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Introduction

Suppose that the machine designer has to control the dynamic
properties of the seemingly simple construction in fig. 1, in which all
geometrical data, weights, and motor properties are known.

The shaft will run at the speed n, (r.p.m.) at which the load torque
is M, (Nm). The bearing A4 is a single row deep groove ball bearing
and the bearing B a cylindrical roller bearing.

The designer may check the construction in the following way:

1. At a certain motor speed n = n_ the shaft will probably have a
rough motion. This speed is called the ordinary critical speed. The
shaft whirls around the bearings as a skipping-rope with the angular
velocity N = N, = n.. The shaft deflection and the corresponding
shaft stresses at this speed and in its vieinity ought to be determined.

The reports [I] and [IV] give methods for predicting the ordinary
critical speed.

2. Knowing the ordinary critical speed n, he knows if the rotor
will work at a sub-critical or post-critical speed. Suppose that the
shaft has to run at a post-eritical speed n,. Then it must be controlled
if the motor is eapable of bringing the shaft through its critical speed.

Hereby report [IIT] is useful.

3. At the steady state the motor has to supply the rotor with the
torque M,. But besides this torque the motor can give “torque-tones”
such as M, sin ¢ wt and M, cos q,wgt, where

M. M,, = Amplitudes of the “torque-tone” of order s
qs — (onstant depending on the motor type
t = Time (sec.)

e Y ] . | rad
wy, = - my = Angular velocity of the shaft S0l
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Flexible r

coupling
A B
Outer torque
4@‘ —
Motor =

Disc

Fig. 1

These “torque-tones” force the shaft to whirl with

K i 1
- ‘\' . 1 :F(Is
With these K-values the shaft has critical whirl speeds N _, and N,
Arrvl AY(:Z
and they occur at the motor speeds n_,; = and g = =
1—q, B 1+ qs

respectively.

Hence, it must be controlled if n, is such a “secondary” critical
speed with a great “torque-tone-amplitude”. Such an amplitude can
give rise to large shatt deflections and stresses. The influence of such
disturbing “torque-tones™ is studied in [I1].

4. Suppose that n, is not a secondary critical speed. In spite of this
the shaft can be unable to work satisfactory. In a system as in fig. 1
two kinds of damping can be separated. The construction consists of
both rotating and fixed elastic sections. The friction between the
stationary and the rotating parts is called external friction and
the friction within the rotating parts internal friction. It can be
shown [5, 21] that the hysteresis effect of the shaft material has the
same action as internal friction. In this dissertation both kinds of
damping are approximated to be viscous. The damping coefficients
can be looked upon as “equivalent” coefficients [4]. The external
damping always limits the shaft deflection or the deflection of the
centre of gravity. On the contrary the internal damping under certain
conditions can increase these deflections.

Thus, it may happen that the speed 7, is in a region where the
motion of the disc is unstable. Such cases are treated in [II] and [1I1].
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The example shows the main problems concerning the control of
the dynamic properties of a rotor.

Of course, it has not been possible to point out all phenomena
treated in the reports [1], [LL], [I1I], and [IV]. Therefore, some special
mazters from the contents of these reports are given a more exhaus-
tive account.

Determination of the Flexural Critical Speeds
of a Rotor

In the introduction a special bearing arrangement was supposed
and it was mentioned that the ordinary critical speed could be cal-
culated with the aid of [I]. Also other bearing arrangements are
considered there and a survey is given in tab. 2. It is shown that the
critical whirling speeds of such shafts can be written

o 30 1/1A El _ = :
Nei="""V 1%+ MI# (== 1285 ) (r.p.m.)
Here
o . : N
FE = Modulus of elasticity in tension and compression =
7 — Moment of inertia of the cross section of the shaft (m?)

M — Mass of the disc (kg)
L = Length of the shaft (m)

The value A** is obtained from

where m is the mass of the shaft (kg) and A is solved from the equations

m A(N) -+ @*XB())
717 (. C(A)+ O*QBD(A)
291,
o
@ mi?

The functions 4(A), B(A), C(A), and D(A) can be found in tab. 2 for some
kinds of supports. Concerning further notations reference is made to [I].
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Fig. 3 (Part I: p. 118)

/*x*

m
7 as a funetion of A for differ-

ent values of the “gyroscopic” parameter @* The “non-dimensional
critical speed™ A, is obtained by neglecting the mass of the shaft and
the gyroscopic effect (elementary value). For @* >0 only the first
critical speed is considered but for ©* <0 the first two critical speeds
are accounted for. The diagrams can be used for any kind of whirl.
An example of such a diagram is given in fig. 3. The curves are valid
for the clamped-free rotor shown in the vignette of the figure.

In 1961 Wojnowski and Faucette 23] presented the solution of Case
2 in tab. 2. In their diagrams the gyroscopic effect was not considered.

In [I] diagrams are drawn with
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The use of the diagrams in [1] is extended by the proposal of an
approximate formula for caleulating the lowest critical speed for a
shaft with several discs. Because of the influence from Dunkerley’s
well-known formula it is called the “New Dunkerley Formula”.

In one case, viz. for the hinged-hinged shaft with symmetrically
mounted discs, the simultaneous action of the mass of the shaft and
the gyroscopic effects from two thin dises is considered. Diagrams
for rapid calculations in this ease can be found in [IV].

In “Tables for Caleulating Critical Speeds”™ [8] the numerical results
which are the underlying stuff for the diagrams are collected.

By neglecting the influence of the shaft mass the equation for
determining the critical speeds for an arbitrary whirl of a rotor with
an arbitrary number of discs is derived in [I]. Both lateral flexibility
of the bearings and the gyroscopic actions from the dises are con-
sidered.

In practice it can be difficult to estimate the kind of support in
an accurate way. Hence, a bearing has both lateral and angular
stiffness. These matters are to some extent investigated by theory
and experiments in [IV].

The Importance of the Flexural Critical Speeds

It is shown in [II] that an unbalanced rotor must be supplied
with a certain input torque to be able to whirl with a certain K-value.
The shaft deflection is limited by the “torque-tone” amplitude. But a
perfectly balanced rotor without any friction has the possibility to
whirl with an arbitrary K-value with an arbitrary deflection of the
shaft at zero input torque. This is shown in [IV]. It is also derived
that an increase of the shaft deflection demands an outer force. If
such a force is applied the change in kinetic energy is equal to the
change in potential energy.

Tests were carried out for studying the whirling [I1] and the test
apparatus is principally sketched in fig. 4.

With capacitive pick-ups mounted in two perpendicular directions
the motion of the disc centre could be seen on an oscilloscope sereen.
At some critical states the traces of the disc centre are drawn in
fig. 5 and a visible comparison between theory and tests can be done.
The figures are taken from [II] in which also other “whirl curves”
are presented.
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Fig. 4 (Part II: p. 62)

For the ordinary critical speed (K = 1) two cases must be separa-
ted. The input torque for maintaining the whirl of an unbalanced
rotor at a non-critical state is zero. Only at the critical state an input
torque is required. Then the demand for torque increases with time
and so does the shaft deflection. The result can be interpreted
as follows. Because the motor has a limited capacity of supplying
torque it can maintain the whirl only when the torque needed can be
supplied. In other cases the whirl must change.

If, on the other hand, a rotor with external damping is considered.
a certain constant torque must maintain the whirl. This torque is
different at different speeds and is proportional to the shaft deflection.

It must be emphasized that it is not dangerous to run a rotor at its
critical speeds if the shaft stress is lower than the yield point stress.
This statement is settled for dispersing the mysticism around the
conception “eritical speeds”. It is evident that there are cases at
which these speeds hardly ought to be named critical.
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(Part IT: p. 68)

Fig. 5
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On Passing the Flexural Critical Speed

When starting or stopping a rotor it must pass an infinite number
of critical speeds corresponding to a series of K-values. As has been
mentioned only a limited number occur at uniform motor speeds.
The behaviour of a rotor when it is accelerated or decelerated through
secondary critical states and the ordinary critical speed is investigated
theoretically by assuming uniform acceleration or deceleration or
a linearly varying deceleration. As could be expected no pecula-
rities could be seen at the secondary critical states.

Fig. 6

Test have been carried out for verifyving the theories. In some tests
the relative positions of the points B, S, and & were photographed
by a “slow motion camera” when the rotor passed its ordinary eritical
speed [1LT].

Tig. 6 is obtained by cutting the dise in fig. 1 by a plane through
the disc.

The notations are:

B — (lentre line between the bearings
S = C(entre of the shaft

(+ — C(entre of gravity of the dise

¢ = Bceentricity

r = Shaft deflection

¢ = “Whirl” angle

yp = “Motor™ angle

B = =g
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: 12 13 ‘ 14

Sub-eritical constant speed (8=07) (11 —14).

bl
B

22 23

.\,l
\ 24

\‘l \'i \\. \ \
l 25 \ 26 27 28

Post-eritical speeds just above the eritical speed (82 907) (21 —28).

\ ‘\' _\*_‘
31 32 33 34

Post-critical constant speed (8=180°) (31— 34).

Fig. 7 (Part TIT: p. 49)
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A hinged-hinged-free rotor was filmed during acceleration through
its ordinary critical state. The shaft was accelerated from 900 r.p.m.
The critical speed was 1158 r.p.m. Three characteristic pieces from
this film are shown in fig. 7. The “hair-cross” is the point B and the
broken line indicates the direction of the line SG.

This test and others are accounted for in [IIT]. There diagrams are
also collected showing the shaft deflection during different acceler-
ations (decelerations), start speeds, and external damping coefficients.

In [T1T] also the action of a deflection limiter is investigated. Here-
by the remarkable result was obtained that the most important
property of the deflection limiter was that of producing tangential
forces on the shaft. A deflection limiter without friction will act as
an amplifier for the shaft deflection.
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1. Introduction

To many engineers the conception “critical speed” of a shaft has
a deterrent effect. It often depends upon the fact that in most cases
these speeds cause much trouble and the determination of them is
tedious and cumbersome.

The common procedure is to calculate the lowest critical speed
with some approximate method, for example that of Dunkerley,
which is explained at the end of the book.

However, most of these methods cannot be used when higher
critical speeds are wanted. In these cases this book is intended to be
a help for the designer. All waste of time on derivations is avoided.
The equations giving the critical speeds are shown in their final form
for most of the cases oceurring in practice.

The literature on the subject does not develop the theory for
flexible bearings. Here is shown that this flexibility of the supports
hardly renders any difficulties of the calculation.

Many times it is possible to neglect the gyroscopic effects of the
flywheels. On the other hand it must be involved in an accurate
computation. The equations for the eritical speeds in these cases are
also given.

Further it is shown how the simultaneous influence of the inertia
of the flywheel and the mass of the shaft affect the critical speeds of
a shaft with one flywheel. Diagrams simplify the calculations in this
case.

In this book an improved Dunkerley approximation is suggested
with the aid of which these diagrams are of value even when the
shaft is equipped with several dises.

In the book only thin discs are considered. The theory is also valid
in a special case for a thick disc, viz. when the mounting zone is
small.



2. Notation

Arbitrary constant

Arbitrary constant. Centre of bearing
Arbitrary constant. Non-dimensional spring
constant

Arbitrary constant

Modulus of elasticity in tension and compression
Force

Centre of gravity

Moment of inertia of a cross section [Z4]
Polar moment of inertia of a disc [ M L?]
Equatorial moment of inertia of a dise [ M L?]
Length of a shaft

Mass. Bending moment

Reference mass

Bending moment due to the gyroscopie effect
Origin

Point

Point on a shaft

Radius of a disc

Centre of a shaft

Spring constant
Excentricity

Ratio

Number of order

Constant or radius of inertia
Distance

Number of the dises. R.p.m.
Radius

Number of order

Time

Angle

(Cloordinate

Deflection

Coordinate
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Indiees:

crit

r

M

stat

Angle

Non-dimensional moment of inertia
Non-dimensional constant
Non-dimensional constant

Non-dimensional “critical speed”

Angular velocity of the whirl

Influence number concerning displacements
Influence number concerning rotations

(Constant

Displacement

Number

Non-dimensional influence number concerning
rotations. Coordinate axis

Non-dimensional displacement
Non-dimensional constant

: ; . mLB?
Non-dimensional constant | 2* — Bl

: A A : m
Non-dimensional weight of a disc|or ¢ = 573

24
)
Non-dimensional influence number concerning dis-
placements. Cloordinate axis
Constant
Argument

Argument
Angular velocity of the rotation of the shaft

Non-dimengional moment of inert‘ia,(or Y =

With reference to the critical condition

With reference to a force

With reference to a moment. (In the connection with
O M refer to a mass and with I to a momentofinertia)
With reference to a static load



3. The Meaning of Critical Speeds

Before studying the nature of critical speeds the coneeption influence
number is introduced. Consider the beam in fig. 9.1. It is loaded by
a unit force at the point ;. The deflection under the force is noted
by ay; and the deflection in another point @, is noted by x,. The
first index indicates the position of the deflection and the second one
the position of the unit force.

Now place this force in the point @, according to fig. 9.2. The deflec-
tion under the unit force is now x,, and the one in the point @, is x,,.

Maxwell has shown (see for instance [3]), that x,, — x,, independent
of the way of supporting the beam. Observe that this connection only
concerns elastic deflections in the beam.

If, on the other hand, the beam is loaded by two unit forces as in
fig. 9.3. and the deflection ¥, in the point @, is wanted, the method of
superposition is used. The forces @, and @, give in @4 the deflections
&g and ay, respectively. Thus we get

Y3 = Xg g

Now the forces in the points @, and ¢, are changed from unity to
F, and F,, the deflection in @ will be

Ys = Frog+Fo0s,

The deflection x, in a point @, of a bar loaded by n forces F,, F,,
F,....F,is analogously

Y — Flfxn‘*‘Fz‘fxcaﬁL Fs-'xas‘f‘ voot Fotion
or shorter

y8=2F1

Turning over to a special example consider the shaft in fig. 10.1.
The flywheels are thin and their points of gravity are in one plane.
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The influence of the inertia forces from the shaft and the gyroscopie
effect of the shaft and the flywheels are neglected.
The masses, their locations and the distances between the centres of
gravity and the central line of the bearings are shown in the same figure.
When the shaft stands still the resulting torque about the central
line of the bearing is

e e
(eMg oo —My - 2e-+eMg - -8—) sinv

which is identically equal to zero. The plane containing the gravity
points makes the angle » with the vertical plane as fig. 10.2 shows.
The shaft is said to be statically balanced.
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Fig. 10.3

If the shaft is given the angular velocity € it will be affected by
the forces F,, F,, and F; according fig. 10.3, where, if the shaft is rigid,

2
By = Fy,=¢eM - = < (2 = Me£2
Fo— M - 2002 — 2MeS2?

It is assumed that the gravity forces are small in comparison with
F,, F,, and F;.
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Fig. 11.1

The equations of equilibrium gives

—(A+B) = Fy—F 4+ F, = Me?—2MeSP+MeS2 = 0 l

L L L L L
—4-B-g=i g - = Belg =)=

where 4 and B are reaction forces in the bearings.

Thus we get 4 = B = 0.

The shaft is said to be dynamically balanced. However, if the
flexibility of the shaft is taken into account other conditions are
valid.

If the deflections of the shaft at the flywheels in this case are y,, v,
and y, respectively, the eq. 8.1, gives with the aid of fig. 11.1,

% = Frog + Foxig+Faxgg
Yo = P+ ForkaatFaoy ¢ oovioonnoennnnn 11.2
Ys = Fiag + Foxgy+Fyxgg l

where

4
F, =M (yl— ;) Ios

Fom @280 W it i i 11.3

e
Fy=eM (ys— T) Q2

Continuing with the influence numbers we have to calculate the
deflections x,;, ayq, &5, and a,, in the figs. 12.1 and 12.2.

By symmetry we get a,, = xg,, and from the reciprocal theorem
of Maxwell we get x;, = &g, %33 = gy, aNd &3 = &gy,



Fig. 12.1

42 &2 @ X3

Fig. 12.2

From a handbook is obtained

26 I?
= sy BT
39 L3
K = Xg1 = ONgg = Jﬁ’ﬁ
17 I}
T T T
81 I3
%1 ="3888 ' EI J
Substituting
i EI
A = 3888 - _",’ILSQT

in the eqs. 11.2 and 11.3 we get

(25e—A)y,+ 39y, 4 17eyy = —36e

39ey;+(81—A)y,+-39%ey; = —84e } ..........
17ey, + 39y, + (266 — A)y, = —36e
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This gives, using CRAMER's rule,

(A—8e) (A+10)
% =Y = 36e 3 R

(A—8¢) (A—A,) (A—A5)
800 N N s 13.1
:

—

(A—8e) (;1——

" (A—8e) (A—A,) (A—A4,)

Y, = 84e

where A, and A, satisfy
A2 —(4264-81)A+360e =0 ....oovnnnnn. 13.2

The deflections #,, y,, and y, are infinite when
A= 4, and A = 4,
The value A, = 8¢ is of special interest. Substituting in eq. 12.3
we obtain

17ey,+39y,+17ey, = —36e
39¢ey,+ (81 —8e)y,+ 39y, — —84e

and

36e+-45

YitYs = — m'e

3
Y= 17,118 '°

The deflections p, and g, may have any values and must not be
equal as eq. 13.1 indicates. The only condition concerns their sum
which must have a constant value. The positions of the dises 1 and
3 are indifferent.

One usually says that a shaft with » masses has » critical speeds.
(As will be pointed out later, this is a truth with modifications). In
this special case the critical speeds are determined by

A= Ay =y, andd =8

However, they are essentially different. The first two give infinite
deflections but the third gives an indifferent equilibrium position of
the flywheels.
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If the eccentricities are equal to zero (e = 0) the deflections become
indifferent, when A = A;, A = A,, and A = 8¢. Thus the critical
speeds imply indifferent positions of the flywheels.

A limiting case is obtained by putting ¢—=0. Thus we have from eq.
13.2, that

Aai="0

A, = 81
and
A, = lim 8¢ = 0
=0

¢

A = 0 gives, with the aid of eq. 13.1, y; = y; = = and y, = —2e,

which means that the points of gravity are on the central line of the

bearings at infinitely high speed. This is independent of the value of &.
A, = 81 corresponds to the arrangement shown in fig. 14.1.

However, A, = 0 gives according to eq. 13.3

Yo+ Yy =0
1
Ya = Gk

This theoretical limit discussion, however, is not brought further.
The case of fig. 14.1 is basic standard and has only one critical speed
corresponding to A, = 81.
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Fig. 15.1

For every flywheel in fig. 10.1 there are three points of importance,
viz.
B = the centre of the bearings
S = the centre of the shaft
(' = the centre of gravity

The position of these points for the mass on the middle of the
shaft is shown in fig. 15.1 in a cross section 4 —4 (see fig. 10.1).

S¢ is always equal to 2e, but y, and the relative position of the
three points will shift depending on the actual value of A. With the
aid of the egs. 13.1 these conditions can be studied. The result is seen
in fig. 16.1, where the “semi-inverse” diagram method [5] is used.
In this case ¢ =1, and A, = 120, A, = 8, A; = 3.

The three points BSG' are shown at v — 0° and their relative posi-
tions below and above the first critical speed are drawn in the same
diagram. The deflections y, and y, are always equal except at A = 8,

81

where y,+y, = — s e. They are easily understood by keeping in
mind that

B is on the curve

S is on the A-axis

The distance between S and ¢ is a constant,

It is remarkable that the gravity centre G, below the first critical
speed is further away from the centre B, than S, does, whereas, for



‘ v P Y| y; o 12.
Notation : ————= 2 ondie . L= == =g
Fig, 16.1

speeds just above the first critical speed, S, lies further outside.
Analogous things happen to the other flywheels.

If e = 0 the fig. 16.1 is not valid. In this case we have the well-
known result that the three discs are in indifferent positions at the
critical speeds and that certain constant ratios exist between the
deflections of the dises. Analogously to fig. 16.1 in this case we obtain
fig. 17.1.

At A= 120, 4 2y, vy =1:2:1
A= 8 ypiyg=—Ly=0
A= 3, phiyppiygp=1:(-1):1
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0 7= A,-8 10 =120 |

Fig. 17.1

It will be observed that the curves in fig. 17.1 consists of the A-axis
and three vertical lines.

In this introducing chapter the example has shown the nature of
critical speeds. The mass of the shaft and the gyroscopic effects have
been neglected.

Infinite deflections were obtained at special “critical” speeds. In
practice these infinite deflections, of course, do not occur and further-
more the basic equations are only valid for small deflections.

In spite of this the development in a simple way shows the different
tendencies of critical speeds. Thus we can conclude, that a shaft with
flywheels being in both static and dynamic balance, or, which is a
theoretical case, having no unbalances at all, always has critical
speeds.

2



4. Influence Functions

In the preceding chapter the influence numbers were introduced.
and in the exemple the actual numbers needed were taken from a
handbook. Because of the fact that this procedure is the most time-
consuming procedure when calculating the critical speeds according
to this method a quick way is worked out.

Limiting ourselves to the cases when the shaft is supported by two
rigid bearings and all discs are situated between them, the following
three cases have to be studied:

Fig. 18.1

Fig. 18.2

Fig. 18.3
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Fig. 19.1

Fig. 18.1 shows two bearings which do not give any bending
moments to the shaft. The left hand bearing in fig. 18.2 causes a bend-
ing moment, but the right hand bearing does not. In fig. 18.3 both
bearings give rise to bending moments. These cases are the only ones
that ean occur and they are studied in the following where they will
be denoted as arrangements with “hinged-hinged” ends, “clamped-
hinged” ends, and “elamped-clamped” ends respectively.

Beginning with the case in fig. 18.1 we consider the shaft loaded
by a unit foree according to fig. 19.1.

The deflection #, is wanted. For the forces and bending moment in
fig. 19.2, we find that

.A. = 1172
B 1—a,
M,

= Ax,L— |1 (2, +2,—1) L

Zy>>1—Ty
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Fig. 20.1

i %2
Fig. 20.2

s

Furthermore we have

d*y,
—H Gy =

and using the boundary conditions

Bn=0 =0
=1 yp=0
we get

1
N2y, @) = 3 2,z (1—a—a3) - BL 20.3

In this formula z; <<(1—a,) always. Observe that fig. 19.2 does not
satisfy this condition.

According to Chapter 3 we have 7, = x,. If we let a, be equal to
(1—z,) the influence number «,, is obtained. The function y,(z,, ,) is
called the influence function for the shaft supported as in fig. 18.1.

It will be observed that the limit x;<<(1—a,) does not affect the
usefulness of eq. 20.3. If the deflection in point 2 caused by a unit
force in point 1 is wanted (the relative positions are shown in fig.
20.1), instead of this we calculate the deflection in point 1 caused by
a unit force in point 2. These two deflections are equal according to
MaxweLL and the last case is covered by formula 20.3.

Instead of the notation #(x;, @,) in the following we use x,;. The
indices denote the points studied. See fig. 20.2.
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Analogous calculations can be made for the cases shown in the figs.
18.2 and 18.3. The results are given below.

It is important to observe that , in the unsymmetrical case (see
fig. 18.2) must be measured from that bearing giving rise to a bending
moment. In the symmetrical cases, x; and x, may be shifted without
changing the value of «;;.

Summary:

(x,L) (L)

1 B0 \d
X = % = ?x,.’t;(l—-l‘l«:l'g) “BL

“ &9 &

3

KL et

S R AL
oy = Ajp = -;1',.1'5 =7 (3—a7) (1—@,) — a3 ~7[—-

, Q, Q
XL X,L
(x,L) (x4L)
Vet o e 1 ) (301 LD L
aij = i = — (BT [ =2, —2) + 20, @] * —

Fig. 21.1

The treatment above dealt with a shaft supported in both its ends.
The cantilever shaft with discs is discussed in Chapter 7 in connection
with gyroscopic effects on the critical speeds. The shaft supported by
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Fig. 22.1

three bearings is an important case. The treatment here premises the
bearings not causing any bending moments.

Consider the shaft in fig. 22.1. It is loaded at ¢, by a unit force.
The deflections in the points ¢, and @, are wanted. The case represents
a statically undetermined system. These deflections are easily deter-
mined with the aid of the equation of the deflection curve. The final
result can be written

1 I3
x =" (1=m)a,[(1 —ag)—(1—, 2 — Yooy, (14-23) (1—a3)] #8 - I

El
1 ‘ % ik
Qg ="= E‘xlxa(l—xl)l(l—zs) (¢ 25)* - Bl
155 s o
where %, — — and »,= - . The other symbols are shown in fig.

L L
22.1. Observe that the expression for «,, only holds for z,<z,. When
2, >, the reciprocal theorem of Maxwell is used. If ag; is desired the
first formula can be used if we put x, — @, — x; and change x, to x,.

The treatment is limited to the most usual cases oceuring in practice.
Further only shafts with the same diameter along all their length are
treated. However, the procedure for shafts with variable diameters is
deseribed in the next chapter.

Further, in Chapter 14, the influence numbers for a shaft supported
by one, two or three rigid bearings are collected. This survey gives also
the influence numbers needed for a calculation involving the gyro-
scopic effect (See Chapter 7) and all thinkable cases for a shaft supp-
orted by two rigid bearings are treated.




5. Critical Speeds of a Shaft Supported by Rigid
Bearings

In this chapter a shaft with » discs is considered, see fig. 23.2. The
shaft may have a variable diameter and the bearings may be hinged
or clamped. The mass of the shaft is equal to zero and the gyroscopic
effects are neglected.

The masses of the dises are M,, My, M,, ... M, ... M,respectively.
The deflection at the mass no. s is denoted y, and it is caused by the
forces My, £22, M yy,82%, Mgy, ... My, £2%. . . and M,y, 2% Thus we get

y; = 3[1?/192*“-1'*1”23/292%2'*- LA +jl-’[sys‘(22'xn+ XA +“[n.’/n'(22‘xxn
or shorter
n
N e S
i=1
1f we introduce a reference mass, M, and non-dimensional masses
(i =1,2.3...n)according to
M, M, M,
M= o M= gp s M=

ref

rer

ONONONORQ
i I

& [ S :
5 “ u ,

Fig. 23.2
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where M . may be of any kind, as a suggestion

M= M~+My+ ...+ M, = 3 M,

1=1

or
“}Iref ~ lwl'
where M, is chosen in a suitable way.

Now it is possible to write eq. 23.1 as

n
Yo = & pM oqy; Q%

i=1

or

n
= B 2
Y, = Mref‘o 2: ‘Uiy‘-fxai ................ 24.1
=1

It is always possible to write the influence number a,; as

65;‘ L3
G T

where £ is a constant, for example the least common denominator to
all the influence numbers. Thus eq. 24.1 becomes

I »
y‘:Mmjy.%EI— i‘l.l‘-yif“ S D -

t

Now another guantity is introduced, namely the non-dimensional
“eritical speed” A, where

kET
T M, 2

Thus eq. 24.2 will be

n
Ay, = 2 wyEy 8= 1,23 v
i=1
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These equations can be written
(taEqn—An+tebra¥attséralst+ - - - Ftnd1nlin =0

mén Y+ (abs— A ot ns¥s+ - - - +nbsYn = 0
s Yt tabssat(tass—A)Wst - - - Httnbanttn = 0

i+ b ot tanslat - - . F(tnéun—AYn =0 |

The condition for this homogenous system not having only a trivial
solution is

g —A  pgkyy 37 S Hnin

Mrm Mabaa—A  peby ... .. Hn&on

f1&a1 Hakas Malaa—A . 0o FnSan — e 25.1
& abug Wi e Hnbn—A

The eq. 25.1 is of order # in A and the critical angular velocities are

o=V i i1
4= M LA, Goiban Ll

These critical angular velocities are exactly the same as those of
transverse vibrations. It depends on the fact that the inertia moments
of the dises are neglected. See further about this matter in Chapter 8.

It may be pointed out that the forces on the shaft are caused by
the rotation of the discs around the centreline of the bearings and
not by the rotation of the discs around the centreline of the shaft.
The common case is, however, that the frequencies of these two
rotations are equal. In these cases the critical speeds are

? V REE =123 25.2
N = M, A (mpmy) = 1230 . W, 20y

But other rotational circumstances are observed. See for instance
[3] and [9]. These cases are considered in Chapter 7.

The theory developed above is illustrated by some numerical
examples.
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Example 1. Caleulate the critical speed for the arrangement in fig.
26.1 if the influence of the mass of the shaft and the gyroscopic effects
are neglected.
If M, ;= Mis y = 1 and eq. 25.1 gives
taén—A4 =0
or

Azfu

From fig. 21.1 we get

1 I? £l 1 L}
GH= g @y (1—a,) [1—a27—(1 —’xl)zlﬁ‘—' = (1 —a,)* = 3 (y25)* Bl
1
Choosing &, = T (w2,)* and &k = 1 eq. 25.2 gives
30 V 3B1 i
R = — W ()" (EPpme) esai sessives 26.2

Analogous formulas may be derived in the other cases of shaft
support.
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Example 2. Three equal masses are symmetrically placed on a shaft
as in fig. 27.1. Determine the critical speeds if the weight of the shaft
and the gyroscopic effects are neglected.

From fig. 21.1 we get for this way of supporting

3

% =& 2y xy(1—at—a3) - Bl

and thus

1 3 1
Ngg = Oy 11=I§x2=’4' = :

L3 1 9 I}

(=]
“;‘—4
| oo
P —
—
=
= =
-
c-.s!~9
-
X

“BI T 6 128 EI
1 1 1 11 L}
K12 = XNgg = &gg = &g1 1’1=I§ x2=72‘ T 198 BT
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Fig. 28.1

If we choose k = 6 - 128 the numerator in the «; is &, We get
from eq. 25.1, if M, = M, that

9—A 11 7 l
11 184 11 | =0
7 11 9—A

or
A3 —34421-784—28 = 0

The roots are A, = 16++11}/2, A, = 2, A; = 16—11}2 and the
critical speeds are obtained from eq. 25.2.

Example 3. Three equal masses are placed on a shaft according to
fig. 28.1. Determine the critical speeds if the weight of the shaft and
the gyroscopic effects are neglected.

For this hinged-clamped bearing arrangement we get from fig. 21.1

: 2 1 9 L3
%= g Tty -é—(3—xl)(l_x2)_xf )

Observe that x, is measured from the bearing on the left hand side.
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Thus

i e ATy i 1 1 I3

mE=glel sl &\ 86 | B
2375 I3

= 12.216¢ EI
118 airn 1 1 I3

= ST el Y m) o)

2781 I3

12-2160 EI

523 13
12 - 2162 ul
B A v | 1 1 11 1 L3 5103 I3
%w="pg\al a9l 2 & 4 4| BI 12 .916° &I
iy fol AT 1 5 11 1 I3
Mo =%a="glg] 212 6 & 4| &
1161 I3
“12-2162  EI

1/1% 51 5 8 257 I? 575  I?
% ="g\s) 6l2z 6 36 36| EI  12-21620 EI

If we choose k = 12 - 216% and M, = M eq. 25.1 gives

|

| 2375—A 2781 523
2 781 5103—A 1161 =0
| 523 1161 576—A

or
A3—8 05342+7 064 0644 —1 301 889 024 = 0

This equation has the roots
A, = 7081, A, = 713, and A, = 258

The critical speeds are obtained from eq. 25.2.
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Example 4. A weightless shaft with two dises is supported according

to fig. 30.1. Determine the critical speeds if the gyroscopic effects are

neglected. The shaft is made of steel and has a diameter @ 70 mm.
From fig. 21.1 we get for this case of supporting

1 ' 13
— (22, 3(1 — 2, —29) - 2,24] - BI

i =g
and thus
| I | 1\ 1 1 Tk 12
'”‘NZF(??)[3(1_?_?)+2"2“'?]'E=
192 13

Lol <Lixe 1 1 X | R | L?
w=m=gleg Mt e T m e

96 I3
~ 6-24-160 EI
1/3 1) 3 1 3 1] L
i S R G | e e
81 3

~6-24-162 EI
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If we put M = M, = 200 kg and & = 6 - 24 - 16 eq. 25.1 gives

192—A 2-96
96 Bl |
or
A2—35441412672 =0
with the roots
A; = 313,59 and A, = 40,41

with

N
B =206/« JOW——:
ms2

iy Y 70t 1072
=64 6d e
L =0,8m

eq. 25.2 gives

30 l’/é £ 24 - 16% - 20,6 - 100 - 7 - 704 - 10712

™= 64 - 200 - 0,8 - A,
9018
n; V"T

By inserting the different A, we finally get

7 = 510r.p.m.
Ny = 1420 r.p.m.

Ezxample 5. Determine the critical speeds for a shaft with two masses
and supported by three bearings according to fig. 32.1. The gyroscopic
effects may be neglected. The shaft is made of steel and has a diameter
of 12 mm. In order to take the mass of the shaft into some considera-

17
tion Fy of the masses of the two sections of the shaft is added to

the masses of the discs. See about this assumption in Chapter 9.
The mass of the shaft is 0,62 kg and thus, if M, = M,

=1

9,37 i
= - == 1.72
/"2 5,44 ]
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8.2 kg
53 kg B

<3

PR
W

i
1575 mm L771792,5 mm
L1=3150 mm | L,=3850mm
0y - L, ) :

Fig. 32.1

Further we have according to page 22

315

o ST 0,45
385

=709 = 5%

and

1 1 : I3 1.36118 I3
drntaas ety | REdadan et VIR T
s A 1\2 1\2 B
O R ey ) R e
0,68913 I3
T 6-160 HEI

1 1 1 d I3 2.29805 I3
o e | ezl R T T T
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Choosing & = 6 - 160 the eq. 25.1 gives

| 1,36118—A 1,72-0,689133
—0
1,72

‘ 0,689133 2-229805—A

with the roots A, = 4,24 and A, = 1,08. With

-

E = 20,6- 1010
m-

PO MM S 5
=64~ 84 =
L=07m

eq. 25.2 gives

30 1/6*160-20,6-10‘0-:7-12"-]0“2 3137
= Bad - 64-0,7 - A, - V4

and finally

n, = 1 524 r.p.m.
ny, = 3 022 r.p.m.

Example 6. A weightless shaft with three discs is supported in three
bearings according to fig. 34.1. The shaft is made of steel and has the
diameter @ 50 mm. Calculate the critical speeds if the gyroscopic
effect is neglected.

We choose M ; = 100 kg and thus y; = 1 (¢ = 1, 2, 3). In this case
the following influence functions (page 22) are used

1 1 3
&y = g (T = Zy) = ?zf (1—ay)? [2— 7 #y (1+171)2:| ’4:1’ ’ﬁ

1 1
Xy = —h:- (1—2y) z, [(1—15)“(1—3’1)2_ '_T 2@y (14+2) (l—zﬁ)]

L3
S

1 1 4 I3
Xz = - ._2-771%([—1'1)”“ —a3) (#y5,)* E

3
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w2\ M) (koo w00 ) BT

1 /1)\2 I‘-’oll 1\¢ 600 \* L3
w=g ) U Te) 1P s\ ) |\ asee ) mr T

If we take & — 6 - 2432 - 1073 we have

See

n = 1,2160 &, = 0,8720 & = 0,1620
o= 0,8720 £, = 10,9280 £y = 0,2025
n = 0,1620 &, — 0,2025 &y = 0,2221

T

Tre Iy

By insertion in eq. 25.1 we get

1,2160—A4 0,8720 0,1620
0.8720 0,9280—A 0,2025 =0
0,1620 0,2025 0,2221—A

or
A3—2,8661424-0,77704—0,0648 = ()

The roots are

Al —— 1,9925
A, = 0,2348
As =i 0,1388

Then the critical speeds are calculated from eq. 25.2

30 7/6 243210 3. 20,6 - 1010 - 7 - 504+ 102
Hy=—

LA™ 64 - 100 - 1,88 - A,

and

7 = 1 326'r.p.m.
Ny = 3 864 r.p.m.
5 025 r.p.m.

=
£
I
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The deflection curves in these three cases can be estimated if the

ratios ¥y : ¥, : Y, are known.
From the mathematical theory of determinants it is known that

Y1 YsiYs— | 0,9280—A 0,2025 l: — | 0,8720 0,2025 ‘:
[ |
0,2025 0,2221—4 | 0,1620 0,2221—A |
: | 0,8720 0,9280— A
|
0,1620 0.2025

With the aid of this expression the following is obtained

A, =1,9925 y, = 0,8552y; yy3— —0,1893y,
Ay = 0,2848 y, = —0,8815y;, 3= —1,29012y,
Ay =0,1388 y,= —1,6113y; y,= 1,9717y,

and the deflection curves can be sketched as shown in figs 36.1
(the deflections are enormously exaggerated).



6. Critical Speeds of a Shaft Supported by Bearings of
Lateral Flexibility

In Chapter 5 the shafts carrying the flywheels were supported by
rigid bearings. In practice, however, such bearings hardly exist. In
most cases they are subjected to elastic deformations. Unfortunately
the spring constants occurring are difficult to determine. Moreover
the spring constants may be different in different directions.

The usual bearing arrangements (ball-bearings) have the greatest
stiffness in the vertical direction and the smallest in the horizontal
direction and these conditions are assumed to be valid in the following
treatment.

Consider the shaft in fig. 39.1. The bearings are supported in springs
with the vertical spring constants being ¢, and ¢,.

If we assume that the gyroscopic effect may be neglected the
rotational motion can be split up into two oscillations, one in the
vertical direction and another in the horizontal one.

Here we study the vertical motion. The left and the right hand
springs are depressed yx and (y,+y;) respectively. In the point @;
the force F; is applied. The deflection in @), is wanted.

With notations according to fig. 39.1 the total deflection in the
point @; can be written

Yeot) = Vit lYoFYs o oveveeennnnnnn. 38.1

where y; is the elastic deflection of the shaft and (Ly,+y;) is caused
by the springs.

The force in @; is thus
Fi = M(y00)i82*
where 2 is the angular velocity of the whirling motion of the shaft.

If we consider ordinary critical speeds this velocity is equal to that
of the rotation of the dises.
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*
Ghot Yo
Fi Yi \m‘ Yo
Q M,\
© kk
L
-
Fig. 39.1
Thus we get for the “elastic™ deflection in @,
N e e e 39.2
B |
As in the previous chapter we can put
Sai L:’ 11 JI d 1 Im'EI
AR R TR e T
In that way eq. 39.2 becomes
A”s — /'i'fsi(.‘)/t(nt)i ................ 39.3
i=1
But the equilibrium of the shaft must be fulfilled. Thus
n
CoWot Y I— M2 2 pi(Yyohilih = 0
i1
39.4

.......

n

—e i LM ® 3 pi(yor) 1—1)L = 0

ref=<
t==]1

Addition gives

| 1 n 1 n ;
Yo = A‘"[n,r-.ﬂ o + 2 ‘I'ili(;’/l(;t)l — 1 T p .H,'(z/'m)l' 39.5
4 i=1 i=1
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With

or

the aid of eq. 38.1 we can write eq. 39.3 as
AlWrorde—LYo—Ys] = 2 pi&si(Yron)i

t=1

-’”(ywt)a—(yo'{"y:)‘*'(]—lu)yo] = .-"-‘ & 5i(Yor )i

-

The first of the eqs. 39.4 gives

M B c »
Yot ¥y = r}: ey
(9|

== ) /“ili(ywt)i ......

