. Just like the relativistic 
versions of the SU(6) theory it has the unattractive feature of introducing un-
observable coordinates and additional assumptions must be made to prevent them 
from being observed. 

More recently several authors [4] [12] have proposed the use of groups not for 
expressing symmetries but merely to account for the spectra of various quantized 
observables. This idea is a natural extension of the observation that the energy 
spectrum of the hydrogen atom can be generated by the non-compact group L(l,4) 
[13]. The group is then called a spectrum generating group. 

In a previous paper [14] we have defined an extended coordinate space for an 
elementary system by utilizing both the spatial and the polarization properties of the 
photon. We were then led to an eight-dimensional coordinate space. Four of the 
coordinates span space-time, three angles define the orientation of the particle at 
each point in space-time and the eighth coordinate is a scale-factor. 

To change the basic manifold from the usual four-dimensional Minkowski-space to 
an eight-dimensional manifold necessarily implies a revised theory of the elementary 
particles. The study of such an altered elementary particle theory could carried out 
in two steps 

A: a study of transformation groups on the eight-dimensional manifold and their 
use as symmetry groups. 

B: the construction of a dynamical theory, eventually in the form of a quantized 
field theory based on the eight-dimensional space. 

With regard to point B we just want to mention that similar programs have been 
proposed with the aim of using the ten-dimensional group space of the Poincaré group 
as the basic manifold [15]. We willl devote future work to the development of point B. 

The line of investigation of point A has been followed in a sequence of papers, here­
after referred to as paper I, II,... IV [14] [16]. In paper I we introduced the eight-dimen-
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sional space and made a preliminary study of the transformation groups. Paper II 
demonstrated the possibility of using part of the space for an explicit realization of the 
unitary representations of the Lorentz group. Paper III contains a general study of 
the pseudo-orthogonal groups (L(p, q) and their unitary representations. The purpose 
of that paper is to find suitable methods to study the group L(3, 3), which is one of 
the transformation groups of interest. The detailed study of the group L(3, 3) is made 
in paper IV. 

The present paper contains the conclusions which can be drawn from the residts 
of the papers I to IV. In Section 2 the definition of the eight-dimensional space is 
reviewed and a derivation of three possible transformation groups is outlined. These 
groups are interpreted as global symmetry groups containing both the Poincaré 
group and the internal symmetry group. In Section 3 a more detailed examination of 
the third group is made. 

2. Three transformation groups in the extended coordinate space 

To define the Minkowsky space in relativity it is necessary to have a clock, which 
shows local time, and a "radar" station, which can emit very sharp electromagnetic 
signals. With this equipment it is possible to measure three-dimensional distances 
and also to synchronize clocks at various points in space. To do this from one single 
position of the radar station the station has to be attached to a massive body so 
that the antenna can be turned. It is proposed that one may also utilize that informa­
tion of the electromagnetic radiation which is related to its stated polarization. At 
each point on the path of the wave packet the polarization can be used to orientate 
a triad defined by, say, the electromagnetic field strength e, the magnetic field 
strength h and the cross product e x h. By translating and rotating the radarstation 
it is possible to have all triads lined up in the same way so that whenever an electro­
magnetic pulse passes through any point in space it always has the same polarization 
relative to the local triad. In this way we have obtained an eight-dimensional mani­
fold defined by the four space-time coordinates xx, x2, xs and t and the four para­
meters which specify the six-vector (e, h). From now on we denote by (e0, h0) the six-
vector which serves as the reference for any six-vector (e, h). Additional degrees of 
freedom are introduced by attaching such interval coordinates (e, h) to any elemen­
tary system. As independent coordinates one may choose the three Euler angles be­
tween the six-vector (e0, h0) and the six-vector (e, h) and the scale coordinate 
s=Z«,|e|/|e0|. 

