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Preface

This thesis is the result of an investigation begun in 1945. The prob-
lem treated here was actualized this year by the Stockholm Airport
Building Committee in connection with the planning of a new airport for
the heavy Atlantic traffic at Väsby, north of Stockholm, where the soil
conditions were extremely bad. In order to solve the problem of de-
signing a pavement with sufficient bearing capacity in this case, Pro-
fessor HJALMAR GRANHOLM submitted the idea that the pavement
should be designed as a structurally reinforced concrete slab. In my
capacity at that time as Research Assistant in Professor Granholm's
Department of Structural Engineering at Chalmers University of Tech-
nology I was commissioned to take care of an investigation concerning
this pavement structure.

I am conscious of the fact that a great deal of time has passed before the
result of the investigation has been published, and the publication now
presented may have become too comprehensive. During the course of
time, however, a great deal of complementary investigation work has
been added. It would perhaps have been better to publish the results
by degrees, but various requirements and circumstances have made it
impossible for me to have enough time for more than preliminary sten-
cilled reports or short summarizing review articles covering part of the
investigation work. But when, thanks to the good offices of Professor
Granholm, I was provided with the opportunity of spending one year
of undisturbed work in the Dept. of Structural Engineering, I took
advantage of this possibility to treat all the test material and include
it in the publication at the same time as I tried to present the results
in a form that would be suitable for practical use in designing work.

Looking back over the long period of work spent on this task, my
first feelings of gratitude go to my teacher and former chief, Professor
HJALMAR GRANHOLM, D. Eng. With never-failing interest he has fol-
lowed the progress of the investigation, educating me in the methods of
research work during planning and discussion of all the theoretical and
experimental aspects of the investigation. This work would doubtless
never have been fulfilled without his help and encouragement.
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Many colleagues have given me valuable assistance during the years.
The earliest series of model tests were carried out by Mr. RUNE AXELS-
SON, C. E., and Mr. OTTO V UNGE, C. E., as a graduation thesis. The later
series of model tests were managed by Mr. Toivo ENNOK w ith the help
of Mr. ILMARI PULKKINEN and Mr. GUNNAR KJELLBERG, C. E. Mr.
LENNART GARDNER, C. E., and Mr. ERIK ALBERTSSON, C. E., assisted
me in the experimental work and test result treatment work concern-
ing the full-scale tests in Gothenburg. During the field tests I had the
honour and pleasure of co-operating with the late Mr. STURE JAKOBS-
SON, C. E., and Mr. LENNART BERNELL, C. E., of t he Stockholm Airport
Building Committee as well as Mr. NILS ODEMARK, C.E., of the Swedish
Road Research Institute. In the final stage of the work valuable help
with test result analysis and theoretical calculations was supplied by
Mr. RALEJS TEPFERS, C. E., Mr. EMILIS PURINS and Mr. MIODRAG HIBA,
C. E. Mr. JANIS BUBENKO, C. E. helped me with programme and data
machine calculations for some of the tables. Mrs. MARIANNE FRÖIER
and Mrs. KERSTIN BÖRJESSON typed the manuscript and prepared it
for printing. Mrs. INGRID NILSSON prepared the drawings for repro-
duction and Mr. RICHARD KOOLMAN took the photographs and pre-
pared them for reproduction. Mr. ERIC ELLIOT helped me with the
translation of the manuscript.

Contributions to the costs of the investigation have been generously
given by the Stockholm Airport Building Committee, the Royal Swed-
ish Air Force's Board of Airfield Buildings and the Royal Board of
Civil Aviation as well as Skånska Cement AB, Gullhögens Bruks AB
and Smedjebackens Valsverks AB.

To all those, authorities, institutions, industries and private people,
named and unnamed, who have contributed to the fulfilment of this
investigation, I wish to express my sincere gratitude.

Gothenburg, February 1960.
Anders Losberg.



Notations

A = area of test slab in contact with soil.
Ac = cross-section area of the concrete.
Ar = cross-section area of the reinforcement.

Es

(i-O
= soil modulus=modified modulus of elasticity of soil.

Ei
D = = flexural rigidity of slab.

(l-i*)
D]~ = effective rigidity at strengthened edges of slab.
E = modulus of elasticity of slab.
Ec = modulus of elasticity of the concrete.
Er — modulus of elasticity of the reinforcement (steel).
Eg = modulus of elasticity of the soil.
I = moment of inertia for beam (detail test).
I). — moment of inertia of edge beam with width bj-.
K = compressive strength of concrete, determined on standard cubes.
K(oc) = soil factor according to (22:8 b).
L — length of r unway between dilation joints or between cracks in continuous

pavement.
M — flexural moment, generally.
Mun — ultimate moment in reinforced concrete beam.
N = normal force, generally.
Nr, N(p = membrane forces in slab in radial and tangential directions respectively.
N( = tensile force in pavements due to temperature decrease and shrinkage.
P = total external load on slab.
Pult = ultimate load.
PM = part of loading on slab admitted by membrane effect.

Prbr = load at concrete tensile rupture (crack formation) in bottom of slab.

Pybu = load at yield point in bottom reinforcement of slab.
Pt — load at top surface failure of slab.
P°tr = load at concrete tensile rapture (commencement of c rack formation) in top

surface of double-reinforced slab.

Pyie = load at yield point in top reinforcement of double-reinforced slab.
P(oc) = loading factor according to (22:12 b).
q = the resultant of the shear forces in half the failure crack in top of slab.
q = corner forces in the angle between two failure lines.
R = radius of a slab with finite extent.
V = depression volume under slab.
Vp — soil pressure volume under slab.
W = section modulus for beam.



functions (series expression) included in expressions for depression (ZJ,
s o i l r e a c t i o n p r e s s u r e ( Z 2 ) o r m o m e n t ( Z 3 , Z t ) f o r a s l a bo n so i l . A n e o r k
index respectively denotes the corresponding expression for elastic and
resilient soil respectively. Z°(s) represents the expression in question
concerning concentrated loading. Zm (a) represents the values of the func-
tion in question in the loading centre with varying relative load distribu-
t i o n a .

relative load distribution, index e and k respectively for elastic and resilient
subgrade respectively.
width of edge beam (edge strip).
load distribution radius with circular loading area.
distance between loading centres (centres of gravity of loading halves)
with twin loading (or distributed double-symmetrical loading area with
arbitrary form).
mesh width of reinforcement wire fabric.
zero point distance from loading centre for assumed linear distribution
of the tangential moment in slab. v

coefficient of friction between pavement and soil.
weight of test slab per unit area.
half the distance between the longitudinal joints.
effective thickness or depth of slab or beam.
total thickness (height) of slab or beam.
moment of inertia of slab per unit width.
resilience constant =modulus of subgrade reaction.
influence function for soil depression = depression due to a unit load at a
distance s from the point.

elastic radius of rigidity for elastic subgrade.

elastic radius of rigidity for resilient subgrade.

radial and tangential flexural moment in slab per unit width.

positive and negative maximum flexural moment respectively in slab
per unit width.
moment due to a load on interior of slab.
moment due to a load on a free edge of slab.

maximum positive and negative flexural moment due to a load on a free
edge.

moment due to a load on a semi-circular area on free edge of slab.

moment due to a load tangent to free edge of slab.

maximum negative moment due to a load on a joint intersection.

maximum negative moment due to a load on a free corner.
positive and negative ultimate moment respectively on the whole.

ultimate moment with a load on a free edge (joint).

negative ultimate moment due to a load on a free corner.

positive and negative flexural moment respectively per unit width at
concrete tensile rupture (crack formation).
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™yie,m'yie — positive and negative flexural moment respectively per unit width at
yield point in bottom and top reinforcement respectively.

mt — moment (per unit width) in pavements due to uneven temperature (warp).
/1 m' = reduction in neg. ultimate moment due to temperature decrease and

shrinkage.
Er

n —
Ec

p — loading acting on slab (distributed over a certain load area) due to external
load.

ps = soil reaction pressure.
p0 = soil reaction pressure under loading centre or peak value of assumed soil

reaction pressure cone.
p = relative reinforcement percentage.
Paver = average loading or average soil pressure.
pc — total circumference of the reinforcement in a certain section.
q = shear force along failure line.
r = distance from loading centre.
rj. = distance along the edge between loading centre and negative failure line

with a load on a free edge of slab.
r0 = radius of circular failure crack in top surface.
rv = radius of zone of slab around loading which has undergone complete

plastification.
r

s = — = distance from loading centre in dimensionless form.

s = distance between the centre points of the failure semi-circles with twin
loading.

t = base radius in soil pressure cone under slab.
if. = half the length along the edge of soil pressure pyramid base area with a

load on a free edge of slab.
u = radially displacement of points in centre plane of slab.
w = depression of slab and soil.
w0 = depression under loading centre.
waver = average depression.
wc = depression under a load on a free edge of slab.
Wg = depression of test slab in subgrade due to its dead weight.
x = distance to neutral layer from the compressed surface in a reinforced

concrete section.
Xfj — bonding stretch along reinforcement beside the cracks.
x = distance from the centre of gravity of the quarter area to the long axis

of symmetry with arbitrary, double-symmetrical loading area.
x, y = distance from centre of gravity to the free edge or the axis of symmetry

at right-angles to the free edge respectively for half th e loading area with
arbitrarily distributed edge loading.

•ot = angle between the assumed straight negative failure line and the positive
failure line with a load on a free edge of slab.

P
y — constant in the soil pressure expression p0 = y • - —-

I2

yIf. — corresponding constant in the soil pressure pyramid with a load on a free
edge of slab, see above.



14

Esh

fi, v
v

V S

n
Oc
Vc
af

stand
at
amt

b t
amt' amt

ar
crOr
yie

ar

ot

n
°fco =

m, cm, mm
kg, t
t m
kg/cm2

b. r.
t. r.
srp
0
e. g. 0 6 c/c

= Laplace's operator.
= crack width.
= membrane strain in slab in radial and tangential directions respectively.
= concrete shrinkage.
= reinforcement percentage.
== constants when calculating the shear forces along slab top surface crack.
= Poisson's ratio for slab.
= Poisson's ratio for soil.
= relative pressure distribution according to formula (23:11).
= stress in concrete.
= the effective average compressive strength of the concrete.
= flexural strength of concrete.

= flexural strength of concrete determined from standard flexure beams.
= stresses in pavement due to uneven temperature.

= stress due to uneven temperature, in the bottom and top surface res-
pectively.

= stress in reinforcement.

= reinforcement stress in a crack of a continuous pavement.

= yield point in reinforcement.
= pure tensile strength of concrete.
= bond stress between concrete and reinforcement.

= relation between flexural strength and pure tensile strength of concrete.

Abbreviations:

= metres, centimetres, millimetres.
= kilogrammes, tons.
=" ton-metres.
= kilogrammes per square centimetres.
= bottom reinforcement.
= top reinforcement.
= stirrup reinforcement.
= diameter of a reinforcing bar.
150 mm = reinforcement of bars 6 mm in diameter, spaced with 150 mm
from centre to centre.



1. Introduction

The enormous development of road and air traffic in recent decades
has made ever-increasing demands on road and airfield pavement. It
is primarily the increased wheel load but also the greater traffic intensity
that is responsible for these demands.

The pavement of a road or an airfield runway can be said to serve
two main purposes, namely:

1. to give the road or runway an even and in other respects suitable
surface.

2. to distribute the loads to which it is subjected so as to avoid
excessive pressure on the sub-base or the natural soil.
The pavement must also be constructed with a view to keeping down
the expenditure for building and maintenance, due respect being paid,
however, to the required costs for soil strengthening or sub-base neces-
sary for various types of pavement.

The first-mentioned demand is on the whole satisfied by all types
of high-class permanent pavements. The second demand, whereby the
pavement has a load-distributing and reinforcing function, is satisfied
only by so-called rigid pavements, i. e. pavements made of concrete.
It is this demand that has become pre-eminent with the intense increase
in traffic during recent years.

Looking back over the short time during which pavement technique
has been developed, we find that it is the need for smoothness and good
surface properties that first became urgent. This demand was applicable
to roads as soon as vehicle speeds became fairly high, and it was pri-
marily non-rigid asphalt pavements that came to be used. The increasing
demand for improved load-carrying properties which was the result
of road traffic becoming heavier was first satisfied by the improvement
and reinforcement of the sub-base rather than by the use of a more
rigid pavement with a load-carrying capacity of i ts own. The first rigid
pavements came into use primarily to replace asphalt pavements with a
type of pavement that required less maintenance. It was then quite
natural that these first concrete pavements should have been con-
structed of plain concrete.

When gradually the need arose for designing pavements suitable
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for wheel loads continously increasing, it was a natural development
to make these unreinforced concrete pavement slabs thicker and thicker
and to design the slabs so as to prevent crack formation under the wheel
load. A designing principle of this kind thus led to moderate slab
thicknesses on subgrade with fairly good load-carrying properties for
the loads exerted by vehicles and aircraft used before the Second World
War. But with the enormous traffic development that has taken
place in the last few decades the problem entailed by these conservative
pavement types has gradually proved too much for the designers. An
example of t his is the great increase in the weight of aircraft, which was a
result of the introduction of jet-propelled aircraft for commercial pur-
poses. The development and the difficulties involved are evident from
a report on development and research problems in connection with
rigid pavements on military airfields in the United States, supplied by
SALE a nd HUTCHINSON [58]. During the last twenty years or so it has
been essential to increase the design criterion for wheel loads from
approx. 7 to 120 tons, and it is estimated that within the next five years
it will be essential to increase this load to approx. 150 tons. With the
design specifications and calculating methods applying to the type
of plain concrete pavements mainly used up to now, this would imply
a pavement with an unreinforced slab approx. 80 cm thick [18, 50].

It is quite clear that, faced with such a development, designers must
elaborate new methods for pavement design. A natural step would
appear to be the use of reinforcement as strengthening for a concrete
pavement. As far as the present writer has been able to find from
published reviews of development and research in the field of p avements
[18, 58], reinforcement in concrete pavements has so far been used only
to a very small extent with a view to increasing the load-carrying capac-
ity. The reinforcement now more or less regularly used in concrete
pavements is chiefly intended, in the event of crack formation, to hold
the cracked parts together and prevent the cracks from extending.
Reinforcement of this type is normally located in the centre of the slab
or nearer the top (see [18, 58]) and does not contribute to the load-
carrying capacity since the greatest tensile stresses occur at the bottom
of the pavement under the wheel load.

The so-called continously reinforced pavements, which are completely
jointless, can be said to form a development of this type of crack rein-
forcement. In this case the reinforcement has to take up the stresses
from temperature decrease and shrinkage due to the completely pre-
vented contraction, this requiring comparatively large amounts of
reinforcement. This type of pavement, which has been the subject
of many tests in recent years, particularly in the United States (see for
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example [2]), must still be considered to be in the experimental stage.
It is not possible to find any line of thought which attempts to calculate
and utilize the reinforcement for admitting flexural stresses due to
traffic loading as well.

Another kind of reinforcement in pavements which has been the
object of great interest in recent years is pre-stressed reinforcement.
Many test roads, notably in Britain, France and Germany, but also in
the United States, have been built or are being built, and many different
systems are being tested in order to give the pavement slabs pre-stress
forces. Summarized accounts of these tests and systems have been
supplied by BRINCK [13] and the American Concrete Institute [9], among
others. The object of pre-stressed pavements is to give the concrete a
higher effective tensile strength by extra external compressive stresses
and so to avoid the occurrence of tension cracks; it can therefore be
said that the pre-stressed pavement is mainly a further development of
the unreinforced type of pavement.1) Experiences of pre-stressed pave-
ments up to now also show that the costs are generally very high and
that there are considerable technical and practical difficulties which
have not yet been solved.

Thus, one requirement applicable to all these types of pavements is
that no tension failure in concrete must occur in the pavement slab due
to the influence of w heel load. I permit myself here briefly to anticipate
my treatment in a later section of the problem of the pavement slab.
Fig. 1: 1 shows the moment distribution in an elastic slab on soil, which
is assumed to function elastically in this case, due to the influence of
a fairly concentrated load from a wheel. The figure shows the prominent
positive maximum moment which occurs under the wheel in comparison
with the small and levelled negative moment which occurs radially
at a certain distance round the loading point. It is obvious that a pave-
ment made of plain concrete, which has to take up stresses of this positive
maximum moment with the help of the low flexural strength of the
concrete only, must be designed in the form of a thick slab as soon as
loads become heavy. In addition to this, the thicker and more rigid
the pavement is made, the higher the maximum moment will be relative
to the load (see Fig. 1: 1).

It would, however, appear to be a natural step, when strengthening
the slab, to insert reinforcement in the bottom of the slab to make it
function in the same way as flexural reinforcement in a normal rein-
forced concrete structure, i. e. allow the concrete to crack in the bottom

1) The tendency to utilize the pre-stressed reinforcement for admission of flexural
stresses is noticeable in French design practice (see for example MELVILLE [51]).
2
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Fig. 1:1. Approximate moment distribution in a reinforced concrete slab on elastic
subgrade due to concentrated load.

The curves A och B show the moment distribution according to the elasticity theory
when load distribution is small and great respectively (radius of load distribution area = c)
in relation to the »radius of e lastic rigidity» I. The curves C show the moment distribution
fundamentally after the slab has passed into plastic stage under the loading centre at
commencement of yield in the reinforcement in bottom surface. The lower curve of
each kind represents the tangential moment, the upper curve the radial moment.

surface and the reinforcement there to take up the positive moment,
while the tensile strength of the concrete at the top takes up the rela-
tively low negative moment. In principle there is, of course, nothing
to prevent the insertion of reinforcement also at the top as an extra
strengthening procedure and to allow the concrete to crack there as
well. Apart from the direct strengthening, the reinforcement also
results in a considerable decrease in the flexural rigidity as soon as crack
formation develops in the tension zone, this levelling the positive maxi-
mum moment as shown in Fig. 1:1.

The strengthening effect of the reinforcement will be even more
advantageous if attention is paid to the function of the reinforced slab
in the yielding condition, when loading increases above the value,
according to Fig. 1:1, corresponding to the yield point in the reinforce-
ment. There is then a levelling of moment during continued yield in
the bottom crack lines, and the function of the slab can be treated in
accordance with the same principles that have been shown to apply for
cross-reinforced plates by K. W. JOHANSSEN'S yield line theory [31].
This function of a reinforced concrete slab greatly increases the load-
carrying capacity and the margin of safety for failure in a pavement
of this kind.
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It is pavements of this kind, with active so-called structural rein-
forcement, that are treated by the author of the present thesis. As shown
by the discussion above, pavements of this kind show great variations
in function when compared with conventional plain or crack-reinforced
pavements. This applies already in the elastic stage, in which, through
continued crack formation at the bottom, the reinforced slab changes
its elastic properties successively. It applies even more in the yield stage,
after the yield point in the bottom reinforcement has been reached.

Starting from the theories hitherto used for concrete pavements,
which are based on the assumption that the pavement functions as an
elastic slab on an elastic subgrade, the author attempts to show the
extent to which a reinforced concrete pavement with this successive crack
formation can be calculated according to these theories and also to study
the elastic properties of the soil under a pavement of this kind with a rela-
tively low degree of fl exural rigidity. This section of t he investigation is
included in Part 2 of the book. Part 3 concerns the behaviour of the
reinforced concrete slab in the yield stage after the yield point in the
reinforcement has been passed, and in this part an ultimate strength
theory is developed for the pavement. In Part 4 such cases are studied
in which the load is located on an edge or on a moment-free joint, and
the problem is treated from the points of view both of the elasticity
theory and the ultimate strength theory.

In all cases the author has attempted to verify the results of the
theoretical presentation by means of tests. These have been of three
types, viz. tests on test pavements in model scale, tests on full scale
slabs under laboratory conditions, and full scale field tests in con-
nection with pavement work in practice. The tests of the two first-
mentioned kinds are described in connection with and within the scope
of t he parts of this paper in which the corresponding theoretical problems
have been treated. The field tests carried out in connection with pave-
ment work on airfields have been separately treated in Part 5. In order
to clarify the very extensive test material and in order to avoid compli-
cating the presentation with too much detail taken from the test reports,
the author has only included summarized test results. He has chosen
instead to accumulate the measurement values and more detailed test
results in a special test supplement (Part 9), to which reference is made
in the cases concerned in connection with test analysis in the other
parts of t he study.

Apart from wheel load, the pavement is also subjected to stresses due
to temperature variations and shrinkage in the concrete. The effect of
these, particularly with regard to special problems for reinforced co ncrete
pavements has been treated in Part 6.
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The various parts of this book thus treat relatively independent
problems. For the sake of e ven greater clarity, the author has therefore
generally terminated each part with a section summarizing the results
and conclusions. The purely theoretical sections within the various parts
generally include a special final summary of formulae.

In a final Part 7 the author has attempted to summarize the limited
experience, mainly derived from Swedish airfields with structurally
reinforced pavements, and has complemented this presentation with
suggestions concerning design specifications of reinforced concrete
pavements.



2. Reinforced Concrete Pavements Studied from
the Viewpoint of the Theory of Elasticity

21. The Conditions for the Theory. AShort Literary Review

Research workers who have earlier studied the concrete pavement
problem from a theoretical viewpoint have, according to the findings of
the author, always based their work on the conditions of the elasticity
theory.1) For the slab-soil system, the following conditions have generally
been assumed:

1. The slab is completely elastic, isotropic and homogeneous and is of
a constant thickness (flexural rigidity). Otherwise, except where specified
in the following, the simplified suppositions from which the differential
equation of the plate (see 221) is derived have generally been assumed.

2. The soil is completely elastic in accordance with one of the following
two different hypotheses concerning its properties:

a) The subgrade is considered to be a flexible bed where the pressure
at a certain point is proportional to the degree of d epression at the same
point while the adjacent unloaded area is not at all affected. The case
of an ice-floe floating on water can be mentioned as an example of a
subgrade of this type. The soil is thus characterized by a constant of
subgrade reaction, a "resilience constant"

p,
k = — (21:1)

w

showing the relationship between the intensity of the soil reaction
pressure ps and the deformation of the soil w at the same point, k is
known as the modulus of s oil reaction ("&-value"). In the following, this
type of subgrade is called a "resilient subgrade'.

a) In a paper in Betong 1947 [35] and in stencilled reports, [36, 37, 38, 39] the author has
previously dealt with reinforced concrete pavements in plastic ultimate behaviour. The
theories of the author have also been referred to and studied by several research workers.
See Section 31.
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b) The subgrade is considered to be an elastic, isotropic and homo-
geneous body of semi-infinite extent. It is characterized by a modulus of
elasticity Es and a Poisson's ratio of vs which can be included in a
constant, the "modified modulus of elasticity".

C 1 ) is described in the following as the "soil modulus'' and the type of
subgrade as "elastic subgrade".

3. The slab and the soil are in full contact with one another. No
notice is taken of the fact that the slab in a state of d eformation under
loading can lift from the soil.

In their paper on wheel load stresses in concrete pavements (1949),
BERGSTRÖM, LINDERHOLM and FROMÉN [4] have produced an exellent.
review over the current literature at that time in this field. For that
reason the author will here only mention the most important papers
and those to which he refers when presenting the theory as well as, of
course, recent papers of interest for this investigation.

The earliest treatment of the system consisting of a slab on a flexible
subgrade was based on the assumption of a resilient subgrade and
proceeds from the differential equation2) for a thin, elastic plate. HERTZ
[27] who was the first to deal with the problem, studied the case of the
floating ice-floe mentioned above and gave the solution for the effect
of a concentrated load on such an ice-floe of infinite extent. An
extremely thorough treatment of circular (this including of course also
infinite) slabs on a resilient subgrade has been produced by SCHLEICHER
[60] who gave the exact solutions for various types of ring symmetrical
loading at various boundary conditions, but these solutions arenot usually
presented in a form that can be utilized in practice. In the case of
WESTERGAARD'S papers, however, [71, 72, 73, 75, 76, 77] the approximate
formulae are intended to be applied directly for the design of plain con-
crete pavements and they have, indeed, been used to a great extent for
this purpose. Apart from the case of the load in the centre of the slab
(in point of f act loading on a slab of i nfinite dimensions), WESTERGAARD
has also dealt with the case of lo ading on a free edge and on a free corner
(WESTERGAARD'S three basic cases of loading). These last-mentioned
cases of loading are treated in more detail in Part 4 later on. In later

!) The notation C has been suggested by SCHLEICHER [59] and others.
2) See, for example, TIMOSHENKO [66].
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papers [74, 76], WESTERGAARD has attempted to correct his formulae
with respect to observed poor agreement between theory and test results,
while many other research workers have suggested modifications of
WESTERGAARD'S formulae for the same reason. A review of these is
supplied by KELLEY [41].

More recent contributions to the theory concerning slabs on a flexible
bed are generally based on the assumption of elastic subgrade. The
treatment of this subgrade case is considerably more complicated and
general solutions comparable with those of SCHLEICHER mentioned above,
dealing with slabs on a resilient subgrade, are not offered in technical
literature. Nor have the cases of edge and corner loading been treated.

In the important special case where the slab has infinite dimensions,
exact solutions have been provided by HOGG [28], HOLL [29, 30] and
BURMISTER [14, 15]. The first two mentioned base their solutions on
the differential equation of the plate while the third proceeds from the
general elasticity equations. HOLL, whose solution covers the most
general conditions concerning the properties of the soil, also implies how
the problem is to be solved in the case of a slab with limited dimensions,
but the solution he arrives at in this case is not correct and the method
described does not appear to be possible in practice.1) The slab with
limited dimensions has otherwise been dealt with through the use of
difference calculating methods by HABEL [26] and BERGSTRÖM [4, 5],
whereby HABEL divided up the slab into ten ring elements and BERG-
STRÖM divided it up into four ring elements. BERGSTRÖM has developed his
method into practical solutions presented in a diagrammatic form.

The solutions suitable for practical use presented above are aimed at
load distributions over only circular loading surfaces. The effect of t win
loading from two circular loading surfaces can generally be obtained by
superimposition. Although the load contact surface between a rubber
wheel and a pavement surface in general can usually be approximated
to a circle, cases can occur where loading surfaces have more complicated
forms. In such cases, use can be made of the "influence charts" [57]
by PICKETT and RAY. These show the amount of dep ression and moment
on the interior and close to the free edge of a pavement with infinite

*) A couple of special cases dealing with slabs of limited dimensions have been dealt
with by BOROWICKA [11, 12], namely the cases where the whole slab is uniformly loaded
and where the slab is influenced by a concentrated load in the centre. Borowicka's solu-
tions do not, however, appear to be completely free from criticism and calculations carried
out in accordance with his method are extremely laborious.

DÖLPHER-LARSEN [17] has quoted a method based on the solution for the infinite
slab whereby he superimposes a load opposed to the soil pressure from the section out-
side the circumference of the limited slab. The method does not, however, appear to be
possible in practice; the solutions given by Dölpher-Larsen thus include divergent series.
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dimensions under the influence of a loading surface distributed arbitrarily.
The influence values for a load on the interior of the slab have been
calculated according to HOGG [28] (elastic subgrade) and for edge loading
according to WESTERGAAKD [71] (resilient subgrade).

The conditions forming the basis for these theories and methods consist,
to a lesser or greater degree, of simplifications of the actual conditions
prevailing in the case of a concrete pavement supported by soil. The
assumption that the slab has constant or elastic properties is mainly
correct as long as it concerns plain concrete but appears to be particularly
doubtful when applied to reinforced concrete slabs, the elastic properties
of which change to a great extent as soon as crack formation starts in
the tension zone of the concrete. The other component in the system,
the soil, has characteristics that are still more difficult to judge. The
possibility of utilizing the above-mentioned theories for concrete pave-
ments must thus be judged on the basis of experiments.

The paper of BERGSTRÖM och assoc. [4] mentioned above also includes
a detailed and very well produced review of tests carried out by various
research workers concerning concrete pavements resting on soil. These
tests included only plain concrete sl abs, with the exception of the tests
carried out by the present author himself which are described in more
detail later. Discussions of test results in this paper [4] show that both
the theories mentioned agree relatively well with the test values obtained
concerning deformations and stresses.

In the paper referred to [4], an account is also given of t ests carried
out by these authors with a circular plain concrete slab lying on clay
subgrade (Upplands Väsby). Apart from measurement of depression
values and stresses (strains) due to a load on the centre, measurements
were also made of the pressure between the slab and the soil at various
points by means of pressure-sensitive measuring cells cast into the
bottom of t he slab, these cells registering in accordance with the inductive
principle. The intention of these measurements was primarily to show
the properties of the soil since the distribution of soil pressure is quite
different according to the two theories while the deformation of the slab
and the stress distribution in the slab are comparatively similar. The
result of the test showed indubitably closer agreement with the theory
for elastic subgrade than with the theory for resilient subgrade.

In later sections of this paper the author will discuss, on the basis
of tests carried out with reinforced concrete pavements, the applicability
of the elasticity theory concerning pavements of this type and thereby
return to the question as to which of the two hypotheses concerning the
elastic properties of t he soil lies closest to actual soil conditions occurring
in practice. For this purpose it is first essential to develop the theories



25

for the calculations concerning slabs on soil particularly when the soil
is assumed to behave as an elastic subgrade, since the papers referred to
above have not in general been developed to practically applicable results
as required for the analysis of reinforced concrete pavement. The reason
for this is that reinforced concrete pavements are usually relatively thin
and have a low flexural rigidity and that, in many cases, higher values
are obtained concerning the load distribution relative to the rigidity of
the slab than those values predicted according to earlier theoretical results
since these were primarily aimed at the considerably greater flexural
rigidity of plain concrete pavements.

The following presentation of the theory is based to a great extent on
the solution to the problem produced by HOLL [29, 30] since this appears
to be the most general and, besides, can be applied to both types of
subgrade.



22. Theory for Elastic Pavements

221. Basic equation for an elastic pavement of infinite extent

The differential equation for the vertical deformation of a n elastic slab
can be written, in terms of the polar coordinates,

D • A A w(r ) = p ( r ) — p s (r ) (22:1)

whereby the usual simplifying assumptions concerning the treatment of
elastic slabs are made. In this connection

A = Laplace operator
E i

D = flexural rigidity of slab = — f

E — modulus of elasticity of slab
v = Poisson's ratio for slab
i = moment of inertia of slab per unit width
r = distance from centre of loading
p = load acting on slab
ps= soil reaction pressure

In the case where the load is radially symmetrical, the Laplace operator
then has the form

d 2 w 1 d w 1 d I d w
A w ( r ) d r 2 + r d r r d r \ ' d r ' ( 2 2 ' 2 )

In the differential equation the soil reaction pressure between the slab
and the soil is not known. If it is assumed that the slab and the soil are
permanently in contact with one another, then the surface of t he soil has
the same deformation as the slab and this soil deformation can be assumed
to occur due to the soil reaction pressure operating as an applied load
on the surface of the soil.

The connection between the soil pressure and the depression of the
soil is a function of the elastic properties of t he soil. In order to charac-
terize these generally an influence function is introduced

k ( s ) = k ( r , 6 ; Q,cp) (22:3)
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Fig. 22:1. The influence function k ( r ,0 ;Q ,cp ) expressing the depression at a point of
the subgrade surface with co-ordinates (r, 6) due to a load= 1 acting on the subgrade at

the point (Q, cp ) .

this showing the depression at a certain point with coordinates Q, cp due
to a unit load = 1 applied to the surface at the point r, 0 (see Fig. 22:1).
s denotes the distance between both the points. This influence function
is, in the case of isotropic soil material, radially symmetrical round the
point at which the load is applied, i. e. is a function of only s, and is
considered to be known for the soil material in question.

For the two soil types here treated, the influence function has the form

1. Elastic, semi-infinite subgrade

(22:4)

according to Boussinesq's classical depression formula1). C means the
modulus of el asticity of subgrade according to the earlier definition (21:2)

2. Resilient subgrade

0 for s # 0

k{s) =
lim n £2 k

for 5 = 0
(22:5)

where k = the constant of resilience. This expression follows directly
from the definition of k (21:1).

It is now possible to express the degree of depression at a certain point
due to the unknown soil react ion p s by using this inf luence funct ion k(s) .

x) See, for example, TIMOSHENKO: T heory of elasticity [65].
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Integration of the influence function according to Fig. 22:1 with a ring
symmetrical load.

Since the load applied to the plate is assumed to be radially symmetrical,
the degree of depression is independent of 0 and 0 can be assumed to be
equal to 0, so that the position of the point is only characterized by
the distance r from the centre (see F ig. 22: 2). Due to the soil loading
ps(g) on a surface element do • g dep, then the depression in P is

d ( d w ) — k (r ; g , ( p ) p s ( g ) d g g d r p

and due to the loading from the complete ring-shaped element around
O between g and o -f- dg, the depression becomes

7T
d w — p s ( g ) g d g • 2 J k ( s ) d < p (22:6 a)

o

where the relationship between s and c p is obtained according to the
cosine theorem

s 2 = r 2 -f- £ 2 — 2 r g cos c p (22:6 b)

(see F ig. 22:2).
This expression can be transformed to a Fourier-Bessels integral.

According to this transformation an arbitrary function f(x) can be
rewritten in the form of a determined integral with an infinite upper
limit

f ( x ) = f F ( u ) • J 0 ( u x )u d u (22:7 a)
o

where the coefficient F ( u ) is calculated from the integral



29

F ( u ) = f f{ t ) J 0 { u t ) t d t (22:7 b)
6

J 0 is a Bessels function of the first type and 0 order.1)
In this way the influence function k ( s ) can be rewritten

1 rk ( s ) = —— J K ( u ) J 0 ( u s ) u d u (22:8 a)
2 ^ 0

where

K ( u ) = 2 TI f k ( t ) J o ( u t ) t d t (22:8 b)
o

If this is introduced into equation (22:6 a) then

1 00 T
d w — ps { g ) g d g J K ( u ) u d u j J 0 ( u s ) d ( p (22:9)

71 o o

where s is defined through equation (22:6 b). The last integral in this
equation can be integrated according to one of the "addition theorems"
for Bessels functions:2)

7T
f J0 ( u s ) d c p = i t J0 ( u r ) J0(u q )

6

The equation then becomes
00

div — ps(g) Q d g • J K ( u ) u J0 ( u r ) J 0 ( u g ) d u (22:10 a)
o

The pressure p s over the complete soil surface then gives a total depression
at a point at a distance r from the centre

00 00

w (r ) = f p s ( g ) g d g • f K ( u ) u J 0 ( u r ) J 0 ( u g ) d u (22:10 b)
o o

Since we have assumed that the slab and the soil are in complete
contact at all points, then the expression (22:10 b) also means the deforma-
tion surface of th e slab. It thus forms a solution to the differentia] equa-
tion of t he slab (22:1). If ps according to equation (22:1) is inserted into
the equation (22:10 b),

w ( r ) — f [ £ >( { > ) — D • A  A  w ( g ) ] g d g • J K ( u ) J 0 ( u r ) J 0 ( u g ) u d u (22:11)
o o

This forms the equation for the case in question of a slab on soil.

!) See, for example, WATSON [70], page 453.
2) See WATSON [70], page 367.
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For the solution of the equation (22:11) the known applied loading
function p is transformed into a Fourier-Bessels integral according to
(22:7), so that it is possible to write

00

P( Q ) = f P (x ) J0( X Q ) oc doc (22:12 a)
o

where

P (oc ) = J p(t ) J0 ( t oc) t d t (22:12 b)
o

The actual solution to the equation (22:11) itself can also be applied in a
similar form

w (r) = J W(oc) J 0 (ocr ) da . (22:13)
o

If these expressions are inserted in the equation (22:11) this becomes
00
/ W( oc) -J 0 (oc r ) da . =
o

00 00 00

— I [oc P( oc ) D oâ W(oc) ] d ix f Jo( &£>) Q d g J K(u) J 0 (ur) J 0 (uq) u du
Ö 0 0

(22:14)

The last double integral in this expression can be written in the form

K((x ) J0 ( ( \ r )

since this double integral forms a Fourier-Bessels integral transformation
(22:7) of t he function

/ (oc ) — K((x ) J0 ( txr )

One then gets

[ W (oc ) J 0 ( txr ) d ix — J [oc P(oc ) — D oc A W(oc) ] K (a) J0 (ocr ) doc (22:15 a)
ö ö

or

f [W(oc) — a; K(oc) P(oc ) -f- K((x ) D oc 4 W(oc) \ J0 (ocr ) doc — 0 (22:15 b)
ö

This expression applies identically for all values of r . The expression in
brackets must then be equal to 0 and thus
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The solution to the equation (22:11) is thus
00

/ T*
ix P0(o<,) K(tx)

W{r)= I ' + D^KM'J°{xr)dx (22:,7)

If this solution is inserted in the differential equation for the slab (22:1)
then the expression is obtained for the pressure distribution between
the slab and the soil

f oc P { ck)
Ps (>') = J i + Dot K(ot) ' J°^ d<X (22:18)

o

The expressions (22:17) and (22:18) thus form the general solutions to
the problem of a slab on soil, and by calculation together with the
insertion in these integrals of the expressions for the subgrade factor
K(oc) (22:8 b) and the loading factor P(A) (22:12 b) we obtain the solu-
tions for various types of soil a nd applied loads. The method is naturally
not limited to the two types of so il now being considered but any type of
soil can be treated in the same way if only the influence function lc( s)
(22:3) for the type of soil in question can be decided, either theoretically
or empirically.

Calculations will now be carried out for the two types of soil in question
and for the cases of loading where the load is concentrated or uniformly
distributed over a circular surface. The case of e lastic, semi-infinite soil
will be studied in comparatively great detail, while as far as resilient
soil is concerned the author makes a great deal of references to the
detailed work of SCHLEICHER [59] and WESTERGAARD [71— 76].

222. Elastic, semi-infinite subgrade

222.1 Concentrated load.

Subgrade and loading fact ors. For this type of soil, the subgrade factor
is (22:8 b)

00

r i i 2 i
K(<x) = / 2 n t—— • — J0((xt)dt= ^7-— (22:19)

J n G t C oc
o

The loading factor (22:12 b) for a concentrated load will be
00

C P P
P {(x) — / lim t J0(oct) dt — —— (22:20)

J u 7Z•->0
0
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Degression. If the expressions (22:19) and (22:20) are inserted in the
equation (22:17), one gets

p 2 f J0(cxr)
w(r) = 2^ C / Id~ dx (22:21)

1 + <X C

In order to get the result in a dimensionless form, the distance fromthe
centre is written as

« = -f (22:22)
Le

where
3

L =
2 D
~C~ (22:23)

is called the elastic radius of rigidity and is an expression for the elastic
properties of t he slab and the soil in the dimension length.1) With these
notations (22:21) has now the form

Pie f Jo(s)
w(s)= s* J dx (22:24)

0

The depression in the loading centre can be calculated exactly from
the integral (22:21) since

JQ{(xr) — 1 where r = 0

The depression w0 in the centre becomes then

The general integral in the equation (22:24) can be presented in the
form of a series of powers and log functions.2) The first terms are

1) The conception elastic radius of rigidity I, applied in the theory for resilient soil
(see page 43), was introduced by SCHLEICHE» [60] and has been used by WESTERGAABD
[71, etc.], and others. By the introduction of a corresponding notation (22:23) also for
elastic soil, the author has managed to present the result in a form that is easily compar-
able for both the theories. See Section 225.

2) The solution of this integral is given by HOGG [28]. Hogg has also calculated the
terms in the series (22:26) up to s 8 and given the depression curve for s < 2.0.
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P 12

w(s) = • [(3.979 • 10~2 S 2 — 107.9 • 10~8 S 8 + 38.2 • 10"14 s 1 4 —

— . . . . ) I n 5 + 0 . 19245 — 4.440 •10"2 S 2 — 30.07 • 10~4 S 4 +

+ 70.74 • 10-5 -s5 — 83. 53 • 10~6 s6 + 237.4- 10~8s8 +

+ 130.51 • ÎO" 1 0 «1 0 — 1 47.28 • 10"1 1 s1 1 + 90.63 • 10~ 1 2 s1 2 —

— 103.3 • 10~14514 — 18.1 • 10"16s16 + 15.2 • 10"17s17 —

p l2
— 5.6 • 10~18 s18 + . . .] = —• Z°xe {s ) (22:26)

The series in the bracket is denoted Z\ e(s) whereby the index 0 denotes
the load distribution = 0, i. e. a concentrated load. The value of this
series has been calculated for s < 6 and has been shown in a diagrammatic
form in Fig. 22:5 A, page 50. For higher values of s the series does not
converge too well unless still more terms are taken into consideration.

