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The present paper is an introduction and summary of a thesis 
comprising the following two papers: 
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Review 139, A796—A823 (1965). 

B. L. Hedin: Effect of Electron Correlation on Band Structure of 
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Application of many-body theory to the one-electron 
problem of atoms, molecules and solids 

Then after all, Mai saw a good picture. 
William Golding in The Inheritors. 

1. Introduction 

The theory of quantum mechanics is at the base of our theoretical 
description of nature. In many cases it is unnecessary and pointless 
to go all the way down to quantum mechanics. For a large portion 
of modern physics however, the quantum mechanical ideas are 
indispensable. 

The aim of a purely deductive treatment might be stated somewhat 
as follows. We have to create out of the general abstract theory of 
quantum mechanics through appropriate specialization and simpli
fication, useful concepts, vivid pictures and simple relations in order 
to systematize and understand the experimental data and in order 
to give guidance about areas where it might be profitable to look 
for new discoveries. 

Two important factors in favour of s uch an a priori approach have 
developed during the last ten years, namely many-body theory and 
fast computers. Many-body theory has had a remarkably quick 
development, and it has now increased our understanding over 
wide areas of physics. The achievements have however mostly been 
in the form of general results and not so much in approximation 
schemes capable of numerical predictions. In the present thesis the 
emphasis is on the development of a numerically manageable approxi
mation scheme. Specific application is made on the electron gas 
and on solids, particularly alkali metals. This kind of application 
is made feasible by the presence of fast computers. The results are 
encouraging, and there is all reason to expect a rapid future develop
ment in this field. 
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2. A few remarks on many-body theory 

The basic equation of quantum mechanics is the Schrödinger 
equation, which governs the change with time of a physical system. 

It reads 

Hifi(t)=ih W), (2.1) 

where H is the Hamiltonian, i.e. the operator that corresponds to 
the total energy of the system, and >p(t) is the state vector describing 
the properties of the system. When the system is in a stationary 
state with energy E, the time behaviour of ip(t) is simply 

i/t(£)=exp (—iEtlh)>p, (2.2 

where I /J sati sfies the eigenvalue equation 

(2.3) 

We now specialize to the case when the system consists of N 
electrons moving in a fixed configuration of nuclei. This corresponds 
to an atom, or to a molecule or solid where the vibrational effects 
are neglected. The state vector if> ca n then be taken as a function 
of the coordinates of N points 

<P(XLY  x2 ,  .  .  .  XN) .  

Except for the hydrogen atom we do not know any analytic solution 
of Eq. (2.3). Complete numerical solutions are out of the question, 
except when N is a small number, simply because they require too 
large a numerical material. To obtain a reasonable accuracy we would 
for say N= 4 need at  least  something of the order of 101 2  values of é\ 

We thus have to simplify the problem by introducing some approxi
mation. In the Hartree-Fock (HF) approximation, which by far is the 
most common, ip ha s the form of a sum of products, dzrpi{x\)cp2(x2) • • • 
<pN(xN), where the functions <p1} <p2 . . . cpN a re the same in each product 
but the coordinates xlt x2, . . . xN are permuted to make ifj anti-
symmetrical. The best choice for the functions ifjk are those which 
satisfy the self-consistent equations 

[e k—h(x)]<p k{x) — jFe x c h(x, x')cp k(x')dx'=0, (2.4) 

where 
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h(x)  

V( x ) .  =j v ( x> x')p(x ' )dx '  — YjZnv(x ,  iü„) = Coulomb potential 

v ( x ,  x ' )  = e2/|x—x'j=Coulomb interaction 

p(x) — Ya \<Pi ( x)i2=density of e lectrons 

Z„,  R n  = charge and position of nucleus n (2.5) 

V e x c h (x ,  x ' )=—v(x,  x ' ) p (x ,  x') = exchange potential 

p(x, x') =JJ <pi (x)(p i*(x') = density matrix. 

The energy eigenvalues ek  give excitation energies while the total 
energy is given by a more complicated expression than just the sum 
of the e k .  

The HF approximation gives us an appealingly simple picture 
of t he system. We can think of e ach electron as described by a wave-
function cpk, having an energy ek and contributing with \<pk(x)\2 to 
the total density p(x). The motion of the electron is governed by the 
Coulomb potential V and a non-local potential Fexch, which takes 
into account some of the effects from the correlation in the motion 
of the electrons. The H F approximation is so widely used that many 
physicists have almost forgotten that it is an approximation, and 
actually often a poor one. 

The HF approximation represents a blind alley from the standpoint 
of conventional quantum mechanics in the sense that we cannot 
improve on it without losing the simple physical picture it gives. 
From the standpoint of many-body theory, on the other hand, the 
HF equation is the lowest order approximation of an exact equation 
with a very similar structure. 

In conventional quantum mechanics we are trying to obtain good 
approximations for the wavefunction a-2> • • • XN)> and we thus 
aim at accounting for the simultaneous motion of all the electrons. 
In many-body theory we instead study propagators or Green's 
functions, describing what happens if we, say, insert an electron 
or a test charge at a given point in the system. 

We will here discuss only the one-particle Green's function which 
describes the propagation of a particle from one space-time point 



6 

to another in the presence of other particles. The Fourier transform 
with respect to time of the HF approximation for the one-particle 
Green's function is 

cPk(x) 'Pk*(x') 
G(x,x-,e)=YJ H ' (2'6) 

k  e e k  

where the summation over k covers all solutions to Eq. (2.4) not 
only the N solutions which appear in h and Fexch. The exact Green's 
function is obtained from Eq. (2.6) by replacing the ek by exact 
excitation energies and the <pk by some generalized amplitudes. The 
equation satisfied by the exact Green's function is 

[e—h{x)~\G(x ,  x ' \  e )  — $M(x,  x";  e)G(x" ,  x ' ;  e )dx"=S(x—x') .  (2.7) 

Here h(x)  has the same definition as in Eq. (2.5), except that p(x)  
now stands for the exact density. The self-energy operator M rep
resents all the complicated correlation effects of a many-particle 
system. If M is written as a power series expansion in the Coulomb 
interact ion v ,  the  f i rs t  te rm is  the  F e x c h  of  H F theory .  I f  we knew M 
completely and solved Eq. (2.7) for G, we would obtain exact in
formation on excitation energies, the electron density and the total 
energy. 

In Eq. (2.3) the Hamiltonian II is well-known but the wavefunction 
</r, w hich contains all information about the system, is an extremely 
compl ica ted  funct ion of  a  large  number  of  var iables .  In  Eq.  (2 .7)  G 
contains most of the information we are interested in and still is a 
function only of a small number of variables. M on the other hand 
is not given by a simple closed form like H, and in applications we 
have to use approximations for it. The situation might be put as 
follows. In Eq. (2.3) we have a well-known operator (H) and an 
approximate solution (>fj). In Eq. (2.7) we have an approximate 
opera tor  (h-{-M) a nd a  wel l -known ( if  we work hard)  solut ion (G) .  

The advantage of many-body theory lies to a large extent in a very 
efficient and simple book-keeping system. Different quantities like 
say M or the total energy can be given as expansions where each 
term is represented by a diagram picturing a scattering process. The 
diagrams which occur in a given expansion are uniquely specified 
by a few simple topological rules. This has rendered it possible to 
make partial summations in the expansions and to draw conclusions 
regarding their analytical properties, which very probably might 
never have been discovered without the simple diagrammatic rep-
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resentation. There has also been developed a functional derivative 
technique to treat Green's functions, which in some respects is superior 
to the expansion technique and must be considered a complementary 
tool. 

It should be emphasized that in this section we have only taken 
up a rather limited aspect of many-body theory. Thus we have not at 
all considered e.g. temperature effects, while one of the most important 
achievements of many-body theory is the ease and power by which 
it incorporates the theory of statistical thermodynamics. 

3. Summary of paper A 

When we want to proceed beyond general statements to predictions 
for specific problems we have to develop an approximation scheme. 
In this paper we have derived a systematic expansion of the self-
energy M in terms of a screened interaction W rather than the bare 
Coulomb interaction v. We can write W—ve ~1 = v( 1 — Pv) ~1 where e 
is the dielectric function and P the polarization function. W represents 
the effective interaction between two electrons since it by definition 
equals the sum of the direct (bare) interaction and the indirect 
interaction via the polarization charges. The latter is taken from 
linear response theory. 

When the polarizability of the system is small, W will differ only 
little from v. Experience from calculations on atoms indicates that 
an expansion in v is rapidly convergent in this case. The expansion 
of M in terms of W can be written, omitting the notation for integral 
signs and variables 

M=GW+GWGWG+ . . .= 

= G(vJ
rvPvJ

r. . ,)-{-GvGvG-•)-. . . (3-1) 

The GvPv term gives the direct contribution of second order, while 
GvGvG gives the exchange contribution of second order. Thus the 
expansion of M to first order in W contains both the first order and 
the direct second order terms of the expansion in v. 

When the polarizability of the system is large, an expansion in v 
is poorly convergent or divergent. In this case W is strongly screened 
and thus much weaker than v. We then expect that the expansion 
in W should have much better convergence properties than the one 
in v. To show that the convergence is good enough to be useful is an 
essential purpose of this paper. 
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We have not yet specified how G and W should be approximated 
when we make a certain truncation in the expansion for M. In the 
scheme developed in this paper we use a self-consistency requirement 
with a corresponding variational principle. When we truncate the 
expansion for M at a certain order in W=v(\—Pv)~1, the expansion 
for P — GG-\-GGWGG-\-. . . should be truncated at the next lower 
order. In the equation for G 

(e—h—M)G= 1, (3.2) 

both h and M=GW-\-GWGWG-\~. . . then have a well-defined depen
dence on G for each truncation of M, which gives us the selfconsistency 
requirement. 

An expansion of this kind is numerically useful only when the first 
order approximation is reasonably accurate. A good test case for the 
method is the problem of the electron gas since the polarizability 
is very high in this case. The electron gas has many features in common 
with a real metal and there is little doubt that if our approximation 
scheme works for the electron gas it will also work for a metal. As 
shown in paper B the results for the electron gas are actually also 
of direct use in the theory of metals. 

The discussion of the electron gas forms a large part of paper A. 
It is rather technical and we will not here take up any of its details. 
The main conclusion is that the first order approximation for M 
works reasonably well in its predictions for the total energy, the 
chemical potential and the excitation spectrum. The higher the 
density of the electron gas the more accurate is the first order 
approximation. The prediction for the magnetic susceptibility seems 
to be fairly reliable at the density of aluminum but its value is doubtful 
at alkali-metal densities. 

The properties of the electron gas have been treated earlier by 
many different approaches. For high densities its properties are 
well established. For metallic densities on the other hand there was 
little possibility, except for the total energy, to judge accuracy and 
reliability of the rather limited results of earlier Calculations. 

In paper A we also discuss a certain approximation called COHSEX 
of the first order approximation for M. If we write M in a time-
representation rather than an energy-representation, we have 

M (x, x'; R )=ihG(x, x'\ T ) W ( X ,  X ' \  T).  (3.3) 



9 

The Hartree-Fock approximation is obtained from Eq. (3.3) if we 
neg lec t  po l a r i za t ion ,  i . e .  i f  we  r ep lace  W( X,X ' ;T)  by  v(x ,  x ' )S(r ) .  We  
now assume that polarization does not broaden the S-function peak 
too much, so that the time-variation of G(r) within the peak still can 
be neglected. This leads to the COHSEX approximation 

M(x,  x ' \  e )  =  S(x—x')V C O H (x )—W(x,  x ' ;  e=0)p(x ,  x ' ) ,  (3.4) 

where 

VCOH( x )  =  %$ v ( x > x ' )R(x ' ,  x;  e=0)dx ' ,  R=e~ 1 —1. (3-5) 

B(x' ,  x;  e=0) is the response function giving the induced charge 
at point x' f rom the presence of a charge at point x. VCOH is the po
tential a test charge experiences from the electrons it pushes away 
around it. The index COH stands for COulomb Hole, which is the 
traditional name for this effect. The factor \ in VCOH comes from the 
mathematics but can also be verified from simple electrostatics. 
The last term in Eq. (3.4) is the same as the exchange potential of 
HF theory, cf Eq. (2.5), but with v replaced by the static screened 
potential W(e=0). This term can thus be called Screened EXchange. 

COHSEX is only a rough approximation for an electron gas but 
for the Rydberg-like levels of alkali atoms it works quite well. In 
the limit of high quantum numbers the contribution from exchange 
is negligable and the Coulomb hole term reduces to the well-known 
expression 

V coH =~ ~,  (3.6) 

where oc is t he polarizability of the ion. Eq. (3.6) was derived already 
by Born and Heisenberg in 1924. 

4. Summary of paper B 

Paper B is an application on the theory of solids of the ideas devel
oped in paper A. The problem consists in untangling those contri
butions which are associated with the ions and the periodic structure 
from those which are essentially the same as for the electron gas. 
This raises a series of rather technical questions which cannot be 
treated in a general way. The treatment given here is made with 
the small-core metals in mind, but with suitable changes much of 
it is pertinent also to a larger class of solids. 
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The question of a proper periodic potential for the calculation of 
the valence band in a solid, has been much discussed in the literature. 
In paper B we derive an explicit expression for this potential. It 
has the following contributions: 

(i) The Hartree-Fock potential from the free ions 

(ii) The Coulomb potential from the valence electrons 

(iii) A correlation contribution 

The diagonal elements between Bloch functions of contribution (iii) 
are electron-gas like. The non-diagonal elements are small. We expect 
them to give a significant but not drastic effect on band gaps. All 
these contributions are quite feasible to calculate with a fast computer. 

The absolute position of the core levels in a solid can now be 
measured very accurately by a new technique developed in Uppsala. 
Appreciable shifts are found for the same ion in different solids. In 
paper B we have succeeded to separate out the contributions to a core 
level which occur also in the free ion. The contributions which cause 
the shift in the solid relative to the free ion are: 

(i) The Coulomb potential from the valence electrons 

(ii) A polarization contribution from the valence electrons 

(iii) A coupling term to other core levels 

(iv) The exchange potential from the valence electrons 

Contributions (iii) and (iv) are rather small. Contribution (i) is the 
largest. When the polarizability is large, as for metals, contribution 
(ii) is of comparable magnitude to contribution (i). All these contri
butions are quite feasible to calculate with a fast computer. 

Whether we treat the valence band or the core bands we need 
to know the Coulomb potential from the valence electrons. For many 
metals the charge density has approximately a muffin-tin form, i.e. 
it is spherically symmetric inside a sphere around each ion and constant 
between the spheres. The potential from such a charge distribution 
is discussed and it is pointed out that we now have a very good 
knowledge of that potential. 

In an appendix we give improved values for the total energy 
and the Fermi energy of an electron gas, using an extrapolation for
mula. The values obtained for the Fermi energy should be accurate 
within a few hundredths of an electronvolt. 
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Comparisons with experiment are made for the core levels and 
Fermi level of alkali metals and aluminum. For these simple metals 
essentially no calculations had to be done and we could instead use 
results for the electron gas given in paper A. The comparison with 
experiment came out satisfactory which confirms the analysis made 
in paper B. 
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New Method for Calculating the One-Particle Green's Function with 
Application to the Electron-Gas Problem* 

LARS HEDIN! 

Ar gönne National Laboratory, Ar gönne, Illinois 

(Received 8 October 1964; revised manuscript received 2 April 1965) 

A set of successively more accurate self-consistent equations for the one-electron Green's function have been 
derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential. 
The first equation is adequate for many purposes. Each equation follows from the demand that a corre
sponding expression for the total energy be stationary with respect to variations in the Green's function. The 
main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra 
characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in 
metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron 
missing from a closed-shell structure. In the latter cases we obtain an approximate description by a modified 
Hartree-Eock equation involving a "Coulomb hole" and a static screened potential in the exchange term. As 
an example, spectra of some atoms are discussed. To investigate the convergence of successive approxima
tions for the Green's function, extensive calculations have been made for the electron gas at a range of metallic 
densities. The results are expressed in terms of quasiparticle energies E(k) and quasiparticle interactions 
/(k,k')- The very first approximation gives a good value for the magnitude of £(k). To estimate the deriva
tive of E(k) we need both the first- and the second-order terms. The derivative, and thus the specific heat, is 
found to differ from the free-particle value by only a few percent. Our correction to the specific heat keeps 
the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by 
Silverstein and by Rice. Our results for the paramagnetic susceptibility are unreliable in the alkali-metal-
density region owing to poor convergence of t he expansion for /. Besides the proof of a modified Luttinger-
Ward-Klein variational principle and a related self-consistency idea, there is not much new in principle in 
this paper. The emphasis is on the development of a numerically manageable approximation scheme. 

1. INTRODUCTION 

ONE-PARTICLE equations are widely used to give 
an approximate description of complicated inter

acting systems of particles. The Hartree-Fock (HF) 
equations are used for atoms and molecules, the shell-
model equations for nuclei, the Htickel equations for 
aromatic molecules, and the periodic potential equa
tions for calculation of the energy-band structure of 
solids. These equations were originally little more than 
a fairly effective phenomenological model of the system. 
In the last ten years with the development of formal 
techniques to treat many-particle systems, much work 
has been clone to connect these equations with an exact 
theory. Although we now have a wealth of beautiful 
general theorems, fairly little has been done towards 
manageable and reliable approximation schemes es
pecially for interacting electrons. 

The high-density electron gas is a case that has been 
examined diligently. Its properties are expressed as 
series expansions in rs, where 4xrs

3a0
3/3 = fi/iV= 1/p, 

with a0=Bohr radius = 0.5292X10-8 cm. In the me
tallic density region rs = 2-5, most of the series ex
pansions, however, predict manifestly wrong results. 

In this paper the electron-gas problem is reinvestigated, 
formally and numerically, with the main purpose of esti
mating the convergence of our expansion in the metallic 
density region. The application of th e method for solids 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

t Now at the Department of M athematical Physics, Chalmers 
University of Techno logy, Gothenburg, Sweden. 
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and particularly for alkali metals will be discussed in 
another paper.1 

The results of t his paper also provide a new approach 
to, and qualitative conclusions r egarding, the general type 
of ex citation spectra, which correspond to a single excited 
electron outside or a hole i n a closed-shell structure. I n 
particular, the alkali atoms and the Born-Heisenberg 
type of pola rization correction are discussed. The treat
ment is concerned only with a nonrelativistic descrip
tion of electrons moving in a fixed configuration of 
nuclei. 

In Sees. 2-5 the main results of the formal analysis 
are presented, detailed derivations being given in the 
Appendices. In Sees. 6-10 the numerical results for an 
electron gas are given and the accuracy of ou r approxi
mations discussed. Section 11 contains a summary of 
important results. 

2. FORMAL FRAMEWORK 

The conceptual tool to be used is the one-particle 
Green's function,2 

G(\,2)=-(i/h)(TmW{2))). (1) 

Here 1 and 2 each stand for the five coordinates of a 

1 L. Hedin, Arkiv. Fysik (to be published). 
2 P. C. Martin and j. Schwinger, Phys. Rev. 115, 1342 (1959). 

See also T. Kato, T. Kobayashi and M. Namiki, Progr. Theor. 
Phys. Suppl. 15, 3 (1960) ; A. K lein, Lectures on the Ma ny-Body 
Problem, edited by E. R. Caianiello (Academic Press Inc., New 
York, 1962), p. 279; P. Nozières, The Theory of Interacting Fermi 
Systems (W. A. Benjamin, Inc., New York, 1964) ; A. A. Abrikosov, 
L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field 
Theory in Statistical Physics (Prentice-Hall, Inc., Englewood Cliffs, 
New Jersey, 1963). 
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particle : space, spin, and time, (1) = (ri,f i,/i) = (xi,/i) = X\. 
T is the Dyson time-ordering operator and \p is the field 
operator in the Heisenberg representation. The brackets 
stand for averaging with respect to the exact ground 
state, rather than the noninteracting ground state of 
the system. 

The Green's function G obeys the equation 

[e—/z(x)-F(x)]G(x,x'; e) 

|TV,0) stands for the ground state of the A'-particle 
system and the sum 5 runs over all states of th e TV+1 
and TV—1 particle systems, the configuration of the 
nuclei being unchanged. 

The amplitudes /s(x) and the energies es  are solutions 
of th e eigenvalue equation3 

[e—Ä(x)—F(x)]/(x)- f M(x,x"; e)f(x")d(x") = 0, (5) 

- / M(x,x"; e)G(x",x'; e)d(x") = Ô(x,x'), (2) 

where 
all nuclei 

h(x)= — (h2/2m)V2— E Znv(x,R„), 

V(x) = j v(x,x')p(x')d(x'), 

Zn and Rn = charge and position of t he nth nucleus, 

v(x,x') = *2/|x-x'| , 

p(x) = (ff(x)f(x)) 

= number density of the electrons 

=  — i h G ( x ,  I ;  x ,  H - A ) ,  ( A — » 0 ,  A > 0 ) ,  

'  ie 
G(x,x'; e) = / G(x,t; x',t') exp 

L h 
-{t-1') d(l-l'). 

M is the self-energy operator which represents the 
complicated correlation effects of a many-particle sys
tem. A series expansion of M in v gives as first term the 
HF exchange potential, 

Å/"HF(x,x'; e)= — v(x,x')(\f/ f(x')\l/(x)) 

= ihv(x,x')G(x, t\x\ M-A), (3) 

which obviously is independent of e. 
Later we will write down a set of Junctionals of G giving 

successively more acc urate appro ximations of M. Since 
both V and M are g iven in terms of G, Eq. (2) represents 
a self-consistency pr oblem which can also be formulated as 
a variational pro blem. 

From definition (1) it readily follows that 

G(x,x/; e) = Z ( f s (x) f s*(x')/(e-e s)), 
8 

where 

f,(x)=(N,0\m\N+ l ,s); 

e s  — En+i,s—En,o—i A when es~^fjL. 

f s(x)=(N-l,s\Hx)\N, 0); 

es = Zsjv,o—-Etf-i.s+iA when e s < ß .  
and 

(4) 

Ii = En+i ,o•~ En ,o = chemical potential 

= — (electron affinity). 

in case of a discrete energy value es. In the continuous 
part of the spectrum the solution of (5) in general gives 
a complex eigenvalue, e. The real part of e repr esents 
some average energy of a group of excited states and the 
imaginary part of e the spread in energy of thes e states. 
It is understood that we use the analytical continuation 
of M into the complex e plane. 

The self-consistent solution of Eq . (2) using M  =  M H F  

gives a G built up from the fs and es w hich are the one-
particle functions and energy eigenvalues of the HF 
approximation. The N smallest values of the es corre
spond to occupied one-electron functions and the re
maining to unoccupied or "virtual" functions. 

Besides giving information on excitation spectra, the 
one-particle Green function allows us to calculate the 
expectation value of an y one-particle operator by 

(TV I E 0(Xi)|A0= [(TV I i/'t(x)0(x)^(x) | N)dx 
»=i J 

f de 
= —i —^(x)e"A0(x)G'(x,x; e), (6) 

J 2ir 

and also that of th e total-energy operator II by 

de r de 
( N \ H \ N ) = — i  /  — d { x ) d { x ' ) e u  

J 2 7T 

X{5(x-x/)(A(x')+|F(x/))+l^(x,x'; e)} 

XG(x',x;£)+iE'Z^ (R„,Rm). (7) 
nm 

In Eq. (7) the term involving h gives the expectation 
value of th e kinetic energy plus the electrostatic inter
action between electrons and nuclei. The term con
taining V can be written 

1 f 
-  / p(x)v(x,x')p(x')dxdx'. 
2 J 

(8) 

3 This equation was first derived, in a very general form, by 
J. Schwinger, Proc. Natl. Acad. Sei. U. S. 37, 452 (1951). Its 
application to many-electron problems has been discussed b y G. 
Pratt, Phys. Rev. 118,462 (1960) ; Rev. Mod. Phys. 35, 502 (1963) ; 
L. Hedin and S. Lundquist, Quantum Chemistry Group, Uppsala, 
Sweden, Technical Report T III, 1960 (unpublished) ; L. Hedin, 
Quantum Chemistry Group, Uppsala, Sweden, Technical Report 
No. 84, 1962 (unpublished); Bull. Am, Phy s. Soc. 8, 535 (19 63). 
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The MG term gives all exchange a nd correlation con
tributions. It is easy to check that Eq. (7) reproduces 
t h e  H F  ex p r e s s i o n  f o r  t h e  e n e r g y  w h e n  G H F  a n d  M K ¥  

are used. 

3. EXPANSION OF M IN TERMS OF A 
SCREENED PO TENTIAL, W 

We now turn to our central problem, namely, the de
velopment of good app roximations for M. The simplest 
approach is to develop M in a power series of v. It is well 
known, however, that such an expansion diverges for 
metals. Even in cases when it is convergent, its con
vergence rate rapidly becomes poor with increasing 
polarizability of the system. One common way to handle 
this problem is to make partial summations to infinite 
order. The difficulty here is one of knowing what partial 
summations to choose in order to obtain a systematic 
theory. 

In this paper a new method is developed. We use the 
Schwinger technique1 of functional derivatives to gener
ate an expansion in terms of a screened potential4 W 
rather than the bare Coulomb potential v. 

The potential W was first introduced by Hubbard5 : 

W(l,2)=v( l ,2)-~ [*(l,3)<7V(3)/(4))> 
h J 

Xt(i,2)d(3)d(i)=W{2,l),  (9) 

where 

p/(i)=^t(1¥(1)-<^W(1)); 
®(1,2) = ®(xi,X2)5(/I— h). 