In the eight-dimensional space so defined one can now consider the problem of 
finding the appropriate symmetry group of transformations. As was noted in paper I 
there is no canonical way of arriving at a unique group when the space is given. 
Rather, we will define three such groups and discuss their possible interest for physics. 
Just as the Poincaré group leaves the basic time-definition invariant in relativity our 
extended group should also leave the parallellity of the six-vectors (e0, h0) at different 
points unchanged. But even so we are quite free to choose our group. We start by 
listing the infinitesimal generators of the Poincaré group. We shall in general discuss 
only the infinitesimal generators of the group. This does not imply any restriction 
since in quantum mechanics it is usually not the original group which is of interest, 
but rather some covering group, and the universal covering group is closely related 
to the Lie-algebra. Thus, we define the generators 
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8 
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for time and space translation, and 

0 
Mi SijJc ~Z $i 

oxk 

Mi=t^- + xA + 8\ (2) 
8x t ot 

for space rotations and accelerations. The accelerations and rotations clearly act 
both on the space-time variables (x, t) and on the six-vector (e0, h0). The expressions 
for Sf and Sf can be given in terms of the Euler angles 

q =n — — -U <? 
1 ^SOdcp 9386 SO 8y> 

= o 
2 99sddcp 95 80 S0 8y> 

s > ~ ~ i  

ifs'1) 

s - - m  i p - s * ™  ° v  C Å  i ,  -  s * s e  ( i - 1 )  

«-«'|-C9(å-1)- (3> 

For convenience there are some changes in the notations of this paper as compared 
to paper I. Also the operational definition of St and T,L given in paper I is different 
from the one used here and in paper IV. 

Let us now introduce the following generators 

Cw 8 8 CO 8 
1= ~S0 8q> ' y ) 8 Ö +  W S Ö 8 y  

Sy) 8 8 CO 8 
(4) 

T - - t .  
3 8y 
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They generate transformations of the Euler angles but now acting on the six-
vector (e, h) . Thus Tl, T2 and T3 commute with S1> S2 and S3. The operator T3 is 
distinguished since it  commutes also with S' t .  

We shall first consider the transformation group 01 which is characterized by the 
generators of the eqs. (1) and (2) and T3. The group G1 is thereby defined up to a 
discrete centre and has the structure 

,5, 

where P is the universal covering group of the Poincaré group P, SO(2) is the uni­
versal covering group of the rotation group in two dimensions and Z1 is some discrete 
centre of P 0 B0(2). If one does not regard the group 01 as an abstract symmetry 
group but rather considers the explicit realization of it on the coordinate space then, 
of course, one ob tains a specific group. 

As a first step towards a discussion of 6', let us determined its unitary irreducible 
representations. This is easily done since such a rep resen tat i on is the direct product of 
a unitary irreducible representation U(m, s) of P and a unitary irreducible representa­
tion U(b) of $0(2) which maps Z1 on the unit operator. The real parameter b charac­
terizes the one-dimensional representation of 80(2), m is the mass and s is_the spin 
and these two quantities label the irreducible representation of the group P. Let us 
now discuss the possible use of these representations in elementary particle physics. 
It is clear that if Z1 consists only of the unit element of P®S0(2) then n is completely 
unrelated to m and s. In this case there is no obvious physical interpretation of b. 
However, if Z 1 consists of t he elements 

{(a, /?)} = {(0, 0), (2n, 2n), (0,4 n), (2n, &n) } 

where a denotes an angle of r otation in P and ß an angle of r otation in SO(2), then it 
follows that b must be integer or half-integer and furthermore that 

b +s = integer (6) 

This relation suggests the identification b = Bj2 where B is the baryon number. 
Returning to the explicit expressions (1), (2), (3) and (4) for the generators of the 

group and further assuming that the physically interesting representations should 
be obtained on the covering space of our eight-dimensional manifold then relation (6) 
follows automatically. To show this we introduce the Wigner functions D s

Sa b  (cp, 0, y>) 
as a spin basis in the rest frame. Then the eigenvalue of the generator T a  of 80(2) 
is ib and b evidently fulfils eq. (6). In fact one also has 

\b\<a (7) 

Both relations (6) and (7) are satisfied for all known particles and resonances. 
Besides these two relations there is not much more that can be said about the 

spectra of q uantum numbers. Clearly it is highly suggestive to extend G1 to be not 
only a spectrum-generating group but also a symmetry group since B is rigorously 
conserved. But the Clebsh-Gordon decomposition of a direct product is almost 
trivial and would not give more restrictions on, say, scattering amplitudes than the 
Poincaré group and the baryon group do separately. However, in a dynamical model 
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expressed in the form of a field theory where the fields depend on all eight coordinates 
the explicit realization of G1 may possibly give more. 