The distribution of pressure can be calculated from (22:18) in the same
way as has just been shown for vertical deformation. It is however
simpler to insert the series (22:26) in the differential equation for the slab
(22:1). The result will be according to (22:1), since the applied load
here is singular,

ps(r) — — D • A A w{ r)

or with dimension-free variable

D D / I d \ d [ 1 d I M l ] \
PM = - J -à A w(S)= - J [- Js {« ds [s Js [s =

P
= - - A A Z°he(s) (22:27)

Le

and insertion of the series gives

P
<ps(8) = [(24.86 • 10~4 S 4 — 107.9 • 10" 10 S1 0 + . .. . ) I n s + 0 .19245—

e

— 1.59 18 • 10"1«1 + 4.82 9 • 10~2 S2 — 40.18 • 10"4 S4 —

— 83.5 3 • 10"6s6 + 144.4 • 10~7 s7 — 130.5 • 10"8 s8 +

+ 258.6 • 10"1(V° + 90.6 •10"12 s12 — 122.3 • 10"13 s13 +

P
+ 52.1 • 10-"«" -jr • « (22:28>

e
3
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The pressure j)0 under the loading centre is, quoted exactly

Vo
1 P

Y3 y3 (22:29)

The distribution of pressure is shown in diagrammatical form in Fig.
22:6 A, page 51 for values s < 4. For higher s-values the series does
not converge too well but it can be seen that if t he asymptote values of
J„ for large-scale argument are inserted in the integral expression for
(22:18),

J o ( r )
2 I 71

cos I r — —
7i r

the pressure decreases very rapidly as s increases and that it is less than
0 the whole time. This also applies concerning the depression.

The flexural moments tangentially and radially are calculated in the
usual way from the derivatives of vertical deformation

I d2w
m ' = - D \ i ï ë -

I dhv
m v = - D V 1 ^

1 dw
r dr

1 dw
r dr

(22:30)

At the centre point due to symmetry mr — m^, and thus

1 v ( d2w
m'+ = — Dmax dr2

1 dw\ I d2w\

r^lr~D{1+iHJ2±'il}

By derivating the series for (22:26) one gets

d2w
B = P [ (0 .07958 — 60.42 • 10~6 SG + 69.5 • 10~1 2s1 2 ) 111 s +

dr2 L

+ 0.03056 — 3 .608 • 10~2S2 + 14. 15 • 10~3S3 — 25.06 • 10~4S 4 +

+ 116.72 • 10- 6 S6 + 117.46 • 10~8S8 — 162.01 • 10~9 s9 +

+ 119.64 • 10_10s10 — 177.7 • 10~12 s12 — 43.4 • 10_14514 +

+ 41.34 • 10-15«15— 16.0- 10~16s16+ ...] = P-Z°e(s) (22:32)
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1 dw
D — -T- = P [(0. 0 7 9 5 8 — 8. 6 3 2 • 10_6s6 + 5 . 3 5 • KT"12«12. . .)In 5-

r dr L

— 0. 0 4 9 0 2 — 1. 2 0 3 • ] 0~2 S2 + 3 . 5 3 7 • 10~ 3 S3 —

— 5 . 0 1 2 • 10~4 S 4 + 17. 9 1 • 10"6S6 + 13. 0 5 • K)-8«8 —

16.20 • 1 0_9S9 + 10.87 • 10~10 S1 0 — 14. 08 • 10 "12 S12 —

— 2. 8 9 3 • 10~ 14 S 1 4 - f 2. 5 8 4 • 10~ 15 S lb —

1, 0 0 • 10-16 s 1 6 + . . . ] = P • Z \ e (s) (22:33)

The series (22:32) and (22:33)x) are calculated and stated in the form
of curves in Fig. 22:7, page 52 for values of s < 6. For higher values
of s more terms are necessary but it can be seen that the expression goes
rapidly towards 0 as s increases.

The flexural moments radially and tangentially become, expressed in
these series:

mr = — P [.Z°3e (s ) + v Z\e («)])
(22:34)

m ( p = - P [ Z l e ( s ) + v Z l X s ) ] \

Since v is a small quantity (in the case of r einforced concrete v is usually
put as being equal to 0), then the distribution of the radial moment can
be made apparent to a great extent by the Z^ curve while the tangential
moment largely follows the Z\e curve (Fig. 22:7).

The moment values at the centre point can be obtained by derivating
the integral (22:21) and inserting the result in the equation (22:31). An
infinitely large value is thus obtained, this also being shown by the
series (22:32; 22:33). This depends on the fact that the elementary slab
theory used here does not apply close to the point at which the load is
applied. In practice, however, load distribution is always so great that
the elementary theory can be used also for the area under loading.

The maximum negative moment occurs, as shown in Fig. 22:7 at a
distance s « 1,9 from the point where the load is applied and is

mmax = — 0.019 5 • P for i' = 0 (reinforced concrete)

mmax — — 0. 0 1 G 5 • P for v — 0.15 (plain concrete)

1) In the paper by HOGG [28] mentioned, the terms up to s8 in these series have been
calculated and curves for values of s < 2 have been drawn.
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222.2. Distributed load
Only the case where the load is uniformly distributed over a circular sur-

face willbe considered. This load distribution does not naturally agree with
that resulting in practice by the pressure from a rubber wheel since in
this case the load contact surface is generally more or less extended. Both
theoretical and experimental analysis have shown, however, that the
influence of this deviation from the circular distribution of loading is
small1) and that the calculations for the distributed load in the majority
of cases can be based on the assumption that the pressure contact surface
is circular and that the uniformly distributed load corresponds to the
air pressure in the wheel. In principle the methods given below can
naturally be applied to load contact surfaces with arbitrary shape2) and
load distribution.

The loading factor. If the pressure from the wheel (thus = air pressure
in wheel) = p, then the load distribution radius c thus can be calculated
from

P = —:T" (22:35)71 C"

The loading factor for this case of loading will thus be, according to
(22:12 b)

P C P JM c )
P(oc) = • / t J0(oct) dt = (22:36)71 C2 J 71 C (X

0

Depression. By inserting this expression and the expression (22:19) for
the soil factor in the equation (22:17) an expression is thus obtained for
the depression of the soil caused by a distributed load

P 2 r JJtxr) • JAtxc)
W(r) = — ~ / 3 73n da (22:37)w Tic C J (X (1 + a3 l3e)

o

The integral (22:37) is difficult to calculate. The depression at the
centre point is obtained in a simpler way from the earlier calculated
series Z\e (22:26) for the depression of t he soil due to a concentrated load
if it is o bserved that this expression is simultaneously the influence func-
tion for the depression at the centre point of the slab due to aconcentrated

*) See, for example, Bebgstböm and assoc. [4], page 48.
2) See Pickett-Ray [57].
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load at a certain distance from this point. The depression in the centre
caused by ring-shaped distributed loading on the area element between
r and r + dr is thus

P l\ n t r
dw = 2„r dr _

and from the complete loading on the load distribution surface the
depression in the centre thus is

2 P II r I r

o
= r Z HV d r

If the load distribution radius is written in a dimension-free form by the
introduction of the notation

c
ae = — = relative load distribution (22:38)

one gets

2 PP.

Da!

ue

f s Z• ,
w0 = n „2 I sZ°l e(s)ds (22:39)

o

which through integration gives the series

P 12

w0 = (0.1925 — 0.0272 + 0.0i99af ln ae . . .) (22:40)

Only the first terms have been included here since the load distribution
is rarely so great that the other terms have any influence (formula
(22:40) applies for ae < about 1.5). The values for depression in the
centre have been calculated and have been shown in a diagrammatic
form in Fig. 22:5 B page 50 for a relative load distribution ae < 6, in
which case more terms have naturally been included when intergrating
(22:39).

In order to obtain the remaining appearance of the depression curve
in the case of d istributed loads one can proceed in a corresponding way
to that recently given for the calculation of the centre point value and
thus start from the curve for a concentrated load regarded as an influence
function. Fig. 22:3 shows the calculating method and integration is
carried out here numerically by a suitable division of t he loading surface
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Fig. 22:3. Calculation of the depression due to a circularly distributed load p =

JT- C2

with the help of the depression curve for a concentrated load. The depression in the
point O due to the load p A A on acurved element AA with the centre point at O is= the
depression under the element due to the same load p A A at 0 =p A A w"x. The depression
at O due to the entire distributed load will thus be

into curved elements with a centre point at the point 0, the depression of
which is to be calculated. In this way the depression curves for several
different values of the relative load distribution radius have been ob-
tained. For calculation, the loading surface has been divided up into
ten elements. The result is shown by the curves in Fig. 22:5 A, page
50. The diagram shows that the depression outside the load distribution
surface coincides to a great extent with the depression curve for a con-
centrated load.

The distribution of pressure in the case of circular load distribution is
obtained from (22:18)

10
wr= U p AA w"x

n=l

oo

(22:41)

o

The calculation of this integral is also troublesome and it is simpler to
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calculate the distribution of pressure from the pressure distribution
curve Z\e (22:28) for a concentrated load, considered as an influence
function, in the same way as described above concerning the depression.

The pressure p0 in the loading centre point is thus obtained from the
expression

ae

P o — J s Z °2e{s)ds (22:42)
o

and after integration the series

P
p0 = — ( 0 . 1 9 2 5 — 0 . 1 0 6 1 ae + 0 . 0 2 4 2 a2e + ) (22:43)

"e

is obtained, whereby only the first terms have been included (applies when
a < about 1.5). The soil pressure at the centre of loading has been
calculated for several values of the relative distribution of loading and
shown by the curve in Fig. 22:6 B whereby more terms of the series have
been included in series (22:43).

The distribution of p ressure has otherwise been calculated for various
different values of the relative load distribution ae in accordance with
the method quoted above for the calculation of the depression curves.
The result is shown in Fig. 22:6 A page 51. It can also be seen that the
pressure distribution curves become rapidly similar to the pressure
distribution curve for a concentrated load as soon as they pass outside
the edge of load distribution. Compared with the depression, however,
the influence of load distribution on the pressure close to the centre is of
more significance.

Flexural moment. When calculating the moment under the loading
centre it is simplest to start from the integral expression (22:37) for the
depression and insert this expression in the expression (22:31) for the
moment at the loading centre. One thus obtains

00

dhc\ P 2 C oc J^occ)~L—ï^ô J <22:44)
1 — Xs0 c

1 dw°
This expression is identical with the expression for r— where w° isr dr
the integral (22:21) for the depression in the case of a concentrated load
if r is replaced by c. The moment at the centre in the case of a distributed
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load thus can be obtained from the series (22:33) and the corresponding
curve in Fig. 22:7 if s is replaced by ae and thus is obtained

^max = — P (1 + v) Z%e(ae) (22:45)

When calculating the values of the tangential and radial moments at
points outside the loading centre a procedure can be used which is similar
to that used for the calculation of the depression and the soil pressure.
As earlier the loading surface is divided into a suitable number of cu rved
area elements (see Fig. 22:4). The moment contributions from the various
points along each such curved element cannot be added up directly since
the moment is a vectoral magnitude and the load from the various ele-
ments dA in the curved elements gives moment values at the point O
which turn at right angles to or along the radius between O and the
element in question. This is also the reason why it is not possible to
calculate the moment at the centre point by integrating in the same way
as in the earlier determination of th e depression and the soil pressure at
the centre point.

From the load on the given area element dA in Fig. 22:4 in a certain
curved element A A of the loading surface, the figure shows that an
elementary contribution dmr is obtained to the radial moment mr at
the point O

dmr = dm? cos21) + dmfp sin2 ê —

= — [(zie + v Z°4e) cos2 & + (Z\e + v Z°3e) sin2 &] p dA (a)

whereby the expression (22:34) is applied and Z\e and Z\e are the series
(22:32) and (22:33) for the calculation of the moment due to a concentrated
load. From the loading on the complete curved element A A, integration
over the length of the curve gives a moment contribution

+a

Amr — — I [ (Z 3 e + v z l e ) cos2 # + (Z°ie + V Z\e) sin2 #] pr Ar dû =
—a

= — pr Ar {[(a + j sin 2 oc) Z\e + {<x —\sin 2 oc) Z %e] +

+ v [{oc + I sin 2 a) Z\e + (« —|sin 2 oc) Z\ j} (b)

In the same way when calculating the tangential moment it is found that

Amy — — pr Ar {[(a -f-\ sin 2 a) Z\e + (a —\sin 2 oc) Z\ e\ -j-

+ v [(* + I sin 2 oc) Z°3e + (oc —|sin 2 oc) Zj,]}. (c)
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Fig. 22:4. Calculation of the flexural moment in the slab due to a circularly distributed
P

load p = . From the load on the surface element clA is obtained at the point O, at
71 c2

right angles to and parallel with the connecting line between d A and O respectively, the

moment components dm,^ and dmjp w hich can be calculated as the moments of a concen-
trated load from the expressions (22:32), (22:33) and (22:34) or from the corresponding
curves in Fig. 22:7. The contribution of these "elemental moments" to the radial and
tangential flexural moments respectively at the point O due to the circularly distributed
load P are obtained if t ringular slab elements is considered at the point O with one side=1
at right angles to or parallel with the radius OC and the other sides parallel with the

moment components dmf and dm(p . The equilibrium equations of these triangular elements
give

dm,. - d-nif cos2 &+dmfp sin2 &

drriq)=dmr sin2 & +dm™ cos 2 d

The contribution from the complete arc element A A is obtained by integrating over the
arc, and the moments mr and m(p of the complete loading surface by adding up the con-

tributions from the 10 arc elements.

The moment due to the complete loading P is obtained by adding
up the expressions (b) and (c) f or all the curved elements.

If (b) and (c) a re compared with the expressions (22:30) and (22:34)
for the moment due to a concentrated load it can be seen that the deri-
vative expressions in the case of a distributed load, which correspond to
(22:32) and (22:33) in the case of concentrated load, can be thus cal-
culated:

n
ÖĴ VÜ V 1 tåt

D -Jr2 = P JL — "̂ "E(« + isin2«)̂ e+ (<x-|sin2<%)Z°J = P-Z3e
0

n
L div tåt

D ^ ~ + i s i n 2 « ) 2 j j e+ ( a — j si n 2 o c ) Z ° 3 e ]= P • Z i e

o
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Calculations have been carried out for several different values of the
relative load distribution and distance from the centre of loading, whereby
as before, the loading surface has been divided up into ten curved ele-
ments. The result has been presented as curves for ZZe and Zie and these
are shown in Fig. 22:7, page 52. Through these curves it is thus possible
to calculate the moments, namely:

mr = — P {Z3e + v Zu) ]
(22:46)

mCp — P i^ie v ^3e) J
It becomes apparent by the Z4g-curves which approximately correspond

to the distribution of the tangential moment, that- t his moment is, on
the whole, only influenced by the load distribution within its own
zone while the moment curve outside the edge of the load distribution
surface rapidly approaches the corresponding curve for a concentrated
load. This does not, however, apply to the moment curves Z3e (approxi-
mately corresponding to the distribution of the radial moment), the
complete appearance of which is influenced by the load distribution.
In the case of increased load distribution the negative moment maxi-
mum is displaced outwards to a point outside the edge of the loading-
surface, and its value decreases rapidly with increased load distribution.
The value of m~ax has been calculated from the various curves and
has been marked in on a special diagram in Fig. 22:7.

223. Resilient subgrade

Subgrade factor. With this type of soil, the subgrade factor (22:8 b)
is

r 2 n J M ) i
A» = lim / T- , dt = T (22:47)

Concentrated load. If this expression (22:47) together with the loading
factor (22:20) for a concentrated load is inserted in the equation (22:17)
then the expression for depression in this case becomes

00

W{r) = Trc"/" i+"/)«• J '(xr) dx (22:48)

0

It can be shown that this integral is identical with the solution obtained
by HERZ [27] when he proceeded directly from the differential equation
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of the slab, in which the loading t erm in the case of resilient subgrade
can be directly expressed by the depression, t hus

D • A A w (r) = p(r) - k • w (r ) (22:49)

The solution for the slab of infinite dimensions can be written in the
form1)

P I2 4 P l\
w ( s ) = _ — k e i ä = — Z%(s) (22:50)

whereby it is written in a dimension-less form in the same way as in
the theory for elastic subgrade with the help of the elastic radius of
rigidity2), which here has the form

4

h = 1/4- (22:51)
The depression at the loading centre w0 becomes

P II
»„ = -Jö (22:52)

The depression function Z\ k is shown in Fig. 22:8 A, page 53
The distribution of pressure between the slab and the soil is in this case

p s {s)=lcw{s)= —p Z%(s) (22:53)

and is thus also represented by the function and the diagram in
Fig. 22:8 A.

The flexural moments mr and are calculated in the usual way
according to the equation (22:30) and (22:31) and are thus obtained
through derivatives of the expression (22:50) for depression. These

d2 w
derivatives are shown in Fig. 22:9 with the notations of Z\ k = D ^

1 dw
and ZQA1.= D — . Also in this case the value of the moment in the^ r dr
loading point becomes infinitely large. The maximum negative moment

!) Concerning the Bessel function kei see note 1, page 45, and MC LACHLAN [49].
2) In this form the solution was given by SCHLEICHE» [60] who thereby introduced

the conception of e lastic radius of rigidity as an expression for the elastic properties of
the slab and the soil with this type of soil . See page 32, note 1.
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occurs as shown in Fig. 22:9 at a distances «1. 5 from the load point
and is:

m~ax = — 0. 0 2 5 P for v = 0

ra~ax = — 0.02 2 P for v — 0.15

The influence of load distribution. In the case where the load is uni-
formly distributed over a circular loading surface with radius c, then
solutions can be obtained in the same way as earlier by inserting the
expressions for the subgrade and loading factors in the equation (22:17).
Due to the difficulties involved in solving this integral it is easier to
come to results in another way.

The values of depression and moment at the centre point are obtained
easiest in exactly the same way as the corresponding expression (22:40)
and (22:45) concerning the type of soil earlier considered. By starting
with the depression curve (22:50) for a concentrated load and here
replacing the Bessels function kei with a corresponding series expression
in powers and logarithmic functions1), integration over the loading
surface will result in the formulae

P If .
W° = 8Z) ^ ~~ ° -2174 at + 0.8 4 4 0 a\ In ak . . .) (22:54)

mmax = P (l + v) (0.0 4 9 0 1 — 0. 0 7 9 5 8 lnaA + 0. 0 7 8 1 a\) (22:55)

where ak is the load distribution radius c expressed in a dimension-less
form through the relationship

c
ak = — (22:56)

h

These expressions are identical with WESTERGAARDS formulae for
depression and moment [72], These formulae only concern relatively
limited values of load distribution {ak < about l.o), since only the
first terms in the series have been included. In Fig. 22:8 B and Fig. 22:9
the curves for w0 and m have been marked in for val ues of a,. < 5.0,
more accurate methods having been used for this calculation (see below).

In order to calculate the values of depression and moment in the
points outside the loading centre it is simplest to start from the general
solution of the differential equation (22:49), which solution has been
carried out by SCHLEICHER [60]. For this particular case (slab of
infinite dimensions) one can write

See note 1), page 45.
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P I I
w i s ) — — Ô ~7r ( 1 — c l • ber 5 — C o • beis ) O < s < a,.

TI a f. 1)

P l l
w i s ) = •—s — (c, • ke r s -f c4 • kei s ) s > a,.

TI A L D

• (22:57)

where the integration constants c x , c2, c3 and c4 are determined from
the boundary conditions at the dividing line between the loaded
and unloaded zones.1) The moment is obtained in the usual way by
derivation of the equation (22:57) according to the expressions (22:30).
In this way the depression and moment distribution at several values
of r elative load distribution have been calculated (also for the case where
the load distribution — 0). The result is shown by the diagrams in
Fig. 22:8 A and 22:8 B, page 53 and Fig. 22:9 page 54. It becomes
apparent from Fig. 22:8 A that the depression (and thereby also the
pressure distribution) outside the load distribution surface rapidly
approaches the corresponding curve for a concentrated load in the same
way as was the case with the corresponding curves for the elastic
subgrade. The same applies to the tangential moment as shown in Fig.
22:9 while the distribution of the radial moment on the whole is strongly
influenced by the load distribution in the same way as in the case of
the corresponding moment curves for the type of subgrade earlier
considered.

In the same way as with the elastic subgrade (see page 39, equation
1 dw°

(22:44) and (22:45)), it can be shown that the curve Z\k = — ,

concerning a concentrated load, also represents the relationship between
the moment in the loading centre and the relative load distribution
in the case of a distributed load, thus

<.* = --?( (22:58)

The value of ra~ax for various load distributions have been calculated
from the curves and marked in on a special diagram in Fig. 22:9.

*) Concerning the meaning of the Bessels functions ber, bei, ker and kei introduced
by KELVIN, reference is made to Mc LACHLAN [49]. SCHLEICHER [60] has written the
solutions (22:50) and (22:57) with his own function notations

2Z x ( x ) = ber x Z 3 ( x ) = — kei x

2Z 2 ( x ) = — bei x Z t (x ) — — ker x

In both [49] and [60] the functions and their respective derivatives are tabled, and these
tables have been used by the author when making calculations for the diagram in Fig.
22:8 A and B and Fig. 22:9.
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224. Slabs with finite extent

The results hitherto quoted concern slabs with infinite dimensions.
With the cases occurring in practice, however, slabs with finite extent
must naturally be considered. It appears however probable that even
slabs with relatively moderate extent can be dealt with according to
the theory for slabs of in finite extent, the degree of a pproximation being
sufficiently good.

As far as slabs on elastic subgrade are concerned, this question can
be studied with the help of the results obtained by BERGSTRÖM on the
bases of his difference method [4, 5] (see page 23). BERGSTRÖM thereby
divides the slab into four ring elements, the inner of which has the same
extent as the centre loading surface, and he makes the soil pressure
under each of these elements constant. The depression of the soil under
each element can then be written according to the expression for soil
depression under constant loading given by SCHLEICHER [59] and the
deformation of the slab can be expressed by means of the differential
equation of the plate (22:1), which can easily be solved on the assump-
tion that the loading is of this simple step form. If these deformations
are assumed to be similar in the centre of the elements, a sufficient
number of equations is obtained to calculate the unknown soil pressure
under each element. BERGSTRÖM has carried out calculations for v =
— 0.15 (plain concrete) and given the result in the form of diagrams
showing the soil pressure under the elements as well as the depression
and the moment at the centre, these diagrams showing the connection
curves between these magnitudes and the radius of the slab in the case
of various load distributions relative to the radius of the slab.

By comparing the results for slabs with increasing radius, BERGSTRÖM
has shown that the depression and moment at the loading centre rapidly
approaches the corresponding values for a slab of infinite dimensions,
Avhile the convergency is not so good concerning soil pressure. The
conditions can however be observed more clearly if the values according
to BERGSTRÖM'S curves are re-written through the same parameter for
the slab as earlier used by the author, namely the elastic radius of
rigidity

3

The results are shown as curves of the same type as for the slab of in-
finite dimensions used to demonstrate the distribution of soil pressure
under the slab as well as depression and moment at the loading-
centre (Fig. 22:5 Bas well as Fig. 22:6 A and22:7). The pressure distribution
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curves in this form can also be checked and adjusted in a simple way
by a numerical calculation of the pressure volume, since

P = f ps dA

The result is shown by the Figures 22:10, 22:11 and 22:12, and by way
of comparison the corresponding curves for the slab of infinite extent
have been inserted. The figures show that the variations between
the conditions in the case of small and infinitely large slabs are great,
at least as far as pressure distribution and depression are concerned,
but it also becomes apparent that these variations decrease very rapidly
as the radius of the slab increases. Even with a relative slab radius
R
— = 3. 0 agreement with the slab of infinite dimensions is very good,
'ye
and with a relative slab radius = 5. 0 , practically exact. Concerning the
flexural moment at the centre point the agreement with the slab of
infinite dimensions is good even with a relative slab radius =1.5 and
perfect with a relative slab radius = 3.0.

In the case of resilient subgrade it is possible to obtain exact solutions
also for slabs with finite radii from the differential equation of the slab
(22:49). The case has been considered by SCHLEICHER [60]. For the
sake of simplicity the slab here is considered only to be influenced by
a concentrated load in the centre in which case the depression can be
written

P l\
w (s) — 1)— ^er s s — s) (22:59)

The integration constants d± and d2 are determined from the boundary
conditions at the free edge of the plate where flexural moments and
shearing forces are equal to zero. The moments are obtained by derivation
of (22:59) according to the expressions (22:30).

In this way the depression curves and the distribution of moment
for various radii of a finite slab have been calculated. The result is
shown in Fig. 22:13 and 22:14, page 58 and 59. In the same way as earlier it
can be shown that the curves for m^ in Fig. 22:14 also represent the
connection between the moment in the centre of t he slab and the relative
load distribution. Figs. 22:13 and 22:14 show that the depression and
moment distribution, as slab radius increases, rapidly approach the
corresponding values for the slabs of in finite dimensions. With a relative

P
slab radius ~j~ = 5 agreement is practically complete except in the

h
zone nearest the free slab edge.
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It may be possible to imply that the depression and moment distri-
bution in the case of slabs with finite extent on elastic subgrade show
similar agreement with the corresponding values for slabs of infinite
dimensions. The fact that there is good agreement concerning the values
at the loading centre for depression and moment as well as for the soil
pressure distribution has been shown above.

The investigations in this section of the paper thus show that con-
cerning slabs with finite radii, good approximation can be obtained by
applying the formulae valid for slabs of infinite extent. Agreement
is good concerning depression and soil pressure where the slabs have a
radius greater than about 3 I and they are practically exact concerning
flexural moment with a plate of a radius greater than about 3 I and
depression and soil pressure with plates with a radius greater than
about 5 I. Agreement is not quite so good only in the zones nearest
the edge.

225. Summary of results

The most important of the formulae arrived at in this previous section,
namely the expressions for depression, soil pressure and moment at the
loading centre, have been placed together in Table 22:1 below. The
formulae, which actually concern slabs of infinite extent, can be used
as shown in 224 without any larger errors occurring also in the case
of finite slabs where the load is fairly far from the edge. In the table
the corresponding formulae for both the types of soil considered
have been set up beside each other and have been rewritten in such a
way that they can be easily compared. In the series expressions so
many terms have been included that the degree of error is less than
approx. 1 %, where the distribution of load is equal to the relative
radius of s tiffness. In the series terms 10log have been introduced instead
of elog.

The diagrams showing the results of the calculations in the previous
sections have been collected on the following pages, 50 —59, Fig.
22:5—22:14.

If the formulae in Table 22:1 for resilient and elastic subgrade are
compared, it will be found that from a purely formal point of view
there are large similarities. This applies particularly to the formulae for
the flexural moment at the loading centre, in which case the formulae
are practically identical. This shows that the relative radius of stiffness
expressed in the way suggested by the author is a comparable funda-
mental magnitude for both the theories.

If the curves for the same magnitude for both the theories of s oil are
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TABLE 22:1. Formulae for depression, soil pressure and flexural moment in the loading centre
concerning an elastic slab on resilient as well as elastic subgrade.

Resilient subgrade Elastic subgrade

Elastic radius
of rigidity

Rel. load
distribution

C
a*=Tt

3

* - n
c

°e = T
Le

Centre depression

Centre soil pressure

Centre moment

Plk2

W0 = ~—ß~ [1 - ak2 (0.217 -

— 0.30 7 10 log «£•)]

Po = [1 -a,2 (0.217-

— 0.36 7 10 log ak)}

mmax = —-P (1+ »*) [O.183310/oôfa^.—
— 0.0490 — 0.0078 aj?\

Ple2

W0 = [1 Cfe2 (0.144
3 y3 • D

— 0.2381 0 logae)]

P
Vo = [1 — 0.5 52 ae +

3 y3 • Z62

+ 0,126 • ae 2)]

»»max = — P(l +v)[0.183310Zosfae —
— 0.0490— 0.01 20ae2]

compared it is found that the pressure distribution curves show the
greatest differences. In the case of elastic soil, the pressure distribution
curve is more concentrated under the loading centre and the soil pressure
decreases more rapidly with increased distance from the centre than the
pressure distribution does in the case of resilient subgrade. If, for the
sake of comparison, the vertical deformation is taken as being similar
according to both the theories, then the soil p ressure under the loading

64centre in the case of elastic subgrade is greater than in the case
of Herz. The curve for depressions and moment do not show any great
differences and, particularly the moment distribution curves according
to the two theories are, in the neighbourhood of the loading centre,
practically identical.

4
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Fig. 22:5 A. The depression curves for an elastic slab of infinite extent on elastic subgrad6

c
with various relative load distribution aP— —. The lower curve for a=0 consists of the

/le
function Z ê (22:26), which, as influence curve for the depression at a certain point due to a

concentrated load, has been utilized to calculate the other curves. See Fig. 22:3.

Fig. 22:5 B. The depression in the loading centre for an elastic slab of infinite extent on
c

elastic subgrade with various load distribution ae= — .
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Fig. 22:6 A. The distribution of soil pressure under an infinite elastic slab on elastic subgrade

• . c
with various relative load distribution ae= —. The lower curve for a= 0 consists of the

0 ^e
function Z2e (22:28) which, as influence curve for the soil pressure due to a concentrated

load, has been utilized to calculate the other curves.

Fig. 22:6 B. The soil pressure in the loading centre for an elastic slab of infinite extent on

elastic subgrade with various relative load distribution ae= —.
h
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Fig. 22:7. The flexural moment in an elastic slab of infinite extent on elastic subgrade
c

for various values of the relative load distribution ae= —. The collection of curves Zie
h

d2w 1 dw
represents D and the collection of curves Zie represents D — . Since v is

dr2 r dr
small ( ~ 0 for reinforced concrete), then the Z3-curves represent on the whole the distribu-
tion of the radial moment and the Z4-curves represent the distribution of the tangential
moment. The Z°-curves furthest out in both the curve collections apply to the concentrated
load (a= 0) and represent the series (22:32) and (22:33), these curves have been used when
calculating the other curves.

The curve Z\e also represents the maximum flexural moment in the loading centre as
a function of the relative load distribution ae.

In the lower diagram, the values for the maximum radial top surface moment is compiled
for v= 0 (the peak values of the Z3-curves) and v = 0.15.
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Fig. 22:8 A. The depression curves for an elastic slab of infinite extent on resilientsubgrade

• c
with various relative load distribution «&=—.

h

Fig. 22:8 B. The depression in the loading centre of an elastic slab of infinite extent on

resilient subgrade with various relative load distribution ajc= —.
lk
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Fig. 22:9. The flexural moment in an elastic slab of i nfinite extent on resilient subgrade
c

with various values of the relative load distribution a^= — . The collection of curves
h

(J}W
Z3 K = D shows, on the whole, the distribution of the radial moment while the collection

dr2

of cu rves Z4 J C = D — -— shows, on the whole, the distribution of th e tangential moment.
r dr

The Z^ j. curve also represents the maximum flexural moment in the loading centre as
a function of the relative load distribution a^.

In the lower diagram, the values for the maximum negative top surface moment have
been compiled for v =0 and v—0.15.
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Fig. 22:10. The soil pressure distribution under slabs with finite radius R on elastic
subgrade, influenced by uniformly distributed load in the centre with relative load distribu-

c
tion ae =—- = 0.5. The Poisson's ration for the slab i>=0.15. For comparison, the corres-

'e
ponding curve for the slab of infinite extent is shown.

The pressure distribution curves are arrived at on the basis of the values obtained
according to BERGSTRÖMS difference method [5] and adjusted so as to give a correct pressure
volume.
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Fig. 22:11. The depression in the loading centre under the slabs with finite radius R on
c

elastic subgrade with various relative load distribution ae — — . The Poisson's ratio for the
h

slab f =0.15. For comparison, the corresponding curve for the slab of infinite extent is
shown.

The curves are arrived at on the basis of the values according to BERGSTRÖM [5].
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Fig. 22:12. The flexural moment in the loading centre for slabs with finite radius R on
c

elastic subgrade with various relative load distribution a = —.

The Poisson's ratio for the slab=0.15. For comparison, the corresponding curve for
the slab of infinite extent is shown.

The curves are arrived at on the basis of the values according to BERGSTRÖM [5] .
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Fig. 22:13. The depression curves for slabs with finite radius R on resilient subgrade,
under the influence of a concentrated load in the centre. The curves apply for a Poisson's
ratio of j>=0 for the slab. For comparison, the corresponding curve for a slab of in finite

extent is shown.
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Fig. 22:14. The flexural moment in slabs with finite radius R on resilient subgrade, under
the influence of a concentrated load in the centre. The curves apply for a Poisson's ratio
v=0 for the slab. The upper curves represent the radial moment mr and the lower represent
the tangential moment mCp.

The latter curves also give the maximum moment in the loading centre as a function
c

of the relative load distribution a — — . For comparison, the corresponding curves for a

slab of infinite extent are shown.

At the bottom is shown the values for the maximum negative moment as a function of — .



23. General Viewpoint on the Tests and on the Analysis
of Test Results

231. Review of tests

The theories previously considered assume that the properties of both
the slab and the soil are ideally elastic. The fact that this is by no
means the case for a reinforced concrete slab on natural soil has already
been mentioned. In order to be able to judge the suitability of the
theories when applied to reinforced concrete pavements and to be able
to study the behaviour of reinforced concrete pavements on the whole
under loading, extensive testing is necessary.

The tests with reinforced concrete pavements which have been carried
out by the author or in which he has collaborated have been of three
different types.

The more systematic study of various types of reinforced concrete
pavement under various conditions has been carried out with the help
of model tests (series M) on a laboratory scale. The test slabs have been
octagonal or circular in form with a diameter of 2.5 to 3.5 metres, with
bottom reinforcement or, in some cases, double reinforcement of w elded
and annealed wire fabric. As an elastic subgrade the author has used
high porosity wood fibre board with varying thickness and softness.1)

Since it is naturally doubtful whether the result from such model
tests can be applied to the conditions existing in practical concrete
pavement constructions, and since particularly the properties of the
subgrade during the model tests and in the case of concrete pavements
on soil are completely dissimilar, the author has studied two test slabs
on a full scale tested under laboratory conditions. These have been laid
on natural soil, in this case clay soil (Gothenburg clay) to some con-
siderable depth. During these tests, preferably called the Gothenburg
tests (series G), particular emphasis has been laid on the study of soil
pressure at the type of subgrade in question.2)

It is primarily these two series of tests that the author has utilized

1) An account concerning certain of these tests has earlier been supplied in a stencilled
report from the Department of S tructural Engineering at Chalmers University of Techno-
logy [37].

2) An account of these tests has earlier been supplied in stencilled reports from the
Department of Structural Engineering, Chalmers University of Technology [36, 38].
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when discussing the suitability of the elasticity theory on reinforced
concrete pavements and they will therefore be considered within the
range of this part of t he book (Section 24 and 25). The model tests have
here primarily been used to show if and to what extent the reinforced
concrete pavement can be considered as being an elastic slab within the
meaning of the theory, and the Gothenburg tests have served as a basis
for a discussion concerning the characteristics of natural soil compared
with the assumed soil characteristics in accordance with the two soil
hypotheses considered.

The author has also had opportunities to study a number of test
slabs which have been laid out in connection with planned pavement
work on airfields. These test slabs have thus been laid out under the
conditions applying for the respective pavement work and have been sup-
ported on soil of the same type as that concerned in the planned pavement.
The programme for these test series has been made up by the author
in close co-operation with the Stockholm Airport Building Committee
and tests have been carried out in co-operation with the Swedish State
Road Institute as well as the Stockholm Airport Building Committee,
these institutions having described certain of the tests in their own
reports [8, 47, 48, 53].1) These tests are discussed later on in this book
in a separate Part 5.

For the analysis of the various tests according to the theories it is
primarily essential to determine suitable values for the material constants
included in the formulae, namely the flexural rigidity of the slab
I) = E i/( 1 — v2) and the constant for the elastic characteristics of the
soil, the resilience constant k or the soil modulus C = EJ( 1 — v*).
As a matter of fact, this is one of the greatest difficulties in the test
analysis since the slab and the soil have far from ideally elastic charact-
eristics and the so-called "constants" thus vary. These difficulties will
now be discussed in more detail and the methods used by the author
in this connection will be explained.

232. Determining the flexural rigidity and the ultimate moments
of the slabs

As has already been pointed out, the difficulties in finding a suitable
value of the flexural rigidity of the slab are particularly great in the
case of a reinforced concrete pavement. Such a pavement slab can be

x) For the most recent of these test series concerning test slabs on the ready graded
subbase for the east-west runway at Arlanda airport, the author has issued an account
in the form of a stencilled report from the Department of Structural Engineering, Chal-
mers University of Technology, [39].
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considered to be elastic and isotropic only in the case of very small
stresses before the concrete in the tension zone has cracked (Stage I). As
soon as the formation of cracks starts, the flexural rigidity decreases toa
great extent, and since the crack formation zone in the case of increasing
loading gradually increases from the centre and outwards, the elastic
properties of the plate alter continuously during the complete test.

At a certain load the slab can be said to be divided into different
zones with completely different elasticity characteristics. In the vicinity
of the loading centre the concrete has developed tension cracks in the
bottom surface and is in the so-called Stage II (or in the case of higher
loading in failure Stage III with the reinforcement at the yield point).
Outside this central zone there is a region where the moment changes sign
and the stresses in the slab are very small, where it can be assumed
that the concrete is completely uncracked. For slabs with reinforcement
in both top and bottom surfaces there is, outside this, a further zone
with tension cracks in the upper surface, and still further from the centre
the moment has decreased so much that the concrete is once more
completely without cracks. The various zones overlap one another
continuously and the zone limits become displaced as the loading in-
creases. It is obvious that under such conditions it is particularly
difficult to determine an average value for the flexural rigidity of the
slab, a value which can be used when applying the theories which assume
that the slab is elastic and isotropic and has a constant flexural rigidity.

The elastic properties of a concrete pavement can be best studied in
detail by the means of special flexural tests on strips of the slab which
are tested as simply supported beams. Such slab strips, known herein-
after as detail tests, have in practically all the test series been made
simultaneously with the test slabs. In some of the field tests, these
detail tests have instead been sawn out of undamaged parts of t he test
pavement. These detail tests have been generally test loaded with two
concentrated loads as shown in Fig. 23:1 whereby a region is obtained
between the loading points with a constant flexural moment and thus
a constant curvature. This curvature can be obtained from measure-
ments of the deflection of the centre point relative to the loading points
or points between these. The test results give curves showing the
relationship between the moment and the deflection or the moment
and the curvature of the type shown in Fig. 23:1. The first relatively
straight part represents Stage I, the condition in which the concrete
slab is before cracks start forming in the tension zone. When the forma-
tion of cracks commences the curve changes form and gradually assumes
the form of a straight line which corresponds to the deformation of a
slab with a tension zone cracked right through, Stage II. Finally, when
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Fig. 23:1. Flexural tests on slab strips, so-called detail tests. The slab strips have been
test-loaded with two concentrated loads as shown in the figure and the flexural deforma-
tion ô has been measured over a distance a between the points at which the loads are
acting. Since the moment and thereby the curvature over this distance is constant, the

1
curvature — (o= radius of curvature) can be calculated from $ through the chord theorem.

Q
1

The figure shows a typical relationship curve M for a single-reinforced slab. The
Q

inclination of the curve secant gives the flexural rigidity of t he slab for various loadings,
1

while EI=M /—. The secants marked in correspond to EI in Stage I and Stage II.
Q

the reinforcement begins to yield, there is a more or less horizontal part
of the curve corresponding to the ultimate moment (Stage III).

The inclination of th e first part of the curve corresponds to the flexural
rigidity of the test slab in Stage I. The modulus of elasticity of the
concrete when subjected to low loading can be calculated from this value.
The inclination of the curve secant at the yield point corresponds roughly
to the flexural rigidity in Stage II with the tension zone cracked right
through, and this value corresponds to the value obtained in a theoretical
calculation of the flexural rigidity of the section based on the moment
of inertia for Stage II. The section of the curve after the beginning of
tension crack formation represents higher values of t he flexural rigidity
depending on the fact that the tension zone is still partly operative and
is only gradually eliminated as the cracks grow up towards the neutral
layer.