40.1

If we insert the values of y, and (y,+y;) according to the egs. 39.5
and 40.2 respectively in the eq. 40.1 we get by introducing

that

1 1 1
c & w 714
O emcig
) S Cl s i Cz .......
AM, 2k EI
9" —_ - Tl e e
2 c ¢ LhE

AYro)s+Ou(1—4,—C3) 2 pililYeor)i—Ou(1—1)C; 2 pi(Yeor)i—
i1 |

"
— 2 /‘lt'Eﬂ'(ymt)l' =0 s=¥,2,3...1
i=1

We have obtained n equations. Only non-dimensional quantities are
involved. The unknown variables are (¥i,)i, (Yeot)2 - - - - (Yiot)n- The
condition for these equations not having only a trivial solution gives
the eq. 41.1.
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:

From this equation the A-values are obtained. Then the critical
speeds are

Fig. 42.1

Ny = -
. T

30 V kET
e
For rigid bearings ¢, = ¢, = oco. Thus ¢ = oo, but the values of (',
and (, are finite. For example we can make ¢, — ¢,—o0, Because of

1 | 1 2 2 G 0 1 Furtl s
=i e e iwengat (T il = — . Further @5 =0,
¢ ¢ i fe o G 6 Ay vy 2 ‘" ‘

and all terms containing @,, vanish. The equation 41.1 in this case is
identically equal to eq. 25.1.

The choice of the way to calculate the influence numbers depends
on the form of the shaft.

If the shaft has but one diameter the influence functions in fig.
21.1 may be used. In other cases graphic methods are advantageous.

It will be observed that the deflection line for a case where the
bearings give bending moments will essentially be as in fig. 42.1.

If the spring constants for the bearings are the same in all directions
the number of critical speeds is the same as the number of the dises
according to the elementary theory. If the spring constants are diffe-
rent in different directions this statement is not correct. The bearing
and its neighbourhood are replaced by an infinite number of springs
as in fig. 43.1.

These springs have spring constants (per length unit) according to

€y = 1+(ce—¢))sin @ at 0<O<a

cg = ;—(ca—¢,)sin @ at a<O<2x
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_Rigid foundation

N

Fig. 43.1

where
¢y is the spring constant at the angle &

¢, is the spring constant at the angles @ = 0 and =

7 3
¢, is the spring constant at the angles & — = and ——

The spring constant funetion is shown in fig. 44.1. In most machine
constructions there is a symmetry concerning the spring constants
similar to that one above. Now the shaft is given a displacement ¢
in the @ direction shown in figs. 43.1 and 44.1. The problem is to find
the direction of the resultant force F. This force may have the com-
ponents F, and F,. Thus we get from the equilibrium equations:

dF, = (¢g. gdgrdy) - cos (O+q)
(le = (CH,; (p(’q;rd([") « §in ((’)—{—qt)

It is readily shown that o, = 6 cos ¢ if 0<r.
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Fig. 44.1

Integration of the eq. 43.2 gives

F, 6
el |
2:70

+.

m—f

F, 78
'rr)c, :~bf
2n-6

=

14-(22 —1) sin (6+4-¢)
L 1

[ (cz
| o] bt
L G

£ (o
1+ (ct

— I) sin (O +¢)

—1) sin (@)

T, (E{
B £t

— l) sin (('9+q,,»)J

-

J

d

cos ¢ cos (O+¢) dp+- |

cos @ cos (O+q¢) dg

cos ¢ sin (O+q¢) dp+

cos ¢ sin (O+¢) dg

J

and from these eqs we get after some calculations

F, 4 [cy i -
roe, i S\eg — s
.......... 44.2
F, Bifc; )
. rbc, = [:r+ 3 (c1 —l)] sin @
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\ ; 7
~ =2 o
<
{
4 i
7 é
Fig. 45.1

(Construct the ratio

This expression shows that the resultant force F' — V F"f—i:f‘ﬁ does
not have the same direction as the displacement ¢ except in two

7
cases, viz. & = 0 and @ = —-.

Thus the rotation of the shaft with dises ought to be split up into
those directions which have the least and the greatest spring constants.
In the case above the maximum and the minimum spring stiffnesses are

4
Cmin = T 7+ 734 (02—61)

8
Coax — T I::'wl+ >3~ (cz_cl):l
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460 mm
% v
T2
kp
c,=L045 |
520 mimi j
910 mm
1300 mm B

Fig. 46.1

Instead of the spring system in fig. 43.1 we can use the analogous
and much simpler one in fig. 45.1.
Giving the shaft the displacement 0 in the @-direction we get

d, = dcos @ Ho=1C00z
and
0, = Osin @ F 0

o

v — "max%
and finally
F,=c_.0cos 0
- min B
e R 46.2
B, = €080 @
By insertion of ¢, and ¢, according to eqs. 45.2 we see that the

eqs 46.2 are exactly the same as the eqs 44.2.

However, the relative positions of the main directions of the spring
constants may vary in the different supporting bearings. Here we
limit ourselves to those bearings in which these directions coincide.
The usual arrangements are in this way.

The theory is in the following illustrated by numerical examples.

Example 7. Calculate the critical speeds for an arrangement according
to fig. 46.1. The dises are thin and the influence of the mass of the
shaft and the gyroscopic effect may be neglected. The left hand side
bearing is rigid and the right hand side bearing has the same spring
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constant in all directions. namely ¢, = 40 kp/mm. The diameter of
the shaft is 60 mm and £ = 21 000 kp/mm?.

14
If we choose M, , = M, so is p =1 and u, = ETE Further
i =04 1,—=0,7
For the influence numbers we have

I3
- (8—x}) (l—x._,,)—x'f] B

|

1
r,‘\,'" == 6— .’L'lxg ['.

~

L

Thus
1 I?  0,041472 [3
e —6—0,42 0,6 [0,5 (1—0,4) (3—0,6%)—0,62] - AR e
1 L3 0,037384 I3
My = o 0,42+ 0,3[0,5 (1—0.4) (3—0,6%)—0,3] - W e
1 I3 0.050036 I3
Xy = 0,7 - 0,3[0,5 (1—0,7) (3—0,8)—0,8] - = ——— " F7

Taking k& — 600 we get

= 4,1472; &, = 3,7584; £,, = 5,0036;
e e

6 = ocand—=—-1 — gives ¢ =, 0, =0,Cy=1
¢ G " Gg

Using the MKSA-system
24
600 - 21 000 - 9,80665 - 108 s 604 - 10 2

> EET
O = el 40 - 9,80665 - 10
Gy = 91,0

The eq. 41.1 gives

14 .
—A+41-91,0[0,4—0,6+0,4]-+-4,1472 ~1T{91,0[0,7—0,6 < 0,7]43,7584} |
l by
! , 14 |
. 91,0[0,4—0,38 - 0,4]+3,7584 —Bfes {91,0[0,7—0,3 - 0,7]+5,0936}

...............
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or

A*—81,954+94,9076 = 0

The roots are

Ay = 80,80
A’:- 1,18

From eqs 40.3 and 41.1 we get

N ———

30 kET 1 30 l//lélfil . %

x | Mgt V4, - ol M. VA,
30 l |
B T Mrei V‘1i

and in this special case

n; =

30 /91,0 40 - 9,80665 - 10° 1
/ 110 VAi

b1 4

or
n, = 610 r.p.m. }

n, = 5000 r.p.m.

If both of the bearings are rigid we get @ — 0 and from eq. 47.1

A4 . 3 !
= 1472 —— . 3,7584 |
| =4+ TRt
| — 0
‘ ; i 14 !
| 7584 —_ —— + 55,0936
l 1“, + ll b 3 l

with the roots A, = 9,714 and A, = 0,917 corresponding to n, —
= 1750 r.p.m. and n, = 5 700 r.p.m.

Thus the flexibility at the bearing lowers the first critical speed
from 1 750 r.p.m. to 610 r.p.m. and the second one from 5 700 r.p.m.
to 5 000 r.p.m.
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If the left bearing in fig. 46.1 also has the spring constant ¢, — 40
kp/mm we get the following.

€ Cy 20 kp/
0_2_2_h) p/mm
Oy =2-91,0 =182

By inserting in eq. 41.1 we get

—A4182[0,4 - 0,5—0,6(0,4—0,5)]+4,1472 1,278{182[0,7 - 0,5—0,6(0,7—0,5)] -+ 3,7584}

182[0,4 - 0.5—0,3(0,4—0,5)]+3.7584 —A+1,273{182[0,7 - 0,5—0,3(0,7—0,5)] 45,0936}

or

A2—223,420344+5529,52 = 0

The roots are

A, = 195,08
A, = 28,34

and these values correspond to the critical speeds

n, = 390r.p.m. }

fny = 1025r.p.m.

Thus the critical speeds are further lowered. These results are in
line with the general theory saying that the greater the deflections
the lower the critical speeds.

Ezample 8. Calculate the critical speeds for the arrangement in fig.
50.1. The dise is thin and the influence of the mass of the shaft and
the gyroscopic effect may be neglected. The shaft is equipped with
springs at the ends according to the fig. The spring constants are
Conor = 20 kp/mm and ¢, = 40 kp/mm. The diameter of the shaft
is 60 mm och £ = 21 000 kp/mm?2.

4



Rigid bearing % \

Flexible bearing.

¢ 60 mm

—np kP
C2 hor 20/mm

2

x B,
CZverT[’Omm
Fig. 50.1
For the influence number we get
1 13 : ;
aj = 5 (@) - - (See page 215)
: o 3 I3
and here is [, = &, = 7y and Il = x, = - &ving oy =50t

Further we choose M, = M = 100 kg. Thus s, = u = 1.
For the “vertical motion” we have

1 1 1
Coert co T 40
- cvor'. C\'ert
Thus ¢, = 40 and C, 4 = =0 = =il
cl\'i.'rt “Ivert
For the “horisontal motion” we have
1 1 1
Chor oo Cohor
c ¢
hor hor
L4 &l s ') P eesy R v - S oty
Thus ¢, = 20 and Cy,, = =0 = 1.
1lhor “Ohor

Further choose k = 256. Thus (€)y),., = 42,67 and (@), — 85.33.
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The eq. 41.1 gives

oert + —3 51 of| +1-3
= 267 . ——— - e 3 —
“tvert 427 4 1 4 4

A 32,33

vert

and
3 1 § S (1 ]
— Ay + 85,33 —4— _T 7—0 +1:3=20
4"11“". == 62,67
The corresponding critical speeds are #u, = 687 r.p.m. and

Ny = 494 r.p.m.
Without springs we get A, — A, = 3 and » = 2 256 r.p.m.



7. The Gyroscopic Effect

In the calculations of the previous chapters no account has been
taken to those moments which occur due to the gyroscopic effect.
This is done in this chapter.

Consider the disc in fig. 52.1. The deflection line is magnified for
clearness. The arrangement is studied at a critical speed. The whirl
around the axis 44" has the angular velocity £2. Now at first suppose
that the motor gives to the shaft the same angular velocity. The
cross-section BB’ in fig. 53.1 shows that a point P on the shaft always
will be outwards. This case is the only one of all possible rotational
cases without fatigue.

Thus the shaft rotates around O,, with the angular velocity .

If the motor delivers an angular velocity of w = 24" on the
same time as the whirl occurs with velocity £2 instead of fig. 53.1 we
get fig. 53.2.

The task is to determine in which way the dise will act on the
shaft apart from the centrifugal force. Consider the shaft in fig. 53.3.
The disc is assumed to be in a steady whirling motion while the motor
runs and it moves around a point on the centreline. The coordinate
system &, 5,  rotates with the disc and the eccentricity of the dise
is e. The gravity point of the disc is on a line parallel to the &-axis.

B

Motor

Fig. 52.1




Qt Qt

w't

Qt Qt

Fig. 53.1 Fig. 53.2

By projection
wp = £ sin x cos w'f
Wy = — gin x 8in w't

wr = 2 cosatw =n"
¢

The circumstances for the motions give

w = Q4w
£ 5B

%

Fig. 53.3
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and thus
o' = w—02 (1—cos )
From mechanics the moments (with usnal notations) are

M = Cve— [JY,'(!):—!— L’ :( ').,]
M, = U’/ — Wit ae 8 wsatoia v sscrs 54.1
.I'I: == L-:— (.r;-(v)v-f- LT,;(’):?

and
U = I:0;—Dgyory— Doy
U,] — I,’('),,—D,':w:—~ Dfr,“)f ............ 54.2
Ur = Zewr—Degon—Dyy l
Further
I. = I,+Ma® Dey =0 l
I, = I,+M(a*+¢?) D:r = Mea
I, =1I,+Me Dy =0 J
Insertion of the actual values in eqs 54.1 and 54.2 gives
M: = —Q sin « sin o't {{z0'4(I,—1:)0""} + —;— Mea 2 gin? x sin 20t

M, = —Qsin x cos 0t {I:0'+(I,—1I:)0"} —Me2Q(w'+o"') sin & cos o't+

§
2

o 1
- Mea (— sin® x —m”’-’) + o Meal2? sin? x cos 2m't

-

-

M, = —Mef2 sin (a. cos & sin m't+ —- e sin x 8in 210’!)

By projection
M = M: cos o't—M, sin o't
111,/. = M;- sin w'f-- M?/ cos w't

and further
Mmotor - lu: CcOo8s ,\-{-MEI sin A




o
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In the special case ¢ — 0

M. =0
M, = —Qsinx (I,o" —1,2 cos a)+M (asin x)§2* (a cos )
i"Iummr =0

The last term in M, means the moment of the “centrifugal force”.

The moment at the dise, M ,. must be reduced by this amount. Thus
by putting sin x — tg x and cos x = 1 because « is a small angle we
get

® 1
M, = —0*1, 0 _Ial Y

1
For a thin dise 7, = -~ I, and consequently

) 1
M —=—L O {0— — 2} T s o 551
" » o)
With forward whirl b= 1 and
14 v <]
M,;=— T 1,Q%
el 0]
With reverse whirl G —1 and
3 o
M= 5 1,02%

Observe that the calculated moments are those acting from outside
on the disc. Consequently the disc acts on the shaft with moments
of the same value but with opposite signs. In that way it is easily
seen that M ; tries to bring the shaft back to the centerline but M,
has the opposite action.

Generally the ratio {(I;

-

- = f is not specified to 1. It has been seen

during tests [3] that under certain circumstances f may have the
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Fig. 56.1

1 1
values + — and + 3 and theoretically speaking there is no obstacle

to f taking any value. But the most common case is f = +1 and the
practical importance of other possibilities is probably not great.
However, at the end of this chapter different critical speeds of a
certain arrangement are discussed.

First we consider the shaft with two thin flywheels in fig. 56.1.

The flywheels are perfectly balanced and have the polar inertias
I, and I,,. The inclinations of the shaft at the flywheels are ¢, and
@, at a certain speed.

Then the shaft is affected by forces and moments as in fig. 56.2.

Further we assume that the whirling motion of the shaft around

1
the line between the two bearings has the angular velocity Q2 —.

@ M91 7 Mgz X




If the rotation around the shaft has the same velocity we get

Fy = My

F, = M,y,$*
1

My= 7 TP § vovevivevinvass 57.1
1

M, = " 1,2,

Introduce the following notations:

xpy; = the displacement at a point @; on the shaft caused by a unit
force at a point ;.

xyi; = the displacement at a point @; on the shaft caused by a unit
moment at a point @,.

prij = the angle at a point @; on the shaft caused by a unit force at
a point @;.

f3ri; = the angle at a point @; on the shaft caused by a unit moment
in a point @;.

The points @; and ; are arbitrarily choosen. We get

th = spulyFapeFot oy My +xynaM
Ye — “szFl‘+‘0‘F22F2+O‘MmMgL’f""Mze*Mgs
¢ = Bk 4B FatBan Mgl+ﬁ."12M02
@2 = Prafy+BroaFat+Bun M+ BuzeM .

The eqs 57.1 and 57.2 give
1
Np1— W F1+f¥1v'1ze‘|‘fxmxﬂlgl+~”‘.mz*wgz =0

1
Xpo 1+ | ¥ pra— W 02 F2+“M21Ma1+0‘M22My2 =0
M0

9

Brul1+PrieF o+ (ﬁMu_ ﬁ) M i +-BannaM 4
»

|
o

2
,?FZI.Fl+ﬁl"22Fi+ﬂA!21Mgl+ (ﬂuzz— 7 2.()g) M02 =0
pa?
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These equations have not only a trivial solution if

5 ﬁ X1z Xy ls Nl |
1
Npo Xpog— sz o Xl Anpaals A
='{)
)
Bl frials (ﬂmm = ]’,:92) L? Banel?

2 \

ﬁl":!lL ﬁﬁ'azL ﬁmzle (ﬂﬂza— Ip‘.‘"(')z) L? ‘
.............. 58.1

The two last rows and columns are multiplied by the length of the
shaft L in order to bring the same dimension to all the influence
numbers.
kEL
Lii 2
where £ is an arbitrary constant giving simple numbers in the deter-
minant. Further introduce

Every term in the equation above iz then multiplied by

kEI 1
M.

as in Chapter 5. Thus, as an example,

( 1 ) kEI - kEI kBT 1

Gl 7T (R I e T T

REI &y IP REI 1 M,

= I k EI  Id M, > M,

& 1
= Emn—Auy

ref==
where
- kEI e
. O I (Compare the notation in Chapter 5)
and
M,
S M ref

In a similar way we may proceed with other terms.




For example we get

(ﬁ 2 N, MEL
MU— T )2 : 3 — tumn 4N
Ip,!.) L
where
3 kET
SMn — ﬁMu e T i
and
Ip1
o i 2
2M, L
We finally get
3 p = §
‘ 'sFll_‘l.“1 Epe S Eane
—1 i =
Epn 51‘22_/1,"-_1 Sy Saren
- - - =1 =
Lrn AT San —A’l SMu2
| Srm Cpaa Cym Saraa—Ary
where
kE1L
Spi =i T
ki1
SMij — XMmij° ”L” E
L
5 kET
SFij — ﬁn’j SRR
o ; kEIT
Swmij — PMij " T J

and due to Maxwell’s theorem and the definitions
numbers

Eris = Spm Syt = —Crie
== » E s pod

5:\11] — =SFIt M22 — — SK22
i ot . i — et

Eanz = —Lpai Cane — Lum

1

—1

89.2

of the influence

Thus the determinant is symmetrical with respect to one of its
diagonals after multiplying the two lowest rows with —1.
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The generalization of eq. 59.1 for n discs is evident.

>>1 =

Epn—Apy") Epra - - - Erin &y Epnze - - S M1

= &
§ra (fi‘zz—Aﬂz ) oo &Epan Exra Enraz- - Saren

=1 -

EI"III 51‘1;2 0 (ann_A."n ) SMm ‘S.\lnr oo £.Hnn
F ol r = =1 - b
SFn SFi2 - - - SFin (sMn—A’l ) Cana- - SMin
> = > (,*- o ,1,,—1) b
SFa1 CFaz LFan SM2 Sarga— <Yy SMan
5 - - - - (.. 11 = 1)
S Fnl SFn2 S Fun SMnm SMn2 SMan n

If we denote the angular velocity of the whirling ©2, and that of
the shaft about its centreline w, we now have treated the case £2 — .
In general the moments in fig. 56.2 may be written

2

M, = (I,,0—1,2) 2 sin ¢, }
Mﬂ? —_ (Ipzfl)—IQQ-Q) .QSin (pz

where /, denotes the lateral inertias of the dises. Thus we get

o

(Ipiw'—Iei-Q)Q Ipi . :5 _Iﬂ— L Iei IP‘. 60,2
NS T M \Q T L) M %7

»
If e 1 (forward whirl or ordinary critical speed), and the disc

1
is thin, viz. I; = -1,

pis W€ get
¥ 0
i
e e O 60.3
' 21‘[1'0(1’2
«
If o —1 (reverse whirl) we get for the same dise
1.
v = —3 e e 60.4
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However, the eq. 60.1 is valid in all cases which may occur if »; is
defined as in eq. 60.2. Observe that the influence numbers must suit
the kind of bearings used.

Further we see from eq. 60.2 that » discs give an equation in A
of order 2 n. Biezeno-Grammel [2] have shown that the equation
has » real roots if % =1 and 2n real roots if ;: = —1.

In the following the use of eq. 60.1 is illustrated by some numerical
examples. From these the general conclusion can be made that in
bearing arrangements or shafts giving large inclinations to the dises
the gyroscopic effect has an obvious influence. In other bearing
arrangements its action is smaller.

Eaample 9. Calculate the critical speeds for the arrangement in fig.
(]

G1.1. The ratio o is thought to be able to vary between the limits

+oc and —oco. The mass of the shaft may be neglected. The shaft

and the dise are made of steel.



»_D
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N
>

Fig. 62.1

For an arrangement with “hinged-hinged” ends we have

1 3 a 112
Xpip = ? Ilzs(]_’xl_’r‘:) ’ Bl

In this case x, — (1—u,). This gives
13
*rie =g ()q)* * Bl

, 1 L2
Bri = 3 @ (X —y) Bl

However, the influence numbers xy; and f;; still remain to be
determined. Consider the beam in fig. 62.1. A unit bending moment
is applied to the beam in ;. We seek the deflection and the inclina-
tion in this point.

The equation for the elastic deflection line is




After some simple calculations we get
1 . L?
XM = {—a3+3(xs—a,)*—a,[3(1 —2,)*—1]} 573

_ 1 . L
Pari; = B {—3a+6(xs—m,)+1—3(1—a, )2} - —+

El
and if x; — x, these equations are reduced to
1 i L2
Katis — — Y (21’}—3171‘*‘11) “EI
< 1 L
Puii = — x}'—xl—f-—:s‘ "B
A 1
In the actual case x; — Y gives
1 /1 3\ Ip 3 L3
1 ="g\4 4] EI 266 KI
’ 1 BRI B 1 L2 1 o
Pen =30 g\d ~ 1) B T e EL
1 5 1 5 1 1 12 1 L2
2 LSl i T vl (e T 2
1 1 1 L 71 L
Pun=—\g — 4 T3) T~ 8 H
Choosing & = 768 we get from eq. 59.2
! 3
Srm — 768 - 256 =9
1
e = T68 - —3*2* =24
Sy = —24
” 7
Sy = —768 - — o = —112

63
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or
1 MR* ) R \E 0} 1 w
n=—='——-2—= —1 I——1)=——12—-—1
2 2-MI? Q 2L Q 16 02

where R is the radius of the disc. By insertion in eq. 60.1 we get

9—A4 24

T R |

|

|

|

r 2
and from here we can solve

w A*—16A4-+27

Q-  —14A+54

This second degree curve is a hyperbola and in fig. 65.1 the ratio

®
7] is drawn as a function of A.

(0]

The usual critical speed (.Q' = +1) corresponds to the point P,

in fig. 65.1. In this point 4 = (l+}"§§)z6,2915. For the reverse

(2]

whirl 7 iy —1 we get A, =3 and A, = 27. Observe that even

w 1 X
) < 5 » glve
two critical speeds. In the figure the points P, and P; correspond to

w 1

s 4 i
the two critical speeds at 0 4

The point P; is of special interest. In this point @ = 0 and A; =

special forward precessions, viz. such in the range 0<< —

= (8-1‘—]-”5) ~14,08, If, as often happens in practice, the usual critical
speed is determined with the aid of a vibration exciter a frequency
corresponding to A ;-value is obtained. It is seen in the figure that the
right value is A = 6,2915. The error in this case is 33 9, (2; = 0,67
£,). Further, another frequency may be obtained, namely that
corresponding to the point P, (A == (8—],"’37) ~ 1,92). See more about
these matters in Chapter 10.
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Fig. 65.1

If the gyroscopic effect is neglected we get A = 9. This value can
@ 1

be obtained in fig. 65.1 forE = giving », = 0. See point P,.

Thus one could say that A = 9 corresponds to the ecritical speed

D) 1

for a point mass (I, = 0) or to the special rotational mode S

for a thin dise. It may be pointed out that A = 9 is always obtained
©

for a point mass independent of the value of the ratio o The motion

of a point mass can be thought of as the result of two lateral oscilla-

(1

tions with the same frequency and amplitude with phase angle =5
5
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rad and with their directions perpendicular to each other. For a disc,
however, only the whirl can be described in that way. To this whirl
then the shaft rotation must be added in order to describe the motion
completely.

Denoting the critical speed corresponding to A = 9 by n, we get

Thus

— = (),836
ny

(0]
The simple calculation gives an error of 16 9,. If o =cc one

(3]

6
gets from the fig. 65.1 4 = 37 while o= gives two values

6
of A, namely A = 3— and A = oc. The last one corresponds to 2 — 0
i

and is trivial. Thus we conclude that if the angular velocity of the
shaft is infinite there is only one critical whirl, viz. the one correspond-
- ¢ 6

ingtoAd =3 7"
The weight of the disc is

b1 4
M = Vi 1,0+ 0,05 - 7 850 kg = 308 kg

.

With £ = 20,6 - 101* —- is
m*

E T6861 . 1 - 768 - 20,6 - 1019 - 7 - 500 - 1012
SAie ) 2 64 - 308 - 1,03 - A,
and
3791
n;

PSS l ;‘1,-

With easily understood notations we get

Mg — 1264r.pm. n, = 2738 rpm. ng=— 2189 rp.m.
m = 1512r.pm. ng=1010rpm. n,= 730r.p.m.
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In order to get a rough conception of the mode of the deflection

curves we use the equations

M,
O—A) F—24- " =0
Fy
%= |
M,
L 1
5 T2

“)
Forward whirl ( = +l) A = 6,2015; if >0, M,>0
) A = 273 if F,>0, A‘][rll<()

Reverse whirl ( = =]
A= 3 if #,>0, M,>0

Now we are able to sketch the different deflection curves:

h1= 1512 rpm
(ng=1264)

ﬂ5=2189 rem
(ng=1448 N,)

n,= 730 rpm % \ M

(n,= 083 n,) Z @-
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Example 10. Two discs are arranged according to fig. 69.1. Calculate

the critical speed at forward and reverse whirl. The mass of the

shaft may be neglected. (Compare with Example 9 in this chapter.)
According to the previous example we get

3 I} 9 I}

*Pu = Ors =956 BI = 3.256 EI

Brin = —Prar = —oary = + 20 = 32  EI 3.256 EI

7 L 112 L

—Byn = —Pun = 48 EI ~ 768 EI

Xp1g = Xpay — e 4 4

1 1 3 1 L2
Xane = —&ya = Pz = —Brn :F"I 1‘“—1’{—? E—_—

Il

1 9 1 27 | L 5 L
2 o e T T Y [F 7 A T T

80 L

768 HI

Choose kb = 768 ; M = M,
Thus 4, = 1; uy, = 2. From the previous example we get

1
= and consequently », = 8.

By insertion in eq. 60.1 we obtain

9—4 17 —24 24 |
1
9— —A —24 24
¢ o e R e R 68.1
24 24 —112-164 80
—4L 24 80 —112—84 |
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Fig. 69.1

The development of this determinant gives

A'—643—13142+484+1768 = 0

With the aid of Cartesii theorem about the signs we may see that
this equation has two or none positive roots. (The theorem states
that the number of positive roots of an algebraic equation is equal
to the number of sign changes in the equation or this number reduced
by two [8].)

Approximative values are obtained if the gyroscopic effect is
neglected. Thus from eq. 68.1

and from here A, — 24,374 and A, = 2,626, Then calculation with
Horner’s scheme is advantageous. The result becomes

A; = 14,535 A;<<0

Az = 2,522 A‘<0
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Only positive values of A are valid. The negative ones give imaginary
critical speeds. From the previous example we can write

3791 sk
) P T e = == ? r.p.m.
. /14,535 3
3791
Mpi—=e———= 2 38T E M,
) 2,522

3791
W =——= [168rpm,
[ 24,874
3791
N = 2339 r.p.m.
| 2.626

The error in the first critical speed is 23 per cent and in the second
one 2 per cent. Both of them are too low.
At reverse whirl we instead of eq. 68.1 get

9—4 7 —24 24
1
7 0——A —24 24
16 =0
24 24 — 12— 80
8
— 24, | 74 80 She S|

or

A% —90434+1 22542 —5 328446 912 = 0
This equation has the following roots
A, = 74,50 A, — 8,649 A; = 4,582 A, = 2,3685
corresponding to the four critical speeds

n, = 439 r.p.m. ny = 1297 r.pom. ng= 1771 r.p.m. n, = 2463 r.p.m.
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Ezample 11. Two steel dises are put up on a cantilever steel shaft
according to fig. 71.1. Clalculate the critical speeds during forward
and reverse whirl. The mass of the shaft may be neglected.
First we calculate the influence numbers from the case in fig. 72.1.
For the left part of the shaft we have

d?y,
» d(sz)

= — (a,L) - 1

The boundary conditions are: xy — 2, ¥, — 0 5 — 0.

Integration and use of these conditions give

1 I3
apij = Ya(2y, T,) = o (x';*3x?x2+21’:1’) BT

9

2

ﬁFU = .7/:7,(11’ xz) = ~2— (‘Uf—xg) ) i




L |

:

Fig. 72.1

For the right part of the shaft we get
I3

1
Xpij = Ys(@1, X3) = Yol2y, 0) (23 L)fpi; = r} x3(22,+ 3ay) - A

~3
{89
e

‘ ; S
Brij = Yy (21, 0) = ==y

The influence number for a unit bending moment is also needed.
For the left part in fig. 73.1 we get

d*
B Yo

The boundary conditions are @, = 2,; y, = 0; y, — 0. After some
simple calculations we get

I2
Xatij = Yal®y, Xg) = — 3 (2, —x,)* - EI
TR R 2.3
Barij = — (@ —2,) - Bl
For the right part of the shaft we have
1 L2
Y=g @y (2 -+ 225) Bl
.......... 72.4

L
Baris = —x BT
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Mx=1
ZL. \
= N
X,L X5l
X4l
L
Fig. 73.1

Applying the formulas 71.2, 72.2, 72.3, and 72.4 to the case in
question we get
I 2 L3

1
M= g 4 T RT T 162 EI

1 ) I3 54 3
Xrer =g S HT T 162 ' EI
1/8 » 4 I3 8 I
%y =% =g\ oy —2 2 Fpr=3.37 "BEI ~ 162 EI
s g 2
MU= "9 g " Br T T 162 T EI
1 2\ L2 1 It 9 I*
G | B e e
1 } L | 4 12 45 L?
“um= = g\ T ) BT T T lez EI
I Ix 3
Mu= "o BT T T 182  BI
U 52 54 L
Pun=—3"Fr="7163 "I
L 162 L
Pun=—"gr=—"Tia "I

2\ L | S 54 L
G I T
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Choosing & = 162 and M, = M, for forward whirl we get

A 16281 M. R} 1 (R 0,59 ]
ST M e N=o.aM B B8 \L)™ B 230
= 0,5 M,R: 1 (R,\* 0,84 1
=1 "M 2T 4 \L)T 4 T 581
The eq. 60.1 now gives
2—24 8 =] =4 |
8 54—A —45 -81
|0 [iofo e = )
+9 +45 —54—234 —54
-+9 +81 —h4 —162—5,674

This equation can be written
A%—24,084°—379,7542— 88,744 44,72 — 0
with the roots

A = 35,00} Ay =0 )

A, = 0,244 Ay<0 f

So the two critical speeds are

Ny = 940 r.p.m.
7, — 11 300 r.p.m.

Without the gyroscopic effect we get from eq. 74.1

2—24
=)
8 54—A
and
A, = 54,60 yi ny = 760 r.p.m.
giving
Ay, = 0,403 N, = 8 760 r.p.m.

The first value is 19 per cent and the second one 22,5 per cent too
low.
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For reverse whirl we get from eq. 60.1 (the coefficients for A in
the lower part of the principal diagonal in eq. 74.1 are divided by
—3 as seen from the formulas 60.3 and 60.4)

2921 8 9 9
8 54— A 45 81
23 =
9 45 a——-A 54 =
5.67
9 81 54 162— ——

This equation has the roots
Ay = 131,87 A, = 14,94 Ag=1,06 A, = 0,19
with the corresponding four critical speeds

ny = 393 r.p.m. n, = 1165 r.p.m. ny= 4240 r.p.m. n,= 10300 r.p.m.



8. Critical Speeds of a Shaft Supported by Bearings of
Lateral Flexibility Considering the Gyroscopic Effect

We have already studied both the influence of flexible bearings and
the gyroscopic effect on critical speeds but not when they act simul-
taneously. In this chapter, however, such a treatment is carried out.

Consider the arrangement in fig. 77.1. The two bearings have the
radial spring constants ¢, and ¢, respectively. The dises are thin. It is
assumed that the shaft is perfectly balanced. In that way there are
no deflections save at some special speeds, the critical ones.

The deflection y, and the inclination ¢, in a point @, on the shaft
can be written

n n

p — N > i

Ye= 2 Fopu+ 2 Muoyn
=] =1

i=1 i=1

1
where F; = M(y,,):2* and M, = e I, 9%pyoy); for forward whirl.

The notations are the same as in Chapter 7. Further we have from
fig. 77.1

(ytot)x T :’/:+lny0+yn
Ui DA it wans vaaers 76.2
((ptot)x = @+ ViLa

The angle ¢, is measured from the centre line of the bearings. In
fig. 78.1 the different angles are shown separately.
Further the equilibrium gives

n A |
ey L— 2 Mo )21 =) L— ‘y o L% pyor)i = 0

=1 i=

-

7" n ]
Cz(yo‘i"y:)L"“ - Mi(yyo )27 L+ 2 o I )i = 0

i=1 i=1




(Ytot)s

Fig. 77.1

1
Now introduce M; = u; M, and _—21 i = Vi Lyyry where M, and I,

may be choosen arbitrarily. Thus, if ¥ = 5L, the eqs 76.3 become

WL Lraf® 2
617)0 = ml"Q 2'1 :“ l) (77tot)t+ I2 =~ (‘ptot)l
i= $=1
ea (1 M o \” L.( ref ;“
2o t10) = M 82 ‘~1 i (ot )i— 12 ~1 Yi(Prot)i
= i=
and
M 22 » I, 2% n
g L et » N5 et L W i —L WAy 5
NG = — 1(1=0) ()i Doy £ YilProt)i
M, S22 = 22
Moo= % tilloki— vz~ z 7ilProt)i—
2 =1
M 22 L =

rof %
T z /"'i(l_li) (Meot)i—

& 3 *chl 1'-'1 Yi(Prot)i

-
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Fig. 78.1

Now we have from Chapter 6 that

| 1 1
c—c,—l_c2
B ¢ C
-1—(,”/2—02

M. 0
O~ ’:‘ 2
I 0
By = 'I;L A
: LEI
S 7 A 7 5
we can write the eqs 77.2 as
n n

J

Anyg = G0y »-S (L=1) ()i +C10) Z 7 Prorhi
(5 | i

=1

" n

Any = Oy 2 pliiot)i—Cr1On 2 tiltaor)i— 91 2 yil@eor)i
"1 . l' o

i =1

n

1

-1

(87




Writing the egs 76.2 in a non-dimensional form we get

(Mtot)s = 77:+la"lo+'ls }
s = (Prot)s— o

or

Ne = (7itot)k—'7:~l»')0}

P = ((/Jmt)k_"}‘)
With the aid of eq. 78.2 we may write

Any = Afor)s— C1@3 Z (1 —1) (ot)i—C101ZyiPror)i—
—LOuZpli(nio)i+ Crli@ s Z (ot )i 1012y i Prot )i

or
Ay = AMyor)s+ (C1—1) O Zpiili(mor)i— (1 1) Oy Z i ()i —
—(Cl—lx)(’)l‘gyi(q}tut)i ..................................

The eqs 76.1 can be written

p cf““a
N = M, S22 u;(Neor)iXpeit _rL— 27i(Pror)i*arsi
Ps — Mrc pLE.“i(")tot)ﬂﬁFﬁ+ Ircf‘QgS}'i(q?mt)iﬁMei

By introducing

& L d ,ref
Apei = SPhi " ppry BUGLY = M, L*
L2

Xptsi — E.Wu' i IJEI
|

Brsi = Cant ° BT

Parsi = Catei LEI
we get

---------

An, = ZpiMeoe i€ pai 127 @rot )i atai }
"1% = Z/’i("/totr)‘itl"xi‘}'7'27i(¢tot)i: Msi
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By insertion of the eq. 79.2 and the last of the eqs 79.1 we obtain

AMgot)s+(Cr—=1)On Z i (1401 )i — (L —1,)C10 3y X101 )i—
—(Ci—L) O 2y @rot)i— Ztié pei(Mor Ji—v2ibrni(Pror)i = 0

Z i)l P+ 227 Prot) Eares = A Pror)s— OnrZ 1ili (gor )i+
F+ 0103 Z1:(16)i+ OrZ i Pror);

or
Ao )i+ (Cr—1) Oy 2 #ili(eo)i— (1—=1)C1 0y E Hiliot)i—
= Z 14 pailMot)i— (Cr— 1) Oy S Yil®Pror)i— -‘: 7i msilProt)i = 0
1 i ] l
C,0y 2 #i(ot)i— O 2 bili(gor)i—2 "t‘-Fst('/tot) +A{Pot)it
L]
+01 2 yil@ia)i—v 2 /’ism.t(‘l'tot).' == 0 ]
In order to get non-trivial solutions the following eq. must be valid
‘—A+An Alg ... Alﬂ Bll Blg .. Blﬂ
Ay —A+-Ag5 ... Ay B, B, con By,
Anl Anz _A+Ann Bnl an Yot Bnn 0
.18 s B —A4D P e D N
Cy Gy i Gl Dy —A+Dy... Dy,
Cnl 0»2 Oml Dnl Dn2 i TDnn
.............. 80.1
where
Ay = piOu[liCy—(0—L) (i—C\)]+pipe
B,; = y:0/(Ci—1L)+vyifmn . 802

Oy = —Ou(Cr—1i)+ 1l py;
Dy = —y,01+vyilarsi

From eq. 80.1 we can solve A and then the eq. 58.2 gives the critical

speeds. The

theory is illustrated by an example.
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Fig. 81.1

Example 12. The shaft in Chapter 7, Example 10, is equipped with two
equal “radial” springs at the bearings as in fig. 81.1. The spring
constant is 100 kp/mm.

From Example 10 we have

Em= =29 —éun = uma = 24
§pe= Epa =1 Eaa = —Eyn = 24
Er = —Cpay = 24 —Carn = —Laae = 112
Ema = —Llpn = 24 Cane = Cya = 80

k=108; Mug=M;; u=1;u3 =2

Further we get

i A
; + 9. 80665+ 10% +—— - 0%+ 10712
. ppp 76821000 - 9,80665 + 10° -~ - 501 - 10
M7 ooIs T 100 - 9,80665 - 108

GM = 49,48 Sa,y 95, = 50,0



and
Iret
6 = Oy - 'M‘mLAa' = %Oy
1 1 R? R)\®
_:-)—Ipi == M; g =k Mo D= Vilret
R \?
Choose I, to be M . L* In that way y; = p; ("—L) :
We get
_ 1 1 1 3
v=1; 0y = 0y = 50,05 y; = ‘IE; 7’223; L= I; I'z:z*

By definition

1 1 1

c ¢ Cy

and ¢; = ¢, gives C, = 0y = —.