W( 1,2) essentially gives the potential at point 1 due to 
the presence of a test charge at point 2, including t he 
effect of th e polarization of the electrons. IV represents 
the effective interac tion between two electrons and is 

«r/N/WVVVuv_ 

S3 
FIG. 1. Diagrams representing the expansion of M (1,2).  The 

one-particle Green's function G(l,2) is represented by an arrow from 
2 to 1, and the screened potential W (1,2) by a wiggly line between 
1 and 2. 

4 The feasibility of expandin g in a screened interaction has been 
emphasized by J. C. Phillips, Phys. Rev. 123, 420 (1961). 

6 J. Hubbard, Proc. Roy. Soc. A240, 539 (1957). 

i i i 

FIG. 2. Diagrams representing the expansion of P (  1,2). 

much weaker than the bare Coulomb interaction v if 
the polarizability is large. W is spin-independent. 

The first two terms in the expansion of M are 

M(l,2) = ihG(l,2)W(l+ ,2) — h2  [G(1,3)G(3,4) 

where 
X G(4,2) W(l ,4) W (3,2)d(3)d(4) + • • • , (10) 

l+ = Xi, /i+A. 

The expansion for M is represented by diagrams in Fig. 
1. There is only one first-order and one second-order 
term while there are six third-order terms. 

The definition (9) of W is not directly useful since it is 
in terms of the density-density correlation function 
rather than the Green's function. Instead we find W from 
the integral equation 

W( 1,2) = »(1,2)+ fw(l,3)P(3,4)v(4,2)d(3)d(4), (11) 
J 

where the kernel P can be expanded as 

P( l ,2)=-ihG( l ,2)G(2, l )+h2 J  G(1,3)G(4,1) 

X JF(3,4)G(2,4)G(3,2)</(3)d(4) + • • •. (12) 

The expansion for P is represented by diagrams in 
Fig. 2. 

Equations (11) and (12) define IT as a functional of G 
and thus Eq. (10) gives M as a functional of G.6 G then 
has to be obtained self-consistently from Eq. (2). The 
practical usefulness of this scheme of course depends 
on how many terms in the expansions of M and P are 
needed to provide a good approximation. In the follow
ing we will try to illuminate that question as much as 
possible. 

6 Special cases of such functionals have been proposed by G. 
Baym and L. P. Kadanoff but no systematic expansion was de
veloped. See G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 
(1961) ; G. Baym, Phys. Rev. 127, 1391 (1962) ; L. P. Kadanoff 
and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, 
Inc., New York, 1962). 
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4. REPRESENTATION OF M BY A "COULOMB HOLE" PLUS SCREENED EXCHANGE 

To start with we exhibit the structure of the first-order term in M . From the spectral resolution of G and of 
the density-density correlation function in W we have 

M(x,x';e)= drYL exp 
I T  

—(e— e.) 
_ h 

/.(x)/,*(x')[0(r)-0(/x-e.)] 

X \  v ( x , x ' )ô( t +A ) — ~  J v(x,x")Y,'  Rt(x")R*(x'") exp^ — e t  ) v{x'" ,x')dx"dx"'\  , (13) 

0(T) = 
1 for r>0 

0 for r<0. 

The term inside the curly brackets is IF(l+,2). Rt(x) is 
an oscillator strength function, 

i?«(x) = < ]V,/|^(xV(x)|A0 

the ordinary oscillator strength being 

2m 
— <  

h2  
R t(x ) f T Y  dx 

(14) 

(15) 

fk*(x)M(x,x'; €k) fk(x')dx dx' 

= rfrl exp 
' I T  

—(tk— e s) 
.  h 

[0(T)—0(M—«on 

X<jb|JF(r)|^>. (16) 

Here, 

Here Wp=W—v and we have used the fact that 

Z/8(x)/s*(x') = 5(x—x'); 
S  

E /.(X)/,*(X'WM- 6.) = <*'(x>(x)>. (19) 

where n gives the direction of the dipole moment and 
et — EN,t—EN- The prime on the sum over t in Eq. (13) 
indicates that the term with et=0 is excluded. 

One important use of M is in Eq. (5), which gives the 
excitation spectra of t he (A±l)-particle systems. The 
energy shift of a level k caused by M is approximately, 

(ks\W(r)\ks)= J fk*(x)f s(x)W(x,x'; r) 

X f s *(x') fk{x')dx dx' , (17) 

is a Coulomb integral when k = s, and an exchange in
tegral when k^s. Generally the Coulomb integral will 
be much larger than the exchange integrals and the 
largest exchange integrals will correspond to energies 
es close to e/c. In many cases then the important energy 
difference, e^—es, will be small compared to the im
portant energy et tha t appears in W. Assuming that to 
be the case, we put the factor exp[(fr/Ä)(e— e s)] in M 
equal to 1 and obtain, 

M(x,x'; e) = §(5(x—x')Wp(x,x'\0) 

-W(x,x'-0)(^(x')^(x)). (18) 

The first factor in Eq. (18) gives the contribution of a 
"Coulomb hole"7 since, according to general results of 
linear response theory, 

TFp^x'; 0)= / v(x,x")Ap{x")dx" 

v(x,x")R(x",x'"; 0Mx'",x')dx"dx'" , (20) 

where Ap(x") is the change in number density at the 
point x" caused by the presence of a point charge at 
point x'. ^(XJX'jO) is the density-density correlation 
function. The factor | arises mathematically from 0(r) 
and physically because the force on the electron due to 
the induced charge is proportional to 

gradx Cv(x,x")Ap(x")dx" = \  gradxTFp(x,x; 0). 

The last term in Eq. (18) is a screened exchange 
potential. If we rep lace W by v, the Coulomb hole dis
appears, the screened exchange potential becomes un
screened and we are back at the HF expression for M. 
We will abbreviate the "Coulomb hole plus screened 
exchange" approximation by COHSEX. 

For the Rydberg-like spectra of one electron outside a 
closed shell, the assumptions behind COHSEX are 
readily verified. Let us take sodium as an example. 
Here the smallest (AT+l)-type excitation energy is 
ei=£(Na,lsW2/>63s)-E(Na+,ls22522/>6)= -0.378 Ry, 

7 E. Wigner and F. Seitz, Phys. Rev. 43, 80 4 (1933) ; 46, 509 
(1934) ; E. Wigner, ibid. 46, 1002 (1934) ; Trans. Faraday Soc. 34, 
678 (1938). 
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TABLE I. Quasiparticle energies in rydbergs. (Experimental values without reference are taken from Charlotte Moore's tables.) 

N Is 2s 2 p 3s 3 p 3d 4s 4 p 5 p 

2 He, HF 
He, expt 

— 1.8359® 
— 1.8073 

2 Li+, HF 
Li+, expt 

-5.5847" 
-5.5597 

-0.3934b 
-0.3963 

— 0.2574b  

-0.2629 
—0.11354b  

—0.114-48 
—0.06356b  

-0.06394 
—0.04050b  

-0.04075 

10 Ne, HF 
Ne, expt 

-65.5446° 
— 63.89° 

— 3.8606" 
-3.5628° 

-1.7007" 
-1.5874 

10 Na+, HF 
Na+, expt 

-81.5190° 
-79.88° 

— 6.1474" 
-5.8866 

-3.5944" 
-3.4810 

-0.372<i 
-0.3777 

— 0.2188d  

-0.2231 
—0.1406d  

-0.1432 
—0.1002d  

-0.1019 

10 Mg++, HF 
Mg-1-"1", expt 

— 8.944® 
-8.7359 

-5.990e  

-5.8970 

10 Si4+, HF 
Si4+, expt 

— 16.17f  

—15.962 
-12.41* 
-12.273 

-3.275' 
-3.3180 

— 2.639f  

-2.6655 
— 1.839f  

-1.8565 
— 1.538f 

— 1.5502 
— 1.319f  

—1.3279 
— 0.793f  

-0.7977 

18 Ar, HF 
Ar, expt 

-237.2202° 
-234.6° 

-19.1426° 
-18.28° 

-2.5545° 
-2.1491 

-1.1818° 
-1.1627 

18 K+, HF 
K+, expt 

-267.5042° 
-264.8° 

-23.5962° 
-22.63° 

-3.9275° 
-3.5288° 

-2.3409° 
-2.3387 

18 Ca++, HF 
Ca++, expt 

— 5.557« 
-5.1634 

-3.756« 
-3.7743 

-0.6659« 
-0.7478 

—0.8295« 
-0.8725 

—0.6193« 
-0.6416 

36 Kr, HF 
Kr, expt 

— 2.303h  

-2.0386 
— 1.06h  

-1.0453 

8 P. S. Bagus, T. Gilbert, C. C. J. Roothaan, and H. D. Cohen, (to be published). 
b V. Fock and M. Petrashen, Physik. Z. Sowjetunion 8, 547 (1935). 
c P. S. Bagus, University of C hicago thesis, (to be published). 
d V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368 (1934). 
« W. J. Yost, Phys. Rev. 58, 557 (1940). 
f D. R. Hartree, W. Hartree, and M. F. Mannig, Phys. Rev. 60, 857 (1941). 
8 D. R. Hartree and W. Hartree, Proc. Roy. Soc. A164, 167 (1938). 
t B. H. Worsley, Proc. Roy. Soc. A247, 390 (1958). 

while the smallest excitation energy appearing in W  is 

E(Na+,ls22s22/>5(2P3/20)3s) 

-£(Na+, ls22s22/>6) = 2.414 Ry. 

The average (ei— es) will b e numerically smaller than 
d unless the exchange integrals with the continuum and 
the core states have great influence. 

For higher Rydberg-like states the functions f g  are 
well o utside the closed shell. The exchange term then 
becomes negligible. We can further make a multipole 
expansion of th e two v's in the Coulomb hole term. The 
result is simply 

Af(x,x'; e)= — (ae2/21r| 4)<5(x,x'), (21) 

where a is the ion-core polarizability. Eq. (21) was first 
derived by Born and Heisenberg8 in 1924. It has been 
rederived by quantum-mechanical methods,9 and widely 
used10 to obtain polarizabilities from spectral data. 

8 M. Born and W. Heisenberg, Z. Physik 23, 388 (1924). 
9 I. Waller, Z. Physik 38, 635 (1926) ; J. E. Mayer and M. G. 

Mayer, Phys. Rev. 43, 605 (1933) ; J. H. Van Vleck a nd N. G. 
VVhitelaw, ib id. 44, 551 (1933); H. Bethe, Handbuch der P hysik, 
edited by H. Geiger and Karl Scheel (Julius Springer-Verlag, 
Berlin, 1933), 24.1, 431. 

10 D. R. Bates, Proc. Roy. Soc. A188, 350 (1947) ; E. Trefftz 
and L. Biermann, Z. Astrophys. 30, 275 (1952); A. S. Douglas, 
Proc. Cambridge Phil. Soc. 52, 687 (1956) ; K. Bockasten, Arkiv 
Fysik 10, 567 (1956) and others. 

The Coulomb-hole contribution will lower the energy 
while screening of the exchange will raise the energy rela
tive to the HF value. Experimental values of e3 are 
generally lower tha n the H F values for es>iJ. and higher 
for es<n. To the extent that Eq. (18) remains valid, 
this shows that the Coulomb-hole correctio n dominates for 
the higher orbitals while the screening of the exchange 
dominates for the core orbitals. A comparison between HF 
values and experimental values is given in Table I. 

5. LANDAU FERMI-LIQUID THEORY. THE QUASI
PARTICLE INTERACTION IN TERMS OF W 

Many important aspects of the theory of m etals de
pend only on the excitation spectrum close to the Fermi 
surface. This can advantageously be discussed in the 
framework of Landau's Fermi-liquid theory.11 For 
simplicity we here treat only the electron gas in a uni
form background of po sitive charge. 

Since the electron gas is translationally invariant, 
G(l,2) and M( 1,2) depend only on the difference be
tween 1 and 2. A Fourier transform with respect to space 

11 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956); 
32, 59 (1959) ; 35, 97 (1958) [[English transis. : Soviet Phys.—JETP 
3, 920 (1956); 5, 101 (1957); 8, 70 (1959)]. See also P. Nozières, 
Ref. 2. 
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and time transforms Eq. (2) into 

[e- e(k)]G(fc) - M(k)G(k)  =  1 ;  

k  =  (k, e) ; e(k) = h 2k2 /2m . (22) 

The Fourier transforms are defined as 

G(k)~ J exp(i(kr+er/Ä))G(xi,/i; X2,/2)rfrJr; 

r=ri—r2, r=h~h.  (23) 

The set of coordinates k should also contain two spin 
variables. We omit them since for a paramagnetic 
ground state, G(k) and M(k) are diagonal in spin with 
equal diagonal elements. W(k) is spin independent by 
definition. The V term of Eq. (2) exactly cancels the 
uniform background of positive charge in the limit of 
large N. 

The expansion for M now becomes 

M(k)=-^— [  e- i t , A W(k' )G(k-k ' )dk '  [  W(k ' )W(k")G(k+k' )G(k+k")G(k+k'+k")dk 'dk"+--]  
(2r)4 J (27r)8 J 

W(k)  = v(k) /( l -v (k)P(k))]  ^) = 47re2/|k|2; (24) 

2 i f  2 f  
P(k)= /  G(k ' )G(k ' -k)dk '+ /  G(k ' )G(k")G(k"-k)G(k ' -k)W(k ' -k")dk 'dk"+ • •  • .  

(27r)4 J (27r)8 J 

The factor 2 in P(k)  comes from the spin summation. 
The eigenvalue equation, Eq. (5), for the quasiparticle 
energies becomes 

£(k) = e(k)+M(k,£(k)). (25) 

The chemical potential ju is equal to £(k0) where k0, the 
Fermi momentum, is the same as for the noninter-
acting gas,12 

|ko|=(l/ar,flo); a=(4/97r)1'3 = 0.52106. (26) 

The derivative of E(k) with respect to | k| at the Fermi 
surface is 

E'{k) = e' (k)+zM'(k ,  M+ e(k) - e(k0)) 

Z- l =l-(dM(k 0 ,u) /de) .  

Equation (27) was obtained by expanding M(k,E(k)) as 

M(k, ju+e(k)-e(ko)) 

+ (£(k)—ju— e(k) + e(ko))ôM/de- \ -  •  •  •  ,  

taking the derivative with respect to k, and solving for 
E'(k). The prime on M refers to a total derivative, not a 
partial derivative. Equation (27) is exact on the Fermi 
surface but only approximate when |k|?^|ko|. i£'(k) 
gives the level density at the Fermi surface and is 
simply related to the specific heat C12 : 

C0/C=£/(k)/É
,(k). (28) 

Here C0 is the noninteracting or Sommerfeld value of C, 
C0=16.86rs

2r ;Lical/0K2 mole, z gives the discontinuity 
at the Fermi surface in the momentum distribution 
wff(k) = (A^| ök.^ök^l N). Here ak,<r is rel ated to the field 
operator by the relation 

^(x) = (l/ß1/2)2Zk.<r ök,<reik'xXff(f). 

The noninteracting many-particle states of an elec

tron gas are uniquely specified by their momentum dis
tribution na{k). Thus, e.g., the paramagnetic ground 
state is given by 

»,<«(k) = 0(|ko|-|k|). (29) 

The basic assumption in Landau's theory of a Fermi 
liquid is that for small excitation energies there exists a 
one-to-one correspondence between the noninteracting 
many-particle states and the true states. It has been 
proven13 that the Landau theory is exact to the extent 
that the interacting many-particle states can be ob
tained from the noninteracting ones by infinite-order 
perturbation theory. 

The change in energy of th e true state corresponding 
to a change in the distribution function, w<r(k) = w(r

(0)(k) 

+ <5«<r(k), of the noninteracting state is 

8E=Z £(k)Mk) 
k ,<r 

+1 Z faa'(kX)àn°{k)bna>(k')-\ . (30) 
k,k',(T,<r' 

Here E(k) is defined by Eq. (25) and / is the quasipar
ticle interaction. The magnitude of k and k' is | k0| and 
/ depends only on the angle between them, faa'(6). We 
split / in two parts, 

/-'(0) = /o(0) + We(0). (31) 

The specific heat and the paramagnetic susceptibilities 
are obtained from simple integrals involving /. In the 
former the combination 2enters and in the latter 
fe.n We can write / as11 

/(k,k/) = 27rizk2k' °r°(k,k/), (32) 

where °r° is defined by the integral equation 

12 J. M. Luttinger, Phys. Rev. 119, 1153 (1 960). 
13 P. Nozières and J. M. Luttinger, Phys. Rev. 127, 1423, 

1431 (1962). 
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°ro0M')=o/0M') 

+ J °I(k,k")G2(k") °T°(k",k')dk", (33) 

°I(k,k') = 8M(k)/8G(k'). 

In Eqs. (32) and (33) we have for simplicity taken k to 

include a spin index. Since M does not contain the 
Hartree-like potential, °I and °r° are the "proper 
operators" marked with a tilde in Nozières' book. 

Using the expansion for M given in Eq. (24) and 
derived in Appendix A, we obtain the following ex
pansion of /  in powers of W 

/e(k,k')= ——|ïF(k-k';0H—— f [2IF(k-k'; 0)W(k")G(k+k")G(k'+k") 
V I (2Tr)4 J 

/o(k,k'): 
z" i 

n (2tvY 

+W(k")W(k"+k-k')G(k+k")(G{k'-k")+G{k+k"))~\dk"^ , (34) 

W\k")G{k+k")(G{k'-k")+G{k'+k"))dk". 

Here k = (k,/x) and k'=(k',n). The volume of the system, 
which appears in the denominator of /, is balanced since 
the number of terms in the sum in Eq. (30) is of the 
order of the number of particles. If we indicate the order 
in W by a superscript, we have that the functional 
derivative of M a) gives rise to /e

(1) and /0
(2) while that 

of M{2) gives the first two terms in /e
(2). The third 

term in /e
(2) comes from the °IG2 °r° term in Eq. (33). 

The first-order term in / involves only the static 
screened potential14,15 and corresponds to the COHSEX 
approximation (Sec. 4) for M. That approximation 
for M is however not so clear-cut in the case of an elec
tron gas since the et sp ectrum of W starts at zero rather 
than at a large finite value. The average value of 
could, on the other hand, be fairly large since the 
plasmon energy carries a substantial fraction of the 
oscillator strength. 

From Eq. (18) we find that COHSEX for an electron 
gas is 

1 1 
M( k,e) = -

2 (27r)a 
[^(k',0)-Hk'):]rfk' 

— fdk'W(k',0)— feu'AG(k-k';e')de'. (35) 
(27t)3 J 2iri J 

The Coulomb hole term is independent of k and e and 
thus a constant. The integration over e' in th e last term 
of E q. (35) gives, closing the contour in the upper half-
plane and using the analytic properties of G, 

1 

2 TT i 
eü'AG(k',e')de 

1 ImM(k',e')^' 

TT [e/-e(k/)-Re7kT(k',e/)]2+[ImM(k/,e/)]2 

(36) 
14 M. Watabe (Ref. 14) has recently treated the Landau theory 

using this approximation for /. He does not however have the z2  

factor, which is about 0.5 for metallic densities, nor does he take 
the second-order te rms into account. 

16 M. Watabe, Progr. Theoret. Phys. (Kyoto) 29, 519 (1963). 

If we treat ImM as a small energy-independent quantity, 
the integrand in Eq. (36) becomes a 8 function and we 
obtain for the screened exchange term in Eq. (35), 

1 

(2tt ) s  

PF(k',0) 

|k—k'Klkol 

X 1-
aM[k-k,,£(k-k')]> 

de > 
dk'. (37) 

The last factor in Eq. (37) equals z when [ k—k' | = | k0| 
and it varies fairly slowly with |k— k'|. Putting this 
factor equal to z a nd using Eq. (27), the specific heat 
comes out the same as from the linear term in /. The 
magnitude of M is however about 25% too large at 
metallic densities. Judging COHSEX from what it 
gives for the magnitude and derivative of E (k) at the 
Fermi surface, we conclude that it is a rough but reason
able approximation at metallic densities. From our 
numerical results, to be discussed later in detail, it is 
clear that COHSEX becomes better the smaller the 
value of rs. For small rs the factor z poses n o problem 
since here16 z= 1 — 0.17rs and thus tends to 1. 

An approximation similar to that in COHSEX is 
useful for estimating high er orde r diagrams. T he expres
sion for Mw can be written 

«G(l,2)W(l+,2) = [ (̂lV'(2))9(r) 

-<^(2)«l)>«(-r)][t(l+2)+U'(l+2)-»(l+,2)]; 

T — t\—t-i. (38) 

The approximation in COHSEX consists in neglecting 
the time-dependence of (xj/^ ) and (i/'ty), or equivalently 
by replacing 

W(l+,2)—®(l+,2) ô(r)[IF(l,2)—fl(l,2)]i=0. (39) 

M(1) is exceptional in the sense that we have to use 1+ 
rather than 1 in W(l,2). When this is not the case we 

16 E. Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960). 
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can make an approximation in the same spirit as that of 
COHSEX simply by replacing W(t) by <5(r)IF(e=0), 
or if we work with energy-variables, by replac ing W(e) 
by IF( 0). 

It should be noted that while the energy dependence 
of th e M operator is very important for an electron gas 
(see Sec. 9), it is quite negligible for the alkali atoms dis
cussed earlier. Thus if we have an error Ae in the energy 
argument of M, the correction is only of the order 

Ae[_M(e)—MIIF]/(e,, average). (40) 

This is easily seen by noting that MHF is energy-inde
pendent and that the energy derivative of [_M(e) — MHF] 
effectively introduces a factor (et, average)-1. 

6. ELECTRON GAS: SURVEY OF 
NUMERICAL RESULTS 

So far the discussion has been mainly qualitative. 
We will now see to what extent it is supported by 
numerical results for the electron gas. Calculations have 
been made for rs= 1, 2, 3, 4, 5, and 6 and in a few cases 
for smaller and larger r s values. For G we have used th e 
expression 

G(k, e) = 1/(e— e(k) — e0) ; 

e(k) = (&2k2/2m)+î'A sgn(|k0 |  — |  k| ), (41) 

where e0 is chosen so that /x=e(k0) + eo- Fr om Eq. (24) 
we see that if th e M operator is M(k,e) using (41) with 
e0=0, it becomes M(k, e— e0) for eo/^O. P is independent 
of e0. The equation for /x is ß= e(k0)+Af(ko, e0) 
which combined with the above expression for /x gives, 

eo= M [ko,e(ko)J. (42) 

It would have been desirable to have used a self-
consistent G, 

G(k,e) = l/(e-e(k)-M(k,e)). (43) 

This should be possible to do but the size of the numerical 
enterprise is probably considerably larger than is 
justified in a first investigation. That (41) is not too 
bad is shown by the fact that M(k,e(k)) is found to have 
a very weak k dependence compared to e(k). On the 
other hand dM(k,e)/de is found to have an appreciable 
magnitude compared to 1. This might very well effect 
our quantitative results but can do little to change our 
qualitative conclusions regarding the convergence of th e 
expansion in W and the smallness of the specific-heat 
correction. 

For M we use the approximation iGW, and for P , the 
approximation —iGG. A quite reliable estimate of t he 
error in the magnitude of M is obtained from a con
sideration of the total energy of the electron gas. The 
magnitude of the second-order term in M is also esti
mated and found to be of t he same order as the error 
in the first-order term. 

From the relation G=G0-\-Go(M—e0)G we see that 
the correction to Mw = iGW from the use of G Q ins tead 

of G is approximately iGo(M— eo)GoW —iG^MG^W 
+ e0dAf(1)/de. This term is appreciably smaller than the 
uncrossed second-order term appearing in an expansion 
with e0 = 0. The cancellations mentioned by DuBois51 

(p. 54 in his paper) involving this term are discussed in 
Sec. 9. 

The first-order term in the quasiparticle interaction / 
is trivial. The second-order terms have been calculated 
using JF(k,0). The contribution to the specific heat 
coming from /0 has been evaluated with W{k,e). It is 
found that the JF(k,0) approximation gives about 70% 
of the IF(k,e) approximation at metallic densities. We 
assume that the error is about the same for the other 
second-order term in /. The first-order term in / is 
about three times larger than the second-order terms for 
rs = 4, the ratio being more favorable for smaller rs. 
The picture of M that eme rges shows a quite larg e first-
order term with a weak k dependence and a sma ll second-
order term with a k dependence of about the same magnitude 
and oppo site sign.17'18 

7. ELECTRON GAS: COULOMB H OLE 
AND CORRELATION HOLE 

For the polarization propagator P(l,2) we have used 
the approximation — ihG(l,2)G(2,l) with G defined by 
Eq. (41). This gives Lindhard's expression,19 or as it is 
often called, the Random Phase Approximation (RPA) 
for the dielectric constant. To exhibit the properties of 
this approximation we investigate the Coulomb and 
correlation holes associated with P. 

We define a propagating dielectric function by the 
relation 

W(l,2) = Jv(l,3)e~1(3,2)d(3). (44) 

From Eqs. (9) and (11) it follows that 

6^(1,2) = 5(1,2)-- /W(1)P'(3))> 
h J 

XÎ>(3,2)</(3) = (1 —PZJ)-1(1,2) . (45) 

The function e_1 is closely related to the linear response 
function eiT1, 

eL-Kl2) = ô(l,2)--9(t1-h) 
h 

X /<[,(l),p(3)]M3,2M(3), (46) 

17 Recent calculations by Rice (Ref. 18) indicate that the energy 
dependence of W is more important for the first term in /e

(2), 
Eq. (34), than for the other second-order terms in /. While this 
makes the convergence properties of the expansion for / worse 
than anticipated from our results, it does n ot influence the con
clusion regard ing a weak k dependence of M . Our values for the 
paramagnetic susceptibility on the other hand seem quite 
unreliable. 