Flexural tests of t his type give thus some idea how the flexural rigidity
varies with varying loading and between different zones in the test pave-
ment. During very low loading before the tension cracks have begun
to form under the loading centre, the flexural rigidity applying to the
slab corresponds to the Stage I part of the curve in Fig.23:1. As asuitable
limiting value for flexural rigidity in the case of high loading it should
be possible to use the secant modulus value at the point corresponding
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to yield, thus the theoretical Stage II value as shown in Fig. 23:1. As
has been earlier mentioned it is naturally only in the central sections
that the slab reaches up to or even exceeds this stage, but it appears to
be these zones in the slab that make the greatest contribution to the
deformation of the slab. It has therefore been considered reasonable
during the test analysis to carry out calculations in general for two
different values of the flexural rigidity, partly for the Stage I value for
low loads and partly for the Stage II value for loads in the neighbourhood
of failure, and these values have been determined from flexural tests
on slab strips as described above. This reasoning can, however, not be
used in the case of very thin slabs which require a large degree of de-
formation before the tension zone can be considered to be cracked
right through. In these tests values of flexural rigidity taken from
the intermediate sections of the deformation curve have also been used.

The ultimate moment of t he slab under flexure with the reinforcement
in the tension zone is obtained, as mentioned above, from the upper
horizontal part of the deformation curve from detail tests as shown
in Fig. 23:1. The ultimate moment for negative moments in the slab
have been decided by similar flexural tests on slab strips which have
been tested with the upper surface in the tension zone.

In the tests where it was possible to determine the thickness of the
test slabs (primarily the model tests), the result of the flexural tests
on the detail test specimens has been corrected with respect to any diffe-
rences that may occur in total thickness h0 or effective thickness h
between the test slabs and the detail tests belonging to them. The
flexural rigidity in Stage I has here been calculated proportional to
and the flexural rigidity in Stage II proportional to h2 w hile the ultimate
moment in Stage I (negative ultimate moment in the case of single-
reinforced slab) has been calculated proportional to and the ultimate
moment in Stage II and III has been calculated proportional to h.

233. Investigation of the elastic properties of the subgrade

According to both the theories under consideration the soil is assumed
to have ideal elastic properties characterized by a constant k or C if
the subgrade is considered to be resilient or elastic respectively.

Particularly in the case of full scale tests on natural soil, the diffi-
culties in determining a suitable value for these constants is considerable.
The properties of n atural soil are, in point of fact, far from ideally elastic.
It is a well-known fact that when the surface of the soil is subjected to
loading, the degree of depression obtained is more or less dependent on
the time factor. In the case of unloading, a great deal of t he deformation
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proves to be of a permanent character. The curve showing the relation-
ship between deformation and loading is generally far from linear and
the above-mentioned plastic deformation properties increase as a rule
as the loading is increased. Soil material of different types, friction
and cohesion material, have quite different properties in these and
other respects. Furthermore the assumption made in the case of
elastic subgrade, that the soil material is isotropic and homogeneous to
infinite depth, generally only applies to a very small extent concerning
natural soil.1)

When determining the constants k or C it should in principle be most
correct to start from a simple soil loading test without any connection
with the loading test on the test slab. The best known of such tests is
the so-called &-value determination which, following the American
prototype, has become more or less standardized for Swedish conditions
by the Swedish State Road Institute [53], In this test the soil is loaded
with a circular rigid slab usually with a diameter of 40 cm and the depres-
sion of the plate is measured at a load usually of 5 tons. Through repeated
loading and unloading it is usual to eliminate the permanent deformation,
and the result of the test, the &-value, is calculated from the elastic
depression due to the 5 tons load. This test gives naturally a certain
impression of t he supporting capacity of t he soil and its rigidity towards
deformation, but according to the impression gained by the author it
cannot be considered a basis for the design of p avements and to an even
smaller extent it can be used for the analysis of loading tests on test
pavements. In this connection due respect must also be taken to the
permanent deformation since it is naturally the total d eformation of the
soil which determines the degree of d epression of the pavement and thus
also the stresses in the slab. It appears therefore to be most correct to
start out from the deformation occurring during the first test loading
on the pavement subbase after this has been fully compressed.

The ^-values arrived at through these tests or similar tests are, however,
generally very dependent on the size of the test slab. This is, actually,

1) The influence of limited depth in the case of elastic subgrade has been considered
by BERGSTRÖM [4] (page 149), whereby he maintains that soil with a comparatively
great depth over a hard bottom functions as a subgrade with infinite depth, but with
a more reduced C-value, while the subgrade with a diminishing depth shows an increased
tendency to function as a resilient subgrade. The affect of l ayered subgrade in its simplest
case (two or three layers) has also been studied by BERGSTRÖM [4] (page 152), who has
shown that the layered subgrade can be considered to function as an isotropic subgrade
with an average modulus Caver, the value of which does not only depend on the C-value
of the soil layers but also on the stiffness of the concrete pavement. ÖDEMARK [53 ] has
considered the same case and has produced the expression for Caver in a diagrammatic
form which is very convenient for practical calculations.
5
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an argument for the fact that the soil behaves as an elastic, isotropic
subgrade, since, in accordance with Boussinesq's well-known formula
[65] the following applies to determine the depression of a rigid slab with
radius R and a loading q0 uniformly distributed over the surface:

Q 0 T I R
W Z = ~ C (23:1)

If the definition of k (21:1) is inserted here, the relationship is obtained

C
k =mr (23:2)

this showing that k is inversely proportional to the diameter 2 R of t he
rigid slab if C is assumed to be constant. This relationship has been
corroborated by several loading tests with rigid slabs on clay soil but the
relationship is less regular where the soil consists of f riction material.1)

It should thus be possible to use this method for a direct determination
of the O-value whereby a series of slabs of varying diameters should
preferably be used. In application to test slabs on natural soil however,
tests of this type are not particularly reliable since the soil does not
always definitely have the same properties at the places where the main
test slab is placed and where the detail test is carried out. Apart from
this the loading conditions on the soil in both the cases are not comparable.

For the model tests which have been carried out, a test of this type
can be considered to be more reliable however. For these tests the
subgrade consisted of a bed of porous wood fibre board and had thus
comparatively constant characteristics. It is also clear that a subgrade
of this type cannot be considered to be anything else than a resilient
subgrade since it has a very moderate thickness, 10 — 20 cm, and rests
on a concrete floor. It should thus in these tests be possible to obtain
the fc-value directly through test loading on a cut-out part of the subgrade
and such tests have actually been carried out.

During tests on natural soil the fc-value should obviously be determined
preferably through testing with a test slab of th e same size and shape as
the main test and this should also give the best result in model tests
with respect to possible unevenness in the artificial subgrade. This can
be carried out by analysis of t he values of depression during the actual
main tests without it being necessary to refer to any relationship
according to the theory. From an equilibrium equation for the complete
slab we obtain

*) See BERGSTRÖM and assoc. who in the paper referred to [4] discussed these ques-
tions in Section 121, page 8.
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P = f pg d A = j k w dA — k j iv dA — k waver -4
i .4

where

£>s = k • w = the soil pressure

and

1 /
waver = / w ^ = average depression,

whereby integration is carried over the section yl of the surface of the
slab against which the subgrade pressure is effective, thus not over that
part of the surface which lifts fromthe subgrade. If the "average loading"
is written

P
Paxei A

j Paverk = 23:3 a)
w

we obtain

or, written directly

k = JwdZ =T <23:3b>
A

Here the integral V = f w d A means the depression volume. This
A

can be calculated through numerical integration according to Guldin's
rule by measuring the values of the depression of the slab at various
points, thereby however not including (or as a particular correction
removing) that part of the deformation curve showing lifting over the
subgrade. In this connection respect should be taken to the fact that
the subgrade, due to the weight of t he slab, lias a certain initial reaction.
When the edges of the slab lift, this reaction is decreased and becomes

zero, as soon as the lift is similar to or greater than the depression w = —
k

corresponding to the weight g. When calculating the depression volume
corresponding to the applied load P, the volume lying under the lifted
section of the slab up to wg thus should be considered negative (see F ig.
23:2).

This method of determining the lvalue of the subgrade can actually
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Fig. 23:2. Calculation of the depression volume. The test values for depression —
generally the average values of the depression measurements along four radii — are used
to obtain the depression line for each loading step, and the depression volume is calculated
according to Guldin's rule, whereby the the surface is divided up into rectangular and
triangular elements, those corresponding to the slab edge lifting being calculated as nega-

t ive . The va lue Wg= the depres s ion due to the s l ab ' s dead -we ig h t g .

be applied only in the cases where the test slabs are circular, thus in the
model tests and the Gothenburg tests. Attempts to use the method also
in other field tests where the test slabs had square or rectangular forms
have given less satisfactory results.

In order to be able to use the theory for elastic subgrade for a test
where the properties of the subgrade have been studied according to the
above mentioned method, the lvalue determined in this way should
be able to be "translated" to the corresponding C-value. BERGSTRÖM has
suggested [4], that one should compare the maximum vertical deforma-
tion obtained due to a concentrated load according to both the theories.
By writing the expressions (22:25) and (22:52) for these deformations as
being equal one obtains

3 _

1lC i tk = 0.166 1/— or C = 3. 8 4 I D F (23:4)

These formulae are based, however, on the assumption that both the
theories will give an equally correct value of vertical deformation in
the centre or, more correctly stated, the constant C must be modified
so that this condition is satisfied. This method of determining the
C-value can obviously not be suitable if the analysis of the tests in question
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concerns the application of the elasticity theory to reinforced concrete
pavements and to decide which of the two hypotheses concerning sub-
grade corresponds best to the actual soil characteristics.

SCHLEICHER [61] shows a possibility of getting more directly at the
C-value with a method which, analogous with the &-value calculation
shown above, is based on the average depression of the test slab. The
depression at an arbitrary point at a distance r f rom the loading centre
can, according to (22:4) and (22:6 a) be written (see Fig. 22:2)

R

f r i d w
w{r ) = / p, (g ) g dg • 2 / - (23:5)

o o

where R is the radius of the slab and ps (g) is the soil pressure at a distance
g from the loading centre. The last integral can be rewritten in the form
of an elliptical integral and one thus obtains (see SCHLEICHER [59])

4
w (r )

7 1 C rT P À Q ) k T P ? + / ' P s (Q ) K (23:6)

where K is the complete elliptic integral

C d 0
K ( k ) = / -==== (23:7;

} 1 — k2 sin2 0
o

The expression is rendered dimension-less by inserting

r = Rr ' ; g = R g' (23:8)

as well as

P s( q ) P a v e r ^ ( q ) ~ Paver ) (23:9)

where paver = average soil pressure defined through the equation
R

P = f P s d A = J Ps (Q) • 2 n g dg = ^ a v e r A (23:10)

and TI — the relative pressure distribution which, according to (23:9)
and (23:10), shall be selected with such an ordinate scale that

f 2 n (g ' ) g 'dg ' = I (23:11)
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If instead of the radius R, the surface A of the slab is inserted, one obtains

fA
W (r) = Payer &( r' ) =

P

C \A
Q(r') (23:12)

where

Û W)
4

7i y 71

r

f i II(q ') K ^7)do' I7(o') K^-^do' (23:13)

The average depression will then be

yi p
w„ = V âaver q

where the average value function

•ßaver = / Ü(r') 2 r' dr'

c yi" ßaver
(23:14)

(23:15)

is a function of only the relative pressure distribution II.
SCHLEICHER [61] has calculated the average value function £?aver for

several different pressure distributions /7 (see Fig. 23:3), and has shown
that the value of £>aver is only influenced to a very slight extent by the
distribution of soil pressure. For the two theoretical limiting cases of
an infinitely stiff slab and a slab with a flexural rigidity equal to zero
loaded with concentrated load (i. e. Boussinesq's classic basic case) is
obtained according to well-known expressions for depressions (see, for
example, SCHLEICHER [59]), when comparing with equation (23:14), as
shown in Fig. 23:4

for an absolutely stiff slab

P
w. w

P
if2 CR c MA

for a slab with a flexural rigidity = 0

2 P

yti
— • Q2 ' 04-aver

]jn
— = 0.89

w w(r) 2 TI r dr =
7i R2 Ci l dr

2 P P

Oa

GR C}! A ]/tz

2

h
--= = 1. 1 3 (b)
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Fig. 23:3. The average value function ßaver shown for various cases of load distribution
according to a calculation made by SCHLEICHER [61]. The influence of the form of the

load distribution curve is strikingly small.

Even between these cases of e xtreme pressure distribution the variation
of ßaver is thus relatively small.

With the slabs studied in this paper which have a relatively low degree
of flexural rigidity, there may be a pressure distribution which approxi-
mately corresponds to the curves 3 or 4 in Fig. 23:3, and one can therefore
assume the average value function ßaver = 1. The error should in this

B

Fig. 23:4. Depression and pressure distribution under a circular slab with radius R in the
two extreme cases when the slab is infinitely rigid (Fig. A) and where the flexural rigidity

of the slab =0 (Fig. B).
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case not be more than a very few percent. Under such conditions the
C-value can be calculated from the expression

C = —— VÄ (23:16 a)ŵaver

with an error which is definitely of less significance than other sources of
error. If the expression for k according to (23:3 a) is inserted here, one
obtains the relationship between C and 1c

C = k - ^ A ( 2 3 : 1 6 b )

By the insertion of (23:3 b) this gives

P P —
C = r }'A = — I/A (23:16 c)

/ w dA ' 17 '

The depression volume

V = f w dA

can be calculated from the test values in the way stated above. As a
principle one can here select the area A arbitrarily (see Fig. 23:4 B), if
one merely knows the deformation of the soil within A. With this type
of subgrade there are also depressions even outside the zone where the
soil pressure operates (see Fig. 23:4). The tests, however, only give the
deformation of the slab, and for that reason V should be calculated
within the region where the slab and the soil are in contact. This is
assumed to coincide with the surface of the slab up to the limit where,
according to the measurements, the edge lifts, a supposition that
should be more or less correct. In the case of edge lifting, the central
zone will be subjected to extra loading by the weight of the lifted edge
zone and when calculating one should thus actually increase the load P
by a correction corresponding to the weight of the lifted edge zone. The
result will be practically the same if instead the depression volume is
corrected for the opposed resilience of t he soil in the same way as in the
&-value determination according to Fig. 23:2. It is thus possible in this
way to use the result for the &-value determination when calculating C
and thus use the formula (23:16 b), where A means the contact area
estimated with a radius as above.

The method has been used on the two circular slabs in the Gothenburg
tests. Concerning the other field tests with rectangular slabs it is difficult
to calculate the value of the depression volume to any great accuracy.
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Apart from the methods with direct loading on the unpaved soil which,
as already mentioned, give unreliable values for test analysis, the only
remaining possibility in these tests is to determine the soil constant from
the deformation of t he test slabs under loading by applying the elasticity
theory results. In this connection it is simplest to use the formulae for the
depression under the loading centre. One can often neglect the influence
of load distribution and use the centre depression formulae for concen-
trated loading

1 PI2,

<23:17)

or

D

i PPL
w°= ' ~zT (23:18)

whereby directly from the test values w0 on the centre depression one
obtains the elastic radius of stiffness, from which C or k can be calculated.
Where the load distribution influence has significance, one can gradually
correct the approximate value from (23:17) or (23:18) by using the more
complete formulae for depression under the loading centre in Table 22:1
or the corresponding diagram in the Figures 22:5 b and 22:8 b whereby
one commences from the approximate value of I according to (23:17)

c
or (23:18) when calculating the relative load distribution a = In

general it is sufficient with only one correction of this type. A dis-
advantage with the method is that the flexural rigidity D of the slab is
included in the formulae for depression so that faults or doubts in deter-
mination of D will influence the result.

Where tests are to be used for the study of the application of the
elasticity theory to reinforced concrete pavements, the last-mentioned
method of determining the soil constant cannot be considered to be
completely satisfactory since in the determination — at least to a certain
extent — that theory is utilized, the suitability of wh ich is to be verified.
In the relatively few tests where this method alone has been used, the
author has always been particularly anxious to carry out comparisons
between theory and tests from so many separate aspects as possible.

On the other hand, in cases where the result of test is to be used for
the determination of necessary data for design ing a pavement, then the
method of d etermining the soil constant in question is free from criticism,
and it is naturally better, the more the test pavement is similar to the
final pavement. In such cases BERGSTRÖM'S relationship formula (23:4)
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between k and C is naturally completely correct; in fact, it is obtained
by writing the expressions of iv0 according to (23:17) and (23:18) as being
identical.

234. Influence of membrane stresses

Particularly the thin model slabs show, when testing with higher
loading, vertical deformations between the edge and the middle which
are of the same magnitude as the thickness of the slab, and in such
cases the membrane effect in the slab may imply an increase in the
ultimate load which is by no means inconsiderable. It is thus essential,
when judging test results, to attempt to estimate the influence of t he
membrane stresses on the ultimate load value.

An approximate calculation of this influence can be carried out
according to a principle stated by FÖPPL[19]1) whereby the loading is
considered as being divided up into one part which is held up only
by "the normal slab effect", i. e. the flexural stresses, and one
part PM, which is held up by the membrane stresses in the plane of
the slab.

The energy principle2) is used when calculating PM. The strain energy
of the membrane stresses radially and tangentially Nr and Ny can, in
a circular elastic plate with radius R, be written

In R
yM = i/ / (Nr er + Ny Ey) r dr d<p =

0 0 

7z E h
1 — v2 f (£r "i" E\)"h ^ v er Sy) r dr (23:19)

If this expression for the tensions is inserted

du If dw\2

dr 2 \dr J

u
£(p= 7"

(23:20)

where u and w are the displacements of a point in the centre plane
of the slab radially and at right angles respectively to the plane, one
obtains

J) Quoted work [19], part I, page 224.
2) See, for example TIMOSHENKO, [66] page 329.
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V
n E h

M =

du y 1 I dw \4 du / dw\2

u2 du
+ —+ 2vu — r — 4 - v u , Tr dr \ dr

dr / ' 4 \ dr J dr\ dr J

dw) dr (23:21)

In this expression suitably chosen function expressions for u and w
are inserted, care being taken to ensure that the boundary conditions
for the slab are satisfied.

That part of the applied load which is carried up by the membrane
stresses can thus be obtained according to the principle of v irtual energy,
thereby considering that the plate is given a virtual deformation giving
an increase ôiv0 of the maximal vertical deformation,

/ VM {ÀW) D W A dA = ~J^Ô Wo (23:22)

whereby pM includes both the load component PM as well as that part
o f t h e s u b g r a d e p r e s s u r e m a i n t a i n i n g e q u i l i b r i u m w i t h P M .

When applying this on the test slabs it is difficult to find a suitable
function relationship for the vertical deformation w. It is therefore
considered suitable to utilize directly the test values for depression at
a loading step in the vicinity of the ultimate load and to use difference
calculation. The slab is divided into elements as shown in Fig. 23:5,
and if the test values at the chosen load (ivl to wy as shown in the figure)
are denoted wtest, then the corresponding values at the ultimate load
can be calculated as

w = • wtest (23:23 a)
WY

and the derivative between the element boundaries

dw wn ^ wtpa t

dr wv à r
(23:23 b)

whereby w0 denotes the centre depression at the ultimate load.
For the tension component u a simple function relationship

u = Cxr -f- Ca r 3 (23:24)
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Fig. 23:5. Element sub-division when calculating the membrane stresses. w\ to Wy are
the average values of the depression values measured along the four radii and w0 is the
estimated centre depression at the ultimate load. In the calculation of t he various quanti-
ties required, the depression curve is assumed to be made up of straight lines between

the depression values.

is applied where C1 and C2 are determined so that the boundary condi-
tions are satisfied.1)

The energy expression (23:21) can, for a simpler calculating proce-
dure, be divided up into three terms

where

V\i — VMl + VM t VM, (23:25)

VM, E h
du \2

dr
dr (23:25 a)

VM, n E h
div X

dr J
dr (23:25 b)

]) Calculations for some of t he slabs have been made also for a more correct but more
laborious function relationship for u

u = Cxr -)- C2r3 C3r5

(according to NADAI [52] page 298 or TIMOSHENKO [66], page 333). The difference in
the correction term P yr is less than 10 %, i. e. 1 —2 % of P.
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V M = TI E h
d u / d i v \2

d r \ d r J
d r (23:25 c)

where v in the expression (23:21) lias been put equal to zero. If the
expressions (23:23) and (23:24) for the tension components are inserted
here and the integrals are divided up into parts between the element
boundaries, after simplification one obtains:

V M t = 71 E h . ( C \ R " - + I C \ R « + 2 C x C 2 R ' ) (23:26)

1 49 uA

V Mi — ti E h ^ ^ w \ ï- i + 2 zl wfii-n + ^ ^iv-m + 2 zl iVy—!Y )

(23:27)

(23:28)
w \

V M = TI E h — v ( C 1 W 1 + C 2 R 2 W 2

I V Ï -

where, in the expression for VM , have been introduced the notations

W 1 = 3 A ~ h 2 A Wj u _ j i - ( - A M ^ X V - i i i A Wy _ Ï V

Jf2 = 5(333^^I_I+ 102 J «$„_„ +15dwfv_In + £-dt4_IV)
(23:29)

Cj and 02 are determined so that the boundary condition at a free
edge is satisfied

d t i

d r

1 / d i v \ 2

2 \ d r J (23:30)
r = R

giving the relationship

49 v ' 2

C, + 3 C2R*+ ~-BÏ "4" J "'"-1 (23:31)

If, through (23:31), C 1 is eliminated from the equations (23:26) and
(23:28), then C2 can be determined from the theorem of the minimum
of strain energy

Ô V M

ÔC,
= o (23:32)

and in this way one obtains the expressions
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Ci = - -
w:

28 R2 w\
49

3 Wx - W2 - — A «i.j

O,
1 wl

28 Ä4 M/y
49

3 W i _w t - —A < _ j

(23:33)

The calculations are facilitated with the new notations

A WI = I (9 A WH-I + 16 A ^III-II + 11 A W1V-1U + S A wv-iv)

AW 2= 705 A — 110 A w\n_u 53 A w\w_m
I 187 A 2+ A w%

A W3 — 16 (4 A W7j1_1 + 2 A Wni_ii H~ A wiv-in + 2 zl M >y_IV)

and

A W =I (zl tf2 • J ^fI_I - zl Wl) + A w 3

v - i x ) (23:34)

(23:35)

after which the energy expression (23:25) can be written

V M — ft E hR2

at,
îflv

A W (23:36)

When calculating the energy of the external forces, respect must
also be taken to the pressure from the subgrade which, it is assumed in
the usual way, can be written

Vs k • w

Of ps one part pM is considered to maintain equilibrium against that
part of the external load PM carried up by the membrane stresses.

According to the principle of virtual energy (23:22) is thus obtained

ô V M
Ô W f

3 to0 = PM ô w0 — I pM 3 w dA (23:37)

where integration can be carried out over the surface (with radius t)
of the subgrade which is in contact with the slab (see Fig. 23:5). One
can write

PM
VM = P V

1 M
P k w (23:38)

and

Ô W = Ô W(
w

IV R
(23:39)
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and one then obtains

s y M
ô wn

= P,
2 71

p I w2 r dr
o

(23:40)

When calculating the integral, division is made as earlier into ele-
ments between the depression values wl—wy and the depression curve
is assumed to be linear between the measuring values (see Fig. 23:5).
In this way one obtains

r w(\J w2 rdr = —y R2 W
wXr (23:41)

where

Wp = --8 8 I w\ + 2 Wy w l w -)- 15 w' jy - f- 16 wi y w\u w\u +

+ w2ul «'(12 + 01

t' 2 •
whi

Î^III ÎVr

(23:42)

If the expression for the derivative
c) F,
ö w. in (23:37) is inserted

according to the equation (23:36), then the ultimate load correction PM

due to the membrane stresses is obtained in the final form

4 n
Jc wn

1 - 2 71 R2 — —r WpP Wir V

w0V Eh AW
1V\r / P/2 WXT (23:43)

For the calculation it is only necessary to calculate the constants
A W according to (23:34) and (23:35) as well as Wp according to (23:42)
for a load in the vicinity of the ultimate load.

Calculations carried out on model slabs show that the expression
(23:43) can normally be approximated as

PM = y>
Eh / w0\3 (wv — Wj)4

R2 vu w , (23:44)

where xp is fairly constant and can be written = 1,5—2,0 .

In the expression (23:43) for the membrane stress correction is in-
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eluded the modulus of e lasticity of t he slab E. This constant is included
in the original equation (23:19) by writing

E h
N = o M h 0 = Em- ~ e M E h0 (23:45)

1 — v *

where oM is the stress supplement due to the membrane strain E M .

Hereby is assumed a homogeneous section and uniform strain distri-
bution over the whole transverse section. As a matter of fact, when
subjected to the loads at which the membrane stress correction has
any significance, the slab is completely cracked in the bottom of the
central region as well as, in the case of the top reinforced slabs, also
in a large region on the top of the slab. For a section cracked in this
way in Stage II one can approximately write the expression (23:45) thus

N = ö f x + o f A r = eM (E c x+ErA r)= eM • E c (x+n, i h) (23:46)

where of and of are stresses in the concrete and reinforcement
due to membrane tension and x the active compression zone depth.
fi is the percentage of reinforcement. If one puts n = 15, the ' reduced
modulus of elasticity" E™ for the membrane stress calculation at
Stage II corresponding to E in the expression (23:45) can thus be esti-
mated from the expression:

B S = S . f a + 1 6 , ) £ ( 2 3 : 4 7 )

For various values of the reinforcement percentage fx on e obtains

ß = 1 % Eg =0.51 E c

0. 8 0. 4 5

0. 6 0. 3 9

0. 4 0. 3 1

0 .2 0 .2 2

If the section reaches a state of failure with the reinforcement at yield
point, the reduction will naturally be even greater.

It is thus obvious that the expression for the membrane stress energy
is powerfully influenced if the slab is cracked to any greater extent,
and when estimating the correct value one should actually divide up
the slab into different zones with different moduli of elasticity. In
order to study the effect of different types of crack formation, the
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author has carried out such a calculation of th e membrane stress energy.
In this connection the expression

& + 4) r (23:48)

in the membrane energy integral (23:19) ( v — 0) has been estimated
with the help of the expressions (23:20), (23:24) and (23:33), whereby
the slab has been d ivided up into differences according t o the previous
presentation. The result of t he calculation for one of the top-reinforced
model slabs (slab Mil:13) is shown in Fig. 23:6. The calculation has been
carried out for partly a load somewhat under the crack formation load
for the top surface and partly a load when the top reinforcement is
close t o the yield point. The areas Y in the figure under the curves for
the function (23:48) represent the membrane stress energywithin different
concentric zones of the model slab and by dividing up the areas in a
suitable way and multiplying with the suitable values of the modulus
of elasticity one c an come to a fairly correct estimation of th e membrane
stress energy in a partly cracked slab. In this way, in the example shown
in the figure, a reduced membrane stress correction P'M, has been ob-
tained which has a value of 0.98 PM at the lower load with limited crack 
formation under the centre but only approx. 0.40 PM at the higher
load with crack formation also i n the top surface whereby comparison
has been carried out with a PM-value calculated for the unreduced
Z^.-value (Stage I) over the complete slab.

It is thus obvious that a moderate crack formation zone in the vicinity
of t he centre of t he slab will influence me mbrane stress energy only to
a very slight extent and that in such cases it may be allowable to use
the value of the modulus of e lasticity for the concrete in Stage I. On
the other hand there is a very powerful reduction in the membrane
stress energy for example in the case of a top-reinforced slab with crack
formation in the top surface or a slab with extended crack formation
in the bottom surface. In such cases a calculation carried out in accord-
ance with the method quoted would mainly prove to be unreliable.

In normal cases of slabs with moderate deformation and crack for-
mation only in the bottom surface in the vicinity of the centre, one
can thus use the modulus of elast icity for Stage I when estimating the
membrane stress correction according to equation (23:43). In this
way correction calculations in the following test result analysis have
been carri ed out. For the top-reinforced slabs with thoroughly cracked
top surfaces and for other slabs with exceptionally large flexural defor-
mation and where crack formation in the bottom surface can be conside-
red as being extensive, then the correction values calculated in this
6
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a. P O,50é

ytot ^ ' ,̂pd

y R2 0,26; yM R20,02

Yred R2(̂ +0,50-0,02) F2-0,275
p i p 0 , 2 7 5 , O 9 8 P
rM M 0,28 ' M

b. P 8,02t

Ym-K*-20

YJ R2 3,5 ; YJJ R2'!6,5
W R2(3,5+0,30 /6,5) R2 8,5

p' P .$>5_ flup P
v M 20 u' M

r
75.
7

Fig. 23:6. Estimation of the influence of the membrane stresses due to crack formation
in the top and bottom surfaces of slab Mil:13. The data for the slab: R=175 cm, h=5,4
cm, top and bottom reinforcement consisting of 3.4/50 mesh.

2 2The figure shows the variations in the function (er+ f-'rp) r for the membrane stress energy
at the two loads

a) P=4.50 tons — immediately before crack formation in the top

b) P=8.42 tons — yield point in the top reinforcement with extensive crack formation
in the top.

The area under the curves represents the membrane stress energy (equation 23:19).
By comparison with the strain measurements (see Fig. 24:23), the boundaries for the crack
zones can be estimated, and the different surface areas Fj and Fj j aremultiplied by the
respective moduli of el asticity, whereby En is put as being equal to 0.30 Ej (^ = 0.37 %,
equation 23:47). The area thus reduced

^red= Fj+ 0.30 F2

gives the reduced membrane stress correction

PM = PM

where P^ is calculated for a modulus of elasticity= E^ over the whole slab. The total
area under the curves in the figure has been checked by means of the formulae (23:35)
and (23:36); the area should have the same value as the constant AW in (23:35).

-^red
' not

îtoqeïï I

0 12 3 0 0 6 7-

(62+8<p) r

__ Stage!
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way must be judged a s being too unreliable for use. It should, however,
be pointed out that also in the case of more "nor mal" slabs, crack forma-
tion can have a more or less significant effect. From this point of view
the case shown in fig. 23:6a may belong to the more favourable. Especi-
ally in the case of s labs where t he membrane stress effect as described
above is large compared with the total loading, the PM-value should
be utilized wit h care and used more t o explain any possible deviations
between the test results and theoretical values than as a pure correction
to the test loading.

The flexural deformation of the slab is also influenced by the membrane
stresses, an d in a comparison between the test result obtained and the
theoretical depression value , one should compare the values according
to the theory for a load (P — PM)with the test values at a load P. Due
to the difficulties in establishing reliable values for the correction PM,
the author has abstained from making such a correction in the depres-
sion calculations. When judging the test results concerning vertical
deformation at higher loading steps one should thus bear in mind the
fact that the membrane stress effect here causes a decrease in the test
values (or a corresponding increase in the theoretical values).



24. Model Tests (Series M)

241. Review of tests

As has already earlier been mentioned, most of the loading tests with
reinforced concrete slabs on elastic subgrade have been carried out as
model tests in the Structural Engineering Laboratories at Chalmers
University of T echnology, Gothenburg. These tests can be divided into
two subsidiary series. The first of these, Series MI, which was carried
out during 1945, was of a more preparatory character and was intended
to show the influences of various subgrades and various forms of load
distribution. Only deformation measurements were carried out during
these tests. The later and larger test series, Series Mil, was carried out
during the years 1948— 49, and the purpose here was to clarify the
influence of v arious design of t he pavement itself such as various thick-
ness, various degree of flexural strength in the concrete as well as various
types of reinforcement (Series Mil A). The last-mentioned series of
tests also included tests with twin loading, mobile load and repeated
loading (Series Mil B). In the tests in Series Mil also measure-
ments of deformation as well as measurements of tensions in the top
surface of the test slabs were carried out. The test slabs in the first series of
tests were octagonal, 2.5 m across and approx. 3 cm thick, while the
tests slabs in the last-mentioned series of te sts were completely circular
with a diameter of 3.5 m and a thickness of 4—5 cm. The last of th e slabs
in Series Mil was in half-scale with a thickness of 8 cm (Series M II C).

Table 24:1 provides a review of the test programme and includes
data for the test slabs in both the series.

242. Performance of test slabs

The elastic subgrade for the test slabs consisted of porous wood fibre
board which was laid directly on the floor of the laboratory. During
the first tests in the Series MI two layers of so-called high-porosity
Kramfors board of this type were used. This board is manufactured
by casting fibre pulp. This bed was replaced after each test, and by
using board of varying degrees of hardness a certain variation in the
resilience of the subgrade could be obtained. When the later test series
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was carried out, manufacture of board of the above-mentioned type
had ceased and it was necessary to use normal pressed wood fibre board
instead. Since this were considerably harder, a thicker bed was used
consisting of f our layers of these board plates. There was quite a varia-
tion in hardness between the different plates and when the bed was
made up, the plates were combined so that any inequalities in the diffe-
rent layers were cancelled out as much as possible, and the result was
a bed with a comparatively constant resilience.

This was examined by test-loading directly on the bed with a rigid
plate, placed at various points. The result is shown in Figure 24:1. This
bed was used for all of the 21 test slabs in this series. After each test,
the top surface of the bed was levelled by means of a thin layer of
fine sand. A control testing of the bed after about half the test series
was completed was carried out in the same way as the control before
the commencement of testing and showed that the reilience constant
(k-value) of the bed was unchanged on the whole.

The test slabs were cast on the flat form bottom on the laboratory
floor and, after hardening, they were lifted over on to the bed. The
reinforcement in the MI:1 plate consisted of annealed iron netting and
in all the other slabs of welded wire fabric. This wire fabric was made
of c old-drawn steel wire, but since it was desirable that the reinforcement
should have a significant yield strength, the reinforcement fabric was
annealed before use by heating it up to about 700° C. Tensile tests
showed the wires to have properties identical with that of soft carbon
steel. The reinforcement was laid out and attached in a simple way
directly to the bottom of the mould, so that it was partially visible on
the bottom surface of the slab. Due to the closely spaced welded inter-
sections, however, fully satisfactory bond was obtained in spite of this.
In casting the slabs with double reinforcement, the top surface mesh
was fitted on carriers at the correct height before casting was started.

Simultaneous with the casting of each test slab, slab strips were also
cast. These strips were used as detail tests to determine flexural
rigidity and ultimate strength, as has already been described in Section
232. These strips were made with the same thickness and the same
reinforcement as the main test slab and the width was generally 30 cm.
For every slab in the first series of tests three of these detail tests were
cast, one of these being of plain concrete while the two others were
reinforced with strips of wire fabric which was clipped from two edges
at right angles to each other of the same mat of wire fabric as was
used in the test slab in question. In the later series four detail test
strips were cast for each slab, two of these being reinforced with
strips taken from one wire direction and two with strips taken from the



87

o

Fig. 24:1. Testing the artificial subgrade for the slabs in the Mil series. The bed consisted
of f our layers of approx. 50 mm thick porous wood fibre board. The bed was tested at 20
points by means of a steel plate 30x30 cm, which was loaded with P=217 kg. The
depression ô of the plate in the bed was measured by means of dial gauges placed at the
centre of two opposite sides. The ^-values obtained in kg/cm3 were calculated from

k =
900 • <5„

and are shown under the respective measuring points.

other wire direction of the wire fabric. The longitudinal reinforcement
was placed in the same layer as the wires in the corresponding direction
of the reinforcement mesh in the main test unit.

The concrete consisted of quick-hardening cement and sand for the
slabs in the first series and standard cement, pea-sized gravel and sand
for the slabs in the later series (the proportions of gravel: sand were
approx. 3:4). The consistency of t he concrete was maintained at approx.
4° VB. The amount of cement and water- cement ratio for the concrete
in the various slabs is shown in Table 24:1, page 85. The compressive
strength of the concrete was checked by means of test cubes and, in
case of the later series, also standard beams for testing flexural strength.
The test values are shown in Table 24:1. Three wires from both the
directions of the mesh for each slab were clipped and tension tested.
There was often a considerable difference in the strength between the
wires from the two directions.

When casting was carried out the concrete was stamped by the use
of a wooden stamp. The surface was levelled against the edges of the
mould and evened carefully with a steel levelling tool. During the
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hardening period, the surface was maintained moist by the use of sa w-
dust. The slabs in Series MI which were made of quick-hardening cement,
were tested when they were about 10 days old, the slabs in Series Mil
were tested at an age of 2 — 3 weeks. Detail test strips and standard
tests were tested on the same day or the day following the main test.

243. Test devices, test procedures and test results

Fig. 24:2 shows the principle of the loading device. The load was
imposed on the centre of the slab via a circular load distribution plate
by means of a jack which was attached upside-down to an I-beam.
This went transversely over the slab and, outside the edges of the slab,
it was attached to the floor by means of iron straps and floor bolts.
The load was measured through the pressure in the jack hydraulic fluid
by means of a precision manometer. The plunger in the jack was well
ground into the cylinder and had also been turned backwards and
forwards during the test in order to eliminate plunger friction. A thin,
pressure-equalizing wood fibre plate was laid between the load distri-
buting plate and the concrete slab during testing.

Fig. 24:3 and 24:4 show photographs of the test slab and the test
devices during both the first series of tests.

During the test loading the depression of the surface of the slab at
various points was determined by the help of normal dial gauges. These
were placed along two diameters at right angles to each other and
were attached to special measuring beams fitted outside the edges of
the slab (see Fig. 24:3 and 24:4). The location of t he measuring points
varied somewhat for the various slabs. The interval between them
was closer along one of the diameters; in Series MI generally 20 cm,
in Series Mil 25 cm. Along the other diameter, the interval was generally
double the size. Fig. 24:5 shows examples of the normal location of
the instruments.

In the MI series no measurements were made of the depression at

r |J.|loaddistribution plate.3

concrete slab

Kramfors board

Fig. 24:2. The loading device for the test slabs in the M series. Sketch of layout.
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Fig. 24:3. A test slab in the MI series, ready for testing. The dial gauges for depression
measurements are in position.

Fig. 24:4. A test slab in the Mil series, ready for testing. The dial gauges and strain
gauges are in position. Notice the "tunnel" under the jack in which the curvature gauge

in Fig. 24:6 was located.
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Fig. 24:5. The location of the dial gauges for depression measurements and the strain
gauges for strain measurements on the test slabs in the MI and Mil series respectively.
On the slabs in the Mil series, the location of the strain gauges was varied slightly (the
exact location is shown by the sketches in the result diagrams,) but the figure shows the

most usual location.

the centre point but this was estimated with the aid of the depression
at the points close to the edge of the loading plate. In the Mil series
the depression at the centre point was measured as well as at a further
point under the loading plate by means of a special "curvature gauge"
as shown in Fig. 24:6. The measuring points on the dial gauges were
taken down through holes in the loading plate and the actual "measuring
bridge" was taken through a "tunnel" between the jack and the loading
plate. This device registered depressions at these points under the
loading plate relative to the legs of the measuring bridge (base 50 cm)
and by measuring the depression at the points where these legs rested
outside the edge of the loading plate, it was possible to calculate the
absolute movement at the centre point. The device also provides the
possibility of calculating the curvature in the central zone of the slab,
whereby the deformation line of the slab in the centre is considered to
correspond to a 4-grade parabola according to the method shown in
Fig. 24:7.

Measurements of tension in the top surfaces were also carried out
on the slabs in Series Mil. The actual purpose of these measurements
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Fig. 24:6 A and 24:6 B. The curvature gauge for measurement of the deformation of t he
slab in the centre. The two dial gauges with extended points measured the depression of the
slab relative to the legs of the measuring bridge (Fig. 24:6 A). The points passed through

holes in the loading plate (Fig. 24:6 B).

fêXentr? /̂

Fig. 24:7. Calculating the curvature of the test slabs in the centre. The measuring bridge
in Fig. 24:6 was used to obtain the relative depressions ws and wa in relation to the measur-
ing points 7 and 10. If the equation of the depression line in the centre zone is approximated
to a fourth grade function

w=p r*-\-q r2

where the coefficient

y10 {w9 —We-

then the curvature in the centre will be

d2w

v dr 2

that is to say
Q /o

= 2 q,

-WfQo I a2 L
= 10 (w9~ws)-



Fig. 24:8. The strain gauge used for strain measurements on the top surface of the slab,
Mil series. The movable edge a consists of one arm of a right-angle le ver, hin ged at b,
the longer arm I of which transfers its movement to a dial gauge d. The lever arms have a
ratio of a pprox. 5:1 and the measuring base M is 20 cm, so that a movement of 1 mm on
the dial gauge corresponds to a strain of 1 °/00. e is a spring which retains the levers in

contact with the dial gauge.

was to register crack formation in the top surface which makes its
presence obvious through uneven movements in the strain gauge which
is placed over a developing crack. The gauges used, the design and
application of which are shown in Fig. 24:8 and 24:9, had a relatively
long measuring base, 20 cm, and were usually placed within the zone
where the deformation of cracks could be expected. It is therefore not
generally possible from these tension measurements to derive any definite
information concerning the distribution of moments along the radius of
the slab, and test analysis in this respect has only been carried out in
special cases.