'~

From the eqs 80.2

1\] 788
Au:]'sot = +1-9=

3 1} :
7—-2“) +2-7 =

(
|
il
<

1576
2 - 50 e

S
"w
w

I

o
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2 336

648

."0 1.—_ A [ g—
041 = (112 = ——
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By putting 324 = p the eq. 80.1 gives

— o788 1048 —93 146
524 —p-+1576 _ 43 46

. G s 841
368 2336 —op—324 120
—1168 —1736 60 —o— 648

or

0'—1 3920°—1 0180+ 82 673 644942 328 915 968 — 0

with the roots ¢, = 1899,5 and p, = 217,54. The other roots are

complex numbers. Thus A, = 59,36 and A, = 6,798, The corresponding

critical speeds are n, = 492 r.p.m. and n, = 1454 r.p.m. The deflection

lines may be drawn with the aid of the equations given in this chapter.
If the gyroscopic effect is neglected from eq. 84.1 we get

—p+1788 1048 |
524 —ot1576 | °
with the roots g, = 2 021 and p, = 343 and thus A, = 63,156 and
Ay, = 10,719 giving ng = 477 r.p.m. and ng = 1 158 r.p.m.
In the same way it is possible to find the critical speeds for the
shaft when the spring constant is varied between 0 and co. The result
is collected in table 84.2.

15t critical

18¢ critical

Increase due

| 2nd eritical

2nd epitical

Increase due

Spring spee(li. Gyro- speet‘i. Gyro- to the gyro- speec.i. Gyro- speetrl. Gyro-|,  the gyro.
constant. |scopic effect/scopic effect scopic effect scopic effect|scopic effect scopic. effect
considered | neglected considered | neglected
kp/mm T.p.m. r.p.m. per cent r.pam. | r.pam. per cent
0 0 0 0 0 0 0
10 187 187 ~0 875 416 110,34
40 347 344 0,87 1244 794 56,68
50 380 375 1,33 1249 875 42,74
100 492 477 3,14 1454 1158 25,56
500 761 669 13,75 1947 1839 5,87
1 000 850 713 19,21 2113 2 044 3,38
2 500 926 744 24,45 2 257 2207 2,27
5 000 958 756 26,72 2 317 2 270 2,07
s 994 768 29,43 2 387 2 339 2,05

Table 84.2
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Fig. 85.1

Curve 11: 15 critical speed. Gyroscopie effect considered

Curve 12: 2" critical speed. Gyroscopic effect, considered

Curve 21: 18 critical speed. Gyroscopic effect neglected

Curve 22: 204 critical speed. Gyroscopic effect neglected

Curve 31: 15¢ critical speed. Stiff bearings. Gyroscopic effect neglected
Curve 32: 27 critical speed. Stiff bearings. Gyroscopic effect neglected

The values are plotted in fig. 85.1. The conclusion is that the gyro-
scopic effect is considerable at the first critical speed if stiff springs
are used and at the second critical speed if weak springs are used.



9. Influence of the Mass of the Shaft at Critical Speeds

In the previous chapters the mass of the shaft in the different
arrangements was not taken into account. In this chapter and the
next a method is shown to do that with a shaft of constant diameter.

Consider an element of a shaft of constant diameter according to
fig. 87.1.

The shaft whirls with angular velocity £ around the x-axis at the
same time as the shaft rotates with angular velocity @. Then the
equilibrium gives (the disturbance of the tangential motion is not
considered here)

LA S N L
L. xyL22+- T, ~dx cos o+ T+ Ex‘ x—T =0
T o iy 2 M — ¢
M+ 7 -dzcos«;r-—z —Tdx+ —i—**axﬂdx—x =0
or after neglecting small terms
aT m s my
Pt i i el
.......... 86.1
aM aM,
=i T &

1
From these equations, if dM, = (2ydl 2%)y’, where y — i and

F==SF at forward and reverse whirl respectively, and
M= —EIy"

we get that

T El e 9 Qz dIﬂ '
= —Rly"+P Y




3
,Q X x+dx X T g
< ! T
ot
T /3
/
(DD /
4.91
¥ Ox o
—Lsdx-cosv
y D94x
L
y
Fig. 87.1
dx r
But dI, = TR e where 7 is the radius of the shaft. Thus
iy "L ?‘2 ’
Sl —Ely -}—2;/.92' —*L— B ‘Y
Insertion in the first of the eqs. 86.1 gives
m my
—EIy"Y 4202 - ST y”—}— L Y2+ ——cosp =0

@
Now introduce the non-dimensional length & = s If we neglect

the gravity force besides the other forces

7 d*y o mr® dy Ok
—H gy T op GELY T B I =l
dy 5 mr* LA dPy m LA o
3 o ammE em L mr v —?
b Sl mlA02?
enoting 4' = B e get

dy r\¥  diy
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Putting y = ¢ the solution becomes
af
s W 2 \2
v iENE A Y
k= 2 ’“f(‘z‘ (‘f)’-’) t (
1/ Ry Ty
ky = — 1 ///1+(?(1—)22)+j(
i /- /—'7,—,? y
ks = 24 |/ |/ 1+ (?(I);z) —2(
iF . :
ky = —il // l+( ( ) )/’.2

The equation of the deflection line for a rotating shaft can now be
written as

b |2
g w——
by| ¢

4 5

— Y is

= & A;e 2
i=1

or using cylindrical and hyperbolic functions and denoting

by = Ak by — iy =1k, By — —iik,,

we get

y = A sin ik, £+ B sinh 2k, &+ D cos 2k,E+E cosh Jk;E ... ... 88.1

The coefficients %, and k, are “correction factors” to i due to the
r \2
gyroscopic action. In most cases the term l) (%) /% can be neglected
besides unity and we get k, = k, — 1. This thing happens exactly
when 2 = 2w which is seen from eq. 55.1.

We now have the basic knowledge to calculate the critical speeds
of the shaft in fig. 89.1 considering the mass of the shaft and the
gyroscopic action of the disc. The gyroscopic action of the shaft is
neglected but theoretically there are no obstacles to taking it into
account.

In fig. 89.3 the acting forces and moments are shown. Non-dimen-
sional coordinates are used in the radial direction and we need two
different systems of coordinates.

=
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Fig. 89.1

For the two parts of the shaft, if b, = &, = 1, we get

Yy = A, sin 14,+ B, sh 1§,
Ya = Ay s8in 1&,+ B, sh 1&,

Derivation gives

1 dy‘ = 25
=T dE-;r = A, cos A+ B; ch 1&;
1 dy; :
T d:“;f = —A;sin A&+ B;shAg bt covveennns 89.2
1 dy;
_23 s d,f? = _Ai cos Zéi_{_Bi Ch }-5,
=12

Fig. 89.3
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d*y dM;

Al . 77L7 o | —— g Al
Further M; = —EI d(ELY and 7 dED) Thus
EI  dy;
1‘[,‘ = — L2 < ds?
EI  d;
Li=—T7 ag
(t=1,2)

The equilibrium for the disc demands (small deflection)

Ty +Ty— My, 2> = 0
JII—AMZ—M‘I =)

These equations can be written as

Bl [d* ElI (d
: ( J‘—) = ( 33.’:-) — M)z, = O
&= d;2 Si=2, i

T\ dg Bz
90.1
EI [d* El % di
—irie l/: el S 1(;? —2y1 2? 2 =0
L2 dEI &1=2, L. d§§ 6|=¢1 g d(ElL) §i1=xy

1 [w I,
where y =~ |—= ——5-]. For a thin ecylindrical dise of uniform

2\8 I,

1 3
thickness y = 7 for forward whirl and = — ™y for reverse whirl.
Further
(?/1)5,=¢., = (?/2)5,::1, ]

_dﬂ o) _(iy,{ ............ 90.2
dfl $r=m = ds2 =1y

With the aid of eq. 89.2 we may write the eqs. 90.1 and 90.2 if
My, = @ and iz, = p as

A, sin o+ B, sh¢g—A,sin y—B,shy = 0

A4, cosp+B, chp+4A4,cosp+B,chy = 0
M

A, cos¢g—B, chp+A4,cosy—Bychy—1 - s [4,singp+Byshg] =01

291,221

A, sin ¢— B, sh p—A4,sin y+ B, sh e [4,cos¢+Byche]=0
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These equations have non-trivial solutions only if

sin ¢ sh ¢ —siny —shy
cos ¢ ch ¢ cos chy
S M =105z = 9L
cosgp—4i- -sing —ch¢g—1 o shg cosyp —chy
sin ¢ —22@* cosp —shg—20* chg —siny  shy
where
P o TE B e
i El mlA0? EI
2yl
Mo e B
ai= mL?
If the radius of inertia of the disc is & we may write
ot e k\* M
=ty il=] =
and @* may be thought of as a non-dimensional inertia.
Eq. 91.1 can be reduced to the form
1 1 L 2 (tgp—tghg) (tgy —tghy)
m 4 \cot p+cot yp  eth p+cthy 2 (tgp+tgy) (tgh ¢ +tghy)
e . = 91.2
M 2 3 ( 1 1 )
T e | s
2 \tgg+tgy  tghottghy

This equation is mainly of the form
m 2 A+ BPO*B
M~ " 1—rerC
m
with easily seen notations. It may be observed that i is independent

of @* if
B—lt }

Q= —1 -4
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Fig. 92.1
oy L A(1+30%) Al
nt :sca,selsa,-Mz.-l_HT= v A,

Further we have B = —AC. By insertion we obtain that this
connection between the coefficients only occurs at ¢ = vy, viz. when
the dise is mounted at the middle of the shaft.

In this case the eq. 91.2 may be simplified to

We also can solve @* from 91.3 and the result for ¢ = y is

D ik <
- Mt . 7 !
S e % B= m === 0
TR e
CirO*=1 or
1
o — . T 92.3
j3 ti—othA
A coO 2 C 2

The formulas 92.2 and 92.3 may also be derived by studying
symmetrical and antisymmetrical modes of revolution for a disc at
the middle of a shaft.

The eq. 92.2 corresponds to symmetrical modes of rotation as in
fig. 92.1 and the eq. 92.3 corresponds to antisymmetrical cases as
shown in fig. 93.1.
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Fig. 93.1

In order to show in a simple way the influence of the mass on the

&

1
critical speeds the case z; =~ is treated specially. For the first

critical speed eq. 92.2 is valid. We may write this eq. as

m A A 1 o's
5 Y {2 e 2 +itg — g | e ¥
2
From mathematics it is known that, if 1, = o
4 17 7 62 29 1382 2"
Wke =hot g + 5 %t 315 B 5ass Pt 155925
“J(T
and

T 17 . 1382 .
tg Ap+itgidy = 2 13—}— _3ﬁ o+ m At

= %’;— and gy = 7§ we get
1 17 1 382
p=5 bt 35 %t 55z et e ceeee 93.3
Form the series
93.4

....................
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where the coefficients A, are to be determined. Put this expression
for 1, into eq. 93.3. Thus

1 17
= ?{A°+A1/1+A2!12+Aa!la+ R 315 {do+4,u+
2

+AgP AP+ . }2+ 155 925

{Ao+A,pn+ A2+
+Agl+ .. P+

The coefficients on both sides of the equal sign must be identically
the same. This gives

" 17 1382
o\3 T 315 T 155025 T )= 2
]
? Al =1
1 ) 17 -
T R TR G
1A o 1 Py 1382 45—
3 A2 g5 et T5ress 9
_____________ J
and from here
y r Y 51 P 376
0=0dy=3 Sy=—gg" Ay =559
Eq. 93.4 gives
i\ . 51 376
T Bkl T e
By definition
mL32 M 1302

B=—

BI ~H* T Er

and consequently

2

4881 (] 17 376 )

e . =l
= ML? 35 4T a7 M




If the mass of the shaft is neglected we get

48HT

02 = .Qg — MLa and

G Nz 17 376 ]
2, =V At Ter 4
or after a process similar to that above

0 17 4 009

—_— e ]l—— gyt —— 2 — ... =1—0.2429 086772 — . ...
Q, 70 “7 46 200 * R R

In many designs the value of u« is low, say u<0,10.

From the formula 95.1 we conclude that in these cases the first
critical speed does not change very much with different values of
ordinary values of u.

A common thumb rule in practice is to bring half the weight of the
shaft to the dise and it is an interesting task to compare the result
from this assumption with eq. 95.1.

From eq. 26.2 we immediately get

48K1

m
(M—{—‘_,))Ls

a

and

I
1+ 2

or after a simple calculation

2,
Q,

= 1—0,251u-+0,093754%—

This formula will give a good result. It is seen from eq. 95.1 that

if

35 of the weight of the shaft is added to the mass of the disc a

very accurate result is obtained.
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Fig. 96.1

Now we have treated the calculation of the first critical speed with
the aid of eq. 92.2. This equation determines all “symmetry modes”
of the deflection curve, For every value of i there is an infinite number
of Z-values because of the fact that the equation involves periodic
functions. Thus there is also an infinite number of critical speeds.
This fact is considered in fig. 96.1 where x is drawn as a function of A.
In the same figure some other curves are shown for illustrating the
degree of accuracy of usual approximations.

Curve I: Exact curve.

Curve II: Curve based on the assumption that half the weight of
the shaft can be referred to the disc (coincides practically
with the first branch of Curve I).

Curve III: Curve based on the assumption that no part of the mass
of the shaft is referred to the disc.
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Fig. 97.1

Now we turn over tothe antisymmetrical modes of the deflection curve.
In these cases eq. 92.3 is valid. The function @* is drawn in fig. 97.1.

Ezample 13. We now calculate the ordinary critical speed for the
arrangement in fig. 61.1 but the disc is placed on the middle of the
shaft. For the symmetrical modes we get from the fig. 96.1 or cal-
culations (u = 0,050, @* = 1,25) that i, = 1,230, A,, = 2,5m+}¢,
...... and for the antisymmetrical modes we get from fig. 97.1 that
ha = 2,51—8y, Ay, — 4,5m—ey where ¢; (1 = 1, 2, 3) denote a small
number. The first corresponding critical speed can be calculated to
930 r.p.m., which is 2,49, lower than the “elementary” value where
the mass of the shaft is not considered. The values 1 = =, 27, 37 . ..
correspond to the critical speeds for a shaft without disc. Further,
A = 257, 4,57 ... corresponds to the antisymmetrical critical speeds
for a shaft with a dise of infinite inertia. (The same result as for a

L
“hinged-clamped” shaft without disc and of length —-).
M -

7 7724

XL

Fig. 97.2

-1
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Up to here we have treated the case in fig. 92.1 with bearings free
from bending moments. It is evident that analogous calculations can
be carried out for other conditions of shaft support. In this book
another “symmetrical” bearing arrangement is treated viz. the one
giving zero slope to the shaft. We may call it a “clamped-clamped”
shaft. See fig. 97.2.

The result is given without derivations. The eq. corresponding to
eq. 91.2 is

m ~ A+06B
M= Cren
where

A = (N*+KP) (RU—ST)+(8*+RT) (KQ—NP)

B = (N*4-KP) (S*+RT)

C = (N*+KP) (U*+RT)+ (84 RT) (Q*+KP)+
+ (NP—KQ) (RS—TU)+(NK—PQ) (ST—RU)—
— (P*+NQ) (R*+-8U)—(K*+NQ) (T*+8U)

D = (N*+KP) (TU—RS)+(S*+RT) (PQ—KN)

and

K = sin g—sh ¢ R = sin yp—shyp
N = cos g—ch ¢ S = cosy—chy
P = sin ¢+sh ¢ T = sin p-+shy
@ — cos p+ch ¢ U = cos yp+chy

@ =g}

y = (l—a)k

y mL?

* = —-ETQ*

0% — (m _["_) e IP_

—\e L] ml?
6 = 1Po*

1
Especially we get for @* = 0, ¢ = yp = - the equation

pl yi

- 5 l—cos?ch—g—
e 98.
i 5 7 T 8.1
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giving all critical speeds at symmetrical deflection curve. Further we

have 7 independent of ~J—[ if
'80* A 0
SIS D
and from here
S y) i 2
5 smTch?—cos?sh—E
L P
g A3 / A
cos - ch - —1

=~

giving all critical speeds at antisymmetrical deflection curves. Now
A
. Thus

the eq. 98.1 will be scrutinized narrowly. Put 1, = —
1

T |

cos A ch 2,

m -
M~ " tg d,+tgh 4,

|

|

|

Further by expansion in series
62
tg Apt+tgh 1, =tg A,—itgily, =2 (Ao+ 15 o+ T B4
and
B 13 s i Ao
i e oL i
o R A (l 24 720 40320 3628 800
ll" 2 16 AB 310
o Ay 14 _o_ 6 _Ao
479 001 600 2 720 40 320 3 628 800
= .1 = SRR 13 B . 18 2 L LY
479 001 600 - 6 70\ 6 34 650 \ 6
]_4
Put » = _b(L and we get
: 1
: 2 4 3 o
el TG

| )
[’ 70

m
29— =
M £ a8
e T
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If the expression within the bracket is less than unity we have, if

ik 232 69 33661
=\l 1o """ 70" T 34650 "

R O O ST i 100.1

Now construet the series

o
Vo = 2 A’
8=0

Putting these series into eq. 100.1 and equating the coefficients we
get

v 1 28 1 i\ M R i
sn =5y el et wm gt
and

MIA® 13 2
M92BT 1T At g AT -

If the mass of the shaft is neglected we get
o 192E1
TN M

and consequently

2 13 8
@) L st E T

or

0 13 109

— =1

2, 1Tt 2200 KT




101

25
30

mass of the shaft is added to the mass of the disc and we then
compute according to the elementary theory.

17 13

35 and 35 which occur at the hinged-hinged shaft

and the clamped-clamped shaft respectively may be derived with the
Rayleigh method. Assuming a deflection line in lateral vibration
according to

The numbers

y = f(x) sin Q¢
the potential energy due to bending stresses can be written

_ar Y,
B | i el 5 BI el
pob = s 2E1 j o o

\“)

The kinetic energy is the sum of the kinetic energies of the shaft
and the dise. Thus

M R (g oy
Bin = 2 ot B + 2 6’ A & ot
2

The maximum amounts of ¥, and E,;, are equal. This condition
determines 22, Thus

L
I [ () Pda

T
M [/ (x— —)] +5 f [f(x) pda:

G —=

- El

If f(z) is chosen as a function proportional to the deflection function
obtained when a single force is acting on the middle of the shaft we
get for example with the aid of the influence functions in Chapter 14.

48K1

:; 1
M- 35 m
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for the hinged-hinged shaft and
192E71

13
Mt+—m
35

(5,

for the clamped-clamped shaft.
The coefficient before m varies with the position of the disc. We

may write this coefficient
L

| -
4 | @)z
j e D W G
' [flx = 2,L)

Caleulating with a function f(x) obtained for a force applied at
x = x,L the functions below were obtained. The results correspond to
the first six shaft arrangements shown in Chapter 14.

33

fo="t1i

.5 T3 2
11‘}’-7—'34‘ (23—22,) [ +25 = 1]
l

1
Fo = roaat BORH2)+ a1+ 16(k+f) —
—42[1:‘:(1—}—17,)-}—1:;(1—*—3:1)]} [, 42 = 1]

= Si0Gy 3T+ 300(1 4 2m) -1 4

+2xe)2]-210[1'?(1+2-”61)+x§(1+2xz)]} (242, = 1]

i 105(,2,)2 (2, +3)2 {(3_1'%)2(15%‘3—352%—{—212:2)_*_

+ 84atw, — 14 (32 —a}) (6x,—baZ)+ 23 (15234 6022 —
— 6627 —252x,+315)} [, 42, = 1]

1
Fy = o0 0¥ 1844 Bleaf 1 100:427)  [mtog.= 1]

1
[214 2 = 1]

These functions are tabulated in the tables 103.1 and 104.1.




P8 ) By F, e Fe

1 aytxy =1 | mytwg=1 | aytay=1| oy +ag=1 l Tyt =1 |2y 4w =1
0,00 oo N oo o~ oo oo
001 | 71310001 198,2230 219,3612 100,4554 1811410 80,0688
0,02 | 1693.6026 51,4448 56,1558 26,4866 43,0508 21,2444
0,08 T14,4026 23,8311 25,5500 12,3940 18,1842 B.0179
0,04 381,1292 13,0381 14,7182 7.3427 9,7200 4,7406
0,05 231,0002 09,2727 9.6478 4,9475 D019 2, 8682
0,06 1510024 6.6020 6,8652 3,6159 3,9027 1,8856
0,07 105,5288 51082 5,1660 2.7049 2,7271 1,3138
0,08 76,3214 4,0825 4,0620 2,2504 1,0875 0,0582
0,00 56,0048 3.3334 3.2819 1,8694 1,4965 0,7204
0,10 43,1486 2,8084¢ 2,7249 1,5015 11560 (L oo8a
0,11 33,8110 2.4051 2,3087 1,3820 00,0143 (0,4430
0,12 26,7216 20074 1,9803 1,2198 07464 00,3606
0,13 21,3907 1,8545 1,7384 1,0015 0,6032 (,2089
0,14 17,3076 1,6590 1,5376 0,98581 0.5016 0,2525
0,15 14,1312 1,401 1,3742 0,9045 0,4231 0,2171
0,16 11,8271 1,3665 1,2395 0,8354 0,36186 0,189
0,17 9,6303 1,2553 1.1269 0,7746 (,3130 0,1688
0,18 8.0222 1.1610 1,0320 0,7249 0,2743 0,1624
0,10 6,7161 1.0803 0.9511 0,6824 0,2432 0,1396
0,20 5,6471 1,0107 0,8817 0,6459 0,2182 0,1296
0,21 4,7667 0,9503 00,8216 0,6144 1079 0,1219
0,22 4.0373 0,8074 0,7693 0,5870 0,1815 0,1160
0,23 3.4301 0,8510 0,7235 05681 0,1682 0,1114
0,24 2.0224 0.8100 0.6833 00,5422 1574 0,1081
0,25 2,4064 0,7735 0,6476 0,5239 0,1487 0,1056
0,26 2,1379 0,7411 0,6160 0,5078 00,1418 0,1040
0,27 1,8353 0,7122 0,5878 0,4946 0,1580 0,1080
0,28 1,6705 0,65862 0.5627 0,4312 0.1316 0,1025
0,20 1,3828 0,6620 0,5401 0,4703 0,1282 0,1024
0,50 1,1791 0,6410 0.5199 0,4607 0,1256 0,1027
0,51 1,0232 0,6230 0,5017 (,4524 0,1237 0,1034
0,32 0,8909 0.6050 0,4854 0,4452 0,1224 0,1042
0,33 0,7787 0,5903 04797 0,4390 01216 0,1058
0,34 0,6836 05766 0,4574 00,4337 01212 0,1066
0,35 0,6032 06641 0.4454 0,4204 0,1212 0,1080
0,36 0,5352 0,5527 0,4347 0,4258 0,1216 0,1006
0,37 0,4780 0,5426 0,4250 0,4230 (.1221 0,112
0,38 0,4301 0,5334 0,4164 0,4209 0,1230 0,1130
0,30 0,3900 00,5253 0,4087 0,4195 0,1240 0,1148
0,40 0,3568 0,5180 0,4018 0,4187 0,1251 0,1167
0.41 0,3204 0,5116 0.3957 0,4186 0.1265 0,1186
0,42 0,3071 050450 0,30904 0,4101 01279 0,1206
0,43 0,2802 0,5011 00,3858 0,4203 0,1295 0,1226
0,44 0.2750 00,4969 0.3819 0,4220 0.1311 0,1247
0,45 0,2639 0,4934 0,3787 0.4244 0,1328 0,1267
0,46 0,2557 0,4008 0,3760 0,4273 0,13486 0,1288
0,47 0,2408 0,4885 00,3740 0,4309 0,1365 0,1309
0,48 0,2459 0,4560 0,8726 0,4351 0,1384 0,1331
0,19 0,2436 0,4860 0,3717 0,4400 0,1403 0,1352

Table 103.1




“ F, ‘ F, Fy F, Fy Fe
1 oty =1 ’:c,+:tg=l‘;r,—{—.r,=l wites=1| 240 =1 g+%=1]

0,50 0,2420 04857 0,3714 0,4455 | 0,142 01373
0,51 0,2433 00,4860 00,3717 0,4517 0,1443 01305
0,52 0,2447 04860 0,5726 00,4586 0,1463 0,1416
0,53 0.2470 0, 4885 0,8740 00,4664 0,1483 01437
0,54 0,2400 00,4906 0,3760 0,4747 0,15038 0,1459
0,55 0,2538 0,4934 0,3787 0, 4840 0,1524 0,1480
0,56 0,2572 0.4960 0.3819 00,4942 0,1544 0,1501
0,57 0.2613 0.5011 0.3858 0,5054 0,1565 01528
0,568 0,2657 0.5050 0,3904 0,5175 0,1585 0,1543
0,50 0,2702 0.5116 0,3957 0.5308 0,1606 00,1565
0,60 0,2748 0,5180 04018 00,5453 0,1627 00,1586
0,61 0,2793 0,5253 0,4087 0,5610 0,1847 0,1807
0.62 00,2839 0,5334 0,4164 0,5782 0,1668 0,1628
0,63 0,2882 0.5426 0,4250 0,5069 00,1688 0,1649
0.64 0,2925 0,5527 00,4347 0,6174 0,1708 0.1670
0,65 0,2066 0,5641 0,4454 0,6307 0,1728 01600
0,66 0,3005 0,5766 0,4574 0,6641 0,1749 0,1711
0,67 0,3042 0,5005 0,4707 0,6008 0,1769 0,1741
0,68 0,3076 0,6050 0,4854 0,7201 0,1780 01752
0,69 0,3107 0,6230 05017 0,7524 0,1808 01772
0,70 0,3135 0,6410 0,5100 0,7870 0,1828 0,1792
0,71 0,3160 0,6620 0,5401 0.8271 0,1848 01812
0,72 0,3181 0,6882 0.5627 0,8705 0,1867 01832
0,73 0,3200 0,7122 0,5878 0,9188 00,1886 0,1852
0,74 0,3215 0,7411 0,6160 0,0726 0,1805 0,1872
0,75 0,8226 0,7735 0.6476 1,0328 0,1024 01892
0,76 0,3234 0,8100 0.6833 1,1005 0,1043 0,1911
0,77 0,8238 0,8510 0,72385 1,1769 0,1962 0,1931
0,78 0,3239 0,8074 0,7603 1,2637 0,1981 0,1050
0,70 00,3236 0,0503 0,8216 1,3627 0,1000 0,1070
0,80 0,8230 1.0107 0,8817 1,4764 0,2018 (.1989
0,81 0,3219 1,0803 00511 1,6079 00,2056 0,2008
0,82 0,3205 1,1610 1.0320 1,7612 0.2054 0,2027
0,83 0,3188 1,2553 1,1260 1,0413 0,2072 0,2046
0,84 0,3166 1,36865 1,2305 21550 0,2090 0,2065
0,85 0,3142 1,4001 1,8742 24114 0,2107 0,2084
0,86 0,3113 1,6500 1,5376 2,7228 0,2125 0,21038
0,87 0,3081 1,8545 1,7384 3.1065 0,2142 0,2121
0,88 0,3046 2.0074 1,0893 3.5870 00,2160 0.2140
0,89 0,3007 2,4051 2,3087 4,2005 0,2177 0,2158
0,90 0,2064 2,8034 2,7249 53,0018 0,2194 0,2177
0.m 0,2918 3.3334¢ 3.2819 6,0776 0.2211 0.2105
0,92 0,25859 4,0625 4,0529 7.57156 0,222% 0,2214
0,93 0,2816 5,1082 5,1660 9,7353 0,2244 0,2232
0,94 0,2760 6.6020 6,8652 13,0460 0,2261 02250
0,95 0,2701 9,2727 0.6478 18,4976 0,2277 0,2268
0,96 0,2638 13,0381 14,7182 28,4611 0,2203 0,2286
0,97 0,2573 23,8311 25,5505 49,8203 0,2810 0,2304
0,08 0,2504 51,5548 56,1448 110,4241 0,2326 0,2322
0,99 0,2432 198,2230 219,3612 435,0734 0,2341 0,2330
1,00 0,2357 o0 -] oo 0,2357 0,2357

Table 104.1
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In fig. 105.1 the “correction” functions F; (¢t = 1,2,3,....6) are
drawn against x,(»,). It is evident that the importance of the mass
of the shaft grows rapidly if the disc is mounted near a bearing.

Now turn over to the “clamped-free” case shown in fig. 106.1.

The equation for the deflection line is

y = A sin 2 Bsh A8-4-C cos L&+ D ch A&
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2 X

Fig. 106.1

The boundary conditions are

=08 0y =10 ¥ =0
=1 —Ely" = 2y1,0%
_Elylll = 11[!/92

e

Ve
I

These give with the previous notations

m _ sin /i ch Z—cos A sh i+ @*3 (1—cos Zch 1)
M ~ * 1+cosich A1 ©*2 (sin Ach Afcos Ash ) "~

In [4] the formula 106.2 is tabulated.

In the same manner the remaining cases of supporting a shaft
with one mass by means of one or two rigid bearings are treated.
All cases are collected in table 107.1,

The new notations are
K,=sing R, = siny K, =tgo
N,=shg S, = cos p N, =tghe
Py=cosp Ty=shy ¢ =zL or o = x, L
@, =chgp Uy=chy y = 2L or p = »,L

and we may write

m 3 A-+60B
M~ " ©+6eD
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By definition

(12 — -yﬁ. /4
3 mL?
or
L
om MI?
e
m
It may be observed that the ratio A** — 7 /* corresponds to

the value A used in the elementary theory neglecting the mass of
the shaft. With the electronic computer Alwac III £ in Gothenburg
A** was caleulated in the cases shown in table 107.1. The numerical
result is found in [4] and diagrams in Chapter 11 in this treatise. As
will be seen in next chapter A** is of great use even when calculating
the first critical speed for a shaft with several dises.

In order to show the applicability of the tables [4] an example is
of value.

Example 14. Calculate the first critical speed for the shaft in Example 9
considering the mass of the shaft and the gyroscopic action of the disc.

We have m = 15,4 kg
M = 308 kg
¥ — l( 800 )Z.E)i — 1.25
4\1000] 15,4 ’
m
i 0,050
x, =0,25
From the tables is obtained
O* = 1,20 2= 1,50 =) = (),044733 2 1A = 0,008836
5 2 M : M ’
m m
A= 1,60 = 0,055333 i (A8 = 0,008443
O%* = 1,30 A= 1,50 Las = 0,044004 -i:l‘=0008692
’ ; M ) M 5
m m .
A= 1,60 e 0,054380 B M = 0,008298




109

Linear interpolation gives

o

m
o o S — = (0,496887 - 0,0084434-0,503113 - 0,008836
4 &

+0,577872 - 0,008298-4-0,422128 - 0,008692) = 0,008553

m
The right. value is -}[— : /4 = 0,008540. The interpola.t.ed value has

an error of only 1,5 /.. The critical speed is n = 1 462 r.p.m. Compare
the result » = 1 512 r.p.m. obtained in Example 9 when no account
was taken of the mass of the shaft. The error in that case is 3,4 %,.



10. The Improved *“Dunkerley” Formula

In the next chapter diagrams for calculating eritical speeds are
given for a single disc on a shaft. The use of these diagrams can be

very much extended which will now be explained.
-
M1!IPI

vl 1
2 =

Fig. 110.1

From eq. 60.1 we get for the arrangement in fig. 110.1 with usual

notations (see Chapter 7)

Sun

£ -1
Epn—Ap

\ = o
Cyn—A ’y

for
| Sk

or
110.2

— A2+ A EputrSun) — 1 (Epnlamn—LCrmém) = 0 ...
We now have taken the gyroscopic effect into aceount. Neglecting

it we get
— A+ A = 0

and besides A = 0

L
A = wmépn
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Now denote A}, = &5, and Ay, = »&yq;. Eq. 110.2 becomes with
the aid of Maxwell’s theorem

1 v 2
=l 7 (Ap+A5)— "A'a" Ermlyun—&m) =0

If

"

T I R A e 111.1
we get A = A, where

Ay = Ay+4y

The condition 111.1 means that the gyroscopic effect is small.
Now put another dise on the shaft. For this case eq. 59.1 is valid.
From here

A — A é py+ 1l el peat Vel araef+ A2 L 4 Lo =0
Denoting
Ay = Ap+Ays = i Epu+nlum
Ay = Ay +Ass = pabpastvalarea
we get

1 1
Em—m (A A (i e =0

If the sum of the last three terms is much less than unity we get
./1 o= 11.1'*‘/12

The generalization is evident. If the shaft is equipped with s dises
the first critical speed approximately is

A= A=Al e T e 111.2
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Because of the fact that A is inversely proportional to n* we instead
of this may write

1 1 1
e U R N e S —— 112.1

1
n? ni el

Neglecting the gyroscopic effect we get

Ao Pl 1 W O 112.2

The differential equation for the transversal oscillations of the
shaft is

" 12 I . 12
th = [—Myjj) | Epnn kEI = — oy % —&amn ° LEI

Al 16 h L
¢y = [— M) Sencgmr | H =% | | S gy

Putting

112.3

Y1 = o SIn Ot

1 = (yp SIN Ot
we obtain after some manipulations

(A= Epn) Yro+71éun (L) =0 }
— sl pulrot (A48 ) (L) = 0

and from here

— A2+ A€ e —rE mn) v (Eml s —Crnéam) = 0

This equation is identical with eq. 110.2 if we change », to —,.
Very often the critical frequency is determined practically from a test
where a vibration exciter is used. However, the frequency determined
in this way differs from the frequency of the critical speed due to
different actions of the moments of inertia in the two cases. The test
will always give two low values independent of bearing arrangements.
See also Example 9.
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Neglecting the influence of moments of inertia the first of the egs.
112.3 may be written

Yo = Myyo8 2y

and

Moo=
M y0q1 2
27

The static deflection under the load M, in fig. 110.1 is

(O)stat = M gxy,
or from above

q
((’1 )stut = _(2.1’-:

and eq. 112.2 can be written

_l_ =" g((?l!& (()2)5'4“
o= g - ——g o RS

or

q
o=
E(é'i)utut

Dunkerley’s formula is usually presented in this form. Observe that
it is equivalent to eq. 112.2. It may be emphasized that the formula
is approximate even if the gyroscopic effect and the mass of the
shaft may be neglected except for a shaft with one mass.

In eq. 111.2 the gyroscopic effect is considered to the same degree.
This equation may be called the extended Dunkerley formula and
was proposed by Hahn [6].

A third possibility is to use the formula

A* = AF4+ A} ..... A s 113.1

where AF are the greatest roots of the equation 110.2 and equations
analogous to this.

It is easily shown that A;<<A¥<<A;,. Concluding, we have got three
kinds of approximate formulas, viz. the ordinary one (eq. 112.2), the
extended one (eq. 111.2) and the improved one (eq. 113.1). They are
8
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compared in the example below. We want to compute the first critical
speed approximately for the shaft on page 69. We get

A =9+18 = 27 according to the usual  Dunkerley formula
A=9_-T71+18-14—6 5 . . extended 3 .,
A=3-6,2015=18,8745 1 » 5 improved

The correct value is A = 14,535, It may be observed that if », — 0
the three formulas coincide. In spite of extraordinary circumstances
the improved formula only gives 14 9/, higher critical speed than the
exact calculation. The other formulas come completely wrong.

At last a fourth possibility is proposed. In order to take the mass
of the shaft into some account we have from Chapter 9

EI
" MI?R
M

Q2=

and from the elementary theory (Chapter 5)

o EI
=4, MI?
Denoting A** — A the “new Dunkerley formula™ wvalid for s
A
dises can be expressed as
§ A
A = 3y — Aoii =rianisscenses 114.1
i=] Aoi
where
M;
H; = 35
2 Mrct
L
"y = ’L_‘
1 EI
s
A+ M L®

ref

Observe that »; = 1 if no part of the shaft is a cantilever. The use
of eq. 114.1 is illustrated by an example.
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Ezample 15. Calculate the lowest critical speed for the arrangement
in Example 11 with the aid of the “new Dunkerley formula”. Compare
the result with those obtained by ordinary formulas.

We have

m
.A‘[

m 200 16,11
- . — 0,02685
1

r
= % 107% - 600 - 1073 - 7 850 kg — 16,11 kg

M 600 200

- 1 [708)\2 1 :

B = — | = T et N
o 4 \ 400 0,02685 g

m 16,11
— — (0,04028
M [, 400 '

b 1 [/ 1008\ 1 ;
s = .- — 4,379
27 4 \1200]) 0,04028 '

and from here, with the aid of an electronic computer, if M = M, =
= 400 kg,

= 1 1 1 . 1
A% :_—2'?‘0,3503'E‘—rl'l'(),ﬁus--é*

Instead of calculating the Af*-values they may be read from the
diagram on page 118.

= 19 V——L 91
= 9,99 — 915 r.p.m.
" : M, I 5r.p.m
Formula 113.1 gives
W 1 s 1
A¥ = 0,3464-—2 436,110 - 1) - i

and

=2 V o 24
n* = 20,18 W LB—-Q r.p.m.

ref
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The usual Dunkerley formula gives

1 1
Ag=\1-— 454-1) - —

I/ El N
ny, = 16,46 i, I = 753 r.p.m.

The extended Dunkerley formula fails as

and

1 3-54 3 - 162
2 23 T

Aaezl' <0

The exact value (with the mass of the shaft neglected) is from
page 74

/ EI
n—=— 20,54 ﬂ = 940 r.p.m.

ref




11. Diagrams for Calculating the First Critical Speed

In this chapter diagrams for caleulating the first critical speed for
the bearing arrangements shown in fig. 107.1 are presented.
For the “exact” theory we have

o 1 Bl
=AM MIP
m
where A** = Vit and for the elementary theory we have
4
= 1 EI
~ A, MI3
All** 7’1
In the diagrams the ratio 1 is drawn as a function of T
“Lo 4

Semi-inverse diagrams are used [7] for covering all the range of the
variables. The value of A, is given at the top of every diagram.
Each diagram is valid for a certain z, or x, (see fig. 107.1) and it
is calculated for z, (»;) = 0,05, 0,10, 0,15 . ... .. 0,95. The parameter
@* is varied within the interval —oo<<@* <<4-oc0.
It may be observed that the diagrams are valid for all rotational
circumstances because of

g4 o) 1 Ip
=\o 2l wmd

1

1
7 . oy ) _&p#
At the ordinary critical speed @* = 2 TmIi"

Further it was shown in Chapter 10 that the diagrams in connection
with the “new Dunkerley formula” (eq. 114.1) constitute a tool in
calculating the first critical speed.