18 T. M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965). 
19 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 28, No. 8 (1954); D. F. DuBois, Ann. Phys. (N. Y.) 7, 
174 (1959); 8, 24 (1959). 
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which gives the change in the density of t he electrons, energy gap 

Pind(l)= /" [ex,-1(l,2)-ô(l,2)>-K2)^(2), (47) 
go(r)dr=0. (54) 

caused by the presence of an external charge density, 
p e x t .  The Fourier transforms, f exp[_(ie/h)(ti— ti)~\dt\, 
of e _1(l,2) and tL~l(\,2) are equal for e^O. The former 
is an even function of e, while in the latter the real part 
is even and the imaginary part odd. 

From a knowledge of e_1 we can calculate the pair 
correlation function : 

gir)=p-^' {Kn-r)Kh)) 

where 

•p-2[<p(r)p(0))-pä(r)], (48) 

p(r) = P= </>«>• (49) 

From the definition of g(r) it readily follows that 

g(r) —> 1 when r—>°o 

J p(g(r)-l)dT=-l. 

The Fourier transform of g(r) is relate d to e(k,e) b y 

[l-e-1(k,e)]rfe—p 

(50) 

f 1 1 
g(k) = p~2 — —-

12irt z j(k) J 

+ (27r)35(k). (51) 

From e(k,e) we ca n also calculate the linear response 
value for the change in the electron density around a 
fixed external point charge. From Eq. (47) we have, 
taking the external charge to be — e and using the fact 
that e-1(k,0) = eL-1(k,0), 

go(r) = y[e-1(l,2)-8(l,2)]Ai#i; r=ri-r2. (52) 

The Fourier transform of go(r) is 

go(k) = e-1(k,0) — 1. (53) 

The function go(r) gives the Coulomb ho le discussed 
in Sees. 4 and 5, while p (g(r) — 1) gives the corr elation 
hole surrounding an electron. From a well-correlated 
wave function for an atom, the correlation hole can be 
calculated fairly simply from Eq. (48), while the 
Coulomb hole re quires calculations of the type needed 
to obtain polarizabilities. 

We note that the Coulomb holes for an electron gas and 
for a system with an energy gap are qualitatively different. 
From Eqs. (46) and (52) we have for a system with an 

For an electron gas, on the other hand, we have from 
Eq. (53) 

go(r)ir=go(k=0) = - l  (55) 

(56) 

This relation should hold also for metals.20 

The Lindhard expression19 for the dielectric con
stant is 

e(k,e)= 1—®(k)P(k,e)= l+a(k,e) , 

a{q,u) = (ar./8îr)(l/q3)[H(q+ (u/q)) 

+H(q-(u/q))'] = a(q, -«), 

Z7(z) = 2z+(1 —z2) ln((z+l)/(z—1))=—//( —z), 

q=(k/2ko), u= e(4:h2ko2/2m)~1, 

a= (4/97T)1/3-0.52106. 

The logarithm is taken from the branch where | Im lnz | 
<7T. T o obtain e we have to take Imw= A sgn(Rew) 
while cl is obtained by taking Imw = A. For further 
reference we note that 

7/(z) = 4 
1 1 1 

3z 15z3 35z5 

z z z 
H(z) = 4( z  

3 15 35 

—7ri(l—z2) sgn(Imz); z—>0, 

a(q,0) = (ars/ir)l/q2, 0; 

a(ç,0) = (ars/3ir) 1 /q i, q -» oo ; 

a(0 ,u) = — (ars/3ir) 1/ ; 

a(q,u) = (ars/37r)l/(ç4-M2) . | q±(u/q)\->*> ; 

a(ç,0)>0 for ail g; 

w2+l — q1 w2+(l+g)2 

(57) 

a(q,iu) = -
47rq[  2 q 

ln-
w2+ (1 — q)2  

1 -q ( 
2w\ arctan (-arctan 

V w w / J 
w = u/q. 

The pair correlation function g(r) has been calculated 
from the RPA expression for e_1(ç,«), [1+a(ç,«)]-1, 
and from the HF expression, 1—a(q,u) and plotted in 
Fig. 3. The HF expression is obtained by using a HF 
wave function in Eq. (45). Both the RPA and the HF 

20 It is possible that Eq. (54) will remain valid if surface ef
fects are taken into account. The corresponding contribution to 
M however tends to zero with increasing number of particl es. 
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PAIR CORRELATION FU NCTION F OR AN E LECTRON G AS 

g(r)  
HF 

0.5 

2.0 
0.0 

-0.5 

-1.0 

FIG. 3. Pair correlation function for an electron gas. 

approximations obey Eq. (50). Since g(r) is a probability 
it must always be positive but from Fig. 3 we see that 
the RPA approximation becomes negative21,22 for small 
r. In our calculations however we are not directly inter
ested in g(r) but rather in r2g(r). In Fig. 4 we see that 
the influence of the mis behavior of g(r) for small r is sup
pressed to a large extent by the factor r2. 

Ueda23 has calculated g(r) for rs = 0.1, 0.5, and 1 using 
the approximation 

(1 — Pv)~1== (1 — Pof) if , (58) 

where P0 is the RPA approximation and Pi is the next 
term in the expansion Eq. (12) for P, evaluated with G 

FIG. 4. 3(r/Ws)2 

X[g(r) —1]. g(r\ is 
the pair correlation 
function. The area 
under each curve is 
equal to — 1. 

21 A. J. Glick and R. A. Ferrell (Ref. 21) have calculated the 
RPA approximation of g(r) for rs — 2. They find that g(0) = —0.15 
while the present calculation gives —0.54. The quantity g(0) can 
be written l—cjo* k2f(k)dk. T he reason that their value is in 
error might be that they fitted f(k) by a Gaussian which under
estimates the asymptotic contributions to the integral. 

22 A. J. Glick and R. A. Ferrell, Ann. Physics 11, 359 (1960). 
23 S. Ueda, Progr. Theoret. Phys. (Kyoto) 26, 45 (1961). 

and W from the RPA approximation. For r= 0 Eq. (58) 
gives simply 

S(0) = 0.5+0.5[gKpA
(0)—0.5], (59) 

e.g. it gives one half of the RPA correction to HF. 
Ueda's approximation changes g(0) for rs = 1 and 2 from 
the RPA values —0.07 and —0.54 to 0.2224 and —0.02 
and thus Ueda's expression also gives a negative g(0) 
at metallic densities. 

While Eq. (58) is a good approximation for the small 
values of r s that Ueda considered, for metallic densities 
one should rather use 

e-i = (1 - P0®)-i+ (1 -p0t>)"ip1t>(l-Pov)-1. (60) 

This expression however can be expected to give an 
even smaller correction to RPA than does Ueda's. To 
improve significantly upon RPA it is thus not enough 
to take P = P0+Pi with a simple RPA approximation 
for G and W. 

Considering P(k,e) in the limit of small k, Glick, 25 

reached the conclusion that one has to take the infinite 

FIG. 5. The ladder-bubble diagrams of Eq. (61). 

sum of lad der-bubble diagrams, 

P = diagrams of Fi g. 5, (61) 

in order to keep Ime(k,e) positive for all e. Starting 
from Ward identities Engelsberg and Schrieffer26 and 
Lundqvist27 also arrived at Eq. (61) in the cases of 
electron-phonon and electron-electron interactions, re
spectively. In Appendices A and B we will argue that the 
ladder-bubble sum does not gi ve a syste matic improvement 
as far as M and G are concerned. Whi le for the lower 
metallic densities some infinite summation for P has to 
be made, for the higher densities it seems more im
portant to explore self-consistent solutions for G to 
first or perhaps second order in W. 

The Coulomb hole g0(r) has been calculated by 
Langer and Vosko,28 with the RPA expression for e(q,u). 
The function g0(r) is qualitatively similar to p(g(r)— 1). 
It extends over a distance of ord er rsa0, obeys Eq. (55) 
and is finite for r — 0. The magnitude of go(0) is however 
much larger than p, and go(0) ranges from — 2.20p for 
rs=1.5 to —6.35p for rs = 6. RPA thus predicts that 
more charge is pushed away, close to the external charge 
— e, than was present at the beginning. This feature 

24 Ueda reports a slightly different value, 0.19. 
25 A. J. Glick, Phys. Rev. 129, 1399 (1963). 
26 S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963). 
27 B. Lundqvist, (unpublished note from Chalmers' University 

of Te chnology, Gothenburg, Sweden). 
28 J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196 

(1959). 
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THE SCREENING FACTOR S(r), OF THE POTENTIAL W(r,o). 

A 806 

W(r,o) = — S(r) 

rs= 3 

:  . r ;t  ;  

FIG. 6. The screening factor 
5 (r) of the potential W (r,0). S (r) 
is defined by W(r,0) = (ê/r)S(r). 
The curves correspond to rs = 3. 
The Thomas-Fermi (TF) approxi
mation is S(r) = e~kcr, where kc 

= 0.815rs
1/2&0- The Pines' expres

sion (Ref. 30) is given in Eq. (63). 

might be true also for the correct g o(r) since it is de
fined from a linear response expression. 

The behavior of g 0(r) f or sm all r has however relatively 
small influence on W{rfi) = {e'l/r)S{r)1 

S(r)=—4Tr r'(r'—r)g0(r')dr', (62) 

as can be seen in Fig. 6 where the Thomas-Fermi (TF) 
and the RPA results29,30  for S(r ) are plotted for r s  = 3. 
The TF go tends to infinity for small r b ut still the TF 
S threads the RPA S quite well. As a comparison we 
have also plotted Pines' expression,31 

S(r)= 1 — (2/T)Si(x), x=kcr, kc=0.353rs
1 ,2ko, 

rx sin/ (63) 
Si(x) = / dt, 

Jo  t  

which is quite different from the two others. 
The HF expression for e, namely, e~1(q,u)= 1—a(q,u), 

gives a reasonable result for r=0: 

go(0)=— %irarsp, (64) 

but predicts a completely wrong asymptotic behavior, 

go(r) = —3a2ra(a0ra/r)p; r^><x> , (65) 

which makes the integral in Eq. (55) divergent. 

29 S (r) has also been calculated by March and Murray (Ref. 30) 
by a rather complicated method. The results for S(r) as obtained 
from Langer and Vosko's densities (Ref. 28) using Eq. (62) agree 
within 0.1% with those of M arch and Murray's for r8= 1.5. Other 
r, values cannot be accurately checked since they lie far from 
those used by Langer and Vosko. 

30 N. H .  March and A. M. Murray, Proc. Roy. Soc. A261, 119 
(1961). 

31 D. Pines, Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc., New York, 1955), Vol. 1, p. 387. 

8. ELECTRON GAS: THE TOTAL ENERGY 

Our primary interest in this paper is to calculate the 
electron self en ergy M. By considering the total energy 
we can obtain an estimate of the error in ß= (h2ko2/2m) 
-\-M{k0,/i). The relations between e, the energy per 
particle, and /x are32 

H =e—\rs(dt/dr s) , 

n(x) 
e=3rs  -dx. 

(66) 

The curve e(rs) has its minimum in the neighborhood of 
rg = 4 and here an error in e gives e ssentially the same 
error in m -

To calculate e(rs) we use the virial theorem for an 
electron gas33: 

V+2T+r,(de/dr.) = 0, (67) 

where V and T are the expectation values of th e poten
tial and kinetic energies divided by the number of 
particles. Solving Eq. (67), we have, considering V to be 
expressed in rydbergs, 

1 
A+ xV(x)dx Ry. (68) 

From the known behavior34 of e for small r s  we infer that 
the integration constant A is 

A = 3/5a2= 2.2099. (69) 

32 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com
pany, Inc., New York, 1940), p. 343 ; J. J. Quinn and R. A. Ferrell, 
Phys. Rev. 112, 812 (1958). 

33 N. H. March, Phys. Rev. 110, 604 (1958). 
34 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957). 
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For convenience we write V(rs) as 

V{r s)  = (\/rs){VC O T t-B) 
(70) 

B = 3/2™ = 0.9163, 

which allows us to express the correlation energy 
ec=e— eHF as 

1 rr> 
ec=— / VCOIT(x)dx Ry. (71) 

rs
2 Jo 

Fcorr ca n be calculated from the dielectric constant35  

1 +a(q,u): 

4 r f 6 r q-a{q,iu) \ 
Vcon=— dql— / du 1 +#, (72) 

7ra J o \ars J o 1 -\-a(q,iu) ) 

which, when we use the RPA expression for a(q,u), 
becomes 

24 r r q2a2(q,iu) 
Fcon ~ / dq du . (73) 

7Ta2rsJ0 J Q 1+a(q,iu) 

From a general theorem given by Ferrell36 we can 
deduce a restriction on Fcorr- Ferrell proved that 

d 2 e / d (e2 ) 2 ^ 0  at constant density, (74) 

where e is the electron charge. From the relation 
a(h2/m)(3ir2p)ll3rs — e2, we see that rs is proportional to 
e2 when the density is kept constant. The factor 1 /rs

2 Ry 
= {\/rs

2)(mei/2h2) in Eq. (68) then becomes inde
pendent of e 2 and the Ferrell condition, Eq. (74), can be 
written 

d2 ( [r> ) d 
U + / [Fcorr(x) -  B~]dx \  =—Fcorr(^) ^ 0. (75) 

drs
2 ( J0 ) drs 

In Fig. 7 we have plotted different expressions for 
Fcorr- The series expansion in r s is taken from Carr and 
Maradudin37: 

ec=0.0622 lnrs—0.096+0.018rs lnrs—0.036rs, 

VCoTT=d(rs
2ec)/drs = rs(0A24:4: lnrs (76) 

— 0.130+0.054rs lnrs—0.090rs). 

This Förr violates Eq. (75) from rs«2. The RPA ex
pression for Fcorr satisfies Eq. (75) at least up to rs= 100. 
The contribution to ec from exchange of second order in 
v has been calculated by Gell-Mann and Brueckner.34 

They obtain the value 0.046 Ry which gives a contribu
tion of 0.092r s to Fcorr. When this is added to RPA, the 
Ferrell condition becomes violated from rs«3 (see 
Fig. 7). The unscreened second-order exchange t erms 

36 P. Nozières and D. Pines, Nuovo Cimento 9, 470 (1958). 
36 R. A. Ferrell, Phys. Rev. Letters 1, 443 (1958). 
37 W. J. Carr, Jr. and A. A. Maradudin, Phys. Rev. A133, 371 

(1964). 

POTENTIAL ENER GY OF AN ELECTRON GAS 

rs EXPANSION0 

RPApcf 
-0.4 

Ry 

FIG. 7. Potential energy of an electron gas. The quantity r s{V) 
+0.9163 Ry plotted as a function of rs. The derivative of this 
quantity is always negative according to a theorem by R. A. 
Ferrell (Ref. 35). The correlation energy is obtained by an 
integration, 

f \r s (V)+0.9163)dr s  Ry. 

See also Ref. 37. 

actually represent a substantial overcorrection to RPA 
already at r 8= 1, as can be seen by comparing with the 
rs expansion. 

Fcorr can also be calculated from the pair correlation 
function g(r), 

1 r00 

Fcorr= / a;[gRPA(x)—gHF(.r)]rfx; x=2k0r. (77) 
3ira J o 

As a check on the numerical accuracy of gRPA, Eq. (77) 
was evaluated and found to give the same result as Eq. 
(73) within a few percent. Since the gRPA(0 curves vio
late the condition gRPA>0, for small r, they were 
smoothly extrapolated to zero (dashed curves in Fig. 3). 
These extrapolated curves we re then used in Eq. (77) and 
the result plotted in Fig. 7 with the label RPApc/. Since the 
correct g lies above gRPA for small r i t has to lie below 
gRPA for some regions of r in order to satisfy the nor
malization condition. If the correct g were zero for r=0 
the RPApc/Fcorr would give a rough upper bound to the 
correct FCOrr- At metallic densities the dashed curves in 
Fig. 3 lie so much above the gRPA curves that a further 
small shift will make relatively little change in FCOrr-

We conclude that, at metallic densities, the RPApc/FCOrr 

is a rough upper bound to the correct F00rr-

In Fig. 8 the total energy is plotted as calculated from 
Eq. (71) using the values for Fcorr given in Fig. 7. For 
comparison the HF energy and the energy of the 
Wigner-type electron lattice38 are also plotted. We note 
that while the extrapolation of the g curves looks drastic, 
the difference between the RPA and the RPApc/ curves 
for the total energy is fairly small even though the 
energy calculation involves rg(r) and not r2g(r), cf. Fig. 
4 and the discussion of the correlation hole in Sec. 7. 

The phase transition where the electrons cease to be 

38 W. J. Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein, 
Phys, Rev. 124, 747 (1961). 
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TOTAL ENERGY OF AN ELECTR ON GAS 

R P A + 2 : n d  O RD E R  
E X C H A N G E  

L A T T I C E  

FIG. 8. Total energy of an electron gas. The energy of th e 
electron lattice is taken from Ref. 38. 

itinerant and form a lattice has been estimated by de 
Wette39 to occur between rs^47 and rs^100. From a 
calculation to finite order in W we expect to find a 
smooth energy curve, which, if car ried to high enough 
order in W, will cross the energy curve corresponding to 
electrons on a Wigner lattice. The RPA curve for the 
total energy lies below the lattice curve at least up to 
r8 — 100. This gives additional evidence, besides the fact 
that the second-order term in e is positive, that RPA 
gives a lower bound to the energy. It is indeed hard to 
imagine that any reasonable curve for VCOTI which starts 
out as the series expansion, has a negative slope, and 
never goes below — 0.876 Ry, could lie lower than the 
RPA curve. The limit —0.876 Ry is set by the fact that 
the lattice energy goes asym ptotically as —1.792/rs  

and the HF energy as —0.916/rs. 

If we extrapolate the RPApc/ curve for Fcorr, Fig. 7, 
with a horizontal line starting at the minimum, the cor
responding curve for the total energy will cross the 
lattice curve at rs« 11. This gives further evidence that 
the RPApc/ curve is an upper bound to the energy. The 
RPApc/ total energy actually comes quite close to the 
results of a calculation by Gaskell.40 His curve lies 
0.003 Ry above and 0.007 Ry below t he RPApc/ curve 
at rs = 3 and rs = 5, respectively. Gaskell made a varia
tional calculation with an antisymmetrized product of 
pair functions, but due to an additional approximation 
his results do not quite give a rigorous upper bound for 
the energy. From all evidence taken together we esti
mate that the error in the R PA approximation for the 
energy e is positive and at most 0.02 Ry. 

We now return to the question of estimating the 
error in the chemical potential p. Equation (66) relates 
the exact e to the exact p and within the numerical 
accuracy of our calculations, ±0.0005 Ry, it holds 
also for e c alculated from Eq. (71) and p calculated 
from M=iGW[P= — iGG, G according to Eq. (41)]. If 
for the error in the energy Ae, we use the difference be
tween RPApc/ and RPA, we find that the term 
\rsdhe/drs is small compared to Ae at metallic densities. 

We estimate that the error in the RPA approximation for 
the chemical potential p is positive and at most 0.02 Ry. 

To further investigate the convergence properties of 
the expansion for M, Eq. (24), we consider the second-
order term. While the first-order term is given by a 
four-dimensional integral, which easily can be reduced 
to a two-dimensional integral, the second-order term 
is given by an eight-dimensional integral which is 
difficult to reduce to less than a seven-dimensional one. 
As we discussed in Sec. 5, a rough value can however be 
obtained by using the static potential PF(k,0) instead of 
the full potential JF(k,e). The second-order term then 
becomes 

Mw(k,u) 

1 r dk\dkz 

T T 4  J k1
2k2

2e(ki,0)e(k2,0)(yfe2-«-2k1.k2) 

where the integral is taken over the regions 

Ik-f-kxI ^0.5 Ik+kx 

|k+k2|^0.5 and |k+k2 

Ry, (78) 

^ 0.5 

^ 0.5 

k - f  kx + k 2 |  ̂ 0.5 [ k + k x + k 2 |  ̂ 0 . 5 ,  

and the k 's are expressed in units of twice the Fermi 
momentum and u in units of (4A2£0

2/2m). One angular 
integration is trivial but there still remains a five-
dimensional integral. For the particular case of k = 0, 
u=0, Eq. (78) can however be reduced to a double 
integral, 

8 r dkxdki sgn(&i—0.5) 
if(2)(o,o) = — / 

7r2 J e(ki,0)e(£2,0)&i/e2 

Xln 
2k\ki 

over the regions 

0^/ei—^2^0.5, 

0.25—^i2-
Ry, (79) 

and £i+&2^0.5. 

F. W. de Wette, Phys. Rev. 135, A287 (1964). 
1 T. Gaskell, Proc. Phys. Soc. 77, 1182 (1961) ; 80, 1091 (1962). 

This integral was evaluated using a TF • dielectric 
constant: 

e(£,0) = l +(^sA) ( l / £ 2 ) ,  (80) 

which is good enough for the present discussion. 
M(2)(0,0) w as found to vary slowly with r s  at metallic 
densities, reaching a maximum of 0.014 Ry at rs~3. 
From values of (d/dk)Mi2)(k,(h2k2/2m))k=k0, Sec. 10, 
we estimate that ^(2) = M(2)(£o,(&2^o2/2m)) is about 
0.02-0.04 Ry i.e. of a bout the same size as the error in 
the first-order contribution /z(1). It should be realized 
that while the preceding discussion suggests a very good 
convergence of the expansion of p in terms of W , an 
accurate value of p cannot be obtained by just adding 
pi2) to pRVA since the pa) which conesponds to a self 
consistent solution for G might well differ from pRFA by 
an amount comparable to p (2). 

In the calculation of the energy we have assumed that 
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TABLE II. Energies of an electron gas in rydbergs. 

r<) = Kinetic Energy in the HF approx. = (3/5aVs
2) Ry= (2.2099/r?) Ry. 

eexch = Potential Energy in the HF approx. = — (3/27ro:rs) Ry = — (0.9163/ra) Ry. 
«corrRPA = Correlation energy in the RPA=Total energy —HF energy. 

«COÏT® = 0.0622 lnr„—0.096+0.018r, lnr„—0.036r„. 
T = Expectation value of the kinetic energy in the RPA. 
V=Expectation value of th e potential energy in the RPA. 
e=Total energy in the RPA = T+V=T0-f «exch+ eCorrHPA-

€Ferr—Total energy of the Ferro-magnetic state according to RPA. 
€utth = Energy of th e Wigner type lattice of electrons 

1.792 2.65 0.73 / 21 4.8 1.16\ ,,, /2.06 0.66\ 
r. r."' r.> T\r. r.»!' r."'J \f,'« r.'"/ 

The energies are accurate to ±0.0005 Ry. 

r, To €exch 
- RPA 
fccor r ^corr8 T V e €Ferr fLatt^ 

1 2.2099 -0.9163 -0.1578 -0.132 2.3161 -1.1803 1.1358 2.2502 1.49 
2 0.5525 -0.4582 -0.1238 -0.100 0.6299 -0.6594 -0.0295 0.2150 0.173 
3 0.2455 -0.3054 -0.1058 -0.076 0.3083 -0.4740 -0.1657 -0.0695 -0.067 
4 0.1381 -0.2291 -0.0938 -0.054 0.1920 -0.3767 -0.1847 -0.1367 -0.122 
5 0.0884 -0.1833 -0.0851 -0.031 0.1359 -0.3158 -0.1799 -0.1526 -0.131 
6 0.0614 -0.1527 -0.0784 -0.007 0.1040 -0.2737 -0.1697 -0.1534 -0.130 
7 0.0451 -0.1309 -0.0730 +0.018 0.0839 -0.2427 -0.1588 -0.1482 -0.128 
8 0.0345 -0.1145 -0.0685 0.0703 -0.2188 -0.1485 -0.1413 -0.118 
9 0.0273 -0.1018 -0.0647 0.0606 -0.1998 -0.1392 -0.1344 -0.110 

10 0.0221 -0.0916 -0.0615 0.0532 -0.1842 -0.1310 -0.1274 -0.103 

* W. J. Carr, Jr., and A. A. Maradudin, Phys. Rev. 133, A371 (1964). 
b W. J. Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein, Phys. Rev. 124, 747 (1961). 

the ground state is paramagnetic. To obtain the energy 
of the ferromagnetic state we have to use a Green's func
tion which is zero for, say, spin down and for spin up 
has a Fermi momentum41 

koF=ßko] /3=21/3; ko=(aa0rs)~1. (81) 

As is well known the HF expression for the energy of the 
ferromagnetic state is, in Rydbergs, 

eF=ß2(3/5a2rs
2)-ß(3/2™rs), (82) 

which lies below the energy of the paramagnetic state 
for rs^5.45. In RPA we have the simple relation for 
the correlation energy 

€/(rs) = KP('sr4). (83) 

To see that we introduce dimensionless variables as in 
Eq. (56) but with k0 replaced by k0

F. From Eq. (24) we 
then find for the dielectric constant 

eF(q,u) rs) = ep(q,u; raßr*), (84) 

and from Eq. (73) 

VC0T/(rs)=ßVC0rr
p(r8ß-*). (85) 

Substituting Eq. (85) into Eq. (71) finally gives Eq. 
(83). We note that Eq. (84) is not valid if we include 
higher terms in P(k,e), Eq. (24), or if we use a self-
consistent G. 