The seven slabs in Series Mil B (see Table 24:1), which all had the
same reinforcement and concrete of the same composition, were used
for an investigation of the influence of varying conditions of loading.
On three of the slabs (subsidiary Series Mil B:a) the influence of twin
loading was studied, one of t hese slabs was serving as a comparison slab
with a single load, (load distribution = 40 cm) while both the other
slabs had the load distributed over two circular surfaces with the same
total area (diameter = 28 cm) and with the distance between centres
of 42 and 84 cm respectively. The loading and measuring devices are
shown in Fig. 24:10. Of the other four slabs in Series Mil B (subsidiary
Series Mil B:b) three were tested by repeated loading and unloading
and one (Mil B:a) by subjecting it to a mobile load. A more detailed
description of these tests is given in Section 331 in connection with a
discussion of the ultimate load.

The loading was increased in steps of about 100 — 200 kg, and all
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Fig. 24:9. Fitting the strain gauges on the top surface of the slab. The strain gauges
were fitted overlapping by means of steel bows which were attached by synthetic
resin adhesive (kaurit) to the surface of the slab. The measuring edges rested on small
steel plates, also attached by adhesive to the surface of the concrete. The figure also shows

how the depression dial gauges were fitted to the measuring beam.

Fig. 24:10. The loading and measuring devices when testing with twin loads. The figure
shows how the depression and strain were measured at the centre of t he slab by means of

curvature gauges and strain gauges placed between the two loading plates.
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the measuring instruments were read off at each step. During the tests
a certain time scheme was followed as far as possible: increase of load
during one minute and constant loading during four minutes, the gauges
being read off during the last minute.

During the higher loading steps, observations of crack formation and
the failure procedure in the top surface were made. In order to
facilitate such observations, the top surface of the slab was painted
white with a white-wash made of chalk. At a certain loading value,
a circular crack was observed on the surface of the slab. Usually a
smaller part of the crack was discovered first, but during the time a
loading step was imposed, the crack generally developed along a complete
circumference approx. concentric with the loading plate. In the case of
the top-reinforced slabs and also with some of the single-reinforced slabs
several circular cracks appeared with further increased loading, usually
with lesser radii than the first crack. The cracks were marked in as
they appeared and were later drawn or photographed on the termination
of the tests. Fig. 24:11 shows the crack pattern for some of the test
slabs.1)

The values of the loads when the first crack was discovered have been
introduced in Table 24:4 in Section 245:1 together with the values of
the crack loads and the loads at which the reinforcement in the top
of the double-reinforced slabs began to yield, objectively decided by
analysing the results of the tension gauge readings for the slabs in Series
Mil (see Section 245:1).

In the MI test series the loading was increased until stamping out
failure occurred in the part of the pavement round the edge of the
loading plate or in certain cases along the inner circular crack. This
caused large degree of deformation in the wood fibre bed so that it was
necessary to replace this after each test. In the Mil series, where the
bed was used for all the tests, loading was therefore not taken up to
this stamp-out failure level but was generally taken only a few loading
steps over the load at which the first circular crack occurred or, in case
of top-reinforced slabs, until the top-reinforcement bars were judged to
have reached the yield point.

The results of the depression and tension measurements are shown
and analysed in Section 245.2)

After this test had been completed, the slab was lifted up from the

]) All the crack patterns are shown in the test result supplement, Section 921.
2) Complete test results in the form of diagrams of the depression lines for the two

diameters at right angles along which the gauges were located as well as centre depression
and curvature diagrams and diagrams of the tension measurement values are contained
in Section 922 of the test result supplement.
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Fig. 24:11. The test slabs MII:2 (single-reinforced) and MII:7 (double-reinforced) photo-
graphed after test loading with the circular crack formation marked in.

subgrade and broken so that the thickness could be checked. Measure-
ments of this were carried out at about 30 points along the circular
crack and inside it, so that both the total thickness of the slab and the
position of the reinforcement was measured. The results of these
measurements are introduced in Table 24:2 in a following section.

244. Material constants for slabs and subgrade

244.1. Determination of the ultimate moment and the flexural rigidity
The elasticity and strength properties of t he test slabs have, as already

described, been determined with the help of the detail tests (page 86),
these consisting of slab strips, cast at the same time as the test slabs.
The test device is shown in Fig. 24:12, 24:13 and 24:14. These detail
tests have generally been loaded by means of two linear loads, and
deformation has been measured by means of a curvature gauge on a
measuring length between the loading points, inside which zone the
moment and the curvature were constant, all following the method
shown in Fig. 23:1, page 63. When testing the detail tests in Mil
series, the tensions of the tension side of t he test strips were also measured
by means of strain gauges of the same type as those used during the
main test (see Fig. 24:13).

Of the three detail tests for each test slab in the MI series, two were
reinforced and these were tested with the reinforcement in the tension
zone, corresponding to the positive moment in the main test, while the
third plain concrete detail test was subjected to testing by flexure
corresponding to the negative moment in the main test. Of the four



Fig. 24:12. Device for testing the detail test strips belonging to the test slabs in Series MI.
The slab strip is laid on the pan level of sliding weight scales and the loading, which is
transferred from a frame attached to the base of the scales by means of a screw jack, is
measured on the sliding weight scales. The deformation is measured by means of a curva-
ture gauge as shown in Fig. 24:6. The weight of the slab itself must be included in the

calculation of the ultimate moment.

Fig. 24:13. Test device for detail test strips belonging to the test slabs in the Mil series. The
slab strip is laid on rollers attached to an L-girder frame and the load is applied by means
of a screw jack between the frame and a load distribution beam with two rollers against
the slab strip. The loading is measured by means of a ring dynamometer as shown in Fig.
24:14 placed between the jack and the load distribution beam. While testing was carried
out, the complete device was laid on its side, so the weight of the slab itself had no effect.
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Fig. 24:14. A ring dynamometer of the type used in the test device shown in Fig. 24:13.
The dynamometer was calibrated repeatedly between the tests.

detail tests, belonging to each test slab in the Mil series, two with
reinforcement taken from both directions of the reinforcement mesh
were tested with positive moment and the other two with negative
moment. Each detail test unit was generally utilized for several tests
in such a way that the uncracked parts on each side of the crack zone
were tested again for failure so that in the MI series in most cases one
of the halves has been tested for positive and the other for negative
ultimate moment, while in the Mil series both the halves of a detail
test have been loaded with a moment of a direction opposed to that of
the moment of loading on the original testing. During these latter tests
on "half-strips" no deformation or tension measurements were carried
out, only flexural loading to failure; the test device is shown in Fig.
24:15. These last-mentioned types of test provided the possibility of a
more definite reliability when judging the ultimate moment values
(generally six tests). These show comparatively large variation, even
if respect is taken to variation in the thickness of the test slab strips
and the position of the reinforcement, these dimensions having been
carefully measured at the section of rupture after each test. Variation
was particularly large concerning the negative ultimate moment values
(tensile strength of the concrete).

The values for deformation and tension measurements carried out on
the detail test units have been accumulated into curvature and tension
7
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Fig. 24:15. Test device when testing the "half-slabs" on each side of the failure section
after testing the detail test strips in the device shown in Fig. 24:13. The loading was
applied through two loading rollers from a hydraulic jack. The ultimate moment here

must be corrected with respect to the dead-weight of the slab.

diagrams of the type shown in Fig. 24:16.1) From these diagrams the
required test results can be obtained.

The results of the tests with negative moment were particularly
irregular and difficult to judge in the case of many of the double-rein-
forced slab strips. This depends upon the fact that the top reinforcement
selected was too weak, so that the ultimate moment, when the yield
point in the top reinforcement was reached, was only insignificantly
over (in the case of slab Mil:7 even under) the moment when tension
rupture of the concrete itself occurred and, as has already been pointed
out, these slabs function more as single-reinforced slabs. In order to be
able to discuss the slabs also from this point of view, when analysing
the results, the moment at tension rupture in the concrete has also been
estimated from the result curves of the curvature and tension measure-
ments for loading of negative moment (see Fig. 24:16). Also the tensions
in the top surface, when crack formation began and when the yield point
in the top reinforcement had just been reached, have been calculated from
the result curves for the tension measurements. These tension values

x) Curvature and tension diagrams for all the detail tests are shown in the test result
supplement, Section 922.
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Fig. 24:16. Curvature and strain diagrams for the four detail tests from slab MII:5 (single-
reinforced) and slab Mil:10 (double-reinforced) respectively. The secant lines have been
drawn in on the diagrams, these being used to calculate the flexural rigidity, as well as
the moment values at crack formation and reinforcement yield together with the corres-

ponding strain values (for negative moment), all of which are marked in.

have been utilized when determining the loads during the main tests
with the double-reinforced slabs corresponding to concrete tension failure
in the top surface or reinforcement yield point in the top reinforcement,
whereby comparisons have been made with the corresponding tension
measurements in the main tests. The results of the test loadings
for negative moment of the slab strips belonging to the double-reinforced
slab MII:9 could not be used, since, during the main tests, the tensile
strength in the top surface of the test slab was broken by means of
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concentric cardboard slip rings laid in, but corresponding slips were, by
mistake, not laid in in the corresponding slab strips. For this particular
slab, the negative ultimate moment and the corresponding tension in
the top surface have been estimated by calculation from the yield strength
of the reinforcement bars.

The moment values for the tension rupture of the concrete have, in the
same way, also been determined for positive moment loading in order
to provide data for the study of the test slabs when crack formation
started in the bottom surface (Stage I) (see Fig. 24:16).

The results from all the tests with the detail test units have been
collected in Table 24:2.1) The figures, shown there for each slab, are thus
average values of t he results of t he tests on the detail test units and half-
strips of these belonging to slab in question. The values of t he flexural
rigidity in Stage I and Stage II have been calculated according to the
principles discussed in Section 232 and all the test results have been
corrected for differences in thickness and position of reinforcement
between the detail test unit and the main test in the way described in the
same section.

In the table theoretically calculated values for Ei have also been intro-
duced. For this calculation, the values n — 10 for stage I and n — 15
for Stage II have been used and the tension zone in the later case has been
assumed to be completely inactive. By comparison with the test values
it shows that agreement is relatively good.

244:2. Discussion of the properties of the subgrade and determination of
the subgrade constant

During the model tests the subgrade consisted, as already mentioned,
of a bed of high-porosity wood fibre board which was laid directly on
the hard concrete floor in the laboratory. The thickness of the bed in
the MI series was about 10 cm and in the Mil series about 20 cm.

It is obvious that a bed of t his type should behave almost as a resilient
subgrade. It is obviously unreasonable in the case of a 10—20 cm thick
bed on a hard bottom to use a theory based on an assumption of an elastic
subgrade of infinite depth. It can, however, be pointed out that the
property of the theoretical resilient bed, whereby loading on one point
does not cause any depression at adjacent points, cannot be completely
satisfied in the case of a bed made of board.

In order to clarify the properties of wood fibre board as a flexible
subgrade, reference is briefly made below to some of t he results from an
examination of the use of board as a vibration-damping layer in concrete

x) The complete result is shown in the test result supplement, Section 922.
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Fig. 24:17. Test device when testing plain concrete slab strips on elastic subgrade. The
size of the test beam was 260x30x6.4 cm and the subgrade consisted of high-porosity

wood fibre board.

slabs.1) This investigation included the test loading of two slab strips
of plain concrete on a subgrade consisting of two layers of board of the
same type as those used during the MI series. The loading consisted of a
concentrated linear load in the centre and the depression was measured
at several points along the centre line of the slab strip. The test device
is shown in Fig. 24:17. After the slabs had failed, this taking place exactly
under the loading line, the flexural rigidity and flexural strength were
determined by testing both the slab halves, these being test-loaded as
simply supported beams. The k-value of the wood fibre bed was deter-
mined partly through a test on a recessed section of the bed and partly
from the average degree of depression during the main tests.

The slab strips can be considered as being beams on a flexible subgrade.
Since the beam material in this case was plain concrete then the elastic
properties of the beam can be considered to be comparatively good
(Stage I). The equation for such a beam can, if the subgrade is considered
to be resilient, be written

d*y
E I - ^ = - k b y (24:1)

where E I = the flexural rigidity of the beam, b ~ the width of th e beam.

i) Kramforsplattan som vibrationsdämpande mellanlägg i betongplattor. (The Kram-
fors board as a vibration-damping layer in concrete slabs.) Stenciled report from the
Department of Structural Engineering, Chalmers University of Technology, Gothen-
burg, 1945.
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\b=30 cm
]EJ= 1,73-/0skgcm'

P^85 kg
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Fig. 24:18. Deflection curves for the slab strips as shown in Fig. 24:17 with a load of 85
kg. For comparison, the theoretically calculated elastic lines are shown.

This equation can, in the case of the existing loading and boundary
conditions, be easily solved exactly and the solution can be used for the
calculation of the vertical deformation and the moment in the various
sections of the test beams. Fig. 24:18 shows the result of the vertical
deformation measurements compared with the theoretical elastic lines
with a load of 85 kg and in Table 24:3 the average depression figures have
been calculated as well as the central moment and the corresponding
ultimate loads together with the test results obtained. The results show
that particularly good agreement prevails between theory and practice.
This shows, that a subgrade of porous board has, on the whole,
properties that correspond to those of a resilient subgrade. In the analysis
of the model test result, only this theory will thus be considered.

The ^-values for the model tests in the MI series have been determined
partly through tests on recessed sections of the bed and partly by
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TABLE 24:3. Flexural testing of plain concrete strips on a subgrade of high-porosity
wood fibre board as shown in Fig. 24:17 and 24:18.

Test
beam

Thickness
in failure
section,

cm

Material constants Deflection in
centre at
P=85 kg

according to

Ultimate load, kg

Test
beam

Thickness
in failure
section,

cm
k

kg/cm3
EI

kg cm2
Of

kg/cm2

Deflection in
centre at
P=85 kg

according to In main
test

According
to theoret.
max. mom.

at of

Test
beam

Thickness
in failure
section,

cm
k

kg/cm3
EI

kg cm2
Of

kg/cm2

test theory

In main
test

According
to theoret.
max. mom.

at of

Ri
R2

6. 2 5
6 . 3 5

0. 4 6
0 . 4 1

1. 7 3 • 108

1.34 • 108
34. 7
3 5 . 2

0. 4 1
0, 4 5

0.4 0
0 , 4 6

260
290

296
320

calculation of the average depression (depression volume) in the main
tests according to the formulae (23:3) in the way described by the author
in Section 233.

For the &-value determination on cut-out sections of the bed, a test
surface of 20x30 cm was used and during test loading, the load was
distributed over the complete surface by means of a thick concrete plate.
The test device is shown in Fig. 24:19. The co-relation between the
depression, calculated from the average value of the depression of the
four corners, and the load are given in the form of diagrams,1) some
typical examples of which are shown in Fig. 24:20 A. One can see, that
the &-value, which forms the secant modulus to the curves, increases
somewhat when the slab is compressed but the degree of constancy

Fig. 24:19. &-value determination on cut-out sections of the subgrade material in
the MI series, high-porosity wood fibre board. The loading device was the same as
that used for the deflection tests as shown in Fig. 24:12 and the depression was measured

by means of four dial gauges in the corners of the concrete load distribution plate.

x) All the diagrams for the &-value determinations for slabs in the MI series are shown
in the test result supplement, Section 922.
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tfâ cm

Fig. 24:20 A. Relationship curves between loading and deformation for the subgrade
material of wood fibre board for the slabs 6 and 7 in series MI. The unbroken curves
have been obtained from the average depression during the main tests, while the broken
ines have been obtained from the tests on the cut-out sections of the subgrade material

(with the test device shown in Fig. 24:19).

Fig. 24:20 B. Curves showing the relationship between the load and the depression volume
for the slabs 3, 13 and 21 in series Mil. Observe that the bed, which consists of the same
plates of w ood fibre board for all the tests, becomes less resilient as more tests are carried
out, this depending on the successive permanent compression of the material composing

the bed.

in k is comparatively satisfactory. The &-value determinations from the
main tests are shown as relationship curves between the average
depression and the average loading, and some curves of this type for the
MI series have also been markedin on Fig. 24:20 A1). The good agreement
between the curves according to both the methods further corroborates
that the wood fibre board can be considered as being a good resilient sub-
grade.

In the Mil series, the &-value determinations have been carried out
only according to the last-mentioned of the methods quoted above, that
is to say by calculation of the depression volume from the main tests.
Some of the result curves, showing the relationship between the depression
volume and the load, are shown in Fig. 24:20 B1). The curves have a more
linear appearance than in the case of the MI series depending on the
fact that the bed was considerably thicker. In the case of the slabs Mil: 15
and : 16, tested with twin load, the calculation could not be carried out

1) See note 1, previous page.
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since the depression volume is imsymmetrical, and the &-value has been
estimated with the aid of the corresponding values for the slabs which
were tested immediately before these two in question. It should be
pointed out that the same bed material in the Mil series was used for
all the slabs, and the &-value determinations also show that the properties
of the subgrade alter only to a slight extent between the various tests.
The gradual successive increase in the £-value of the bed depends on the
remaining permanent compression of the wood fibre board.

In order to study the properties of the bed in the case of a higher
degree of compression, as can be considered to occur just under the
centre of the tests slab, several test were also made on cut-out sections of
the bed material. In these cases result curves were obtained of the same
type as the curves in Fig. 24:20 A and in the case of a high degree of
compression of the board the &-value increased considerably.

The fc-values used for the theoretical analysis of the model test results
have been obtained from the average depression curves for the main
tests. These values obviously give the best impression of the average
characteristics of the bed. For each slab generally two ^-values have
been calculated from secants to the average depression curves, viz. at a
load corresponding to the failure of the concrete in the bottom surface
at the centre of the plate and at a load corresponding to a failure in the
top surface. The ^-values estimated in this way and used for the analysis
of test results have been introduced in the Tables 24:5—24:8 in the
following section.

245. Test results, treatment and theoretical analysis

245.1. General. Determinations of failure loads
In the previous section it has been shown that the subgrade of wood

fibre board functions mainly as a resilient subgrade. An analysis of the
test results according to the theory for elastic slabs on resilient subgrade
should thus clarify to which extent a reinforced concrete pavement with
its varying elastic properties behaves as an elastic slab according to the
assumptions made in the theory. The test results and the theory should
thereby be compared with respect to depression as well as moments and
ultimate loads.

The degression measurements on the various slabs can be best shown by
compiling the measuring values as depression lines for the two diameters
at right angles along which measurement has been carried out. Fig.
24:21 shows an example of the depression lines for one of the slabs.1)

1) The depression lines for all the slabs are shown in the test result supplement, Sec-
tion 922.
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Fig. 24:21. The depression lines for one of the two measuring diameters at right angles
on the slab Mil : 8for part of the loading steps. The load is shown in tons at the top of t he

respective curves.

This figure shows that the edge of t he slab lifts to a comparatively great
extent from the subgrade, and the same thing applies more or less to all
the slabs. This should not be forgotten when judging the theoretical test
analysis since, according to the assumptions made in the theory, the slab
and the subgrade must be in contact over the entire surface.

The measurements of depression nearest the centre of the slab by
means of "curvature gauge" (Fig. 24:6) makes it possible to calculate the
curvature of the slab at the centre according to the method stated in
Fig. 24:7. These curvature values can be utilized to estimate the moment

at the centre In this case the curvature values in question are compared
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Fig. 24:22. Method for drawing the relationship curves P —mj^ax for the test slabs. By
comparison between the curvature graphs a, obtained from the curvature measurements
in the main tests (see Fig. 24:7), and the curves b from the tests on the appropriate detail
tests beams (Fig. 24:16), it is possible to obtain the value of the moment in the loading
centre for different loads P1( P2 (curve c) as shown in the figure. Vice versa, the loads

P™ and Pf,1'' causing crack formation and bottom reinforcement yield respectively can
be obtained from the ultimate moment values mcr and my{e determined in the detail tests.

The figure also includes assumed lines I and II for the moment value according to the
theory, calculated for the slab constants in Stage I and Stage II respectively.

with the results of the curvature measurements on the associated detail
test strip (see Fig. 24:16), whereby the the last-mentioned curvature values
have been corrected for variations in thickness between the main test
slab and the detail test unit. Fig. 24:22 shows the method resulting in
relationship curves between the loading and the moment in the centre
for the different test slabs.1) It is obvious that the method is comparatively
unreliable since the loads are indirectly estimated through a comparison
between the curvature measurements. Especially for the circular slabs
where the curvature is obtained from the differences between the -^5-
mm graduated dial gauges (see Fig. 24:7), the result, especially in the
case of small loads, is influenced to a great extent by the deficiencies in
the measuring devices, such as the initial resistance to movement of t he
dial gauges.

1) All these diagrams are shown in the test result supplement, Section 922.
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Fig. 24:23. The strains along the four measuring radii for the slab Mil:14 (single-reinforced).
The annular crack appeared between the measuring points on the gauges T3, rl\, T10 and
T12, and the break-off point on the curves representing the movements of these gauges
clearly shows the load causing a crack, which can thus be accurately estimated even if i t
lies between two loading steps. The resulting crack load has been calculated as the average

value of the four loads estimated in this way.

These curves can be used to estimate the loads at the beginning of
the crack formation Pcbr and at the beginning of yield in the reinforcement
under the loading centre Pvbie, being t he loads corresponding to the mo-
ment values at crack formation mcr and yield point myie according to
Table 24:2 (see Fig. 24:22). The load values obtained in this way have
been introduced in the Tables 24:6 — 24:8 together with the corresponding
theoretical values (see below).

The ultimate loads in the case of failure in the top surface due
to crack formation Pf or, in the case of the double-reinforced slabs,
when the yield point in the top reinforcement is reached Pytxe can be objec-
tively fixed for the slabs in the Mil series by an analysis of th e measure-
ment values for the tension gauges which were fitted on the top surface.
Fig. 24:23 shows the collected tension measurements for one of the s labs.
In this case of the single-reinforced slabs, as shown in the figure, crack
formation was indicated through a very rapidly increasing gaugereading,
when a crack occurred between both the edges of one of the gauges,
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and through such an analysis of the strain gauge movements (see Fig.
24:23) then the load causing the first cracks could thus be determined
with a fair degree of ac curacy. In the case of t he double-reinforced slabs
no such clearly marked discontinuity in the movements of the strain
gauges were noticeable when the first crack occurred, but the intention
of the tension measurements on these slabs was actually to try to
decide when the top reinforcement reached the yield point. The estima-
tion of the load in question has been carried out so that the tension
measurements on the slab have been compared with the corresponding
measurements carried out on the detail test strips from these slabs
(Section 244:1). Here the tension in the top surface at the negative ultimate
moment for the detail test unit has been re-calculated to the corresponding
failure-tension value for the main test, respect having been taken to
differences in slab thickness and the position of the top reinforcement
between the detail test unit and the main test unit. The corresponding
loads have then been obtained from the tension measurement curves for
the main tests. An estimation of this type must however be comparatively
unreliable, partly due to the fact that the movements of the tension
gauges are strongly influenced by crack formation in the concrete and
the number of cracks and the position between the edges of the gauges,
partly due to the fact that top reinforcement has been selected so small
and in certain cases located so far under the top surface that the negative
moment at the yield point for the top reinforcement generally lay
insignificantly over (in certain cases even under) the moment at the
commencement of crack formation. The double-reinforced slabs have
therefore largely functioned as single-reinforced slabs, and in order to be
able to consider them as such slabs in the following test analysis, also
the load at the first formation of top surface cracks has been estimated
from the discontinuity in the tension measurements, which has also been
compared with the corresponding measurements on the test slab strips
(see Table 24:2), belonging to the slabs in question. The determination
of load causing cracks in the case of these double-reinforced slabs is
considerably more unreliable than in the case of the single-reinforced
slabs. In the case of slab MII:9 with a very weak top reinforcement,
the tensile strength of the concrete had been broken by rings of cardboard
slip which had been inserted concentrically in the top surface of the
slab, so that in the case of this slab it was not possible to obtain any
loading value corresponding to concrete failure.

No tension measurements were carried out on the slabs in the MI
series, but the author has attempted to determine the load causing
cracks objectively through anatysis of the depression measurements at
the points laying nearest to the circular crack. The relationship curves
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Fig. 24:24. Estimation of the crack load for slab MI:4 through analysis of the depression
values for the measuring points close to the annular crack. The clearly defined break-off
jjoints on the four depression curves indicate the crack formation at the respective measur-
ing radii. The crack load is calculated as the average value of the four loads estimated

in this way.

between the load and the depression at these points showed that, at least
with some of t he slabs, there is a clearly marked break-off point at a load
corresponding to the failure load. This obviously depends upon the fact
that the crack functions as a hinge and thus alters the moment distribu-
tion and deformation in the adjacent zones of the slab. Fig. 24:24
illustrates such a case. Also with the slabs in the Mil series the deter-
minations of the load causing cracks have been carried out as far as
possible according to this method, whereby good agreement has been
reached with the values according to the tension measurements. It was
shown that the crack was first noticed by a visual inspection at a rather
heavier load than that which, according to the methods described, could
be objectively estimated, but the difference was generally comparatively
small and lay within the limits of one loading step.

The results of the various determinations of crack loadings are shown in
Table 24:4, and, in the case of top-reinforced slabs, also the estimated loads
for the yield of t he top reinforcement have been introduced in the table.
The table finally shows the assumed loads for top failure of the slabs.
These have been determined as the average value for the various
observations, little or no respect having been taken to the unreliable
values (marked in the table by means of brackets).

For the theoretical analysis of the test values, the test results were
compared with the corresponding theoretical values of the moment,
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crack and yield loads and depression values, these having been calculated
according to the theory for elastic slabs on a resilient subgrade. The slab
and the subgrade have been assumed to be completely elastic with a
flexural rigidity value D and a resilience constant k according to Section
244. The values of the constants used in the calculations and the corres-
ponding values of the elastic radius of stiffness I and the relative load

c
distribution a = — are introduced in the test result Tables 24:5 — 24:8 in

the following sections. When applying these, a flexural rigidity value
according to Stage I and a corresponding fc-value should be used in the
case of low loading, while the corresponding values for Stage II should
be used in the case of higher loading.

The theoretical flexural moment in the centre of the slab has been
compared with the test values by taking the theoretical relationship lines
P
— , calculated from Diagram 22:9, and inserting them in the moment

diagram according to Fig. 24:22. From this the theoretical loads Pcbr

and Pvbie, corresponding to the formation of cracks and yield in the bottom
surface under the loading centre, have been calculated for the correspond-
ing moment values according to Table 24:2.

Furthermore, the theoretical values of Pt in the case of failure in the
top surface (circular crack or reinforcement yield) according to table
24:4 have been compared with the corresponding test values. In this
connection respect has been taken to the correction for the membrane
effect, estimated in accordance with the methods in Section 234, page
74. (In the case of the lower loads Pb and P\ie the membrane stress
correction has no significance whatsoever). The theoretical failure values
have been calculated from the diagram for the maximum negative
moment in Fig. 22:14 and Fig. 22:9, v = 0, whereby the values according
to Fig. 22:14 (concentrated load on slabs with finite radii) have been
corrected for the influence of load distribution estimated in accordance
with Fig. 22:9 for slabs of i nfinite extent.

For some of the slabs curves, in accordance with the theory and
tests, of the moment distribution along the radius of the slab have been
constructed for certain loadings,whereby the test values have been obtained
by comparison between the tension measurements along the slab radius
and the corresponding measurements of t he detail test unit according to
the same method as shown in Fig. 24:22. In the usual way correction has
been made for difference in slab thickness between the main test slab
and the detail test unit. The corresponding theoretical moment curves
have been obtained by using the diagram in Fig. 22:9 for the central zone
8
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and, for the values nearest the edge where the influence of the load
distribution can be assumed to be very small, by using the corresponding
diagram in Fig. 22:14.

Comparison has been made between the theoretical and experimental
depression values in the loading centre for the loads Pcbr, Pvbie

and Pt defined above. The theoretical depression values have been
calculated according to the formula in Table 22:1 and diagram in Fig.
22:8 B ; calculations have been made for Stage I and Stage II. The
corresponding theoretical relationship P — w0 has been marked in on
the test curves concerning the depression in the centre.1)

For some of the slabs comparisons have also been made between
the theoretical and experimental values concerning the depression lines
for the diameter. The theoretical lines have been obtained by adapting
the formulae (22:57) for the central zone or the corresponding diagram
in Fig. 22:8 A and 22:8 B, concerning a slab of infinite extent, and
for the edge zone the formula (22:59) and the diagram in Fig. 22:13
for a slab with finite extent under the influence of a concentrated
load in the centre. This method should be permissible, since the in-
fluence of l oad distribution, as has earlier been shown, rapidly decreases
outside the loading zone.

The compiled results of the tests are shown in the following Sections
245:2—4 and in Tables 24:5— 24:8. These tables contain, apart from
the experimental and theoretical results, also information concerning the
test slabs and the constants and data necessary for calculation. A final
section 245:5 is used to discuss the result of the model tests in their entirety.

245:2. Test slabs, series MI
No measurements of the depression in the centre were made on the

slabs in the MI series. When making out the depression lines the values
for the depression in the centre have been estimated according to exter-
polation from the measuring points lying nearest to the centre.2) For
a calculation of curvature and thus the moment in the centre these values
can naturally not be used.3)

x) Test result supplement, Section 922.
2) Test result supplement, Section 922.
3) BERGSTRÖM has, in his paper [4], produced a calculation for curvature and moment

in the loading centre of the slabs in the test series MI (page 99 in the paper quoted).
BERGSTRÖM states that he has calculated his test values from the depression lines supplied
by the author in the preliminary test report [37] Judging by the test account made above
a calculation of this type is altogether unreliable. BERGSTRÖMS "test values" have been
quoted by BERNELL [8]. In this paper, BERNELL ha s analysed these and other tests from
the viewpoint of the theory of elasticity, utilising methods, notations, formulae and dia-
grams of the author [38] without crediting the source.
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Comparison between tests and theory for these slabs have thus onty
concerned the load Pt in the case of top surface failure (circular crack)
and the depression in the loading centre. The results are shown in
Table 24:5. Slabs 2 and 4 have exceptionally large flexural deformation
(soft subgrade), and the crack formation in the bottom surface can be
judged to be so extensive that the calculated values for the membrane
stress correction in these cases would appear to be much too high so
these values have not been included when making a comparison between
test and theory.

The result shows that the agreement between the test values and the
values calculated according to the elasticity theory for the load causing
failure in the top surface is not particularly good; in any case the F/T
ratio shows vast spread. The centre depression values according to test
and theory, however, show fairly satisfactory agreement.

245:3. Test slabs, series Mil A and C, slabs with single load
For these slabs the comparisons between test and theory have also

included loads and depression values at commencement of crack formation
as well as at the yield point in the bottom surface under the
loading centre. The theoretical depression values at the yield load
Pvbie have been calculated for slab data both at Stage I and Stage II
in order to clarify the function of the slab at this phase of loading,
when only a very limited zone in the centre of the slab is completely
cracked, while the other zones in the slab are still in the uncracked stage.
The calculation of t he corresponding load has however only been carried
out on the basis of data for Stage II, while the moment (stresses) in
the centre of t he slab depend, to a large extent, only on the deformation
of t he slab in the cracked centre zone, while the depression in the centre
is determined by the elastic characteristics and the deformation of the
slab on the whole.

The results for the single-reinforced slabs are shown in Table 24:6. These
values show that there is good agreement between the experimentally
estimated and theoretically calculated loads at the crack formation
and at the yield point in the bottom surface under the loading centre
Pcbr and Pvbe respectively, particularly with respect to the degree
of unreliability in the estimation of the test loads, discussed in 245:1.
Agreement, on the other hand, is less good concerning the ultimate
loads P" in the case of concrete failure in the circular crack in the
top surface, particularly with respect to the fact that the determination
of the test values (crack load) is here considerably more accurate. The
experimental and theoretical values for depression show, on the whole,
fairly satisfactory agreement, and it should be pointed out that the
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depression at the yield point Pbie shall obviously be calculated according
to Stage II — corresponding calculations concerning Stage I do not agree
anywhere near so well with the test results.

The results concerning the double-reinforced slabs are shown in Table
24:7. In this connection it should be remembered that the top reinforce-
ment in the case of slab Mil:7 was so weak, that the tensile strength
in the concrete gave a higher failure moment than the reinforcement,
thus being completely worthless, as well as the fact that in the case of
slabs Mil:9 and 12, the strength of the concrete was quite broken —
the last-mentioned of these slabs had no top reinforcement whatsoever
and is included in this series in order to complete it with a slab with a
negative ultimate moment m' = 0. For the other slabs, calculations
have been made for loads both at the commencement of crack forma-
tion and at reinforcement yield at the top surface Pctr and Pytie respec-
tively.

Concerning the membrane stress correction PM it is obvious that
the calculated values at the last-mentioned load are completely unre-
liable (see fig. 23:6 b); these corrections have not been included when
comparing with the theoretical values.

As shown by the results, there is relatively good agreement between
the experimentally estimated and theoretically calculated loads at
crack formation and yield in the bottom surface, Pcbr and Pfe. In
the cases where agreement is less good, the reason for this appears to
lie in the unreliable results of the curvature measurements in the centre
of the slab. Concerning the loads at crack formation and yield in the
top surface Pltr and Pvtle, the agreement between test and theory is
less satisfactory. It should, however, be pointed out that the test value
determination here is less accurate than in the case of single-rein-
forced slabs, since the failure loads in question have been estimated by
comparison between the tension measurements on the top surface of
the slab and on the detail test unit (see 245.1).

Concerning the depression values, as in the case of the single-rein-
forced slabs the depression at the load Pvbe should be calculated in
accordance with Stage II, and thereby good agreement is obtained with
the test values. In the case of the lower load, Pcb, agreement for some
of the slabs is not so good, but this can depend upon the fact that the
bed of wood fibre board which was used for the complete test series
gradually developed a deepening towards the centre due to permanent
compression, and this was filled by a loosely laid layer of fine sand.
This could imply that the slab during the first loading steps had ahigher
degree of depression in the centre before the thicker sand layer there
was sufficiently compressed. For higher loads the agreement concerning
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depression with the theoretical values is fairly good approximately
up to the top surfacecrack load Prtr, but at Pvtie the relationship isgenerally
worse. This could depend on the fact that the top reinforcement, as
earlier discussed, is weak in relation to the tensile strength of the
concrete itself so that after the formation of cracks in the top surface
the slab has a very low flexural rigidity and therefore a greater degree
of depression than that given by the theory.

The figure 24:25 shows examples of relationship curves according
to tests and theory between load and depression as well as load
and moment in the loading centre1). These show clearly that the
theory gives separate linear relationship curves for Stage I and
Stage II, while the test curves show that the slabs gradually change
their elastic properties as the loading increases. Concerning the moment
curves (Fig. 24:25) this gradual alteration occurs particularly in the
section between the load Pcbr at the commencement of crack formation
and the load Pbie at the yield point; over this load there is naturally
no agreement whatsoever between the theory and the tests. Concerning
the depression curves, the test curves show that there is a decreasing
gradient during the whole loading procedure and it is obvious that
it is not possible to get more than a very approximate agreement be-
tween the test values and the theoretical values. It should be reminded
that the depression figures h ave not been co rrected for the influence of
the membrane stresses; a correction of t his kind would imply that the
depression values for the highest loading steps would be even higher.

In order to further illustrate the relationship between tests and theory,
the test results and the theoretical depression and moment distri-
bution along the radius have been c ompared for some of the slabs, a nd
the results are shown by figures 24:26 A, B and C. Th e depression and
moment curves in question have been shown for load steps in the neigh-
bourhood of the crack and yield loads for top and bottom. For a load
P2 (see the fig.) in the vicinity of P f the theoretical curves have been
calculated for the slab and subgrade constant values for both Stage I
and Stage II.

The figures show relatively good agreement between test and theory
concerning the depression lines, and for the load P2 the curves according
to Stage II show the best agreement. The conformity in the vicinity
of th e edge is not so good and this naturally depends on the fact that
the test slabs have lost contact with the subgrade at the edge and that
the soil pressure there is thus equal to zero while the theory assumes
that the soil pressure in such a zone should be negative. This must

x) These curves for all the slabs are given in the test result supplement, Section 922.
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Fig. 24:25. Moment and depression in the centre according to tests (unbroken lines) and
theory (broken lines) for three of the model slabs in the Mil series. The test curves for
the centre moment have been obtained according to the method illustrated in Fig. 24:22.
The theoretical curves have been calculated with the help of the diagrams in Fig. 22:9
(moment) and Fig. 22:8 (depression), whereby calculations have been carried out for the
constant values for the slab and the subgrade at Stage I (with v= 0.15) and Stage II (i>= 0).
No corrections have been made for the influence of the membrane stresses (on the depres-

sion).
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Fig. 24:26 A, B and C. The radial moment mr and the depression along the radius according
to test and theory for three of t he model slabs in the Mil series (5, 10 and 21). The curves
have been drawn for the loads P1 and P2 in the neighbourhood of the loads corresponding to

the commencement of crack formation P°£ and bottom reinforcement yield P'l,"' respectively,

as well as P3 in the neighbourhood of the load for the top surface failure P'{ (for the double-
reinforced slab 10 also for a load Pi, corresponding to the yield point in the top reinforce-

ment Pf"')-
The test values for the moments have been obtained by comparison between the strain

measurements along the slab radius in the main test and the corresponding strain measure-
ments in the detail tests (generally the average values from the two detail tests with the
bottom reinforcement in the compression zone, see Fig. 24:16). In some cases, and
particularly at the lowest load, obvious irregularities in the strain measurements have
been evened out by means of interpolation between the adjacent values. The strain
measurements used have been drawn in on the figures in the form of strain diagrams.

The theoretical moment values have been obtained with the help of the diagrams in
Fig. 22:9 (slab of infinite extent with distributed load) which has given values in the
neighbourhood of the centre, and Fig. 22:14 (slab of finite radius and concentrated load)
which has given the values in the neighbourhood of the edge.

The test curves of the depression consist of the average curves of the depression lines
for all four radii along which depression was measured.

The theoretical curves for the depression and moment have been calculated for the con-
stant values for slab and subgrade at Stage I (v = 0.15) for the loads P1 and P2, as well as
for Stage II (v=0) for the loads P2 and P3. For the last-mentioned load, correction has
been made for the membrane stress effect. See also 245:1, page 113.
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mean that the theory will give a smaller degree of edge lifting than in
the tests, and this is also shown in the figures.

Concerning the moment distribution curves the agreement is fairly
good for loads up to Pybie (load P2 in the figure), but at the last-mentioned
load, however, only for moment curves according to Stage II. At higher
loads the moment in the top surface increases much more rapidly than
according to the theory. This is also completely in agreement with
what can be expected with respect to the fact that the moment under
the loading centre will remain constant when the loading exceeds the
yield point load and that the conditions in the slab thus deviate more
and more from the assumptions made in the elasticity theory.

Considering the choice of the flexural rigidity value for the slab it
is obviously that the Stage I value can be used only in the case of such
small loads that the slab is completely uncracked. With fairly extensive
crack formation in the bottom surface under the loading centre then
calculations with a flexural rigidity value according to Stage II give
much more correct results concerning both the depression and the
moments, not only in the cracked central zone but also over the complete
slab.

245.4. Test slabs Series MII.B, slabs with twin load
This series also includes a comparison slab with a single load. These

slabs are otherwise identical and the two loading surfaces for the twin
load with a distance between centres of 42 and 84 cm respectively have the
same total surface as the extent of the single load. Other data con-
cerning the slabs is shown in Table 24:8.