Each diagram is equipped with a number of order indicating the
bearing arrangement. These numbers are shown in fig. 107.1.
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4 . #=-025
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Case 6
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Case 6

A =0,128510
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Case 6
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Case 6
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Case 6
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Case 6
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Case 6

4 - | # =060
i
A 7045333310

20

125

1.0

Os

Os

0

021




Case 6
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Case 6
# =070
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Case 6
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Case 6
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Case 6
. | # =085
LT -2
A ;059062510
(e o] ———

/i
m
-100 \-050 -0 -M—.
0 0 O« Os Os 10 12 2 5 10 «

13



194

Case 6
&# =090
A =0258333-10”
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Case 6
| o =095
A =0635417-107
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12. Special Diagrams for m» =0 and M =0

Ax*
In the previous chapter diagrams were given for ~{Basa function
“o

of rc However, the accuracy of the reading is not very good in

the vicinity of the boundary of the diagrams. Therefore, special dia-
grams are drawn for these cases.

Starting with m — 0 we may conclude that this means a shaft of
no mass but with a certain flexural rigidity, and this condition is
prevailing in the chapters before Chapter 9. The critical speed is
wanted for the six cases of bearing arrangement shown in fig. 107.1
when the polar moment of inertia of the dise grows from zero to
infinity. The parameter @* must not be used because it takes the
value oo if m = 0. Instead of @* we use » which is already defined as

or, if
(D) 1z,
A T
we have
2yl ' " 29I,
Y= Compare @* = o

For a shaft with one disc the eq. 110.2 gives

EpntrCam (Ern+riym)? o4
A* = =t 4 + (& ymlen—Ernlam)

2
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The values of the different influence numbers depends both on the

actual bearing arrangement and on the position of the disc on the
shaft. They are all calculated in Chapter 14. Further A, = &p;, and

in general

A* 1
e
110 “‘EF"
* s
A SM1tSF1
= for
-

{51"11+”:Mu1t V(Erut vEam P+ 80(Exrnl pn—Epulan)}
y = oQ,

Sam Jis

A*
Specially — =1 for » = 0 and
A, Aq
This formula was calculated by an electronic computer. The result
is collected in six diagrams on page 198 up to and including page 203

The critical angular velocity £ then is obtained from
- 1 El
ST A MDD

For small values of » one can use the expression

A* (E.uu)
—_—— ]l |—
Ao fi’u

(Clompare the formula by Hahn in Chapter 10 which gives

AII CM 11
e g
EFu

> el



198

Y7/
7 Case 1
Ao —
A°10‘ ”’/,,
l 5 p —/’,’
////
201 S
/ VY =0 : full line
/
v V =0 : dotted line
1,251

) T
-

i o e i O




|>¥

L=

—

199

-

VY =0 : full line
VY =0 : dotted line

é'lba)

|



200

,/ V=0 : full line

) V =0 : dotted line

02

0s 025
L ______ 020
04 ‘IL” — Ll
NL
]
[
|

0 0z 0s O0s O0s 1o Iz 20 5 10 ®

—— 2y



e R e e e,

] — ——
p—

==,
8
|
|
\
|
|
li

o
\
A
\
\\
\

-

\

Y =0 : full line
VY =0 : dotted line

Xz 17-1=0,4142 045
038
750
SH 055
0.60
0,25 0,68
0,70
0,20 075
————— 020
(oI —|
015
5,95
010
0,05
0
0 0.2 04 0s 0s 10 125 20 5 10

) 1



!
/
l’o,zo//,// V20 : full line
' s V=0 dotted line
1251 7
%
fo
10
0,8
0s
# =0
0,20
04 040
g;l\ \
0,2 ——— e I
08 oy R — =
e 0,95
1 v v - 00 ' z ==
0 Qz O« Os 08 1o 12 20 5 10

r




— >,

203

@ (1 S ————— G e da S A
10 089 —= e
7 ”_4/”//

5 / ,”—”/’/

/ //’ ”"

/ AT

o

,' 7% e
20 | 0.20////

| Lt V=0 : full line

L
" wis VYV =0: dotted line
1/

125 v

¥
10
08
0s NP

0,20
\
e ———
== P

10 125 2,0 5 10 o

SRR



204

The other boundary case to be treated is M = 0. From the previous
chapters we have
A+0OB
C+6D

_.=Z.

The condition stated means practically that @ = 0. Thus 4 — oo
or €' = 0 gives the satisfying A-values. These values can be find in
“Tables for Calculating Critical Speeds” [4] by the present author.
We may write the critical angular velocity as

G2 V...EI-_
ml?

The 7*values for the first critical speed are collected in the tables
204.1 and 204.2.

Case 1 2 3 4
|
2% 3.516 09,870 22,378 15,418
Table 204.1
X, 0,00 0,05 0,10 ‘ 0,15 0,20 0,25 0,30
|
Case 5 3,516 3,766 ]1 4,050 4,578 4,753 | 5,103 5,711
(‘ase 6 3,516 3,707 ' 4,117 4,485 4,011 | 5,408 5,005
*y 0,35 0,40 \ 0,45 I 0,60 0,55 0,60 0,65
Case 6,327 7,068 7.969 9,071 | 10,417 12,020 13,748
Case 6 | 6,695 7,541 8,570 9,870 ; 11,197 l 13,564 | 16,157
A l ’ "
X \ 0,70 0,75 i 0,80 0,85 0,00 0,84 1,00
Case 5 15,006 15,871 1 14,610 13,412 ’ 12,130 10,030 9,870
Case 6 | 19,120 | 21,526 f 21,027 | 20,600 | 18,802 | 17,070 | 15,418

Table 204.2

The result is also shown in fig. 205.1.
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22,371
(Case 3)

15,18

Case 5

(Case &)

9,870
(Case 2)

02

0,4

Fig. 205.1
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13. Comparison between the “Dunkerley” Formulas in
a Special Case

In Chapter 10 two variants of the Dunkerley formula were proposed.
Besides these there is another possibility to calculate the lowest
critical speed proposed by Hahn [6]. Tt was shown that Hahn’s
formula in some cases failed. It gave complex critical speeds at high
values of the inertia moments of the dises. The examples in Chapter
10 had a finite number of dises. Here is treated a case in which the
shaft is equipped with an infinite number of dises. The result obtained
by the approximate formulas is compared with the first critical
speed for a homogenous shaft. The treatment deals with a “hinged-
hinged” shaft as fig. 207.1 shows.

For a weightless shaft with one disc of mass M, from eq. 25.1

A=A4y=§ F11
if the gyroscopie effect is neglected and sy — 1. Further

1 kET
e T

Divide the shaft in fig. 207.1 into s small discs each one of mass
m
T where m is the total mass of the shaft. Take away all these masses

but one and in spite of this let the shaft retain its flexural rigidity.
The critical speed of this arrangement is

EET
m ; LI
7 * Ly

!)(2,, -

if the remaining dise has the number of order i.




207

)2 =
o B

Fig. 207.1

According to Dunkerley’s formula the first non-dimensional critical
speed for the shaft with s discs can be written

S |
(Aoes = 2 e 207.2
i=1

where

¢ 2 1 kEI
.’10& = (»;'Fu)‘j and .(2;“ = (Ao) . W

From Chapter 14 we get for a “hinged-hinged” shaft that

1
(Em)i = 7 (@2e)®

(‘hoose k& — 48. Thus
(&) = lﬁ[ﬁf(l—r)]’

where x is a running coordinate. The first attempt is to put all the
mass on the middle of the shaft. This gives &p, = 1 and from eq.
207.2

(‘/101)rcs =1

The next attempt is to divide m symmetrically into two masses
each one placed at one third of the length of the shaft from the bearings.

Thus
; Wa e
=105 = &
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Now divide the shaft into an infinite number of small dises. Tn this
case eq. 207.2 gives

(Ao )ees = 16 | [2(1—a)Jtdz
0
and

8
(A()n)rcs == 1—5— =.0.538),.. .

and the corresponding critical speed is (2, )., Where

L £
Goads =5~ s =% W
=

Thus the series 207.2 converges to a limiting value. But it remains
to serutinize if this value is a proper value.
For a uniform beam eq. 88.1 gives

y = A sin k, 2z B sh kylx+C cos k,jx+ D ch kyjx

The boundary values are
giving
and

giving

A sin k,A4+Bsh ki = 0

E\r
— 4 (7) sin k,A+Bsh k4 = 0
h

The condition for non-trivial values of 4 and B is

k, \®
sin k,4 sh k,,;.{1+ (k—)} =0
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Thus k4 = 0-+nx, where n = 1, 2,3 .... If the gyroscopic effect
is neglected is k, — 1 and 4, — z. The first critical speed for a homo-
genous shaft is denoted by £, . and from definition is

5 EI
'Qhom =at- mL?
and consequently
2. 90
(;’” e l—z — 0,0612
=“hom T

We can conclude that the limiting value of the series 207.2 is not
exactly the right value but it is a rather good approximation.

In a similar manner we now can compare some methods considering
the gyroscopic effect.

For a single mass is from eq. 110.2

A2—A(Epy ) — v (Exml i —Ermlaym) = 0
and from page 215 is for this bearing arrangement

& = [x(1—2)]? Eyn = —x(l—2z) (1—22)

Cpn = 2(1—2) (1—22)  Lyy = 3(l—2)—1
if k = 3, and consequently, if here A = A%,

A% — 24— 2034 (1—3)a+ Svz— v+

+ Vil —2))t—v[1 —3x(1—a)] 2 4 4v[2(1 —) P

From eq. 207.2 we can write

.

A%, =

Tes

1
s A
s i

-

e
If s>o0is
1
A:»s 3 .[ Afdx
0

and in this case

2
2

+ [ Viz(l—2)P—r[1—3x(1—2)])2+dr[z(1—2)Pdz
0

& 1—15»
AI‘GS: 60
14
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The last integral is hyperelliptic and was solved numerically. Hahn's

value is called (Ay),.,, where

1—15y
Uakes = 35

It consists of the first term in A%, multiplied by two. The usual
“Dunkerley value” is A, where (v = 0)

1

dp=—5

The exact value was obtained above. We had

W l

o= PV [ o] - 2T

/
/ ) 2 )y
k, = l/ ]/1+ (L, 7»’) —5

and
R 22 4 72 2 2.2
ViR -2;—7. ——2—/. At = nin
giving

nw
b=

T 7
N 1—n?yn?

If y2*>1 there are no critical speeds. This fact is already stated by
2

&

Grammel [5]. The condition can also be written as r> — L ~ 0,636L,

T

[
if 5" — +1. The thick and short shaft with r — 0,636L is shown in

fig. 211.1.




Fig. 211.1

The result can be summarized in the following way:

w 1
y <0 f—<

0 ) gives an infinite number of critical speeds

2

1 ) 1
0<r<< o (!—) > 3-) gives a finite number of critical speeds

|
» > gives no critical speeds.
o 8

The corresponding A-value for the exact treatment is

ik 1—wn? i 30 1 B
y, =— andan = Vit | m3 (r.p.m.)
The first critical speeds corresponding to the theories by Dunkerley,
Hahn and the present author are denoted be n, ng and n*. The
n* Ny

ratios —,
n

o - are studied for different »-values. See the

Ny
e and
result in table 212.1.

The Hahn approximation again fails at high gyroscopic effects.
n*
However, it is the best one in the range 0<»<0,04. The Ty -value

always lies between the values of the other approximations. Further
the “improved approximation” is the best one for negative values of
v and it is rather good for all positive »-values. Moreover it is the
best fitting approximation for high values of ».
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ng n* ny

2 T nE* CpeE
— 0,20 1,6576 0,8882 0,8288
—0,15 1,5130 0,0022 0,8397
—0,10 1,3540 0,0101 0,8560
—0,05 1,1747 0,9402 0,9033
<+0,00 0,0612 0,0612 0,0612
40,01 0,0126 0,94138 0,0808
-+ 0,02 0,8811 0,9059 1,0293
0,08 0,8065 0,8608 1,0874
+0,04 0,7478 0,8074 1,1824
-+ 0,05 0,6841 0,7455 1,3682
+ 0,06 0,6138 0,6742 1,9411

+0,0666 — —_ ~o

Table 212.1




14. Survey of Influence Functions

In order to give the reader a possibility to find quickly the influence
functions needed for calculating all critical speeds for a shaft with
several dises even considering the gyroscopie effect, here is presented
a survey of the most common cases. All bearing arrangements with
one or two bearings and a special case with three bearings are treated.

The following notations are used

xpi; = the displacement in a point ; on the shaft caused by a unit
force in a point @;.

&y = the displacement in a point @; caused by a unit bending
moment in a point Q).

Bri; = the angle in a point @; on the shaft caused by a unit force in
a point Q.

Bumi; = the angle in a point @; on the shaft caused by a unit moment
in a point ;.

The signs of the different influence numbers must be interpreted
relative a coordinate system with its origin in the left hand side
bearing, its axis of abscissae along the centre line of the shaft and its
axis of ordinates pointing downwards in the figures on the following
pages. Further

] EI . : Bl
Srij = Okij "5 Cry = Py - L

BI : 1
Emi; = Xmij * IE Saij = B * T

The numbers (or functions) &py, &arijy Ly and £yy; are non-dimen-
sional.
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x:L

\J.©

X;L

Clamped-free shaft

Case 1
Point Epiy l $rin
l a ‘ l 2
1 i . a} | = ay
i 1 ' I
2 [ T (23— Badz, +223) ! 2 (x—a2)
1 s { 1
3 e #3(2, + 3rg) l ey @3
Point ’ Earin Carin
| 1
1 ‘ = —z,
2 j RS (0, —4)* — Xty
1
3 ’ T oy {0y + 2y —%
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©) 5
%
Z (M “
Y X3L sz %
XL
il L
Hinged-hinged shaft
Case 2
Point EFin Lria
I l B 2 1 B
3 ()24) 3 Xy {2y —2y)
2 1 P 2 : 2 2
2 —6—-2,',::,(1—.:'—::.) ~?- 2y(1—af—323)
1
3 T (=2 )ay[1 — (1 —2y)2—a}] 7(1—1’:)“—(1—1.)"*31%!
Point Eprin Earin
1
1 i e Dy (Fy— 7)) Lyog— 3
1 1
5 — {3(1 —ay — 2 — (1 —a,)*— —[6(1 =2, —a,) —3(1 —a,)*—
i — (1 =ay)[ (1 —a)*— 11} —=3(1—m,y)* 1]
Ty 2 i 2.1 8
3 —6—[1—-3(1—-:1:,) —ad] — ?[B(zl+ma)+2(l—3z1)]
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L %l ;
weoo
L
e LI e = s
Clamped-clamped shaft
Caze 3
Point Skt Crin
1 I I
1 T (0y4)® o (#y20)* (g — ;)
1 P i =
2 Y (22 *[(B(L— oy —a0y) + 22002 | ‘ = 1‘:1’2{2“ =&y (1 —a,) | — 3,
3 ‘ e (1 =y 2} (8y — 2y — 2y 2) T 1 — 2, )25 ( 2, — vy — 2y25)
- | -
Point ' Exrin Carin
T : =
1 SR (2,2 (g —ay) — g1 — 3zyy)

1
[(1—ay —wy)2— (L —ay) (1 —2e)*(1—

2 —.!_ —y—222%)] l—.t,—.x:,—(l—.r,)(l—:c,)(l~3;c,;1:5)

1
3 == (1—ar)a¥(l— 3, -+ 22,5) | — (1 —ay)ay(1 — 3z, + Bayzy)
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L@

Hinged-clamped shaft
Case 4
Point ‘ Erin ‘ Erin
1 |
1 \ 3% a3 4x)x) I —I—x,r:(r,r, +3xs—2)
| 3 e
1 1 —|’(l-—xl—:,,) — 21—z P+ zs(l —
& — = 3 ——t s l
: 6 ‘Hi[ g R —ay 2+ (2— )]
S 1 _ I W
g 1 ——l;xa<l~xl)*|x:< fay)— 32, i Lt Gt
Point \ Earia l] Sarin
I :
1 ’ e - &yl + 3re— 2) P @yl — 4+ (1 +2,)%]
) | [2(1 —a; —2y)* — (1 —a?) (1 x5)* I 1
; iR Gy IS s i s s S e
Pt —a—ma-sma-m)] i e
1 | 1 .
3 i (I—a)wl {1+ ) (L—af) —2(1—a)] | T“_m]}[“‘3’1)“’“3‘”;)—2([—“’1)]
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P

Hinged-hinged-free shaft

Case 5
Point Ern Crin
o , =
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Case 6
Point $Fin ‘ {rin
1 5 (B -+ 4my) SR (7 + 2ay)
I
2 —— (2=, [2(2y — xy) (2, 4 @)+ Boyy | ‘ " [y, '|"2(I:“I§)]
1 1
3 55 (4 + 6ty | 3oy, (2, + 4) ] TR oy (3 -+ 28y)
) I A 3 ;
4 = (g —y)? — » — (g —2y) (36, — Bay)
1 # 1 4
Point Enrin Caria
l— : 2 : (2 +4ay)
y— . & Y —_ —— "
1 Tyl + 2y) i 1
1 1
2 o (21 —g) + 2y —5)") | T [y + 4y —20)]
[ 1
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15. Summary

In this report methods of calculation of critical shaft speeds are
demonstrated. Influence numbers are consequently used both when
discussing the nature of the phenomena and in deriving determinants
from which the critical speeds may be computed. Different modes of
bearing arrangements are treated, viz. rigid and flexible bearings
where there may be either no bending moments in them or zero
deflection angle. The formulas are carried out to the last stage and
the user need not spend any time on derivations. This matter has
been the aim in every chapter.

i N v
2 @ .

Further the gyroscopic effect is thoroughly serutinized and various
rotational ecircumstances are discussed. All equations are valid for
both forward precessions and reverse precessions of any kind.

The influence of the mass of the shaft on the critical speeds is
treated in an exact way for any position of one disc on a shaft for
different bearing arrangements at the same time as the gyroscopic
effect is taken into account.

Finally two approximate formulas are proposed on the basis of
Dunkerley’s formula. With the aid of one of these formulas, diagrams
and tables [4] the designer has got a tool for calculating the lowest
critical speed for the most usual bearing arrangements in an accurate
and rapid way. However, tables for other shaft and bearing arrange-
ments are still lacking.

It must be noticed that the results are valid even for thick dises if
they are mounted to the shaft over a small range according to fig. 222.1.




()
1o
w

The parameters » and @* in this case are defined as

) J &3 I, 3 o @ /1 i
PN L) BT T W L) wmi

ref ?

It was to be desired that test results could be shown. Further it
would be of great value to scrutinize different bearing arrangements
available from the manufacturers concerning spring constants. In this
report only lateral springs are considered and bearings giving rise to
bending moments proportional to the deflection angles remain to be
treated.
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Preface

Of the research work on elastic rotors that has been carried out by
the Institute of Machine Elements, Chalmers University of Technology,
Gothenburg, Sweden, a report suitable for predicting critical speeds
has been published.

The present report is a continuation and it deals with the problem
of predicting possible whirlings in machinery.

I wish to express my thanks to Professor B. Jakobsson. the Head
of the Institute, for his interest in the subject.

Ingemar Fernlund

Tekn. lie.
Research Assistant at the
Institute of Machine Elements



Contents

Page
Preface s Nt Bl e o by L sl SRR Dl it A0 baetl o ol i 3
1 I OBROATTCTION 55 s 55 52 i ot cabsasas it aid o AVfa) ot SPAis Wi < % & 5
I QTR PIOIN N = e ol SR S S S SESEal ol s v S 7
3. Input Torque and Gyroscopic Moments of a Rotor . . . .. ... .. 9
4. Basic Equations for the Motion . .. ... ... .00 oeu v n., 15
7 BB T T i D e e e S e Tk T RO e R 15
4,2. Curved Shaft with a Dise without Eccentricity . . . . . . . . . .. ... 20
5. Solutions of the Differential Equations. . . ... ............ 23
ey BT TN B e R R e e o S T W A W 23
D2 CBEEED L S B R e o i) it iR SRR RG] S S e A A RS 33
O e L e s oyt it v N 35
O actUARE PR e RS St Rt SUE EU G 0y et AUl el Ak 36
6 On the InputilIDEGUEE -5 0 025 T She s o nie i os o Sun e oo 39
7RVl Ciriv e S s S L R a bl el vl 2o s e 53
8. Tests of a Rotor with One Dise . .« «v v v vw cvs wew ce v o 61
8,1. Tests of a Hinged-Hinged-Free Shaft Driven by a D.C. Motor Coupled
to & Common Ward-Leonard System . . . .. ... ........... 63
8,2, Tests of a Hinged-Hinged-Free Shaft Driven by a D.C. Motor Coupled
to o Special Ward-Leonard System . . . . . ... .00 7l
U TI(TES o A e M sl SR s e S N 78

10 T BPONOBR. (. st eirs: e 8 AT elriores, Tonbyiie A onat ot Borer e s i s & s 80




1. Introduction

In a previous report [5] the gyroscopic bending moments were
derived on various conditions of whirling. The angular velocity of

rad s rad
the shaft « e and the angular velocity of the whirling Q T

were assumed to have a certain ratio. Here this ratio is called K
and K= ~; = :7 where #» and N are the corresponding r.p.m. of
the two rotations.

It was pointed out that K is usually assumed to have the value
+1 but that in some cases other K-values have been observed. The
following is quoted from “Mechanical Vibrations™ by Den Hartog [3].

“Now we come to a curious and still partly unexplained pheno-
menon. It was reported in the classical book on steam turbines of
Stodola [9] that a rough critical had been observed at the critical
speed corresponding to w=—Q. This was called a “reverse whirl®,
or more eruditely a “retrograde precession”. No explanation was
given of where the energy comes from. ... Whereas the forward
whirl or ordinary critical speed can be observed on every machine,
the reverse whirl is extremely rare. The author of this book looked
around and asked his friends for fifteen years about it without results
and was about ready to conclude that the reverse critical was imag-
inary, when a case actually occurred. A model was constructed
which showed roughness at the calculated speed, and stroboscopic
observation showed the whirl to be actually opposite in direction
to the rotation. With this model tests were conducted determining
the amplitude of vibration at this eritical as of function of (1) un-
balance and (2) flatness of shaft, and it was conelusively established
that neither unbalance nor shaft flatness affects the amplitude,
which remained constant throughout. During the tests the apparatus
was disassembled several times, and new shafts and discs were used.
After every such reassembly the reverse whirl amplitude was ditferent
and often entirely absent. Also. roughnesses were observed at other
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ratios K than —1, in particular at K—-+41 and +1. No rational
explanation for this behaviour is available, and it is suspected that
it is determined by damping or internal friction”. (The notations in
this quotation are altered to coincide with those in the present report).

In [5] it was shown that every speed o is a “critical” one (the shaft
has an indifferent position if the unbalance is zero) if the angular
velocity of the whirl is of a certain value. But in the present report
experimental investigations of an unbalanced rotor show that only
a few “critical” speeds occur.

As seen there are a lot of curious things in connection with these
“unusual” critical speeds. This report treats a number of these pheno-
mena. Only a one-disc rotor is considered.




2. Notation

Arbitrary constant. Point

Arbitrary constant. Centre of bearing
Arbitrary constant. Centre of disc
Arbitrary constant

Non-dimensional coefficient for the damping force
Modulus of elasticity in tension and compression

Centre of gravity

Moment of inertia of a cross section
Polar moment of inertia of a disc
Equatorial moment of inertia of a dise
“Whirling ratio”

Elastic shear forces of a shaft

Length of a shaft

Mass of a disc. Bending moment. Torque
(Index shows the intended thing)
R.p.m. of the whirling motion
Arbitrary number

Radial position of the centre of gravity
Centre of a shaft

Mass forces of the dise

Distance
Spring constant
Diameter of a shaft
Kecentricity of a dise
Radius of inertia
(loefficient of damping. Arbitrary constant
Mass of a shaft or an arbitrary number
R.p.m. of a motor shaft
Angular velocity
‘onstant depending on s
Radius. Deflection of a shaft



r, ‘rookedness of the shaft at the dise
r; Vector for the centre of gravity of a disc
rs = re'® Vector for the centre of the shaft
» Angle
w Angle
T, % (Coordinates
kEI . . L 2

A= V“{[re_f LA Non-dimensional “critical speed
D Function
Q Angular velocity
o Angle, influence number concerning diplacements
p Influence number concerning rotations (angles)

I [ I, ;
r=ra (Q — ]p) Constant
& Ratio or a small number in general
¢ Coordinate
n Joordinate

291, g . i 2 o3
g e Non-dimensional “moment of inertia”

MI?
/< Coordinate. Non-dimensional influence number con-

cerning displacements
= 2 (or 7:—) Non-dimensional “deflection” of a shaft
7= Q. Non-dimensional “time”
(7 Angle
z = pe'® Non-dimensional vector for the deflection of the shaft
7 Angle
() Angular velocity of the shaft of a motor
Indices:

¢ With reference to the critical condition
disc With reference to the disc
F With reference to a force
M With reference to a moment
n With reference to the normal (= usual) assumption
q With reference to a gyroscopic effect
P With reference to the whirl velocity ¢




3. Input Torque and Gyroscopic Moments of a Rotor

In this chapter we discuss some methods of deriving the input
torque and the gyroscopic moment in a rotor with one dise.

In Chapter 7 of [5] the case in fig. 10.1 was treated.

A rigid shaft rotates around the line A B with the constant angular

rad
veloeity @ g on the same time as the disc rotates around the line

rad
A'B' with the constant angular velocity «’ il

The eqs 54.3 in [5] give the moments at the point A’

M, = —Qsin asin o't {{o'+(,—I)o"}+1x
x Mea® sin? o sin 2t

M,= —Qsinacosw't {{;w'+(I,—;)o"}—Me Qo'+ ") X
2

y (7 | 1 A |
X sin o cos w't+ Mea |~ sin® ol B e Mea %

-

> 2 sin? o cos 2wt

M, = —MeaQ® sin a(a cos o sin w't{ 3 - € sin o sin 2m’t)
where

w = n—8Q

o’ = o—Q(1— cos a)

Notice that the ¢-, #-. and {-axis rotates with the disc. By projection

My = M, cos w’t—M, sin 't ]
M, = M,sin w't+M, cos o't ]

The &'-axis is in the plane 4’B’B and the n’-axis is perpendicular
to it.
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Fig. 10.1
The input torque is
M;, = M, cos a+ M, sin «
and by insertion of the expressions in the eqs 9.1 and 9.2
M, = Mea sin « {(w”)*— 0 cos? a} sin o't}
M) D BIN® @ BIN DO oo snareiisinsiais 10.2
or
M;, = Mer {(0”)*— Q% cos? a} sin w't-+ Me%w’ Q sin® o sin 20t
If @ = 0 and 7 is kept constant

M, = Mer(*—Q¥)sinw’t .............. 10.3

This expression is now derived in another way. Consider the point
mass in fig. 11.1. It rotates around the point S with the angular

rad
- while the point § rotates around the point B. Further,

velocity ;

r and e are constant distances.
In fig. 11.2 the forces and the necessary torque are shown.
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cr Y

ZecosY

Fig. 12.1

We get for the motion of the centre of gravity

My =Y

Mi=27

M, +Yz—Zy =0
From geometry

Y = r cOs p—e cos y |
z = rsin @p-tesin I

and these equations give after some calculations
M, = Mer(G*—®) sin A
where
0 —y—p

and the result is the same as in eq. 10.3. Observe that w't — (6— ).




Fig. 13.1

Now we treat the case where in fig. 11.2 r is proportional to the
resultant of ¥ and Z and is directed in its direction. Further, we
assume that the shaft is unaffected by gyroscopic moments. With
these presumptions the figs 12.1 and 13.1 are drawn.

From fig. 12.1 is obtained
M, = Zecos y— Yesiny
and further

Y = —crcos ¢
Z = —crsin @

where ¢ is a spring constant.

Thus

My = BRI ool iiioetitenssiosmiesivisia 13.2

which also can be written down directly with the aid of fig. 13.1.
Tf K = -}-1the eqs 10.3 and 13.2 give the same torque, viz. M;, = 0.
Tt is shown later that » always varies if K # +-1.
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From the egs 9.1 and 9.2 we get for the rigid shaft

M, = —Qsin a(l 0" —1,2 cos x)-|- M(a sin «)Qa cos o)—
—MeQ(w’+”) sin a+ Mea {Q sin? a— (w”)2} cos w'l—

— 4 - MANo' L o) SIn G008 200F i vovi s s s 14.1

M, is an outer moment acting at the point 4°. Thus, eq. 10.2 gives
the input torque and eq. 14.1 the bending moment perpendicular to
r for the case in fig. 10.1.

If ¢ —= 0 we get

My, =0
M, = —Qsin a(l ,w”—1I,Q cos a)+M(a sin 2)Q%a cos a)

and the bending moment at the disc is
(M, )gise = — R sin (0" —1,Q cos a)

For small values of « we get

@] 1
(J‘It]')disc = — —b‘ w=— T-)— ngza ............ 14.2
and the gyroscopic moment from the disc is M, = —(M,.),;,. and thus
M. = (K—RE B2 . o voovaniacin o 14.3

which is the usual value of this moment. Now it must be emphasized
that this moment is derived for a perfectly balanced disc. In practice
we have ¢ # (0 and the shaft deflection » will vary.

Now the following assumptions are made for the theoretical treat-
ment in the rest of the report:

The gyroscopic bending moment can approximately be written as
in eq. 14.3 if

4 T
1) & A and ea < 573

Ar
<1

0

2) r varies according to (ry— 4r)<<r <(r,-+ 4r), where

Ag
3) ¢ varies according to (¢,— 4¢)<¢ <(¢, 4¢). where 7,;) - < 1.
0




4. Basic Equations for the Motion

4,1. Perfect Shaft

Consider a circular shaft on support with an unbalanced dise driven
by a motor according to fig. 16.1. The coupling is thought only to
transmit a torque.

Further assumptions:

The mass and the gyroscpoic effect of the shaft can be neglected
The friction torques in the bearings can he neglected

The internal damping is zero

The shaft is perfectly elastic

The shaft is vertical.

In fig. 17.1 the cross-section 4 —A4 is shown.

In this figure we have the following notations:

B
8
@
K
K,
M,
M,

m

y

Bearing

Centre of the shaft

(entre of gravity

Elastic force in the y-direction
Elastic force in the z-direction
Input torque at the dise

Input torque at the motor
Eecentricity of the disc

Deflection of the shaft at the dise.

Further, the deflection of the shaft » is split up into two arbitrary
directions perpendicular to each other, r; and r,.
With notations from [5] we get for the deflections and the angles

rn = —( K,cos p+K, sin ¢)ap+ 29I, Q2w
w, = —( K, cos p+ K, sin ¢)fp-+2p1,QB,w,

> - ; 15.1
ry = —(— K, sin 9+ K, cos ¢)a+ 291 QPaye,

wy = —(—K, sin ¢+ K, cos @)+ 291,28y w,
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| Motor

Coupling
j W

Fig. 16.1

where
y= HK—1)

and w, and w, are the inclinations of the disec towards the bearing line.

From the eqs 15.1 is obtained

— (K, cos g+ K, sin ¢)
AT 1—291,Q%8,, ’
—(—K, sin ¢+ K, cos ¢)
Wy, = e

1—291, B *
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]

Fig. 17.1

and thus

! o 291, Q%0
ro= —( Ay cos ¢+ K sin ¢) (aF+ 1—:)’1 QAZﬂF )
“yd, M

‘ ) 291 ,Q%ayfp
o= Ky g K con ) (st ey

Now define

Ul M]

-5 = Mg i1 ’
v = r{ * a1 —2¢1, 2By

o
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and consequently

1
rn = —( K,cos@p+K_sin ) Mok
Tk 2o 18.1
1
ry = —(—K, sin ¢+ K, cos ¢) MOE
q

Further, we have (if £ is a coefficient for viscous external damping)

K, = Mj+ky
K, — Mz4kz

and thus, from the eqs 18.1

—MQ%r, = M( jcos g+Zsin@)+k( §cos@+zsing)

; : 7 < 182
—MQ%r, = M(—j sin ¢-+Z cos ¢)+X(—y sin ¢+ 2 cos ¢)
Geometry gives
Y = r; €OS @—7, SIn g} cos e
z =r sin@+rycosqptesiny | 7T v
Derivation gives by putting
Qg
Q4 =" Q,,
Q2= Ma,
Ty
2 b
Te
e =103
2D* k
- Mo,
that the eqs 18.2 can be written
—/’1950 = pr—P1P*—Y sin 0—y? cos O0—pyp— 2,65+
+2D%(py—yr sin 0—p,g)
........ 18.4

— P20 = 26,9+ pr ¢+ Y cos 0—y sin 0, — pyi2+-
+2D*(py 4y cos 6+p,)
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and in these equations and in the following

dg d>*¢p

Ii. —— = 4]:‘ — tc.

@ €

and we denote T = Q.

The eqs 18.4 can also be written

ﬁx+21)*/)1+P1(Q§o_¢2)—l’z¢—2pz¢’—2D*‘i’/’z:
— g sin @2 cos O-+-2D%) sin 0

....... 19.1
/’1’75+2131‘}3‘%‘2[)*¢ﬂ1+ﬁz’*‘20*ﬁz*pz(gio_’i’2):
= — 1 cos @2 sin §—2D% cos 0
Further, the equilibrium of torque gives
, . dy -
M,=MAKy—Kp, =1, ¥y +Ky—Kz ..... 19.2
and from the eqs 18.1 we have
K, = — MQ}(r, cos ¢p—r, sin )
K. = —MQ(r, sin ¢g+r, cos ¢)
Thus from eq. 19.2 we get
M;, = §+eXp, sin §—pyco88) ............. 19.3

where

M, = I,0*M;,

The critical whirl speed @_ can be determined from eq. 17.2 by

putting 2, = @ = Q.. This can easily be proved by using the results
of Chapter 10 of [5].
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Fig. 20.1

4,2, Curved Shaft with a Disc without Eccentricity

In this section it is supposed that the shaft is also at rest slightly
curved in one plane. At the disc it has a slope w, and a deflection
r.. Further, it is assumed that the eccentricity of the disc is zero.

The geometry in this case is shown in fig. 20.1.

In this figure S, is the point in which the centre of a straight shaft
would have been at a deflection.

By assuming small angles the eqs 15.1 are replaced by

" = —( K, cos ¢+ K,sing)ap+2yI,2%« ) w,
uy—w, co8 0 = —( K, cos g+ K_sin@)fp+291,Q% w0,

2 = _(—l{y Sih (p+K: cos q)) aF+2y]P92aMw2
wy—w, sin § = —(— K sin ¢+ K, cos ¢)f+ 2y ,Qaypw,

Iy




and from here

—( K, cos ¢+ K, sin ¢)Bg w, cos 0

b Y T 1-291,0%y

—(—K, sin g+ K, cos ¢)fp w, sin 0

1—291 ,Q%8,

and. further,

ry=—

25] Qza ﬂ
' - M 2P0 iy
Koy Ko (s 20 )
291,20y

+ lAfyIpQ%b’,; < w, cos 6

- 3 '.’.yIszaMﬂp
s S Y ) S @ T A
ra ( R}'S“‘(I“‘I‘:coq %) (fo—*— 1—2;!1,,92[3:" l

291, Q%0

—_— Sin
T T J

We may write, with notations from [5],

vy w
271, Q2 a0, N _A > "; ;CYAL ¥ VCM_ ﬁl
1—291 Q% ; VM " A—viy Ly

and here is also

F = T 3

where L_ can be positive or negative.

1—251, 90,

|

sl =

eaets) RS
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Thus, the eqs 21.1 can be written

1
n—@r.cos 0 = —( K, cos p+K,sing) 5oy
U g

1
ra—®r.sin @ = —(— K, sin ¢+ K, cos ¢) - ng

Compare with the eqs 18.1. The eqs 18.1 are still valid if 7, is
changed to (r,—®r_ cos 0) and r, to (r,—®r, sin 8).

Geometry gives

Y = 7y COS P—7ry Sin @--r, cos y
z = 7y 8in @7, cos @—r, sin

These equations are the same as the eqs 18.3 if ¢ is replaced by r..
Now we are able to write the final differential equations at once, viz.

Pr+-2D%py +py (50— G2) — ot — 2Py — 2D*Gip,—
= sin O+ ()24 DQ2,) cos 0--2D% sin 0

(89}
|89
ey

PP+ 219+ 2D*Gpy iyt 2D* Pt po( 5y — G7) =
= — cos O+ (J*+dQ3,) sin 0—2D* cos 0

where
Pi=—) Pa—-

Finally, for the input torque we have
M;, = §i-+-&(p, sin 0— p, cos 0)

where

g =—=-"° .ngl"l+¢

t




5. Solutions of the Differential Equations

In this chapter solutions of the differential equations 19.1 are
obtained for the assumptions:

) = o = const.

@ = @, = const.

The following cases are treated:
Case 1 K = +1; ps=0; (o 2,0 0F Yo = 20
Case 2 A special whirling with p, = 0
Case 3 K of any kind: e = 0, D* = 0, ¢ = 240
Case 4 K of any kind: e # 0, D* = 0, g # Q49 OF @9 = 249

| 5,1. Case 1

In this section the ordinary whirl with K = 1 is treated by con-
sidering external damping.

From the egs 19.1 we get by putting p, = 0. py = p, ¢ = W = Yo
and 0 = 0, (= const.)

G- 2D p - (2, —2) p = W cos Oy+ 2D, sin O,

: 3 okt Sl
2p -+ 2D* p= 1, sin 0,—2D* cos 0,
Here we try the solution p = p, (= const.). Thus
(@2 —R)py = W 08 Oyt (2D*P(py+-cos by)
or
NJ" talnli L 23.2

Po = JIZ E )])*

Further the last equation in 23.1 gives

Yo sin O, = :ZD*( fa + 1) cos O,

cos fl,




G
1
R 50
e
S
Po
B
Fig. 24.1
and with the aid of eq. 23.2 is obtained
7] 2D 930 24 2
tg 0= wo v W ............ 4.2
and eq. 23.2 may be written
B Pold+ (2D oy l / __WreDtr ;
" Vepragr g, —i—ebrr ") @ @by

At the critical state for a rotor unaffected by any gyroscopic
moments (J, = Q,, = 1) we get

1
tg 00 = 2[7;
Vit @y
e =
Now consider fig. 24.1.
We get from above
‘o 1 (2D*)z
T UF tere, — 142D
and
2%
cos Gy =
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n
Hence p, cos (t—0,) = +1, which means that v = —-rad. inde-

-

pendent of the damping.

In the tabs 26.1 and 27.1 p, and 0, are calculated for the same
rotor with different values of i, and D*. (The last decimal may
be incorrect in some units). For this case we have

. ‘{’°]/u VA (2D \

ViR +@D* P
2D* 1
®h= Ty, 1-R—eDY

J2
2

increasing damping. It can easily be shown with the aid of the cosine
theorem that

It is remarkable that if < the shaft deflection increases with

R, 1

e Y U—dr D

and from this expression it can be concluded that the centre of grav-
ity always decreases its distance from the bearing line when the
damping increases.