Table II gives the values of the energy for the ferro

41 Superscript F (P) here refers to the ferromagnetic (para
magnetic) s tate. 

magnetic state in the RPA as obtained from Eqs. (82) 
and (83). We see that eF lies above ep (given under the 
heading e in Table II) and approaches it asymptotically. 
At rs= 10 the difference between the energies is only 3% 
of th eir magnitude. This is a reasonable result since the 
influence of spin orientation has to vanish when the 
density tends to zero. The present results do not quite 
rule out the possibility that the electron gas should be
come ferromagnetic at some density since we know that 
the RPA value for ep(rs) lies too low. On the other hand, 
eF(rs) is also too low but perhaps less so since according 
to Eq. (83) the error in ec

F is only half the error in ec
p. 

It seems safe to predict that the electron gas does not be
come ferromagnetic for r s<7. 

The numbers in Table II not discussed so far are self 
explanatory. We only note that the series expansion for 
Ccorr rapid ly becomes bad for rs>3 and that our values 
for eCOrrRPA do not quite coincide with Hubbard's, his 
values42 being between 0.002 and 0.004 Ry higher than 
ours. 

9. ELECTRON GAS : THE M OPERATOR 

The M operator was calculated from the equation 

i f v(k')dW e~ iAe 'de 
M{k,e) = / , (86) 

(2t t Y J  e(k',e') e-e'—e(k —k') 

cf. Eqs. (24), (41), and (56). The contour for e runs 
just below the real axis for e'<0 and just above for e'>0. 

42 J. Hubbard, Proc. Roy. Soc. A243, 336 (1957). 



L A R S  H E D I N  A 810 

We first separate out the HF term: 

PF(k,e)e-"A = 
v(k) 

e(k,e) 

:^(k)e~ifA+î)(k) 
:(k,e) 

1 • (87) 

Since, according to Eq. (57), (1/e(q,u))— 1 tends to zero 
as \u\~2 for large \u\, the convergence factor e~ieA has 
been omitted in the last term of Eq. (87). We then 
separate out the static approximation of the last term 
in Eq. (87), cf. Sec. 5, 

IF(k,e)e~"A=®(k)e~"A  

1 
+n(k) 

=(k,0) 
— 1 )+w(k) 

1 1 

e(k,e) e(k,0) 
. (88) 

The contributions to M(q,u) from the first two terms of 
Eq. (88) are easily evaluated by closing the contour for 
e in E q. (86) in the lower half-plane, giving the Coulomb 
hole plus screened exchange terms, 

Mc=— f (— lW 
irar s  J 0 \e(</',0) / 

4 r l  r" d(0.25-q2-q'2-2qq'£) 
/ dij dq' Ry. (89) 

•Kars 7_i Jo e(q',0) 

To evaluate the contribution from the last term of E q. 
(88) we follow Quinn and Ferrell43 and turn the contour 
of e in Eq. (86) to run along the imaginary axis. We 
pick up a contribution from the poles of the Green's 
function, 

4 f1 f° / 1 1 
M* = / dn dq'[  

7T ar sJ_i J0  \e(q',u—e(q — q')) e(q',  0) 

X [0(«-6(q-q'))-0(0.25-e(q-q '))]Ry; 

£=q-q'/(qq'),  (90) 

as well as the contribution from integrating e along the 
imaginary axis, 

I r°° r°° / 1 1 
M r= / du' dq'l   

T2ars  J o J o \e(q',iu') e(q',0) 

1 (u—(q+q')2)2+u'2  

X—In- Ry. (91) 
qq' (u-{q—q ' ) - y -{-ti '2  

We thus have 

M(q,u) = Mc(q)+Mr(q,u)+M r(q,u) . (92) 

TABLE III. The Fermi energy for an electron gas, 
T-\-M, in rydbergs. 

r, T JlfHF MRPA Mh  M° 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.6832 
0.9208 
0.4092 
0.2302 
0.1473 
0.1023 
0.0752 
0.0576 
0.0455 
0.0368 

-1.2218 
-0.6109 
-0.4073 
-0.3054 
-0.2444 
-0.2036 
-0.1745 
-0.1527 
-0.1358 
-0.1222 

-1.3965 
-0.7491 
-0.5259 
-0.4112 
-0.3406 
-0.2926 
-0.2575 
-0.2308 
-0.2097 
-0.1925 

-1.8327 
-0.9164 
-0.6110 
-0.4581 
-0.3666 
-0.3054 
-0.2618 
-0.2291 
-0.2037 
-0.1833 

-0.4541 
-0.1639 
-0.0870 
-0.0546 
-0.0377 
-0.0277 
-0.0212 
-0.0168 
-0.0136 
-0.0113 

-1.6267 
-0.9137 
-0.6577 
-0.5224 
-0.4375 
-0.3787 
-0.3354 
-0.3019 
-0.2753 
-0.2535 

a The Slater approximation =1.5 jWhf. 
b Screened exchange potential. 
0 Screened exchange potential plus Coulomb hole contribution. 

M° and M r  are real and the imaginary part of M 
comes solely from Mp .  For w = 0.25 (e= h2ko2/2m), M v  

is zero as well as its first derivatives with resp ect to q 
and u. The real part of M p(q,q2) is small. It decreases 
monotonically from about 0.01 Ry at q— 0 to 0 at q=0.5, 
except for rs = 1 when it has a maximum of 0.02 Ry at 
<7 = 0.2. The imaginary part of M p(q,q2) is larger as can 
be seen from Table IV under the heading Mi. It de
creases monotonically from values of t he order 0.1 Ry 
at ç=0 to zero at <7=0.5. The derivatives of ReMp(q,u) 
with respect to u are 10% or less of the derivative of 
M(q,u) for 0.5^ q^ 0.2, but increase rapidly for 
smaller q. 

The first tenn in Mc(q), the Coulomb hole contribu
tion, is independe nt of q. Th e second term in Mc(q), 
the screened exchange contribution, is substantially 
smaller than the HF exchange term as can be seen from 
Table III. Comparing Mc with MRPA in Table III, we 
can see that M° has too large a magnitude and that the 
Slater approximation,44 which consists of an average of 
MHF over the Fermi sphere, actually is better. 

M r  can conveniently be split into three parts. The 
first part consis ts o f contributio ns from int egrating u' 
between 0 and 0.25 in Eq. (91). The second and third 
parts come from the integration over u'> 0.25 and the 
following division: 

1 1 

e(q' ,iu') e(q',  0) \e(q',iu') 
1  — i W i -  1  (93) 

In the third part, i.e., the second term of E q. (93), the 
integration over u' can be made analytically, 

1 r ( 1 

Mrm(q,u) = / dq'i 1 
2ir2ars  J 0 \ e(q',0) 

1 / l+a2\ 
X—I a arctan(a) — b arctan(è) —| In ) Ry; 

qq'\ '  l+b2/  

a=4((q+q')2-u), b = 4((q-q')2-u) . (94) 

43 J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958). 44 J. C. Slater, Phys. Rev. 81, 385 (1951). 
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Mrm gives the main part of M r, being about three times 
as large as each of th e first two parts with respect both 
to magnitude and derivatives. The essential contribu
tion to the first part of M T comes from ç'<0.8, and to 
the second part from q'<2A, u'<3, the remaining con
tributions being small and practically independent of 
q, u, and rs. 

Mc is easily evaluated since the integration over £ in 
Eq. (89) can be made analytically. In evaluating Mr we 
have the advantage that e(q,iu) is much more well be
haved than e(q,u). From Eq. (57) we see th at a(q,iu) 
only has three singular points, u~0, q—0, ±1, while 
a(q,u) is singular along the lines (qzt(u/q)) = ± 1. The 
evaluation of M p involves a(q,u) but fortunately Mv is 
small and the relative accuracy does not have to be 
pushed so far. 

The integrals were evaluated for 

q = 0, u= ±0.01; 

9 = 0.1, 0.2, 0.3, 0.4, u = q iXq+0.1)2; 

9=0.5, 0.6, 0.7, M=Ç2,(Ç-0.1)2. 

The results are given in Table IV. The values of M for 
UT^q1 are not given directly but in the form 

z-i(q) = l-AM/Ae. (95) 

For q=0 we have given the average of the results for 
w=±0.01. To estimate how well z approximates the 
limit when Ae—>0, we compare the values of Rez-1 

for g=0.4, 0.5, and 0.6. They agree to about two decimal 
places which, in conjunction with the fact that M(q,q2) 
is almost linear for these q values, shows th at M(q,u) 
can be represented fair ly well by a lin ear expression in q 
and u for \ q—0.51 <0.1 and \ u—0.251 <0.1, unless the 
M(q,u) surface has an anomalous behavior for u<q2, 
q<0.5 and u>q2, ç^0.5. To check Imz-1 we note that 
for u close to 0.25 we have from general arguments12 

Mi(q,u) = Cq(u—0.25)2 sgn(0.25 — u). (96) 

The values of CQ for q=0.4 and 0.6 deviate by about 20% 
from those for ç=0.5. We can also check Z at ç = 0 where 
the calculations were made for three values of u . The 
values of Imz-1 agree within a few percent while the 
values for Re(z_1— 1) deviate from their mean value by 
20%, 29% and 65% at rs= 1, 4, and 6, respectively. We 
conclude that Mi(0,w) varies very rapidly with u and 
that our value for Rez-1 is not very reliable when q is 
small. 

To solve Dyson's equation for the quasiparticle 
energies we expand 

e = e(k)+M(k, € e0)= e(k)+M(k,e(k)) 

+ (e— e0— e(k))[dAf(k,e(k))/de] , 

giving the solution for e 

e= e0+e(k) + [M(k,€(k)) — eo]/ 

[l-ôJf(k,e(k))/de], (97) 

where from Eq. (42) 

eo = Af(ko,e(ko)) = /* e(ko) . 

We note that Eq. (97), owing to the eo in the denomina
tor of ou r Go, is differen t from the corresponding equa
tion used by DuBois51 

€= e(k)+M(k,e(ß))(l+dM/de). 

In particular the cancellations mentioned by him be
tween Ma)dMwIde and the noncrossed second order 
term of M{2) are taken into account in Eq. (97), cf. 
Sec. 6. The real and imaginary parts of t he last term in 
Eq. (97) are given in Tab le IV under the headings E\ 
and Ei. In Table IV we have also given the screened 
exchange approximation MS and Pines' approximation 
MP. We see that the difference be tween E\ and MS is 
substantial; they even have opposite signs for rs> 1. 
Both Ei and MS have a weak k dependence compared to 
MP. This is also illustrated in Fig. 9.45 The almost hori
zontal curves give -Ei+e0 and the dashed curves give 
Pines' approximation. For comparison the kinetic 
energy e(k) and the Hartree-Fock approximation for M 
are also drawn. The infinite slope of the HF curve at 
k=k0 is barely noticeable, owing to the weakness of a 
logarithmic singularity. 

We note that the H F energies dev iate from the true 

1.0 

0.5 

Ry 

0.0 

-0.5 

-1.0 

FIG. 9. Quasiparticle energy as a function of momentum. Above 
the axis: Free-particle part= (ii2k2/2m). Below the axis: Exchange 
and correlation par t. Dashed curv e: Pines' approximation (Ref. 
45). Curves with infinite slope at k = k0: HF. Almost flat curves: 
Ei in Table IV. The rs value is indicated for each curve. 

46 D. Pines, Ref. 31, p. 407. The value of ß in his Eq. (8.1) is 
taken as /3 = 0.375/-s

1/2. This is the value used by V.Heine, Proc. 
Roy. Soc. (London) A240, 340 (1957) in his calculation on Al. 

QUASIPARTICLE ENERGY AS A 

FUNCTION OF MOMENTUM 

1.0 

5 

3 
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T ABLE IV. Quasiparticle energy in the momentum representation. 

The full quasiparticle energy = e(k)+Af(k 0 , e (k0))+tabulated quantity, where e(k)  is the kinetic energy, (h2k2/2m). The energies in 
the table are expressed in rydbergs. The Fermi momentum is | k o | .  

M=Af(k ,e (k) )-M(ko ,e (ko)) ;  M in the RPA 
Z~X — 1 — ölf (k,€(k))/öé; M in the RPA 

E=MZ 
MS = M (k)—M (ko)  ;  M from a screened exchange potential 
MP = M (k)—M (ko); M from Pines' approximation» with 

ß = 0.375ra
1/2. This is essentially the same ß value as used by V. Heineb in his paper on the band structure of Al. 

Sr
-

o
 II O
 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

MI -0.1286 -0.1232 -0.1014 -0.0735 -0.0428 0 +0.0407 0.0459 
M2  0.2323 0.2130 0.1608 0.0910 0.0284 0 -0.0279 -0.0948 

Re Z-1 1.270 1.241 1.216 1.193 1.168 1.164 1.142 1.151 
Im Z~ L  0.186 0.150 0.108 0.064 0.021 0 0.017 0.040 

EI -0.0729 -0.0774 -0.0711 -0.0574 -0.0362 0 0.0353 0.0370 
-Ë2 0.1936 0.1809 0.1386 0.0794 0.0250 0 -0.0250 -0.0837 
MS -0.2401 -0.2283 -0.1940 -0.1403 -0.0731 0 0.0709 0.1339 
MP -0.7208 -0.6879 -0.5860 -0.4023 -0.1824 0 
MX 0.0123 0.0112 0.0086 0.0039 -0.0004 0 0.0009 -0.0075 
M2  0.0976 0.0882 0.0642 0.0349 0.0105 0 -0.0105 -0.0367 

Re Z-1 1.426 1.413 1.387 1.354 1.318 1.302 1.275 1.284 
Im Z-1 0.273 0.224 0.161 0.095 0.032 0 0.026 0.061 

EY 0.0210 0.0174 0.0114 0.0047 -0.0001 0 0.0005 -0.0072 
E 2  0.0644 0.0597 0.0450 0.0255 0.0080 0 -0.0082 -0.0282 
MS -0.0590 -0.0561 -0.0477 -0.0346 -0.0182 0 0.0184 0.0359 
MP -0.2440 -0.2276 -0.1766 -0.1034 -0.0489 0 
MI 0.0268 0.0253 0.0205 0.0132 0.0056 0 -0.0052 -0.0147 
M 2  0.0534 0.0482 0.0350 0.0190 0.0057 0 -0.0059 -0.0208 

Re Z-1 1.521 1.537 1.525 1.492 1.455 1.429 1.400 1.407 
Im Z-1 0.313 0.261 0.192 0.116 0.039 0 0.033 0.078 

EI 0.0238 0.0212 0.0161 0.0098 0.0040 0 -0.0038 -0.0112 
E2  0.0302 0.0278 0.0209 0.0120 0.0038 0 -0.0041 -0.0142 
MS -0.0230 -0.0219 -0.0187 -0.0137 -0.0072 0 0.0075 0.0149 
MP -0.0998 -0.0889 -0.0569 -0.0344 -0.0176 0 
MI 0.0262 0.0250 0.0206 0.0139 0.0065 0 -0.0064 -0.0153 
M 2  0.0336 0.0304 0.0222 0.0121 0.0037 0 -0.0038 -0.0137 

Re Z-1 1.576 1.629 1.639 1.614 1.580 1.547 1.518 1.525 
Im Z-1 0.334 0.282 0.211 0.130 0.044 0 0.038 0.091 

EI 0.0202 0.0180 0.0141 0.0092 0.0042 0 -0.0043 -0.0105 
E 2  0.0170 0.0155 0.0117 0.0068 0.0022 0 -0.0024 -0.0084 
MS -0.0110 -0.0105 -0.0090 -0.0066 -0.0035 0 0.0037 0.0074 
MP -0.0334 -0.0252 -0.0126 -0.0095 -0.0060 0 
MI 0.0231 0.0223 0.0186 0.0129 0.0063 0 -0.0064 -0.0144 
M2  0.0230 0.0209 0.0154 0.0085 0.0026 0 -0.0027 -0.0099 

Re Z-1 1.602 1.699 1.738 1.725 1.697 1.660 1.630 1.637 
Im Z-1 0.347 0.296 0.225 0.141 0.049 0 0.042 0.102 

EI 0.0167 0.0148 0.0117 0.0078 0.0038 0 -0.0040 -0.0091 
E 2  0.0170 0.0097 0.0074 0.0043 0.0014 0 -0.0016 -0.0055 
MS -0.0059 -0.0057 -0.0049 -0.0036 -0.0019 0 0.0020 0.0040 
MP +0.0035 0.0090 0.0057 0.0012 -0.0008 0 
MI 0.0201 0.0195 0.0164 0.0116 0.0058 0 -0.0060 -0.0132 
M 2  0.0168 0.0152 0.0113 0.0063 0.0019 0 -0.0021 -0.0075 

Re Z-1 1.609 1.753 1.825 1.827 1.807 1.766 1.738 1.745 
Im Z-1 0.354 0.305 0.236 0.150 0.052 0 0.046 0.112 

EI 0.0141 0.0123 0.0096 0.0066 0.0032 0 -0.0035 -0.0078 
E2  0.0073 0.0065 0.0049 0.0029 0.0010 0 -0.0011 -0.0038 
MS -0.0034 -0.0033 -0.0028 -0.0021 -0.0011 0 0.0012 0.0023 
MP 0.0264 0.0234 0.0135 0.0061 0.0017 0 

a D. Pines, Ref. 31, p. 407. 
b V. Heine, Proc. Roy. Soc. A240, 340 (1957). 

quasiparticle energies in qualitatively the same way for an 
electron gas as for alkali atoms, though on a largely magni
fied scale, cf. Sec. 4. 

By comparing M with E in Table IV we find that the 
factor Z has a large influence. For rs= 1 we note an 
anomaly. E\ drops sharply in going from q=0 to <7=0.1 
before i t starts rising again. This may be due to either 
inaccuracies in the Z values or to a discontinuity in the 

derivative dE(k)/dkx. There are however no indications 
of such a discontinuity in M(k,e(k)). 

The accuracy of E(q ) is not good enough to permit a 
more detailed statement about its second derivative 
than the general observation that on the average it is 
small compared to e"(q) = 2(2/ars)2 Ry. This follows 
from the fact that £'(0.5) is small compared to e'(0.5) 
= (2/ars)2 Ry [see Table VI which gives E'{0.5)/e'(0.5) 
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under the heading /e
(1), /o, RPA(6)], combined with 

the formula, 

1 r0-5 

— / E"(q)/e"(0.5)dq=E'(0.5)/e'(0.5). (98) 
0.5 JO 

We have also calculated M(r,iu) fro m the formula, 

/£<A3 r 8e2^0
41 r 

M{r,p) — [—J e iq '*M(q,/j,)d q= / dq 
\lT J J 7T3 x J o 

rx / 1 \sin qx 
X / dill 1 J €-(a-0.125)l/2x 

J o \e(q,iu) J qx 

Xcos(a+0.125)1/2x; a=|(w2+0.0625)1/2; x=2k,r. 

(99) 

The result is given in Fig. 10. Judging from the values of 
M(q,/j.) at 9 = 0.4, 0.5, and 0.6 it varies considerably 
faster with q than M(q,e(q)) and E(q). M'(0.5,M)/V(0.5) 
equals 0.18, 0.39, and 0.62 for rs= 1, 3, and 6, respec
tively. The variation is however still mild compared to 
the logarithmic singularity of MHF(q), which can be 
seen by the suppression of long range oscillations in 
M(r,n). Since rM(r,p) extends out to about r = aç>rs, 
then |k|M(k,/x) is essentially different from zero only 
for k smaller than 2ir/r= (2ir/aors)~3ko. Since £(k) 

varies more slowly with k than does M(k,p) it is probable 
that |k|£(k) extends further out than 3ko. In that case 
the nonlocal potential corresponding to E(k) will have 
a still smaller range tha n M(r,ß) which speaks in favor 
of u sing electron-gas results in a local density approxima
tion for a metal. 

We conclude this section with a comment on the 
Coulomb hole plus screened exchange approximation. 
Returning to Eq. (13) we see that the integral has a 
factor exp[j(e— €S)(T/&)][0(T) — C«)3- The Coulomb 

SELF-ENERGY O PERATOR A S A N ONLOCAL PO TENTIAL 

0.5 
RPA 

-0.5 HF 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

0 0.5 3.0 3.5 1.0 2.0 2.5 1.5 

a0rs 

FIG. 10. Self-energy operator as a nonlocal potential. We have 
multiplied M (r,n) by a factor iirr2aor8 from the volume e lement 
Airr2dr = 4irr2a0rsdx, and by an extra r s  to make the HF curve r, 
independent. 

hole comes from 0(r) and the screened exchange from 
d(n—es) when we put the exponential equal to 1. If we 
evaluate the contribution to M involving Q{p— es) 
without approximation, we obtain an energy-dependent 
screened exchange, 

4 r1 

Mex(q,u)= / d£ 
7Tars  J _ i 

f d(0.25-qi-q'*-2qq'i;) 
X dq' Ry, (100) 

J e(q',u-q2-q'2-2qq'£;) 

which can be compared with the energy-independent 
screened exchange of Eq. (89). It has been suggested4 

that the energy dependence should have only a small 
influence and to check that the integral in Eq. (100) 
was evaluated for u=q2. Compared to the energy-
independent screened exchange the magnitude of 
l/ex(0.5,0.25) agreed quite well, being 3% and 8% 
smaller for rs= 1 and 6, respectively. The slope at q = 0.5 
on the other hand was larger by 4%, 29% and 91% fot 
rs= 1, 3, and 6, respectively. The total variation be
tween q— 0 and ç = 0.5 was larger by 3% and smaller 
by 27% and 88% for rs= 1, 3, and 6, respectively. The 
two expressions thus agree poorly except for high 
densities. 

10. ELECTRON GAS: THE QUASIPARTICLE 
INTERACTION 

The expansion of the quasiparticle interaction / of the 
Landau theory of a Fermi liquid is given in Eqs. (31) 
and (34) up to second order in the screened interaction 
W. It is convenient to use dimensionless quantities and 
we redefine / by 

4:ire2 1 7r f 
8Ea(k) = Y, / fao>(kjkOôM^kO^k', (101) 

ko2 (2ir)3 ar s a' J 

where Ea(k) and 5«„(k) are defined as in Eq. (30). 
Writing / as 

/ e=/e ( 1 )+/e ( 2 )  ,  (102) 

we have the following simple expressions46 for the specific 
heat C and the paramagnetic susceptibility x, 

Co/C=l— f [2/o(0)+/e(0)j cos0 s'mddd, 
J o 

(103) 

X0/X=C0/C+ I fe(d)sm6dd, 
J o 

where Co and X0 are the values for a noninteracting or 
Sommerfeld electron gas and 6 is the angle between k 
and k'. Both k and kr have the magnitude | k0|. 

46 See e.g., P. Nozières in Ref. 2. 
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With our present definition of /, Eq. (101), using 
Green's functions according to Eq. (41) and dimension-
less integration variables according to Eq. (56) we have 

/e
(D=-FM), 

V(qi,Ui)dqidU] 
/• 

i f 
(2) =  /  

TT2  J 
2V(K,0) 

«i—q \ —  2q*qiL«!—qx
2— 2q'-qi 

^(ql+K, Mi) F(qi+K, «i) " 

/o=" 

«x+çi2— 2q/-q1 ux—qx
2— 2q-qi. 

F2(çi,«i)rfqii«i 

(104) 

X 

u\— qi2— 2q-qi 

1 1 

-Ui— çi2-2q/-qi «i+çx2—2q'-qi_ 

where we have omitted the z2 factors and used the 
notation 

V (l,u) = (V 4 q°~e(q,u)) ; X = or J ir = rj 6.03 ; 

K=q-q'=(k-k ')/(2£o); (105) 

K2=^(1 — COS0) = sin2(0/2). 

As discussed in Sec. 5, we can obtain rough approxima
tions by replacing W(k,e) by IF(k,0) or, in the present 
notation, replacing V{q,u) by V(q,0). The expressions 
for /e(2) and /0 then become, 

/ e ( 2 )  = -  V{qxfl)dq> 
7r J 

'2V(k,0)t]i F(qi+k, 0)r?2" 

L K-qx (K- fq i ) -qi  _  

1 f /  VI V2 \  
fo= V2(qh0)dqi( ), (106) 

*  J x K-qi  (K+qi ) -q i /  

r/1=0(O.25- (q+q 1)2)-0(O.25- (q '+q 1 ) 2 ) ,  

172= 0(0.25- (q+q 1)2)-0( (q / +q1)2-O.25). 

Using the G defined in Eq. (41) we have from Eqs. 
(27) and (28) 

Co/C=l+z 
- d 

-dk 
-M{ k,e(k)) 

dk 
Kk) • (107) 

sions for Mr in the form 

M"(k,e(k)) 

Neglecting the z fa ctors, the contributions to C0/C in 
Eq. (107) are identical with those in Eq. (103) according 
to the following correspondences: 

/e
(1), Eq. (104) —» Mc ,  Eq. (89), 

Eq. (104) Eq. (91), (108) 

feW , Eq. (106) -» M {2 ), Eq. (78). 

The first and third correspondences are easily checked 
by straightforward differentiation of M° and M{2). To 
prove the second correspondence we write the expres-

2  f /" e (k+k" ) - e (k) 
dk" dw-

(27Ty 0 (e(k+k / /) — e(k))2+w2  

X(}V(k",iw)-W(k",Ü)). (109) 

We then perform a partial integration with respect to w, 
(dW/dw= WHP/dw), 

16 r rM 

MXk,e(k)) = / dk" / dw 
(2 i r )7  J J0  

e(k+k")-e(k) 
X arctan W2(k",iw) 

r (e(k'+k / /) —e(k'))w0(^o~ |k' |) 
X / dk' . (110) 

J {[e(k /+k //)-e(k ,)]2+w2}2  

The last integral in Eq. (110) can be written47  

m w r k*k'5(|k ' |  — ko)dk' 

2h2ko k*k" J [e(k /+k / ,)-6(k /)]2+w2  
• (HD 

When we form d/dk= (k/k0) • d/dk of Mr(k,e(k)), the 
factor (k-k")-1 drops out and it is relatively easy to 
check that we arrive at the same expression for Co/C as 
when fo of Eq. (104) is used in Eq. (103). It is easily 
realized that we have the correspondence fo, Eq. 
(106) —> M r ,  Eq. (110) with IF(k,0) instead of W(k,iw). 