For analysis of the test results concerning the twin load slabs Mil:15
and 16 the theoretical curves concerning depression and moment distri-
bution along both the diameters at right angles have been constructed
with the help of the corresponding diagram for single load in Figures
22:8 and 22:13, 22:9 and 22:14 respectively, these being used as influence
lines. When marking in the moment curves for the diameters at right
angles to the axis through the twin load centres, the moment values for the
tangential and radial moments have been obtained by vectoral addition
of the values from the Zz and Z4 curves in Fig. 22:9. Respect has been
taken to finite slab radius in such a way that the distance from the nea-
rest loading point to the edge of the slab has been considered to corres-
pond to the radius of the slab when calculating the value from the dia-
grams 22:14 and 22:13 respectively for moment distribution and depres-
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sion in the vicinity of the slab edge. The curves obtained are shown
in Figures 24:27 A and B.

Based 011 these curves, the theoretical values for the loads at the
beginning of crack formation and at yield in the bottom surface as well
as concrete failure in the top surface, and for corresponding depression
in the centre, have been calculated and are shown together with the
test results in Table 24:8. It should be pointed out that the
theoretical values of the loads at the crack formation and at yield
point in the bottom surface in the case of slab 16 have been cal-
culated from the values for both the maximum moment (under the
loading surface) and the centre point moment. As shown in Fig. 24:27 B,
there is a very rapid variation of th e moment within the zone between
the concentrated loads for this slab and it is probable that the measure-
ments carried out with curvature gauge at the centre point have given
a kind of average value of the moment between the load points. The
test load also lies b etween both the theoretical values.

The influence of the membrane stresses on the ultimate load Pt

has, in the usual way, been calculated for slab Mil:14; for both the slabs
with the twin load a calculation of th is kind cannot be carried out due
to the fact that the depression volumes are not ring symmetrical,
so that the corresponding membrane stress correction values have been
estimated with the help of the value for slab 14 and the interpolation
formula (23:44).

The result according to the table shows that the agreement between
the tests and the theoretical loads at the beginning of crack formation
and yield in the bottom surface is good, as in the previous tests, while
the agreement between the test and the theory concerning t op surface
ultimate load is not so good. Concerning th e depression values, agree-
ment between the tests and theory is satisfactory and as usual it can
be established that when calculating the depression at the bottom surface
yield point then the slab rigidity for Stage II should be used.

The results areillustrated further by curvesaccording to test and theory
for centre depression a nd centre moment for the twin load slabs in Fig.
24:28 as well as by the test values concerning moment and
depression marked in in Fig. 24:27 A and B. The last-mentioned moment
values have been obtained in the usual way by comparing the tension
measurements on the detail test unit and the main test. The theoretical
curves at the load in the neighbourhood of Pybie has, as earlier, been
calculated for constant values according to both Stage I and Stage
II and it can also be maintained here that the flexural rigidity of t he
slab at this load should be calculated for Stage II.
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Fig. 24:27 A and B. Diagrams showing the distribution of the radial and tangential mo-
ment mr and m(p respectively as well as the depression lines along a slab radius through
the centres of the loading points (NS) and radius (EW) at right-angles to this for the twin-
loaded slabs Mil:15 and 16.

The theoretical moment curves, calculated for the constants at Stage I ( v= 0.15) and
Stage II (v = 0) according to Table 24:8 have been drawn dimension-free with the ordinate
m

• for convenient use in the theoretical analysis work. The moment curves have been
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obtained from the diagrams in Fig. 22:9, whereby the various curve points have been
obtained by super-imposition of the moment values from each of the loading points; for
the points on the radius EW at right-angles to the loading axis, the projections of mr and
mq) v alues at right-angles to and parallel with EW respectively have been added. For
values in the neighbourhood of the slab edges, the moment values have been taken from

testmr
the diagram 22:14. As comparison, the test values for the moment, obtained

as shown in Fig. 22:26, have been drawn in for the loading steps indicated in the figures.
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TABLE 24:8. Series M II sub-series B: a, slabs with twin load. Centre loading on test slabs.
Comparison between the test results and the elasticity theory.
Diameter 350 cm, bottom reinforcement mesh 3.4/50.

Series M II B litt. a:l a:2 a:3
test no 14 15 16

DATA FOR THE SLABS
Thickness, total h0 cm 5.5 5.6 5.4

effective h cm 5.1 5.2 5.0
Flexural rigidity Ei kgcm2/cm

Stage I 31.0 • 105 27.5 • 105 31.5 • 105

Stage II 3.6 • 105 8.2 • 105 9.5 • 105

Resilience constant k kg/cm3

Stage I 0.25 0.281) 0.281)
Stage II 0.28 0.301) 0.301)

Elastic radius of rigidity I cm
Stage I 59.5 56.0 58.0
Stage II 41.4 40.8 42.2

Load distribution radius c
actual dim. cm 20 2X 14 2X 14
relative measure Stage I 0.34 I 0.25 I 0.24 I
relative measure Stage II 0.48 I 0.34 I 0.33 I

Dist. between loading centres
actual measure d cm 42 84
relative measure Stage I 0.75 I 1.45 I
relative measure Stage II 1.03 I 2.00 I

Ultimate moment kgcm/cm
at bottom concr. failure mcr 198 215 200
at bottom reinf. yield myie 277 299 303
at top failure m'cr 209 218 207

RESULTS: (J !rom J®StS
1.1 f rom theory F T F/T F T F/T F T F/T

Load in tons
at cracks in bottom P^r 1.1 1.27 0.87 1.5 1.74 0.86 < 2.0 1.9-2.62) 1.05 —0.7'
at bottom reinf. yield 2.1 2.54 0.83 3.4 3.15 1.08 5.0 3.9 —5.42) 1.28—0.9
at failure in top P{ 6.18 9.03 11.0

membrane stress corr. P m 1.55 1.41) 1.71)
corr. test load —theor. load 4.63 10.89 0.43 7.63 12.8 0.60 9.30 18.8 0.50

Centre depression in cm
at test load P 0.18 0.15 1.20 0.17 0.18 0.94 0.23 0.20 1.15

at test load PhPie 0.42 0.28
0.48

1.50
0.88 0.48 0.42

0.72
1.14
0.67 0.69 0.49

0.75
1.41
0.92

at test load Pf 1.95 1.41 1.38 2.00 1.91 1.05 2.00 1.65 1.21

x) Interpolated between values for adjacent slabs.
2) The lower value apply to mmax (under the loading centres), the later mcentre (in slab centre).

245.5. Discussion of test results
In the previous section comparisons have been made between the

test results and the corresponding theoretical values of depression
and moment (or loads at certain crack and ultimate moment values).
In judging the results obtained, it may be important to know partly
the degree of accuracy to be expected in the theoretical calculation
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Fig. 24:28. Moment and depression in the centre (halfway between the loads) for the
twin loaded slabs Mil:15 and 16. The test curves for the centre moment have been
obtained according to the method shown in Fig. 24:22. The theoretical curves (broken
lines) have been obtained from the centre point values for the corresponding theoretical
curves in Fig. 24:27; the curves for the constant values at both Stage I and Stage II have
been drawn in. In the moment diagram for slab 16, the theoretical curves for both the
centre point moment and the maximum moment (under the loading point) have been
drawn in; since the moment m(p w ithin the zone between the measuring points varies very
rapidly (see Fig. 24:27 B), it is probable that the curvature gauge in the centre point,
which had a measuring base of 50 cm, has given a sort of average value of the moment

in the centre zone.
9
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and partly the degree of accuracy to be obtained from the test
values.

Concerning the moments and characteristic loads respectively, the
result is influenced to a comparatively small extent by the unreliable
factors in the constants D and k for the slab and the subgrade. Variation
in these constants has only a very weak influence on the relative load
distribution a. On the other hand the characteristic loads are directly
influenced by unreliabilities in the moment values. This can be seen
from an estimation of the maximum error in the calculation of a
loading value for bottom surface failure through differentiating the
expression (22:55) for the maximum moment

da
dm — (m)P = 1 dP + P (0,080— 0,156 a2) (24:2)

where da can be obtained by taking out the logarithm and differen-
tiation of

4

k
" =i D

One thus obtains

dP dm, P 1 / dD dk
- (0,080-0,156 a 2) - — - -T- (24:3)

P vi m 4 \ D k 1

or, for values of relative load distribution a within the actual values
between 0.3 and 0.6

dP dm ( dD dk\
P ~ ~ 0 , 1 \ D ~ ~ ~ k ) ( 2 4 : 4 )

When estimating the reasonable maximum deviations in the constant
values respect should be taken to the unreliability involved in the deter-
mination of the flexural rigidity D. Determination of t he &-value which
is based on the average depression should be, however, comparatively
reliable for this type of subgrade material. As reasonable values for
the maximum percentual deviations we can assume

dD dk
= it 30 % ; = i 10

Concerning variation in m it should be pointed out that from the tests
we have determined the associated values m and P, but that the rela-
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tionship is based on a very inaccurate indirect comparison between the
curvature measurement in the main test and the detail tests. It does not
seem unreasonable to consider this deviation as going up to about 30 %.
With maximum deviation values assumed in this way one thus obtains
according to (24:4)

dP
— = ± 0, 3 0 ± 0, 1{± 0, 3 0 ± 0, 1 0 )

or a maximum variation between the theoretical and test load values
of approx. 35 %.

With respect to this the agreement between the test and the
theory considering the loads and the moment at failure in the bottom
surface appears to be surprisingly good. The deviation in general is
within 10 %. The large deviations existing in certain individual cases
can be easily explained as the influence of the faults in the test values
discussed above.

Concerning the load at failure in the top surface (by negative moment)
the theoretical value is even less influenced by variations in the relative
distribution of th e load than in the cases discussed above (see Fig. 22:9),
and assumed variations in D and k can be considered to have no influence
at all on the theoretical ultimate load. The ultimate moment values
mmax ~ m'> on the other hand, and the ultimate test load P, are here
determined through independent tests. The ultimate moment is deter-
mined as the average value of, in general, six flexural tests on detail
test strips and the maximum deviation is (apart from a few stray results)
below ±10 %. To this must thus be added the degree of unreliability
in the ultimate load determination which, in the case of the single-
reinforced slabs where tension measurements were carried out or
where depression measurements close to the crack gave clear indication
(see T able 24:4), can be assumed to be only a few percent, while in the
case of t he slabs where the load causing crack formation was determined
by visual inspection or, as in the case of t he top-reinforced slabs, from
estimation from the stress measurements, a larger degree of un reliability
must be assumed, reasonably not more than 10 %. Thus, the maximum
deviations may be approx. ±10 % for slabs with accurate ultimate load
determination and approx. ±20 % for the other slabs between test
loads and theoretically calculated loads in the case of to p surface failure,
if the elasticity theor y i s applicable.

The results of the tests show, however, deviations in this respect
which for many slabs are considerably greater and where dispersion in
the value of the relationship between the test load and the theoretical
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load is very great. It can thus be confirmed that the elasticity theory
c a n n o t b e a d a p t e d f o r c a l c u l a t i o n o f t h e u l t i y n a t e t o p s u r f a c e l o a d P t .
It is easy to explain that this actually is the case since the central zone
of th e slab has assumed a plastic character at these loading values. The
fact that this influences the moment values not only in the central
zone but throughout the complete slab is clearly shown by the test
curves in the Figures 24:26 and 24:27.

Concerning the depression, when calculating the theoretical values
one has to reckon with a considerably larger influence of th e unreliability
in the constants D and k for slab and soil. Since the depression in
the loading centre can be written

Z2

wo = P -q Z?>

where the function Z™ is only slightly influenced by alterations in the
relative load distribution a (see F ig. 22:8) and can be considered in this
connection as being constant, we get from differentiation

dw dl dD 1 / dD dk
iv I D 2 \ D k

When estimating reasonable deviations in the test values used for
the flexural rigidity D one should consider the condition that the elastic
properties of the slab vary from the centre to the edge and are completely
changing during the whole loading procedure and that, for example, the
depression in the centre point is the result of deformations from the
complete slab with its complicated variations of elastic characteristics.
At lower load values, for example up to the yield point in the centre
of the slab, then a lower value of the deviation in D is motivated and,
by adapting the values earlier used

dw 1
—• = - (± 0,30 ± 0,10) = max. 20 %

With higher loading up to failure in the top surface the variations in
the "effective flexural rigidity" depend on the extent of the plastic
region in the centre of the slab. Deviations of up to 100 % do not
appear to be unreasonable.

Under such conditions one cannot expect any particularly good
agreement between the theoretically and experimentally determined
values (the last-mentioned can naturally be obtained with a very good

(24:5)
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degree of accuracy). The calculations in the foregoing have been carried
out for constant D-values concerning partly Stage I for the complete
slab and partly Stage II for the complete slab. The test curves for
the depression at the centre point, as an example, (Fig. 24:25 and 24:28),
have, generally speaking, a fairly good relationship to begin with when
compared to the theoretical Stage I curve, but at higher loads they ap-
proach more and more the stage II curves and at the highest loads give
somewhat (in a few cases significantly) larger depression than this curves.
The result appears to be characteristic for a slab which is subjected to
increasingly extensive crack formation and, in the case of higher loads,
the assumption of a plastic character in the central zone. The fairly
good agreement between test and theory in spite of this, even in the
case of higher loads, appears to depend on the fact that the plastic
section around the centre of the slab is of c omparatively limited extent
and does not influence the degree of de pression of the slab on the whole
to any great extent.

By way of summary it can be said that a reinforced concrete slab
on a resilient bed can very well be treated in accordance with the elasticity
theory up to a loading corresponding to the yield point at the loading
centre. In this connection one should reckon with slab constants
according to Stage II for at least this final phase. In the case of h igher
loads the same theory can, it appears, still be used fairly well for
deformation calculations. For the calculation of the definite ultimate load
with failure in the toj) surface of the slab, however, the elasticity theory
is not suitable.



25. Gothenburg Tests (Series G)
251. Review of tests

Tlie model tests previous described were intended to show to what
extent reinforced concrete pavements could be treated according to the
theory for elastic slabs on an elastic subgrade. The artificial subgrade
of woo d fibre board had relatively good elastic properties and functioned
on the whole as a resilient bed.

In order to be able to judge how the type of pavement in question
behaves under the conditions occurring with a subgrade of n atural soil
and particularly under the conditions existing for the then topical air-
field project at Upplands Väsby north of Stockholm, the model tests
were supplemented during the spring of 1945 and the winter 1945 —46
with full scale tests consisting of two reinforced concrete slabs with a
diameter of 7 metres, cast on a suitable clay subgrade in Gothenburg.
The soil consisted here of re latively loose clay (so-called Gothenburg clay)
to some considerable depth and the conditions in this respect were
similar to those of the Väsby project.

In this part of the investigation, one of the most important tasks
was thus to study the elastic properties of the subgrade material and
attempt to judge which of the two earlier discussed types of subgrade
nearest corresponded to the natural soil material. Particular emphasis
has therefore been made in the tests to arrive at the actual pressure
distribution between the slab and the subgrade, since according to the
theoretical analysis it is just in the question of pressure distribution
that both the theories show the greatest differences.

The original programme was to test only one slab which was bottom-
reinforced in the normal way (slab Gl). The measurements of the
pressure between the slab and the ground thereby carried out were,
however, very incomplete, although the method used appeared to give
promising results. It was also considered valuable to let the investiga-
tion also concern a double-reinforced slab (G 2), in which case consider-
ably more extensive measurements of the subgrade pressure were
carried out.

Both the slabs were cast on the same subgrade surface. After the
first slab had been tested it was broken up and removed, and the top
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Fig. 25:1. The test house round slab G2. The house was built at winter-time and
warmed by means of electric heaters so that the slab could be tested during the winter.

Part of the loading device projects through the end wall.

clay layer was taken off before the second slab was cast. When the
slab G 2 was manufactured the reinforcement was allowed to stick out
round the edge (see Fig. 25:7). After the slab had been tested by loading
in the centre further concrete was cast all around the circumference so
that it became square with dimensions 8x8 metres, and the four edges
were strengthened indifferent ways. The slab thus completed was utilized
for loading tests with a load on a free edge. These tests are reviewed else-
where (Section 43).

The experiments with the test slab G 2 were carried out during the
winter, since it was considered essential that the test results should be
used in the planning of th e Väsby airfield the following spring. In order
to prevent the effect of frost in the ground and to be able to complete
casting and measuring work in the prevailing cold weather, a provisional
test house was built round the slab and this house had well insulated
walls. See Fig. 25:1. The test house was warmed up during the complete
experiment time with the help of electric heaters.

252. Performance of test slabs

At the testing place, the subgrade consisted of a layer of clay about
30 m thick, resting on a hard base. The clay was relatively wet with
a shear strength in the surface layer of approx. 1.0 ton/m2. Before the
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slabs were cast, the surface of t he subgrade was removed so as to expose
the clay, and the surface was carefully levelled with sand.

Both the slabs in this test series were circular with a diameter of
7 metres and a total thickness of 15 cm. The reinforcement and perfor-
mance in general are shown in Fig. 25:2. The main reinforcement consisted
of deformed bar 0 8 Ks 40,x) and as shear reinforcement in the centre of
slab G 2 (see Fig. 25:2) 0 6 Ks 40 was used. The composition of the
concrete was standard cement: sand: gravel: water — 1:4 :4:1.2, and the
consistency was about 4° VB. The compressive strength of the concrete
was checked by means of cubes which were tested together with the
main test; for slab Gl 14 test cubes were cast and the average com-
pressive strength was 238 kg/cm2, for slab G 2 16 cubes were cast of
which the average compressive strength was 230 kg/cm2, (the maximum
deviation was i 35 kg/cm2).

During casting the concrete was stamped down with a wooden stamp
and the surface was levelled with the edge of the mould by means of
an alignment plank; the surface was not specially smoothed off. After
casting was complete the concrete was watered and was kept covered
with moist sawdust during about 15 days.

At the same time as the test slabs were manufactured, slab strip
beams were also made, used as detail tests for the determination of the
ultimate moment and the flexural rigidity. For slab G 1, three detail
test beams were made with dimensions 15x40x250 cm and for slab
G 2 four detail test beams were made with dimensions 15 x 60 X 250 cm.
The detail test beams were reinforced in the same way as the slabs
they belonged to and in both cases test beams were carried out, which
had longitudinal reinforcement both in the upper and lower layer.
The surface was smoothed off in the same way as with the circular
slabs.

The slab G 1 was tested when it was 53 days old. The test load was
distributed over a plate with a diameter of 40 cm, but this showed
itself to be altogether too small so that stamp-out failure was obtained
round the edge of t he loading area, long before any tendencies to moment
failure in the top could be noticed. Since this test (loading 1) did not
give any information concerning the normal ultimate strength, the slab
was repaired for renewed testing (loading 2). Thereby the centre section
around the stamp-out cracks was broken up to a diameter of about
1.20 m, since it was noticed that the reinforcement had taken with it
the concrete in the bottom of the slab quite a long way out. The edge
of the hole was made in the formof an incline so that the new casting would

1) Deformed reinforcement bars with a yield point of 4 000 kg/cm2.
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Fig. 25:2. The design of t he test slabs. In order to avoid the risk of a stamp-out failure on
the slab G2, special diagonal stirrups was arranged in the centre of the slab as shown in

Fig. B, section B —B.

rest on the old concrete, and after the reinforcing bars in the broken-up
surface were carefully suspended and the subgrade carefully levelled
with gravel and sand, the hole was filled with concrete of the same
type previous used for the rest of the slab. The slab was then tested
again after a further 18 days whereby a load distribution plate with a
diameter of 80 cm was used. By this test normal moment failure was
obtained with circular failure crack in the top surface long way outside
the newly cast section.
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Fig. 25:3. A diagrammatic sketch of the loading device.

253. Test devices, test procedure and results

253:1. The loading device
Fig. 25:3 shows the loading device in principle. The slabs were loaded

at the centre point by means of a 100-ton hydraulic jack and as backing
for the jack a beam system consisting of three DIP 32 beams which
were 10 metres long was used. These were arranged with their end
supports on wooden beds on the ground outside the edge of the concrete
slab. Concrete pile stumps with a weight of 80 tons were stacked up
on the beams. The arrangement of the loading device is shown in Fig.
25:4.

The loading was transferred to the centre of the slab with the help
of load distributing plates which, during the first loading of slab G 1,
consisted of a cylindrical wooden block with a diameter of 40 cm, while
in the other tests it consisted of a cylindrical concrete unit with a
diameter of 80 cm. This concrete unit had a diametrical channel
in the bottom in which a curvature measuring bridge was located in
order to determine the movement of the centre point. A thin pressure-
equalizing wood fibre sheet was laid between the load distribution
cylinder and the concrete slab. The device is shown in Fig. 25:6.

253.2. Measuring devices
During the test loading, the following measurements were carried out:
a) The flexural deformation of the slabs was measured with the help

of d ial gauges located along two diameters at right angles to each other.
b) Strains in the top surface were measured on slab G 2 with the

help of strain gauges located along the radius.
c) The pressure between the slab and the subgrade was measured

with the help of subgrade pressure gauges which, in the case of s lab G 1,
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Fig. 25:4. The test slab Gl with the loading device. The photograph shows the slab after
the second loading and after final stamp-out failure had occurred.

were located in the neighbourhood of the centre, half-way between the
centre and the edge and at the edge itself, while in the case of s lab G 2
they were located closer after one of the radii where the dial gauges
were fitted.

The location of the various gauges is shown in Fig. 25:5.
About 30 dial gauges were used to measure the flexural deformation;

the number of gauges used and the location varied between the different
tests as shown in Fig. 25:5. They were located along two diameters at
right angles with one another and generally at intervals of 50 cm. They
were fitted against measuring beams which were supported on the
edges of the slab as shown in Fig. 25:6 and 28:8. The gauges thus
registered the deformations of the slab relative to the beam support
points on the edges of the slab, and the readings must thus be corrected
for the movement of these points relative to the surrounding subgrade.
These movements were measured with the help of four dial gauges,
attached to iron bars, which were driven down inside a tube going down
to a depth of 6 —7 metres in the ground and the gauges were thus fixed
in the ground under these tubes, see Fig. 25:7. It can definitely be con-
sidered, that the ground at this depth under the edges of the slab must
be uninfluenced by the test loading. The eventual movements of the
measuring beam supports, relative to the edges of the slab, were checked
by means of four dial gauges which were attached to the ends of the
beams and measured against the edge of the slab.
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Fig. 25:5. The location of the measuring equipment for both the test slabs. For slab Gl,
only the location of t he gauges for loading 2 is shown, in the case of loading 1 no deforma-

tion was measured in the centre.

When test loading was carried out with the 80 cm load distributing
cylinder, the movements in the centre of the slab were measured under
the loading surface with the help of a curvature measuring bridge of
the same type as that used in the model tests. The measuring bridge
was placed in a tunnel in the bottom surface of the load distributing
cylinder and it registered the movements of the centre point relative
to the support points of the measuring bridge beside the dial gauge
points nearest outside the edge of the load distributing cylinder.

In the case of s lab G 2 the strains in the top surface of the slab were
measured by means of 10 strain gauges which were located close
together along one radius. See Fig. 25:8. The strain gauges were of th e
same type as those used for indicating cracks in the model tests but had
a measuring length of 25 cm and were of a more robust design. See
Fig. 25:9. The points of the gauges were placed against small steel plates
attached to the surface of the concrète slab with shellac, and a punch
mark had been made in the steel plates to fix the measuring points. No
strain measurements were carried out during the test with slab G 1.

For the measurement of the pressure between the slab and the sub-
grade a type of acoustic pressure cell was used which has been designed
at Chalmers University of Technology, Department of Structural
Engineering in co-operation with D. Eng. Per W. BRÜEL who was
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Fig. 25:6 Fig. 25:7

Fig. 25:6. The arrangement of the measuring beams at the load distributing cylinder.
The through beam lies beside the jack and forms the support for the other two beams. It
can be seen from the photograph that one of these, the end being in the form of a yoke,
straddles the jack. The photograph also shows the 80 centimetre load distribution cylinder
made of concrete with the channel in the bottom, in which the curvature gauge is placed.

Fig. 25:7. Measuring the movement of t he slab edge. The gauge is attached to the upper
end of a n approx. 8 metre long bar which has been driven down into a tube, itself about
6 metres deep in the ground. Notice the reinforcement sticking out from the circumference
of t he slab (slab G2), this being used for the later casting of t he four slab edges tested later.

Fig. 25:8. The location of the strain gauges on slab G2.
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Fig. 25:9. Schematic diagram of the strain gauges used. The movable (left-hand) point
forms one arm 1 of a right-angle lever, the other arm d of which influences the dial gauge e.

d
Its readings thus amplify the movement of the point by a factor —•. c is a hinge con-

sisting of two crossed steel springs. Measuring base M = 25 cm.

then head of its Acoustic Laboratory. The design if the gauges is
shown in Fig. 25:10 and 25:11. The pressure sensitive surface of the
gauge consists of a circular membrane and between this and a fixed
tension head a thin piano wire is stretched. If the membrane is in-
fluenced by a pressure it will be bent inwards whereby the tension of
the wire will decrease. The wire will then have a lower natural frequency.
The frequency is measured by means of two electro-magnets attached
close to the wire. One of these is connected to a frequency generator
and the frequency is set so that it agrees with the natural frequency of
the wire. The wire will then start vibrating and induce a current in the
other electro-magnet so that a reading will be obtained on a valve
volt-meter which is connected in. It is thus possible to measure a differ-
ence in pressure on the membrane by measuring the natural frequency
of the wire before and after the difference in pressure. Before being
used, the gauges must be calibrated and use is here made of a device
with communicating tubes where a quicksilver pressure is allowed to
influence the membrane. Only a very small deformation of t he membrane
is necessary to influence the frequency of t he wire so that it is not worth
worrying about the fact that this membrane deformation should locally
influence the subgrade pressure under the surface of the membrane.
The gauge magnet system is surrounded by a protective casing with a
watertight screw union against the lower part of the gauge, and the
inner part of the gauge is protected against condensation moisture bj7

placing a small beaker filled with hygroscopic salt inside the protective
casing, (see Fig. 25:10).
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Fig. 25:10. Photograph of a pressure measuring cell with the protective cover screwed
off. The cover has a water-tight screw union with a gasket and the interior of the unit is
protected from condensation water by means of hygroscopic salt in a small tube (visible

in the photograph under the lower magnet).

Fig. 25:11. Schematic diagram of a n acoustic pressure gauge. In practice both the electro-
magnets have their axes at right-angles so that their magnetic fields would not interfere

with each other.

magnet

Prodecttv covèr

The pressure cells were cast in the test slabs so that the surface of
the membrane was level with the bottom of the concrete slab and in
contact with the subgrade. Fig. 25:12 shows some of the gauges before
they were cast in. While casting was being carried out extra care was
taken to insure that the gauges were not moved from their positions
and to insure that they did not receive any extra loading when the
actual concrete was laid out.

When the slab Gl was made, the acoustic pressure gauges had not
reached the end of the experimental stage. They only contained, for
example, one magnet which was used both to drive and measure. The
use of the pressure gauges in this test was mainly to be considered
as a section of the experimental work with them. Only three gauges
were cast into the slab, and for the sake of comparison some pressure
gauges of inductive type as designed at the Swedish Cement- and
Concrete Research Institute1) were also cast into the slab at the same

1) These inductive gauges are described in more detail in the earlier cited work [4]
by BERGSTRÖM, etc.
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Fig. 25:12. Some of the pressure gauges before slab G2 was cast. Before being placed
on the ground, large stones were removed and a layer of finely-screened sand was laid
out, after which the surface was moistened and levelled off carefully. When being placed

in position, the gauges were pressed lightly down into the subgrade.

distance from the centre and close beside the acoustic gauges. The
inductive gauges, however, produced results which were very difficult
to interpret and these results have not been included in this descrip-
tion.

On slab G2, 16 acoustic pressure gauges were used located along the
radius where the dial gauges 1— 8 were fitted (see Fig. 25:5), in pairs
beside one another under each dial gauge. Two pressure gauges were
also used in the test which were not cast in but lay loose on top of the
slab. These were connected in at every series of reading before and
after measurements on the cast-in pressure gauges. It became obvious
that these gauges did not give fully constant readings on the frequency
generator and this can depend on the fact that certain displacements
in the frequency scale took place during the procedure of the test. This
has been taken into consideration in the analyses of the values obtained
in such a way that the frequency values for the different gauges at a
certain loading step are corrected with a quantity equal to the average
value of the alteration in frequency of both the control gauges.

One thing which became apparent during both tests was the fact
that most of the gauges registered various differing initial pressures in
excess of that which can have been caused by the weight of the slab
itself. This apparently depends on the fact that the gauges have been
somewhat pressed down into the subgrade during the casting process.
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In the calculation of the pressure value readings for the various loading
steps, this initial value has been considered to correspond to a pressure
equal to zero.

253.3. Test procedure and results
The loading was applied in loading steps which in the case of the

slab Gl was approx. 2.5 tons and in the case of slab G2 4.5 tons. The
load was measured with the help of a manometer which showed the
pressure of the hydraulic oil in the jack. The time interval between
each increase of loading was approx. 8 min. total. Of this 3 min. was
used to increase the load and 2 min. to maintain it constant during
which time the greater part of the creep in the subgrade was allowed to
proceed. Finally 3 min. was allowed to read off the instruments. The
reading off of t he pressure gauges on slab G2, which took a longer time,
began as soon as the actual load increase was completed. When testing
slab G2 an off-loading to zero was carried out at the loading step 36.2
tons. The reason for this was that a fault occurred in the oil pump.
Loading was recommenced again after about two hours.

During the higher loading steps, the surface of the slab was carefully
inspected in order to discover any eventual cracks. In order to facilitate
this, the centre part of the upper surface of the slab was covered with
chalk powder.

During loading 1 of slab Gl a stamp-out failure was obtained round
the loading surface at 38.9 tons. No crack formations had been observed
in the top of the slab up till this load so that it can be assumed that no
moment failure occurred in the top surface during this test. During
loading 2 after the plate had been repaired in the middle and when a
larger load distribution surface was used, moment failure was normally
obtained in the form of annular cracks in the top which were discovered
at 54.9 tons. The load increase was continued until a stamp-out failure
occurred round the loading surface at 64 tons.

In the case of slab G2, which was top reinforced, crack formation
occurred more successively. The final failure through stamp-out round
the loading surface occurred at 68.5 tons. The crack diagrams for both
the slabs are shown in Fig. 25:13.

The result of the depression, strain and pressure measurements as
well as other test results are analyzed and discussed in the following
Section 2551).

x) The complete results concerning the measurement values are shown in the result
supplement, Section 93.

10
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7,00m

Fig. 25:13. Crack patterns after failure in the top surface. For slab G2, the final stamp-out
crack around the loading surface has been specially marked.

254. Material constants for the slabs and the subgrade

254.1. Ultimate moment and flexural rigidity of the slabs
The ultimate moment and the flexural rigidity of the test slabs has

as usual been determined with the help of the detail test beams which
were cast simultaneously with the test slabs. These have been tested
simply supported with two concentrated loads. The deformation under
loading has generally been measured by means of curvature gauges
within the space between the loading points. In the case of two of the
detail test beams from slab Gl, the total horizontal deflection at the
centre point was measured instead.

The detail test beams from slab Gl were all tested with the reinforce-
ment in the tension side. Two of the beams were tested together with
loading 1 while the third beam was tested together with loading 2 of
the circular slab. After the detail test beams had been tested to failure,
the parts of th e beams which lay outside the failure cracks were utilized
for failure tests for negative moment with the reinforcement in the
tension zone.

Of t he four detail test beams belonging to slab G2, two of them were
tested with the largest reinforcement (= the bottom reinforcement in
the circular slab) in the tension side and two with the least reinforce-
ment (= top reinforcement in the slab) in the tension side. These tests
thus represent the deflection of the test slab for positive and negative
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moment in both the main directions of the reinforcement. Due to
the fact that the reinforcing bars in both the layers in the top and bottom
of the slab respectively had somewhat different distances (see Fig. 25:2),
then the four detail tests with respect to the reinforcement corresponded
to somewhat different beam widths during deflection in Stage II; respect
has here been ta ken to that in the calculation of t he ultimate moment
and the flexural rigidity. Apart from the curvature measurements,
measurements were also carried out concerning t he strains on the ten-
sion and compression sides, str ain gauges being used here of t he same
type as in the main tests. The strain gauges on the tension side were
located so that it was possible to study the influence of crack for mation
between the extensometer pointers. These measurements were arranged
so that it was possible to compare the result from the test beams with
the result from the strain measurements on the top of th e circular slab.

The result of the tests is summarized in Table 25:l1).
Fig. 25:14 shows the curvature and strain diagrams calculated from

the average values of the measurement results from the detail tests
belonging to slab G2. From the curvature diagram for positive deflec-
tion, the flexural rigidity has been calculated for Stage I and Stage II
(the secant modulus at the commencement of crack formation or the yield
point respectively), and the average values have beenintroduced inTable
25:1. The test values show good agreement with the theoretically cal-
culated flexural rigidity values for Stage I (n = 10) and Stage II (n —
= 15), which have been also introduced in the table. In the same way
the values for ultimate moment given in the table concerning positive
and negative flexure have been obtained from the corresponding test
beam values. Based on the result curves for curvature and strain measu-
rements, the moment at concrete tension failure for positive and negative
deflection have also been calculated and introduced in the table. In
all these calculations, corrections have been made for moment in the
detail test beams due to their own weight, and also the curvature and
strain curves have been corrected for this influence when compared with
the corresponding measurements during the main test which is carried
out in the test analysis in the next section (see Fig. 25:14).

The strain diagrams have also been used to estimate the values of the
strain on the tension side at the beginning of crack formation and at
the yield p oint in the reinforcement. In this connection most attention
has been taken to the strain gauges between whose points one crack
lias appeared since generally speaking in the main test only one crack

') The tests are fully reported in the form of curvature and strain diagrams
in the result supplement, Section 93.
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Fig. 25:14. Curvature for positive flexion (Fig. A), and strain values on the tension side
for negative flexion (Fig. B), calculated as average values of t he measurements on the test
slab G2 detail test beams. The figure also includes the correction for the influence of the
weight of the unit (broken line); the correction can be obtained as a displacement of the
origin corresponding to the dead-weight moment. In the curvature diagram, secants have
been inserted, according to which the flexural rigidity for low and high loading have been
calculated. Beside the strain diagrams is shown how the strains in the tensile reinforce-
ment have been calculated (introduced into Table 25:1) as well as how the strain gauges
were located and how the tension cracks occurred for one of the beams (the unbroken lines
correspond to the yield cracks).
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TABLE 25:1. Series G. Detail tests.
Summary of flexure tests. The results shown are made up of the average values from

the number of tests indicated.

Detail test from slab
Reinforcement

G 1
Single

reinforcement

G 2
Double reinforcement

Direction of moment
Average of (number of tests)

pos.
3

neg.
3

pos.
2

neg.
2

Moment at first concrete crack kgcm/cm
Ultimate moment kgcm/cm

940
3300 950

900
2900

680
1620

Strain in tension side °/00
at first concrete crack
at yield point on the surface

in reinforcement

0.15 à 0.20
2.2
1 .9

0.15 à 0.20
2 .5
2 .1

Flexural rigidity Ei acc. to test kgcm2/cm
when crack formation begins
at yield point

Theoretically calculated Ei kgcm2/cm
for stage I
for stage II

60 • 106

16 • 106

63 • 10«
13 • 106

70 • 106

14 • 10«

70 • 106

13 • 106

70 • 106

9 • 106

appeared within the measuring range of every strain gauge1). It can be
pointed out that the first crack generally became visible at a considerably
higher loading than that at which crack formation should have commen-
ced according to the strain and curvature diagram. These strain value
readings in the case of sla b G2 have been utilized when determining the
loads in the main test which correspond to the tension concrete failure
or the yield point in the top reinforcement (see 255:2).

254.2. Subgrade constants
Since the intention of this test series was, among other things, to

discuss the properties of the subgrade from the point of view of the
theory for elastic as well as for resilient subgrade, determinations have
been made both of the modulus of soil reaction k and the modified modulus
of elasticity C. In this calculation the methods have been used as al-
ready discussed in Section 233 and which are based on the depression
measurements from the main tests and the calculated values of the
depression volume obtained from them (equations (23:3) and (23:16).
respectively). The calculations for some of the loading steps are sum-
marized in Table 25:2 and for slab G2 the result is shown in Fig. 25:15.

x) The location of the gauges and the crack formation during strain measurements
on the test beams are marked in on the diagram in the result supplement.
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Fig. 25:15. The relationship between the loading and the depression volume for the slab
G2 as well as the variation in the subgrade constants k and G for various loading. The
secant lines inserted in the upper diagram represent the values of k and C used in the test

analysis.

It is obvious that the properties of the subgrade vary to a great
extent depending on the extent of the deformation. Fig. 25:15 shows
how the subgrade constants decrease with increased loading, i. e. in-
creased deformation. The modulus of elasticity of the subgrade C
alters most and this should in itself imply that the elastic subgrade is
the least correct of both the discussed hypotheses for the properties
of the soil. Really it would be most correct to reckon with a varying
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TABLE 25:2. Series G. Calculation of the soil constants k and C .

Slab
Loading

P
tons

Depression
volume

v — S V d A
cm3

Contact
radius

n
cm

P
k = y
kg/cm3

C=y]/jz rk*
kg/cm2

Remarks

Slab G 1 9.1 16.5 • 103 325 0.55 315
18.4 36,4 313 0.51 280

loading 2 27.9 59.9 299 0.47 247
36.7 87.3 292 0.42 218
45.7 125.7 284 0.36 183
54.9 175.5 276 0.31 153
61. 8 230.0 272 0.27 130

Slab G 2 9.0 17.4 • 103 325 0.52 300
18.0 38,3 308 0.47 255
27.1 63.1 291 0.43 220
36.2 86.8 278 0.41 205
36.2 108.5 276 0.33 163 After loading off
45.4 128. 8 262 0.34 164 and re-loading
54.6 174.0 248 0.31 138
64.0 238.4 234 0.2 7 111

value of the subgrade constant from the edge of the slab towards the
centre since the increased deformation towards the centre should imply
that the subgrade constant there decreases. The table and the figure
apparently only give the average subgrade constant values under the
whole surface of the slab.

It must be obvious that under such conditions it is difficult to decide
suitable subgrade constant values k or C for the theoretical analysis
of the test slabs. According to the same principles as applied to the
model slabs, the author has decided to use the two values which corres-
pond to the loading at the commencement of crack formation in the
bottom and at failure in the top. These values, introduced in Table 25:5
in the following section, have been compiled with the flexural rigidity
values for the slab in Stage I and Stage II respectively according to
Table 25:1.

255. Test results, treatment and theoretical analysis

255.1. Depression measurements
The methods used when analysing the depression and strain measure-

ments are generally the same as in the case of t he model tests (section
245.1), and the same applies to the theoretical calculations. Here how-
ever the calculations have been carried out in accordance with the
theory for resilient subgrade as well as elastic subgrade. The values
of the flexural rigidity of the slabs and the subgrade constants which
were here used (section 254), are introduced in Table 25:5.
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Fig. 25:16. The depression lines for one of t he measuring diameters on both the test slabs.
Only part of the loading steps is shown.

The result of the depression measurements can be shown through
depression lines over the deformation of the diameters. The depression
lines for some of the loading steps on both slabs are shown in Fig. 25:16.
Also here there is a considerable lifting of the slab edges. It is also shown
that the depression figure for a higher load becomes relatively more pointed
and that the edge lifts more and more. This is seen even more clearly
in Fig. 25:17 where some of the depression lines for slab G2 are drawn
in on various scales so that they have all the same centre depression
(so-called linear anamorphy). The reason for this alteration in the curves
is obviously the fact that during loading the slab alters its elastic proper-
ties especially in the centre section where the stresses are greatest and
where the first crack formation in the concrete tension zone and later
on yielding in the reinforcement cause an increasingly weaker flexural
rigidity. It can be seen from the figure that it is the curvature in the
actual centre zone which relatively speaking alters most while the curva-
ture otherwise appears to be comparatively constant.

This can be seen even more clearly in Fig. 25:18 which shows the
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Fig. 25:17. The depression lines for some of the loading steps on the slab G2 drawn on
different scales with equal centre depression values (linear anamorphy). The curves show

clearly how the curvature of the slab in the centre increases with increased load.