The maximum shaft deflection is obtained when

= 4 (1+ )14 24)

where « = (2D*)? for shortness and this gives

| Fl

14 20t (1 a)
(po)mnx 3 1

+
1420 (1—a)} 1422

()

()
e ] 142a—(1—a)}1+2a

The maximum deflection of the centre of gravity is obtained when

&

Vg=1—~+
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f Damping foree I Damping foree
il 20" or ‘ in G ’ R 0y
V’n : . m s v n
2Dy, D.f. D.f.
| QD 00 (rad.) ’ Qn 00 (l‘ﬁd.) il’l e (J) in & (.>’
0,00000000 | 006666607 | 0,00000000 | 0,06666667 | 0,00000000 0,00 0,00
0,01000000 | 0,06671980 | 0,04264519 | 0,06666647 | 0,00266605 2,44 0,15
0,02000000 0,06657573 0,08516302 | 0,06666574 | 0,00533325 4,88 0,31
0,06000000 | 0,06798080 | 0,21072816 | 0,06666078 | 0,01333249 12,07 0,76
0,25 | 0,10000000 | 0,07177668% | 0,40716657 | 0,06664301 | 0,02666024 23,33 1,58
0,20000000 | 0,08525382 | 0,72802400 | 0,06657208 | 0,05328266 41,71 3,05 ‘
0,50000000 | 0,14776353 | 1,23070007 | 0,06608186 | 0,13255131 71,03 7,50 |
2,00000000 | 0,47425045 | 1,03639870 | 0,05882353 | 0,48005716 | 110,95 28,07
3,00000000 | 0,62686037 | 2,16239627 | 0,062056702 | 0,67474060 | 123,90 38,66
0,00000000 | 0,33333333 | 0,00000000 | 0,38333333 | 0,00000000 0,00 0,00
0,01000000 | 0,33339263 | 0,02666379 | 0,33332596 | 0,00666653 1,63 0.3%
0,02000000 | 0,33357032 | 0,05331104 | 0,33330377 | 0,01333249 3,05 0,76
0,10000000 | 0,33018174-| 0,26306304 | 0,33250505 | 0,06856704 15,12 3,81
0,50 | 0,20000000 | 0,35586173 | 0,51305787 | 0,33040033 | 0,13255131 29,40 7,60
0,50000000 [ 0,44721359 | 1,10714805 | 0,31622776 | 0,82175075 63,43 18,43
1,00000000 | 0,62017367 | 1,69515100 | 0,27735010 | 0,68800284 97,13 33,60
2,00000000 | 0,82462112 | 2,25311265 | 0,20000000 | 0,92720532 | 129,00 53,18
3,00000000 | 0,90676470 | 2,561270635 | 0,14907120 | 1,10714805 | 143,07 63,43
0,00000000 | 1,28571428 | 0,00000000 | 1,28571428 [ 0,00000000 0,00 0,00
001000000 | 1,28564006 | 0,03047360 | 1,28552580 [ 0,01714111 1,75 0,08
0,02000000 | 1,28541610 | 0,06003248 | 1,28405040 | 0,08427216 3,49 1,96
0,05000000 | 1,28386073 | 0,15207329 | 1,28101721 [ 0,08550505 8,71 4,90
e 0,10000000 | 1,275844342 | 0,30233004 | 1,26722878 | 0,16977816 17,32 09,73
i 0,20000000 | 1,25871707 | 0,50089007 | 1,21621641 | (,33020753 33,86 18,02
050000000 | 1,17323083 | 1,296062563 | 0,97618707 | 0,70862626 74,29 40,60
1,00000000 | 1,07972362 | 1,97001698 | 0,64783417 | 1,04272182 | 112,87 59,74
2.00000000 | 1,02528045 [ 2,49002707 | 0,36000000 | 1,28700107 | 143,18 73,74
3,00000000 | 1,01182508 | 2,70456621 | 0,24540384 | 1,37874833 [ 154,90 79.00
0,00000000 | 4,26315604 | 0,00000000 | 4,26315606 | 0,00000000 0,00 0,00
0,01000000 | 4,25865049 | 0,05844340 | 4,25838763 | 0,04733286 3.35 2,71
0,02000000 | 4,24520687 | 0,11667326 | 4,24415909 | 0,09445468 6,68 5,41
0,05000000 | 4,154703790 | 0,28805560 | 4,14839603 | 0,23255707 16,50 13,32
0,10000000 | 3,87648806 | 0,55303164 | 3,85277842 | 0,44237398 31,60 25,35
0,90 0,20000000 | 3,17034685 | 0,07704644 | 3,09485158 | (,75837772 55,98 43,45
0,50000000 | 1,80606903 | 1,67537900 | 1,65824030 | 1,17125006 96,16 67,11
1.00000000 | 1,31634860 | 2,20072142 | 0,83050085 | 1,36274014 | 126,00 78,08
2,00000000 | 1,00052712 | 2,61357255 | 0,44751381 | 1,46563045 | 149,75 83,07
3,00000000 | 1,04145519 | 2,77988125 | 0,20025005 | 1,50054199 | 159,28 85,07
Tab. 26.1
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Damping force

Damping force

& 2D or in G in 8 ba
! 2Dz D.A. D.f.
L f, (rad.) 2o O (rads) | 5n @ (%) | in 8(%)
0,00000000  2,77777777 | 3,14159265 | 2,77777777 | 3,14159265 | 180,00 | 180,00
0,01000000 | 2,77718122 | 3,12787307 | 2,77700235 | 3,119037417 | 179,19 | 178,78
0,02000000 | 2,776830362 | 3,11317618 | 2,77503844 | 3,00717760 | 178,37 177,406
0,05000000 | 2,762995580 | 3,07001434 | 2,76078818 | 3,030935658 | 175,95 173,66
1,25 | 0,10000000 | 2,72029404 | 3,00275300 | 2,71163066 | 2,022902362 | 172,05 | 167,47
0,20000000 | 2,57065125 | 2,88202337 | 2,68830550 | 2,72336852 | 165,13 156,04
0,50000000 [ 2,00138073 | 2,684118086 | 1,85523537 | 2,30861167 | 153,79 | 131,90
1,00000000 | 1,45978667 | 2,66839142 | 1,13000188 | 1,99365005 | 152,89 114,23
2,00000000 [ 1,15048550 | 2,80430763 | 0,60075610 | 1,79211087 | 160,67 | 102,68
0,00000000 | 1,80000000 | 3,14150265 | 1,R0000000 | 3,14159265 | 180,00 180,00
0,01000000 | 1,79991041 | 3,13625082 | 1,70087042 | 3,12059328 | 179,69 179,31
0,02000000 | 1,70064178 | 3,13092085 | 1,70048184 | 3,117597385 | 179,389 | 178,63
0,05000000 | 1,70776664 | 3,11408500 | 1,79676871 | 3,08166470 | 178,48 176,57
0,10000000 | 1,79114541 | 3,08878207 | 1,78717830 | 3,02216396 | 176,07 173,16
X80 0,20000000 | 1,76578682 | 3,03859045 | 1,75020716 | 2,00604752 | 174,10 | 166,50
0,50000000 | 1,62607843 | 2,02202562 | 1,54348726 | 2,60117303 | 167,47 | 149,04
100000000 | 1,38403061 | 2,85353606 | 1,15233102 | 2,265653445 | 163,50 129,51
2,00000000 | 1,15384615 | 2,80288247 | 0,69230769 | 1,06558735 | 165,75 | 112,62
3,00000000 | 1,07724577 | 2,04880192 | 0,458175805 | 1,84174341 | 168,96 105,52
0,00000000 | 1,4348484%8 | 3,14150265 | 1,48484848 | 3,14159265 | 180,00 | 180,00
0,01000000 | 1,43481928 | 3,18882225 | 1,454790504 | 3,13310805 | 179,84 179,51
002000000 | 1,48473168 | 3,13605268 | 1,45463473 | 3,12462405 | 179,68 179,03
0,03000000 | 1,48458577 | 3,13328482 | 1,48436767 | 3.11614370 | 179,52 | 178,54
0,04000000 | 148438164 | 3,13051049 | 1,48300404 | 3,10766641 | 179,37 178,06
1,75 | 005000000 | 14R411945 | 3,12775755 | 1,48351406 | 3,00019300 | 179,21 177,57
0,10000000 | 1,48194686 | 3,11402780 | 1,47053226 | 3,05604716 | 178,42 | 175,15
0,20000000 | 1,47344907 | 3,08728923 | 1,46391979 | 2,07349714 | 176,80 | 170,37
0,50000000 | 1,42162200 | 301866374 | 1,36692446 | 2,74036308 | 172,96 157,01
1,00000000 | 1,30402473 | 2,05712503 | 1,13221053 | 2,43707804 | 169,43 | 139,09
2,00000000 | 114478403 | 2,955260680 | 0,75384615 | 2,10330050 | 169,32 120,51
0.00000000 | 1,33333333 | 3,14159265 | 1,33333333 | 3.14159265 | 180,00 | 180,00
0,01000000 | 1,33332037 | 3,13002606 | 1,33330370 | 3,13402612 | 179,00 | 179,62
0,02000000 | 1,33328140 | 3,13825080 | 1,33321483 | 3,12826017 | 179,81 179,24
0,05000000 | 1,43300058 | 3,13326649 | 1,88250821 | 3,10827178 | 179,62 178,09
2,00 | 0,10000000 | 1,33204214 | 3,12408295 | 1,33038021 | 3,07502471 | 179,05 | 176,10
0,20000000 | 1,32822805 | 3,10870090 | 1,52163720 | 3,00904133 | 178,12 172,41
0,50000000 | 1,30384048 | 3,06482100 | 1,26491106 | 2,81084190 | 175,60 161,57
100000000 | 1,24034734 | 3,01723788 | 1,10040030 | 2,565358981 | 172,87 146,31
2.00000000 | 1,13137084 | 2,00069579 | 0,80000000 | 2,21420733 | 171,87 126,87
Tab. 27.1
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giving

Observe that if « is small

o) R
V

(Polmax s Obtained for y2 — (1 +

N‘l R

)

The damping force was previously assumed to be applied at the
centre of gravity. Because this force is partly caused by air friction
it seems reasonable to think that the force is applied at the centre
of the disc and this point need not to be the same as the centre of
gravity. Due to the manufacturing the centre of the disc in many
cases coincides with the centre of the shaft. In these cases the damping
force might be applied at the centre of the shaft. The damping
coefficients are in these cases called D} (m indicates here: modified).

From the egs 23.1 we have for a rotor unaffected by any gyro-
scopic moments

R
(_eo‘),,,,x is obtained for {2 = (1 2

(1—=¥5) po = Yj; cos 0,
2D% py = Yy sin 6,

and these equations have the solution

Iz

P T VAUt Dy
2D%)
tg 00 — .l-jd;;:“

The maximum shaft deflection is obtained when

Vo =5 [x = (2D7)]




and
4
40— o

Ry\* 4— o
e | 4g—od

The maximum deflection of the centre of gravity is obtained when

(po)}:mx =

Vit 2a1
g %

Vo
and
s 7 “"I—L:Za— 1)*
o a1+ 2af + () 14 20-1)
Ry \

( )z o
€ Jmax  o02—2a—242] 14 24

If o is small one gets that

e —

(pO)max is Obtained for lﬁ“: —

o

I+ 5

B o
(’(—o) is obtained for {2 = (1_ T)

This equals the first damping case.

In the tabs 26.1 and 27.1 also the values of p, and 6, for ditferent

values of i, and D¥ are shown for comparison.
As a matter of fact the difference of the calculated values according

to the two methods is very small in practical cases.
It D* = 0 we get from the eq. 24.3

Vo
=it N s v e B0
P

and

0, =0'0r 8= tmx



30

M,Jp

\

\

L

Fig. 30.1

Further, for a rotor unaffected by any gyroscopic moments

Vi
= e e e e e e et e 30.2
T :

which formula is given in many reports on the subject. It is of prac-
tical interest to know the error if @, in eq. 29.1 is substituted by
Eﬁ . where Q_is the critical angular velocity.

n

This question is treated for a special bearing arrangement, viz.
the clamped-free shaft in fig. 30.1.

From definition
tmPBr ) 3 1,20,
Py 11— 1,2By

Q7 =1+

Introducing (see also [5])

.1 6EBI
=7 u
AR
Y T e M
we get
1 i 1 6EI S o
7 LT =5 Lo s e emT =4
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Further, from [5]

Lo B = 8
= — CM = —6
Thus
) 9w
B =17 24+ 3v

At the critical speed A — A, where A_ is obtained from the solution

of the equation

Q:o = '1’3
Here
Q: 1 BT & 2
2 = — =Y .2:1" NI =G
Vi g — s be g mp— a4 4
Thus
9y 2
YR T T
giving
A=) =3 =B =0 .\ vy et 31.1
From eq. 29.1
243y
.............. 31.2

Po= "2 3(1—_3v)A—3v

c

and if Q, is replaced by we get from eq. 29.1

2,
» Ac
po A—Ac
From eq. 31.1 is also obtained
A (4:—2
v —(——) .................. 31.3

= 3t—24)
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This expression is put into eq. 31.2 and we get

Po 1
Po A A 1
ANS—=A, — 1—24,

From here we get

Po>Po
if
4 1
2—4, 1-—24, =
giving
2=l
4T

But from eq. 31.3 is obtained that
31<4,.<2
and the limits correspond to v = oo and v = 0. Thus

o
=54 =

This means that p, is always greater than p, except when v = 0
or v = oco. Then p, = p, .

This fact may be of interest if the eccentricity of a shaft is cal-
culated from

where 7 is measured at a special speed and p is taken from

02
i e




33

The calculated eccentricity e will be too great. The correct result
is obtained with the aid of the expression

p = 523_92

Finally, we get from eq. 23.1 for a rotor unaffected by gyroscopic
moments and external damping the following expressions at the
critical state

p = cos 0,

2p = sin 0,
With the solution

T
p = U+ 5 sin 0,
T

0=+

Here €' is an arbitrary constant. Thus the shaft centre at the disc
describes an “Archimedes’ spiral”. This has also been shown by
Foppl and Lorenz. References are given in [9].

5,2. Case 2
In this section a special whirling mode is investigated. The case has
pe=0; pp=pi¥ = Ve ¢ =%
Yo # Go; 0 = (Yo—Po)T+ 0,

d
(o and ¢, are constants and i, = % ete. Further, 0, is a constant).

The first of the eqs 19.1 gives

* ! —D%t >
D* cos pr-+Cye~"" sin pr+-

l,bo[(on :éf_ ‘i’%)'/’o_ 9(21)*)2]
(25— O — 3+ (2D*0F

2D [0+ Q20— P —3]
(G P—ap+ D0 °

p — 01 e.—

cos 04
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where p? = {Q§0~ ¢2—(D*)?} and the second equation gives

YolOro+ 2(D*)2}
2G5l P+ (D* )

—D*
= Cye 7" — cos 04

DMo(2G:0— o)

Sl (D) SO

where C (s = 1, 2, 3) are arbitrary constants. Further. p =0 and p# 6.

These solutions must be identical which demands

Dol(Le—C—GiWo—0@D*?]  olfo+2(D*p)

(Qu—F—goP+D*F 2+ (D*)]
34.1
2[00+ Qp— 0 — ] " 2G0—Yo
Do (g2 gy eproy =P g0 (D
It D*#0 and , # 0 we get
Aot Qo —P—d3) (Do F—gohho— 02D (Q5—0—q7)+ (2D*0)?
Yo— 240 e 0¢o+2(D*)2 a ..(,'»0[02+(D*)2J

From the eqs 34.1 is obtained

MR - R
o

independent of the damping. Insertion into the first of the eqs 34.1
gives the solutions

'1’0 =4 £y ]
205,—(2D*? V! 20 —(2DYF ]
2 1 »
The first solution gives K = 41 which is already treated. and the
second gives complex angular velocities for real values of the damp-
ing coefficient D*.
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In the special case D* = 0 the eqgs 34.1 give

QL — 02— = —2q,0

and from here

: Vot Q40

Toi= _l—
or, which is the same,

7 g 40 =
K=24 o R 35.1
At a critical state ¢, = @, and thus K = 3. (The value K = -1

is not considered in this section). The corresponding deflection of
the shaft is
9

Pi=Ps— g 008 0 (=1 T0) 07 ) L 35.2

Thus, it has been shown that if external damping is present the
rotor cannot whirl with ¢ = const. But if no damping occurs this is
possible at the critical state with K = +3.

This type of whirl was also theoretically observed by Kane [7].
He came to the same result in another manner. He also discussed the
stability of this whirl.

5,3, Case 3

In this section the perfectly balanced rotor is studied at its critical
whirling speed. The external damping is not considered. Hence

e = 0, D* — O; (i?o = ng
The second of the eqs 19.1 gives with r, = 0 and r, = r

I i
s REg =4

and thus

7 = 1o = const.
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The first of the eqs 19.1 gives then
re*0=20

and we may conclude that the value of »; at the critical speed is in-
different. This conclusion is valid for all kinds of whirling.

5,4. Case 4

In this section an arbitrary whirl is studied. It is assumed that
no external damping occurs. Further,

=, =const.}

@ = ¢y = const.
The eqs 19.1 become

A1 +P1(on—‘i’§)—2ﬁz‘i~“o = ¢§ cos
2610+ Pt Pa( R0 —3) = Yg sin 0

Elimination of p, gives
Pi* 22 - G+ (L — T3P = (D0 -0~ G0} Q0+ Go)cos 0 36.2
with the solution, if Q2 # ¢Z.

p = 4, sin (ng—‘i’o)T+Bl cos (ng_‘i"o)f-f-
+ Oy sin (g1 ¢o)1+D; €08 (2g9+ )T+

o

Vo
S m G0 2 e e R T L R A 36.3

and by inserting into the first of the eqs 36.1

ps = —A,; cos (2,— @)+ B, sin (20— @) T+
+C cos (2,1 ¢o)t— D, sin (2,41 @)+
- i sin 0 36.4
GE G e e 36.
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The ex pressions for p, and p, are only valid if
Q0+ 80— # 0 I
B0 Wit O oo s slomimionica 37.1
Qp0 # Yo |
The arbitrary constants 4,, B,, C,, and D, may be determined

from the boundary conditions.
At a critical speed ¢, = @, and the eqs 36.1 become

P—2P0hs = 1% cos ¢ =
ooy il e I T eSO 37.2
ZPoPrT P2 = ‘1’0 sin 6
and from here
P14 (200)20, = (BPg—Volosin @ ............. 37.3
If, as an example, 3¢, = f, (K = +3) we get
1= Pt C, sin 2¢,14 D, cos 2¢,T (9 = const.)
and trom the first of the eqs 37.2
9
Po = Pag+C1 cos 2¢t—D; sin 2¢t— T sin ¢ (g = const.)

9

If we choose D, = (— I - D,’) we have

9
21 = Pro+Cysin 2¢t-+ D, cos 2¢t— 2 °os 0

P2 = Pag+C cos 2¢c— D, sin 2¢)g7

Further, it (!, = D,’ = pyp = 0 we get

9
Pr=p = pp— [ cos b
0

I}

4

Il

:
P2
and this solution was obtained in the previous section. Hence this

is only one of many solutions possible. But this is the only solution
giving a perfectly constant whirl velocity.
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If. as another example, o= —¢, (K = —1) we get from eq.
37.3 that
Bik (200, — — 448 sin 240

and find the solution

(j,or

1 = ProtCysin 2¢ 47+ D, cos 2,7+ sin 2([-(,7‘

Sicors FoT .
Ps = PaotC, cos 27— D, sin 2¢,7-- 5 COS 257 ]

A whirl with K = —1 can only be obtained if p, > l/_?r thus |
only during a short period on “artificial” conditions. -

For completeness it may be pointed out that the solutions 36.3
and 36.4 are valid also for K = -}-1 at a non-critical state if we put |
6 = 0 or 8 — n. In the case Q,, = ¢, the eq. 37.3 and the first of the |
eqs 37.2 give

Gt

Py = prot+Cy sin 2551+ D, cos 2¢t+ ——sin 6

s e, PoT
Ps = pso+C cos 2¢,t— D, sin 2¢;t— -— —cos 0

and we see immediately that the ordinary whirling at its critical

n
speed must have 0 = .

Summarizing, it has been proved that at a non-critical state only
the whirl with K = 41 is quite pure and at a critical state only the
cases K — +1 and K = 43 can have quite pure whirlings. (In a pure
whirling K is absolutely constant).

Concerning the conditions 37.1 we get for Q,, = ¢,

00 == 0
0y = 24
:t‘i-‘o = ¢o

which means K# +1, K#+3, and K# 41 respectively. The cases
K = 41 and K = +3 have already been treated and the case
K — —1 will be specially treated later.

Though the input torques for maintaining the whirls can be derived
from eq. 19.3 they are thoroughly investigated in the next chapter.



6. On the Input Torque

It has been shown previously that at each rotational speed the
rotor has a critical state if the proper whirl velocity occurs. But
experience from practice shows that there are many motor speeds
which are not critical, which means that the corresponding whirl
speeds do not develope. A very important task is to predict which
critical rotational modes a rotor may have. In this chapter a theory
about this matter is put forward.

It has been shown in Chapter 4 that the necessary torque for
entertaining a pure whirling motion is

M,, = cresin 8 [0 = (w— Q)1

If a motor at a certain speed, besides the constant torque M,
delivers “torque-tones” so that
My = Myt Y, M, sin got+ Y My, cos gt
S s
where ¢, are constants belonging to the driving machine, a eritical
whirl may occur only if

T Wy = Wez— 'ch

The indices cs mean critical speed of order s and hence

The constant torque M, takes care of the load and the term

2

~

7:
M sin gt or M, cos gt = My, sin (—qsmtJ— —)

sustains the whirl of order s. The other “torque-tones™ disturb the
“pure” motion.
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This can be shown more precisely in the following way. From eq.

19.1 we get, if

r=r
l'2=0 ,
Ys = T COS (p :
7 =rsmrp
k =
that
png=0| (@
£+ZSQ§=O’ = dg y 2= dﬂ .......

Further, the torque-equation 19.3 can be written

2

P

L4 .
M, =1, - T +MeQ2(y, sin y—z,cosy) .......

From the eqs 40.1 and 40.2 is obtained by introducing

Ys
s = ¢
b=
the following equations
a2z
iy +Qn, = — g (cosy)
2

:s +930Cs i 2 (Siﬂ W)

J; = *M:n_gz(ﬂs sin W—‘:s €os W)
;W . 8%
s = de Cs = de?

By introducing

x = nig
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we get from the first and the second equations of 40.3 that

@&
It =— "7z R e i i 2 41.1

Here x is a vector in origin. Its modulus is the shaft deflection
and its argument is the “whirl-angle”.
If the “input torque” can be written

MY =Y Mf sin gyt Y M cos ¢, v
we get

Y=Y M¥sin qu+ Y ME cos qy—e(nssiny—eosy) ...... 41.2
If £g| is much less than {Y M sin qu-+ Y M cos qu} we get

J =Y Mysinqyu+ Y MEcosqy ........... 41.3

5

(This sum may contain one or two terms less than the sum in eq.
41.2 as will be shown later) and after integration

! M MY,
U= o— Y q” cos g+ .- q2 BN «oimr o ovinin 41.4

The right hand side of eq. 41.1 can be written
(2 —ipp)e™
which approximately takes the form
(5—iv)e”

if 1, is much greater than the sum of all the other terms in eq. 41.4.
The eq. 41.3 can also be written

U=1[T (MEe®+ MEe %) —i Y (MEe™— Mie'"¥)]
s

and the eq. 41.1 gives
P2 = YRV 44 Y [—(ME+iMY)e TN

MR MR o ke e i e 41.5
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If w~,t the particular solution which is of main interest is

2,0y
1=— '11 s+ = : . M-’) _ei(|+q.)w+
. 'ﬁ s yo_ 1+‘Is z'nbo
i MM LREIE )
i 9 Z = 'j;mo ISl A B S S 42.1

70

Quk i B L e i e 422
(—14q. )05

If eq. 42.2 is not fulfilled solutions of another type occur. From
eq. 42.1 the following conclusions can be drawn:

1) If M = MJ = 0 for all s we get
e
iy
=" s "%
ng“'l’u

which means that the shaft whirls with X — 41 with the deflec-
2

tion ———
=

2) If ), is far f s .
2) o 18 far from + H—q, r -+ S

(M%) are small the shaft will mainly whirl with K = 41 and the
trace of S is nearly a circle.

and all MJ = [(M )2+

3) If M5+£0, M}E#0 and if i, is near the value the shatt will

g0
144,

whirl with ¢, = (1-4+-¢,),. Thus K =

. Analogously we get

1
144,
a whirl with ¢, = (1—g,)),. Thus

if W, is near the value

9s

1

K — = . Hence, one “torque-tone” M f can cause two kinds of whirl.
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4) Eq. 17.2 shows that Q,, is a function of K and ,. Thus €,
= Q,(K, ). 1f ), is changed very slowly with K~ 1 (which in prac-
tice often occurs), at a certain value of i, say

2,
144,

Yo = +e

where ¢ is a small number. we get one of the terms in the series very
great. This means that the shaft developes a whirl velocity indi-
cated by the argument of this term. In that way K changes from

1
F1to K = T But this gives a new value of Q,. But if [QF —

5

—(1--g)2] is still small the new whirl will remain and further ad-
justment of i, may stabilize the motion.

This thing will only happen if the corresponding “torque-tone™
amplitude is different from zero and if the other “torque-tones” do
not destroy the whirling. This can happen if the other “torque-
tones”™ are much greater than the “proper” one. In such cases “ir-
regular” whirling must occur which means that ¢ varies strongly
with the time.

5) A whirling with K # + 1 has in general greater difficulty to be
developed if i, is near the usunal critical speed than when it is far
from this speed.

6) When passing a critical speed ¢ may shift nearly 7 radians,

7) One special whirl can exist within a narrow motor speed range.
The motor speed will vary except at the critical state. However, in
general the whirl speed and the shaft deflection vary. The exceptional
cases are treated in Sec. 5,4.

8) If, as an example, all “torque tones” besides M sin 2y are
zero we get

[2 1 * *
Vo = ,w_J : _:ii-’_. - eV | L. ZM" Ry =L A
e 2 22 —(3,) 2 22—k

Q
If o> Tgo we see that the second term dominates over the other

ones. In that case |y| is nearly a constant and the whirling “pure”.
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MY
But it never exceeds the value ;Z and thus
&
ML M2 W2
Hm oy x —= - e, if —2 5 0
s _Q”_ & ng_'[’o
)
9) If we, as an example, want to study the case |}, = —— we

3
have “resonance” for both ¢, = 2 and ¢, = 4. We get if only these
two torques act the exact solution (which is easily shown by insertion
into the eqs 40.3)

Vo

! 1 . 1 : o
ns+il, = m “g¥— 3 (111|§+-£4112§)e3"'+ 5Ty (M —iM 5 )e i
90 0 <
or

ey =e" - § - cos y+(—ME+ M%) cos 3y (ME—M}) sin 3y l
Bl =¢ Fesiny—( MJE+MY)sin 3y—(ME+ M%) cos 3y ’

and thus the point S does not describe a circle. Tn that way the
assumptions concerning the gyroscopic moments are only exactly
valid if Q,, = 1. Of course, analogously exact solutions also can be
obtained for other critical states. It is remarkable that in spite of
a varying input torque the angular velocity of the shaft is exactly
constant () — 0).

Observe that the whirl has not exactly K = | (any exact K-

values besides A = -1 and K = -3 do not exist at an unbalanced
82
rotor). But if M§> M and M >3 the whirling will be fairly “pure”.

The previous theory explains all whirlings except for the case when
K = —1. This whirling must be treated in a special way because
1 M%< in many machines (see eq. 43.1).

We have already studied the influence of the so-called external
damping. Tt arises from the friction between the rotating and the
stationary parts, which means the external medium, in most cases
air. However, there exists another kind of damping called internal
damping. This is due to the friction between the rotating parts of the
rotor. The action of the different types has a considerable difference
as among others Dimentberg [4] has shown in the case K = -1 and
I, = 0. Under certain conditions the internal damping can increase
the deflection of the shaft.
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In order to make full allowance for the resistance forces due to
internal friction, a moving system of coordinates is considered with
its origin in the point B (see fig. 11.2) with the axes rotating relative
the stationary system with angular velocity ¢. Thus, using complex
quantities,

xX= xe*
b (D0 oy SR 45.1
(= (Xo 219 fp— P*1p)e"

By considering external friction the eq. 41.5 can be written
$2DX g+ Q% = Yie¥ 1 Y [—(ME+iMy) Qll1+an¥ o
+(Mlt—iiuz':)e_i(—l H¥]

Insertion of the egs 45.1 gives if we, moreover, add the term 2D 7'
due to internal friction

{H ot (2i4+2DF+2D%) j, +(— ¢ +i2D50 + 20 1o} € =
= P-4 Y [—(MEHiME) Y L (M E—iM e (IHEN] L 452

Further, we may write

Yo = & T
7

ZW == (X—pr)67 i
Fo= (X—2i¢p 3 —2y)e "

and by putting these expressions into the eq. 45.2 we get
F+2ADF-+Dy) 125 —2ipDF)x = Yge¥ +
+3 ¥ [(MELM )TV L (MM E)em (1]

15T

Try the complementary solution y = e**. We get
2 2DF DAL Q2 —2iGDF = 0

with the roots

A= —(Df-DX)+ 1(D*—}—D*)2 +2i¢D¥



46

It (Df+ D)< Q,, we get
.I*
= —(Df +D¥) + 8 +1Q,0

0

Stable solutions are obtained if

. Dy,
<\t 7=

For clarity the particular solution is calculated for only one “dis-
turbing” term, which in general can be written Qe™ where m —
1 & and @ is an arbitrary amplitude. Thus we get

1—4s
— Q .
—mAE+ Q% Li2mp DX 2D my—q) ©

imyr

x:

At a special whirling (m)—¢) = 0 always and we may conclude
that the internal damping never limits the amplitude of the deflec-
tion due to the particular solution.

For the special case K = —1 we can have the solution
G ot E e ), M e
x sde i T 2D*+4DF T 4D, ¢
or, if rg = eyx
O I B S (0 - T I
rszAe '+-Be ——Zw e —{—imro"o 46.1
where A°, B’, 4, and B are arbitrary constants.
It A s
— W we get-
B eMY : i(.p_% s
rs B Dy, Pl SRR e L 2
and from this expression it follows that the case K — —1 also in

theory may exist in spite of the fact that e 0.
Now we are capable to follow the events when the whirling changes
from K = +1 to K = —1. Suppose that the shaft whirls with
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K = 1 near the speed corresponding to the critical state for K —
— — 1. Then we have the solution

T ;Al e D|'e— iQn-‘+ li'1 e Dy ethu‘_*_

2
4 "\po L
AIII§+Q§0+1'2D:"L0 I
2 ME i
foe . =t e
T2 22 —i2DY4DM,
where
D, = Df 4Dt 4+ ——- D}
1 = & m ng :
G
D,= Df¥+D*———: Df
g0

Then the shaft is given a disturbance (for instance from the bearings)
such as
—alj

= 4\&%1630_*..-{,2]):, 0

B

During a short time the terms containing the factors e " and
e " are dominating and the shaft begins to whirl reversely. In that
way the value of the function Q,, = Q,(K, ¢) changes its value
and @ —>—, After a while the solution 46.1 is valid and another
disturbance brings the rotor to a whirl described by the expression
46.2. Observe, that the limit of the shaft deflection due to the
“torque-tone” at this critical state must be

M3

’
Wel=er o

In other cases the whirling cannot be maintained. Tt must also be
pointed out that if M% = 0 |rg| = 0 if e # 0. If, on the other side,
¢ = 0 |rg| can have an arbitrary value. The shaft deflection is in-
ditferent. If the external damping is zero, e—0 and M%+#0 the de-
flection of the shaft tends to infinity. But in this case the input torque
also can settle up variations in the motor speed and hence the shaft
deflection is also in this case indifferent.
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The internal friction was previously assumed to be viscous. This
is a first approximation. The results give a rough orientation of the
influence of internal damping.

Dimentberg [4] has carried out a close investigation of the nature
of internal damping.

Maybe also the so-called “Magnus-effect” [1] is of some significance.

As the p-value at a critical state is limited the eq. 41.3 is justified.

In the undamped case the ordinary whirl has § = 0 or 6 = = at
a non-critical state. The eq. 13.2 gives M;, = 0. Thus this whirl al-
ways exists in a rotor which is freely rotating in bearings without
friction. At the critical state 09'—then r—oc. Hence, from eq. 13.2,
the rotor demands a steady increasing torque.

From the eqs 33.1 we get for a point-mass rotor
p~0+—orr—C’e—+——wc

where C is an arbitrary constant and with eq. 13.2

M;, = ce}(C+3w )

which gives

aM,, 1
T e ce%w,
or
dm,, 1 S
g

This equation indicates the necessary increase in torque to keep the
rotor at the critical state and was shown by Biezeno and Grammel [2].
If the motor in the undamped case after a while gives

aM
dt

1

in 2
<’T cew,

the rotor will take a speed below the critical speed and if

dM,, 1
>—cw,

dt 2
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Fig. 49.1

it will pass it. See also [6]. Thus the motor must have a characteristic
curve according to fig. 49.1 if the rotor shall be able to stay at every
speed with K = 1.
For the case with external damping we get from the eqs 13.2,
24.2, and 24.3 that
M, 2D* Q23+ (2D*)]

et (2D*Q )Y Q%,—YE—(2D* )R
and if W, = ¢, = Q,, we get

M, 2.0
ce? ~ 2D*
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If 7, =0 we have

M, 21)*'%['/’%4‘(21)*)2]
et T (2D*PHyE1—ja—(2D*pP

This function is drawn in fig. 49.1 for D* = 0,01 and D* = 0.10,
The motor must have the possibility to deliver a torque according
to these curves in order to maintain its motor speed.

Such a possibility has for instance a D.C. motor. Tt is also known
that this motor produces “torques-tones” with

Q=80 (g = 152,87 =)

If against ¢, an amplitude of M, corresponds we must have

M,

where 7’ is the shaft deflection due to the “torque-tone” at the
critical speed. Often M| is very small and this explains why the shaft
deflections at such “unusual” critical speeds in general are small in
comparison with the shaft deflections at K — }-1.

An A.C. motor is able to produce sub-harmonic “torque-tones”.
Hence these tones have a lower frequency than the shaft speed.

Often the couplings split up the torque from the motor into har-
monics. This happens for instance in Hooke's coupling (cardan-
coupling) and similar couplings if the input and output shafts are
not exactly collinear. Especially the “torque-tone” of angular velocity
2o has a relatively great amplitude which depends upon the amount
of this misalignment. According to eq. 39.1 one may expect that

such a coupling might excite the critical speeds with X — —1 and
K = 1. As a matter of fact just these whirlings are mentioned in
literature.

In order to investigate this idea practically the test apparatus
shown in fig. 64.2 was rebuilt so that the motor drove the shaft via a
Hooke’s coupling and the shaft of the motor could be inclined. Tests
were carried out with the angles of misalignment 0°, 5° 20° and
26° at the speeds corresponding to the critical states with K = - 1 and
K — —1. The result was, however, that the shaft deflections decreased
with increasing angle. Probably this was due to the large variations
of the speed of the shaft during every revolution of the shaft.
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At these tests great deflection of the shaft was also observed at
the speed corresponding to K = —%. On this occasion the angle of
misalignment was 0° or 10°. Only tests at these angles were carried
out.

Finally the concept of “secondary critical speed” has to be dis-
cussed. It has been seen that a horisontal rotor often is disturbed
at a speed equal to half the ordinary critical speed.

rad

If the motor is running with the gravity force at a hori-

8
sontal rotor causes an input torque Mge cos y (see fig. 11.2 by assum-
ing the gravity force parallel to the z-axis). Thus, because

V4
J.[g(’ COS Y = J”ge Sin (_.ﬁf+ ?)

we may get a whirling at K = 41 according to eq. 39.1. In that
case the gyroscopic effect is absent (y = 0) and @, — @,. Thus it
may be suspected that the horisontal shaft should be rough at the

speed 1)"4. The deflection radius +* due to the gravity force conse-
quently can be obtained from the relation

cer’ = Mye
and thus

M q
4

y A

The trace of the centre of the shaft can be written (with origin in the
“centre of the bearings” B)

Mg 1 My

{_ ¢ .e'v_l_— it
3 j

g = e

Analogously the trace of the centre of gravity has the equation

Mg 4 , My
re=——+ ge-e""—l- :

el

Mg 4
=3

In fig. 52.1 rg and »; are shown in the case
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Fig. 52.1

It may also be possible to investigate the harmonies of the torque
from a motor by studying the critical states. In that case the coupling
between the motor and the shaft must be rigid. Perhaps this is of
practical interest because of the fact that it is very difficult to de-
cide the harmonics in an electrical way if the amplitudes are small.

In a dissertation 1924 Schroder [8] also found that the critical
speeds of the second kind (K s -+1) occur at limited deflections of
the shaft. He obtained this result by assuming small variations of a
certain kind in the motor speed then and performing a limit analysis
at the critical speed.

His solution did not include the case K = —1 and nor did he
discover the special properties of the case K — +3.

In spite of this and the facts that he did not consider the gyro-
scopic effect, the effect of the damping or perform any own tests,
his dissertation must be considered as an important. work in this field.




7. Whirl Curves

In practice, it is rather difficult to see how a rotor whirls. If the
deflections of a shaft in the - and z-directions are recorded one can
from the chart calculate the angular velocity of the whirl. The motor
speed is obtained separately. But the difficulty is to see if the whirl
is positive or negative.

However, if the electric signals due to the movements in the y-
and z-directions of the disc centre of gravity are led to the x- and
y-plates respectively of an oscilloscope one can see the path of this
disc centre. Bach ratio K = % gives a special curve and with the
aid of this curve one can decide the value of K without knowing
w and Q.

As an example the path of the disc centre if K — 4 1 is constructed
in fig. 54.1.

In the first position the bearing centre B, the “virtual” shaft
centre S* (here is only concerned with the position of the shaft centre
due to one “torque-tone” at resonance which means that BS* —
" = const.), and the centre of the dise €' are collinear and the posi-
tions are denoted S§ and C, respectively. We put S*C' = ¢’ and if

r
>e¢ we have p' = — >1. If Sy is moved to S}, € is moved to

(s and the angle between S¥C'; and BS} is one third of the angle
between the lines BS; and BSF. Thus the line S;C; is parallel to the
line Bl. The final path in this case can be seen in fig. 58.1.
For other values of K the corresponding paths of the disc centre
are drawn in figures on page 55 up to page 60.
Observe that if a curve is obtained for K = K, and p’ = p,’ the
1

1
same curve is obtained for K = -~ and p’ = —.
K, M



Fig. 54.1

If, during K = —1, the shaft deflection changes from p’'<1 to
p’ =1 the direction of the rotational speed of the point C will be
reversed which is easily shown.

Comparison of the oscilloscope screen picture and the figures gives
the K-value.