Thus the RPA result f or the specific heat is reproduced 
by /e

(1) and f0 apart from a factor z. I t seems probable, 
although we have not been able to prove it, that if we 
use Eq. (43) instead of Eq. (41) for G, the iGW expres
sion for M will giv e exactly the same result for Co /C 

as /e
(1) and fo [cf. the discussion in connection with 

Eqs. (35) to (37)]. 
The numerical results for /e

(1), Eq. (104) and /«(2), 
fo, Eq. (106) are given in Table V and Fig. 11. The/'s 
are multiplied by sin0 to make it easier to estimate their 
contributions in Eq. (103). The z2-factor is not included 
in Table V and Fig. 11. Since we have numerical results 
for Afr[k,e(k)] we can evaluate the contribution to 
Co/C— 1 from fo, Eq. (104) and compare with the con
tribution from the static approximation for fo, Eq. (106). 
These contributions are given in Table VI under the 
headings (/0,RPA) and (/0,static). We expect similar 
differences between the contributions from/e

(2) accord
ing to Eqs. (104) and (106). The static approximation for 
the second-order terms in / is thus fairly rough and 
seems to somewhat underestimate them. 

47 We use the identity 

yV/ (k )0 ( |k o | - |k | )dk  =  J  (k/ |k | ) / (k )5( |k 0 | - |k | )dk .  
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TABLE V. Qu asiparticle interactions multiplied by sinö. 

r,= 1 

fo .(2) .(1) 
ra = 2 

fo f<w /«(1) 

r,=3 

fo /«(2) 

-X0 

1 
2 
3 
4 
5 
6 
7 
7+è 
7+f 
7 + § 

0 

-0.0788 
-0.0969 
-0.0842 
-0.0656 
-0.0473 
-0.0307 
-0.0151 

.(i) 

0 

-0.0009 
-0.0018 
-0.0030 
-0.0043 
-0.0062 
-0.0084 
-0.0095 
-0.0091 
-0.0066 
-0.0042 

0 

r. = 4 

fo 

0 

-0.0187 
-0.0188 
-0.0112 
-0.0038 
0.0019 
0.0055 
0.0063 
0.0057 
0.0041 
0.0025 
0 

0 

-0.0869 
-0.1274 
-0.1271 
-0.1081 
-0.0824 
-0.0553 
-0.0278 

/*(1) 

0 

-0.0032 
-0.0067 
-0.0106 
-0.0152 
-0.0201 
-0.0241 
-0.0231 
-0.0202 
-0.0139 
-0.0085 
0 

rs = 5 

fo 

0 

-0.0264 
-0.0322 
-0.0217 
-0.0066 
0.0070 
0.0159 
0.0171 
0.0148 
0.0105 
0.0065 
0 

.<« 

0 

-0.0900 
-0.1424 
-0.1531 
-0.1379 
-0.1095 
-0.0755 
-0.0386 

/*(1) 

0 

-0.0069 
-0.0141 
-0.0220 
-0.0304 
-0.0383 
-0.0429 
-0.0374 
-0.0318 
-0.0211 
-0.0127 
0 

rs  = 6 

fo 

0 

-0.0285 
-0.0367 
-0.0250 
-0.0044 
0.0156 
0.0286 
0.0289 
0.0246 
0.0171 
0.0104 
0 

fe(D 

-xo 
1 
2 
3 
4 
5 
6 
7 
7+è 
7+f 
7 + 1 
8 

0 

-0.0917 
-0.1512 
-0.1706 
-0.1510 
-0.1311 
-0.0924 
-0.0480 

0 

-0.0116 
-0.0237 
-0.0363 
-0.0488 
-0.0594 
-0.0634 
-0.0522 
-0.0430 
-0.0281 
-0.0167 
0 

0 

-0.0273 
-0.0354 
-0.0220 
0.0027 
0.0276 
0.0432 
0.0412 
0.0347 
0.0236 
0.0143 
0 

0 

-0.0927 
-0.1571 
-0.1832 
-0.1770 
-0.1486 
-0.1067 
-0.0561 

0 

-0.0173 
-0.0350 
-0.0530 
-0.0699 
-0.0827 
-0.0852 
-0.0673 
-0.0544 
-0.0349 
-0.0206 
0 

0 

-0.0241 
-0.0299 
-0.0141 
0.0141 
0.0425 
0.0593 
0.0538 
0.0445 
0.0299 
0.0179 
0 

0 

-0.0933 
-0.1613 
-0.1926 
-0.1905 
-0.1632 
-0.1190 
-0.0633 

0 

-0.0238 
-0.0480 
-0.0718 
-0.0932 
-0.1078 
-0.1080 
-0.0826 
-0.0647 
-0.0417 
-0.0244 
0 

0 

-0.0192 
-0.0214 
-0.0024 
0.0290 
0.0510 
0.0767 
0.0667 
0.0549 
0.0360 
0.0215 
0 

From Table V and Fig. 11 we see that the first-order 
term inj is appreciably larger than the second-order terms 
for the higher m etallic densities. The convergence of the 
expansion for /, however, does not seem to be as good 
as that for fi. 

From the results for fe
(2 )  and for M(2)(0,0) we can 

estimate the magnitude of M(2)[k,e(k)] at k = k0. The 
derivative of if(2)[k,e(k)] relative to that of e(k) at 
k=k0 is roughly given by the value of (/e

(2), static) in 
Table VI. Taking into account that M(2)[_k,e(k)] should 
flatten out at small k by introducing an extra factor of 
0.5, we arrive at the estimate of M(2)[k0,e(k0)] which 
was given in Sec. 8, namely 0.04-0.02 Ry for rs varying 
from 3 to 6. For smaller rs,Mi2) becomes larger and the 
ratio M(2)/M(1) smaller. 

The influence of the errors in the second order terms 
of / is suppressed since they should cancel each other to 
a large extent. This can be seen in Table VI by com
paring the columns (fo, fe

m, static) with (/e
(1), RPA) 

or (fe,fo, static). 
In Fig. 1248-50 the results for the specific heat are 

plotted. The series expansion in rs, given by DuBois,51 

starts to deviate from our result already at rs = 0.5 and 

48 D. Pines, Ref. 31, p. 408, Eq. (8.4). (0 = 0.353r,1*). 
49 D. F. DuBois, Ann. Phys. 8, 24 (1959). 
60 S. D. Silverstein, Phys. Rev. 128, 631 (1962). 
61 D. F. DuBois, Ann. Phys. (N. Y.) 8, 24 (1959). 

for rs > l  it is obviously wrong. Pines' result, which is 
given by/e

(1) with W(r,e) = (e2/r)S(r) and S(r) accord
ing to Eq. (63), is qualitatively similar to ours but 
exaggerates the difference between C and Co. Silverstein52 

has recently tried to include the second-order term in 
M by an interpolation procedure similar to that used by 
Nozières and Pines53 for the correlation energy. Silver-
tein expressed Co/C—1 as an integral over the momen
tum transfer q, using RPA for small q and unscreened 
perturbation theory up to second order for large q. 
His results are however more negative than the RPA 
results (compare the last two columns in Table VI) even 
though the second-order terms give a positive contribu
tion to CQ/C—1. This probably is due to his use of a 
series expansion in q for the RPA part of his integrand 
rather than the complete RPA expression. Silverstein's 
result54 for X0/X minus his result for Co/C are given in 
the last column of T able VII. They agree roughly with 
our results from /e(1) without the z2 f actor. 

Since /e
(1) gives the largest contribution to the 

specific heat as well as to the paramagnetic suscepti
bility, it is of interest to examine how sensitive the 
results are to the precise form of /e

(1). The series 
expansion of the RPA expression for e(/c,0) is easily 

62 S. D. Silverstein, Phys. Rev. 128, 631 (1962). 
63 P. Nozières and D. Pines, Phys. Rev. Ill, 442 (1958). 
64 S. D. Silverstein, Phys. Rev. 130, 1703 (1963). 
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TABLE VI. Different contributions to (Co/C) — 1. 

A 816 

/.(1) f o  f o  /e<2) f o ,  /e(2) f e , f o  /.(1) f e ,  f o  /«(1), f 0  
r s  RPA RPA static static static static TF static" RPAb Silverstein 

1 0.0489 -0.0157 -0.0127 0.0184 0.0058 0.0547 0.0495 0.0404 0.0285 0.029 
2 0.0498 -0.0419 -0.0304 0.0351 0.0047 0.0545 0.0518 0.0322 0.0061 -0.039 
3 0.0451 -0.0712 -0.0482 0.0477 -0.0005 0.0446 0.0493 0.0218 -0.0183 -0.080 
4 0.0392 -0.1017 -0.0649 0.0576 -0.0073 0.0319 0.0460 0.0133 -0.0404 -0.125 
5 0.0332 -0.1326 -0.0808 0.0657 -0.0151 0.0181 0.0429 0.0066 -0.0599 -0.179 
6 0.0275 -0.1635 -0.0954 0.0726 -0.0228 0.0047 0.0396 0.0015 -0.0770 -0.232 

a Including the renormalization factor z 1. 
b Including the renormalization factor z. 

obtained from Eq. (57), and is 

«(*,0) = i+(x/«2)(i-W3)-(«V15) 

— (k°/35) ); |«|<1 (112) 
é(l)0)= 1+è^-

The first two terms in C(K,0) give the TF approximation, 

/e(D=-(X/4(K2+X)); k2 = sin2(0/2), (113) 

while the first three terms give the same expressions as 
Eq. (113) but with X replaced by X/(l—fX). Using Eq. 
(113) for / gives 

C0/C= 1 —X—X(X+§) ln(X/ ( l +X)) , 

X0/X= 1 — X—X" ln(X/( 1 —f— X)). 

By comparing (/e
(1),TF) and (/e

(1),RPA) in Table VI 
and (/e

(1),TF) and /e
(1) in Table VII, we see that the 

TF expression Eq. (114) gives a quite rea sonable result. 
Eq. (114) can also be compared with the high-

density results55'56 

C0/C— 1 —X—X/2 lnX, 

X0/X= l -X-X2/2(lnX-1.534). 

Thus in the high-density limit the lowest order term in 
/ correctly reproduces the X lnX and X terms. It may be 
noted that while the HF expression for Co/C diverges, 
the HF expression for X0/X, namely, 1 —X, gives a 
reasonable high-density description. Numerically the 
expressions for X0/X according to Eqs. (114) and (115) 
are not too different at high densities. At rs = 1 they are, 
respectively, 0.888 and 0.879. 

Osaka57 has recently calculated Co/C in what is stated 
to be the RPA. His result is identical15 with that of E q. 
(114) when X is replaced by X/(l — X/3). He used a rela-

TABLE VII. Different contributions to x0/x—Co/C. 

r .  /.(i) /e<2> /. fe* /<,»), TF Silverstein 

1 -0.1686 -0.0149 -0.1835 -0.1355 -0.1617 -0.157 
2 -0.2459 -0.0177 -0.2636 -0.1566 -0.2305 -0.228 
3 -0.2980 -0.0070 -0.3050 -0.1494 -0.2741 -0.301 
4 -0.3367 0.0141 -0.3226 -0.1347 -0.3049 -0.350 
5 -0.3670 0.0431 -0.3240 -0.1176 -0.3280 -0.384 
6 -0.3915 0.0784 -0.3131 -0.1004 -0.3460 -0.360 

a Including the renormalization factor z2. 

65 M. Gell-Mann, Phys. Rev. 106, 369 (1957). 
66 K. Sawada, Phys. Rev. 112, 328 (1958). 
« Y. Osaka, J. Phys. Soc. Japan 17, 547 (1962). 

tion between specific heat and polarization propagator 
which was derived from Eq. (Al) in his paper. Equation 
(Al) is however not quite correct since the p factors 
should not be there. 

Watabe15 has recently made an analysis of the in
fluence of Coulomb correlations on metallic properties 
using the Landau Fermi-liquid Theory. He approxi
mates / by /e

(1), [cf. Eqs. (104) and (105)] neglecting 
higher order terms and the z2 factor. For e(/c,0), he takes 
the limiting expression58 for small K 

e(/c,0)= 1 + (Xy/k
2) , (116a) 

Y~1== X0/X-}-2 f fo(6) s'mddd. (116b) 
J o 

QUASIPARTICLE INTERACTION 

3TT/Q /4TT/Q 
57T/8 

-O.'lO 

-0.15 

FIG. 11. Quasi-particle interaction. The quasi-particle inter
action / is here defined by 

8E-(ki - (t? W? £) 5 I '-(WSn-
/<r<r' = /o+(/e (1)+/e(2))5<r<r'- / depends only on the angle 6 between 
k and k'. I n this figure, / times sin# is plotted against 6. /e

(1) is a 
f i r s t -o rde r  t e rm  in  W ,  and  f o  and  f e

( 2 )  a re  of  s e co nd  o rde r  i n  W .  
The 22 factor is not included in /. 

68 V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (195 7) [English 
transi.: Soviet P hys.—JETP 6, 387 (1958)]; S. Misawa, Prog r. 
Theoret. Phys. (Kyoto) 27, 840 (1962) . 
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FIG. 12. Specific heat of an electron gas. The specific heat of 
an interacting electron gas divided by that of a non-interacting 
or Sommerfeld electron gas ([1 + (third column from the right in 
Table VI)]-1) is plotted against r s. 

Since /c
(1) depends on e(/c,0) and e(/c,0) depends on /, 

Watabe can write down an equation for 7 from a self-
consistency requirement: 

y-i= 1 — X—X2y ln(Ay/(l+\Y)). (117) 

Watabe's expressions for Co/C—l and X0/X—1 are the 
same as those in Eq. (114) multiplied by 7-1 and with X 
replaced by X7. This is obvious from Eq. (116a). 
Specifically he thus obtains X/X0=y. Watabe's result 
for 7 ranges from 1.12 to 1.32 when rs goes from 1 to 5. 
Our values for 7 as given by Eq. (116b) using /0, /e

(1) 

and /e
(2) with the z2 factor agree with Watabe's within 

1%. Also Glick's result25 for 7 at rs= 2 agrees accurately 
with Watabe's and ours. This is a quite remarkable 
coincidence, which we cannot explain. 

We now make a few remarks on the analytical be
havior of the different contributions to faa'(Q). few(ß) 
varies between —0.25 and —0.25(X/( 1+A/2)). The slope 
of / e

(1)(0) is zero at d and 0 = 7r. f0(6) and /e
(2)(0) start 

out with finite values at 0 = 0 and go to infinity at 6=ir 
as ln(l+cos0). The coefficients of the In term have 
opposite signs and roughly the same magnitude. We 
thus have a singular attraction between quasiparticles 
of opposite momenta and opposite spin giving a tendency 
towards a superconducting state. This effect does not 
come from the logarithmic singularity in e(/<,0). T he 

same effect has been noted earlier in case of a dilute 
Fermi gas,59 and is there supposed to disappear when 
higher order terms are taken into account. To see if thi s 
attraction might be strong enough to make a spherical 
Fermi surface unstable, we considered the following 
distortion, 

1+<5>£/£o> 1, 8n+(k,d)=l 

1+5>&/&o>1, 0>7r—77: 8n_(k,6) = 1 

l>k/ko> 1 — jr]28: 

8n+(k,d) = 8n_(k,d) = — 1, <5—>0, -q—» 0 .  

The lowering in energy from / relative to the increase in 
energy from E then becomes a??2 In ?; where a, the co
efficient of the singular term in /, ranges between 0.015 
and 0.038 when rs goes from 1 to 6. The attraction is 
thus far too weak to be of any importance. 

It should be pointed out that it is not clear if there 
should be a 22 factor in / when we use an approximation 
Go instead of the self-consistent G. To see this we use the 
results from Appendix B and write 

occ 

E=J2 [e(k)-f-Feff(k)3+A£, 
k 

A £  =  — £ 2  /  0 ( & ' ; G ) - f e " A  ( 1 1 8 )  
(27r)4 J 

XTr(FeffG+G0-1G-l-lnG0-1G)]^'(s), 

Go(k,e) = (e-e(k)- Feff(k))-i; e(k)=(kW/2m). 

Suppose now that we approximate G by Go in AE, which 
since AE is stationary might not be too serious. We then 
have 

E=E e(k)+—fi / G)dk\S). (119) 
(27r)4 J 

Since 

ÔG0(k)/Ônk> = 27n'ô(k—k')ô(e— e(k)- Feff(k)) (120) 

we have that 

E(k) = 8E/8nk=e(k)+M(k, e(k)+ Feff(k)), 

f(k,k') = 8E(k)/8nk, = 2Tri °I(k,kf); (121) 

e= d — e(k/?)+ Feff(ki?) . 

Suppose on the other hand that we start from 

£(k) = e(k)+M(k,£(k)), (122) 

where M is a functional of G 0. We then have for / 

f(k,k') = 2iriz°I(k,k'); e=e'=e(kF)+Feff(k,,). (123) 

The equations for /, (121) and (123), may be compared 
to Eq. (32). We thus get different results depending on 

69 See A. A. Abrikoso v et al-, (Ref. 2), p. 36. 
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which of se veral exact formulas we put the approxima
tion Go in. I t seems hard to resolve this ambiguity with
out a numerical comparison with a calculation involving 
some energy-dependent  M in  the  denomina tor  of  G.  

11. SUMMARY 

The main results from the formal analysis are 
(1) A set of self-consistent equations for the one-
electron Green's function involving a screened potential 
W (Sec. 3 and Appendix A). (2) A variational formula
tion for each self-consistent equation (Appendix B). 
(3) A specific approximation for the first-order equation. 
This approximation has been named COHSEX and it 
involves a "Coulomb hole" and a screened exchange 
term (Sec. 4). (4) An expansion of t he quasiparticle in
teraction /(k,k') of the Landau Fermi-liquid theory in 
terms of the screened potential W (Sec. 5). (5) An ex
plicit verification that for the first- and second-order 
terms in W, the quasiparticle energy £(k) and the 
quasiparticle interaction /(k,k') give the same result for 
the specific heat of an electron gas (Sec. 10). 

The numerical results are primarily intended to 
illustrate the convergence properties of the self-
consistent equations for the Green function. Without 
actually solving the self-consistency problem, we have 
been able to draw some important conclusions. These 
derive mainly from calculations for the electron gas but 
also partly from analysis of spectral data for atoms. 
Qualitative conclusions regarding the electron gas are 
expected to hold also for metals. The main conclusions 
are: (1) For an electron outside a closed-shell structure, 
COHSEX is expected to work well (Sec. 4). (2) The 
magnitude of th e quasiparticle energy E(k) for an elec
tron gas is given quite well b y the first-order equation 
(Sec. 8). To obtain a good representation of the k de
pendence of E(k), we have to go to the second-order 
equation (Sec. 10). (3) The expansion for the quasi
particle interaction has much poorer convergence than 
that for E(k). In particular it seems unreliable at the 
alkali-metal densities (Sec. 10). (4) The k dependence of 
£(k) is very small at the Fermi surface (Sees. 9 and 10). 
(5) The quantitative results for /(k,k') and k dependence 
of £(k) w ill probably be appreciably changed by carry
ing through a self-consistent solution. This might best 
be done by parametrizing the spectral function for the 
Green function and using the variational formulation. 
(6) The energy-dependence of t he self-energy M(k,e) is 
appreciable and cannot be neglected (Sec. 9). (7) The re
sults largely confirm the values of the correlation energy 
for an electron gas obtained by Nozières and Pines53 

and by Gaskell.40 In addition we give a discussion of the 
possible errors involved (Sec. 8). (8) The electron gas 
does not seem to become ferromagnetic for rs<7. For 
higher rs the difference between the ferromagnetic and 
paramagnetic energies is very small and no prediction 
could be made (Sec. 8). 
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APPENDIX A. EXPANSION OF THE SELF-ENERGY 
M AND THE POLARIZATION PROPAGATOR 

P IN TERMS OF THE SCREENED 
INTERAC TION W 

The results in this Appendix up to Eq. (A25) are well 
known to the "Green's-function people". The present 
derivation, however, utilizes only the Schrödinger equa
tion. It constitutes a "low-brow" version of tho se parts 
of the "high-brow" Green's-function theory that we need 
here. 

We write the Schrödinger representation of the 
Ilamiltonian for the system to be considered as 

H=Ho+H 1 ,  

Hio= J ' ̂ (x)h(x)\f/(x)dx 

1  r  (Al) 
H— J  x l / K x )^ ( x ' ) v (x ,x / )4 / (x ' ) \p (x )dxdx ' ,  

Ih=  Jp(x)w(x , i )dx,  p (x )  =  ̂ (x ) \P(x ) ,  

where h and v  are defined as in Eq. (2). We use the nota
tion (1) = xi= (xi,/i) = (ri,f i,/i). The potential w(x,t) is to 
be put equal to zero in the final formulas. Let the 
time-evolution operator for the state vectors in the 
Schrödinger representation be V (t,t') when 0, and 
U (/,/') when w= 0. The Schrödinger equation then gives 

V( t , t ' )  =  U( t , t ' )  -  i /h j  U W)H x { t")  V( t" , t ' )d t" . (A2) 

The functional derivative of V with respect to w is 

X sgn(/—/') V (/,/2)p(x2) V{h , t ' ) , (A3) 

if h is inside the time interval determined by / and 
otherwise 8V/8w is zero. We define the Heisenberg rep
resentation of the field operator by 

i (x , t )  =  V(-T 0 ,mx)V( t ,  -T0 ) ,  (A4) 

where T0 is large and positive. Schrödinger's equation 
then gives 

ih (d \p (x , t ) /d t )=  V(—T 0 ,  t )  

(A5) 
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By evaluating the commutator in Eq. (A5), we obtain 

r d 
i h h(x)—w(x,t) 

L dt  
J v(x,x')^(x',t)\p(x',t)dx't(x,t) = 0. (A6) 

Using the facts that d0(t)/dt=8(t) and ^(x)^ f(x /)-\-^ f(x /)^(x) = 8(x,x'), we obtain from Eq. (A6) 

[v(xy)T(Wx'\mx'\t)HxMKx\0)dx" = ih8(x,x')8(t/), (A7) 
d 

ih h(x)—w(x,t) 
L dt 

where T is the Dyson time-ordering operator. The product of four field operators in Eq. (A7) can be generated by a 
functional derivative. Using Eq. (A3) we have 

(8/8w(3))V(T0 , -To)T(t(lW(2))=--V(To, -7^)7X^(3)^(3)^ 1)^(2)), (A8) 
h 

assuming /3 to be in the interval T0 , — TV We define the one-particle Green's function by 

i{N\U(-T„T,)V(T,,-T,)m(\W(2))\N) 
G( 1,2)— (A9) 

h (N\U(-T0,T0)V(T0,-T0)\N) 

where \N) is s ome state of t he iV-particle system with w= 0. The definition Eq. (A9) coincides with Eq. (1) when 
w=0, and |iV) is the ground state. From Eqs. (A7), (A8), and (A9) we have 

(ih—h{l)-V(l)]G(l,2)-ih [ ®(1+, 3)—*—G(l,2)d(3) = 8( 1 ,2), (A10) 
V dh I J 8w(3) 

where 
f (TVI U(-T0, To)V(To, -T0W(3)t(3)\N) 

7(1) = «;(1) + v(l+,3)— —d(3), 
J (N\U(-T0, T0)V(T0, -T0)\N) (All) 

l+=(xi,/i+A) and »(1,2) = W(XI,X 2)ô(*I—H). 