P(tons)

SLAB SLAB G2

(cm*')

Fig. 25:18. Curves showing the curvature in the centre of sl abs Gl and G2. The curvature
values have been calculated from the depression values of the five measuring points

nearest the centre. (See Fig. 24:7).
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curvature of the centre point; the curvature values have been calculated
according to the methods shown in Fig. 24:7 from the depression values
of the five measuring points nearest the centre, whereby the depression
line through these points is assumed to be a fourth grade parabola.
The figure shows how curvature in the centre increases rapidly with
increased loading; it is however apparent here as in the case of the
model tests that increase in curvature takes place along an even curve
without any discontinuity or sudden alterations in gradient. Some-
thing like that may otherwise be expected at the commencement of
crack formation in the concrete and at the yield point in the reinforce-
ment, analogous with that obtained in the testing of the detail test beams
(Fig. 25:14).

Neither does the depression at the centre point show any tendencies
whatsoever to discontinuity as it develops. The curves concerning the
centre depression as well as the corresponding theoretical curves are
shown in Fig. 25:28 in the summary Section 255:4.

In Fig. 25:19 the depression lines (average values for the four radii) for
two low and two high loads have been compared with the corresponding
theoretical depression lines for resilient and elastic subgrade respectively.
The last-mentioned curves have not been taken out to the edge of the
slab since no theoretical values apply in this case; the curves are drawn
according to the theoretical curve for a slab of infinite extent (fig.
22:5), which, it has earlier been shown, can also be applied for slabs of
finite dimensions except in the neighbourhood of the edge (see 224).

When deciding which of t he subgrade theories lies closest to the tests,
one should primarily study the low loading curves which correspond to
an uncracked slab with a relatively high flexural rigidity (Stage I). Fig.
25:19 shows however that both the theories give approximately equally
good agreement. As far as the higher loads are concerned then comparison
with the tests is naturally rather less reliable depending on the varying
flexural rigidity of the slab and variations in the subgrade constant. Nor
it is possible to show the advantage of o ne of the theories over the other.
Both the theories appear to give relatively satisfactory agreement and
the closer relationship with one or the other of them depends on the size
of t he load; these conditions are clearly shown by the curves concerning
the depression in the centre in Fig. 25:28. Nor it is possible to utilize
deformation nearer the edge when discussing the applicability of both
of the theories, since the theory for elastic subgrade does not give any
values for deformation in the neighbourhood of the edge. Apart from
this is should be pointed out that the theories assume that in the event
of the edge lifting then the subgrade exerts a tension on the slab while
the test slab in reality releases contact with the subgrade altogether.
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Fig. 25:19. Experimental and theoretical depression lines at some of the loading steps
for slabs Gl and G2. The test curves represent the average depression for the
four gauges at the same distance from the centre. The theoretical curves for resilient
subgrade are calculated according to Fig. 22:13 and 22:8; in this connection the diagram
in the last-mentioned figure has been used to correct the influence of load distribution.
The theoretical curves for elastic subgrade are calculated according to Fig. 22:5; the dia-
gram on this figure applies to slabs of i nfinite dimensions but can also be used for slabs of
finite dimensions except in the neighbourhood of the edge; the theoretical curves have
therefore not been continued to the edge of the slab. The constant values for the slab and
the subgrade used for calculation (according to Table 22:5) are shown beside the various

curves.
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Fig. 25:20. Result of the strain measurements on slab G2. The zero position of the
relationship curves and the curve lines for the three first loading steps for the gauges
-^2 > T3, T4, T6, Ts and T10 are estimated from the following measurement values and from
the residual values during off-loading, while the strain gauges concerned during these
first loading steps were faultily fitted. All the curves have been evened out slightly with
respect to occasional irregularities. Above the curves there is a sketch showing the location
of the strain gauges with the cracks marked in, and from the curve for gauge T„ which
was located over the first crack, as well as for the adjacent gauge Th, it can be assumed
that the first crack occurred at approx. 40 tons. From the exterpolated curve for Tz it is
found that the loading at yield point in the top reinforcement must lie at about 66 tons

(yield strain according to the detail tests is approx. 2.4 °/00).

255.2. Strain measurements. Moment and ultimate load
The moment in the centre of the slabs can in the usual way be estimated

from the curvature in the centre point (Fig. 25:18) by comparison with
the corresponding measurements on the detail tests according to the
method shown in Fig. 24:22. The curves obtained in this way with the
relationship between the load and the moment at the centre point are
shown in Fig. 25:28 in the summary Section 255:4, and in these moment
diagrams the theoretically calculated relationship lines have also been
drawn in. From the moment diagram the loading value at the concrete
tension failure and yield point in the bottom P(br and Pfe respectively
can be calculated as loading values at the corresponding crack and
ultimate moment according to the detail tests, Table 25:1.
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The loads causing crack formation and attaining yield point in the
top Pf and Pvtie respectively can be estimated in the same way as in
the model tests through analyses of the depression and strain measure-
ments.

In the case of t he slab G I w here no strain measurements were carried
out the ultimate load could be accurately calculated from the disconti-
nuities in the depression measurements in the points nearest the annular
crack (see Fig. 24:24). The observations are summarized in Table 25:3.

In the case of sl ab G 2 strain measurements were carried out along one
of the radii of the slab. The measurement results are summarized in
Fig. 25:20. Crack formation corresponds to a sudden deviation in the
strain curves; determination is however rather unreliable just concerning
the first crack corresponding to the load Pctr, since the movements of the
strain gauges were interfered with by the off-loading to zero shortly
before the crack load was obtained. Comparison has also been carried
out with the corresponding value of the strain in the detail tests (see
Table 25:1). This later method alone has been used for the determination
of the final ultimate load at yield point in the top reinforcement Pytie

The strain measurements on the slab according to Fig. 25:20 only went up
to the loading step of 64 tons at which load the strain did not fully reach
the value which, according to the detail tests in Table 25:1, corresponded
to yield point strain. By exterpolation one can estimate the load PvtlR

with a fair degree of reliability to approx. 66 tons according to what is
shown in Fig. 25:20. The result of the ultimate load determinations is
shown in Table 25:3. It should be pointed out that the strain measurements
on slab G 2 were only carried out along one radius and that the ultimate
load determinations with respect to this and with respect to the indirect
determination through comparison with the results from the detail tests
appear to be considerably less reliable than the corresponding deter-
minations for the slab G 1.

The strain measurements also give a certain idea of the moment
distribution along the slab r adius. When analysing the measurements in
this respect certain corrections must be made in the readings during the
three first loading steps. Certain of t he strain gauges were fitted faultily
in point of f act so that from the beginning they were not resting on the
measuring points. This was not discovered before the end of the three
first loading steps and the gauges in question did thus not give any
usable measurements for these loading steps. In these cases fairly
correct zero load basic values can be estimated from the measurement
values for on and off-loading which were carried out at the loading step
of 36.2 tons and thereby it is assumed that the residual strain after
off-loading is of the same magnitude as the increase in strain values
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TABLE 25:3. Series G. Centre loading on test slabs. Failure in top surface Pt.
The values marked show the assumed load values for failure in the top surface.

Slab,
loading

case

Load in tons at first crack according to
Load at yield
in top-reinf.
according to
strain gauges

Load at
stamp-out

failure

Slab,
loading

case
visual
obser-
vation

dial gauge beside crack
at radius strain

measurement

Load at yield
in top-reinf.
according to
strain gauges

Load at
stamp-out

failure

Slab,
loading

case
visual
obser-
vation E W N S average

value

strain
measurement

Load at yield
in top-reinf.
according to
strain gauges

Load at
stamp-out

failure

G 1
Loading 1
Loading 2

G 2

54.9

45.4

52.6 51.5 52.2 52.0 52
approx. 40l) approx. 662)

38.9
64.0

68.53)

1 ) The value is rather unreliable due to the fact that the movements of the strain
gauges were disturbed by the off-loading and re-loading after a load of 36.2 tons (see Fig.
25:20). Comparison has also been made with the strain measurements during the detail
tests, see 254:1.

2) The value is estimated by comparison with the strain measurements during the detail
tests, see 254:1.

3) The value can have been influenced by the shear reinforcement which was placed in
the centre zone of slab G 2. Comparison with the corresponding load on slab G 1 appears
to show, however, that the shear reinforcement had practically no effect.

between the off-loading at 36.2 tons and reloading to the same load
(see Fig. 25:20).

The strain values with these corrections included have been made up
for some of th e loading steps into strain curves in Fig. 25:21; the strain
curves for the higher loading s teps are drawn with relatively free rela-
tionship to the measuring values since the increase in strain for the
various gauges occur very unevenly after crack formationhas commenced
in the top surface of th e slab. By comparing the strain values according
to these curves with the curves showing the relationship between the
moment and the strain in the detail test beam experiments (the detail
test beams with top reinforcement in the tension side, see Fig. 25:14), it
should be possible to obtain a fairly good idea of the distribution of
moment. A calculation of th is type has been carried out for some of the
loading steps and the result is shown in Fig. 25:21. Here the corresponding
theoretical curves, calculated for resilient a nd elastic subgrade have also
been marked in. The figure shows relatively good agreement between
the test and theory for both the lowest loads P1 and P2 which roughly
correspond to the commencement of crack form ation and the yield point
in the bottom (Stage I and Stage II); both the subgrade hypotheses here
have acceptable agreement concerning t he maximum negative moment
value while the theoretical curve for the elastic subgrade shows the best
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Fig. 25:21. The strain curves and the corresponding moment distribution curves obtained
from the strain measurements at some loading steps for slab G2. The moment curves
have been obtained from the strain curves by comparison with the strain measurements
from the detail tests (see Fig. 25:14). The figures also show the corresponding moment
distribution curves according to the theory for resilient subgrade and elastic subgrade
respectively. The moment curves for the first-mentioned theory have been obtained
according to Fig. 22:14 and 22:9, whereby the diagrams in the last-mentioned figure have
been used to estimate the correction due to distributed load. The moment curves according
to the theory for elastic subgrade have been obtained according to Fig. 22:7 which applies to
slabs of i nfinite extent but certain corrections have been made for the influence of the free
edge analogous with that shown by the moment curves according to Fig. 22:14 for slabs
of finite dimension on resilient subgrade. The constant values for the slab and the sub-

grade used are shown beside the various curves.
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relationship to the test curve on the whole. Also at the load P3 = 40
tons, corresponding to the commencement of crack formation in the top
surface, agreement between the test and theoretical curves is good,
something which was hardly to be expected. At this load the slab has
actually gone into a yield stage in the centre and the corresponding result
from the model slabs shows that the elasticity theory is not then applic-
able, not even to the parts of the slab lying outside the centre section. The
fact that this case shows good agreement between test and theory appears
to depend on the fact that the load in question does not lie so far above
the load at the commencement of yield in the centre of the slab so that
the yield zone should be of relatively limited extent and therefore does
not influence the moment distribution so much further out from the
centre of the slab.

255.3. The soil 'pressure measurements
As has already been mentioned, the pressure cells which were cast

into the slab G 1 were still in the experimental stage and the results
have therefore been quite difficult to interpret. Some of the gauges were
damaged by moisture, probably in connection with casting, and did not
give any usable measuring values. Some of the gauges which functioned
were not designed for such large pressures as those that actually occurred
and therefore they gave no measuring values at higher loading. The
result of the pressure measurements with the slab G 1 must therefore be
judged as being altogether too unreliable to be able to use in a discussion
concerning the properties of the subgrade material.1)

The pressure measurements in the case of the slab G 2 have given
more satisfactory results. The gauges have here been located in pairs
beside each other and it was therefore possible to judge the reliability
of th e measurements obtained. The result of t he measurements is shown
in Fig. 25:22. It is undeniable that certain of the adjacent gauges in many
cases show relatively deviating values but the deviations are generally
smaller in the case of higher pressures. The deviations can naturally
depend on local unevenness in the soil itself, the occurrence of stones
under the gauges or similar factors. In one case a gauge showed so very
much higher values compared with an adjacent gauge that the readings
from this gauge have been excluded. The gauges located nearest the
centre have not registered the pressure during the higher loading steps
which has apparently depended on the fact that the wire has slackened
altogether too much under these high pressures. The pressure increase
in the various measuring points appears to have had quite a linear form

*) The measuring values are shown in the result supplement, Section 93.
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Fig. 25:22. The relationship between the total load and the measured pressure at the
various measuring points for the test slab G 2. The relationship curves have been
evened out with respect to occasional irregularities. Two pressure gauges were placed
at each measuring point and both the measuring results are marked in on the diagram
(with the exception of the gauge pair 15—16 where the results from gauge 16 have been
eliminated since this gauge showed unreasonably high results). The sketch beside the

curves shows the location of the gauges.

if one neglects local deviations which appear to depend to a great extent
on the imperfection of the general apparatus used, more particularly the
displacement already mentioned in the frequency generator scale (Section
253:2) and the difficulty in finding the exact resonance position for the
natural frequency of the wire. The unevenness is particularly prevalent
for the pressure gauges placed nearest the edge where the pressure from
the subgrade is very small and any possible interruptions have the largest
influence. Due to the counter-resilience of the subgrade when the edge
of the slab lifts, the measuring values of these edge gauges will be negative;
the largest negative value should roughly correspond to the pressure of
the weight of the slab 0.036 kg/cm2. The fact that some of the gauges
registered higher negative values depends on the fact that they, as
already mentioned, were subjected to a more or less powerful initial
pressure when being fitted. The measuring values have been equalized
by drawing relationship curves as shown in Fig. 25:22 and the measuring
11
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Fig. 25:23. The pressure distribution curves compared with the depression lines for the
same radius on slab G2. The figure also includes some of the estimated pressure distribu-same

tion curves for higher loading steps which give the correct pressure volume.

values equalized in this way have generally been used for further
analysis.

When inserting the pressure curves in Fig. 25:22 equalization has also
been carried out with respect to the fact that evenly running curves concer-
ning pressure distribution along the radius of th e slab would be obtained.
Fig. 25:23 shows these pressure distribution curves for some of the loading
steps and for comparison the depression lines for the same radius and
the same loading steps have been inserted in the figure. It can be seen
that the pressure curves for the lower loading steps have a considerably
steeper gradient than the corresponding depression curves, while this is
not the case for the higher loading steps.

This fact is shown even more clearly in Fig. 25: 24 where some of the
curves in Fig. 25:23 are drawn linearly anamorphised. With respect to
the form of the depression lines a steeper gradient would almost have
been expected also on the pressure distribution curves for the higher load
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Fig. 25:24. The pressure and depression curves in Fig. 25:24 marked in with equal
peak values (linearly anamorphised). Part of the estimated pressure curves with the

correct pressure volume has also been marked in, (broken lines).

steps. This gives reason to suspect that the measuring values for the
higher load steps are unreliable. Another condition which indicates the
same thing is that the curves showing the relationship according to Fig.
25:22 between the pressure and the loading for the central gauges have
a linear form or, particularly in the case of th e centre gauge, the curves
even show a steeper gradient with an increased load while instead it
was to be expected that the curves in similarity with the corresponding
depression curves should have shown a lower gradient with an increased
load.

The pressure gauges were placed in pairs under the indicating dials
along one of the radii (se Fig. 25:5). It is thus possible to study directly
the relationship between depression and soil pressure in the various
measuring points and these relationship curves have been marked in on
Fig. 25:25. The figure shows very clearly that one cannot count with the
relationship corresponding to a resilient subgrade since in this case the
inclination of all the curves would have agreed. This figure also points
out that the centre pressure gauges showed excessively low values at
higher loadings since all the curves show a common tendency to an incre-
ased gradient for the measuring points nearer the centre with the excep-
tion of just the upper parts of the curves for both the centre gauges where
there is a marked decrease in the gradient.
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Fig. 25:25. The relationship curves between the depression and the pressure at the various
measuring points along the radius for slab G2. The relationship curves for both the
highest loading steps, if the estimated values for the correct pressure volume are used,

have been marked in as broken lines.

The reliability of the measurement results can be checked by calculating
the soil pressure volume, Vp for the various loading steps since, according
to the condition of equilibrium, this is

P = V „ = J v . d A
Since, however, pressure measurements have only been carried out under
one of t he radii of t he slab and since the depression measurements show
that the various slab radii have slightlydifferent depressions and therefore
may have slightly different pressures, one cannot use the measuring results
directly. The average pressures under the four radii have instead been
estimated with the help of the relationship curves in Fig. 25:25 between
the depression and the pressure or for the measuring points furthest out
by exterpolation. The pressure volume has been calculated from these
average pressures in the same way as the depression volume whereby the
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TABLE 25:4. Series G, test slab G 2. Result of pressure volume calculation from the
soil pressure gauges under the slab.

The average pressure estimated from the average depression values has been used
for calculating purposes.

Loading

Load no. ; Load P tons

Pressure volume
Vp tons V p / P

1 4.8 5.1 1.06
2 9.0 9.1 1.01
3 13.5 13. 3 0. 9 9
4 18.0 16.5 0. 9 2
5 22.5 19.2 0.85
6 27.1 22.4 0.83
7 31.7 25.2 0.80
8 36.2 28.8 0.80

17 40.8 30.8 0. 7 6
18 45.4 32.8 0. 7 2
19 50.0 35.1 0.70
20 54.6 38.0 0.70

"negative" pressure under the lifting edge is assumed to be limited to
the pressure exerted by the slab itself 0.036 kg/cm2.

The result of the pressure volume calculation is shown in Table 25:4.
One can see that the agreement between the loading and the pressure
volume for the lowest loads is very good but for higher loads it becomes
poore and poorer. The suspicion expressed previously that the pressure
gauges nearest the centre show excessively low values at higher loads
appears to be quite correct. The author has attempted to carry out a
rough estimation of the correct pressure distribution curves with correct
pressure volume for some of the higher loading steps in the following
way. One assumes that the outer six (or in the case of the higher loading
steps five) pressure gauges give the correct values so that the outer part
of the pressure distribution curve is correct. The form of the curve in
the centre zone is assumed relatively speaking to agree with the form of
the curve for the lower loading steps with a correct pressure volume and
one can thus estimate the relationship between the pressure values in the
inner measuring points. These pressure values are proportioned in such a
way that the pressure volume is correct. Some pressure curves obtained
in this way are shown in Fig. 25:23 and 25:24. These show a perfectly
reasonable form of curve and have considerably higher pressure values
in the centre than the corresponding measuring values.

In a discussion of t he test results compared with the theories according
to both the subgrade hypotheses one should primarily utilize the pressure
measurements from the lower loading steps where the pressure volume
is correct. One also has the advantage that the slab is, generally speaking,
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Fig. 25:26. The pressure measurement values and the theoretical pressure curves at loads
of 4.8 tons and 13.5 tons for slab G2. The theoretical curves for resilient subgrade have
been obtained from the corresponding depression curves in Fig. 25:19. The pressure
curves for elastic subgrade have been obtained according to Fig. 22:10. The constant

values for the slab and the subgrade according to Stage I have been used.

uncracked and in Stage Iwhereby in judging the result one does not need to
pay any respect to the complication of varying flexural rigidity in the slab.

In Fig. 25:26 the pressure measurement values for some of the loading
steps with a low load have been compared with the theoretical pressure
distribution curves according to the theory for elastic subgrade and
resilient subgrade respectively. The constant values for the slab and the
subgrade according to Stage I have been used; the values used are intro-
duced in Table 25:5 in the following section and are also shown in the
figure. As the figure shows, the measuring values indubitably exhibit the
best agreement with the theory curve for elastic subgrade and it is
obvious that the pressure in the neighbourhood of the centre of the slab
cannot be even approximately estimated according to the theory for
resilient subgrade.

In Fig. 25:27 in the same way the test values and the theoretical curves
have been marked in for a load corresponding to yield point in the bottom
reinforcement and a load in the neighbourhood of the ultimate load at
yield point in the top reinforcement respectively. The theoretical curves
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Fig. 25:27. The pressure measurement values the and theoretical pressure curves at
loads of 40.8 tons and 64.0 tons for slab G2. The estimated pressure distribution curves
with the correct pressure volume have also been included. The theoretical curves are
calculated according to Fig. 25:26 for the constant values of the slab and the subgrade

according to Stage II.

have been calculated for the flexural rigidity of t he slab at Stage II and
the soil constants for loads in the neighbourhood of the ultimate load
(see Table 25:5 and Fig. 25:27). In the diagram the estimated "test curves"
with the correct pressure volume have also been marked in. When judging
the result according to the figure due respect should be taken to the
influence of the varying flexural rigidity of the slab and the varying
subgrade constant, as well as the difficulty in selecting suitable constant
values. Most important of all it should be pointed out that the estimation
of the pressure distribution curve is very unreliable concerning both the
form of th e curve and the individual pressure values. The purely formal
comparatively good agreement between the estimated test curves and
the theoretical curves for elastic subgrade should thus in itself not be
given too much importance, but the figures show in any case nothing
that appears to dispute the correctness of the result which was more
indubitably shown in the previous Fig. 25:26, namely that the subgrade
pressure can fairly well be estimated according to the theory for elastic
subgrade.
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255.4. Conclusion and discussion
The test results and the corresponding theoretical calculations have

been put together in Table 25:5. Data forboth the slabs and the constants
for the slab and thesubgrade for low and highload used for the theoretical
calculations have also been introduced in this table.

The calculations and comparisons between test and theory have been
carried out for loading at the commencement of crack formation Pcbr

and at the yield point Pybie in the bottom under the loading centre as
well as for the first crack in the top Pctr and for the double-reinforced
slab G 2 for final failure due to yield in the top reinforcement The
first two loads have been estimated from the relationship curves between
the loading and the moment in the loading centre (see Fig. 25:28) while the
later loads in the case of failu re in the top have been estimated from
the crack formation and strain measurements in the top surface (see
Table 25:3). The test values for depression and soil pressure (slab G 2)
in the centre for the loads in question have been obtained from the
corresponding test curves according toFig. 25:28. The centre soil pressure
values for the slab G 2 have, in the case of th e higher loading steps, been
obtained from the pressure distribution curves in Fig. 25:23 estimated
from the pressure volume calculations; the curve in Fig. 25:28 and the
corresponding values of the centre pressure in the table must thus be
considered as being very unreliable.

No corrections for membrane stress influence have been introduced in
this case in the ultimate loads. A rough calculation of t he correction
values according to (23:44) shows that the correction in the case of th e
crack load Pf only goes up to a few tenths of a percent and is thus
completely insignificant. At the yield load Pytie on slab G 2 the correction
is considerably greater but here must be added the earlier discussed
influence on the flexural rigidity of the widespread crack formation in
the case of the double-reinforced slabs which reduce the influence of the
membrane tension and make the correction value exceptionally unreli-
able; the correction here may go up to between 2 and 5 tons.

The corresponding theoretical loading values have been calculated
from the moment diagram in Fig. 22:7 and 22:9 respectively concerning
the loadsat top surfacefailure according to thetheory forresilient subgrade,
a correction has been carried out for the influence of a finite slab radius
according to Fig. 22:14. The loads have been calculated for the moments
at corresponding failure as determined from the detail tests (Table 25:2);
the moment values have been introduced into the result Table 25:5.
Comparison between test and theory shows for the two lowest loads at
crack formation and yield point in the bottom that agreement is very
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TABLE 25:5. Series G. Centre loading on test slabs. Comparison between test results and theory.
Diameter 7.00 m, thickness 15 cm, load distribution radius c= 40 cm.
The theoretical values have been calculated according to the theory for resilient subgrade (index k) as well

as elastic subgrade (index e).

Series G, slab no 1 2

DATA FOR THE TEST SLABS
Thickness h0, approx cm 15 15
Reinforcement, Ks 40 0 8

bottom reinforcement c/c !M —c/c 10.0 c/c 9.1 —c/c 10.0
top reinforcement

c/c !
— c/c 12 — c/c 12.5

Flexural rigidity Ei kgcm2/cm
Stage I 6Q • 106 70 • 10«
Stage II 16 • 106 14 • 10B

Resilience constant h kg/cm3

for low loading (Stage I) 0.55 0.45
for high loading (Stage II) 0.30 0.30

Soil modulus C kg/cm2

for low loading (Stage I) 300 250
for high loading (Stage II) 150 120

Elastic radius of rigidity I cm
for low loading h= 103 le = 74 h= 112 L = 83
for high loading 86 60 83 62

Relative load distribution a=~j

for low loading

Relative load distribution a=~j

for low loading ci/b—0.39 ae== 0.54 ak =0.3 6 ae = 0.48
for high loading 0.47 0.67 0.48 0.65

Ultimate moment kgcm/cm
at bottom concrete failure nier 940 900
at bottom reinforcement yield myie 3300 2900
at top concrete failure m'cr 950 680
at top reinforcement yield m'yie — 1620

("F fr om tests
RESULT: j Te from elast. subg. theory F T* F/T* Te F/Tg F Tfc F/T* Te F/Tg

l'i\. from resil. subg. theory
Loads in tons

at bottom crack Pjfr 8 6.6 1.21 8.0 1.00 8 6.1 1.31 7.2 l.ll
at bottom reinforcement yield Ptf/ie 42 29.7 1.41 38.4 1.09 33 26.6 1.24 32.6 1.01
at top crack Pfr 52 52.1 1.00 53.5 0.97 40 35.4 1.13 38.2 1.05
at top reinforcement yield Pfl/ie 66 84.3 0.78 91.0 0.73

Depression in cm
at test load P^r 0.18 0.16 1.12 0.13 1.38 0.15 0.166 0.90 0.143 1.05
at test load P^v^ 1.56 2.23 0.70 1.67 0.94 1.27 1.87 0.68 1.61 0.79
at test load Pff 2.33 2.76 0.85 2.07 1.12 1.92 2.26 0.85 1.96 0.98
at test load P{jJie 5.72 3.74 1.53 3.23 1.77

Pressure under loading centre, kg/cm2

for test load Prf* 0.150 0.075 2.00 0.170 0.88
for test load P^yie 1.14 0.560 2.04 1.13 1.01
for test load P^r 1.48 0.755 1.96 1.37 1.08
for test load Pflie 2.88 1.25 2.30 2.27 1.26
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good between the test loads and the loads according to the theories for
elastic subgrade and rather less good according to the theory for resilient
subgrade. At the load P°tr a t crack formation in the top the agreement
is good according to both the theories, which in this case give almost the
same result. The reasons for this good agreement, as opposed to the
corresponding results from the model tests, have earlier been discussed
in connection with the moment distribution curves in Fig. 25:21. It
can, however, be pointed out that agreement is considerably less good
at the higher ultimate load Pvtie at the reinforcement yield point in the
top of slab G 2. At this higher load the plastic zone in the centre of
the slab is more extended and the properties of the slab deviate con-
siderably from the conditions for the elasticity theory.

The theoretical values for depression in the centre have been cal-
culated according to the diagram in Fig. 22:8 b and 22:13 for resilient
subgrade and 22:11 for elastic subgrade. Agreement with the test
values is relatively good according to both the theories; in general the
theory for elastic subgrade gives a little better result. Agreement in
the case of the highest load for the slab G 2 is, however, less good; this
can depend on the fact that at this load the slab has extensive crack
formation in the top and that this deformation which, to a large extent,
is caused by "negative deflection", should almost be calculated on the
basis of th e lower modulus of elasticity for Stage II in the case of negative
deflection (see T able 25:1).

Finally the theoretical values for the centre soil pressure on slab
G 2, calculated according to Fig. 22:10, have been compared with the
test values. Agreement is poor according to the theory for resilient
subgrade and good according to the theory for elastic subgrade with
the reservations for unreliability in the calculated test values for higher
loading which has already been pointed out above.

It may be mentioned that the flexural rigidity of the slab and the
subgrade constants have been inserted with a Stage I value when cal-
culating the lowest l oad and Stage II value for the other loads.

The comparisons discussed above between moment, depression and
subgrade pressure in the loading centre according to tests and theories
are further illustrated by the diagrams over the magnitudes in question
shown in Fig. 25:28. Even here it can be seen that the theoretical curves
according to the elastic subgrade hypothesis on the whole show closer
agreement with the test curves. Otherwise concerning the general form
of t he test curves reference ismade to the discussion of th e corresponding
curves for the model t ests in Section 245:5.

When j udging the results in their entirety one must pay due attention
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—°—Test values
—Estimated rest values (pressure)

Theoretical curves för-
resi/ient subgrade
Theoretical curves for
elastic subgrcrde

Fig. 25:28. Depression, moment and (for slab G2) subgrade pressure in the centre of the
slab for slabs Gl and G2 according to test and theory. The test curves of the centre
moment have been obtained by comparison with the curvature graphs for the slab and
the detail tests according to the method illustrated in Fig. 24:22. The theoretical curves
for resilient subgrade have been calculated according to Fig. 22:8 b and 22:13 and for
elastic subgrade according to Fig. 22:10 concerning subgrade pressure and according to
Fig. 22:11 concerning depression. The calculation has been carried out with the constants
for the slab and the subgrade according to Stage I (with ^= 0,15) and Stage II (j» = 0).
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to the influence on the theoretical calculations of the degree of unre-
liability of the constants for the slab and the subgrade and also pay
respect to the accuracy with which the test values can be obtained. In
this considerations reference is made to the corresponding discussion for
the model tests in Section 245:5. Here shall only be added the fact that
the subgrade constant k or C in this test series with slabs on natural clay
subgrade is considerably more unreliable to determine and varies much
more with loading than corresponding subgrade constant in model
tests. One o ther fact that applies here is that the theoretical subgrade
pressure value is influenced rather more than the theoretical value for
depressions by the unreliability of th e constants and that the expression
for the subgrade pressure and depression according to the theory for
elastic subgrade is somewhat more influenced by the unreliability in
the constant values than the corresponding expression according to the
theory for resilient subgrade.

It can thus be said that the limits for reasonable deviation between
theory and test in this test series should be made rather wider than in
the case of the model tests. With respect to this one can sum up by
saying that the agreement reached between test and theory on the
whole is as good as may be expected. The tests have jjossibly not giv en
completely unanimous answers to the question as to which of t he two
subgrade theories best corresponds to the actual soil properties, and as
far as both depression and moment are concerned, both the theories
show acceptable agreement with the test results. The soil pressure
measurements, particularly the measurements at the lower loading
steps, which can be judged as being fairly reliable, show however a con-
siderably better agreement with the theoretical pressure distribution
according to the hypothesis for elastic subgrade. Perhaps a reminder
is in order here that it is just concerning the subgrade pressure th at both
the hypotheses differ most. The fact that the result just concerning
subgrade pressure shows good agreement, with the theory for elastic
subgrade should thus be a strong argument supporting the view that
this theory is be tter when describing the properties of th e clay subgrade
of the type in question.

It should finally be pointed out that in the case of th ese slabs good
agreement was obtained between the tests and theoretical loads for t he
beginning of crack formation in the top Prtr. This opposes the corres-
ponding results from the model tests which showed that generally
speaking it was not possible to apply the elasticity theory for moment
calculations after a plastic stage had been attained in the slab. With
the slabs in the G-series, however, the loads causing cracks Pctr in
question do not lie far above the loads Pybie, corresponding to the yield
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point in the centre of the slab, so that the plastic zone in these cases
should be so limited that it only has an insignificant affect on the
moment distribution further out from the centre. At a higher load
(Pyie for the G 2 slab) with a more extended plastic zone then the
agreement between test and theory is considerably poorer, and the
general conclusion from the model tests concerning the application of
the elasticity theory can thus not be considered to have been shown
to be wrong by the tests discussed here.



26. General Viewpoints on the Application of the Elasticity
Theory Concerning Reinforced Concrete Pavements

The theoretical presentation in Section 22, summarized in Section 225,
is based on the assumption that the concrete pavement functions as
a complete elastic-isotropic slab on an ideal-elastic subgrade which
functions either as a resilient bed or as an elastic-isotropic and semi-
infinite medium.

Concerning the current problem of a reinforced concrete pavement
on natural soil it is obvious that the assumptions made for these theories
are satisfied only to a very slight extent. The reinforced slab can only be
considered to be more or less elastic and isotropic when it is in a
completely uncracked stage; as soon as the loading becomes so great
that the slab begins to function as a reinforced unit then, due to the
formation of cracks and the alteration in the direction of moment, its
properties vary in a high degree with loading and with the distance
from the loading centre. A subgrade of n atural soil has properties which,
to an even smaller extent, can be designated as being ideal-elastic.

The possibilities of applying the theory, in spite of this, to reinforced
slabs have been studied with the help of model tests (series M), where
a subgrade of w ood fibre board has been shown to have properties which
correspond relatively well to those of the theoretical resilient bed. The
test results concerning depression show that the deformation occurring
in the case of loads corresponding to the yield point in the bottom
reinforcement can be calculated fairly well according to the elasticity
theory if the flexural rigidity of the slab is determined on the basis of
the secant modulus at the yield point, and that a corresponding calcula-
tion can also be used concerning the deformation in the case of even
higher loads, generally up to the final ultimate load with crack formation
(or reinforcement yielding respectively) in the upper surface, in spite of
the fact that the section of t he slab around the loading point has started
to assume a plastic stage. Concerning the moment in the slab a
corresponding calculation gives a satisfactory result only up to the
load which corresponds to the yield point in the bottom. In the case
of higher loads it is generally not possible to use the elasticity theory for
calculation of moment or ultimate loads.
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The full scale tests carried out (series G) ha ve been specially analyzed
in order to determine the properties of the soil. Even if a completely
clear result has not been obtained, soil pressure measurements show in
general that natural soil corre sponds best to the hypothesis concerning
elastic subgrade. Concerning depression and moment then suppositions
concerning the soil in accordance with both the hypotheses give a
comparatively good result. Concerning other possibilities of applying
the elasticity theory to the tests in series G the same results have been
arrived at as in the case of t he tests in series M.

Summarizing, the conclusion can thus be reached that the elasticity
theory can very well be applied to reinforced concrete pavements for
the calculation of deformation and moment (loads) as long as the slab
remains in the elastic stage. The deformation can be calculated fairly
well in the same way even in the case of loading beyond this stage. In
the calculation, the flexural rigidity of the slab should be estimated as
the secant modulus at the yield point. Theoretical calculations of the
flexural rigidity show that the calculation according to stage II with
n = 15 gives good results.

For calculation of t he definite ultimate load Pt at failure in the top
surface, the elasticity theory is not su itable.

The natural soil (in any case the clay soil used for the tests in question)
appears to function approximately as an elastic subgrade.

Further test results are shown and discussed in Part 5 which concerns
field tests carried out in connection with concrete pavement work on air-
fields.



3. The Ultimate Strength Theory for Reinforced
Concrete Pavements

31. Principles and Assumptions. Literary Review

It has already been pointed out that the assumptions made in the
elasticity theory concerning a completely elastic, homogeneous and
isotropic slab are very imperfectly satisfied when applying the theory
to a reinforced concrete pavement. This applies already in stage II
since the elastic properties change the whole time during the crack
formation in the slab, and it is obvious that in the failure stage, when
the reinforcement has started to yield, the assumptions of the elasticity
theory have been completely abandoned.

The test results in accordance with the previous section have, how-
ever, shown that the elasticity theory can be used quite well for the
calculation of moment and stresses in the slab up to the load which
corresponds to yield point in the bottom reinforcement under the
loading centre. In the case of loa ding considerably exceeding this, when
the yield in the central zone begins to extend, the elasticity theory does
not, on the other hand, give any idea of the increasing stress, and the
negative moment, which finally results in circular cracks in the top
surface (or top reinforcement yield in the case of top reinforced slabs),
cannot be calculated according to the elasticity theory.

It can be discussed as to which condition in the slab is to be the basis
for a structural design of th e concrete pavement, i. e. which load shall be
considered to be the ultimate load for the slab in practice. Some research
workers maintain that this load should be stipulated at yield point in
the reinforcement under the centre of the load and also maintain that
loading exceeding this level produces detrimental permanent deformation
in the bottom surface. The safety factor can in this case, however,
be placed very low, 1.0 or insignificantly higher [78].1)

The tests referred to in the previous section clearly show, however,
that an ultimate load defined in this way does not produce any failure
deformation whatsoever; the depression and curvature figures for the
loading centre continue evenly with increased loading without any
special deviations. In this connection, a comparison can be made with

1) Se also the handbook Bygg, part II [54],
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the quite different behaviour in this respect of the simply supported
detail test beams where the transition between the various stages in the
deflection of the beam is clearly marked 011 the curve showing the
relationship between the load and the curvature, and where the curvature
increases in a practically unlimited way without any further load
increase as soon as the reinforcement yield point is reached. Using a
definition as above of the ultimate load, nor any influence on the ultimate
load is obtained from a higher or lower tensile strength in the concrete,
nor from any existing top reinforcement, factors which are undoubtedly
significant for the strength of the slab.

A more definite idea of the actual load-bearing capacity of the slab
is obtained if one associates the definition of ultimate load with the
occurrence of failure phenomena on the top surface of the slab and
defines the ultimate load for single-reinforced slabs to be that load at
which the first circular crack appears in the top surface or, in the case
of double-reinforced slabs, to be that load when the reinforcement in
the top surface reaches the yield point. A connection is thus established
with the ultimate load definition which was adopted for slabs by
K. W. Johanssen in his yield line theory [31] and which has been
adopted for other statically indeterminate problems in the case of the
so-called ultimate strength methods. It should, however, be pointed out
that the ultimate load in the case of slabs on soil as opposed to the
above-mentioned types of structures does not correspond to definite
collapse, if by that is meant the condition in which the supporting
properties of thestructure are completely broken down. Collapseaccording
to this definition is first reached by the load which actually causes
stamping-out around the loading plate. It is, however, obvious
that this last-mentioned load cannot be adopted as a basisfor a calculation
of t he safety for failure of t he slab since, in the case of lo ading beyond
the crack formation or top surface yield point stage respectively, there
are rapidly increasing permanent deformations with increased crack
formation in the top of the slab. A check should of course be carried
out to insure that stamping-out collapse does not occur at a lower load
than that corresponding to crack formation (or reinforcement yield
respectively) in the top surface. This definite collapse load is treated
in Section 333 in connection with the test analysis.

The author thus considers that the ultimate load for a reinforced
2)avement shoul d be defined as that load causing top surface crac k forma-
tion or yield in any existing top reinforcement. The safety factor in the
case of su ch an ultimate load definition should naturally be selected to
be higher than if the ultimate load corresponds to the yield point in
the bottom surface but it should be pointed out that there is no cata-
12
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Fig. 31:1. The relationship between the flexural moment and the flexural deformation
(curvature) for a simply supported slab strip of reinforced concrete (detail test beam).

strophe failure at the ultimate load defined above and not even at the
stamp-out failure stage. It is obvious that this ultimate load can not
be calculated in accordance with the methods defined by the elasticity-
theory which has been treated in the previous part of this paper.

The function of the slab after the yield point has been reached in
the reinforcement under the loading centre can be discussed on the
basis of flexural deformation of a similarly reinforced and simply
supported concrete slab strip of the same type as the so-called detail
tests. Fig. 31:1 shows the well-known relationship between the moment
and the curvature in the case of such a simply supported slab strip;
this showing that the slab behaves in a practically ideal-plastic way
after the moment has reached the value which corresponds to the yield
point in the reinforcement, i. e. the deformation increases unlimitedly
without increasing moment. It can be assumed that the curve showing
this connection can be applied also to the relationship between curvature
and moment in the reinforced concrete pavement slab on soil. In the
case of a low load, the slab functions more or less according to the
elasticity theory and a moment distribution is obtained as shown in
Fig. 22:7 or 22:9 with a marked peak under the loading surface (see Fig.
31:2), at least if the relative load distribution is not very extended. In
the stage of the loading where the moment peak reaches the value
corresponding to the yield point in the reinforcement under the loading
centre, then this begins to yield and the moment can thus not increase
further. In the case of f urther increased loading, then the yield in the
reinforcement must extend to an increasingly larger zone primarily in
radial sections (yield lines) since the elastic moment in these sections
decreases more slowly than the moment in the tangential sections. The
appearance of t he moment diagram is thus completely changed and the
peak is thus decapitated as shown in Fig. 31:2. By a simple equilibrium
consideration of a wedge-shaped element, limited by two radial and



179

P

///-///=/<, _=sV//^/ // ^//(*?/// ?"///.«r///_3v//^- ///-:

\

y/<5

Fig. 31:2. The assumed moment distribution in a reinforced concrete slab on elastic
subgrade due to a concentrated load before (1) and after (2) the yield point has been
reached in the bottom reinforcement under the loading centre. The broken lines
represent a supposed moment in the still elastic zones of the slab in stage 2 as above.

one tangential line, it may be seen that this moment re-distribntion
must influence also the moment in the parts of the slab which are still
elastic, thus also the radial moment which results in tension stresses in
the top of the slab and which, when these stresses reach the tension
strength for concrete (or the yield strength for the top reinforcement
in the case of double-reinforced slabs), cause the circular crack (failure
line), which defines the ultimate load.