K:-‘;p’>’| K_—,-'l;p’:‘
K=-1,p<1
e iy
K=-l2,p>1 '
K=-2;p>1 K=-3;p<i
K=-1z2;p<1 K==13;p>1

Fig. 55.1



K=-3;p=1 K=-3;0>1
K=-Vzp=1 K=-t3g<1
K=-4;p<1 K=-4;p=1
K=-;p>1 K=-'lyp=1
K=-4;p>1 K:—S;F.i<‘|
K=-ll;g<1 Ka=lzip>]

Fig. 36.1



K :-8;p’<1
K:—‘Is;p'>1

K=-6;0>1
K=-Ygp<1

Fig. 57.1

K=-5;p'>1
K:-’/5;§<1

K :-S;p,:'l
K:—’/ﬁ“p’:1

K=+1; p<l
K=+1: p>1



T K=+2;p=1
K=42,p<1 K:,'/z-z-]
K=+'2,8>1 P=

-y il K=¢3;p'<1
K-+2.p’>| K=elygo1
K=+V2;p<1 P>

K=+3;p=1 K=+3;p>1
K=+Y3,p=1 K=+13:p<1

Fig. 58.1
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K:olﬁp’<1 K=+4;p‘=1
K=+1/,;6>1 K=+ll;p=1
K=+4;p>1 K=+5.p<!
K=+";p<1 K=+//s;p>1
K=+5:p= )
K-:'?.p':: K=+5;p>1
=+5,p= =4+1/5;p<1

Fig. 59.1
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K=+6;p<1 K=+6;p=1
K=+Vs;p>1 K=+5;0=1
K :;6;p'>1
K=+Vs;p<1

Fig. 60.1




8. Tests of a Rotor with One Disc

In order to investigate the different rotational modes in a rotor
a test apparatus was built, the principle of which is shown in fig. 62.1.

The shaft was vertical. Photographs of the apparatus are shown
in the figs 64.2 and 64.3.

The electronic equipment can be seen in the figs 64.2, 64.3, and
64.4. The different instruments in fig. 64.4 are:

A. Recorder (Offner). It registered motor speed, input torque, and
deflections of the disc in two directions perpendicular to each other.

B. Oscilloscope (Du Mont). It was used as an amplifier for the elec-
tric signals from an electromagnetic pickup, 7 in fig. 64.2 (Philips
PR 9262/01). 7, was mounted very near a gear wheel and in that
usual way it served as a “tachometer” for the steered whirling
velocity. The whirling was put into the left shaft 7', in fig. 64.2
by means of a whirl-exciter 7 driven by the right shaft 7', in
the same figure. The shaft 7', was driven by an A.C. motor via
a variator. These are not shown in the figure. 7', and T, are also
shown in fig, 64.3.

(. Calibration Unit (Philips GM 5522) coupled to 7, in fig. 64.2.
(See also under B.)

D. Battery unit for giving one channel in the six-channel-recorder
A a prevoltage when measuring and registering the speed of the
shaft 7', in fig. 64.2. It enlarged the deflection on the chart for a
given speed because a great amplification could be used.

E. Electronic counter (Hewlett Packard). When it was coupled to
B it gave the whirl velocity and when coupled to the frequency-
meter 7T, (Hewlett Packard), which obtained electric impulses
from the tachometer-generator 7'y (Hewlett Packard) it gave the
speed of the shatt 7', in fig. 64.2.

F. Dual beam oscilloscope (Tetronik) coupled to G.

(. Power supply, reactance converter and amplifier (Disa 51C06 and
51B02). They were used in connection with the capacitive pickups
P, and P, in fig. 64.3 for measuring the deflections of the disc.
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Rling.
Coupling.
rque measuring device
Coupling,
Bearing

7/
K

Fig. 62.1

H. Double A.C. bridge (Vibrometer) used together with the torque-
measuring-device 7', in fig. 64.2.

A D.C. motor was driven from a Leonardsystem. (See fig, 72.1,
The low frequency generator was not connected.) The arrangement
was equipped with a whirl exciter with the aid of which the whirl
speed could be varied continuously in the range 160<<N <1440 or
640 <N <5760 (r.p.m.).

The rotor had the following data:

M = 9,87 kg l d = 15 mm

Newton
E - :

I, = 0,114 kgm?

4

20,3 - 1010 3
L = 735 mm m = 1,07 kg l
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8,1. Tests of a Hinged-Hinged-Free Shaft Driven by a D.C. Motor
Coupled to a Common Ward-Leonard System

At first the D.C. motor was driving a hinged-hinged-free arrange-
ment. At the same time the whirl exciter gave a whirling motion to
the disc. The arrangement was driven at special values of K for
different values of @ and Q. For each w-value the corresponding
Q-value was set up and then the whirl exciter was disconnected. In
that way it was found that the rotor only at special values of o
kept the same K-value after this uncoupling. These values of » were
the “critical speeds”. If the whirl exciter was disconnected and the
motor was driven up to one of these critical w(= ©,) it was seen that
the shaft started whirling with the corresponding value of Q(= Q,).
From the elementary theory (see [5]) one gets that every w is “crit-
ical” if the corresponding value of @ is developed. This matter was
also shown. But a very important thing was that the rotor by itself
(which means without whirl exciter) only whirled with K = —1,
—1, —1, —4 —3%, —1, +4, and +1 and only in the neighbourhood
of the corresponding critical values of . This result is in a very good
agreement with the theory in Chapter 6.

In the tab. 64.1 the test results are collected. The theoretical
values are calculated from eq. 110.2 in [5]. Thus, the influence of
the mass of the shaft on the critical speeds is neglected and the
bearings are treated as if their lateral stiffness was infinite and their
angular stitfness zero.

In two cases the change of # with = radians when passing the
critical speed, viz. K = —1 and K = - { are shown.

The test results are (2+8) per cent greater than the calculated
values which is a good agreement.

The brackets around the |N|-values mean that these are not meas-
ured. They are caleulated from the formula

- n
O

and here # is obtained from an electronic counter and the K-value
from the figs in Chapter 7. Tests showed that the points G and C
practically coincide. This happened because of the fact that the disc
was turned in a lathe while it was mounted on the shaft. If the mate-
rial is homogeneous the points ¢ and €' must coincide and the eccen-
tricity must be zero (at least from the practical point of view). Thus
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Theory Test | Test figure
K n INI ‘ n INI : Amp].
| o No
r.p.m. rpam. | rp.m. r.p.m.
% 131 783 136 [816] <1 66.3 A
% 736 4417
~ug 2393 399
16702 2784
__} 155 775 162 810 <1 66.5 A
869 4344 877 4385 <1 67.1 A
g 2132 426
14125 2825
i 192 768 204 [816] <1 67.3 A
1061 4245
A7 1846 462
11537 2854
Lt 252 755 258 774 <1 67.5 4
1368 4103 1405 4215 <1 68.1 A
L 1522 507
8024 2075
3 365 731 378 [756] <1 68.3 A
1939 3879
15 1143 572
¢ 6265 3133
664 664 1 68.5 B
=3 663 663 (712) (712) >1 69.3 B
(738) (738) 1 69.1 B
3482 3482
+1 1111 1111 1140 [1140] >1 69.5
Ao 142 851 153 [018] <1 70.1
‘o 957 5742 70.3
46 13610 2268
+1 299 896 322 [966] <1 70.4 A
3 2589 7768
+3 5798 1033

Tab. 64.1




Fig. 64.2
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the test apparatus had ¢ = 0, but the shaft was slightly curved. In
Sec. 4,2 also the theory for this case is outlined and it is derived
that the “original” deflection r_ appeared in the differential equa-
tions similar to an eccentricity.

The path of the point ' was photographed at a very low motor
speed and at two different amplifications of the oscilloscope. one of
them giving the double picture against the other. Thus the radius
in the circle is the deflection r, on a certain scale. These low speed
pictures are shown in fig. 66.1 (amplification A) and fig. 66.2 (ampli-
fication B). It can be seen from the tab. 64.1 which amplification
was used in the different tests. Further. the photographs from these
tests are shown at page 66 up to page 70 and there also the theore-
tical curves are repeated.

Only critical speeds below the one corresponding to K = 1 were
sought for (except for K = —1). The tests and the theory are in
good agreement.

S
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Fig. 66.1 Fig. 66.2

K:-S;Fs>1

K:-'fﬁ;p‘(]
Fig. 66.3 Fig. 66.4

K=-5;0>1

K=-5;p<1

Fig. 66.5 ‘i, 6
g. 66.5 Fig. 66.6
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Fig. 68.3 Fig. (68.4

———— K=-=1;g=1

Fig. 68.5 Fig. 65.6
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-1;0=1

K=-1;9>1
1.p<1

K

K=

9.2

2.

Fig. 69.1

Fig. 69.4

Fig. 6.3

Fig. 69,06




70




\

71

§8,2. Tests of a Hinged-Hinged-Free Shaft Driven by a D.C. Motor
Coupled to a Special Ward-Leonard System

In this previous section it was shown that the D.C. motor was
able to produce different kinds of whirling and this fact depended
upon an “unpure” input torque. It became urgent to use an arrange-
ment in which any “torque-tone” could be produced. So the Ward-
Leonard-system was changed according to the scheme in fig. 72.1.
By means of a signal-generator (Philips Z9.060.69) and its amplifier
(Philips GM 5535) a sinusoidal voltage was delivered to the system.
In that way it was possible to vary, within some limits, the am-
plitude and the frequency of a “torque-tone” desired. Thus the fre-
quency of the “torque-tone” must be between 2.8 Hz and about
5 Hz in order to get a “torque-tone” of proper amplitude.

It became evident, with regard to this “torque-frequency”, that a
hinged-hinged-free rotor with », = 0,10 and 2, = 0,90 (see p. 218
in [5]) should be suitable. The same disc as before was used and the
crookedness », of the rotor was 0,12 mm,

The lowest critical speeds for some values of K are shown in tab.
11,

‘ K \ —7 i 0 \ +1 l ) ' 12,5 ‘
N r.pm. 200 205 211 220 228
n r.p.am, — 200 0 2 440 ‘ 570 |
Fig. 71.1

Hence, the gyroscopic action is small in this rotor. From eq. 39.1
we get
K—1

It K = 2 we get ¢ = 4 and the frequency of a proper torque-tone
440
2 - 60
with K = +2 was closely investigated.
In figures on page 73 the input torque in some tests are recorded.
They are described in the following.

must be Hz = 3,67 Hz, which is a suitable value. So this case



[ ] A
Notation:
Egr = Reference voltage M; = Motor
Ec = Controlled voltage R = Rectifier
F = Fine Adjustment LFG. = Low Frequency Generator
M; = Motor {Philips Z2906069)
EG. = Exciter Generator A = Amplifier
WLG.= Ward-Leonard Generator (Philips GM 5535)

Fig. 72.1

Test 201. The shaft ran in this test and in the following deseribed
tests with 440 r.p.m. The Low Frequency Generator did not supply
any torque. It can be seen that the Ward-Leonard-system delivers
an output “torque-tone” with the same frequency as the revolution
of the shaft. The trace of the centre of the disc was picked up on an
oscilloscope and it can be seen on the photos in the figs 75.1, 75.2,
and 75.3. From the photos it is clear that the whirl was not quite
steady. Here, and in the following, the length of a vertical side of
a square on the screen corresponds to a deflection of 0,074 mm of
the disc centre and the distance between two adjacent arcs on the
charts corresponds to the time 0,05 sec.

Test 202. In this test the Low Frequency Generator gave a slight
“torque-tone” of frequency 3,67 Hz to the shaft. In fig. 73.2 can
be seen that the period of the input torque was doubled.

The corresponding trace of the centre of the disc is shown in the
figs 75.4, 75.5, and 75.6. Compare the figures on page 58 with K = +2
and p'<<1 and p’ = 1 respectively.
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Test 203. In this test the amplitude of the “torque-tone” from the
Low Frequency Generator was increased as fig. 73.3 shows. In other
respects no changes were done. The trace of the disc centre is shown
on the photos in the figs 76.1, 76.2, and 76.3. Compare these photos
with the figure with K = 42 and p’ >1 on page 58.

T'est 204. The amplitude of the actual “torque-tone™ was further in-
creased and the Low Frequency Generator delivered its greatest
signal. The torque is recorded in the figs 73.4 and 73.5.

From the tests the measured quantities are collected in tab. 74.1.

‘ Deflection radius of the shaft due to
‘ Test | the “torque-tone” Torque (Nm)
’ Measured on figure | Size (mm)
| -202 75.4 ‘ 0,00--0,01 0,194 0,04 '
|
203 } 76.1 i 0,19-4-0,01 0,424 0,04
204 76.4 ! 0,304+ 0,01 0,614+ 0,04
Tab. 74.1

Theory says that a part of the shaft deflection is directly propor-
tional to the size of the input torque. For the actual deflections in
the three tests we have the ratios

0,00:0,19:0,30=1:2,1:3,3
and for the amplitudes of the “torque-tones™
0,19:0,42:0,61 = 1:2,2: 3.2 (mean values)

Concerning the deflections the measured lengths are taken from
the figs 75.4, 76.1, and 76.4. At small amplitudes of the torque tone
the traces change in size. This coincides with the theory because the
varying torque can cause both variations in motor speed and shaft
deflection. The “balance” between these effects can easily be dis-
turbed if the input torque is small. Such disturbances may come
from the bearings.

Hence theory and tests are in good agreement.
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Test 204 will now be further investigated. Suppose that the am-
plitude of the actual “torque-tone” is known and we want to deter-
mine the shaft detlection » due to this “torque-tone”. In the un-
damped case we get from eq. 50.1

.‘”x 0.61
A = —— ——— (1)

ce b1 =
- . 205) -9.87-0,12-1073
30

and

r = 1,12 (m)

We can conclude that the external damping is of great importance.
From the general expression of y on page 46 we get

) M* 0.61
D — o -
7 b4 8 0,30

8 - 0,114« {—— - 205)] -8 -
¢ 30 0,12

and

D* — 0.0006

"
The damping coefficient k, can also be determined and
n -
k, =2D¥*MQ, = 20,0006 - 9,87 - —— - 205

30
and
Ns
ko=10:2017
m



9. Summary

In this report the different whirling modes of a rotor are treated.

ra
If the shaft is driven by a motor with a speed of « the shaft

S

rad
can whirl with another angular velocity QT' In literature only

a few values of K = % are mentioned. Except the usual value
K = 1 some other values as K — —1. +4, and <1 are accounted
for. By considering a rotor without eccentricity it is easily shown
that every speed @ is a “critical” speed if the proper Q-value occurs.
It means that the shaft deflection is indifferent. But in practice only
a few values of K occur and it is urgent to predict these values. Here
is shown that the harmonies of the input torque cause these “extra”
critical speeds, and further, they can oceur even for a rotor with
eccentricity.,

Many authors derive the expression for the shaft deflection at
K = 41 as a function of the motor speed. So is also done here, but
differently, the gyroscopic effect and the external damping are taken
into consideration. Some results at the critical speeds were remarkable.

Thus all whirls except ordinary reverse (K — —1) and forward
(K = +1) whirl can occur at the critical state with a nearly constant
deflection of the shaft at zero external damping. But the case K — -1
tends to increase the shaft deflection with time and the case K — —1
destroys itself. By considering slight external damping also these
kinds of whirlings may oceur with a constant or nearly constant
deflection of the shaft at the critical state.

The deflection of the shaft and the position of the centre of gravity
of the dise were theoretically investigated for different kinds of external
damping.

Some of the theoretical results are proved in a test apparatus.
A method is worked out to determine the K-value by means of an
oscilloscope. On the screen of the oscilloscope the trace of the disc
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centre could be seen and photographed. With the aid of this method
the following “critical” states were observed:

K = _%' ""L _%‘ _i'.' —}) —i" —115 -lr-]& T§~ +1 +2 ‘}‘3

The word “critical” is startling in an unnecessary way for the
designer of rotors. Most of these critical states are totally out of danger.
They are caused by the harmonics of the input torque and the shaft
deflection due to the harmonic is proportional to the amplitude of
the harmonic. Usually these amplitudes are small and so also are the
deflections. The main point is that a shaft deflection is unattended
by danger as long as the stresses in the shaft do not cause any resid-
ual displacements. Hence, the stresses ought to be below the yield
point of the shaft material.

The stability of the whirling was investigated both theoretically
and practically. In this connection it ought to be said that Diment-
berg [4] has shown theoretically that the whirling with K = |1 is
stable below a certain whirl velocity in the post-critical range (both
external and internal damping present). Then the gyroscopic effect
was neglected. Our tests showed, that in the sub-critical range any
other whirl may occur if the proper input torque is delivered to the
rotor.

Theoretical results show that at great internal damping the shaft
deflection is instable at a whirl just in the neighbourhood of the
critical speed. The influence of the gyroscopic action is considered.
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Preface

In earlier ‘works [6] and [7] the present author has treated the
problems of finding the critical states of a rotor. Thus only constant
values of the motor speed were discussed.

In this report the transition of a rotor through its critical speed is
treated. Mathematically this problem is of a complicated nature. The
digital computer Alwac I11 E was used and such a help was indeed
one of the essential requirements for succeeding in getting numerical
results of value for the designer.

I wish to thank the Swedish Technical Research Council for its
sponsorship and Professor B. .Jakobsson, the Head of the Institute of
Machine Elements at Chalmers University of Technology. Gothenburg,
for suggestions and a great deal of valuable comments.

Ingemar Fernlund

Tekn. lic.
Research Assistant at the
Institute of Machine Elements



Contents

Page

1 Introd uetion @ 2o st & ook e e s e B S G e e e e S 1 s 5

O INIOBABTOTRS 740y 05 50) st e oL PR sk Ao oo Aok sty S Ao SO Gal o 6
3. Basic Equations for the Motion of a One-Disc Rotor during Transi-

tion throngh 168 CUriticaleSPeet . des s o se oo eims daa e deats 8

4. Running through the Critical Speed with Uniform Acceleration . . 15

4,1. The Treatment of the Problem in Literature .. .. .. ... ... ... 15

4,2, The Treatment of the Problem in this Report . . . . . . . .. ... ... 16

4,3. Solution with Fresnel'sintegrals .. .. ... ... ... .. ....... 16

4,4. Solution with a Step by Step Method . . . . . . .. .. ... ....... 27

4.0 Shaftrwith-Damping =Nl SIS G Sl Sl v e S e S 30

48 The I rON e l0T TTPOTS s« e et st io: bais soe S fos e T Aot e ) s el are s oA 45
4,7. Photographic Study of the Behaviour of a Rotor During Transition of

the OriticaliBpead < i (i i sl i o 05 sEh sl sl s et ST 46

(e BT W L 1) 53 7 L e B e N et o P2 o G L s 48

4 S DAl aPELIONU =, R A L o e ties S ) e e s e e 52

493> ConchigionR i -miiin s SRS & ke & S a b vein s Sl 53

4,8. Experimental Investigation with the Aid of a Recorder . . . . . . ... 54

o ) o R A e A o ot 56

Lo By 4302154 (1) 0 RS R I R e e s Kt S e g e S 60

B8 OTICISIOIEB Vi s treras s @ o o S e e Tere S iy 4 T Sz e e 61

5. Running through the Critical Speed with Varying Acceleration . . 62
6. The Condition of a Rotor for being able to Pass through the Critical

SpeediwithoutiDeforming: <o o salinbia wiiaismist o aasinss 69

7. The Action of a Deflection Limiter .. . . ... .............. 71

7.X. Analysis-of the Steady State. .= . s doi v b v vn o & o0 v va 71

7,2. Analysis of an Aceelerated Rotor . . . . ... . ... ... ... ... .. 73

8. Experimental Investigation of a Deforming Shaft ... ........ 717
9. Comparison between Two Kinds of External Damping for a Rotor

Passig-its CritacaliSpeed-iv s oo d oo sl S Shtne e 82

3 K3 o001 0k 1 ) e SR e A s e R R S S S s 85

2 8 [ ) T R e U O Gl 0 o Ao 86



1. Introduction

A shaft which is operating beyond the first ordinary eritical speed
on starting or stopping must pass through this critical speed. This
gives rise to the problem of determining the stresses, essentially the
flexural stresses, of the shaft. In many machines the speed of the
motor is sub-critical because of the fear of designing a rotor which
passes through the critical speed and this fear has probably grown
from the lack of knowledge about the behaviour of the rotor when
passing the critical speed.

The present report gives some new results concerning the behaviour
of a rotor with one disc when passing its critical speed. and these
results may be of value for the designer of rotors.

In modern machines the shaft often runs in the post-critical range,
a so-called high-speed shaft. In design of these machines one has to
care for the stability.



2. Notation

A Reaction force in bearing
B Bearing line or reaction force in bearing
C(u) Frenel's integral
D* Non-dimensional damping coefficient
F Force
G Centre of gravity
1 Moment of inertia of a cross section
Iy Polar moment of inertia of a dise
K=" Ratio
Q
L Length
M Mass. Bending moment
M, Input torque
N Normal force in a deflection limiter
R Deflection of the centre of gravity
S Notation for shaft centre
S(u) Frenel’s integral
a Angular acceleration
ay Arbitrary constant
b, Arbitrary constant
05 Arbitrary constant
d Diameter of shaft
Eccentricity
Function
k Coefficient of external damping
k; Radius of gyration
ki Funetions
Lo
n R.p.m. of a motor
q Constant

r Deflection of shaft




v

0 on 8w

. dp
Variable or u = s

T
©

Angl = —

ngle or v I

(‘oordinate

Coordinate

(Coordinate

Radial clearance in a deflection limiter
Angle, Variable

rad
Angular velocity of whirling (l—a—)
S

Constant or
Influence number concerning displacements
Influence number concerning rotations

Constant

Constant

Non-dimensional deflection
Non-dimensional deflection

Constant or » = non-dimensional length

Non-dimensional angular acceleration

Coetficient of frietion

Variable or non-dimensional influence number concern-

ing displacements
Non-dimensional detlection
Stress

Non-dimensional “time”
“Whirl-angle”
“Shaft-angle”

d
Angular velocity of the shaft (ia—)
S



3. Basic Equations for the Motion of a One-Disc Rotor
during Transition Through its Critical Speed

Consider a circular shaft in two supports 4 and B with an unbal-
anced disc rotating with a variable angular velocity according to
fig. 8.1. The shaft is driven by a motor and the deflection of the
shaft is limited by a solid ring DL (Deflection Limiter). The coupling
(' is assumed not to be able to transmit anything but a torque and
the weight of it is negligible besides the weight of the disc. Further,
the mass of the shaft and the gyroscopic effect are neglected.

In fig. 8.1 the rotor is shown in a position when the three points
B, § and @ are in the same plane and from [7] it is known that B’
is the cross point between the centreline of the bearings and a vertical
plane perpendicular to it through the point S, 8 is the centre of the
shaft at the dise, and @ is the centre of gravity of the disec.

Thus, the deflection of the shaft is » = B’S and the eccentricity of
the disc is ¢ = SG. It is assumed that the deflections are small.

Part of the arrangement is shown projected at the y—z-plane in
fig. 9.1. Observe that the shaft is bent into two directions and its
deflections in these directions are r, and r, respectively.

y
Z Shaft giametersd
lae20) P — — o
Motor »\\\ == e r \_\‘“-“ Lz
SRR = 4 o
c A m. B



!

. M,]

 de2a J
Fig. 9.1.
Notations:
y,  The deflection of the shaft in the y-direction
z,  The deflection of the shaft in the z-direction
Y The position of the centre of gravity ¢ in the y-direction

The position of the centre of gravity G in the z-direction

9
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XL

L

Fig. 10.1

iy The coefficient of friction at the deflection limiter )L
d The diameter of the shaft

A Radial clearance in the deflection limiter DL
¢  “Whirl-angle”

w  Angle decided by the rotation of the motor
Elastic force in the shaft in the y-direction
K. Elastic force in the shaft in the z-direction
M, Torque in the shaft in the z-direction

N  Normal force at the deflection limiter DL
M,, Outer torque in the z-direction

M  Mass of the dise

I Polar moment of inertia of the disc

In fig. 10.1 the forces acting on the shaft in the x—y-plane are shown
and the notations are

A, Reaction foree in bearing 4 in the y-direction
B, Reaction force in bearing B in the y-direction
N, Normal force in the deflection limiter in the y-direction

¥y
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The equations for the movement of the disc are
My = K,—ky
Mi = K, —ki—Mg — §oeeeeeeneens 11.1
Iy = M +Kesiny—K.ecosy

Il

where I is a coefficient for external viscous damping. For the deflec-
tions of the shaft at the disc we have

r, = — (K, cos p+K_ sin p)ay — N,y
ry = (K,sin p—K_ cos @)y, —Naags

where o,,, 2, o, and a,, are influence numbers (See [6]). As a
matter of fact oy, # o, and oy, # %,.

Moreover, the forces N, and N, are projections of the forces N and
uN in the directions of r, and r, respectively.

For the outer torque M, we get

d d
M, ,—M +Kpz—K.y,—puyN (; - A) — (u4A4 + ugB) =0 11.3

where u, and ug are the coefficients of friction in the bearing 4 and
B respectively.

In this report only cases satisfying the condition o = o;; which
means that r, = r and r, — 0 are treated. Hence, the shaft is pre-
sumed to be rigid in a torsional point of view but it is still flexible
in bending.

Thus

N, =N
Ny = uyN }

and we also get

decos p=—Kyo,—Nyoe | L. 11.4
Asin ¢ = —K_ o,— N a,,
where
Ny= N(cos p—uysin ¢) | .. 11.5
N, = N(sin ¢-}uy cos 0)

We also have
Yy = —K,0— Ny, } ................ 11.6

-~ P— 4 IY
2 = —‘[\zau'—“& 20
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and from the egs 11.4, 11.5, and 11.6 we get
o
r—d4 -2
e e M I W 12.1
Zn G
%19

— Oy

Further, the eqs 11.6, 11.1 and 11.5 give

Yy = —(Mi+ky)ay, —N(cos p—puy sin p)ay, SN (-
2y = —(Mz+kz)ay,—N(sin p+py cos p)aye—Mgay,

o
(V]

and the last of the eqs 11.1, eq. 11.3, 11.5, and 11.6 give

5 I :
M, =1,y +a—[3/s+N(COS P— My SN @) ayy] 2 —
11

L N
— —[2,-+ N (sin ¢+ py cos @) ay,] y+
1
d d 9 ¢
T N(A i ;) 4 (u A + g B) R s B s 12.3
(Geometry gives

Y = Yy+ecosy = rcos pi-e cos y
z = z,+esin y = rsin p-l-esin y

From the eqs 12.2 is then obtained

r = y,co8 p+z,8in ¢ = —ay,[(Mj+4ky) cos p+
+(Mz4-kz2) sin p]—Noy,— Mga,, sin ¢

0 = y,sin p—z cos ¢ = —ay,[(Mj4ky)sin p—
—(Mz+kz) cos g+ uyNogy+ Mgoy, cos ¢

In the previous part

. A ~ d*yp : d*y .
r ] (m! w — ?ﬂ' 2 po— E e c-
In the following
d*p d*p d?y

D — — y ) = — y X ete.
H=0e




where
r (Observe that p and t are non-dimensional)
=z
= 8.t
Q2 :
T M %1

We introduce the non-dimensional coefficient of damping

k

D¥ = ;
MQ,

D] -

C ka“Q -

| -

where the case D* = 1 corresponds to the “usual” critical damping. If

e
& = —
k;
JIgaz“
e =
e
1, = MK;
a A
d¥ = —, A* = —
e ¢
.*3_4_ *:__,'B_ N* — N
MeQ2’ MeQ? MeQ:
M,
A"I; i m2
I, 2
we, as an example, get
e NA o
wyAd
C— pAxdE
1,97 Ha €

and the eqs 12.4 and 12.3 can be written, if 8 = (v —¢).
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f = —p+pg2+ysin 042 cos 6 —
x
— e N*—2D*(p— sin 8)— yg sin ¢
x
) " .14.1
P = —2p¢— cos 6412 sin § —

o
bl #Na_”N*_ 2D*(pg-+-4f) cos ) — ¢ cos ¢
11

ME = jte { p sin -+ N* [3‘—* sin 04

ST

-

a* o, d* l
+py 4%+ —— = (o4 cos O) | + — (nd*+ #nB*)’ 14.2
11 =

From the eq. 12.1 we obtain

p——2 . g%
S A, A e N D 14.3
Olay | %y 3
Oy Ao

Observe that N*=>0. If p< “1. 4% N* — 0,

LT

The reaction forces A* and B* can easily be obtained from the
equilibrium equations.




4. Running through the Critical Speed with Uniform
Acceleration

4.1. The Treatment of the Problem in Literature

F. M. Lewis [10] gave in 1932 an exact solution of the problem of
running a system having a single degree of freedom and linear damping
through its eritical speed from rest at a uniform acceleration. He
found an expression for the envelope in which the maximum ampli-
tudes are located. The result was plotted for various rates of accelera-

tion and for various dampings. In this solution integrals of the type
x

e cos b,¢ cos ¢,&dE  (ay, by, and ¢, are constants)
0

occur. It was pointed out that this integral cannot be reduced to any
functions which have been evaluated. He also remarked that when
a, = 0 the integral may be reduced to Fresnel’s integrals but he did
not treat the case. Here he gives the reason. “The so-called process
of contour integration gives a successful method of attack, and even
in the case of zero damping furnishes a simpler solution than the one
involving Fresnel's integrals”.

However, J. P. Ellington and H. Mc Callion in 1956 [5] presented
the solution for the acceleration from rest of an undamped linear
mass-spring system when subjected to an exciting force with constant
amplitude. They write: “However, this solution (Lewis’ solution) is
not easy to evaluate, the integrals involved demanding either graphical
construction and numerical integration or summation of series. The
purpose of the present note then is to show how a solution, in terms
of previously known functions, may be obtained for the undamped
vibrating system”.

These known functions were Fresnel's integrals as was already
pointed out by Lewis.

In our days the two methods of solutions are of the same class of
serviceableness because of the oceurrence of electronic computers.

Dimentherg published in 1961 the solution for the system having two
degrees of freedom [3]. (At that time most of the calculations in this
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report were already done at the electronic computer Alwac 111 E in
Gothenburg). The solution for this is easily obtained from the solution
of Lewis or Ellington Me Callion as can be seen in Sec. 4,3. Dimentbery
has plotted the maximum amplitude in a single case. (With the nota-
tions in this report he has » = 0,90 and 1 = 0,001.)

Finally, Dornig [4] has also treated the undamped case having a
single degree of freedom and Capello in [2] hints that the solution
can also be applied to an unbalanced disc rotating on a shaft.

4,2. The Treatment of the Problem in this Report

In this report two methods to solve the problem are used. The first
method is based on the treatment in [5] and is in its principal features
similar to Dimentberg’s solution. Because of the fact that this solution
makes it possible to reach some general conclusions concerning the
amplitude and that Dimentberg did not mention it, a presentation
is justified.

However, this solution is not used for getting numerical results.
The reason is that a lot of similar calculations of a cumbersome nature
ought to be calculated on an electronic computer for getting a correct
result in a rapid way. No computer with standard programmes for
Fresnel’s integrals were placed at the disposal of the institution.
Further, it seemed to be very difficult to perform such a programme
in a short time. Furthermore, the case of uniform acceleration is
a special case of the general case when the acceleration is arbitrary.
Because of the fact that this general case was also aimed at, and that
a solution in known funetions for this case can hardly be found, no
special programmes were needed to be done to get results for a uni-
form acceleration.

Instead the equations of Chapter 3 were used in a step by step
method. This method only demands programmes for the simple
functions sinz, cosx and | 2.

Finally, it ought to be mentioned that the influences of the gravity
force and the gyroscopic effects are not further studied.

4,3. Solution with Fresnel’s integrals

If no deflection limiter or damping exist the eqs 11.1 and 11.2 give

Moynj+y = ecosy
MopZ+z = esin y




L7

! 2
If p= —/- {=—and Q2 = one gets with = Q,t
e e Moy,
i+n — cos d? NG
7+ / . ¥ Observe jj = gt and { = 0 17.1
{4+ =siny dr® dz®

The initial conditions are based upon the fact that up to the initial
moment for the acceleration the centre of gravity of the dise per-
forms a circular movement with a constant angular velocity w, and
here also ¢ = v = wyt = »t. Thus, if »x# 1,

1
— * COS %T
1 — »?

n = Ay sin 74 B, cos 7+

-~

: 1 ;
= A,,8in 7By cos 7 o sin %t
A

i

The solution contains two complementary solutions. The deflection
from these solutions is consequently assumed to be zero. Thus

1 : =
= ——— COB XT = S sin %t
1 — 2 1 — 52
o L "
{ =——'8in %z 6= COS =T
1 — a? 1 —o

At xt = s - 21, where s is an integer, we get

}7:

2

1 I i=0
1 —

C—_:‘

and at this very moment the acceleration begins. If

a2y

—=a ,lzw / 2/

dtz ;lgz |Z[ == _)/.

dy

22 SR R A : f d ‘

= at - w, we get ,lw,=¢=2).r+x
dr

at? A
‘//:T;‘f‘c')o‘ v = Ait>+ xt
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a
where 1 =

20t
Insertion into the eq. 17.1 gives

fi+n = cos (At*+ m)}
¢+4-¢ = sin (A1 x7)

According to Kamke [8] the solution is

T
n = Ay, sin 1+ B,, cos 1+ f cos (Ax®+ xx) sin (1—x)dx
0
T
{ = A,, sin 1+ B,, cos T+ f sin (422 xx) sin (r—x)dx
0

The boundary conditions 17.3 give

Alz =0 Bm T

and consequently

1 <
n= ~CO8 T + [ cos (Ax?+ =) sin (t—x)dx I
1—a H

z . g . . .
,sint 4 f sin (L4 xx) sin (t—a)da
—x
0

The integrals can be split up into Fresnel’s integrals. Tf

;7
e — f €08 (a4 xx) sin (t—a)dr =
0

T T
=sint j cos (la?+ xx) cos & da—cos rf cos (Aw® -+ ) sin xdx
0 0

T
I, = / cos (Ax2-+ xa) cos x dx
0




Ligr= / cos (Aa*+-2w) sin @ dx

Iy — j sin (Aa? -+ xx) sin (r—a)dx =
0

=sinTt f sin (Ax?- ) cosxdx—cosrf sin (Az2+- ) sin @ dx
0 0

T
I, = _/ sin (A2 | xx) cos x dx
0

T
I, = [ sin (Ja*+ xa) sin @ da

0
we may write with o; = (%-+1) and «, = (%x—1) that

T T

2Ly = / cos (zat-+ oya)da+ f cos (Aa® -+ o) da
0 o

) R j sin (A + oa)dae — .[E sin (Aa?+ o,x)de
0 0

2l = f sin (Ax*+ oya)da+ jE sin (Ax?+ oa)da
0 0

2l = — fcos (a2 azloc)dx—{—fr cos (Ax? |- a,x) da
0 0

Only two basic types of integrals occur, viz.

I, = [cos (-t qx)dx

0
T
I;; = [ sin (A2*+azx)de
0

Substitute
w=q(0+1%)
o
g = —=
Vi
x
0 =—
o

19
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Then
s 2 LazﬁL Jo & [ix\? @ Iz
=t — A — = — | — e
iy Ao i Aot / o VR
3021 0) [ (04 1\2 1 o (¥ & 1 o i
= q¥021-0) = q N e -] ——|=v— =
1 1 2 4 4 q 4 +
Further

4 I 2]
d;x::-?-d():fx-d . l::-duza—'a-du:
A 2| A J

|
S

1 “(.a) 2
I, = Vi [ sin(uz—%)du

where

‘T 1 q (. : o 1 A o
“«(“)=‘I ; T:'z' = ;(/.T fj)z W(/.T-f- :;)

Now we may write

1 [ a2 II(.a) a2 " (‘a) l
I, = ——Jcos— [ cosutdu + sin— [ sinu?du; =
T, 1], ety

- V{;{[c (u(2) — C(qf)] cos’y + [S Ly ("f")]smi];}

and in a similar manner
)] cos Z; = I:(‘ (‘ll. (1)) = (%):l sin %-}

{

=

1 |
In = =118 (u(a)) — S(
11 l/l-.l[ u (o




where Fresnel's integrals are defined as

- /; 1 cosu* 1 sin u?
S(u) = f sin a%dx ~ —_— :
/ S 2

- " 4 u®
and
. s z . 1 sinud 1 ocosu?
Olw) = | opsaddess S o v ——— e
3 ST w + ud

The series are valid for large arguments.

These functions have been computed, see for instance [12]. and the
primary problem is solved.

Now we turn to a special case. Assuming that the shaft is started
from rest, we have » = 0, o = 1, and «, = — 1. This will give

1 |
2li=ILi (a=1)+ I; (e =—1)= ’V}”{lc (uy) + € (uy)] cos Y

4

.

\ \J 3 1 l
+ [ () + S (uy)] sin _'J

1 I
2, =1 (a=1)—Iy(a=—1)= W{IS () — S (uy)] (’051‘; =

[C (n,) C (u,)] si ] 28 2 1—[—’00 -
1 2 17 V) cos p ]/l sin — 7

1 1
2y =1y la=1)+Iy(a=—1)= W {[S (wy) + S (uy)] Cosa =

— [C (u;) + C (uy)] sin III}

2, = — I (a=1)+ I, (a=—1)= ——-{[ (%) + € (uy)] cos I—;

+ [— S (u) + S ( )]sini+ 20 e cos—l—Jﬁ 28 3 Sin — :
iR = 4lul/l 4. ‘-']; 4/

1 1 1 1
where w;, = —— (11 + 5 and #3 = — (it — ~). When 7500
Vi 2 V4 2

/
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P

S(u;) = S(uy) = C(uy) = C(u,) = ]/Zz and if A is a small number
8

()1

Thus
1 1 1 |
L =—- |{Z — -
1 7 / (cos Y} -+ sin ;
- 1 = Ligy o
s = —= —|—cos— -} sin—
L Va 8 cos4i 2
s |
G 17 1 1
I =— /" €08 — — sin—
21 VA = ( ] SIn 4/)
s 1
Iyy=—. /_ cos— - sin-—
i Va ¥ ( / * 4).) |
From eq. 18.1 we have
n=cost+4I,;sint—/J,co8t 50
&= I, sint—1I,,cost
and from here, if 7;; >1 (i,j = 1, 2).
‘RT 3 2 Y &
(7) =+ 2= (I}, + I}) sin*r + (1%, + I3,) cos® 7 —
— (I 14y + Iy Iy) sin 2¢
Insertion of the eqs 22.1 gives
e _[]/;‘ ...................... 22.3
¢ 22

The eqs 22.1, 22.2, and 22.3 say that a disc started from rest and
accelerated with a constant, rather slow angular acceleration at
infinitely high speed whirls with its natural frequency with a constant
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Fig. 23.1

deflection of the centre of gravity. This does not seem to have been
mentioned earlier.
It can be shown that if 2<<0 and x> 1 the eq. 22.3 still holds as

R
a limiting value of —if 1 is changed to IAI
e

From fig. 23.1
Ve =ty

|1’G:¢

Thus while ¢ moves around B on a circle of radius R with the nat-
ural angular velocity €, the point § whirls around G on a circle of
radius ¢ and with the forced angular velocity af. Further

()=l

and hence
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and thus

11/7 =
[21+82(—1 g I/;)]SM?,‘, g[ﬂ. 3 e’(l--i~ l)l/f)]
&V A P /.