In paper I we also discussed a second transformation group C,. This is obtained 
if one assumes that besides the transformations of the eqs. (1) and (2) one is also al­
lowed to perform independent rotations of the six-vector (e0, h0). This means that the 
operators S{ in eq. (3) are also generators of the group. By working out the commuta­
tion relations it is then found that the Lie algebra is the direct sum of t he Lie algebra 
of P and that of the Lorentz group L( 1, 3). Thus 

(8) 
2 

This group considered as an abstract group or restricted to the special realization on 
the eight-dimensional space ought to be a good candidate for a symmetry group. 
This is so because all group operations are transformations on the external coordinate 
space and these transformations are in accordance with the basic definitions of the 
space. If (?2 is viewed as an abstract group then a unitary irreducible representation 
of  Cr 2  i s  the  di rec t  product  of  V(m,  s)  and a  uni tary  i r reducible  represen ta t ion  U(k 0 ,  v )  
of L{ 1, 3) [17] which maps Z2 on the unit operator. The parameter k0 is integer or 
half-integer and is equal to the /-value of the lowest SU(2) representation which 
occurs in U(k0, v). The choices for Z2 are either only the unity, 

{(a, ß)}  = {(0,0); (0,2 n)} ,  {(a, ß)}  = {(0, 0), (2 n,  0)} 

{(a, ß)}  = {(0,0), (2 TI,  2 7r)}, 
or 

{(oc, ß)}  = {(0,0), (0,2 71) ,  (2 TI,  0), (271, 2 jr)} 

where oc again is a rotation angle in P and ß is a rotation angle in L(  1, 3). Only the 
last two-element centre relates the representation (U(m, s) to U(Jc0, v) and we have 

s  + k 0  = integer (9) 

As stated before the only known elementary particle quantum number which is 
related to the  spin  in  th is  way is  5 /2 .  We next  turn  to  the  interpre ta t ion  of  the  label  j  
which fulfils j > k0. No other quantum number than s seems to have this property. 
For this reason we do not find any interesting interpretation of G2 as an abstract 
group.  What  about  the  expl ic i t  rea l iza t ion  on  the  e ight -d imens ional  space?  Then P 
in eq. (8) acts only on the space coordinates while the transformations Sit St are in 
L( 1, 3). It would certainly not be possible to identify Sx, S2 and Ss for a moving 
particle with its spin components since then the invariance under G2 and thus under 
L( 1, 3) would mean conservation of j i. e. the spin. Under those circumstances the 
reactions N * -> N + 7i a nd q -> TI + TI would be forbidden. However, in the rest system 
we could identify S2 and S3 with the spin components and then define the spin 
in a moving system by means of a "physical" Lorentz transformation [18]. Therefore, 
let us look at the spectra of quantum numbers. A representation of G2 is now 
character ized b y  three  numbers  the  mass  m ,  k0  and the  cont inuous  parameter  v .  
By fixing k0 = B/2 we then find that the representation of the physical Poincaré 
group (whose generators are given in eqs. (1) and (2)) is reducible and contains the 
spin values B/2, B/2 + 1, ... each value once. This group then suggests a multiplet 
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characterized by the mass and the baryon number and containing an infinite 
number of s pin states. Although the presently known particles and resonances seem 
to appear in such strings of s pin multiplets, e.g. the nucléon resonances, we feel that 
the evidence is not very convincing. So far we have only considered 0.2 in the rest 
system or rather just as a spectrum generating group. The question is whether 6'2 

taken as a symmetry group for particles in motion gives restrictions on scattering 
amplitudes which agree with experiments. To examine this one has to calculate 
Clebsch-Gordon functions for a product of two representations. This has been done 
by Bisiacchi and Frondsdal [19] and they find that the reaction o ->7t-h7iis forbidden 
if q belongs to a representation with k0 = 0. This is so in our interpretation and we 
shall not examine the group G2 further because of this negative feature and also 
because there is no room for the important isotopic spin quantum number t in the 
formalism. 