The conditions in the slab round the loading surface are thus on the
whole analogous with the conditions assumed to exist in cross-reinforced
slabs according to the yield line theory of K. W. JOHANSSEN [31]. The
slab is cracked along radial cracks in the bottom, positive failure lines and
the failure zone is limited by a circular crack in the top corresponding to
a negative failure line. In the continued treatment of this failure case,
the author will apply the general methods of the yield line theory. In
the case of a slab on soil, however, there is a serious complication con-
cerning comparison with a free-lying, cross-reinforced concrete slab.
Such a slab is only subjected to external loading from traffic and resting
loads or from the support reactions determined by the equilibrium
conditions, and the loads are not influenced by the prevailing deforma-
tion of the slab. A slab on soil, on the other hand, is also loaded by
the soil pressure operating on it from below, and this pressure depends
on the deformation of the slab and the elastic properties of the soil.
These magnitudes cannot be calculated according to the equilibrium
equations in the yield line theory.

The author considers that it is possible to calculate the soil pressure
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from the results of the elasticity theory in spite of the fact that in this
stage of failure the slab is partially in a plastic state. The tests referred
to in the previous part show, however, that the deformation of the
slab and the soil pressure can be estimated fairly correctly according
to the elasticity theory also at loads exceeding the load corresponding
to the yield point in the bottom under the loading centre. The reason
for this is that the zone in the neighbourhood of the load which
is in a plastic state, is relatively limited so that the deformation of
the slab is still largely determined by its elastic properties within the
slab sections in elastic state.

On the basis of these assumptions, the author has, in the previously
mentioned reports from Chalmers University of Technology, Depart-
ment of Structural Engineering, Gothenburg [35, 36, 37, 38], expressed
the outline of an ultimate strength theory for reinforced concrete
slabs on soil and he has also prepared certain ultimate load for-
mulae which are, however, partially based on faulty assumptions.1)
These formulae of the author have been cited and discussed in some
papers by JOHANSEN [32, 33, 34] as well as in a paper by BERNELL [8].2)
The formulae have also been used by PERSSON [56] in the study of
the problem concerning a load on an ice-floe. In this problem the slab
can hardly be considered to have the properties of a reinforced concrete
slab. According to tests by JOHANSEN [34] one can, however, reckon
on the fact that the radial cracks even in the case of a plain concrete
pavement have a certain property to admit moment due to the arching
affect and friction against the soil, so that the method adopted should
thus be also applicable for the calculation of the strength of a plain
concrete pavement.

In this Part 3 of the work, the author will attempt to develop and
discuss the ultimate strength method for reinforced concrete slabs
on soil according to the principles laid out above and thereby to treat
the simplest case where the loading is applied so far from the free edges
of the slab that these do not interfere with the failure procedure. The
method will be applied on tests in the earlier treated test series M and
G and also on further tests in a later Part 5.

In another later part, Part 4, the more complicated case with a load
on a free edge or a joint will be treated.

1) See note on page 185.
2) In this paper BERNELL has also suggested certain modifications of the formulae

produced by the author. These would appear, however, to be even more faulty. See
note on page 185.



32. Theory for Load on the Interior of a Slab

321. Loading with a circularly distributed single load

321.1 The equilibrium equations
A reinforced concrete pavement on soil with comparatively large

dimensions is loaded by means of a concentrated load which is distributed
over a circular surface with radius c, and the load is assumed to act
fairly far from the free edges of the slab. The slab is considered at the
phase when the circular crack in the top is just occurring. The flexural
moment in the circular cross-section corresponding to the position of the
crack and the radius of which can be denoted r0, can then be assumed,
to be constant and identical with the negative ultimate moment m'.

In order to be able to treat the problem in a fairly simple way the
following assumptions have been made, the correctness of which will
be discussed later:

a) Within the zone inside the circular failure crack, jdeld has occurred
in the reinforcement along radial cracks in the bottom at least out to
the failure circle, i. e. the circular crack in the top, whereby the moment
along the whole length of a radial crack can be considered constant and
identical with the positive ultimate moment (yield moment) m (Fig. 32:1).

b) The pressure from the subgrade p s , w hich depends upon the
co-ordinating properties of the subgrade and the slab, has a distribution
which, within the zone in question inside the failure crack, can be approx-
imated to a cone with peak value = p0 and base radius = t (see Fig.32:1).

One can then produce the equilibrium equations for an element of
the slab which is limited by two radial cracks and part of the circular
crack in the top (see the figure), and then obtain a projection equation
and an equation for the moment round the middle point:

0 1 _
1 — — I + q r0 dcp

P
Mom.: —— dcp

1 l r 0 3 2 1
- r 20 dcp-—p0-- r0 +— r%dcp p 0

(3

2 71

— m rQ dcp — m' r0 dy + q r0 dcp r0
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Fig. 32:1. Failure line figure for slab on soil and the assumed soil pressure distribution
under the slab. The pressure distribution may be assumed to have a form represented

by a straight line between the peak value and the position of the circular crack.

Here q means the shear force along the circular section. This can be
calculated from the equilibrium equations for a small ring-shaped ele-
ment according to Fig. 32:2. The moment in the circular section surface
a—a beside t he circular crack can also be described as being identical
with the negative ultimate moment m', since this value is a maximum
v a l u e f o r t h e n e g a t i v e m o me n t . A n e q u a t i o n f o r t h e m o m e n t r o u n d a —a
gives

m

Fig. 32:2. Calculation of the shear force q in the circular crack, q is calculated from a
moment equation for an element between the circular crack and a circular section a —a at

a distance dr from the circular crack.
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m' dr dep + m dr dep — q r0 dr dep
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If this expression for q is inserted in the original equilibrium equations
(32:1) we obtain after simplification

PI 1 r
9 71

0
= ^ V o r l — V o r l J + m + m '

P e l . 1 r 0

— 3 Ä 3 p o i " T P o i J

(32:3)

From this an expression for the ultimate moment is obtained

P i / 2 r 0 \
m + m ' = J n ~ J V o r l I 1 - J J (32:3a)

or, if — is eliminated between the equations (32:3)
V

Pi 8 c \ 1
m + = (3 2 : 3 b)

this equation being more convenient to use in certain cases. The radius
of the crack r0 can be determined from the second of the equations
(32:3)

/ 3 r 0 \ P c
<32:3c)

If the ultimate load or the ultimate moment are to be calculated from
these equations it is essential to know and t, i. e. the size and distri-
bution of the subgrade pressure.

321:2. Estimating the subgrade pressure
The equilibrium equation derived above have been arrived at on

the assumption that the centre zone of the slab is in a plastic state.
Such a simple supposition cannot, as pointed out in the introduction,
be made concerning the subgrade pressure. This is decided by the
deformation of the slab and the elastic properties of the soil, and it is

x) This formula is generally derived by JOHANSEN [31].
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obvious that certain changes occur in connection with the attainment
of the yield point in the centre zone of the slab.

As has already been pointed out, however, this plastic zone is of
a comparatively local character and the slab still functions on the whole
as an elastic slab. One can therefore risk making the assumption that
the soil pressure can still, at least approximately, be estimated on the
basis of the elasticity theory. The tests referred to in Part 2 show that
this assumption is fairly correct. If the slab is comparatively thin in
relation to its size, it is thereby correct to use the theory for a slab of
infinite dimensions.

The simplification has been made above that the pressure volume
form can be approximated to a cone. In accordance with the assump-
tions made here it should thus be possible to estimate the position of
the generatrix of t he cone with the help of th e curves for the distribution
of soil pressure according to the elasticity theory. Independent of the
fact as to whether the subgrade is assumed to be resilient or elastic, the
soil pressure is proportional to the loading P on the slab (seethe formulae
in Table 22:1 or Fig. 22:6 and 22:8 respectively), and the height of th e
pressure cone can be described under the general form

y = a constant which can be estimated from the theoretical pressure curve
I = the elastic radius of stiffness according to equation (22:23) or (22:51)

If the expression (32:4) is inserted in the equations (32:3 a, b and c)
one thus obtains the general formula for the ultimate load

P
Po = y • -p (32:4)

where

(32:5 a)

or
P r 8 c n A'o\2l

m + W ' = 2 ^ [ 1 - 9 ^ ^ ' ' 7( 7 / J (32:5 b)

where the radius of the crack circle
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When calculating according to the formulae (32:5) the values of t

and y are first estimated from the theoretical pressure curve. Then
ro .
Y is calculated by successive approximation from the equation (32:5 c)

after which m + ra' (or P ) is obtained from (32:5 a) or (32:5 b)1). It is,
however, generally better to use the equation (32:5 b) than (32:5 a)
since this is less sensitive to a lower degree of accuracy in the determina-

tion of -y.
L

Calculations in accordance with this have been carried o ut for both
the types of soil under consideration.

x) According to earlier outlines for the ultimate load theory [35, 37, 38], the author
has determined the radius of the failure crack r0 purely mathematically from the condition
that equation (32: 3) shall give the maximum value of (m + m'), and in this case only the peak
value y for the soil pressure cone was inserted. It should thus be possible according to
this method to be able to calculate the lvalue, which means that the distribution of soil
pressure should follow the stated maximum condition — an obviously illogical thought.

The error of margin in the calculation method is also clarified, if one calculates t and
r0 by this means, since by derivation of the equation (32:3 a) one obtains

t = r0

which is a completely illogical value with respect both to the distribution of s oil pressure
and the position of the crack.

Bernell suggests in the article mentioned earlier [8] as an "improvement" of the author's
formulae, that the radius of the crack should be taken as being constant and identical
with the position of the negative maximum moment according to the elasticity theory
(in the concentrated load case) and thus assumes that the moment curve according to the
elasticity theory should still be applicable within a zone of the slab where the theory other-
wise assumes a completely plastic stage. In accordance with this, in the equation (32:3)
he puts

r0 = 1.9 Ij. fo r resilient subgrade

r0 — 2.0 le for elastic subgrade

With such a supposition one for instance obtains:

tx 0.8 r0 where c = 0.2

t x 0.9 r0 where c = 0.5

thus even more illogical values, which correspond to negative soil pressure at the circular crack.
As shown later (325:3), the form of the soil pressure distribution, however, has only

a comparatively slight influence on the final result from the ultimate load formula (32:5),
so that the formulae which are based on assumptions which themselves are principally
completely faulty, can however give ultimate load values which only comparatively
insignificantly deviate from the result of the correct formulae.

One should not confuse the points mentioned above with the maximum principle in
Johansen's yield line theory [31] which, correctly applied to an energy equation for the
slab within the circular crack in this case, gives exactly the same formulae as (32:5).
See 324.
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321.3. Resilient subgrade
In the case of resilient subgrade, the depression curve has the same

form as the subgrade pressure distribution curve

ps = k • w

where w is the ordinate for the depression function according to Fig.
22:8, page 53. With the help of the curves for various load distri-
butions in this figure the most closely agreeing pressure cone generatrices
have been drawn in, whereby due respect has been taken in general
to that part of the curve in question which lies within the crack radius
r0. The corresponding values of y and t have been read off a nd inserted
in equation (32:5) and the result is shown in Table 32:1. The table values
are compiled in a diagrammatic form in Fig. 32:3 and 32:14.

For small values of the load distribution it is possible to write out a
simplified approximate ultimate load formula if, in the root expression

ro
in equation (32:5), one inserts suitably selected values for — and y.

In this way one obtains
/y* 30 ^ 1/— « 1 . 6 \ak
Lk

and
P ®

m -f m' — —— (1 — 0. 6 6 ]/a|) (32:6)J* TC

TABLE 32:1. Ultimate moment values according to (32:5) with a single load on the
interior of a slab on resilient subgrade. Values according to the approximate formula

(32:6) are also shown.

Load dist- Estimated soil Crack
ribution pressure distribution radius P

c t r» P according to
a = T y T I formula (32:6)

0 0 0 0 0.159 0.159
0.05 0.128 3.60 0.52 0.1465 0.145
0.1 0.129 3.20 0.66 0.1345 0.136
0.2 0.128 2.95 0.86 0.1207 0.123
0.3 0.126 2.80 1.01 0.1101 0.112
0.5 0.123 2.70 1.25 0.0921 0.093
0.7 0.116 2.75 1.48 0.0780 0.077
1.0 0.108 2.90 1.75 0.0600 0.054
1.3 0.098 3.10 2.02 0.0459 0.034
1.6 0.087 3.35 2.29 0.0350
2.0 0.072 3.65 2.71 0.0254
2.5 0.058 4.05 3.26 0.0164
3.0 0.045 4.50 3.97 0.0129
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where as earlier
4

c l / D
ak — yy 5 h = /

The values calculated in (32:6) have also been introduced in Table 32:1.
The table shows that this formula gives outstandingly good agreement
with the exact calculation for load distribution up to approx. ak = 0.7,
thus for most of the cases normally occurring.

321.4. Elastic subgrade
In the same way as earlier the most closely agreeing pressure cone

generatrices are drawn in with the basis of the pressure curves in Fig.
22:6. Here the pressure curves are, however, less linear and the effect of the
load distribution is greater than that in the case of resilient subgrade
so that it is more difficult to determine the correct position on the
agreeing straight lines. Table 32:2 shows the selected values of y and

m+ m'
t as well as the corresponding ultimate moment values ———-, The

table values are summarized in the diagram in Fig. 32:3 and Fig. 32:14.

m=pos.ultimate moment'
m'~neg• " "
P -ultimate toad for top surface failure

Resilient subgrjde

Elastic

Ret load distribution

Fig. 32:3. The relationship between the ultimate moment and the relative load distribution
with a single load on the interior of a slab on resilient and elastic subgrade respectively.
Notice the surprisingly insignificant difference between both the relationship curves. It
should be pointed out, however, that the Z-value and thereby the value of the relative load

c
distribution o= — is not the same for both the types of subgrade.

The curves are shown on more finely lined graph paper in Fig. 32:14, page 215 together
with the corresponding curves for the case of twin loading. The constants involved are
also explained there.
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TABLE 32:2. Ultimate moment values according to (32:5) with a single load on the
interior of a slab on elastic subgrade. Values according to the approximate formula (32:7)

are also shown.

Load dist- Estimated soil Crack
ribution pressure distribution radius ra + m' P

c t rn P according to
a~ T y 1 I formula (32:7)

0 0 0.159 0.159
0.05 0.190 1.40 0.48 0.1424 0.144
0.1 0.188 1.50 0.63 0.1325 0.135
0.2 0.182 1.60 0.83 0.1181 0.119
0.3 0.173 1.70 1.00 0.1070 0.108
0.5 0.1 56 1.95 1.25 0.0891 0.088
0.7 0.140 2.15 1.49 0.0754 0.070
1.0 0.120 2.45 1.81 0.0592 0.046
1.3 0.102 2.80 2.10 0.0466
1.6 0.088 3.10 2.40 0.0367
2.0 0.072 3.50 2.82 0.0272
2.5 0.057 4.00 3.34 0.017 9
3.0 0.043 4.55 4.07 0.0152

In the same way as in the case for resilient soil, one can find a simpli-
fied approximate failure formula for small values of the load distribu-
tion:

P 3,—
m + m' = (1 — 0.71 Val) (32:7)

2 71

where
3

The values according to this formula have been introduced in Table 22:2.
This gives good approximation for loaddistribution up to approx. ae= 0.6.

322. Loading with twin load

When calculating according to the elasticity theory, the loading case
with a twin load on two circular surfaces can be superimposed from
the curves for the single load, as earlier discussed. This procedure cannot
be used in the ultimate load method since, in the case of a twin load,
one obtains a failure line figure of a completely different form than
that in the case of a single load. As shown by the model tests carried
out with twin loading (see Fig. 32:4), the failure crack will c ircumscribe
both the loading points, at least in such cases where there is not an
altogether too great distance between them.
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Fig. 32:4. Cracks in the top of the model slabs with twin loading, slabs Mil:15 and 16.
The load surfaces are marked in on the pictures. On slab 15 with the loading surfaces
relatively close to each other the failure ring is elliptical. In the case of s lab 16, it consists
largely of two semi-circles with rather concave connecting cracks; the semi-circles appear

to have their centres roughly at the loading centres.

It appears to be hardly possible to arrive at the correct failure line
figure in the case of a double load merely by calculation, particularly
when one takes into consideration the fact that the subgrade pressure
depends on the failure line figure. When the loading points are close
to each other one should get a roughly elliptical failure crack in the top
while in the case of l oading points at a greater distance from each other
the failure crack more and more assumes the form of two separate
circles. This is clearly shown by Fig. 32:4 which shows crack formation
in the top of the two model slabs with twin loads.

It is thus necessary to assume a simplified failure line figure, and the
author has chosen a figure which gives a negative failure crack in
the top surface in the form of t wo semi-circles around the loading centres
and straight lines between these semi-circles and in the bottom surface
radial yield cracks to the semi-circles and a yield line between the centre
points (see Fig. 32:5). A discussion follows later concerning the faults
made when using such an approximation.

The pressure from the subgrade is estimated as before on the basis
of the pressure distribution curves from the elasticity theory. In Fig.
32:6 such pressure curves are shown for twin loading with varying
distances between the loading centres calculated with the help of the
pressure curves for a single load. The corresponding pressure volume
has, analogous with the case of a single load, been approximated through
half-cones outside the loading areas and flat surfaces within the
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Approx. pressure
distribution
a/ong a-a

m

m

Fig. 32:5. The assumed failure line figure and pressure distribution in the case of a slab
carrying a twin load.

zone between them, see Fig. 32:5. The apex of t he half-cones appears,
according to the pressure curves in Fig. 32:6, to be somewhat displaced
inside the loading centres and their basic surfaces do not appear to be
completely circular. In the approximate calculation now carried out
the half-cones, however, are assumed to be circular with their apexes
exactly under the loading centres.

The failure line figure as such permits the expression of three equilib-
rium equations, for example a projection equation of the complete failure
line figure as well as two moment equations, for example one round the
centre axes for half the failure figure and one round a diameter for
either of the failure semi-circles. The problem is thus over-decided,
this depending on the fact that the position and appearance of
the failure figure have been fixed. One should therefore select the
equations which are least influenced by the form of the failure line
figure, and these appear to be the projection equation over the
complete failure figure and the moment equation round the axes of
symmetry.

With the assumptions thus made, the form of t he equations (notations
in accordance with Fig. 32:5) is as follows
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E d - / , O l
c -0,51

,§,06-
7 t '2,661

// 6-0,103 v =J— .7y ' f r *

4- . - f d - 2 , 0 l
c -0,5i

t-272
6'0,080

Fig. 32:6. The theoretical pressure distribution curves according to the elasticity theory
for a slab on resilient subgrade, carrying a twin load with a load distribution c=0.a Z
and a distance between the loading centres of d= land d—2 I respectively. By the use of
the theoretical pressure curve (depression curve) in Fig. 22:8 a as an influence line, the
pressure distribution curves for the line of symmetry between the loading centre (TÏJS?)
and for the line of symmetry NS at right-angles to it as well as the diameters through the
loading centres N'S' have been marked in. The straight lines best agreeing to these
curves obviously do not coincide completely so that a suitable average generatrix corres-
ponding to the approximate pressure volume must be selected. This has been inserted in
the figure (broken line) and the corresponding t- and y-values have been read off.
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where, in accordance with (32:2), one can put

m + m'
<7 =
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An insertion is here made, as before, of t he expression for the maximum
soil pressure

P o = y •

and one thus gets the ultimate moment formulae after due simplifying:

P [
m m' — — {1 — n y

2 7 1

2 r 2 d

3 t 1 TI r ,

1 7 j

2 T

4 c
1 + "T3 d

Z TI y 1 —
3 t

I d / 1 r 0

n r 0 \ 2 t

z r ,

3 d

3^ r o
4 t

(32:!

From these equations the ultimate moment is calculated in the same way
as in the case of the single load; thus a calculation is first made through

r o
successive approximation (rapid convergence) of the crack radius —

from the second equation and this value is then inserted in the first
equation. The values of y and t are estimated from the pressure curves
of the elasticity theory of the type exemplified in Fig. 32:6. Due respect
should here be taken to the pressure distribution both along the axis of
symmetry through the loading centre as well as the opposed axes of
symmetry at right angles and the diameter through the loading centre
(see Fig. 32:6), while the t- and y-values are calculated as suitably selected
average values for the straight lines which agree best with the parts of
the pressure distribution curves mentioned which fall within the annular
crack. Values of t and y estimated in this way for various distances bet-
ween the loading centres and various relative load distributions are
introduced in Tables 32:3 and 32:4. The mean values can easily be
interpolated.

With the help of e quations (32:9) and the soil pressure constants in the
tables, the author has calculated the values of the ultimate moments for
both the types of soi l with various relative load distributions and various
distances between the loading centres. The result is shown by Tables
32:3 and 32:4 and is shown diagrammatically in Fig. 32:14 in the sum-
marizing Section 326.
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TABLE 32:3. Ultimate moment values according to equation (32:9) with twin loading on
the interior of a slab on resilient subgrade.

The soil pressure constants t and y are estimated in accordance with the method
given in Fig. 32:6.

d
T

c
a=7

Soil pressure constants Crack
radius

r0

I

TO + TO'd
T

c
a=7 t

1 y

Crack
radius

r0

I
P

0.5 0 2.45 0.123 0.86 0.1107
0.1 2.50 0.121 0.96 0.1023
0.3 2.58 0.116 1.16 0.0878

1.0 0 2.52 0.110 1.00 0.0910
0.1 2.55 0.108 1.08 0.0850
0.3 2.62 0.105 1.22 0.0737
0.5 2.66 0.103 1.36 0.0632

1.5 0 2.58 0.097 1.08 0.0785
0.1 2.60 0.095 1.15 0.0738
0.3 2.65 0.093 1.28 0.0644
0.5 2.69 0.091 1.40 0.0557
0.7 2.75 0.089 1.52 0.0474

2.0 0 2.63 0.085 1.16 0.0699
0.1 2.65 0.084 1.22 0.0658
0.3 2.68 0.082 1.34 0.0579
0.5 2.72 0.080 1.45 0.0505
0.7 2.78 0.07 7 1.58 0.0438
1.0 2.89 0.07 2 1.79 0.0350

2.5 0 2.67 0.075 1.23 0.0635
0.1 2.68 0.074 1.29 0.0600
0.3 2.71 0.073 1.39 0.0529
0.5 2.75 0.071 1.50 0.0465
0.7 2.82 0.068 1.63 0.0408
1.0 2.94 0.063 1.84 0.0333
1.25 3.04 0.058 2.07 0.0285

323. Loading surfaces of arbitrary form

The simplified failure line figure used in treatment of th e case of twin
loading in the previous section, can naturally be applied also in the case
of o ther types of loa d distribution with non-circular load surfaces which
have considerably larger extents along one of a xes than the other. For
example very decidedly oval loading surfaces from single wheels, twin
wheel loads with oval loading surfaces or loads divided over four adjacent
wheels can be mentioned; these examples are shown in Fig. 32:7. In all
cases occurring in practice, the loading surface would appear to be double
symmetrical.

All such cases may be treated in exactly the same way as in the case
of twin loading in 322, and one obtains corresponding equilibrium
equations, if, in the equations (32:8) is inserted the "quarter load surface"
13
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TABLE 32:4. Ultimate moment values according to equation (32:9) with twin loading
on the int erior of a slab on elastic subgrade.

The soil pressure constants t and y are estimated in accordance with the method given
n Fig. 32:6.

£I
T

c
a= 7

Soil pressure constants Crack
radius

r0

I

£I
T

c
a= 7 t

I y

Crack
radius

r0

I
P

0.5 0 1.70 0.155 0.82 0.1084
0.1 1.75 0.152 0.94 0.0998
0.3 1.85 0.147 1.14 0.0845

1.0 0 1.87 0.1 30

a®

0.0891
0.1 1.92 0.128 1.06 0.0828
0.3 2.00 0.123 1.22 0.0716
0.5 2.09 0.117 1.39 0.0617

1.5 0 1.96 0.112 1.07 0.0768
0.1 2.00 0.110 1.14 0.0719
0.3 2.08 0.105 1.29 0.0630
0.5 2.18 0.099 1.46 0.0552
0.7 2.30 0.093 1.62 0.0480

2.0 0 2.05 0.096 1.16 0.0685
0.1 2.08 0.094 1.23 0.0645
0.3 2.16 0.090 1.37 0.0570
0.5 2.27 0.085 1.52 0.0504
0.7 2.40 0.080 1.66 0.0442
1.0 2.65 0.072 1.89 0.0362

2.5 0 2.13 0.085 1.21 0.0618
0.1 2.16 0.083 1.28 0.0585
0.3 2.23 0.080 1.41 0.051 9
0.5 2.34 0.076 1.54 0.0459
0.7 2.48 0.072 1.67 0.0403
1.0 2.69 0.066 1.88 0.0328
1.25 2.79 0.059 2.19 0.0293

centre of gravity distance x (see Fig. 32:7) instead of the corresponding
4c

centre of gravity distance —— in the case of two circular loading
ü 7L

surfaces (see Fig. 32:5). The load centre distance d should then, in an
analogous manner, correspond to the distance between the centres of
gravit}^ of the quarter load surfaces along the longer loading axis of
symmetry (see Fig. 32:7).

It is thus possible to calculate the ultimate moment values in the case
of a load distributed over an arbitrary (double symmetrical) loading-
surface according to the formulae (32:9) and diagram 32:14 if putting

c = 2.36 x , where x is the quarter loading surface centre of gravity
distance to the long axis of symmetry

d — the centre of gravity distance of the load halves along the long
axis of symmetry
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1d

:%Yj

tc
pTT^

cenfrc of gravity
for quartersurface

Fig. 32:7. Examples of different loading surfaces that can be treated according to the
twin loading theories, x shows the distance from the centre of gravity of the quarter

surface to the longer axis of s ymmetry.

The soil pressure constants t and y may be estimated to the same values as
for a circular double load with the c and d v alues as above, and they can
be thus obtained from the Tables 32:3 and 32:4.

In cases where the "ovality" of th e loading surface is small it is possible
instead to reckon with the formulae and the diagram for a circular single
load in which cases c is selected as the average radius.

324. Load placed between joints

When building runway pavements in practice, it is generally essential
from working purposes to divide up the runway into longitudinal strips,
separated by longitudinal joints, the distance between these being decided
by the width of t he machines used, usually 3 to 5 metres. The design of
these joints will be touched upon later; often for technical reasons it is
desirable to avoid the reinforcement going through the joints, and in any
case, the continuity of the concrete is broken. In its normal form, the
longitudinal joint can thus not transfer negative nor often positive
moment but, on the other hand, shear forces through tongue and groove
or dowels.

The affect of t hese joints on the load-bearing capacity of t he pavement
must be taken into consideration. In the cases where a load is exactly
over or close to a joint, there is obviously a more dangerous loading case
than those in which the load stands far from the joint; this case of loading-
will be covered in Part 4. But even in the case where the load is standing
between two joints, these can influence the failure line figure unless the
distance between them is altogether too large.
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Fig. 32:8

Fig. 32:8. Failure line figure, if the load is resting exactly between two moment-free joints.

Fig. 32:9. The assumed failure line figure and soil pressure distribution in the case of a
load between two joints. The figure also shows the virtual deformation of the slab, for

which the energy equations in 324 are made up.

Fig. 32:8 shows such a case. The negative failure line runs into and
coincides with the joints and if t hese are assumed to be free of moment
(or in any case lack top reinforcement going through the joint) the nega-
tive failure line will thus be free of moment on the stretches where it
coincides with the joints. The failure line thus also loses its circular
form.

The case can be treated in a fairly simple way, assuming that the
negative failure line is still circular and applying an energy equation. The
fact that the joints cut off a rcs from the circular failure line is neglected;
in other words an assumption is made that these follow the circle line
along the moment-free contact stretches (see Fig. 32:9). It is also assumed
that the soil pressure distribution is not influenced by the joints and it
is thus possible, as usually, to consider the soil pressure as being conically
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distributed with a peak value and a base radius which can be
estimated from the pressure curves for the elastic slab of infinite dimen-
sions.

In the state of fa ilure, the slab is given a virtual deformation between

the circular crack and the centre ôr= 11 With the notations in
\ ro J

Fig. 32:9 and otherwise analogous with 321 and Fig. 32:1 one gets

strain energy

1 I g
At = 4 r0 a m — + 2 n r0 m —•; sin a = —

0 '0 ' 0

applied energy

A-= p( l - ~ T
Putting as usual

P
P. = 7 p"

one gets after simplification, since the energy expressions shall be equal

2. („ „<) =P[l _|±-1y (fj|l - 2- (32:10

The failure line radius r0 is calculated according to the maximum
d P

principle,1) so that -j— = 0. One then gets
dr o

dtx f 2 c TI r n
—— m' — P — —$• — — y —
dr0 L3 ro 3 I2

4 — m ' = P \ ~ ~

where

dtx g doc g tg oc
7 COS O C 2 5 J ' — Ö —dr0 TQ dr0 r'cosoc r0

This equation can be simplified together with (32:10) and can be re-written
in a form analogous with the previous ultimate load formulae

x) See JOHANSEN [31], page 72
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m
2 ix
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3 rn

r0 m
6 — tg a y

TI Y I —
3 r0

4 t

sm a =

I r,
1 — —2 t

(32:11)

where r0 as usual is calculated by trial and error with successive approxi-
mation.1)

The formulae (32:11) have been used for the calculation of t he ultimate
m

moment values — for several differing joint intervals 2 g and several

values for load distribution —, where the ultimate moment relation
i

m : m' = 2. In this connection the values of y and t have been chosen as
earlier in order to obtain the best possible relationship to the theoretical
pressure curve (according to Fig. 22:6) within the crack radius r0 (which in
this case is considerably greater than in the "uninterrupted'' case). The
result is shown in Table 32:5 and, as comparison, the corresponding
ultimate moment values for the "uninterrupted" failure line figure have
also been introduced into the table.

It is obvious that the affect of the joints on the value of the ultimate
moment studied here is very insignificant in the cases shown in the table.
An insignificant decrease in the ultimate load is obtained with decreased
distance between the joints but greater distance between the joints gives
an ultimate load which is higher than the normal case — this showing
that the uninterrupted failure line figure which lies completely between
the joints in the latter case is more dangerous. Smaller distances between
joints than those examined would not appear to occur in practice and
neither would lower values of m : in' — higher values have obviously
even less influence.

The failure radius r 0 , on the other hand, is greatly influenced by
adjacent joints; these apparently draw the negative failure line towards
them.

x) The usual case of l oading without joints can obviously also be treated through the
energy equation in the same way whereby in equation (32:10) one gets (m + m') in the

r„
left side. When derivating for the calculation of — , one gets an expression identical

with that earlier derived (32:5 c), and by elimination with (32:10) one gets the expression
(32:5 a).
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TABLE 32:5. Load between moment-free longitudinal joints, distance between joints=2 g.
m

Crack radii and ultimate moment values -p- according to the formula (32:11) with the

ultimate moment relationship m:m'=2, elastic subgrade.
The marked values at g=oo represent "normal values" with an uninfluenced failure

line according to Table 32:2.

Relative load
distribution

c

T

Relative distance
between joints

<7

I

Crack
radius

rn
I

m
I s

for m : m'=2

0.3 CO 1.00 0.071
1.5 1.715 0.070
1.8 1.98 0.064

0.5 oo 1.25 0.059
1.6 1.88 0.063
1.8 2.02 0.058
2.0 2.1 6 0.055

0.8 oo 1.60 0.045
1.6 1.99 0.050
1.8 2.08 0.049
2.0 2.20 0.046

It is thus possible to establish that in normal cases, it is not necessary
to consider any weakening influence from longitudinal joints when
designing the pavement in the zone between the joints.

325. Discussion of the ultimate load formulae

325.1. General
When deriving the ultimate load formulae we have made a number of

assumptions which require closer discussion. In all cases of loading these
are:

a) The reinforcement has yielded along the radial cracks at least out
to the circular failure crack so that the moment in these cracks can be
assumed to be constantly identical with the positive ultimate moment m.

b) The soil pressure decreases linearly from the centre out to the circular
crack.

c) The soil pressure can be estimated with the help of the pressure
distribution curves obtained according to the elasticity theory.

Apart from these, further simplifications were assumed in the case of
twin loading concerning the form of the failure line figure and pressure
volume, and the correctness of these assumptions requires further investi-
gation.

From these, the assumptions concerning the soil pressure distribution
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according to b) and c) can be discussed simultaneously, whereby examina-
tion should be made of the influence of the form of t he pressure distribu-
tion curve in general.

325.2. Moment distribution in radial cracks
As has been maintained in the introduction, the assumption of a

plastic state takes place successively from the loading centre and out-
wards. In this connection the moment curves are altered the whole time
in such a way that the moment peak under the loading centre is decapi-
tated. Also the moment distribution in the zones further out in the slab
which have not yet been affected by the plastic state are obviously
influenced. It is therefore not obvious that the plastification in the radial
cracks has reached the zones of the slab, where the negative moment
maximum is present, before the circular failure crack appears there. This
concerns primarily the relationship between the positive and the negative
ultimate moments; in such cases when the concrete has a low flexural
strength, it appears conceivable that the failure crack occurs at an earlier
stage.

This problem obviously applies in general only for single-reinforced
slabs, in which the moment in the circular failure crack decreases to zero
as soon as the crack appears; the ultimate load must thus be calculated
for the conditions immediately before crack formation. In the case of
double-reinforced slabs it can be presumed both that the negative ultimate
moment m' is considerably higher than in the case of a slab without top
reinforcement and that a considerably larger tension in the top is neces-
sary before the reinforcement there yields, this also implying a greater
extent for the plastic state in the bottom. Finally in this case one gets
a "genuine" failure line in the circular crack with a constant moment
after the yield point in the top reinforcement is reached.

The author has not been able to find any method of arriving at the
moment curves by calculation in the cases where the plastification along
the radial cracks has only partly taken place. Fig. 32:10 appears to show
the approximate appearance of the moment distribution in the radial
sections in such a case; it is not possible to assume that the moment
curve is of a directly similar form to the elastic moment curve with a
"decapitated" top since the curve on the whole appears to alter its form
even outside the limits of the plastic zone.

One can, however, arrive at some idea of t he influence on the ultimate
load value of such an incomplete plastification by assuming acurve form
as shown in Fig. 32:10 and inserting by way of trial various values for the
"plastic zone limit" rp and the tangential moment x m at the circular
failure crack, and thereby approximate the outer "elastic" part of the
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Circular crack

Assumed
m moment curi/e

Fig. 32:10. Assumed moment distribution in the radial sections in the case of incomplete
plastification. Up to the distance rv from the centre, plastification is complete and the
moment in the radial section= the ultimate moment m, outside this limit, the moment
decreases along a curve which is assumed to be replaceable by a straight line (shown as

a broken line in the figure).

moment curve with a straight line according to the figure with "zero-point
distance" /. Thus in the case of a single load, the equilibrium equations
have the form

oPI 1 r(
J ^ =j P 0 r 2 0 - j P 0 r 2oT - h q r 0

P c 1 + *
71

J = J Po r°0 - 4 po ?o7 m r„ — m { r 0 — rP ) — m ' r 0 + q r l

(32:12)

where, according to Fig. 32:10

/ — r0

f - rv

(32:13)

The shear force q in the circular failure crack is calculated analogous with
the expression (32:2) and becomes

x m m'
(32:14)
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After insertion in (32:12) and simplification one gets

P 1 / 2 r,
= [i

P c 1

TT 3

3 t

3 r,

y. m -}- m'

7 = ^ Po ro 11 - — — ) -— m (! - k) (r0 + rp)

If the expression (32:4) is inserted here for the peak pressure p 0 , one
finally gets

x m m' = —— I 1 — Ti y . 72 TT I \ i

2 7*
1 — 3 t')]

3 rc

4 «

le 3 m r0 + rp
TT / 2 > Z ( 1 - * )

(32:15)

analogous with the ultimate load formula (32:5). Calculation is carried
roout through trial and error of — from the last equation, after which the
t

ultimate moment can be calculated from the first equation.
These expressions can be used to examine the influence of a limited

plastic state in the radial cracks and the result of the calculations are
summarized in Table 32:6. The examinations has been carried out
thoroughly for resilient subgrade, relative load distribution c = 0.5 I and
a relationship m : m' = 4, whereby calculations have been carried out
for increasing values on the plastic stage limit and a value of / = 3.5 I,
which was judged to be reasonable based on the elastic moment curves.

m m' *
The result shows that the ultimate moment value — is influenced

to an obviously small extent by the fact that the plastification in the
radial cracks is incomplete and even such a limited plastification as
rp = 0.4 I which implies that less than a quarter of t he radial crack has
yielded, gives a variation in the ultimate moment value with only approx.
15 % from the value at the complete plastification. Supplementary
calculations show that the value of / and the moment relationship m : m'

m Ar m,'
influence the ultimate moment value — to a very insignificant

extent. Also with other values of load distribution one obtains similar
results, namely that the influence of the incomplete plastification is
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TABLE 32:6. The influence of incomplete plastification in the radial cracks; resilient
subgrade.

Calculations carried out according to equation (32:15); pressure volume constants t and y
according to Table 32:1. Comparison values according to Table 32:1 marked.

Relative
load distri-

bution

c
0==T

m : TO'

Moment distribu-
tion in radial

cracks

Crack
radius

r(,
' I

Remarks

Relative
load distri-

bution

c
0==T

m : TO'

/
I

r v
I

Crack
radius

r(,
' I

P
Remarks

0.5 r p= r0 1.26 0.092 Complete plastification
4 2.5 0.4 1.75 0.108

0.6 1.73 0.103
0.8 1.68 0.099
1.0 1.57 0.095
1.2 1.36 0.093
1.26 1.26 0.092

3.0 0.6 1.55 0.099

2 2.5 0.6 1.58 0.101

0.1 rp=ro 0.66 0.135 Complete plastification
4 2.5 0.3 1.03 0.143

0.6 0.86 0.135

1.0 rp= r0 1.75 0.060 Complete plastification
4 3.0 0.8 2. io 0.067

r0
insignificant. The crack radins value —-, on the other hand, is more

influenced by the incomplete plastification and it appears from the table
that one obtains a practically constant higher value which does not
decrease to the "normal" value until the plastification is practically
complete.

A corresponding examination concerning several cases of twin loading
has shown that the effect of an incomplete plastification in such cases
is even less significant. This naturally depends upon the fact that the
incomplete plastification in the radial cracks in the case of t win loading-
covers a relatively smaller part of the complete failure figure since the
zone between the loads can always be assumed to be in the plastic
state completely.

The discussion in this section thus shows that the influence on the
ultimate load of incomplete plastification in the radial cracks in the
bottom is generally insignificant. It should thus be possible to calculate
according to the ultimate load formulae (32:5) and (32:9) respec-
tively and the corresponding tables as well as the diagram in Fig. 32:14,
even if yield in the radial cracks should not have reached the circular
crack when this appears.
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325.3. The influence of the subgrade pressure volume form
If we discuss the case of single loading to begin with, the pressure

volume in the theory presented is assumed to have the form of a cone,
the generatrices of which have been drawn in guided by the elasticity
theory pressure distribution curves. Apart from the approximation
implied by the assumed linear pressure distribution, then the relationship
to the elasticity theory is naturally unreliable since also the pressure
distribution should be influenced by the assumption of a plastic state in
the neighbourhood of the loading point, at least to a certain extent.
There is however, an even greater degree of unreliability in the devations
between the properties of the assumed ideal subgrade material (resilient
or elastic soil respectively) and the actual types of soil occurring in
practice, and these conditions make the choice of the magnitude and
distribution of the soil pressure one of the most uncertain factors on the
whole when calculating according to the ultimate load formulae present-
ed, (32:5) and (32:9).

If, to start with, the pressure distribution is still assumed to approxi-
mate a straight line, it is possible to study the influence of the deviations
between the assumed pressure volume and the actual pressure volume
by varying the constants y and t in the ultimate load formula (32:5). see
Fig. 32:1. When judging reasonable deviations in this respect, one must
always remember that the magnitude of the pressure volume must be
constant the whole time and identical with the external loading. An
increase in the peak value constant y of the pressure cone must thus
imply a decrease in its base radius t and vice versa.