If the acceleration is broken at the “time” t — r_ and then the
shaft is driven so that it maintains J = %, = const. in the following,
we get

n = A, sin 4By, cos -+ COS %7

1
T

~=

= Ay sin 7+ By, cos 74 sin 2,7

(g

1— %

5

The constants A,;, B;, A, and B,, may be determined from the
boundary conditions

T=r1, A=y N =1,
g"" s C:CJ

However, the deflections due to the complementary solutions in
practice may vanish because of external damping and then only the
deflection due to the particular solutions remains. Thus

: Il—zs[

If %—>c0, R—0.
The case x — », = 1 has the particular solutions

sin v

=
I
[SCREE

U
I

=GOS T
2

The following always apply

7 = p COS p-cos y
{ = psin ¢-|sin v




R

and from here

. > » Tri T
psin @ = gsiny—{ cos y = (—)sm’r-}— 700321) ==

Further fig. 25.1 gives

From eq. 25

and

sin v =

.2 we get

T

|

psin (m—g) psin @

L

s e et



Fig. 26.1

The position of the centre of gravity in this case is shown in fig. 26.1.
The “torque” demanded is from eq. 14.2

T
M= s’psin():e’-;............ 26.2

This “torque” is just enough to keep the shaft moving with the
natural angular velocity. The expression 26.2 is derived by Biezeno-
Grammel [1]. Tt is also indicated that if, at an increasing deflection,

amk
dt

52
s,
2

the shaft leaves its critical position. The case, however, is hardly
taken from practice. See more about this in [7] and Chapter 6 in
this report.
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In a previous example a very slow acceleration was considered. On
the contrary an infinitely rapid acceleration started from rest gives

the deflections
= COST

(=0
and hence

T an
— = COS T
e

Tt means that the shaft deflection varies between zero and 2e.

4.4. Solution with a Step by Step Method
The eqs 14.1 can be written (y; = 0)

j =—p (1—¢2) -+ sin 02 cos 6 — H2 , N%_2D*(j— sin )

— T (pp+y cos 0)
p

Gn
2p¢ i = 1 o
P=— s A zcos 0+ —lll—sin O—— gy — N¥—
P P P P %y
2*

The boundary conditions are

22
t=0 p=po=7—07( ¢=0 v=0

| 1—22|

ﬁ — 0 (i’ =% lp = X
p=0 ¢ =22

The uniform acceleration means that
v = A+ =Ty, (wy, = const.)
Now introduce the notations
p =% P=1v
and the eqs 27.1 can be written

i = fi(p,u, 0, v, 7) }
v = faolp, u, 8. v, 1)

= =
I

(3]
~

(=]

o
~1
o

27.2
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Further, we approximately have

du kg,
a4t Vits
Ay &
==
dr 4t

At 7 = 7, then u = uy, v = vy, p = p,, and 0 = 6. Thus

At

then

At

then

kow = At f1 (po, 1y 84, ¥y, Tp) }
koo = At f3 (o, gy By, Vo, To)

T =1= (%" 41)

Uy = Ug+4 - k()u
v = v+ ko,
1 uo+ Uy

A = Po+;‘ At - = pot —(u‘,-L %)

Vo1 U
2

1
?1 = Qo1 5 At - = (”o'i“ (”o + o)

ki = 4t fi(pr, wy, 0y, 0y, 7y)

klv = A'Z' l2(ph uls 013 vb T],)
T =1, = (19+3% " 47)

Uy = Ug+3 - Ky,
vy = vyt+3% - ky,

Az

P2 = pot T (g + )
At

Ys = ot i (¥ + vy)

kg = Atf\(ps, U, Oy, v, 1,)

kyy = dAtfy(ps, Us, Os, Vg, Ty)
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At
T =13 = (10t 47)
then
Uy = g+t Kau
vy = Votka
ar
pPs = Pot ‘4— (g - u3)
4T l
03 = ¢ot 7z (vy + v3)
kgu = Atfy(ps, Us, Os, Vs, Ty)
kyy = Atfs(pa; Us, Os, vs, T5)
At
T = 14= (to+47)
then

Uy = 'lto—F &(k0u+2l‘.lu+2}"2u+k3u)

vy = Vot $(kopt 2ky,+ 2k, +ks,)

At . ’
pr = Pot 12 (g+ By + 4yt Bug+-u,)

“

Vikd
Py = Pot 12 (vo-+ 30, +4vy+3vs+2,)

kg = dtfi(py wys 04 V4, T4)

ki = Atfa(ps, was 04, Py, Ta)

The values w,, vy, Ps @1 ky» and ky, are the final values at the
“time” 7 = (1o 4t). Then these values represent the values with
indices zero for the new step where (r,-b A1) <t<(ry+247). If we
start with 7, = 0, uy = 0 9, = #. p = p,, and 0 = @, according to the
boundary conditions we can calculate all wanted quantities over a
certain time by this step by step method which is a modified Runge
method [9].

The values of p, and @, for different values of x and D* can be
found in the tabs 26.1 and 27.1 in [7].

About the truncation error see Sec. 4,6,
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4,5. Shaft with Damping

For the shaft without friction and damping two solutions are pro-
posed, the exact solution and the numerical step by step solution.
From the exact solution some general conclusions were made, namely

B, 1 /7:
T‘Eli

MY = 2)+¢psin

(%V%“)S”S(Tj@“)

at infinitely high speed when the shaft is slowly accelerated from rest.
The exact solution was not used to get other results. With the aid
of the step by step method some cases with different values of the
parameters 4, x and D* were calculated. The figs on page 31 up to
page 42 show p as a function of . In some figures the straight line
R 17/n
== 7]/; is also marked for comparison. It is seen that this line
e 272
very well fit to a mean line for cases with x small enough.

: ; g 1— =
The time t* at which y = 1 is ¥ =

2
Cases with a uniform deceleration are also treated. After a time

7
=5

It is remarkable that a very rapid braking hardly changes the deflec-
tion of the shaft.

The reader may orientate himself quickly in the diagrams by re-
membering that

1) Each diagram has the same A-value.

2) There are three D*-values which correspond to every x.

3) Accelerations have >0 and decelerations 1<C0. In the diagrams
the time-direction is indicated by an arrow.

4) The p-curve for 1 = 0 is also drawn for comparison.

In the figs. 43.1 and 44.1 the variation of ¢ is shown for different
values of the damping D* at the values A = 0,001, % = 0,90 and
A= —0,001, % — 1,25 respectively. They show that the whirling
speed ¢ “fastens” at the critical speed at small values of the external
damping.

Th = i = 0 and the diagrams are finished there.
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4.6. The Truncation Error

By using the method outlined in Sec. 4,4 for solving the differential
equations in 27.1 we get after each step an error due to the extrapola-
tion. It is impractical to try to correct for this error after each step
in automatic work. However, it is a matter of fact that the error
from this source, if uncorrected, tends to grow and accumulate as
the solution proceeds. After considerable time the accuracy of any
significant figure of the numerical solution might be impaired.

Furthermore, the truncation error does not represent the only
source of uncertainty concerning the correctness of the solution. By
using a digital computer with a limited capacity there also occurs an
accidental error due to the necessity of rounding-off the numbers. It
will be pointed out that the truncation error is systematic in nature.

These two kinds of errors co-exist and interact and they will con-
spire to affect the precision of the solution adversely.

There exists a general method [9] which can be used for following
the accumulation of error in numerical solutions of differential equa-
tions. This method is, however, hardly suitable for our complicated
equations. Instead of using this method some simple calculations were
made. In our cases we only wanted to investigate, as an example, the
function p over a limited range of the running coordinate z. The
conditions at T = 0 are known and we want to know the variation
of p over the range in r. For practical purpose two decimals in p are
enough and by trying different values of At a value of At could be
determined which at least gave the wanted accuracy. The value of p of
course varied with the value of 4 but on the whole the calculations
were carried out with 4y x 1 radian. By a calculation with 4 = 0,
% = 0,90, and D} — 0,01 the value of p decreased from 4,244158 to
4,244151 after 40 steps with 4r = 1. In the most cumbersome cases
the machine had to compute 350 steps.

It was also possible to compare with the two cases treated by
Dimentberg [3]. In the first case he has x = 0,90, 1 = 0,001, D* = 0
and he got the maximum deflection of the centre of gravity G R, =
33,9 e at ) — 1,09 (this is seen from a diagram). The calculations with
the step by step method gave with 4t = 1 that R, = 32,88¢ at
Y = 1,006 (interpolated values). Dimentberg also gives results for
another damping coefficient D* = 0,0106 and he got R, = 20,7¢
at = 1,075 (from a diagram). The corresponding values with the
step by step method are (4t = 1) R, — 22,58¢ at iy = 1,084
(interpolated values).
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The values from the digital computer are shown in the tabs 46.1

and 46.2.

A=10,001

‘ =z=10,90 D* =000
|lb 0 0 (rad) L
e
1,0700 30,2223 2,25840 29,60
1,0800 32,0507 | 2,56702 31,22
1,0900 33,1438 2,01278 32,17 ‘
1,1000 | 33.2233 [ 3,30234 32,23 J
1,1100 32,1322 | 3.74609 31,32 i
5 SN i e 0 ol W el
Tab. 46.1
‘ 2=0.,001 %=10,00 D*—=0,01
V4
J/ 0 f (rad) = '
e !
\
— | e _—= —— [
1,0700 ‘ 22,7276 2.30375 22,07 ‘
1,0800 | 23,3710 2,58755 22,50
1,0900 23,3000 2,00238 22,82 [
1,1000 22,362 3,25344 21,35
o, B e g e L3 plTE e g |
Tab. 46.2

It ought to be mentioned that the calculations in the present report
had not been carried out if a digital computer had not been at our
disposal. For computing one step by hand about 16 hours was needed
and the machine only needed 40 seconds for the same procedure.

4,7. Photographic Study of the Behaviour of a Rotor During Tran-
sition of the Critical Speed

Several questions arise in connection with the behaviour of a rotor
when it passes its critical speed.
What is the phase-angle relation during the acceleration (retarda-

tion)?

How does the damping influence this relation?
How does the damping influence on the deflections?
How great is the damping in a practical case?




Fig. 47.1
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These questions are answered to some degree by the results from
the theoretical study in the preceding chapters. However, the theoret-
ical results are of no practical interest if the rotor in practice does
not behave in the way predicted. In order to check the theory some
experiments were done with the equipment and instrumentation
shown in fig. 47.1.

An A.C. motor (A) with a variator turned a 15 mm circular shaft
(B). The free end of the shaft carried an unbalanced disc (D). The
deflection of the shaft was limited by a collar (C).

The lower side of the disc was painted black and the centre of the
shaft (S) was marked by a yellow point. The position of the point S
at rest was shown by two thin steel wires painted in a yellow colour
in right angles to each other. The carrier of these wires (E) can be
seen in fig. 47.1. From the point S a scribed line showed the angular
position of the centre of gravity (G) of the disc. The loci of the point S
was observed by light reflected from the point S and the steel wires and
then the position of the point G could be determined with the aid of
the scribed line and the known value of the eccentricity e of the disc.

In an optical way the deflection of the shaft was magnified by a
magnifying glass (F) and after a reflection in a mirror (H) the course
was filmed by a “slow motion camera” (K). The camera took approx.
3000 photos per second.

At first the camera was calibrated by running the shaft at a con-
stant speed. Then both accelerations and decelerations through the
critical speed of the rotor were filmed.

With the aid of a film reading device then all wanted quantities
during the course could be obtained.

4,71. Acceleration

In order to analyze the course at acceleration through the critical
speed the shaft was driven at a uniform sub-critical speed. Then the
camera was started and after one second the rotor was accelerated
for four seconds by changing the position of a knob on the variator.
During the acceleration the rotor passed its critical speed. Because
of this manual operation the acceleration was not uniform.

The critical speed of the rotor was 1158 r.p.m. and the tests were
started at 800 r.p.m. and 900 r.p.m. Four films were taken. Because
of the cumbersome evaluation of the films only one of these was sub-
jected to a close examination. In this the shaft deflection » and the
phase angle shaft 6 were determined. Three pieces of the film are
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Sub-critical constant speed (6=0°) (11 —14).
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Post-critical speeds just above the eritical speed (62 907) (21 —28).
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Post-critical constant speed (8= 180°) (31— 34).
Fig. 49.1

shown in fig. 49.1. The results are also shown in the figs 50.1 and 51.1.
In these figures also theoretical results are drawn for a mean value of
the acceleration.
Further, calculations were carried out for different values of the
damping factor D*,
4
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4,72, Deceleration

When filming the course during deceleration through the critical
speed the motor at first turned the shaft at a uniform post-critical
speed. The camera was started and after one second the rotor was
manually decelerated through its critical speed. At the test described
here the initial value of the speed of the shaft was 1300 r.p.m. From
the film the shaft deflection and the phase angle shift 6 were deter-
mined and the results are shown in the figs 52.1 and 53.1.

The theoretical curves with different values of the damping are
calculated for the mean value of the deceleration.




53

300 .
A=-0000345
90 2= 1123
200 =
020,000
.~ Dm0
v~ D001
150
100
50 it 2
)Q‘-W 2
+*
0 4
0 100 200 | 300 400* 500
T
Fig. 53.1

As as curiosity a curve with a faulty assumption concerning the
start angle 0 is shown. At a constant post-critical speed 0 — 7 always
at zero damping but in fig. 52.1 it is also calculated for the case 8 = 0.
After some violent vibrations the shaft takes a form similar to the

correct one.

The test curve also shows such vibrations of small amplitude.

4,73, Conclusions

For practical reasons the tests could not be made with absolutely
constant acceleration. In the acceleration tests the 1-value was con-
trolled by hand but in the deceleration tests with the aid of an electri-
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cally controlled brake. Thus the accuracy in a comparison between
test and theory ought to be better in the braking tests and that has
also happened.

In fig. 50.1 can be seen that at the start the shaft was disturbed
by a secondary critical speed. This and the non-uniform acceleration
cooperate to disturb this test. The results are therefore more of a
qualitative nature.

Concerning the D*-value it ought to be emphasized that in the
test apparatus both external and internal damping were present.
Further, the disc also gave rise to gyroscopic moments. The theory
does not consider internal damping or gyroscopic moments.

It has been shown in [7] that the sum of the external and internal
damping coefficients occurs in the differential equations for the motion
of the disc. The internal damping, however, also occurs in another
term. Because the tests show stable motion (limited deflections) at
post-critical speeds one can, as a first approximation, neglect the
action of this “internal-damping-term” besides the “sum-term”.

As a matter of fact it was shown in [7] that the “sum-term” always
causes stable motion if the “internal-damping-term™ is not present.
On the contrary, if the amount from external damping in the “sum-
term” is zero the rotor is unstable at all post-critical whirl speeds.
We can therefore, from the braking tests, conclude that (D*-4 D¥)~
(0,010-0,015).

The great advantage of these tests was that it was possible to
follow visibly the change of @ and » when the shaft passed its critical
speed as the fig. 49.1 shows.

4,8. Experimental Investigation with the Aid of a Recorder

The apparatus shown in fig. 64.2 of [7] was also used for studying
the behaviour of the rotor during transition through its critical speed.
The electric signals from the capacitive pick-ups in fig. 64.3 of [7]
were, after amplifying, rectified and led to a recorder. On the graph
was written, besides the deflections of the disc in two directions
perpendicular to each other, the speed of the motor and the torque
delivered from the motor. The place where the torque was measured
can be seen in the fig. 64.2 of [7].

Tests were carried out for both acceleration and deceleration through
the critical speed. The shaft was turned by a D.C.motor. The speed
of the motor was changed manually during the acceleration tests.
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The aim was to get a constant acceleration. During the deceleration
tests a brake caused a practically constant deceleration.

Here one of the acceleration tests and two of the deceleration tests
are accounted for.

A hinged-hinged-free shaft was used (See figure on page 218 of [6])
and », = 0,80, The ordinary critical speed was 1090 r.p.m. The
eccentricity of the disc was 0,13 mm.

4 81. Acceleration

In one test the rotor was accelerated from 817 r.p.m. Thus

817
R = 0,75. The graph from this test is shown in fig. 55.1.
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From the graph in which the deflections of the disc centre were regis-
tered in two directions perpendicular to each other the p-values
could be evaluated at different times and they are plotted in fig. 56.1.
In this figure also theoretical curves for . = 0,0011 are drawn for
some values of the damping factor D*. The i-value can be obtained
from the test in two different manners. One possibility is to use the
expression
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and take M, from the test. (M, is the torque delivered from the
motor). The motor did not give a constant torque. Here is the mean
torque estimated. The two methods did not give exactly the same
value. From eq. 58.2 the A-value 0,0010 was calculated. The eq. 58.3
gave a higher value, viz. 4 = 0,0011. Curves are only drawn for the
higher value of 4.
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4,82, Deceleration

Fig. 60.1

The deceleration tests could be done more accurately than the
acceleration tests because the brake gave a very uniform deceleration.
Two adjustments of the brake were used. The formulas 58.2 and 58.3
are still applicable for determining the i-value.

In the first test the graph in fig. 57.1 was obtained and in fig. 58.1
the p-values are plotted against the time. In the last figure also theo-

T
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retical curves are drawn for = 4 —0,00125 which is a representative
value for this test. Calculations are carried out for some values of the
damping factor D*. Before braking the shaft was turned at 1537 r.p.m.
1537
1090

The second test gave a graph shown in fig. 59.1 and the p-values
are plotted in fig. 60.1. Theoretical curves are here drawn for 1 =
—0,00645. In this test x = 1,50,

which gives » =

b

4,83, Conclusions

Also in the tests registered by a recorder the disturbance from
secondary critical speeds (or speed) is obvious. Concerning the external
and internal damping during the tests the same circumstances as
mentioned in Sec. 4,73 were valid.



5. Running through the Critical Speed with
Varying Acceleration

From eq. 14.2 we get (if N* = u, — u, — 0) for a rotor with one
dise
My =y+epsin€ ...oooovnvn..... 62.1

In our test machines || >0,69 - 1073, &2 = 106, and p< 50. Thus
ep<) and this probably also holds for most machines in practice,
Often the torque-speed-curve for a motor is known. As an example,
the induction motor often has a torque-speed curve according to fig.
63.1.

One consequently can say that this curve also represents the varia-
tion in 4 during the acceleration from the practical point of view.
Thus the M —n-curves are by changing scales also the i—i-curve
(y = 24). In order to elucidate what happens at such a varying
acceleration some numerical results are presented. Four cases were
computed with the assumption that the motor had a M —n-curve as
in fig. 63.2,

If 0<<n<n, M is constant
ny,<n=1,25 n, M is linearly decreasing.

This can also be expressed as
0<f<ify, ) = Ao(= const.)
¢1S¢SI-25 ‘»{’1 /. Ao(5 '1’1“4‘1’)*[’;1

|

The programme for the digital computer was written in such a way
that it could handle varying 2. Moreover, the i-value was permitted
to vary arbitrarily. In the step by step method this is easily done.
During each step the i-value was constant but it varied from one
step to another.

The properties of the four cases treated are collected in tab. 68.1.
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Case A » ‘ D* l//,

2 0,001 0,50 0,01 1,00

|
| ol 0,50 ‘ 0,01 LUNTES

0,01 150 (at ppgs)

| 3 001 0,50

1 | oo | 0,50 0,01 1,05 (8t omax)

Tab. 65.1

In the first two cases values are taken from previous calculations
in Chapter 4 up to iy = 0,98 and ) = 1,00 respectively. (In case 1
Yy = 1 was also wanted but initial values were available only for
Y = 0,08 or ) — 1,02,

In the last two cases the acceleration decrease enters at maximum
shatt detlection.

The results from the calculations are shown in the figs 64.1, 65.1,
66.1, and 67.1.

For comparison the curves with constant 2 — /, are also drawn.

We see that in the cases 3 and 4 the maximum shaft deflection is
the same as if A has had the value /, all the time.

However, in the cases 1 and 2 the shaft deflection is somewhat
higher due to the falling i-value. In case 1 the increase is 11,3 per
cent and in case 2 the corresponding value is 2,2 per cent. It ought
to be mentioned that in case 1 the value 7, = 0,010 means a very
rapid acceleration.

The conclusion is obvious. In most machines the decreasing torque
from the motor after passing the critical speed hardly influences the
maximum shaft deflection.




6. The Condition of a Rotor for being Able to Pass
trough the Critical Speed without Deforming

The problem of finding a eriterium when a machine will pass or not
pass its critical speed is old. Tt was treated by Biezeno and Grammel
1939, [1]. From their book is quoted: ,Um die Maschinen iiber den
gefiahrlichen Bereicht hinwegzubringen, muss in der Umgebung von
w, das Antriebsmoment M;, mindestens mit der Geschwindigkeit

dM, 1 _
T = = M ol s 69.1
(44 -

gesteigert werden”.

The expression 69.1 was also derived in [7] with the assumption
that the speed of the rotor was €, and by some means the deflection
of the shaft was limited to a finite value. Then this deflection limiter
was vanished and in order to keep the shaft at the critical state with
K = -+1 the input torque must be as in eq. 69.1.

Because of the fact that the condition is derived with the assump-
tion A = 0 it can only be applied to this case. From the eq. 62.1 we
get

U= 2i=ME—psind
If M¥ is small we get large deflections in the neighbourhood of the
critical speed if the external damping is small. Consequently
decreases because the shaft transforms part of the input energy to
potential energy in bending. Thus the condition of Biezeno and Gram-
mel only holds if M is of the same size as ¢p. For other cases, and
they indeed are in overwhelming majority, that condition is mis-

M,

leading because it also states that

must be positive. 1t may well
dM;

be that —=
dn

< 0 and still the rotor passes its critical speed. This

happens if (M%—e2psin 0)>0 and the stresses of the shaft can be
allowed. The condition for a shaft for passing its critical speed ought
therefore be formulated:
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A shaft can run through its critical speed without danger if the
maximum deflection does not create plastic deformation of the shaft.
This general rule ought to be drawn up in more conerete terms for
convenience in design work. Suppose that in a piece of machinery all
geometrical data and the M —n-curve are known. At first we calculate
the eritical speed .. The “mean” value of A can be calculated from

the expression
An =5 IMZ)‘Z (if 62ppax € M which must be rechecked at

21, o

the end of the calculation)

where M, ., <M, <M,,. it n.<n; in fig. 63.1 (An analogous dis-
cussion can be made for other types of M —n-curves).

Then the maximum shaft detlection at the disc during the accelera-
tion through the critical speed can he taken from the curves in
Sec. 4,5, If the actual values could not be found there the following
approximate formula can give some help:

11/x
(/)mu.\') dise < 1,2 (E ]//I )

This formula gives values, fair enough for practical purposes, if
#<1 and 2<C0,010. (At deceleration through the critical speed the
A-value is practically constant and one gets

M,,

21, o?

where M,, is the braking torque. Then the computation is the same
as for acceleration). When p,,. has been calculated the corresponding
maximum bending stress of the shaft can be expressed with the aid
of the eccentricity. Thus, if the force at the disc is #, we get

P o— g . Pmax)aise
(%p) gise

and the maximum bending moment can be written

(i'ul:)mn.\‘ o F‘[/M AL (/)Lt)di“ X IJM
(%F) dise
where L, is a length characteristic for the kind of support. With the
aid of a proper strength theory (for steel the maximum strain energy
theory or the maximum shear theory [11]) the maximum allowable
value of ¢ can be determined.

In Chapter 8 an actual case is treated.



7. The Action of a Deflection Limiter

It is of great practical interest to know the properties of a deflection
limiter of the type shown in fig. 8.1. At first the case with constant
speed and K — |1 is studied and then the case with acceleration.
The presumptions for the arrangement are accounted for in Chapter 3.

7.1. Analysis of the Steady State
Consider the case in fig. 8.1, where the shaft whirls with an angular

rad =
velocity € and the shaft rotates with the same velocity (K = |- 1),
S

Tt is assumed that no external or internal damping exist and the
deflection limiter cannot cause any tangential forces.
From the eqs 14.1 and 14.3 the following is obtained

)
0 = —phpbpti— 22
¥
i ;
= A-#
; %12 Uy
Nt = = —
g2 I %y
LAV

The upper sign is valid when 6 — 0 and the lower one when 0 = 7.
From these equations p and N* ecan he solved and the result is

£ 2
4% 32 el — 22
C'_vz L.:né'z’
= T
ja 12
1—yj2(1——
tnbag

y kEI . . :
where &;; = o;; * ——(k is an arbitrary constant).

'l I3
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(89)

If 6 = 0 the eqs 71.1 are only valid if N*>0 which means

| 1
Ly Ca | l e
&n 4* Enéas

and if § — 7 a corresponding condition can be determined.
2
If N* =0 we of course get p —

=
L

. - Now a special case is

treated for elucidating the properties of the deflection limiter. Con-
sider the rotor in fig. 8.1, in which 2, — 0,50, 2, = 0,10, and 4% —
3,55, For example, with the aid of the influence numbers on page

215 in [6] we get.

0 =0
25,028643 |2
Al 3,086896—)2
—3,0868906-3,344281)%
N* — 27,301970 - ' T3, 4
3,086896—®
0,960748 <) <<1,756956
and
" =
25,028643— )2
,) —

3,086896— 2

— 3,086896 |- 2,820511 2
N* = 27 391970 - o
3.086896— )2

10444923 <1 756956

The p-curves are shown in fig. 74.1. Observe that if a curve has the
“label” BSG it means that on the straight line BSG the centre of
gravity G lies outside the shaft S and the bearing B, If the “label”
is BGS the centre of gravity is between B and S. It can also be seen
that if the shaft “deflection” p is greater than 12 the shaft has con-

taet with the deflection limiter. Further, if
1,04449200) < 1,756956

the shaft has three possibilities to come into equilibrium, viz.




1) N*=0; ¢ outside B and S
2) N*>0; Gbetween Band 8 } .......... 73.1
3) N*=0; G between B and S

It can also be concluded that the deflection limiter without friction
needs external help to reach the lower curve 3) and in that way
justify its name. If the rotor is not disturbed the deflection limiter
just moves the critical speed to a higher value.

The N*-curves are drawn in fig. 75.1. An interesting thing is that
opposed to the rotor without a deflection limiter in this case we get
that the “BSG-curves” and “BGS-curves” are valid mainly over the
same range of the speed. Another thing worth mentioning is that
above the speed Jy = 1,756956 the rotor cannot have contact with
the deflection limiter.

7,2. Analysis of an Accelerated Rotor

In Sec. 7,1 a special rotor was investigated with respect to the
steady state. It was also obtained that the rotor within a special
range of the motor speed could take different positions of equilibrium.
The case is only theoretical because the absence of friction in the
deflection limiter. An important task is to investigate if this friction
can force the shaft to take the lower enrve 3) in 74.1 after an accelera-
tion through the critical speed. This might be the necessary disturbing
factor mentioned in the previous section.

Therefore, the example was further treated. The shaft was supposed
to be accelerated with 2 = 0,001 from x = 0,90.The external damp-
ing factor D* had the value 0,01 which is a “practical” value from
the tests in Chapter 4.

Three different values of the coefficient of friction were used, viz.
iy = 0, 0,10, and 0,50. The p- and N*-curves are shown in the figs
74.1 and 75.1. If uy = 0 we get p,... = 54,1 and if no deflection limiter
had been present fig. 31.1 gives p,.. = 23,5. Thus the deflection
limiter here serves as a “deflection amplifier”.

We can consequently make the statement, that the main property
of a deflection limiter must be the capability of introducing tangential
forces to the whirling of the rotor. From this also follows that the
deflection limiter must not necessarily be placed close to the disc.
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In fig. 76.1 the velocity of the whirling is shown. From this figure
and fig. 74.1 it follows that greater variations in ¢ give smaller p-
values which agrees with the statement above. When the shaft has
left. the deflection limiter after the acceleration through the critical
speed it whirls roughly with the critical speed (¢~ 1). After a long
enough time ¢ may coincide with i if the rotor is kept with a constant
speed after the acceleration. See more about this matter on page 24,
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8. Experimental Investigation of a Deforming Shaft

In previous parts of the present report the condition for a rotor for
being able to pass its critical speed and the action of a deflection
limiter have been treated. Here some tests concerning these matters
are accounted for. The test apparatus in the figs 64.2, 64.3 and 64.4
in [7] was used with a vertical hinged-hinged shaft with #, = 0.20 and
x, = 0,16 (See Chapter 14 in [6]). Other data were: M = 9,87kg, [, =
0,114 kgm?, ¢ = 0,13 mm, L = 720 mm, E = 20,3 - 10" N/m?, and
d — 15.00 mm. The shaft was driven by an A.C. motor and the de-
livered input torque can be seen in fig. 79.1.

In the first test (Test 103) a deflection limiter was used and the
result can be seen in fig. 79.1. After reaching a relatively high speed
the shaft became “centred”.

In the second test (Test 104) the deflection limiter was taken away.
Now it will be checked by the theory developed in Chapter 6 if the
rotor will pass its critical speed or not.

The critical speed (K = 1) can be calculated to 1260 r.p.m. The
motor deliversx 33 Nm up to the critical speed. Thus

33
dyg=—— = 0,00825

P 2
2:0,114 |— - 1260
30

The maximum deflection of the shaft (no damping) is

a7 - = 1T
Pmax = 1. ( ]/0 00827 )) d

and thus 7, = 11.7- 0,13 mm = 1.52 mm. For the hinged-hinged
shaft the connection between the force ¥ and the deflection 7, is
(with a new meaning of the notation x,)

3 mI
B = =
(@2, LP
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The maximum bending torque is
(‘['Ib)mnx e S
L
and then the maximum bending stress

L5 Wows
R

( Ty )max =

T
4

In our case (63),0: = 82 = For the shear stress we get
mm

33-10° N o
Bt e P 50 en e
- 15% mm? mm?
16

The press fit between the shaft and the disc gave the pressure
N

prOE——. These stresses and the friction stresses on the surface of
mm

the shaft cannot result into yielding because the material had its

J

“yield point” at 275 . From this calculation we would expect

mm?*

the shaft to be able to pass its eritical speed without plastic deforma-
tion. But this did not happen as the figs 80.1 and 81.1 show. The
photo in fig. 81.1 was taken after reassembly.

The explanation may be the following.

It was derived in [7] that a rotor subjected to both external and
internal damping got increasing deflections at whirling speeds higher
than a certain value. This has also been observed in experimental
investigations in our laboratory.

It is remarkable that the deflections of the shaft at speeds in the
vieinity of the critical state was ecomparatively small. Hence, as the
criterium stated. the shaft was able to pass the critical speed without
any plastic deformation. However, valuable experience was reached.
It was not sufficient to control only the possibility of the rotor to
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Fig. 81.1

pass the critical speed. The stability of the motion at the actual post-
critical whirling speed range must also be checked. Unfortunately,
the knowledge of the external and internal damping is still too little
to wive reliable results concerning the boundary between whirling
speed zones with stable or instable motion.



9. Comparison between Two Kinds of External Damp-
ing for a Rotor Passing Its Critical Speed

In a previous report [7] two kinds of external damping were treated.
This was divided into the cases when on one hand the damping force
was applied in the centre of gravity ¢ (damping coefficient denoted
D*) and on the other hand when this force was acting in the centre
S of the shaft (damping coefficient denoted DZ¥). The result was that
at small damping forces these two kinds gave practically the same
deflection to the shaft at a constant whirling with K = 1.

In this section a comparison is carried out for one accelerated and
one decelerated motion through the critical speed of the shaft. For
the acceleration 1 = 0,001 and » — 0,90 were valid and the corre-
sponding values for the deceleration 4 — —0,001 and » = 1,25. The
results are shown in fig. 83.1. The difference in respect to the shaft
deflection could not be shown with the aid of the present scales of
the coordinate axis. The numerical values of the deflections are also
collected in the tabs 82.1 and 84.1. Hence, the difference between
the two damping kinds is negligible,

; D* |
I z=0,001 »—0,00 n* I .01
5o s TgLan e 3 . 7!'!
7 (Damping force | (Damping force
v ¢ in ) g in G)
0,05 5,976050 D, 080778
L.o0 | 11,723780 11,732115
1,oa 20,064577 20,074500
1,10 22.508006 22.367781
1,15 | 9.128763 9.130788
‘ 1,20 11,385845 11,874347
1.25 10,317537 10,321366
1,30 T.877784 7,365399
1,35 ' 2,045200 2,064 158
1.40

6,205871 G.217445

Tab. 82.1
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A= —0,001 »=1,25

n*
n* 0,01
mn

v

{Damping force

(Damping foree

in ) l ¢ in )
1,20 3,208027 3.268782
1,15 4,004923 4006283
1,10 H5,821781 ‘. 5,323037
1,05 T.887847 \ 7.891982
1,00 12,802000 12,510404
0,05 19500962 ‘ 19,819563
0,90 21,041432 ' 21,040205
0,85 10,685050 10,686371
0,80 10862239 10.853000
0,75 9,080750 9,075884

Tah. 84.1




10. Summary

After the introductory chapters the basic equations for the motion
of an unbalanced mass point are derived in Chapter 3. Hereby the
influences of external damping and a deflection limiter are considered.
In Chapter 4 these differential equations are solved for the uniformly
accelerated motion. Two kinds of solutions are proposed. The method
mainly used in this work is a numerical step-by-step method similar
to that by Runge-Kutta [9]. By using this method cases with varying
acceleration could be treated, as shown in Chapter 5, and cases in
which a deflection limiter is present, as shown in Chapter 7. In Chap-
ter 4 a lot of different cases of constant acceleration and constant
deceleration are calculated and the results are presented in diagrams
which are intended to be of value for the rotor designer.

The rotor which is given a varying acceleration is treated in Chap-
ter 5. It is shown theoretically that when the rotor has passed its
critical speed a decreasing input torque hardly affects the maximum
deflection of the shaft.

In Chapter 6 the necessary conditions for a rotor to be able to
pass its critical speed are discussed. Tt is shown that the conditions
available in literature may be totally misleading.

Chapter 7 deals with the properties of a deflection limiter. The
calculations led to the remarkable result that the most important
task for such a limiter is to introduce tangential forces to the shaft
and in that way influence in the whirling. A deflection limiter without
friction forces acts as an “amplifier” for the deflection of the shaft.

Chapter 9 contains a comparison of two kinds of external damping
during acceleration or decleration through the critical speed of a rotor.

In the Chapters 4 and 8 experimental results are presented. The
behaviour of a rotor in passing through its critical speed was studied.
Two methods were used. In some cases the properties of the rotor was
studied in a photographic way by means of a “slow motion camera”.
In that way the phase angle between the “deflection line” BS and the
“unbalance line” SG (See fig. 23.1) could be visually shown. Another
method for studying different qualities of the rotor was to use a recorder
which registered input torque, shaft velocity and shaft deflection.
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Preface

Of the research on elastic rotors that has been carried out at the
Institute of Machine Elements, Chalmers University of Technology,
Gothenburg, Sweden, three previous reports have been published, [2],
[3], and [4].

The present report is a continuation, mainly of the first report, [2].

T wish to express my sincere thanks to the Swedish Technical
Research Council for their sponsorship and to Professor B. Jakobsson,
the Head of the Institute, for valuable suggestions and helpful criti-
cism. Some of the calculations have been done on the digital computer
Alwac II1 E in Gothenburg.

Ingemar Fernlund

Tekn. lic.
Research Assistent at the Institute
of Machine Elements
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1. Introduction

This report deals with some special problems conecerning rotors.
In [2] the general equation for a rotating shaft considering the mass
and the gyroscopic effect of the shaft was derived. But in the appli-
cations the gyroscopic effect of the shaft was neglected. Here this
effect is considered for a clamped-free shaft.

In the summary of [2] it was pointed out that “it would be of great
value to serutinize different bearing arrangements available from the
manufacturers concerning spring constants”. In this report some
results in this field are presented.

In [2] a “New Dunkerley formula” was proposed for predicting
the lowest critical speed of a rotor in a rapid way. The accuracy of
this formula is here narrowly investigated both theoretically and
experimentally.

The theoretical treatment is based on the opportunity of using the
exact solution for a hinged-hinged shaft with two equal and symmetri-
cally mounted discs. The gyroscopic effect of the shaft being neglected.

In the last chapter the properties of a perfectly balanced rotor are
investigated. Especially some energy aspects are closely considered.
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2. Notation

Arbitrary constant. Force. Bearing

Arbitrary constant. Force. Bearing

Arbitrary constant. Constant depending on the
lateral stiffness of a bearing. Bearing

Arbitrary constant

Modulus of elasticity in tension and compression.
Energy. Bearing

Constant. Force. Bearing

Functions

Bearing

Functions

Moment of inertia of a cross section [14]

Polar moment of inertia of a disc [ M L2]
Equatorial moment of inertia of a disc [ M L?)

Ratio

Length of a shaft

Mass of a disec. Bending moment. Torque (Index
shows the intended thing)

R.p.m. of the whirling motion

Bearing width

Lateral stiffness of a bearing
Angular stiffness of a bearing
Diameter of a shaft
Diametral clearance of a journal bearing
Coefficients

Functions

Number of order

Funections of 4

Mass of a shaft

R.p.m. of a motor
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Sl

Radius

Number of order
Running coordinate
Non-dimensional lengths
(‘oordinate

Non-dimensional moment of inertia

Non-dimensional quantity characteristic for the
lateral stiffness of a bearing

Non-dimensional critical speed

Angular velocity of the whirling

) Constant

P
Deflection
Non-dimensional length

Non-dimensional quantity characteristic for the
angular stiffness of a bearing

14
) Non-dimensional constant

Non-dimensional weight of a disc

Non-dimengional moment of inertia

Non-dimensional influence number concerning dis-
placements

Argument

Argument

Argument

Angle of bearing of order ¢

Argument

rad
Angular velocity of a motor (shaft) (T)

Indices:

With reference to an approximate value
With reference to a clamped-clamped case
With reference to Dunkerley’s formula
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exact

F
g
hh
kin
ose
pot
ret
rot

L
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With reference to an exact value

With reference to a force

With reference to the gyroscopie effect

With reference to a hinged-hinged case

With reference to kinetic energy

With reference to an oscillation

With reference to potential energy

With reference to a reference mass

With reference to a rotation

With reference to values of the critical speeds ob-
tained from an “exact” formula in which the mass
and the gyroscopic effect of the shaft are neglected
With reference to values of the critical speeds ob-
tained from an “exact” formula in which the gyro-
scopic effect of the shaft is neglected

With reference to a mass of order 1

With reference to a mass of order 2




3. Critical Speeds of a Clamped-Free Shaft Considering
the Gyroscopic Action of the Shaft

In Chapter 9 of [2] the equation for determining the critical speeds
for a clamped-free shaft was derived. However, the action of the
gyroscopic effect of the shaft was neglected. In this chapter this
matter is considered. The dimensions of the rotor are shown in fig. 10.1.