In order to be able to include also the quantum numbers t and hypercharge Y 
one evidently has to take a group larger than G2. Let us start again by the infinitesi­
mal transformation of the Poincaré group, the eqs. (1) and (2). By adding the three 
generators of eq. (4) and taking all commutators it has been shown in paper V that one 
obtains a Lie algebra which is the direct sum of that of P and that of L(3, 3), the 
pseudo-orthogonal group with the signature ( + + H ). Thus one has 

g^ = P®L(3, 3) ^ 

where Z3 is some centre of P®.L(3, 3). Just as in the case of 0 1 or G2 we can conceive 
G3 in an abstract way i.e. independent of its realization on the eight-dimensional space 
and look for all its unitary irreducible representations. Then one would refer the spin 
to P. Now L(3, 3) contains two compact $0(3) groups and from their definition in 
terms of t he generators of the eqs. (3) and (4) it is rather natural to assume that they 
are the rotation groups of spin and isospin in the rest frame. (Note that T1} T2 and T3 

operate on the internal coordinates (e, h) of the particle and that T3 is distinguished 
in the same fashion as the third component t3 of the isospin is distinguished by the 
electromagnetic interactions.) Thus one would have two spin groups. Also it is hard 
to associate Su S2 and S3 to any other quantized operators than just the spin. There­
fore, we shall not consider G3 in the abstract way any further but instead use the 
explicit realization (1) and (3) for the Poincaré group. Then the spin is referred to 
L(3, 3) since Su S\ are 6 of t he 15 generators of L (3, 3). For L(3, 3) we shall consider 
both the possibility that 9 of it s generators are given explicitly by the eqs. (3) and (4) 
and also the case when one looks for general representations of L(3, 3). As soon as the 
spin is referred to the group L(3, 3) it is clear that one cannot identify one of the 
S0(3) subgroup with the spin group and still claim that G3 is an invariance group. 
Just as in the case of G2 one would then have spin conservation forbidding well-
known reactions. The situation may perhaps be saved by defining the spin operators 
in the rest system and then applying a Lorentz transformation so that for the particle 
in motion the spin operators are in the enveloping algebra rather than in the Lie 
algebra. In any case an examination of this kind has to be preceded by a calculation of 
the Clebsch-Gordon series for L(3, 3). Irrespective of this point we can always con­
sider the group G3 as a spectrum generating group and see if the experimentally 
observed spectra can be convincingly interpreted in terms of i rreducible representa­
tions. This will be the subject of the next section. Let us also point out that although 
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we have a group with the signature ( + + H ) we do not introduce a six-dimen-
sional euclidean space as Rayski does. Thus we need not explain why the additional 
time coordinates cannot he observed. 

3. Investigation of G's= P • L (3,3) as a spectrum generating group 

In this paragraph we shall examine in detail the group 

G'a = P-Z(3,3) (11) 

where the dot means semi-direct product. We also have 

G's = P' ®£(3, 3) (12) 

but then P' contains only the spatial part i.e. the transformations on xv x2, x3 and t 
according to the eqs. (1) and (2). Having specified this we can forget about P', it 
defines just the mass and the momentum of the particle. Furthermore, we consider 
L(3, 3) as a spectrum generating group and identify the maximal compact subgroup 

K = SO(3) 0 S0{3) (13) 

with the product of the spin group and the isospin group. 
As was shown in paper IV a vector in an irreducible representation space must be 

labelled by six indices denoted (I, TO, n, j, h, k). The numbers I and j cha racterize an 
irreducible unitary representation of K while TO and h are the "third components" 
of I and j, respectively. The labels n and k are a sort of d egeneracy indices and they 
always fulfil 

n = m, + (14) 

k  =  - j,  7 + 1,...,?' 

Paper IV contains the derivation of several series, both degenerate and non-degene­
rate, of unitary, irreducible representations. Each series is characterized by certain 
restrictions on the labels I, j, n, and k. In the non-degenerate series the restrictions 
are on n + k and n — k while I a nd j r ange from 0 to co or from | to oo in integer 
steps. In the degenerate series the labels n and k are absent and thus a vector in the 
Hilbert space has only 4 labels. Here the different series are characterized by bounds 
on l—j. The reader is referred to paper IV for a more detailed description. 

Let us now turn to the physical interpretation. We recall that G'« is to be considered 
as a spectrum generating group. Now the quantum numbers in elementary particle 
physics which correspond to operators which have non-trivial spectra are, besides 
the mass the spin s and its third component s3, the baryon number B, the isospin t 
and its third component t3 and, finally, the hypercharge Y. The operational definition 
of t he group strongly indicates that we should make the identifications 

s=l 

s3=m 

t = j  (15) 

t3=h 
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For «, and k we have no such indications. However, it is well known that Y/2 is integer 
when t is integer and half-integer when t is half-integer. We have noted the same con­
nection between B/2 and s earlier. Therefore one could tentatively put 