The second term in Eq. (All) comes from the functional tor M by 
d e r i v a t i v e  o f  t h e  d e n o m i n a t o r  i n  E q .  ( A 9 ) .  I f  w e  h a d  /  q  

defined the Green's function without that denominator, (^ A(l)— F(l) )G(1 ?) 
we would have had (N\U(-T0, T0)V(T0,-T0)\N) \  dh J ' 
X5(1,2) instead of 6(1,2) in Eq. (A10). That, however, 
would have spoiled a simple definition of th e inverse of _ / 3^(3 2)^(3) = 0(1 2) (A13) 
the Green's function, [cf. Eqs. (A14) and (A15) below]. J ' ' 
We note that it is important to use f(l+,3) rather than 
z>(l,3) in Eq. (A10) in order to correctly reproduce the From the definition of th e inverse Green's function 
four operators in Eq. (A7). In Eq. (All), on the other 

an<T( Al 1 )° we "h ave'6 "(1+'3) ^ Fr°m ^ ̂  / G(M)G-(3,2)<*(3) = 5(1,2), (A14) 

V(l) = w(l) — ih f II(1,3)G(3,3+)</(3). (A12) the identity 
J 8G( 1,2) r 8G-\4,5) 

= - / G ( l , 4 )  G(5,2)d(4)d(5). (A15) 
T0 is to be taken large enough so that all times of inter- 8w(3) J 8w(3) 
est in G(l,2) lie in the interval (— T0, T0). Equation 
(A10) c an be derived from Schwinger's dynamical prin- Using Eqs. (A10), (A13), and (A15) we can write 
ciple, cf., e.g. the first or the second paper in Ref. 2. The M as 
present derivation of the basic Eq. {A 10) has however the SG~ l(4 2) 
virtue of being very elementary and fairly short. M{\,2) = -ih [»(1+3)6(1,4) ——d{3)d(A). (A16) 

We define the self-energy operator or mass opera- J 8w(3) 
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We define the screened inter action W by we finally obtain the following expressions for M and P : 

f 57(2) f 
IF(1,2) = / »(1,3) d(3). (A17) M(l,2) = ih IF(l+,3)G(l,4)r(4,2; 3)</(3)d(4), (A23) 

J 5 w(3) J 

From Eqs. (A3) and (All) it is easily seen that this f 
definition gives the same result as Eq. (9), remembering P ( l ,2)= —ih J G(2,3)G(4,2+)I (3,4, \)d(3)d{4) . (A24) 
that w has to be put equal to zero when the functional 
derivative has been taken. Using Eqs. (A12), (A15), ^he functional derivatives of G and W can be written 
and (A17) we can w rite W as 

5G( 1,2) r 
^ ^ , -,  f ,« * cN 7V= / G(l,4)G(5,2)r(4,5;3)J(4)rf(5), (A25) 

W{\,2) = v{\,2)-Srih / D(1,3)»(2,4)G(4,5) 57(3) J 

517(1,2) r 5P( 4,5) 
ôG_1(5,6) — -= W( 1,4)17(5,2) rf(4)d(5). (A26) 

X G(6,4+)d(3)d(4)d(5)d(6). (A18) 57(3) J 57(3) 
5 w(3) 

Equation (A25) follows immedi ately from Eqs. (A15) 
Lsing the identity an(j (A22). To prove Eq. (A26) we write IV in the form 

5 r 57(2) 5 W = v(l — Pv)~ l  and use a n identity similar to that of 
/ 2), (A19) Eq- (A15). Fr om Eqs. (AZZ) to (A26) we can now gener-

5w(l) J 5ze>(l) 57(2) ate series expansions in W. 
The contribution to T of zero order in W is 

IV can be written 
r(0)(l,2; 3) = 5(1,2)5(1,3). (A27) 

W( 1,2) = «(1,2)+ I W(l,3)P(3,4)v(4,2)d(3)d(4), (A20) The lovvest order contributions to M and P are thus 

M«)(l,2) = «G(l,2)iy(l+,2), 
where w , , (A28) 

5G_1(5>6) P<»'(l>2) = -aG(l,2+)G(2,l). 

P(3,4) — ih G(4,5)G(6,4+) d(5)d(6). (A21) To obtain the first-order contribution to T from Eq. 
^ ^ (A22) it is sufficient to take the functional derivative 

Introducing the vertex function r, only of the exPlicit G in 

ni,2:3;=-(5G '(1.2'. oI':3 ) r<'>(l,2;3)=«G(l,3)G(3,2)W(l+2). (A29) 

= 5(1,2)5(1,3) + (5M(l,2)/57(3)), (A22) This gives for M and P 

Mw(1,2) = (ih)2  j J7(1+,3)G (1,4)G(4,3)G(3,2)17(4+,2)d(3)d{4), 

(A30) 

pa)(l,2) = -(tA)2 J G(2,3)G(4,2+)PF(3+,4)G(3,l)G(l,4)rf(3)</(4). 

The second-order contribution to T arises both from M (1) and M (2 ) .  From M (1) we have 

r (2 ) /(l,2; 3) = ihW(\+ ,2) JG(l,4)G(5,2)T^(4,5-, 3)d(4)d(5) 

+ihG( 1,2) J T7(l+,4)ÏF(5,2)(-^)(G(5,4)G(4,3)G(3,5)++G(5,3)G(3,4)G(4,5+M4)</(5), (A31) 

and from M(2) 

r«>"(l,2;3)=(«)!j W(1+,4)TF(5+,2)(G( 1,3)G(3,5)G(5,4)G(4,2) 

+G(l,5)G(5,3)G(3,4)G(4,2)+G(l,5)G(5,4)G(4,3)G(3,2M4)<i(5). (A32) 
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The third-order contribution to T contains 49 terms, 6 
from G and 6 from W in M(1), 3 from the G's and 4 from 
the W's in M(2) and 30 from the G's in if(3). 

We can obviously continue in this way and generate 
as many terms as we wish. We can also generate infinite 
partial summations in W. Thus if we, e.g., decide to 
approximate M by M{1) in Eq. (A22) and to consider 
only the functional derivative of t he explicit G, we ob
tain the following integral equation for F, 

r(l,2;3) = 5(l,2)5(l,3)+iÅ J W( 1+2) 

XG(l,4)G(5,2)r(4,5; 3)<7(4)</(5). (A33) 

Eq. (A 33) generates for P the ladder-bubble sum given in 
Eq. {61). When we insert this T into Eq. (A23) we ob
tain for M only one diagram in each order. Thus we in
clude the first but not the second and the third of t he 
third-order diagrams of Fig. 1. This does not seem to be a 
systematic improvement on M. If at all an infinite sum
mation should be made, a wider class of diagrams should 
be included. This conclusion is supported also by our 
results in Appendix B. 

APPENDIX B. VARIATIONAL P RINCIPLES 

We start by treating the case of a n electron gas. The 
results are then generalized to the case of an arbitrary 
system. Klein60 has proved that when we express the 
energy difference between the interacting and noninter-
acting ground states as a certain functional AE(G) of the 
one-particle Green's function G, this functional is sta
tionary with respect to small changes of G relative to 
the true G. We write AE as61 

O r 
AE(G) = i / W;G) 

(2ir) i  J 

+eu 'ArYx[G<r\k')G{k')-\ 

— \nGo~1(k')G(k')']}dk \ s ) ,  (Bl) 

where the functional <ï> has the property 

J ô$(k'' ,G)/8G(k)dk'M = -M(kiG)eu*. (B2) 

Here £2 is the volume of th e system. The variable k in
cludes spin, momentum and energy, while in k^) spin 
is left out. Tr stands for spin summation. The func
tional M(k]G) becomes the true M(k) when G equals 
the true G. From Eqs. (Bl) and (B2) we see that the de
mand that <5AE(G)/8G(k) be zero for all k gives 

-M{k-,G)+G<r l(k)-G-\k) = 0, 
or (B3) 

(e-e(k)-M(k]G))G(k)= 1. 

60 A. Klein, Phys. Rev. 121, 950 (1961). 
61 See P. Nozières, (Ref. 1), pp. 221-229. 

Since Eq. (B3) is satisfied for the true G, AE i s sta
tionary. Klein expressed $ as an infinite sum of "skel e
ton" diagrams ordered after increasing powers of the 
bare interaction v. If we replace this $ by some truncated 
expression we obtain truncated functional AE' and 
M' from Eqs. (Bl) and (B2). The functional AE' is 
stationary if a nd only if G is a self-consistent solution 
of Eq. (B3), M replaced by M'. 

We will now dev elop exp ressions for that giv e an 
M(k; G) expanded in the screened potential W. Equation 
(B3) then gives the self-consistent equations for G that 
we derived in Appendix A and discussed in Sec. 3. We 
start by writing down the expectation value of the poten
tial energy, Eq. (7) : 

1 O r 
(V)= / eU AM(k)G(k)dk. (B4) 

2 (2TT)4  J 

The Fourier transforms of M and P, Eqs. (A23) and 
(A24), are 

M(k) = - —̂ \  e~u '  A 'W(,k')G{k-k')Y{k,k')dk' , (B5) 
(2tt )4  J 

P(k')= — eU AG(k)G(k-k')r(k,k')dk, (B6) 
(2t t )4  J 

where the vertex function T(l,2;3) has been regarded 
as a function of x\—x i and X3—x\ in ta king the Fourier 
transform. We note that the P(k) of E q. (B6) has to be 
integrated over spin to give the P(k) of E q. (24). Com
paring Eqs. (B4), (B5), and (B6) we see that 

fp(k')W(k')dk', (B7) 
2 (2tr)4 J 

where for P(k') we have used a slightly modified 
expression, 

P(k')= e i (Ae~ i ( 'A '  
(2?r)4 J 

XG(k)G(k-k')T(k,k')dk, A> A\ (B8) 

We have to choose A' smaller than A sin ce the limit 
A' —> 0 is taken before A —> 0 in Eq. (B4). This modifica
tion of P (k) only influences its asymptotic behavior at 
large e. It corresponds to redefining the explicit G's in 
P as Gn™(k) = eUAG(k) or Gnew(l,2) = G(l,2+). We can 
consider the G's appearing in T and W as so modified 
without changing Eq. (B7). The expression for (V) can 
be written 

1 Q r v(k) TrP(k) 
( V )  =  4kw .  (B9) 

2 (27r)4 J l-v(k)TrP(k) 

Equation (B9) gives a modification of the usual rela-
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tion34 between (F) and the inverse dielectric function, 
the infinite constant being taken care of b y the redefini
tion of t he Green function. 

The energy shift AE is obtained from (F) by the well-
known expression 

C1 d\ 
AE= / -<F>, (BIO) 

J o X 

where all v's in (F) are replaced \v. If we neglect the X 
dependence of P we have, from Eqs. (B9) and (BIO), 

AE=  
2 (2tt)4  

ln(l-®(Ä)Tr P(k))dkM. (Bll) 

Since the imaginary part of the dielectric function al
ways has the same sign we have no trouble with the 
branches of the logarithm. The modification of P, Eq. 
(B8), occurs only when Pv is small compared to 1 and 
thus has no influence in this question. By taking the 
functional derivative of the <ï> corresponding to Eq. 
(Bll) we can find out what more terms are needed in $ 
to make it satisfy Eq. (B2). The expression for which 
gives M up to (n-\-l)st order in IF is 

=--( ln[l-»(jfe)£ TrP<-»>(£)] 
2 I m=0 

+w(k )Z  
m 

Tr P^(k) , 
m=0 ffî+1 J 

(B12) 

where W is defined from P = Ylon P(m). To verify this we 
form the functional derivative of E q. (B12), 

n 1 8&n)(k';G) 1 
dk \ s )  =  ~  

SG(k) 2 

ÔP^(k') 
X W(k') 

Z  
m=o m~\-1 

SW{k')' 

bG{k) 
-mP im)(k')-

0G(k) 
dk'. (B13) 

The functional derivatives of the mIF's in P(m) cancel 
the last term in Eq. (B13), while the functional deriva
tives of the 2(w+l) explicit G's in P(m) give —M(TO+1). 
A look at the details shows that IF<5P(0)/ôG would not 
have given M(1) if we had had normal G's instead of 
modified G's in P(0). We have actually checked Eq. 
(B12) only for n = 0, 1, and 2, but from the structure of 
the theory we conjecture that Eq. (B12) is valid for 
arbitrary n. 

There are a few comments that can be made in con
nection with the important Eq. (B12). We note that 
there is a definite coupling between P(n) and M (n+1). We 
can thus not expand P to say first o rder and obtain an 
equation with M also of first order. It is fu rther not 
possible to sum just the ladder bubbles of E q. (61). This is 
clear if we look a t P(2), Fig. 2, where there is a mutual 
cancellation between the IF derivatives of the first three 
diagrams. Each of th ese gives one third the sum of th e 
first th ree diagrams in M{3), Fig. 1. The last three dia
grams in P(2) on the other hand cancel their IF deriva
tives individually and are in one-to-one correspondence 
with the last three diagrams of M (3). 

So far we only know that the $ of Eq . (B12) obeys Eq. 
(B2). We have also to check that Eq. (Bl) is satisfied. 
It is enough to prove that \(dAE/d\) = (F) since 
AP=0 for \ = 0. Comparing Eqs. (B12), (B9), and (Bl) 
we see that \(d/d\) applied on the explicit \v of the 
logarithm in Eq. (B12) gives (F). The remaining X's 
appear in connection with IF and G. It is easy to see by 
comparing with Eq. (B13) and the discussion follow
ing that equation that these terms vanish. 

The generalization of the electron-gas results to a non
uniform system is fairly simple. In the general case we 
have to take account a lso of the F(x) term of E q. (7), 
which vanishes identically for an electron gas in a uni
form positive background. Glancing at Eqs. (7), (Bl), 
and (B12) we write 

1 r de de 
AE(G) =— / dxdx' e"Ae"'AG(x,x; e)G(x',x'; e/)f(x,x /) 

2 J 2ir 2tt 
1 f de[~ / n 
- / — Tr ln(l —P(e»+IF(e)E P(n)(e) 
2 J 2TA- \ n-\-1 

de 
+i —e^ Tr(Go~1(e)G(e)— 1 —lnGo_1(e)G(e)). (B14) 

J 2ir 

Here the quantities inside the trace are considered as 
matrices labelled by (x,x') where x includes position and 
spin. The unperturbed state is taken with full inter
action between electrons and nuclei. On account of the 
cyclical p roperty of a trace we can take derivatives of 
the matrices as if the y were scalars. The proof that Eq. 
(B14) gives the correct energy shift and the correct 
equation for G follows similar lines as that for the elec
tron gas. 

Equation (B14) is however rather inconvenient since 
Go is very different from G as soon as the nuclear charge 
Z is larger than, say, 2. It is easy to realize that all 

occupied functions in G0 will then be closely the same as 
those of an ion with charge Z. Thus, e.g., in case of a 
metal, what must become conduction electrons in G will 
in Go look like tightly bound core electrons. To improve 
the situation we split the Hamiltonian into an unper
turbed part 

H0= J \pf(x)h(x)\J/(x)dx 

+ j ^{x)V&n{x,x')\p{x')dxdx', (B15) 
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and a perturbation 

#i=xj- J\f/^(x)\f/ f(x ,)v(x,x')\p(x')\ / /(x)dxdx' 

-J  ̂ (x) Veu (x,x')t(x')dxdx' 

+èZ'ZnZmv( R„,RW) . (B16) 
nm J  

FCff can be chosen quite arbitrary but we may think of a 
Hartree potential plus Coulomb-hole and screened-ex-
change potentials. The AE(G) corresponding to //i of 
Eq. (16) is given by Eq. (B14) plus two additional terms, 

A£(G) = Eq. (B14)+t f —e»* Tr(VetlG(e)) 
J 2 TT 

+è Z'ZnZmv(Rn,RJ. (B17) 

The Go of E q. (B14) now of cou rse corresponds to Eq. 
(B15). It is easily checked that Eq. (B17) gives the 
correct energy shift and equation for G. 

The unperturbed energy corresponding to Eq. (B15) 
is simply the sum of t he N smallest e igenvalues of the 
one-electron operator h-\-Veu. While this generally is 
not a good approximation of the true energy, it is on the 
other hand not very far off. The importance of the split 
into Ht+Hi lies however in the fac t that Go has now be
come quite realistic. Specifically, if we appro ximate G by 
Go in Eq. (B17) we find that the Ven G term cancels 
against the same term in Eo and that the last integral 
in Eq. (B14) vanishes. The GGv term is the Coulomb 
energy and the ln(l — Pv) term gives in the lowest ap
proximation the HF exchange energy. If we want, we 
can gradually improve Veif to make Go m ore closely 
like G. This is, however, only possible up to a certain 
point since Veu is energy-independent. 
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Effect of electron correlation on band structure of solids 

By LARS HEDIN 

A B S T R A C T  

Starting from a recently developed approximation method for the one-particle Green's func
tion the effect of electron correlation on band structure of solids is analysed. The analysis 
suggests that conventional band calculations, which essentially neglect valence-valence ex
change, should give reasonable results except for the absolute positions of the bands. All core 
bands are found to shift upwards with approximately the same amount, while the highest 
band shifts downwards. The magnitudes of the shifts are larger, the larger the polarizability 
of the electrons in the highest occupied band. 

For metals with a small core, such as alkali metals and aluminum, the results from a 
conventional band calculation can be roughly corrected using properties of the electron gas. 
The theoretical results for core band positions and for the Fermi level compare reasonably 
well with experimental results from the electron spectroscopic method developed in Upp
sala and from photo emission of electrons. 

The approximations proceed in two steps. First we derive formulae which involve an ex
pansion in a screened potential W, and inversion of the dielectric function by regarding its 
nondiagonal elements in momentum space as perturbations. These approximations should be 
relevant to a fairly wide class of solids, which, however, does not include transition metals 
and rare earth metals. In the next step we make specific approximations of the different 
terms. These approximations are primarily intended for simple metals, but could, mutatis 
mutandis, be used also in other situations. 

The crystal potential for the valence electrons, that we arrive at, consists of the Hartree-
Fock potential from the free ions, the ordinary Hartree potential from the valence electrons 
and a correlation contribution, which is electron-gas like. The correlation contribution has a 
form which is simple enough to make it useful for numerical calculations. The influence on 
band gaps is expected to be significant but not drastic. 

1. Introduction 

The concept energy band structure is based on a one-particle equation. The 
equations used are akin to the Hartree-Fock equation. The energy eigenvalues 
are interpreted as giving the one-particle-like excitation energies in the same 
manner as in a Hartree-Fock approximation according to Koopmans' theorem. 

It is known since long that if a Hartree-Fock theory were carried through 
consistently for a metal it would give a quite erroneous excitation spectrum [1], 
and also that the results for semiconductors would probably be quite poor. 
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The anomaly arises from valence-valence electron exchange. In band calcula
tions one accordingly either neglects valence-valence exchange or treats it with 
the Slater [2] free electron average. The Slater approximation in many cases 
gives almost a constant contribution, and can never give the Hartree-Fock type 
anomaly. Band calculations differ from Hartree-Fock calculations also in the 
respect that one mostly does not try to obtain self-consistency, and that often 
also valence-core exchange is neglected. At present a large number of band 
calculations have been made. The results are qualitatively and often quantita
tively in good agreement with experimental data. 

The theoretical basis for band calculations is actually not as poor as the 
foregoing description might indicate. On good physical ground it can be expected 
that the effective interaction between electrons is screened, and that a screened 
interaction should appear in the exchange term, which makes its behaviour 
quite reasonable [3]. Through Pines' work [4] in the early fifties these ideas 
were for the first time put on a semi-quantitative basis, although many funda
mental questions such as the sharpness of the Fermi surface remained unsolved. 
With the development of many body theory during the last decade the funda
mental questions connected with band theory have been largely clarified. Ex
plicit proposals have also been made for improved one-particle equations [5]. 
The main drawback in these treatments is the lack of a systematic approxima
tion scheme and of numerical estimates. 

In a recent paper [6] a systematic self-consistent theory based on a varia
tional theorem was developed. Extensive calculations for the electron gas were 
made. Even though these calculations were not fully self-consistent, the main 
results should be reliable. The most important result was that the momentum 
dependence of the elementary excitations in an interacting electron gas differed 
from that of noninteracting electrons by only a few percent. More refined cal
culations however seem necessary to obtain accurate values of this small cor
rection term. It was also found possible to locate the Fermi level fairly well. 
From these results it is already clear that the accepted procedure in band cal
culations of treating valence-valence exchange as a constant is essentially correct 
for free-electron-like metals. The main purpose of this paper is to separate out 
the electron-gas-like contributions and to estimate the correction terms arising 
from the periodicity of the lattice structure. 

In section 2 we give a brief discussion of t he Green's function formalism. The 
main purpose of that section is to prove that the solutions of t he homogeneous 
part of the equation for the Green's function give the quasi-particle energies. 
Most of this section can be omitted by those who are ready to accept its con
clusion from physical intuition. 

In section 3 the polarization propagator P is analysed. The Fourier transform 
of P is separated into a diagonal part, and a nondiagonal part which is treated 
as a perturbation. The magnitude of the perturbation is discussed, and judged 
to be small. 

In sections 4 and 5 we proceed to the main task of this paper, the analysis 
of the valence and core bands. In section 6 we analyse the electrostatic part 
of the crystal potential for the case that the charge density has a "muffin-tin" 
form. 

In section 7 we give numerical results for Li, Na, K and Al. In section 8 
we discuss accuracy, selfconsistency and possibilities of mor e refined calculations. 
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We also look at the second order exchange terms and make a comparison with 
the quantum defect method. 

In an appendix we give improved values for the total energy and the Fermi 
energy of an electron gas, using an extrapolation formula. The values obtained 
for the chemical potential should be accurate within a few hundredths of an 
electron volt. In a second appendix we estimate some small coupling terms be
tween core and valence electrons. 

2. Qualitative discussion of the quasi-particle equation 

For definitions and the basic properties of the one-particle Green's function we 
refer to section 2 of ref. 6. Here we recapitulate only a few important formulae. 
The one-particle Green's function has the spectral resolution 

(2.1) 
s S Gs 

and obeys the equation 

[g - A(x)] <?(x, x'; e) - J JJ(X .  x"; s ) G(x", x'; s )dx"  =  <S(X - x'), (2.2) 

The symbol x stands for three space coordinates and a spin coordinate, x = r, 4. 
M is the non-local energy-dependent self-energy operator, which contains all 
correlation effects. The energies es give the one-particle-like excitation spectrum. 
Now consider the homogeneous equation corresponding to Eq. (2.2) 

[e - A(x)] / (x) - J*M(x, x'; e) / (x') dx'  = 0. (2.4) 

It is simple to prove that s  = es and / = f s  is a solution in the case when es is a 
discrete eigenvalue. For solids the es are in general not discrete. The eigenvalues 
s of Eq. (2.4) are then complex and give the energies of quasi-particles. We 
now proceed to show this. 

We first notice that for a perfect lattice 

G(x,x';e) = G(x + R,x' + R;e), (2.5) 

where R is a lattice vector. We can thus expand G in terms of one-particle 
Bloch functions 

G(x ,x ' ; e )=  2 G nn'  (k, e) cpnX (x) <pW (x '). (2-6) 
k, n, n' 

Here k is restricted to the first Brillouin zone and n  is a zone index. Equa
tion (2.2) may now be replaced by a matrix equation 

—-—np(r')Är'. (2.3) 
r — r 
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{e - h -M) 0=l ,  (2.7) 

where the matrices are labeled by the zone indices. We have one such equation 
for each value of k. The explicit form of G is 

Qm> (k, e) = 2 
( N I  a n k  I N  +  1 ,  s )  ( N  +  1 ,  s  I  a „ / k  |  N >  

+ 2 
<AT|ffl^k|-y~ 1, a) (N -  l,s|an k |iV) 

(2.8) 

where the operators a n k refer to a representation of the field operator with the 
Bloch functions (pnk as a basis. If the states are taken as simple Slater deter
minants, matrix elements like <(N | arek | N + 1, are different from zero only for 
one value of s, namely s = n, k. In this case we thus have 

G?in' (k, ß) 
" Snk 

(2.9) 

For interacting particles matrix elements like <iV | ank | N + 1, s )  will be different 
from zero for many states s. If we regard the matrix element as a function of 
ss, we expect this function, by an argument similar to that used for an elec
tron gas, to be sharply peaked, at least when the maximum occurs for an es 

close to the chemical potential fx. The analytical continuation of Gnn, (k, s) 
should then have a complex pole slightly off the real axis just as in the elec
tron gas case. We next want to construct a solution for G, valid when g is 
close to a given value e*, which we take as one of the eigenvalues of Eq. (2.4). 
We then have 

e — h  — M(s* )  — (e — e*) 
aM(e*)  

8 s  
G( s )  = I. (2.10) 

From the solutions of the homogeneous equation 

£ j  — A  — M(e * )  — ( g j  — e* )  
8M (e*)  

8 s  
f t  (x) = 0, (2.11) 

we construct the expression 

2 i  £  S i  
(2.12) 

where gt is not yet specified. One solution to Eq. (2.11) is obviously St = e*. 
Here and in the following we restrict ourselves to Bloch functions of a definite k. 
Equation (2.12) is a solution for G in Eq. (2.10) if 

8M(e*  

8s  
U  (x) g*  (x') = <5(x- (2.13) 
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Eq. (2.13) is true if the g t  are chosen as the biorthogonal set to [1 — (ôM/ôe)] f t ,  
which is possible if the /, are linearly independent and form a complete set of 
Bloch funct ions  of  momentum k.  In  case  the  ant ihermit ian  par t  of  M and 8M/de 
is neglected, as can be done in the interesting cases when we are close to the 
Fermi surface, one can prove that the expression for G becomes 

G{x,  x'; s) = 2 
/i(x)7?(x'; 

1-
8M{e* 

de  
(2.14) 

where the /• are assumed normalized to 1. We note that in Eqs. (2.12) and 
(2.14) the £j are discrete but complex eigenvalues. We have thus proved that 
the eigenvalues of Eq. (2.4) are identical to complex poles of G and thus give 
quasi-particle energies. This result is rather clear from physical intuition, but it 
seemed worth while also to verify it from the mathematical machinery. It should 
be pointed out that this result cannot be obtained by simply saying that we con
sider a finite crystal with discrete levels. The Green's function which we introduce 
in this case will namely be completely insignificant, since it will oscillate ex
tremely rapidly when the energy varies. 

3. Analysis of the RPA polarization propagator 

We follow a previous work [6] and expand the self-energy M in terms of a 
screened potential W. The expression for W involves the polarization propaga
tor  P 

W = v{ l-Pv)- 1  = ve~ 1 .  (3.1) 

Here v  is the bare Coulomb interaction, e2/r, and e  is the dielectric function. 
We approximate P by 

P(l, 2) = — 2) Cr(2,1). (3.2) 

Eor G we take G(x,  x'; e) = 2 ^ ^—-, (3.3) 
k  £  

where the (p k  = Q~i e l k T u k (x)  and e k  are chosen to give a reasonable approxima
tion of the band functions and energies. O, stands for the total volume of the 
solid. For core bands k stands for a k-vector in the first Brillouin zone and a 
band index, while for the valence band and higher bands k stands for a k-
vector in the extended zone scheme. With this convention uk is close to a free 
ion function for the core bands, and close to 1 in the outer part of the unit 
cell for most states in the other bands. The Fourier transform of Eq. (3.2) 
with respect to time gives 

occ unocc 

P ( r , r ' ; e ) = - 2  2  .  j M ' X f c f c ' l ,  ( 3 . 4 )  
fc (£fc £k ' i  e 

kk 'y  = (x) 9•>%, (x) dÇ.  where I kk ' y  =  œfc(x)a£,(x)d£. (3.5) 
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The integration over the spin variable £, forces k and k' to have the same 
spin. Eq. (3.4) gives the analogue of the Lindhard [7] or RPA dielectric func
tion, which has been discussed by Ehrenreich and Cohen [8], 

We define the Fourier transform of P with respect to r and r' by 

<*'; ®)= ^ j ei9rP(r, r'; e) e Ul'r'drdr'. (3.6) 

On account of the periodicity of the lattice, P(q, q'; e) is zero unless q and q' 
differ by a reciprocal lattice vector. 