Notations:

I, Polar moment of inertia of the disc
L Length of the shaft

m Mass of the shaft

M Mass of the dise

r  Constant radius of the shaft

From Chapter 9 in [2] the equation for the elastic line is

y = A sin Ak &+ Bshik,&+ D cos ik &+ Fchik,é

where
Bl VY T2Vl 2|}
/zc}_lv’]'l—*—[.’([:) l{l :’é’ L AR S e 9.1
and
1 ) l
¥ =3km s
mLA0?
=
B
Further

o = the angular velocity of the shaft
£ — the angular velocity of the whirling motion
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-
Fig. 10.1
The boundary conditions are
0 5 F—1 ET d*y 5505k dy
&= Y= -2 d(fL)2 T=YLp d(fL) =0
and
dy 5 57 ddy o m dy —_—
(L) — ey YL dgn) < Y

The conditions at & — 1 can also be written

d*y dy
L 2y [ S e
o |
d3y ” dy M ,
Todes s ) d& ~m "y

where

The four boundary conditions give four equations.
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The condition for these equations for not having only trivial solu-
tions is
m 4 F,+0*3F,
M~ " Fypvi*F +6*2F,
where
F, — (K24k2) sin 2k chik,—(1+k7) cos Akshik,
¥, = (k,—k3) sin ik shik,+2k.(1— cos Ak.chik,)
Fy = I3+ k3—(k,—k2) sin Ak shik,+ 2k, cos Ak.chik,
F, = 2k, sin Akshik,—(k,—k2)(1— cos Ak.chik,)
Fy = (1--k% sin Ak chik,+ (k3 k) cos Akshak,
If the gyroscopic effect of the shaft is neglected we have » = 0

and thus k. — &, = 1. In this case eq. 11.1 is transformed into eq.
106.2 in [2].

On the other hand it M = 0 and 6* = 0 we get

Fa'{’v)uzpll = ()

This equation can also be written

224 f(1—f2) sin psho+(1+f4) cos ocho = 0 ...... 11.2
where
1t
f == k’n e
o=k
o — kh;u

Further from eq. 9.1

el [ 1) | RO 11.3
Because of
EI
@ = (o0 s

the solution can be obtained from the intersection points between
the funetions 11.2 and 11.3.
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1
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| @
- -2 -1 0 02 O« V
Fig. 12.1
If 0—oc0 we get
cos o = 0
1
T2

2

2
;) no solution exists. In Chapter

2 2
and from here v — (;) . > (

13 of [2] the corresponding condition for a hinged-hinged shaft was

14

2
shown to be »> (—) and this condition is in general valid for a shaft
with two bearings [6].

With the aid of an electronic computer the eq. 11.2 was solved
with » as a parameter. Only the first critical speed was calculated and
the result is shown in fig. 12.1 and tab. 13.1. If » = 0 the corresponding
/A-value and critical speed are denoted 4, and n, respectively.

When the shaft is equipped with discs the influence of the gyro-
scopic action of the shaft must be relatively smaller.

In this connection something must be said about the result that no
critical speeds will occur if » exceeds a certain value. In the analysis
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v 2 n/'ng
l == s

— 20,0 0,5913 0,0004
-10,0 0,7016 0,1400
— 4,0 0,8763 0,2184
— 20 1,0308 0,3022
1,8 1,0558 0,3171

— 1,6 1,0842 0,3343
1 s 1,1169 0,3548
1,8 1,15561 0,3705

— 1,0 1,20090 0,4102
0.8 1,2574 0,4407

— 0,6 1,3303 0,50838
— 0,4 1,4305 0,5820
— 0,2 1,5841 0,71387
0 1,8751 1,0000
0,02 1,0211 1,0406
0,04 1,9723 1,1004
0,06 2,0298 1,1718
0,08 2.0048 1,2450
0,10 2,1685 1,3374
0,12 2,2523 1,4428
0,14 2,8477 1,5677

! 0,16 2,4560 1,7156
0,18 2,5783 1,80086
0,20 2,7154 2,0071
0,24 3,0421 2,6321
0,26 3,2407 20870
0,30 33,7644 4,0304
0,32 4,1416 4,8756
0,54 4,3148 5,2952

Tab. 13.1

the shear deformation in the infinitely small parts of the shaft was
neglected. Dimentbery [1] has shown that by taking this deforma-
tion into consideration the shaft has an infinitely number of forward
and reverse critical states.



4. Influence of the Angular Stiffness of Bearings on
Critical Speeds

In this chapter the influence of the angular bearing stiffness is
treated for rotors consisting of one disc on a shaft between or outside
two bearings. The bearings are rigid in lateral directions and the
gyroscopic actions as well as the mass of the shaft are neglected. At
first the rotor in fig. 15.1 is studied.

The angular stiffnesses of the bearings are ¢y, and c,,. Other
notations are evident from fig. 15.1. The equilibrium gives

A+B=TF
AL—F2yL—¢p 001+ Cppaos = 0

The equation for the elastic line gives

d*y

= d(xL)?

= Aal—cygn— | FL@x—x,)

X,

The boundary conditions are

0 el
x=0 y=29 d(zL)_%l
1 ay
T = Yy = d(xL) = —Foz
From this it can be derived that
1 5(14-2 x99) — (51 2¢45) l L3

Xen = ) — (@022 B (14 2500y ) — (2 + 2t0,)] + —— 144

14 (0 + #p2) + 12"017402] E1




% ‘901 \pO X
3 i - RIS e
A Il B
F
y
x1L xaL
L

fy

Observe that the same expression is obtained if z; and %, are changed
to x, and x,, and vice versa. Further

Fig. 15.1

El
X, —
01 LCM]
BI
K=
LR
Bl (2y2,)° ;
If &pyy = e 55 %oy = ¥pa = 00 We get &py, = ———, and if
L3 3
(@,2,)* W .
%y = oo and %y = 0 we get &p, = 12 (v 2,4+ 3a,) and, finally,
; (2y2,)° §
if % = %o = 0 we get &gy, ==t These results are in accord-

ance with the results in Chapter 14 of [2]. If ¢y, = ¢pys We have
Xy = #gs = %, and thus

3 2(2s041)(1 —ay2,) —1
fi= —L_—sr" = 2,2+ 33, * .)0 : —— - 15.2
(Ernsheza (229+1)(62+1)

This function is drawn in fig. 16.1.
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Fig. 17.1
= g . - . K l‘a(l
Further, from [2], the critical whirling speed is £ ——— where
s
30 l/ A I
G et
2 A ML?
1 = &
Now turn over to the case in fig. 17.1.
From the theory of elasticity we get
Myw, L (M,—Fax,L)x,L
AR SRR S 6K 1
M, %L (My,—Fx,L)x L |
Poz = — iR Y0 RIS

Fa,L)
Pos — 3_]47 1‘ o
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Further, we have the deflection

I3
0= ol = & * 741— - F = (‘Po'z‘i“?os)le

With M, = ¢y @or. My = Cppa@pe. aNd Cppy = Cpypp = €y WE geb

3

i 430+ 2,
I -{—x;tzﬂ"———;f”
o 3 = (225+ #,) (6294 2,)

EI ) 2
———. Here is seen that (fey)yme = 3 and thus

Epm 4+ %
= 'xl_f‘:}xlxo 3

- (2 ) 60+ )
This funetion is drawn in fig. 18.1.

The results obtained are used in connection with some practical
investigations of bearings described in the next chapter.



5. Experimental Investigation of the Angular Stiffness
of Some Types of Bearings

In the summary of [2] it was pointed out that it would be valu-
able to determine the spring constants of different bearing arrange-
ments available from the manufacturers. Here the results from such
an investigation are presented. The test apparatus is shown in fig. 21.1.

Notations:

A, B Tested bearings

(64 Dise

D Variator

B, F Couplings

7 “Tachometer disc”

K Capacitive “pick up”
N Amplifier

0 Optical “pick up”

P Rectifier, amplifier
R Recorder

The shaft was driven by an A.C. motor and the speed of the shaft
could be changed to any value between 500 r/m and 4300 r/m with the
variator. The disc could be mounted anywhere between the bearings
or outside bearing B.

The speed of the shaft was measured by an optical pick-up and
the deflections of the dise by a capacitive pick-up. The speed of the
shaft and the deflection of the disc were registered on a recorder.
From the charts also the whirling speed could be caleulated.

As has been shown in [4] that the maximum shaft deflection at
an acceleration through the critical speed occurs at a higher speed
than the critical. Also the whirling speed is slightly higher on that




Motor

Fig. 21.1

oceasion. The best result is obtained by taking an average value of
the whirling speed over a range just before the speed corresponding
to the maximum shaft deflection.

The bearings were mounted in standard bearing houses from SKF.
Only one rough critical speed was obtained in every arrangement
which implies that the stiffness of the bearings can be assumed to
be the same in all direetions.

The following bearings were investigated:

(@) Single row deep groove ball bearing SKF 6205
® Cylindrical roller bearing SKF NU 205
© Double row angular contact ball bearing SKF 3205
® Self-aligning ball bearing SKF 1205
® Spherical roller bearing SKF 22205
. Ad
@ Full journal bearing bld= 1; p= e 3,54 %y,
Nl - > / dd /
@ Full journal bearing bld = 2; w=— e 3,87 %

(b = width ot the bearing; d — diameter of the bearing; Ad —
diametral clearance).

At first there is discussion of the case when the disc is mounted
between two similar bearings. From Chapter 6 in [2] it is found that



22

the non-dimensional critical speed for a rotor with one dise and with
lateral springs at the bearings can be written

A= GM[xICZ_xz(xL_C’l)]_%_ §r

If we consider a slight gyroscopic action we approximately have

to add the term
5 2
__.l'E’: ( :M )
SF

(See Chapter 12 in [2]). Thus we get

£ \2
A =E—Ep (?I:_) F0p[2,Cy—o(x, — )]

If the effect of angular stiffness is also taken into account from eq.
15.2 we get
Su

2
A= /15r—§r”( 3 ) + Oy [2,Cy—ay(2,— )]
F

If %y = o0, 0y — 0, and » = 0 we have

A = Ay, = & (Indices kh refer to hinged-hinged shaft).

A gy \*
Thus, because of = =
4'1 hh n

Exr \? 2,0, —a,(x,—C,)
fie fl_"(_M) b _%L

2,Cy—xy(2,—C))

Denote f, = — < and we have
SF
5 2
j1:f+v(£_r:) _oMfO BT e Rl e e | e e Rt 22.1

In the tests the following data were valid:
M —=10,0 kg, 1,=3,81-10* kg mm?, d — 15,0 mm, and L — 750

mm. Thus
R 381 :
e =— ——— —(,0034
g 2 MI2 2 10,0 - (75,0)2 0,
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In tab. 23.1 the ratio &, /& is shown for the six basic bearing
arrangements in Chapter 14 of [2].

[ ‘ Case 1 | Case Case 3 Case 4 ‘ Case 5 ’ Case 6

\

‘ &y } | & 1 ? 3.1 1 | 8(z2e=32;+1) 1 - 1 3(1+2))
| —_ —_—— —_— |— —_t | —

[l € ||| xy x| 2\ | \ (x, 4+ 3)ax, 2 x| %(3+m,)

Tab. 23.1

In tab. 23.2 the term (&,/&;)? is given for the actual values z,.

( CM j
&y {F
Case 1 Case? | Case 3 Cased4 | Case b | Case 8
0,10 225,0 — - — 110,3 113,38
0,20 56,25 14,06 31,64 10,76 30,25 31,64
0,25 36,00 7.111 16,00 4,630 20,25 21,30
i 0,50 9,000 0,000 0,000 0,7347 6,250 6,612
| 0,75 4,000 73141 16,00 20,55 3,961 3,424
L 0R0 3,516 14,06 31,04 37,43 3,063 3155
0,90 2,778 — - — 2,596 2,637

Now turn to the lateral spring effect. From [2] we have

Tab. 23.2

ol i O
el ( — )
ik 1

é|—+ Cy

C C
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c 1
If ¢, = ¢, we have ¢ = -—_)‘ , €y = Cy = —-. For a hinged-hinged shaft
. (2,7,)*
g b =— 5 In that way we get
3 1—2xz,
=T Ty
S RS SEUR O 3 §
8 5 EI
s SRR
In tab. 24.2 the actual values of f, are shown.
I x, ‘ 0,20 f 0,25 ’ 0.50
| = R 7\
I 1s ‘ 39,50 : 26,50 ‘ 12,00
Tab. 24.2
Cy ) (Y 2 1 )
If ¢, = -~ we instead get c = ——, C, gt Cy= 3 with the
Z o <
corresponding
i 14-a,—3z,2,
S (y25)*
0 1 e
RS e ?

In formula 22.1 f can be determined because n,, can be calculated
and » obtained from the test. With the aid of the tab. 23.2 the term

2
v (TM) can be estimated and from the eq. 24.1 or 24.3 the factor
SF

fo- However, 6, cannot be calculated with any degree of accuracy.
The spring constant ¢, is of a complicated nature because it is com-
posed of spring effects in the bearing itself, in the bearing house,
and in the support of the bearing house. Thus from eq. 22.1 we want
to calculate f,. but f,, is unknown. If we carry out two tests we can
determine f),, because of the fact that we use the same x, in the two
cases. We consequently have to solve a system of equations with two
unknowns. The solution procedure is simplified by using fig. 16.1.
The results from the tests with the disc between the bearings are
shown in tab. 26.1. It also contains the critical speed for a hinged-



25

hinged shaft (n,,) and for a clamped-clamped shaft (n ). With the
aid of these values. which are boundary values for a rotor laterally
rigidly supported, one gets a conception of the accuracy of these
common methods to calculate the critical speeds. Further. we need
n,, to get f in eq. 22.1.

For every assembly the critical speed was experimentally deter-
mined five times. In the table only the minimum, the maximum, and
the mean value are shown together with the standard deviation.

TIf. as an example, we study bearing arrangement (@) we get three
equations (f is caleulated from the mean values of % and n,,). The
gyroscopic term is choosen according to Case 2 in tab. 23.2. Thus

file, = 0,50) = 0,620—12,00,,
fulz, = 0,25) = 0,731—26,50,,
fila, = 0,20) = 0,732—39,60,,

Combining the first and the second equations one gets », — 0,25,
fy = 0,010, and from the first and the third equation x, = 0,35,
By = 0.005, and finally from the second and the third equation
%y = 0,90, 6, = 0,000.

The same procedure was carried out for the other bearings and
the result can be seen in tab. 25.1.

‘ Bearing case @ Bearing case ® Bearing case @ Bearing case ® J
* l\ Oy . ¥y Ory %y : Oy X0 \ Oy ‘
—P ,5, e l =4 — il
| 0,00 0,000 2.0 0,005 2.0 0,005 8,7* 0,002
0,35 0,005 1,7 0,008 15% 0,008 1,7 0,007
0.25 0,010 1,0 | 0,008 0,52 0,012 | 0,03 0,015

Tab. 25.1

For bearing () the x,-value 8,7 differs very much from the others.
If instead of the average values of n,, and n the maximum and the
minimum values respectively are used we get %, — 1,7 and 0,, — 0.006.
Hence %, may vary very much for small changes of f. Further, it
seems practically reasonable that 6, may vary slightly between the
different types of bearing as also can be seen from the table. That is why
the mean value f,, — 0,005 is used in the following for bearing @) and
fy = 0,007 for the other ball and roller bearings. These values are used
when calculating x, in the tables. The last figure in %, is not granted.
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n. .
Bearing nm'" Standard oy Cyr
arrangement x, i deviation | n . N Nm/rad
’lm.!
$83 et
0.50 908 o 1830
® 923 iy
1121 :
SKF 6205 | 0,25 1133 B | sey e | s 1370
(03 =0,005) 145 ‘
1330
0,20 1351 O B 1830
1365 2192+ 5
745
7154 8
0,50 751 4 P 1,61 108
= s 758 1430+ 15 ]
962 :
SKFNU 205| 0,25 985 18 osrrap | it | e
(Opg=0,007) 1009
1073
. 11174 14 s *
0,20 1097 15 SR 1,387 480
i 2792+ 61
© 1023 :
SKF 3205 | 0,60 1080 3 - | qkserae | o 5970
(Byg=10,007) 1124 :
750 L
s . 154 8 .
0,50 757 7 PSR R 1,40 450
5 Ui 14304 15
991 =
SKF 1205 | 0,25 999 8 | IR 626
(ly—0,007) 1005
1086
0,20 1094 5. | atenser| b 435
1100 e
738 L
= 7154+ B
0,50 749 15 = 1.64 389
. et 1430+ 15
956 )
SKF 22205 | 0,25 959 | i e B E 371
(Oyg =0,007) 260
1100 B i
0,20 1123 DI e R 576
1135 —
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If the disc is mounted outside the bearings the eq. 22.1 is still
valid but now instead

3 27.1
o= 5 Tyt e 2 :

This expression is correct only if the lateral stiffness is the same
in both of the bearings and it can be derived from formula 41.1 in

2

1 X
[2] if 1, is replaced by o In this case &, = _‘il_ (see Chapter 14
: :

in [2]). The gyroscopie term is calculated according to Case 6 in tab.
23.2. and also here 0, is estimated to be 0,005 for bearing & and
0,007 for the other bearings if the disc is mounted relatively far from
the bearings.

The results of these tests are shown in tab. 28.1. When the disc
is mounted near one end of the shaft the forces on the bearings are
relatively great at the critical speed. Because the SKF bearings have
progressive spring constants (see [7]) the total spring constant will
also increase in value.

In the tables consequently the 6,,-value is decreased by 50 %, when
x, = 0,10, Because of the fact that the results obtained in that way seem
to coincide with the previous values this estimate seems reasonable.

No journal bearings were used in the previous tests because of the
diffieulty in mounting them properly when they were situated far
from each other. Instead they were tested together with a self-aligning
ball bearing. At one end of the shaft the self-aligning ball bearing
was mounted and at the other end the test bearing. The preceding
tests have shown that the self-aligning bearing has a tendency to
cause small bending moments in the shaft. Here for simplicity this
property of this bearing is not taken into account and all angular
stiffness is referred to the journal bearing. Further, the journal bear-
ing with b/d = 1 is estimated to have 0, = 0,007 (as the self-aligning
ball bearing) and the journal bearing with b/d = 2 half the value.
With these assumptions one can get a rough conception of the journal
bearings with respect to their property of causing bending moments
in the shaft.

At first interest is turned to the case when the dise is mounted be-
tween the bearings. By putting x,, = 00 and x5, — %, in eq. 14.1 we get

£; I xelz+3)—4

— ey e —— l R L e T
f €% . i 4 1432,




Bearing = Standard Php o
arrangement y “"" deviation Np #y Nm 'rad
| | max
| i A8 —
795 1 ‘
71512
0,25 817 24 = 0,73 900
@ 852 143028
SKF 6205 97 s i
0,20 011 9 2o 0,27 2430
995 1998 -+ 44
1 \ _i | |
| " ien *77(7)3 g | 71512 0,55 190
728 1430 4 28
® 955
0,20 968 8 eaalf 0,21 3130
SKF NU 205 975 1998 1 4
2015
3 1787 445 0,25
0,10 2047 26 = S s 2630
f 2073 56514230 | (B, —=0,0035) s
720
. 715412
0,2 734 8 gk 0,45 1460
! 749 1430+ 28
|
® 833
893+ 16 2 :
0.20 843 19 0,0 692
SKF 1205 | 851 1998 4 44 %
1930
1787 +45 | 0,30
0.10 1994 28 = . ! 2190
2014 | E 5651+ 230 | (8, =0.0035)
701 U
0.25 705 I 0,51 1290
711 +2
® 976 .
8934 16 ;
0,20 978 4 0,19 3460
SKF 22205 986 1998+ 44
1938
17874-45 0,35
0,10 1960 23 & P (Wi 1880
1998 651+ 280 | (Gyy = 0.0035)
Tab. 28.1
and from here
4f —ax,— 32, i
’50 T T R T T O N Bty R o S e e o -lb.—-

12(1—fy)

Further, the eq. 22.1 is still valid if f, is now replaced by f,,. The
gyroscopic term is estimated as a mean value from the cases 2 and
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4 in tab. 23.2. Thus f,, can be determined at first and then x, is ob-
tained from eq. 28.2.

The results from these tests are shown in tab. 29.2. Finally, tests
were carried out for the same bearing combinations but the disc was
mounted outside the journal bearing. From the eqs 17.2 we get with
M, = 0 that

and from here

Also in this case eq. 22.1 is valid if f, is replaced by f, and f; is
taken from eq. 27.1. The gyroscopic term is estimated as a mean
value from the cases 1 and 5 in tab. 23.2. At first f,, is determined
and then », is caleulated from eq. 29.1. The results are shown in the
tabs 29.2 and 30.1.

. =
Bearing .:,‘mm Standerd . Cur
RrEHnge: @ m deviation Hhie %o Nm/rad
ment Mmax
‘ ‘ i
‘ 962 :
‘ 0,50 974 8 lg;';”flg 0,014 47000
® 984 =
1340 . ,
| and 0,75 1367 5 lgéf’;i:‘; 0,057 11500
® 1390 S
‘ ‘ 1605 -
\ 0,80 1618 9 Hégi};{ 0,046 14300
| 1630 250211 i
‘ 0,50 igg 8 115+ 8 — 0,004 (=S
| © 1034 | 1081-+-13 ? l
1648 s l
and 0,75 1657 7 lg'ég * ;4, 0,002 | 320000
® 1655 et
2103 2
‘ 0,50 2110 6 ALl oot o |
2115 Clabes 1

Tab. 29.2
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H n_.
Bearing n""" Standard Py, g Cry
arrange- @y "y deviation n 1 %o Nm/rad
ment M max e | 4
| ione s |
= o412 & .
® 0,25 1091 14 Vg 0,013 50 1|
and >
® 1242 89316 |
0,20 1280 30 e 0,003 | 219000
s 1998+ 44 ‘
1022 & | [
) _ 715412 X
© 0,25 { 1038 14 b ‘ 0,027 | 24300
and
1425
®) = 893416 | ,
0,20 }:;t 31 1998+ 44 | 0,016 ~
Tab. 30.1

5.1. Conclusions

The results from the different tests are collected in tab
the mean values are shown.

. 30.2. Only

¢y in Nm/rad for the bearing

@ © | © | ® | ® | @
| — —— — e
i
1830 108 5970 450 389 47000 o |
1370 626 — 626 371 11500 329000 :
1830 480 — 435 576 14300 o0
900 1190 = 1460 1290 P 24300
2430 3130 = 692 3460 219000 g
£ 2630 = 2190 1880 L =
Tab. 30.2

The bearings (8), @), and (&) seem to have a progressive “angular”
spring stiffness. The high values were obtained when the dise was
mounted outside the bearings and in these cases the inclination of
the shaft at the bearing at the critical speed was also higher than in
the cases when the disc was mounted between the bearings. This effect
cannot be seen so clearly from the tests for bearing (). However, some-
what surprisingly, this bearing was stiffer than the bearings ®), ©.
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and @& when the disec was mounted between the bearings. The bearing
© had the greatest stiffness of the SKF bearings. It is remarkable that
the bearings @). 8, ©®. and ® on the whole give rise to bending
moment. This may, to some extent, depend on the gyroscopic effects
of the balls and the rollers.

Finally, the journal bearings seem to have a nearly infinite angular
stiffness. It can also be seen that this property of the journal bearing
increases in strength with increasing b/d-value.

In the treatment of the test results the factor 0, in many cases was
estimated to 0,007, This value corresponds to a spring constant of

AT

N
about 335 ey which is very low in comparison with that of an

SKF hearing alone [7]. The grease film between moving parts in the
bearings is probably of great influence on the lateral spring stiffness.



6. Influence of the Simultaneous Action of the Mass of
the Shaft and the Gyroscopic Effect of the Discs
in a Rotor with Two Discs

In [2] the critical speeds for a rotor with one disc were determined
considering the mass of the shaft and the gyroscopic action of the disc.
In this chapter the critical speeds for a rotor with two equal dises
are determined with the same considerations. The arrangement is
shown in fig. 32.1.

Notations:

1, Polar moment of inertia of the disc
L Length of the shaft

m  Mass of the shaft

M Mass of one dise

The two dises are symmetrically placed on the shaft. We limit
ourselves to symmetrical deflection modes of the shaft.

M:Jp M,Jp
r. —

- k-
b

o
m

XL | XL
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S

Fig. 33.1

In fig. 33.1 the forces and moments on a disc are drawn at the first
critical speed.
The equation for the elastic line of part 1 is (see [2])

y, = A, sin A&+ B;sh &+ D, cos A&+ Echig,
and for part 2
Yo = Ay sin A&, ByshA&,+ Dy cos A&+ Eschié,

The boundary conditions are

=0 y =0
d*y,
- - ,,2,~ — 0
A&
dy,
fo— 0 ———
&, at, 0
d3y.
Ya i

d Eg
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and
& —u T+7T, = My 22
bo=my=3—2 M, —M,=M

g

Ay, dy,

h =Y. ,

dg, &,

The boundary conditions give eight equations and from them the
condition for non-trivial solutions is found to be
m A H,+10*H,
M 2 H4+310*PH,

where

H, = tg ¢ cot y(tg hg-{cot hy)+tg hy cot hy(tg g—cot )
H, = (tg g—tg hy)(cot yp--cot hy)

Hy — (cot y—tg ¢)(tg hg+cot hy)

H, = —tg p+tg hg-+cot y+cot hy

and

For a shaft without discs we have M — 0 and 6* — 0. Thus from eq.
34.1 :

Hy,=0
giving
coty = tg ¢
or
T
— —ytam=—¢ (8=0,1,2,3...)
and

A=nt+s-2n (8=0,1,2,3...)
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This result coincides with that from Chapter 13 in [2]. Only the
values for symmetrical deflections are obtained. Further we have
from definitions that

EI
02— 4.
ml?
or
ok 1 BT
T oA ML

where
m
A** — ST filx,, 0%, 1)

We may also write

m
3 = @, 0%, 3)

If the mass of the shaft and the gyroscopic effect of the disc are
neglected we may write
1 EI
i i e
Us- Ay ML
where A, is the elementary non-dimensional critical speed and
Ay = f4(x) = %+ 1%(3_‘4931)

Thus we have

Ax* (no )2 /1(3«'1: 6*1 A)

= fa(2y, 0%, 2)

A, “\ = fa(z)

m
W falay. 0%, 2)

By supposing that z, and 6% are known the eqs 35.1 express the
function

/1** (* a1 3’ )
/lo ;f xl‘ ) ’ JI .............. D4

in parameter form. These functions are drawn in the diagrams on
page 36 up to and including page 42. The curves are drawn after
values from calculations with the electronic computer Alwac I11 E
in Gothenburg. The calculated values can be found in [5], Volume VIII.
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7. Theoretical Tests of the ‘“New Dunkerley Formula”

In Chapter 10 of [2] a “New Dunkerley formula” was proposed. It
considers both the mass of the shaft and the gyroscopic effect from
the dises. The eq. 114.1 in [2] gives

s ‘,I:'
Aose =Y. w2 1 e el 43.1
i=1 0i
where
M,
e ‘M-ref
L;
0 = ]
Then Q is caleulated from
o 1 Bl
= A:;p, M [P

The index appr refers to approximate. This formula is checked for
the rotor in fig. 32.1. For that case eq. 43.1 can be written

A

appr :‘A;.
because of
T =g == 1o 3 M=

and

Further, A]" can be found in [5], Volume II, or it can be deter-
mined from the diagrams in Chapter 11 of [2]. But in Chapter 6 of the
present report the exact solution is obtained and the exact non-
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dimensional critical speed is called AZ,.,. Against A7, and A}, the
values N, and N, correspond and they denote the critical whirl-
ing velocity of the shaft in r.p.m. Thus

¥ y -
‘\ appr ] "1cxacl

N, e

exact “*appr

An investigation is carried out for different values of z, and 0*.
The result is collected in the tables 45.1 and 45.2. Further. two

limiting cases are studied. First, if z, = 0,50 we have :\:'i |
“Yexact
Second, if 6* — m — 0, the exact solution is
‘/lz;act (0* =0, m= 0) = (Ao)cx;lcl

where /1, can be calculated from eq. 25.1 in [2]. With

7
bn =-3 Q-
fa= 4 - (122
we get for the lowest critical speed
(Ao)exser = % * 41(3—4xy)
and with Dunkerley’s usual formula
(Ao)appr = § * (1 —2,)?
Thus

(‘\'O)apur A V 3—4Z1
(‘Vo)exacl a 2(1_1.1)

(Ayo)appr (*\‘Tﬂ)appr
fa,=1 we get————— =1 and if 2, = 0 we get ——— —
V‘_f : 2 & (Aro)exact * 8 (*Vo)exacl

= ? = 0,866. Observe that if z; — 0 we have both (N,),,, and
/3

(Ng)exuer €qual to zero but their ratio is?.

We may conclude that the error in the approximate formula is small
if the discs are far from the bearings and if the gyroscopic action is small.
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8. Tests of a Rotor with Two Equal and Symmetrically
Mounted Discs

In order to test the theoretical results in Chapter 6 the apparatus
in fig. 64.2 of [3] was used. Two equal discs were mounted as fig.
32.1 shows. The rotational mode of the rotor was studied on the
screen of an oscillograph. This method is outlined in Chapter 7 of
[3]. It may be noticed that in these tests the whirling with K = + 4
existed within a rather wide range for x, = 0,20 and x, = 0,25. The
range decreased when #, increased. For comparison the critical speeds
are calculated also with some other methods outlined previously.
The notations are

n** — critical speed of the shaft calculated from eq. 35.2

n* — critical speed of the shaft calculated from eq. 59.1 in [2].
(“Exact” value by considering m = 0)

np* = critical speed of the shaft calculated from an approximate
formula 114.1 in [2]. (“New Dunkerley formula™)

np = critical speed of the shaft calculated from eq. 112.2 in [2].
(“Usual” Dunkerley formula, which only can be properly used
for K = +1)

ny = critical speed of the shaft, if 7, —= 0 and m — 0.

Test ’
z; | K= S o* values nt** n* n;; np ", ’
Q r.p.m. r.p.m. r.p.m. r.p.m. r.p.m, r.p.m, |
|
|
0,20 [ +1 | +0,1087 | 988+-32| 965 995 864 845 011
+1 | +0,1087 | 840+ 6 756 804 720 695 738
an
0.25 | 1 | —o0,3261|705+6 | 654 667 621 = =
+4 0 354+10| 329 336 312 - —
0,30 | +1 | 40,2087 717+3 677 690 636 645 672
—1 | —0,3261 | 657+3 611 620 587 = = |

Tab. 46.1
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The results are shown in tab. 46.1. Observe that in the case ¥, — 0,30
the values of 7, and n, as a matter of fact are whirling speeds for the
whirling A = + 4, which gives no gyroscopic action for a rotor with
thin dises.

All the time the values of n* best fit to the testvalues which are
always greater. The reason must be that in the tests the bearings had
angular stiffnesses. These are not considered in the theory on this

oceasion. The shaft was supported in self-aligning ball bearings from
SKF.



9. Investigation of a Perfectly Balanced Rotor

In this chapter the behaviour of a perfectly balanced rotor is treated.
In Sec. 5,3 of [3] was shown that such a rotor whirls at its critical
states with an indifferent position of the dise. Consider the perfectly
balanced rotor in fig. 49.1. The mass of the shaft is neglected.

The equations of motion are

Mj+tcy=0
Mzi4cz =0

with the notations

M Mass of the point mass
c Spring constant of the shaft

and with the solutions

y = A, sin Q t+ B, cos 2t
z = A, 8in Q,t+ B, cos Q,t

where

and 4,, B,, A4,, and B, are arbitrary constants.

From here
(434 BR)y*+(AT+ Bz —2(A, Ay + B, By)yz— (4, By— 4,B,)* = 0
and this equation can mean

1) an ellips
I T S e e e e 48.2
3) a straight line
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Fig. 49.1

and the kind of the whirl figure is determined by the boundary con-

ditions. In case 3 we get lateral oscillations in one direction and in

the first two cases in two directions simultaneously. Observe that

the speed of the motor has no influence on the behaviour of the rotor.

The expression 48.1 can also be written
orr M@R2,)?

) DU A e S s e

where » is an arbitrary constant radial deflection of the shaft at the
mass. On the left hand we have the expression for the potential
energy and on the right hand the expression for the kinetic energy.
Thus we have shown that in a perfectly balanced point-mass-rotor
the kinetic energy K, is equal to the potential energy B - The
total energy is (Biot),,, Where

(Elol)rm = Ekin+Epol = 2Ekin — :?'Epol

However, there is another possibility to enterprete eq. 49.2. At the
steady whirling with the constant shaft deflection » the mass is affected
by the “centrifugal force” F — MrQ?.

Then look at a beam affected by the force F. The potential energy
in the beam is

Fr M(rQ,)?

B

L T
Thus eq. 49.2 can also be looked upon as two ways to write the po-
tential energy of the shaft.

4



L

Fig. 50.1

If, instead, we turn over to case 3) in 48.2 we can interprete eq.
49.2 in the following way.

Suppose that the lateral oscillation has its maximum deflection
.r2
equal to r. Then —— represents the total energy (By1),,, at the maxi-

mum deflection and - M(r£2,)* represents the same thing at zero
deflection. Thus

(‘Ewl)osc =4%- (va.)ml

Now consider the rotor in fig. 50.1 where the point mass is replaced
by a dise.

rad
The rotor is whirling with the angular velocity Q — and at the

d
. The shaft deflection is r and it

same time the motor speed is w

3

has already been shown in [2] that the shaft is subjected to a bending
moment due to the gyroscopic effect. For this rotor the kinetic energy
can be written

Byin = 3 (L0 +- Ty +-I07)
where all notations can be seen in Chapter 7 of [2]. Thus

2K, = (I,+Ma*)(Q sin x cos w’t)*4 (I ,+ Ma?)(— 2 sin x sin ’¢)2+
+1,(2 cos x+w’)?




and

and these expressions can be simplified to

2By = (I,+Ma?) Q2 sin? -+ I [Q(cos a—1) 4o

2

¢

(A4
If o is a small angle we have sinx ~«, (cosx—1)~ — —-and thus, by

putting » = @ sin «,

B =% L0231 M(rQP—pl 22 .. ....... 51.2

The shaft is subjected to the force F' — Mr(2® and the gyroscopie
moment M, — 2yl Q% which is shown in fig. 51.1.
The elastic energy in the shaft according to fig. 51.1 can be written

Eow =% Fr—% - M
or
Boor =% " MEpGR—d G2a® .. voviovies 51.3
By differentiating the eqs 51.2 and 51.3 we get

ABy, = B, = MrQdr—2y1,Qxdx

which means that the change in the kinetic energy when the rotor
changes its position (r;, ;) to another (r,, x,) is equal to the change
in the potential energy. The total energy is ,,, where

:lol - EkinJ'—Epm — {'. {% ‘[(TQ *)’I QZN} .. 51-4
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As has been pointed out previously the shaft may have any posi-
tion. But the eq. 51.4 shows that the total energy changes with the
position. If the shaft shall change its position additional energy has
to be put into the rotor. This work cannot be supplied from the
motor, because (see [3])

M, = cersin 0

and for a perfectly balanced rotor ¢ — 0. The necessary amount of
energy therefore must be delivered by outer forces acting on the
disc. Suppose that on the rotor in fig. 49.1 a tangential force K, is
applied at the point mass. From the eq. 19.1 in [3] it is clear that

P22 = 0

7 0 R S 52.1

rp-+20p = =37

Now we seek such a force K, which at ¢ = 2, changes the deflec-
tion of the shaft from r — 0 to r = r,. We get from the first eq.
in 52.1

Here we have ('}, — const. and due to the boundary condition €, = 0.
From the second eq. in 52.1 we have K, = 2Q,C,M and from the

1

- @ which means an Archimedes’ spiral.
g (ry)

The tangential force delivers the energy E, = [ K (rQ,dt) = M(r,02,)*.
0

third eq. of 52.2 r = 0

The total energy %, can be written E,,, = E, = M(r,2,).
M(r,2,)
2
that the kinetic energy is equal to the potential energy.

As the kinetic energy is H,; — we get also in this way

Thus it has been shown how through a constant tangential force
K, the rotor changes its deflection from zero to an arbitrary value
at a constant whirling velocity.

Summarizing, we have shown the following facts for a perfectly
balanced rotor at any critical state:
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1) The disc may have any radial position.

2) An outer force is needed for changing the radial position of the
disc.

3) The motor cannot deliver energy to change the radial deflection.

4) Without disturbances the shaft runs at its critical speed with
zero deflection. In this case this speed presents no danger at all.

5) As disturbances occur they settle the size of the shaft deflection.

6) The change in kinetic energy is equal to the change in poten-
tial energy when the disc changes its position.



10. Summary

During some years research work on critical speeds has been carried
out at the Institute of Machine Elements, Chalmers University of
Technology. Gothenburg. Three reports are previously published, viz.
[2], [3]. and [4]. The present report deals with some special questions
and is a supplement to the previous reports.

Chapter 3 gives the solution to the problem of calculating the
critical speeds for a clamped-free rotor with one disc considering the
gyroscopic effects from both the shaft and the disec and the mass of
the shaft simultaneously. The general solution is specialized to a shaft
without disc.

Chapter 4 analyzes the effect of bearing angular stiffness on the
critical speed. The results are shown in diagrams for quick computa-
tion in practical cases.

Chapter 5 gives some experimental data on the measurements of
critical speeds for a rotor supported by SKF bearings as well as journal
bearings.

Chapter 6 is concerned with the problem of determining the crit-
ical speeds for a rotor with two equal dises symmetrically mounted.
The influence of the simultaneous action of the mass of the shaft and
the gyroscopic effect of the discs is taken into consideration. Diagrams
over the results are drawn and they are meant as a tool for the engineer
in practice to compute the critical speeds for this rotor in an accurate
but still rapid way.

Chapter 7 deals with theoretical studies of the “New Dunkerley
Formula™ presented in [2]. This approximate formula is checked in
cases exactly computed for the rotor treated in Chapter 6.

Chapter 8 contains results from tests with the rotor considered in
Chapter 6.

Chapter 9 treats the properties of a perfectly balanced rotor. Some
remarkable results concerning the energy of the rotor are derived.
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Gothenburg. 16 s. 1963. Kr. 5: —. (Avd. Allm. Vetenskaper. 286.)

271. HEpvarr, J. ArviD, Surface chemisiry and corrosion. 18 s. 1963, Kr. 6: —. (Avd. Kemi
och Kemisk Teknologi. 42.) :

272, Hepvarr, J. Arvip, The chemistry of cement and concrete considered as a facel of the
reactivity of solids. 18 s. 1963, Kr. 6: —. (Avd. Kemi och Kemisk Teknologi. 43.)

273. Asprunp, SveEN Oror, Practical calculation of suspension bridges. 27 8. 1963. Kr. 8: —.
(Avd. Viig- och Vattenbyggnad. Byggnadsteknik. 44.)

274. GrangOLM, HIALMAR, T'rikonstruktioners brandstabilitet. Symposium vid Chalmers Tek-
niska Hogskola den 18 juni 1962. 151 s. 1963. Kr. 25: —. (Avd. Vig- och Vatten-
byggnad. Byggnadsteknik. 45.)

275. ALBERTSSON, AXE, Vindtryck pd skorstenar. 70 s, 1968. Kr. 18: —. (Avd. Viig- och Vatten-
byggnad. Byggnadsteknik. 46.)

276, FErRNLUND, INGEMAR, On the whirling of a rotor. 83 s. 1963. Kr. 20: —. (Avd. Maskin-
teknik. 29.)

277. FERNLUND, INGEMAR, Running through the critical speed of a rotor. 86 8. 1963. Kr. 22:50.
(Avd. Maskinteknik. 30.)
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