However, because of the limitations (14) such an identification is not in accordance 
with the assignment of hyper charge and isospin of Q But it should be remarked 
that this assignment is based solely on SU(3) and not on experimental facts. Turning 
to the series of non-degenerate representations one finds that some of these are 
characterized by upper or lower bounds on n + k or n k. If one makes a plot of B 
and Y of t he presently known particles and resonances one finds, however, no indica­
tion of upper or lower bounds on B± Y. We have also tried to construct a mass for­
mula without any success. Therefore, we are inclined to abandon the identification 
(16). This means that we give up the goal of finding the spectra of all quantum 
numbers and instead concentrate on the spin and isospin spectra. One may even say 
that this is a natural restriction since F was introduced first in connection with 
strong interactions while our space is based on the properties of the photon. Also one 
has then free access to the degenerate representations of paper IV. Some of these are 
particularly interesting since they are characterized by bounds on l — j. 

The degenerate representations are realized in eight different subspaces Hx, ...Hs 
characterized by l + j mod 2 and l—j mod 2. Let us therefore put the presently 
known particles and resonances at their places in the spaces Ht. We use only those 
resonances for which the spin and isospin values are known with reasonable certainty 
[20]. The space parity is also indicated in the figs. The subspaces H5 and IIs shall 
not be considered in the following discussion since they contain only one particle 
each. Also the non-strange mesons are not very abundant. However, it seems natural 
to put rj and o in the representation a2 = — 1,1=j of Table 3 in paper IV. This represen­
tation is indicated in fig. 1 by a line. Note that rj and q have the same space parity. 
In the subspace II2 we do not suggest any specific representation. For the baryons 
and baryon resonances we have a much larger material. In subspace H3 we propose 
a representation a2= — I — j i which will then accommodate the four particles 
A(1115), F0(1815), 3^(1383) and Fx(2065) all with the same hypercharge and parity. 

B/2=n 

Y/2 = k 

(16) 
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Fig. 7 Fig. 8 

Similarly all particles in subspace II1 have parity + 1. Despite this we propose to put 
t h e  n u c l é o n  a n d  t h e  n u c l é o n  r e s o n a n c e  j V * ( 1 2 3 6 )  i n  a  re p r e s e n t a t i o n  a 2 =  1 ,  l = j ,  
and the other two nucléon resonances iV*(1688), A?*(l924) in a representation 
a2 = l, i—2. The H-particle at the same place as the nucléon must belong to a 
third representation since there can be only one state at each point. In the subspaces 
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H4 and 778 the number of established particles is again somewhat meagre but an 
assignment of representations which groups together particles of the same hyper-
charge and parity is again rather natural. Notice that as soon as a particle with the 
"wrong" parity or hypercharge appears then it always appears at a point already 
occupied by a particle of "right" hypercharge and parity. Thus it has to belong to a 
different representation. 

Having assigned the presently known particles and resonances to different degene­
rate representations of L (3, 3) what can be said in favour of this group as a spectrum 
generating group? The most astonishing fact is that the particles are grouped into 
multiplets of the same parity. For the mesons even the C?-parity is the same. From 
a theoretical point of view it is interesting to note that we have representations of t he 
type l=j (which can be obtained from the explicit realization of L(3, 3) on the four-
dimensional internal space) giving rise to strings of resonances 

Poo, -^11' -^22; • • • 

Pll2 1/2, -P3/2 3/2: -P5/2 5/2- - • 

Such strings are indicated in bootstrap calculations. Also one sees that an irreducible 
representation contains for a given isospin only spin values differing by 2 units in 
accordance with the Regge recurrency. It is perhaps justified to conclude from this 
that there are some rather strong indications that the group L(3, 3) could be a spec­
trum generating group. We feel, however, that one has to wait for the discovery of 
more resonances before anything conclusive can be said. 

4. Concluding remarks 

In this paper three groups Gt, G2 and G': i  h ave been examined as spectrum generat­
ing groups. Especially the last group G-'> show s some interesting features. The groups 
G1 and G2 only allow for the introduction of the baryon number. G1 can certainly be 
conceived as an invariance group of interactions while this is not so probable for G2-

If new experimental data tend to support our proposed classification it may be 
worth while to examine Go als o as an invariance group. 

One should also remark that the negative conclusions concerning the possibility 
of identifying B/2 and Y/2 with n and k may be a consequence of non-completeness of 
the table 2 of non-degenerate representations in paper IV. 
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