We separate P in the following two ways 

P = P° + P" = P0 + P1. (3.7) 

P° is that part of Eq. (3.4) where k' runs over the core states, and P° is thus 
similar to the polarization propagator of a free ion. Pv is that part of E q. (3.4) 
where k' runs over the occupied valence states, and Pv is thus similar to the 
polarization propagator of an electron gas. P0 is that part of P which is dia
gonal in the momentum-representation, and P1 is thus the non-diagonal part. 
The different separations of P are used in expansions of W such as 

W= W0 + W.P, W0 + W.P, W0P1 W0+ , (3.8) 

where W0 = v(l — Pgvy1. (3.9) 

We first investigate P*. The quantity to evaluate in Eq. (3.6) is 

ei«Vk(r)ç9k'(r)rfr = (5k',k+<ï + 2 A(k, q; K)(5k\k+<i-K, (3.10) 
K 

f 
Jo. 

where A(k, q;K) = -^- ( eiKr (wk (r) «ï+q-K (r) - 1) dv. (3.11) 
"o 

Here K is a reciprocal lattice vector, and Q0 the volume of a unit cell, 
OQ^O/JV. From the orthonormality of the <pk we have 

A(k, 0; K) = 0. (3.12) 

For the valence band and higher bands of free-electron-like metals the uk are 
close to 1 except in the core region or when k is close to a zone boundary. 
Disregarding the latter case we see from Eq. (3.11) that a generous estimate 
of A is 

A ^volume of ion core/volume of unit cell. (3.13) 

If the distortion close to zone boundaries occurs only in a small fraction of 
k-space it will have little influence on P" since the A's occur in integrals over 
k-space, cf Eqs (3.14) and (3.15). From the equations we have written down it is 
easy to find the expression for P". The diagonal and non-diagonal parts are given by 
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1 occ.val. unocc. 9/c, — p, 

P S ( q , « ) = - A  2  2  ( k  k )  

O k" k" (fik £k')2 £2 

X {(5k',k+q| 1 + A(k, q;0)|2 +V |A(t, q; K) l^k-.k+q-ii}, (3.14) 
K  4- 0  

1 occ.val. unocc. 9/c, — o , , 
P!(1 + K„q + K!;e)--i J J 2<» « 

O k '  k  ( £ k  £ k ' ) 2  £ *  

x {A(k, q + Kj — K2)(5k',k+q+K 2  +A*(k, q + K2, K2 — Kx) (5k-, k+q+K, 

+ 2 A(k, q + K,; Kx - K) A*(k, q + K2; K2 - K) <5k<, k+(1+K}. (3.15) 
K 

To investigate the convergence of the sum over K in Eqs (3.14) and (3.15) we 
write A as 

A * IY m- TCI ^q<k|e^rP|k + q-K> 
A (k' q' K) ̂  m ^T' (3'16) 

e ^ - K -e ^  +  —  

where P is the momentum operator, and the matrix element is taken between 
Bloch functions. Eq. (3.16) follows by taking a matrix element of the commu
tator [fleft. where Hett is the one-particle Hamiltonian corresponding to 
the Bloch functions cpk and energies ek- For large K we see that A is at most 
of the order 

2 k ' q  

^ X 2 
A(k. q; K)^ J, (3.17) 

where we have replaced k + q —K by the k' appearing in Eq. (3.14). We now 
decouple |A|2 in Eq. (3.14) from the summation over k' by replacing k' in 
Eq. (3.17) by its maximum value, kF. If we further replace £k and ek- by free 
particle energies, the last term in Eq. (3.14) becomes 

2 Pel gas(q-K,e) Fq 

K + 0 X4 

Since for the electron gas P ( q ,  e )  ̂  ( l / q )2  for large q  we see that the last term 
in Eq. (3.14) converges as rapidly as K~6. The same is true for Eq. (3.15). 
Since A is a small quantity, we neglect the last term in Eq. (3.14) as being 
of order A2. We then have a result for Pq which differs from that for the 
electron gas in only two respects. We have an additional factor 11 + A |2 and 
the ek have the effect of the periodic lattice. 

Since P Ô  (q ;  e )  ap pears only in the combination 

l ~^ P v o ( q ; e ) ,  
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it is its behaviour for small q that is of most interest. In the single OPW 
approximation, i.e. keeping only 1 orthogonalized plane wave, we obtain for A 

A(k, q; | occ (k + q) - ac (k) |2, (3.18) 
C 

where occ ( k) = 1/QQ J (r) e 'kr dr, uc (r) = core function, and we have kept only 
the term of lowest order in q. We note that one has to take normalization of 
the OPW's properly into account in order not to have a spurious non-zero 
result for A(k, 0; 0). According to this estimate, A is indeed very small in the 
region of q-space that is of interest, namely q < 2kF. We have also calculated 
A from Callaway's wavefunctions for sodium [10] and find that for k -> 0, q —> 0, 
A(k, q; 0) = — O.OOSSfg/Åv)2, where kF is the Fermi momentum. 

We next turn to the estimation of Pq. IF w e assume a negligable overlap 
between core functions on different atoms, we find from Eq. (3.4) that Pc(r, r'; e) 
can be written as a sum of non-overlapping polarization propagators. We com
pare one of these with the expression for the polarization propagator of a free 
ion in the so called uncoupled Hartree-Fock approximation [9], which is known 
to work reasonably well for closed shell systems. The core-functions <pk, are 
closely the same in both cases. The sum over k in Eq. (3.4) runs over all 
functions orthogonal to the core functions except the occupied functions in the 
valence band. The functions <pk in the two cases differ in the core region 
mainly from the use of different boundary conditions, since the potentials are 
roughly the same. The energies sk and Ek< are certainly different in the solid 
compared to the free ion, but the shifts are small compared to the differences 
£k ~ Sic' between core and valence levels. Since the boundary conditions are 
applied well outside the core region we find that Pc in one lattice cell is roughly 
the same as the P of a free ion. The missing terms "occ val" in the sum over 
k in Eq. (3.4) have little influence since the oscillator strength of P° considered 
as a function of energy is peaked at roughly | highest core energy |, and only has 
a small tail in the region of the missing terms. The error introduced is of the 
order of a few percent. We thus have 

P8(q,e) = ~ Je i,,rPlon(r,r'; e)  dr dv' .  (3.19) 

For those s where Pq 4= 0, Po is little different from its static value, and we 
can put e = 0 in Eq. (3.19). The g-dependence of PQ is also much weaker than 
that of PQ in the region of interest, q < 2k. We approximate Po by its limit 
when q -> 0, e ->• 0 

4:7t 
lim ~v(q)Pc

0 (q, 0) = — ocD, (3.20) 
<2->0 

where ocD is the dipolar polarizability of a free ion in the uncoupled Hartree-
Fock approximation. If we had had a lattice only of ions and with no valence 
electrons, the static dielectric constant would have been 

!•:, = 1 4 71 
a 

0CD. (3.21) 
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We thus arrive at the following approximation for the diagonal part of the 
dielectric function 

v(q)  
- P I  ( q ,  e )  (3.22) 

where Pq is given by Eq. (3.14). 

4. Discussion of the valence band 

The main effects of the periodic lattice are embodied in the crystal potential 
appearing in the h(x) of Eq. (2.3). The selfenergy operator M is certainly modi
fied compared to the electron gas case, but the corrections are only of order 
A. For simple metals the correction is small, but even for semiconductors like 
Si and Ge, it should not be too large, and an expansion in A should still be 
a proper procedure. 

In this section we will only discuss the first order term of M in its W-ex-
pansion. The second order term is also mainly free-electron like, and since it is 
small the corrections arising from the presence of a periodic lattice are not 
very important. The influence of M on band gaps is discussed in sec. 8. 

The first order term of M can be written 

M(x ,x ' , s )  =  ̂ ~  I e~ i e ' ö W(x ,  x'; s ' )G(x ,  x'; e~e ' )de ' ,  (4.1) 
2tz  J  

where ô  is a small positive quantity. To calculate the quasi-particle energy E k ,  
we only need the expectation value of M. Approximating Ek by ek in the 
energy argument of M, which our experience from the electron gas case tells 
us is a reasonable thing to do, we have from Eqs. (3.3) and (4.1) 

M(k)= J<p* (x) M(x ,  x'; s k )  <p k  (x') dxdx '  =  ~  j  e~ i e å  2 ̂  /  ds •  ( 4 - 2 )  

In the last section we split off a core part of the polarization propagator, 
Eq. (3.7). It is also convenient to split off a core part of the Green's function 

(4.3) 
k  6  £ jc  

Writing P = P 0  + P\  +  Pl ,  W =  W 0  + W 0  (PI  +  PI )  W 0  (neglecting the third order 
terms), and G = GC+(G~GC), we obtain 

M (Jc)  =  Mj  +  M u  + M I U  + M 1 V   

Mj = GCTF= core-valence exchange 

Mu = iß ~ G°) W0 = electron-gas-like result 

i f  m  =(G-GnW 0 PtW 0  = O(A 2 )  

M1V = (G — Gc) W0P{ 1F0 = O(aA). (4.4) 
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To see that the first term gives essentially the ordinary core-valence exchange 
contribution, we separate it out explicitly 

M U"> + f f •§•<"'I "'M-»I"V (4.5) 
k' 1 ' 2tt J k' sk  — ek '  — s 

We have to show that the last term in Eq. (4.5) is small. To do that we re
place W by WV+W"PCWV, where Wv is defined from v(l — Pvv)~x, and thus is 
not diagonal in momentum space. From the energies involved in Pv one real
izes that T-P(e) — v rapidly approaches zero when e becomes larger than the 
Fermi energy. When the energy difference between valence and core bands, 
Sk~£k', which appears in the denominator of Eq. (4.5), is much larger than 
the Fermi energy, which often is the case, one can expect that the integral 
should give a contribution roughly eF/\ sk — ek' | smaller than the first term in 
Eq. (4.5). Explicit estimates made in appendix B support that conclusion. We then 
have a remaining contribution involving the matrix element (Ich' \ WVPCWV | kk'), 
which approximately can be replaced by {kk' \vP°v\kk"). This contribution to 
G°W is of the order of a core-valence exchange matrix element squared, divided 
by a core-valence energy difference, and thus is very small compared to the 
first term in Eq. (4.5), which itself is rather small. 

We next consider the second term in Eq. (4.4). Straight-forward calculations 
give 

M-a =7~-u IV" 11 + A(k, q; 0) \2ds 
(2n) J et - ek+tt - e 

+ 7s\i 2 W0_(<be) |A(k;q;K)|2^^ (4-6) 

(2n) K4=0 J £k fik+q-K — £ 

The explicit expression for W0  is 

-1 /F~„2 

«M • •"«»-43L- |4-" \ 1 9. 

where PI is given by Eq. (3.14) and es  by Eq. (3.21). This contribution to M 
reduces to the electron gas result if we put £s=l, A = 0 and ek = %2ki/2m. If 
we put £s=l and neglect the A2-terms in Eqs (4.6) and (3.14), we have a 
result which is formally very similar to that derived by Bassani, Robinson, 
Goodman and Schrieffer [5], The present result is however not limited to an OPW 
scheme, and the A's can be estimated from any type of calculation for the 
wavefunctions. A Wigner-Seitz method with a spherical approximation of the 
cell should give accurate enough results for the small quantity A. We also note 
that if we apply Bassani, Robinson, Goodman and Sclirieffer's formula as it 
stands we will get A(&, 0; 0) =1= 0, which, from Eq. (3.12), we know is incorrect. 

The last two terms in Eq. (4.4) can be written, neglecting a small contribu
tion involving P1 A2 
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M m  + Ml v =-^-  f _2  Z°(q '^o(q  + K,e) d ( [ d e  

y2i7t) J K 4=0 £k £k+C)i £ 

X {P 1  (q, q + K; s)  A(k, q + K; K) + P1 (q + K, q; s)  A*(k, q + K; K)}. (4.8) 

Since P\  is linear in A it gives a contribution of order A2 in Eq. (4.8), while 
P\ gives a contribution of order aA, where a is the polarizability of the free 
ion. Both contributions should generally be small, but can be estimated in par
ticular cases. 

If we consistently neglect all A2-terms, that is Eq. (4.8) and the last term 
in Eqs. (3.14) and (4.6), we are left with an expression, which is similar in 
structure to the electron gas result. The differences consist in that the ek have 
the effect of the lattice, and in v(q) being replaced by v(q) | 1 + A(k, q; 0) |2/es = 
v(q)/e*. Erom Schwartz' inequality one can show that |l + A(k, q; 0) | is always 
smaller than 1 so that e* is larger than es. The effect of bandstructure can be 
roughly  take n in to  account  by  replacing v(q)  by v(q) /e* and ef c  by (1  / in*)  U^k^/Zm.  
This amounts to rescaling the electron gas value of M as 

m* *  *  m*r,  . .  
M (r s )  =  —j^M(r*) ,  r* s  = (4.9) 

e s  
£ s  

The use of an effective mass m* is probably not of much significance for free-
electron-like metals, since we know from electron gas calculations, that the in
tegration over q in Eq. (4.6) extends far enough to have a smoothing effect on 
the deviations of efc from K2k2/2m. For a degenerate semiconductor, on the 
other hand, it is appropriate for approximately parabolic bands to use an effec
tive mass [11]. In this case the "core" should include also the valence band, 
and r* can become smaller than 1, since ss is generally large while m* is small. 

5. Discussion of the core bands 

The core functions are essentially unchanged in going from the ion to the 
solid. The core energies, on the other hand, change appreciably. The larger part 
of this change comes from the electrostatic potential of the valence electrons, 
but also polarization effects are quite important. The reason why the wave-
functions do not change much is that both the electrostatic and the polariza
tion potentials are slowly varying in the core region. The situation is analogous 
to differences between ion and atom, but the changes are less marked than 
between ion and solid since in the solid the valence electron is confined to the 
unit cell while in the atom it extends much further out. To see the order of 
the different effects we quote some figures for the Is energy level in the 
lithium ion and atom, given in Ry. 

Ion: eHF = ~ 5.585 Atom: êHf = — 4.956 

£expr= -5.560 eexpr=-4.767 
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The difference eHF (atom) — sHF (ion) = 0.629 gives essentially the change from the 
Hartree potential of the 2.s electron. The difference eexpr (atom) — eHP (atom) = 
0.189 gives the polarization contribution, which is seen to be quite appreciable, and 
much larger than the polarization contribution in the ion, eexpr (ion) — eHF (ion) = 
0.025. 

In performing the formal analysis it is convenient to split M(k) into the fol
lowing five terms 

M(k) — Mj + Mi ! + Mm + M I V  + My, 
OCC 

= — 2 (fik'  I v  I kk'y 
k '  

if,, - ±  f 2 
2 j t  J  k 'eB k  E]c  £k '  8  

Mm-± f 2 mi^tAÈï>d, 
271 J  k 'SBh Sjc  &}c '  8  

M i v = j _  r  2  < k k ' \w v^)p c^)w v^)\k k 'y  
2TC J  k 'eB ic  £ ic  — £ j c '~S 

MWMÄ4. (5.1, 
2 j t  J  k ' $B k  8}c  8w 8  

W is an electron-gas-like screened interaction defined by W" = «(1 — P vv)~1 .  The 
symbols F G Bk and k' $ Bk indicate that k' is in the same band as k respecti
vely not in the same band as k. We will show that the different terms in Eq. 
(5.1) have the following significance: 

M l  : core-core 4- core-valence exchange 

Mn '• dominant polarization contribution 

Mn l: small, but not quite negligable 

M1Y: second order energy of free ion 

M v  • second order energy of free ion. 

The statement regarding Mx  is by definition true. We note that there is neg
ligible coupling between different lattice cells for all contributions to M in Eq. 
(5.1). To see this we write Mi as 

1 o c c  C C 

n (X) <pt (x) , , I cpt (x ')  9V (*')  dxdx'.  (5.2) 
iV fc' b JJn„ |r-r +K| 

In Eq. (5.2) we have normalized q>k to 1 in the unit cell, 

9?k = üoieikrMfc(r). 

The <p k ,  (x) appearing in the integral are very close to atomic functions when 
k' is in a core band. If we neglect the dependence on k' in each band, which 
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is a very good approximation, we obtain a factor 2k'e~*'R = iVc^R.o a nd thus 
we have no interatomic exchange coupling. To investigate the R=l=0 terms in 
Eq. (5.2) when k' is in the valence band, we expand the Coulomb potential in 
a  mul t ipo le  se r i e s .  The  f i r s t  non-van i sh ing  t e rm i s  th e  d ipo la r  one ,  s ince  cp k  

and q>k' are closely orthogonal in the unit cell. The dipole matrix elements are 
small compared to the nearest neighbor distance, and explicit estimates show 
that the contributions to M1 from the nearest neighbors are extremely small. 
Rapid convergence in the summation over R is assured by the summation over 
k', due to the phase-factors in Eq. (5.2). Similar arguments may be carried 
th rough  fo r  the  con t r ibu t ions  M U -M Y .  

To treat M u  we note that the bandwidths of core bands are very much 
smaller than the Fermi energy. We thus can write Mu as 

M n  = -  \  2 ( kk ' \W v (Q) -v \kk" ) .  (5.3) 
k '  e B k  

We expand W v  — v  as 

W"-v  =  (Wo ~v )  +  WIPl  Wo-  (5.4) 

The contribution to Eq. (5.3) from the first term in Eq. (5.4) can be written 

-^na = -  i 2 < c c '  \Wo-v \  cc'y, (5.5) 
C'  

where c and c '  n ow stand for atomic functions normalized to 1, and c' is sum
med over atomic states with the same spin as c. Thus c! takes on only one 
value when c is an s-function, and three values when c is a ^»-function. We 
write Wo in coordinate space as 

('W vo ~ «)(r-r<) = Jeiq(r-r,) -4(q) dq  

= %) = 4J2. (5.6) 
(Zn) q 

Since the functions c and c' are localized to the core region, only small values 
of r r' will contribute in Eq. (5.6), and we can make a series expansion in 
powers of r —r' (cf. fig. 6 in ref. 6). We obtain 

Mn&
= — I jj*-4(q)^<c]r21c> jV^4(q)dq+ ...j, (5.7) 

where we have used the fact that, because c and c' have the same angular 
momentum, <c | r | c'y = 0. If we approximate PÔ by its electron gas value we 
have 

^na= --^coH+i<c|?'2|c>47reV0(0)+ ... , (5.8) 
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where MC011 is the Coulomb hole energy and g0 (r) the Coulomb hole function 
given in Eqs (89) and (52) of ref. 6. The numerical values of MCOH are given 
in ref. 6, and of g0 (r) in a work by Langer and Vosko [12]. We note that g'o (0) 
as defined in Eq. (52) of ref. 6 is a negative number. Since Mcou is a negative 
number, the first term in Eq. (5.8) is positive, while the second is negative. 

From the second term in Eq. (5.4) we have the contribution 

M l l h=-\l<cc' \WlPlWl\cc'y .  (5.9) 
C 

Neglecting the second order term in A, we write P{, Eq. (3.15), as 

PI (r, r'; 0) = i T T° 
O P è' J (27r)3£k'-ek" 

X {(«k„ (r) wj„+k (r) - 1) - A(k", k; 0) + («£„(r')%k»+k (r') - 1) - A*(k", k; 0)}. 

(5.10) 

In deriving in Eq. (5.10) we have used the fact that 

2 eiKr = Q0<5(r), (5.11) 
K 

when r is in lattice cell zero. We obtain for Mllh 

= occ val unocc 2^k-.k"+k .  

IIh 2Û r k" J (2jcf ek' -ek" c> 
x «cc' I Wv

0 I <pk"<pk"+k - O0
1 e~ikr> <e"ikr| Tfo |cc')ü0 

+ <cc' I WS I e~ikr> <9<Pk"+k ~ &01 e-ikr | Wv 01 cc'> O0 

- I <cc' I Wl I e-ikr> |2(A(k", k; 0) + A*(k", k; 0))}. (5.12) 

In Eq. (5.12) we have normalized cp k  to 1 in the unit cell. 
We make the approximation 

<e~ikr I W v
0  I cc'> = Wo (k, 0) <c' I eikr | c> - 4c- Wv

0  (k, 0), (5.13) 

which comes from neglecting terms of order (kr)2 in an expansion of e!kr, and 
thus should be quite good. To obtain an order of magnitude estimate of Eq. 
(5.12) we neglect the k" dependence in the matrixelement and in A. We then 
have 

f fl!k 
Jfnb= - J {^3PoB(k,0)Tfg(k, 0 )  

X Re {Q0 <cc I Wo \ <p K  <pl+k - Do 1 e-ikr> " W$ (k, 0) A(k0, k; 0)}, (5.14) 
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T a b l e  1  

rs 0o(O) n0 A 

1.5 -.1558 14.14 2.20 
3 -.03341 113.1 3.78 
4.5 -.01343 381.7 5.13 
6 -.007007 904.8 6.34 

where we have replaced k" by the Fermi momentum k0 in the matrixelement 
and in A, and neglected the A's in Pg cf Eq. (3.14). We further use electron 
gas values for P and W, and put k = 0 in the matrix element and equal to k0 

in A. This procedure is likely to overestimate A. Our estimate of the magnitude 
i^nb becomes 

Jf„b ^ 4 <cc I W Z  I < p K  y t  -  Oö1) + 3A(k0, k0; 0) 

dk 
A = - a  o 

(2 7 1 )  (e(i,0) *) 0o9,°(0) 

B  =  ^ ^ o M , i - l | .  ( 5 . 1 5 )  
( 2 n f  '  \ e ( k ,  0) 

In table 1 we give values of ^„(0) and A  as obtained from ref. 12. The values 
are given in atomic units. The matrixelement multiplying A in Eq. (5.15) is 
small for two reasons. The first reason is that W0 is a strongly screened po
tential. The second reason is that 199^ |2 — (1/Q0) is oscillating in sign. Numerical 
estimates give values of a few thousandths of a Ry. The contribution to Mllh 

is thus of the order of 0.01 Ry or less. The quantity B equals 2MCOH if we 
replace W0 by v. The effect of screening makes B smaller than MCOH- The 
estimate Eq. (5.15) for Jfn can easily be calculated in particular cases. 

The term M m can be expected to be small for the reason that W v  —  v  is 
different from zero only for a fraction eF/\ek' ~ ek\ of the energy integration, 
cf the discussion after Eq. (4.5). The actual magnitude is estimated in appendix 
B, using a simplified expression for the dielectric constant. The largest shift 
^0.7 eV, was found to occur for the aluminum 2s level. 

In the same manner as for the term M n ,  we obtain 

<cc' I JH °) pc(°) *H°) I «0- (5.16) 
c' 

We approximate W "  by the diagonal part W o -  Comparing with Eqs. (5.6) and 
(5.7) we see that we can make the expansion 

e2 

W^ë(0) = —1" const. + 0 ( r 2 ) .  (5.17) 
r  
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Since the functions occurring in Pc  are orthogonal, the constant will make no 
contribution. If we neglect the term of order r2, the contribution Eq. (5.16) 
becomes essentially the same as a second order perturbation correction to the 
level J: of a free ion. In contribution Mv we can replace W" by v when | gfc — ek' \ 
is large compared to the Fermi energy. Also in this case we are then back to 
essentially a free ion contribution. The terms Mlv and Mv exhaust all direct 
second order contributions to the free ion level, calculated in a perturbation 
scheme based on the Hartree-Fock Hamiltonian. The first order terms are zero. 
The second order exchange contributions to the ion level also come out of the 
ikf-operator as discussed in section 8. We will give a detailed demonstration 
of this in an other paper treating correlation in atoms. 

Summarizing the different contributions to a core level, we have 

Ek  = ef1 (expr) + F?oul + Ff„ch + Mn  + Mm ,  (5.18) 

where the first term is the experimental value for the level in the free ion. 
The second and third terms are the Coulomb and exchange interactions with 
the valence electrons. The shift of the level in the solid relative to the free 
ion comes mainly from F»0Ul and the polarization term Mm for which an 
approximation formula is given in Eq. (5.8). MU1 is small but. not quite negli
gible. Its dominant contribution, as shown in appendix B, comes from a 
coupling between different core levels via the potential W — v. In the end, 
after a fairly complicated analysis, we have thus arrived at a formula of quite 
a simple structure, namely Eq. (5.18). 

6. Electrostatic potential from a "muffin-tin" charge density 

To calculate the energy difference between core bands and higher bands, the 
difference in electrostatic potential between the center of the cell and the outer 
parts has to be known. In this section we will investigate that problem assuming 
the charge density to have a "muffin-tin" form, which is a good approximation 
for many metals. By a "muffin-tin" form we mean that the charge density in 
the Wigner-Seitz cell is spherically symmetric inside some sphere, and equals a 
constant g in the remaining part of the cell. We will take the spherical region 
as the inscribed sphere, and call it S. We take the origin of the coordinate 
s y s t e m  t o  l i e  i n  t h e  c e n t e r  o f  S .  

In the approximation of a "muffin-tin" charge density the potential in S  from 
the charge distribution outside S can be obtained by taking the electron charge 
density to equal g everywhere outside S. We will call this potential VL. 

The potential VL has been calculated and used by Heine [13]. It was recal
culated by Behringer [14], who found an error in Heine's calculation, and the 
potential was used by Segall [15]. Since then there has however appeared an 
extensive tabulation of Hund's potential for a simple cubic lattice [16], from 
which VL can easily be obtained for all cubic lattices. 

We have recalculated VL  for a face-centered cubic lattice, and found it to be 
quite small. We have also calculated the average of the potential over the cell-
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corners, i.e. the constant Vc that appears in a "muffin-tin" potential. A few 
remarks are made on where the zero point for the potential should be placed. 

Hund's potential </> is the potential from unit positive point charges on a simple 
cubic lattice in a compensating background of uniform negative charge. The unit 
for the potential is e2/a, where a is the lattice constant. The zero point of the 
potential is chosen according to Ewald's convention, i.e. the average value of 
the potential is taken as zero. In this section we will express potentials in units 
of e2/(2rs), and distances in units of rs, where rs  h as its usual definition, 4 nr\/2> 
= O0 = volume of unit cell. 

The potential Y from unit point charges on a fee lattice in a compensating 
uniform background is related to </> by 

T(r)=-2^|^j [^(r) + ^(r + a!) + ^(r+a2) + ̂ (r + a3)], (6.1) 

where 2 = 0.781592, ax = (a/2) (1,1,0) 
\lö 7tJ 

a2 = (a/2) (1,0,1) 

a3 = (a/2) (0,1,1). 

We have inserted a minus sign since the potential is to act on electrons. Two 
values of Y, to which we will refer several times, are 

lim |Y( r ) + - |  =3.58349 
r^o \ r] 

T(P2) = 0.85172. (6.2) 

P2 is the point (a/2, 0,0), where Heine choosed to be zero. 
The potential VL can, apart from a constant, be written 

Fl = Y-F, (6.3) 

where F(r) = 3 — r2 — (6.4) 
r 

Eq. (6.3) is valid for the case that g = g0 = l/Q0, where £!0 is the volume of the 
unit cell. When ß =l=£>0, VL should be multiplied by q/q0. V(r) is the potential 
from a uniform electron density q0 inside a sphere of radius r„ and from a po
sitive unit point charge at the origin. 

The zero point of the crystal potential depends on the surface conditions of 
the crystal. To fix a position for the zero point we use the condition 

Fx(0) = 0. (6.5) 

This means that we have to subtract 0.58349 from the Y defined by Eq. (6.1). 
The values of VL for three directions of high symmetry are given in Table 2 
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Table 2.  Values of VL  for a fee lattice. 

r/rt (1, 1,0) (1,1,1) (1,0,0) Average 

0 .00000 .00000 .00000 .00000 
1/6 + .00003 - .00009 .00016 + .00002 
2/6 - .00037 — .00091 .00131 -.00015 
3/6 — .00251 - .00296 .00680 - .00050 
4/6 — .01070 - .00540 .02211 — .00150 
5/6 -.03536 - .00548 .05493 - .00533 
6/6 — .09906 + .00736 .12008 -.01574 

for equally spaced values of r between 0 and r t  = 0.9047 r s ,  where r t  i s the radius 
of the sphere S. The average in column 5 of Table 2 is formed from the sec
ond, third and fourth columns with the weights 12/26, 8/26 and 6/26 re
spectively. The values for the (1, 1,0) direction were obtained directly from the 
tabulated values of Hund's potential, while for the other directions a linear in
terpolation was made. The accuracy of Hund's potential is stated [16] to be 
+ \ 10~4 or better, and the positive value in the second column is probably 
spurious. To have VL expressed in Rydbergs (13.605 eV) for the case of alu
minum, the values in Table 2 should be multiplied by 1.163, according to 
Heine's estimate [13] of the charge density in the cell corners. For alkali metals 
VL should be much smaller, because rs is larger and because there is only 1 va
lence electron per atom, instead of 3 as for aluminum. The crystal potential is 
uniquely defined through the choice of zero point for Y specified by Eq. (6.5). In 
the region S i t  equals VL  + (potential  from actual charge distribution in S) + 
(potential from a uniform charge distribution of density q in the region between 
the spheres with radii r{ and rs). In the region between S and the cell boundaries 
the crystal potential equals Y. 

We will now calculate the average Vc of the crystal potential over the region 
between S and the cell boundaries 

Fc= [Q0 — 47wf/3]~1 ( f Ydr-fwrV (6.6) 
\J Qo J S J 

This can easily be done since, with the present definition of T", we have 

) Y(Zr= - 0.58349 Q0. (6.7) 
«/ Oo 

We obtain using for VL  the values given in the last column of Table 2, V c  = 
0.0700. For aluminum with Heine's choice of zero point for the crystal potential 
we have that Fc = 1.163 (0.0700 + 0.5835-0.8517) Ry= -0.2305 Ry, cf. Eq. 
(6.2), while Segall under these conditions obtained — 0.273 Ry. The constant 
1.163 appears in the text after Table 2. 

The choice of zero point for the crystal potential is of importance for the 
position of the Fermi level. Perhaps the simplest choice, which is still reasonably 
realistic, consists in taking the crystal to be composed of an integral number 
of Wigner-Seitz cells all having the same charge distribution. This should provide 
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a sound starting point for calculating the dipole layer, which has to develop 
at the surface. 

The average of the potential from an integral number of Wigner-Seitz cells of 
point charges in a uniform background is [17] 

V m = "mj^ d I -  (6'8) 

The proof of Eq. (6.8) given in ref. 17 does not seem convincing to the author. A 
straight-forward proof by direct integration can however be made. We follow ref. 
17 and transform the integral in Eq. (6.8) by Gauss' theorem 

V°-v = - I^Jr !{J z3) • • (6-9) 

Evaluation of the surface integrals for a fee and bcc lattice gives 

— Ry = — 0.6139 — Ry, fee 
2 f- (6.10) 
IQjr 1 

• —— Ry = - 0.6123-Ry, bcc 
48 yr s  r s  

y '  

y = (8tï/3)* = 2.03098. 

Our result for the fee lattice is the same as that given for the hep lattice by Hughes 
and Callaway [18]. Our result for the bcc lattice however differs from that given by 
Callaway and Glasser [17] 

C) I/99I T 
Va v  — — Ry = — 0.6132 — Ry, bcc. 

loyr s  r s  

The present choice of the zero point for the crystal potential is lower than that 
defined through Eq. (6.5) by 0.6139 — 0.5835 = 0.0304 for a fee lattice, and by 
0.6123 — 0.5837 = 0.0286 for a bcc lattice. The differences are thus rather small. The 
difference between Heine's choice of zero point and that given by Eq. (6.5) is on 
the other hand appreciable, 0.8517 — 0.5835 = 0.2682. 

Va 

7. Numerical results for Li, Na, K and Al 

The results in this section are obtained from combining results of energy band 
calculations [15, 19], results for the electron gas [6, 12], values of free ion po-
larizabilities [9] and experimental values for free ion core levels [20]. We have 
calculated and compared with experiment the position of Eermi levels and core 
levels. 

We first treat the Fermi level. The complete expression for the quasi-particle 
energy is according to Eq. (2.4) 

Ek  = (cpk \h + M{Ek)\(pk).  (7.1) 
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We have evaluated Eq. (7.1) on the basis of calculations made by Ham [19] 
on Li, Na, and K and by Segall [15] on Al. Both authors used a "muffin-tin" 
potential. Ham's potential inside the inscribed sphere was essentially equal to 
the Hartree-Fock potential of the free ion. In principle his potential also contains 
some correlation effects of the ion, but these are probably insignificant, as we 
will argue in sec. 8. The flat portion of the "muffin-tin" potential was taken as 
the average of ( — 2/r) Ry between spheres of radii and rs. Ham's potential 
can thus be written 

VE 

r<r. 

2.125 (7.2) 
Ry r > fj. 

The parts in h + M that were not included in Ham's potential we treat as a 
perturbation. They are the Coulomb potential from the valence electrons and 
from ions in other cells than the one considered, and also M — Mi, where M1 is 
the core-valence exchange given in Eq. (4.4). 

The potential which we should have according to sec. 6 using the proper 
values for a bcc lattice, is 

V = 
r. 

0.036 

Ry Fion core T T j 

(7.3) 
Ry r > r i t  

where we have taken a "muffin-tin" form for the potential, put Fx = 0 and 
assumed the valence-electrons to have a uniform density. The average value 
over the unit cell of the difference between F and FHam is 

pi 2.417 
Vv = Ry. (7.4) 

^s 

This value is quite close to what one obtains in a simple Wigner-Seitz sphere 
approximation, namely 2.4/rs Ry. 

The contribution to M of first order in the screened potential W is given Eq. 
(4.4). We neglect the contributions MUI and Mlv. M1 is already taken into 
account by Ham. For Mu we take the electron gas value given in appendix A, 
rescaled according to Eq. (4.9), with m* = 1 and es from the free ion polariza-
bilities tabulated by Dalgarno [9]. Higher order contributions to M, which are 
essentially free-electron-like, can be considered included in Mu. We thus arrive 
at the simple formula for the Fermi level 

Ii  = f iB S  + F?oul + es-2 M e l-  ̂  (r s /e s),  (7.5) 

where juBS stands for Ham's value of /u. 
Segall's calculation was made on the basis of Heine's elaborate potential [13], 

which includes the Coulomb potential from the valence electrons. For Al the 
term F°oul has thus to be left out in Eq. (7.5). The results from Eq. (7.5) are 
given in Table 3. To see the effect of scaling M, we have also given the un-
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Table 3.  Fermi levels of some metals in Ry. 

Li Na K Al 

r s  

Es 
Mir,)  
M(r slEs)l£2

s 
JTCouI 
v V 

BS 
ß 
fi from M (rs/es)/£s 

i^expr 

3.248 3.931 

1.015 1.057 

-.471 -.398 

-.463 -.374 
+ .743 + .615 

-.429 -.365 

-.149 -.124 

-.168 -.168 

4.862 2.065 

1.142 1.041 

-.330 -.706 

-.285 -.675 

+ .497 (2.418) 

-.320 + .401 

-.108 -.274 

-.166 -.323 

Table 4.  Core levels of some metals in Ry. 

Li, Is Na, 2s Na, 2p K, 3s K, 3p Al, 2s Al, 2p 

ÊHP - 5.585 

t'lxpr -5.560 

-Mcoh -541 
g0 (0) -.056 
F°oul .924 

[i — ec, ealc 4.00 

fi — ec, expr 4.03 

-6.147 -3.594 

-5.887 -3.481 

.474 .474 

-.064 -.072 

.763 .763 

4.59 2.19 

4.67 2.28 

-3.928 -2.341 

-3.529 -2.339 

.408 .408 

-.094 -.121 

.617 .617 

2.49 1.33 

2.51 1.33 

-12.304 -8.946 

-12.089 -8.830 

.734 .734 

-.021 -.023 

2.581 2.600 

8.52 5.25 

8.48 5.35 

scaled values of M(r s) .  The experimental values are taken from the work func
tion [21], The agreement is astonishingly good considering the uncertainly in 
the choice of zero point for the crystal potential, cf. sec. 6. It should be noted 
that the choice Y(P2) = 0 used by Segall for Al gives a potential which lies 
(0.273 + 1.163 • 0.070) = 0.354 Ry lower than with the choice Fi(0) = 0 that was 
used for the alkali metals. Since agreement with experiment is still reasonably 
good, this indicates that Al should have a quite large value of the surface dipole 
moment. Bardeen [22] has made a rough calculation of the distorsion of the 
charge-distribution at the crystal surface which was essentially based on the 
condition Fi(0) = 0. He finds for Na, that /i is lowered by about 0.03 Ry, which 
considerably improves on the agreement in Table 3. 

The result of our analysis for the core levels is given in Eq. (5.18). We 
neglect the terms Mnl and Fe£oh, and approximate Mn by Eq. (5.8). We thus have 

Ek  = e'r (expr) + F°oul - M0 0 H  + ̂  «a0o (°) O"2)- (7-6> 

We have looked at some of the core-valence exchange terms for the alkali-
metals and found them to be only a few hundredths of a Ry. Mnl has been 
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estimated in Appendix B. It has found to be negligible except for the Al 2 s-
level, where it was about 0.05 Ry. V°oul was taken as 3/rs Ry for the alkali-
metals. This assumes a uniform charge density of the valence electrons, and 
neglects the r-dependence in the potential. The effect of the r-dependence is to 
lower F°oul, and the effect of the non-uniformity of the charge-density, especially 
from the first maximum in the wavefunction, is to raise F°oul, but none of 
these effects could be of much importance. For Al F°oul was calculated from 
the potential of the valence electrons inside the Wigner-Seitz sphere, given by 
Heine [13]. Such a calculation assumes the choice of zero point for the crystal 
potential given by FL (0) = 0, and thus 0.354 Ry has to be subtracted to make 
the result conform with the potential used in the calculation of /<. Mc0H was 
taken from ref. 6, ^„(O) from ref. 12 and (r2) was calculated from ion wave 
functions. The results are given in Table 4, where for comparison the values 
of the ion levels in the Hartree-Fock approximation are also given. The values 
of are taken from the row "ju from M(rs/es)/sf" in Table 3. The experimental 
data are taken from results obtained with the electron spectroscopic method [23] 
developed in Uppsala. If we include the Mnl term, the value for the 2s-level 
in Al becomes 8.47 instead of 8.52. 

The agreement between theory and experiment in Table 4 is gratifying, and 
suggests that we have succeded to account for the major effects. The uncer
tainty in Mxi<*> — -jKcoh + !7o(0) ••• should be about 0.02 Ry and the left out core-
valence interaction should also be of about that size. The temperature effect, 
which has not been taken into account, is also of the order of a few hundredths 
of a Rydberg. 

8. Discussion 

In section 7 we discussed the accuracy of the different terms in the simple 
approximations given by Eqs. (7.5) and (7.6). The results seem to confirm that 
the sorting out of small contributions, made in sections 4 and 5, was essentially 
correct. In particular an expansion in terms of A, defined by Eq. (3.11), seems 
to be appropriate. 

The approximations given by Eqs. (7.5) and (7.6) have a simple physical and 
mathematical structure, and it is easy to see qualitatively what will happen when 
we consider other solids. Calculations for other solids than those considered 
here, and more refined calculations for the simple solids should be worthwhile. 

So far we have not taken up the problems of self-consistency, and of the 
effects of M on band gaps. This problem might be treated by setting up a 
secular equation based on simple APW's from a "muffin-tin" potential. The 
non-diagonal elements of M will be linear in A, and for simple metals they 
should be of the order of a few hundredths of a Ry. It is thus possible that 
they could compete with the other non-diagonal elements. 

To obtain a reasonable and still tractable approximation of the non-diagonal 
elements of M, the following simplifications could be made. 

(1) The dielectric function appearing in W could be replaced by an expres
sion such as the one used in Appendix B. The energy integration in M can 
then be performed analytically. 
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(2) The energies ek, in Eq. (4.2) could be replaced by free particle energies, 
since the effects of band structure will be smoothed out by the integration 
o v e r  k ' .  

(3) The Bloch waves < p k -  ap pearing in Eq. (4.2) could, for the same reason, 
be replaced by, say, simple APW's. 

We have confined the numerical estimates to the positions of the Fermi level 
and the core levels. We will also give a qualitative discussion of the implica
tions of the work on the electron gas in ref. 6, on some other properties. 

(i) Level density at the Fermi surface. The correction should amount to only 
a few percent, which is insignificant considering the uncertainties in the magni
tude of the correction from electron-phonon interaction and in the experimental 
values. 

(ii) Bandwidth for a metal. The results from the first order term in M  in
dicate that the correction should be only a few tenths of an eV. Judging from 
the change in the derivative of M at the Fermi surface when the second order 
term is included, the correction to the bandwidth should be even smaller and 
change sign. 

(iii) Tail of the soft X-ray absorbtion curve. Part of the tail may be attri
buted to the imaginary part of the quasi-particle energy at k = 0. The value 
obtained from the first order term in M varies between 0.5 and 1 eV, which 
is of about the same size as the observed tails. 

(iv) Paramagnetic susceptibility. The values obtained for the electron gas, do 
not seem accurate enough to make a comparison with experiment. 

The situation indicates the need of improved calculations for the electron gas, 
particularly regarding the paramagnetic susceptibility. In this case further in
vestigations of the contributions from the periodic potential are also needed. 

Only a few core levels have been investigated. The reason is that relatively 
few experimental values for the free ion core levels are available. On this point 
there is a need for calculations beyond the Hartree-Fock approximation. Ordi
nary second order perturbation theory should be sufficient. Such calculations 
are now in progress at this institute. The direct second order contributions are 
identical to the terms Mlv and My of Eq. (5.1) with Wv replaced by v. The 
remaining second order contributions, which are of exchange type, are given by 
the second order term in M with W replaced by v. They are quite important 
particularly for «-levels, where they may become almost one half of the direct 
terms. 

The explicit expression for the second order contribution to M  is 

If we approximate W ( e ) by TF(0), which corresponds to the approximation 
COHSEX in ref. 6, Eq. (8.1) becomes 

( k k - ^ W  ( g j )  I  k 3  k 2 }  k 2  I  W  (e 2 )  |  k  k a y  d e ^  d e 2  

(^1 £fci) Efa) (^2 '-'k ^3) 

M ^ ( k ) =  2  
< k  k x  I  T F ( 0 )  I  k 3  f c 2 )  f c 2 1 W ( Q )  |  f c f c 3 )  

( O i k j )  -  d ( k 2 ) )  ( d ( k 3 )  -  6 ( k z ) ) ,  
k-y k2 k3 fifti + efc3 £/c s 

(8.2) 
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where 6(Je)  =  1, k  occ 

0,  k  unocc. 

The dominant contribution arises when k 1  and k 3  are in band k .  The state k 2  

has then to lie in the unoccupied region. For the same reason as in sec. 5, 
W(0) can be replaced by v, and we are back to essentially a free ion contri
bution. 

Many band calculations are made with an empirical ion-potential, chosen 1,0 
reproduce the one-particle-like spectrum of the atom up to the ionization limit. 
The potential suggested by the present treatment is the Hartree-Fock potential 
of the free ion. This potential reproduces the atomic spectrum with an accu
racy [6], that is higher than we now can hope to attain in band calculations. 
The effect of correlation in this spectral region is thus not very important. 
The empirical potential has the drawback that it is arbitrary to a large extent, 
since it is required to reproduce only a fairly narrow region of the energy 
spectrum. The region in space where the potential is most important is different 
in the solid compared to the atom, since the atomic wavefunctions extend much 
further out than the unit cell. The energy region covered by the wavefunctions 
in the solid starts at a lower value than in the atom and extends above the 
ionization limit. For these reasons it seems more reliable to use a HF ion 
potential than an empirical potential. This should be quite feasible to do with, 
say, the quantum defect method, where the "defect" is then taken from HF 
data, or with the augmented plane wave method. 

There has been expressed some uncertainty [24] about the importance of in
cluding the Born-Heisenberg polarization potential, — ae2/2r4. We have however 
made estimates which show that the true polarization potential does not take 
on the l/r4 form until at a rather large distance from the core, while it is much 
weaker in the region of space that is of interest in a solid, namely within a 
Wigner-Seitz cell. We hope to obtain more detailed information in this ques
tion from the perturbation calculations now in progress for free ions. 

The Born-Heisenberg polarization potential does not appear in the present 
type of analysis, where instead the dynamical effect of the ions appears as a 
rescaling of electron gas results with a static dielectric constant. This leads to 
a raising rather than a lowering of the band. 

There has also been uncertainty about the influence of the 1/V4 potential on 
the cohesive properties of solids. We will return to this question in a later 
paper, where we will show that no such potential will appear, and also that 
the shifts of the core levels in a solid have no influence at all on the cohesive 
energy. 
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APPENDIX A 

In this appendix we will try to make as good an estimate as possible of the 
correlation energy of an electron gas, based on the information available. We 
will make the assumption that the series expansion given by Carr and Maradudin 
[25] is reliable up to rs = 1. We will then extrapolate the quantity Fcorr used 
in ref. 6. From general principles we know that Voorr has a negative derivative, 
cf. sec. 8 in ref. 6, and we assume that its slope will not become larger than 
in the RPA approximation, which thus is taken as a sort of lower bound. 

The quantity Fcorr is related to the total energy per particle, e, and the 
chemical potential, //, by the relations 

i r* 
Fcorr (x) dx, 

""dvriir"" "-(Å) -°-62106. 

r, de 
' <  =  e - 3  J7; {AA) 

where (3/4nrf) = number density and the energies are expressed in Rydbergs 
(lRy= 13.605 eV). 

The formula adopted for the extrapolation is 

Fcorr (x) = Foorr (1) + 1 Voorr (1) (1 - e-0*-»). (A.2) 
C 

If we specify c, s c and /1 are uniquely determined from the boundary conditions 

ec(l) = - -132 

Fcorr (1) = - -220 

Fcorr (1) ~ " 125, (A.3) 

which are taken from Carr and Maradudin's expression. We used three values 
for c, namely 0.2, 0.4 and 0.6. The value c = 0.2 gives a Foorr which runs more 
or less parallel to the RPA curve, while c = 0.6 gives a curve which quickly 
flattens out to a horizontal line. The results are given in table 5. The quan
tity M is defined from 

,«- (-2-2 + m\ R y ,  ( A . 4 )  
\GC 7 s J 

where the first term is the contribution from the kinetic energy. We see that 
M is quite insensitive to the value of the parameter in the formula we use. 
The values used in section 7 are taken from the column c = 0.4. 
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T a b l e  5  

c = 0.2 c = 0.4 c = 0.6 

r  V  s  M V  s  M V  e  M  s v corr c corr c corr c 

1 -.220 -.132 - 1.368 - .220 -.132 - 1.368 -.220 -.132 - 1.368 
2 -.330 -.103 - .727 - .323 -.102 - .727 -.314 -.101 -.727 
3 -.426 -.088 -.506 -.392 -.085 -.506 -.366 -.083 -.505 
4 -.502 -.079 -.395 -.438 -.074 -.392 -.394 -.070 -.390 
5 -.564 - .072 -.326 -.469 -.066 -.322 -.409 -.061 -.319 
6 -.615 -.066 -.280 - .490 -.059 -.274 -.418 -.054 -.270 

APPENDIX B 

In this appendix we will estimate the terms 

,  2  C < T F | I R ( . ) - . | T T - > < F E [  ( B I )  

2 $ S# J &k' & 

which appear in Eq. (4.5) and contribution Jfln in Eq. (5.1). In the former 
case k' runs over the core states and k is in the valence band, and in the 
latter case k is in a core band and k' runs over all states except those in 
b a n d  k .  

We will approximate W by an electron gas value, using the simple formula 
for the dielectric function 

-71-—i + CD^COv + q2. (B.2) 
s ( q , u )  u 2 ~ m \  1  

Here we have used the dimensionless variables q  and u  defined by 

k  =  2l c 0 q  

. n 2 k l  (B.3) 
£ = 4 —- u, 

Z m  

where k 0  is the Fermi momentum, k 0  =  ( x rs a 0 y 1 .  In terms of these the plasmon 
energy becomes, a>p = (x r$/3n) -. This approximation for the dielectric constant is 
chosen so that Im e(q,uy1 gives a ^-function line in the (q, u) plane and sa
tisfies the sum rule 

f°° n 
u l m e ( q , u )  1 d u = — - a > l .  (B-4) 

J o  ^  

The form of the function œ1{q) is left arbitrary by the condition Eq. (B.4). 
It has been taken as a simple function satisfying the correct limiting conditions 
cox (0) = C0p and lim^^ co1 (q) = q". Calculations performed by B. Lundqvist 
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at this institute show, that this approximation gives the self-energy operator M 
with an accuracy of a few percent. 

A straightforward but lengthy analysis gives 

Here I and V are the angular momenta associated with the states h and k'. 
The energies are in Ry. The integration in the matrixelement covers the unit 
cell, and the functions h and h' are normalized to 1 over this region. The an
gular integrations are already performed and only the radial part of the wave-
functions enter. The distance from the center of the cell, r, is expressed in 
units of the Bohr radius. In deriving Eq. (B.5) we made a series expansion 
of W, stopping at the first non-vanishing term. This should be allowable, since 
either h or h' is a core state. For the valence states Akv has to be multiplied 
by the square of the coefficient for the particular angular momentum part of 
the wavefunction, which is involved. 

From Eq. (B.5) we see that the conditions which favour a large value of A are 

(i) high electron density -> small rs, 
(ii) large matrix elements, 
(iii) small band separations compared to the plasmon energy. 

We will look in detail on the coupling between the 2 s and 2p states of 
aluminum. The relevant data are 

! + 1 when I' = 1+1 

I when V = 1—1 

when ek < ek 

when ek < ek- < /« 

(4 + (sp + -O*)-1 when s'k < ek 

fk'=• el/1 when sk < ek-

— (e| + (sp + when fx < eK 

(B.5) 

r t S i Z p  =  .357 r s  =  2.065 

1 = 3.36 

sp = 1.17 4= .454. 
n 

The shift in the 2 s level becomes 

\E.2s= .454 

and in the 2 p level 

A E2v = .454 -
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The other terms are much smaller, mainly because of the dipole matrixelements. 
The alkali metals are somewhat worse with respect to conditions (ii) and (iii), 
but much better with respect to (i). The shift for them are smaller than those 
for Al by about a factor 5. 
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