An idea of the influence of s uch variations in the pressure distribution
can be obtained in the simplest way by making comparisons between
the ultimate moment values in both the Tables 32:1 and 32:2 or according
to both the curves in Fig. 32:3, which apply for resilient and elastic soil
material respectively. The values according to these tables and curves
have, as a matter of fact, been obtained from the same ultimate load
formula (32:5) but with greatly different values of t and y, significant
for both the theoretical types of subgrade. These can be said to represent
two extreme types of pressure distribution, both of course with the
correct pressure volume but otherwise of a greatly different character,
particularly at small and moderate load distribution (see the corresponding
theoretical pressure curves in Fig. 22:8 and Fig. 22:6 respectively). Some
pairs of values for the same load distribution according to both the tables
are summarized in Table 32:7. In spite of the very large variations in
y and t, which thus represent different types of pressure distribution, the
difference in the ultimate moment value (m + m') is particularly small;
even the crack radius value is only influenced to a slight extent.
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TABLE 32:7. Comparison between ultimate moment values calculated from the ultimate
moment formula (32:5) for some values of relative load distribution a with subbase modulus
constants y and t for resilient as well as elastic soil (upper and lower values respectively).

C
a = r

Soil pressure
constants

t
y t

Crack
radius

r„
I

Ultimate
moment

m-\-m'
P

0.1 0.129 3.20 0.66 0.135
0.188 1.50 0.63 0.133

0.5 0.123 2 .70 1.26 0.092
0.156 1.95 1.25 0.089

1.0 0.108 2 .90 1.75 0.060
0.1 20 2 .45 1.81 0.059

By comparing the ultimate moment values for twin loading in the
same way as shown in Tables 32:3 and 32:4 it is seen that the influence
of variations in the values of t and y also in this case is very insigni-
ficant. Concerning the pressure volume in the case of twin load, there
is also the supplementary assumption concerning the apex positions of
the half-cones (see Fig. 32:5 and 32:6); this question is discussed later.

It is thus obvious that the position of the pressure cone generatrix
does not need to be decided with a particularly great accuracy and
that even very considerable deviations between assumed and actual
values of the soil pressure constants do not influence the ultimate load
value by more than a few percent. There remains to discuss the influence
of the fact that the actual pressure distribution deviates to a more or
less great extent from the assumed linear form. It is probable that this
must be of l esser significance since such great variations in the assumed
linear pressure distribution as above have shown such a small influence
on the ultimate load value.

In order to take the matter to its conclusion here follows an investiga-
tion in this respect concerning the single load case, assuming that the
actual pressure distribution curve can be composed of a linear section
and a peak parabola as shown in Fig. 32:11. This approximation can
be made to agree very well with the actual curve form within the zone
in question inside the crack radius if t he constants t, y and oc are chosen
in a suitable way. a represents the height of the peak parabola and
since this should be assumed to form a tangent with the straight part
of the curve, then the height in the "circumscribed" point triangle
corresponds to 2 a. See Fig. 32:11.

The equilibrium equations have the same form as 32:1 and 32:3, if
corrections are made for a wedge-shaped element A P of the negative
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Fig. 32:11. A more accurate agreement with the actual soil pressure distribution for a
single load can be attained by replacing the pressure curve with a top parabola and a
straight line. The figure also shows the calculation of the volume and position of centre

of gravity for a wedge-shaped element of the top paraboloid.

pressure volume between the paraboloid and the cone and the moment
A M of t his pressure volume wedge around the centre. Thus is obtained
analogous with (32:3).

P 1= 2 '» I1 2 r^ ' o

3 T
P c 1 3 I - 3 /'o» 3 = 3 p

"
r

" r i T

— A P m m'

A M

where A P and A M with notation according to fig. 32:11 become

13

A M

1 / (X y
3 P.|2(7)
4 / a ^

H P « " (7,
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After simplification as before and the insertion of

P
Po =

'
7

the yield formulae (32:5) receive the form

The last term in the first of the equations and in the numerator under
the root in the second of the equations can be considered as being a
correction to the original ultimate load formula (32:5). Table 32:8 shows
the values of the ultimate moments for several values of load distribu-
tion calculated according to formula (32:16), compiled together with the
corresponding values according to Tables 32:1 and 32:2 obtained through
(32:5). It should be pointed out that the same values of t and y have
not been used here as in the corresponding calculations according to
the formula (32:5). The straight line has here been inserted with the
best possible agreement with the pressure curve between the crack
radius and the peak parabola, while earlier the straight line was, as far

TABLE 32:8. Ultimate moment values calculated according to equation (32:16) with
a soil pressure distribution of a peak parabola and a straight line.

The table also shows comparison values calculated according to equation (32:5) with the
pressure distribution curve approximated to a straight line only.

Type of
subgrade

Load dis-
tribution

c
a = T

Estimated soil pressure
distribution

Crack
radius

ro
1

m + m' P
according

to equ. (32:5)

Type of
subgrade

Load dis-
tribution

c
a = T y

t
T <X

Crack
radius

ro
1

P
P

according
to equ. (32:5)

Resilient 0 .1 0.142 2 .20 0.018 0.665 0.1347 0.1 345
0. 5 0.129 2 .60 0 .015 1.245 0.0915 0.0921
1.0 0.113 2 .80 O.Ol 7 1.740 0.0598 0.0600
2.0 0.079 3.4 5 O.O l 6 2.690 0.0244 0.025 4

Elastic 0.1 0.186 1.60 0.005 0.6 23 0.1324 0.1325
0.5 0.160 1.95 0.01 5 1.240 0.0885 0.0891
1.0 0.125 2.40 0 .016 1.800 0 .05 84 0.0592
2 .0 0.078 3.40 0 .016 2.760 0.0254 0.0272
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as possible, selected in agreement with the whole of the theoretical
pressure curve up to the crack radius.

The differences between the ultimate moment values, obtained from
both the formulae, are particularly insignificant. Attention should also
be paid to the good agreement between the values for the same load
distribution for the both subgrade hypotheses in spite of the great
differences in the soil pressure constants. There is thus no reason for
using the more accurate but more complicated formula.

By summarizing, it can be said from the result of t he investigations in
this section that the method used to approximate the pressure curve with
a straight line and to determine this from the elastic pressure distribution
curves is acceptable, and that the variations from the assumed pressure
distribution curves that can occur have a small influence on the ultimate
moment value.

325.4. The position of the centre points of the failure semi-circles and the
soil pressure cones in the case of twin loading.

When arriving at the ultimate moment formula for twin loading the
centre points of the failure semi-circles and soil pressure cone points
were assumed to coincide with both the loading circle centres (or, in
the case of arbitrary loading surfaces, with the centres of gravity of
the loading surface halves). It was pointed out, however, that the points
of the pressure half-cones appeared to be rather displaced inwards
relative to the loading centres (see Fig. 32:5 and 32:6). If it is assumed
that such is the case, but that the centres of the failure semi-circles and
its cone points still coincide then the failure line figure assumes an
appearance as shown in Fig. 32:12. The equilibrium equations have the
same form as before if one merely replaces the loading centre distance
d by the failure circle centre distance s, whereby the failure formula
(32:9) then receives the form

These expressions have been applied for various values of load distri-
bution and loading centre distance, whereby several values of s deviating
from d have been inserted. The result is shown in Table 32:9.
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Fig. 32:12. Failure line figure for a twin load, if t he loading centres and the failure circle
centres are not assumed to coincide. The peaks of the pressure semi-cones (see Fig. 32:5)

are assumed to lie exactly under the centres of the failure circles.

From the examples selected in the table, it may be seen that moderate
deviations between the loading centre and the failure circle centre have
an insignificant effect on the result of the ultimate load calculation.
If, however, a loading surface is considered which deviates greatly from
the circular cases, and an estimation is made of a more correct s-value

TABLE 32:9. The influence on the ultimate moment value of the differences between the
assumed and the actual positions of the failure semi-circles and the centres of the pressure
semi-cones at twin loading according to Fig. 32:12; in the ultimate load formula (32:9),

the centres mentioned are assumed to coincide.

The table shows the ultimate moment values 5— for deviation in the values of the

distance d bet ween the loading centres and s between the centres of the failure circles.
The calculation in the table are based on resilient subgrade.

C
a=T

d
T

s
T

rn
1 P

Remarks

0.3 2 2 1.34 0.058 Value from formula (32:9)
1.9 1.35 0.060
1.8 1.36 0.062

1 1 1.22 0.074 Value from formula (32:9)
0.9 1.2 3 0.077

0.5 2 2 1.45 0.051 Value from formula (32:9)
1.8 1.48 0.054

1 1 1.36 0.063 Value from formula (32:9)
0.9 1.37 0 .066

1.0 2 2 1.7 9 0.O35 Value from formula (32:9)
1.8 1.83 0.038

1 4
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with the basis of an accurate determination of the soil pressure distri-
bution,1) which deviates significantly from d, then this value and equation
(32:17) can of course be used for the calculation of the ultimate moment
value. Unreliability in the material constants and other approximations
in the calculating method mean that such accuracy in this respect is
only motivated in extremely rare cases.

325.5. The form of the failure figure in the ca se o f twin loading
It has been pointed out that the actual failure crack in the top surface

in the case of twin loading would not appear to be composed of two
semi-circles with intermediary straight lines but would rather appear to
consist of a more irregular oval ring round the loads where the form
depends on the distance between the loads (see Fig. 32:4). This implies
alterations in the shearing force along the failure ring and the form and
magnitude of the pressure volume. As far as the last-mentioned fact
is concerned it appears to be practically impossible to take any respect
to this from a calculating point of view; alterations in the pressure
volume, on the other hand, only have a very slight influence on the
ultimate moment value as already shown. Some idea may be obtained
of the influence of alterations in the shearing forces along the failure
line by introducing a considered concentrated shear force Q in the pro-
jection and moment equation as shown in Fig. 32:13, this representing
the result both in magnitude and position of the actual shear along
half the failure ring.

If the form of the subgrade pressure volume is thus approximated as
earlier by means of two circular semi-cones with apex distance = s and
intermediate flat surfaces, and due attention is taken to the altered
shearing forces in the actual failure figure as mentioned above, then the
projection and moment equations analogous with equation (32:8) have
the form

/ ro\ 1 ro / 1 ro\ —
P= nr20p0 ( l — j I+ - 7i rip0 y + 2r0sp0 ( 1 — - jJ + 2 Q

P 4 c 1 / r0\ 4 r0 11 r0 4r0 3
= t ) 7 3 * 4 '

/ ro\ ro 1 ro ro 2 - ,
+ VP o !- y Y + yo « P o y y ^ + Q x — ( 2 r0 + s) (m+ m

These equations are otherwise not influenced at all by the fact that the
x) Such a soil pressure determination can be carried out for arbitrary loading surfaces

with the help of the PICKET-RAY influence charts [57] but the calculation requires a
great deal of work.
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Fig. 32:13. The assumed actual failure line figure for twin loading. The concentrated loads
Q are the resultant of the distributed shearing forces q along half the failure ring. The soil
pressure distribution is approximated in accordance with the assumptions made earlier.

failure ring has an appearance which deviates from the earlier assumed
approximate form. The resultant of t he shearing forces Q can be written

— r _ r d<P
Q = j q d s = j ( m + m ' ) —- (32:18)

o o P

according to Fig. 32:13, where ß is the angle between the failure ring
and the yield radius, whereby q is calculated fully analogous with
(32:2).x) In the case where ß is constantly = 90° as in the case of the
formerly assumed circular failure line figure, then

Q = 7i (m m' )

In the case of the actual failure ring, then ß should not in any case vary
much from 90° and one can write

Q — v 7 z ( m + m ' ) (32:19)

where v is somewhat < 1. The moment arm of th e shearing forces resul-
tant becomes in the case of t he formerly assumed simplified failure figure

2 r o
= • It is obvious that in the case of the actual failure ring, it

1) See also JOHANSEN [31], page 67.
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will not be any greater deviation from this value so it can be placed

2 r
x = u • —- (32:20)

71

where // insignificantly differs from a value = 1. If these notations are
introduced into the equilibrium equations, then after simplification in
the same way as before one gets

" ' 1 '?)•[(•m + m' — — { 7z y , 7 , . , - _ . , , 0 , - . , , , 02 7i 2 r0 I \ / / l \ 3 t I 3 s \ 4 t J| 3s
1 + — (1 — n v

These equations can be used to estimate the influence of deviations
from the approximate failure figure assumed earlier. Since the influence
of a displacement of the centre points of the pressure cones has already
been studied, it is sufficient here to examine the case s = d, i. e. that
the points of pressure semi-cones coincide with the loading centre. The

ro
equations are solved by trial and error with various values of —r~ so that

they both give the same ultimate moment m + m'. Investigations have
been carried out in the case of resilient subgrade for both the centre

c
distances d — I a nd d — 31 and for a relative load distribution y = 0.3,

and some different combinations of v and /< have been selected. The
results are summarized in Table 32:10.

The table shows that the form of t he failure ring has a small influence
on the ultimate load. The investigation has certainly only included a
few cases of loading distance and load distribution, but the equations
show that the result appear to be the same also for other cases normally
occurring.

326. Summarizing the formulae and diagrams

As shown in the previous section, in the cases where the load is far
from the edge, the ultimate moment sum (m m') for an ultimate load
P, corresponding to crack formation or yield in the reinforcement in
a crack in the top surface round the load, can be calculated according
to the formulae summarized below. It has been shown that the approxi-
mations and simplified assumptions made concerning soil pressure and
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TABLE 32:10. The influence of the form of th e failure figure at twin load on the ultimate
m+ m'

moment value p—.

In the failure formula (32:9), the negative failure line is approximated by two semi-circles
and intermediary straight lines (Fig. 32:5). The actual failure figure is assumed in Fig.
32:13 to be characterized by a shear force resultant Q for half negative failure figure,
which can be written

Q= v 7t(m-\-m')
and with the distance from the line of symmetry through the loading centres

< > r— " ' o
X — Ur 71

The tables shows the influence on the ultimate moment value of d eviating values of v and
/i from the normal values =1. Calculations according to formula (32:21) for resilient sub-
grade (soil pressure constants t and y according to Table 32:3) and relative load distribution

cT =0-3'

d
~T v T

w-t-m'
p Remarks

1.0 1 1 1.220 0.0 7 4 Value from equation (32:9)

0.9 1.0
1.1

1.303
1.253

0.074
0.079

0.8 1.0
1.1

1.392
1.348

0.074
0.079

2.0 1 1 1.340 0.058 Value from equation (32:9)

0.9 0.8
0.9
1.0

1.465
1.436
1.402

0.053
0.055
0.059

0.8 0.8
0.9

1.522
1.500

0.054
0.05 6

1.0 1.473 0.058

failure line figures have a small influence on the ultimate moment or
ultimate load values.

In the case of a single load with circular or almost circular extent, the
following applies

m + m' —
P

2 71
8 c
9 rn 9 l

• i 3 r°y •n \ l —
1 4 t

(32:22)
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where first the crack radius ~j~ is calculated by means of successive

c
approximation. If the relative load distribution a = y <0.6 - 0.7, the

following apply with excellent approximation

in the case of resilient soil

m
_L — C

-j- m' — ( 1 0 . 6 6 I la\)\ ak = -
I 71 ih

in the case of elastic soil

P f,— c
\ ae =Ym + m! = —— (1 — 0.7 1 11al

2 71

(32:23 a)

(32:23 b)

For a twin load or an arbitrarily distributed load with larger extent in
one direction than in the other (double symmetrical loading surface)
the following applies

m
P

2 71
1 — 7i y(?)'['-1 r° 2 d

t 7i rn
1 — it)1

1 + 1.33 (32:24)

2 r.
1 3 t2 TI y

In these equations

+
1 d
TI R,

1 r,
2 t

2 r,
3 d

3 r0

4 t

m and m' — the ultimate moment per unit width for positive and
negative bending of the slab respectively.

I — the elastic radius of stiffness for the slab, calculated accor-
ding to the expression

4

1lD
lk = 1/ — = in the case of resilient subgrade,

3

I / 2 D
le = V' = in the case of elastic subgrade, where

D = flexural rigidity of slab
k , C — soil constants.

c = load distribution radius in the case of c ircularly distributed
single or twin loads (or the average radius in the case of
almost circular distribution)
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Fig. 32:14. The ultimate moment values —^— for a reinforced concrete pavement on

resilient or elastic subgrade, loaded in the interior of the slab with a load P which is distri-
buted on one or two circular loading surfaces with radius c and a distance between the
loading centres of d, or has another corresponding arbitrary load distribution.
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c = 2.36 x, where x — the quarter surface centre of gravity
distance from the long axis of symmetry on "extended"
load with arbitrary loading surface

d — loading centre distance for twin load or the centre of
gravity distance for loading halves in the case of other
extended loads

t and y — constants for assumed conical soil pressure distribution
according to
Table 32:1 and 32:3 in the case of resilient soil
Table 32:2 and 32:4 in the case of elastic soil

The design diagram in Fig. 32:14 shows the relationship between
m - \ - m ' . . . c

— and the relative load distribution a — — for resilient and elastic
jL i

soil with single and twin loads according to the formulae (32:22) and
(32:24).

The same formulae and diagrams can normally be used if the load is
standing on a section of the pavement between longitudinal joints even
if these are so close (distance between joints 2 g = approx. 31-4 1),
that the negative failure line is influenced.

See also the summary in Section 34.



33. Application to Tests Treated Earlier, Series M and G

331. Model tests, Series M

331.1. General
The loading tests on the 28 model slabs, the description of which

can be found in Section 24, have been discussed from the viewpoint
of the elasticity theory in this earlier section. It has thereby been shown
that this theory is not suitable for the calculation of loads and moment
within the region of plastic state, after the yield point has been reached
in the bottom reinforcement. In this section the test results concerning
the ultimate load due to failure in the top surface Pt are discussed on
the basis of the ultimate strength theory which was presented in the
preceding section. The slabs Mil 17 — 20 not earlier discussed will
also be treated as far as dynamic loading is concerned.

331.2. Test slabs Series M I, M II A:a and b as well a s M II C, single-
reinforced slabs
Tables 33:1 and 33:2 contain the accumulated data for the single-

reinforced model slabs and show the ultimate loads at failure in the
top surface Pt. These values which have been corrected for the membrane
tension effect, are compared with the theoretical ultimate load values
calculated according to the diagram in Fig. 32:12; in some cases the
correction value for the membrane effect is unreliable and has not been
included in the comparison (see 245.2). The table also contains the theo-
retical values and the measured average values of the radius r0 for the
crack in the top.

Agreement between the theoretical values and the values obtained
as a result of tests for the ultimate load is on the whole good. Agreement
would appear to be less good in some cases where the difference between
the theoretical crack radii and these given by tests is great. This
would appear to imply that the deviations occurring in the ultimate
load values depend to a certain extent on the incomplete plastification
in the radial cracks. This problem has been treated in Section 325.2
and it was there shown that the effect of the ultimate moment value
from an incomplete plastification is relatively small while the crack radius
value, on the other hand, is influenced strongly. Also the differences
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TABLE 33:1. Series M I, single-reinforced test slabs with single load. Ultimate loads
at top surface failure according to tests and ultimate strength theory.

Series M I test no. 1 2 3 4 5 6 7

DATA FOR THE TEST SLABS
Total thickness h0 cm 2.0 3.2 3.1 3.1 2.8 3.2 3.0
Resilience constant k kg/cm3 0.27 0.13 0.33 0.053 0.34 0.54 0.16
Load distribution c cm 5 5 5 10 10 10 20
Elastic radius of rigidity I cm 18.5 31.6 26.8 43.5 26.6 23.0 30.6

c
Relative load distribution a— —j 0.28 0.16 0.19 0.23 0.38 0.43 0.65

Ultimate moment kgcm/cm
at bottom reinf. yield m
at top concrete failure m'
m+m'

44
22
66

138
36

174

112
59

171

109
46

155

104
35

139

130
40

170

102
34

136

ULTIMATE LOADS AT TOP SURFACE
FAILURE

Test results tons
ultimate load
membrane stress correction
corrected test load F

0.C5
0.07
0.58

1.63
(0.67)

1.57
0.Ü9
1.48

1.44
(1.30)

1.59
0.23
1.36

1.67
0.09
1.58

1.83
0.42
1.41

Load acc. to ultimate strength theory T tons 0.59 1.38 1.40 1.31 1.35 1.72 1.68
F/T 0.98 1.06 1.01 0.92 0.84

RADIUS FOR NEG. FAILURE
CRACK r0 cm

Measured crack radius 35 39 36 57 38 38 58
Theoretical crack radius 18 25 23 40 30 27 44

between the assumed and actual pressure volume can contribute to a
certain extent towards the deviations between the test results and the
theoretical ultimate loads, as well as obviously, and perhaps primarily,
the degree of unreliability in the determination of the ultimate moment.
Also the unreliability in the determination of the test ultimate loads
as well as the membrane stress corrections can be mentioned here.

It should be pointed out that the deviations mentioned from the
conditions of the theory do not, on the whole, influence the theoretical
ultimate load values to any great extent, this being shown by the discus-
sion concerning the applicability of the ultimate load formula included
in the previous section 325. The ultimate load value is, on the other
hand, directly influenced by faults in the indirectly determined ultimate
moment values.

331.3. Test slabs, Series M II A:c, double-reinforced slabs.
In the cases of the double-reinforced slabs, the ultimate loads at

failure in the top surface have been determined both at the commence-
ment of crack formation in the top surface Pf as well as at the yield
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TABLE 33:2. Series M II, sub-series A, aand b and sub-series C, single-reinforced test slabs with single
load. Ultimate loads at top surface failure according to tests and ultimate strength theory.

Series M II, sub-series :A a and b :C

litt.
test no

a:l a
1

a:2
2

a:3
3

b:1
4

b:2
5

b:3
6

a:l b
8 21

DATA FOR THE TEST SLABS
Total thickness h0 cm 4.1 4.5 4.4 4.4 4 .3 4.4 4.4 8 .1

Resilience constant (Stage II) k kg/cm3 0.22 0.24 0.26 0.25 0.27 0.30 0.30 0.52

Load distribution c cm 20 20 20 20 20 20 20 20
Elast, rad. of rigidity (Stage II) I c m 41.4 39.8 40.0 35.6 38.7 40.0 35.6 48.2

c
Relative load distribution (Stage II)a= y 0.48 0.50 0.50 0.56 0.5 2 0.50 0.56 0.42

Ultimate moment kgcm/cm
at bottom reinf. yield m
at top concrete failure m'
m-fm'

206
135
341

222
135
357

337
131
468

195
86

281

198
115
313

235
180
415

157
135
292

768
410

1178

ULTIMATE LOADS AT TOP SURFACE
FAILURE

Test results tons
ultimate load
membrane stress correction
corrected test load F

4.70
1.59
3.11

4.85
0.75
4.10

4.40
0.39
4.01

2.55
0.1 2
2.4 3

4.20
0.44
3.76

6.40
1.30
5.10

5.10
1.19
3.91

15.80
1.14

14.66:

Load acc. to ultimate strength theory T
tons 3.63 3.86 5.06 3.21 3.44 4.48 3.34 11.82

F/T 0.86 1.06 0.79 0.76 1.09 1.14 1.17 1.24

RADIUS FOR NEG. FAILURE
CRACK ra cm

Measured crack radius 58 69 72 75 68 64 71
Theoretical crack radius 51 50 51 47 49 50 47 56

point in the top reinforcement Pv
t
ie. The data concerning the test

slabs and these ultimate load values have been collected in Table
33:3 together with the corresponding theoretical ultimate loads.
As has been earlier discussed (see 245.3), concerning the membrane stress
corrections noted in this table the correction values in the case of the
double-reinforced slabs are very unreliable for the higher ultimate loads.
This means that comparing the theoretical and the test values in these
cases it is not possible to say more than that the correction values for
the membrane stress effect may very well be of such a magnitude that
agreement is good.

The lower ultimate loads at the commencement of crack formation
in the top surface show very good agreement with the corresponding
theoretical values. This also applies to slab M 11:2, which has no rein-
forcement in the top and in which the tensile strength of the concrete
was completely broken by the insertion of paper rings, if the ultimate
load in this case is assumed to be reached, when the growth in tension
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TABLE 33:3. Series M II, sub-series A:c 1 and c 2, double-reinforced slabs with single
load. Ultimate loads at top surface failure according to tests and ultimate strength theory.

Series M II A litt. c 1:1 c 1:2 c 1:3 c 2:1 c 2:2 c 2:3
test no. 71) 92) 11 122) 10 13

DATA FOR THE TEST SLABS
Total thickness h0 cm 5.1 5.6 5.8 5.6 5.6 5.4
Resilience constant (Stage II) k kg/cm3 0.31 0.33 0.29 0.26 0.31 0.32
Load distribution c cm 20 20 20 20 20 20
Elast, rad. of rigidity (Stage II) I cm 44.0 39.5 42.0 43.6 42.6 38.0

c
Relative load distribution a= -y 0.45 0.51 0.48 0.46 0.47 0.52

Ultimate moment kgcm/cm
at bottom reinf. yield m 283 269 293 418 345 260
at top concrete failure m'cr 216 -2) 164 02) 164 137
at top reinf. yield m'yie -1)

oo7

253 — 202 220
m+m'cr 499 — 457 418 509 397
rn+m'yie — 369 546 — 547 480

ULTIMATE LOADS AT TOP SURFACE
CONCRETE CRACK.

Test results tons
ultimate load 5.95 — 4.90 5.9 6.30 4.60
membrane stress correction 0.71 — 1.04 0.89 0.74 0.28j
corrected test load F 5.24 — 3.86 5.0 5.56 4.32

Load acc. to ultimate strength theory T tons 5.15 - 4.86 4.36 5.3 6 4.36
F/T 1.01 - 0.79 1.14 1.04 0.99

ULTIMATE LOADS AT YIELD IN TOP
REINFORCEMENT

Test results tons
ultimate load — ~ 8.42) ~ 7.6 — ~ 9.2 ~ 8.6
membrane stress corr. (unreliable) (6.1) (5.3) 3.14 (8.9)

Load according to ultimate strength theory 4.00 5.80 5.75 5.25

*) m'cr>m'yie — tensile strength too high, so top reinforcement is completely without
function.

2) The tensile strength of the concrete broken by the insertion of cardboard rings.

values suddenly begins to increase more quickly on a strain gauge
placed over such a crack indication due to a paper ring. According to
the elasticity theory a slab of this type should lack load bearing capa-
city altogether.

Due to the unreliability in the membrane stress corrections for the
higher ultimate load it is thus difficult, from these tests, to draw any
definite conclusions concerning the applicability of t he ultimate strength
method to double-reinforced slabs concerning ultimate load due to yield in
the top reinforcement. The question will be discussed in tests treated later

331.4. Test slabs, Series M II B:a, slabs with twin load
Table 33:4 includes data for both the twin load slabs M 11:15 and 16

as well as the comparison slab 14 with the experimentally deter-
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TABLE 33:4. Series M II, sub-series B:a, slabs with twin load. Ultimate loads at top
surface failure according to test and theory.

Slab 14, loaded with single load, is included in the series as a comparison slab.

Series M II:B litt. a:l a:2 a:3
test no. 14 15 16

DATA FOR THE TEST SLABS
Total thickness h0 cm 5.5 5.6 5.4
Resilience constant (Stage II) k kg/cm3 0.28 0.30 1) 0.30 1)
Load distribution c cm 20 2x 14 2x 14
Elastic radius of rigidity (Stage II) I cm 41.4 40.8 42.2
Distance between loading centres d cm - 42 84

c
Relative load distribution a= ~j~ 0.48 0.34 0.33

Ultimate moment kgcm/cm
at bottom reinforcement yield m

kgcm/cm
277 299 303

at top concrete failure m' 209 218 207
m + m' 486 517 510

ULTIMATE LOADS AT TOP SURFACE FAILURE
Test results tons

ultimate load 6.18 9.03 11.0
membrane stress correction 1.55 1.41) 1.71)
corrected test load F 4.63 7.63 9.30

Load acc. to ultimate strength theory T tons 5.14 7.18 8.95
F/T 0.90 1.06 1.04

RADIUS FOR NEG. FAILURE CRACK r0 cm
Measured crack radius 67 62 60
Theoretical crack radius 51 51 57

1 ) Interpolated between the values for the adjacent slabs.

mined ultimate loads and estimated membrane stress corrections
compared with the theoretical ultimate load values calculated according
to the diagram 32:14. The crack radii have also been estimated (see
the crack patterns in fig. 32:4) and have been combined with theoreti-
cally calculated values. It can be confirmed that agreement between
the experimentally obtained and the theoretical ultimate loads is very
good. The deviations in the crack radii values can well be explained by
referring this to the incomplete plastification in the radial cracks.

331.5. Test slabs, Series M II B:b and c, slabs w ith dynamic loading
The four model slabs in the above-mentioned sub-series have not

been treated earlier. These tests were intended to show the eventual
effect of repeated loading before the final ultimate load as well as the
effect of a mobile load. It is obvious that repeated loading and off-
loading to a load level not very far below the final ultimate load results
in permanent deformations in the reinforcement in the centre of the
slab if the yield point is exceeded, and also results in a more complete
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Fig. 33:1. The location of the loading and crack formation on slab Mil:20. The slab was
first subjected to loading at points on both sides of the centre point and at a distance
of 65 cm from the centre, up to 2/3 of the ultimate load obtained by a third loading at
the centre (the loading areas are marked in on the photograph and the order of l oading
is shown). It can be pointed out that the first two loadings were carried out, as was the
intention, at points situated over the final failure ring crack and the aim of this was to
find out the extent to which extensive crack formation (with yield in the bottom reinforce-
ment) would decrease the strength of the slab concerning tension failure in the top surface.

The result of the test loadings showed that this was not the case.

crack formation in Stage II in the bottom of the slab within zones
lying further out. It may be considered in this connection that the
slab under such loading would have deteriorated strength properties
and a lower final ultimate load.

In an attempt to clarify these questions, the three slabs Mil:17, 18
and 19 have been subjected to a pulsating load and the slab M 11:20
has been subjected to loading by means of a load that was moved so
that it first exerted loading on two points on each side of the centre
before the slab was loaded to failure with the load in the centre (Fig. 33:1).
All the data concerning the loading is shown in Table 33:5 where also
the other data for the slabs as well as the theoretical and experimentally
obtained ultimate loads has been compiled. The load corresponding
to yield point in the bottom reinforcement has been estimated in the
usual way with the help of the curvature diagrams for the centre point
and has been introduced into the table; it can be pointed out that in
all cases of p re-loading considerably higher loads than this were reached.
The pre-loading would thus appear to have implied a relatively wide-
spread plastic stage and permanent deformations of the slab.1)

*) The complete test results concerning the tests on these slabs are to be found in the
result supplement, Section 922.
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TABLE 33:5. Series MII. sub-series B:b and c, slabs with dynamic loading.
Ultimate loads at top surface failure according to test and ultimate strength theory.

Series M II B load type Pulsating load Mobile load

litt. b: I b:2 b:3 c
test no. 17 18 19 20

DATA FOR TEST SLABS
Total thickness h0 cm 5.2 5.1 5.2 5.3
Resilience constant k kg/cm3 0.35 0.37 0.34 0.52
Load distribution c cm 20 20 20 20
Elast, radius of rigidity I cm 40.8 38.2 38.8 33.7

c
Relative load distribution a =-j- 0.49 0.52 0.52 0.59

Ultimate moment kgcm/cm
at bottom reinforcement yield m 280 271 270 264
at top concrete failure m' 190 173 176 189

470 444 446 453

LOADING PROCEDURE
Loading series 4x0 to 4 t + 5 X 0 to 6 t+ 23x0 to 5 t 0 to 5 t

+ 1X 0to5,5 t + ultimate + ultimate 65 cm south
-(-ultimate load load centre
load +0 to 5 t

65 cm north
centre -f-
+ultimate
load in centre

Load at yield point in bottom
reinforcement tons 2-^2.5 approx. 3 approx. 3 approx. 3.5

ULTIMATE LOADS AT TOP SURF.
FAILURE

Test results tons
ultimate load 6.9» 6.70 7.00 7.33
membrane stress corr. ~ 0.7 0.75 0.55 0.51
corrected test load F ~ 6.2 5.95 6.45 6.8

Load acc. to ultimate strength theory T tons 5.05 4.88 4.90 5.33
F/T 1.23 1.22 1.31 1.27

The table shows, however, that no decrease whatsoever in the final
ultimate load can be shown in any of the slabs. When comparing with
the theoretical ultimate load, calculated in the usual way as for static
loading, it can be shown on the contrary, that the ultimate loads for
these slabs is rather higher than for most of the comparable slabs loaded
with a static load. To the extent where this is not pure coincidence,
one can possibly explain such an increase in ultimate load by indicating
two conceivable reasons. The repeated loading gives an increased per-
manent compression of the subgrade board especially in the centre zone
so that the subgrade pressure becomes more concentrated in this zone,
and such a concentration of subgrade pressure should imply somewhat
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increased ultimate load. Apart from this the average flexural rigidity
of th e slab decreases due to the more complete plastification and through
a more complete crack formation in the tension zone which takes place
during pre-loading; this implies a higher value of the relative load distri-
bution and thereby a higher ultimate load.

To the extent definite conclusions can be drawn from the few tests
carried out. with dynamic loading it can thus be stated that such loading
does not imply any decrease in the bearing capacity of the slab if t his
is defined as the load causing failure in the top surface.

332. The Gothenburg test slabs, Series G

The loading tests on the two full-scale slabs on clay subgrade in
Gothenburg (series G) are treated in Section 25, and analysis according
to the elasticity theory showed that the subgrade functioned almost
as elastic material. Analysis also showed that the ultimate load at
crack formation in the top surface only to a slight extent exceeded the
load at which yield in the bottom reinforcement commenced. The
assumption of a plastic state at this load must thus have been of
a very limited extent and this explains that the ultimate load value
agreed fairly well with the theoretical load causing concrete failure
in the top surface according to the elasticity theory, see Table 25:5.
The higher ultimate load values for slab G 2 at top reinforcement
yield, on the other hand, showed poor agreement with the elasticity
theory.

Table 33:6 shows the result of t he ultimate load calculations according
to the ultimate strength theory compiled together with the test values
and the required data for the slabs. The table shows that the agreement
between the ultimate loads according to the tests and the theoretical
ultimate strength is very good. This also applies to the loads causing con-
crete failure in the top in spite of the very incomplete plastification in
the radial cracks already mentioned. This is completely in agreement
with the theoretical discussion in 325.2, and Table 32:6 also shows that
the ultimate load in a case such as this should lie rather lower than the
theoretical load calculated according to the failure formula (32:22) (dia-
gram 32:14), as well as that the crack radius measured is considerably
greater than that theoretically calculated.

The ultimate load at yield point in top reinforcement shows very
satisfactory agreement with the corresponding theoretically calculated
load, particularly if respect is taken to the degree of unreliability in
the determination of the ultimate load value and to the influence of
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TABLE 33:6. Series G. Centre loading on test slabs. Ultimate loads at top surface failure
according to test and ultimate strength theory.

The diameter of the slabs 7.00 metres, thickness approx. 15 cm. Loading surface radius
c = 40 cm.

When calculating the theoretical ultimate loads the soil is assumed to function as elastic
subgrade

Series G, slab no. 1 2

DATA FOR TEST SLABS
Total thickness approx h0 cm 15 15
Reinforcement Ks 40 0 8

bottom c/c 9.1 —c/c 10.0 c/c 9.1—c/c 10.0
top c/c 12.0 —c/c 12.5

Soil modulus C kg/cm2 150 120
Elastic radius of rigidity I cm 60 62

c
Relative load distribution a= 0.67 0.65

Ultimate moment kgcm/cm
at bottom reinforcement yield m 3300 2900
at top concrete failure m'cr 950 680
at top reinforcement yield m'yie — 1620
m-\-m'cr 4250 3580
m- f - m'yie — 4520

ULTIMATE LOADS AT TOP SURFACE
FAILURE

Concrete tension failure Ptcr tons
test F 52 40
theory T 55 46
F/T 0.95 0.88

Yield in top reinforcement P{yw tons
test F — 66
theory T 59
F/T 1.12

RADIUS OF NEG. FAILURE CRACK r0 cm
Measured crack radius ~ 150
Theoretical crack radius 90

the membrane stresses; the correction which is not included here, may,
according to earlier estimations, be between 2 and 6 tons. As far as
can be judged from this test, the ultimate strength method is thus very
suitable for application to double-reinforced slabs when calculating the
ultimate load due to yield in the top reinforcement.

The calculations in Table 33:6 have been carried out under the assump-
tion that the soil functions as an elastic medium. The corresponding
calculations carried out for resilient subgrade show considerably poorer
agreement with the test results. Also this discussion confirms the
impression obtained earlier, that the properties of the clay subgrade
in question more nearly correspond to that of elastic subgrade.
15
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333. Tests with stamping out collapse

At some of the tests, viz. those carried out with the slabs in Series
MI and G, the load was increased until definite collapse was reached
due to stamping-out around the loading plate. These tests are collected
and analysed in Table 33:7.

The stamping-out collapse in its purest form is caused by shear-tensile
rupture in a conical crack proceeding from the circumference of the
loading area. The corresponding shearing stress Tstamp raay be esti-
mated from the formula

P — ps n (c + Ä0)2

Tf = —— ——— *1.15 (33:1)
8tamp 7ih0{2c + h0) V '

where the second term in the numerator is an expression for the total
counter-pressure from the subgrade against the base of the stamped-
out cone, and ps is thus the average soil pressure value under that base,
which can be estimated from the soil pressure curves in Fig. 22:6 (elastic
subgrade, slabs series G) or in Fig. 22:8 (resilient subgrade, slabs series
MI). The factor 1.15 is placed in the expression (33: 1) in analogy with
the corresponding expression for shear stress in beams, but here it may
have a somewhat higher value.

The table shows the rstamp-values estimated in the way mentioned
above. These values should be identical with the pure tensile strength
values ot, and in order to analyse that, the rstamp-values have been
compared with the flexural strength values of taken from the correspon-
ding detail tests. The result shows that the ratio of/rstamp is about
1.7 — 2.0 with the exception of the values for the slab MI: 2, which
have an exceptionally low oy-value, and the slab MI: 4, where the stam-
ping-out crack coincided with a circular top crack earlier occurring near
the centre. In fact this was also more or less the case with some of the
other model slabs, which fact may have contributed to the somewhat low
rstamp-values. This case is not, however, of any practical interest, be-
cause a stamping-out collapse is dangerous only when it arises before
the normal ultimate load is reached due to flexural rupture in the top
surface.

The values o;/rstamp in the table are perhaps somewhat greater than
the normal relation between flexural strength and pure tensile strength
for concrete (see Section 633). This can indicate that the oblique tensile
stresses in the cone surface are not uniformly distributed and that the
factor 1.15 in the equation (33: 1) is too small. Another explanation
is given above.

However, judging from the tests accounted for in Table 33: 7, of
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TABLE 33:7. Series Ml and G, stamping-out collapse.
The stamping-out stress rstamp, calculated according to formula (33:1), is compared

with the flexural strength op which is calculated from the detail test values in Tables
24:2 and 25:1 respectively.

Test slabs, data
Stamping- Stamping- Flexural

Slab series Thickness Loading out load out stress strength a * a t
no area c pstamp Tstamp from Tstamp

pstamp
detail tests

Tstamp

cm cm tons kg/cm2 kg/cm2

Ml:1 2.0 5 1.19 17 33 1.9
2 3.2 5 1.77 17 22 1.3
3 3.1 5 2.37 20 37 1.8
4 3.1 10 1.89 10 29 2.91)
5 2.8 10 2.78 15 27 1.8
6 3.2 10 3.38 15 25 1.7
7 3.0 20 4.47 11 22 2.0

Gl
loading 1 20 38.9 15
loading 2 • ~ 15 40 64.0 13 » r>̂ 2t) • ~ 1.8

G2 40 68.5 14

*) Stamping-out along a circular crack.

course altogether too few, the stamping-out load Pstamp may be roughly
est imated from the expression (33: 1) if r s t a m p is made equal to o t .

Inser t ing, in order to be qui te  cer ta in as to the table resul ts , r t = j r of ,

the equation (33: 1) can be re-written thus:

Pstamp — V s n (c + Äo)2 = 0.45 o f 7 1 J l 0 (2 C + h 0 )

or, writing p s according to the expression in Fig. 22: 6 A or Fig. 22: 8 A

p
stamp 2 = 1.4 o f h 0 (2 c + h 0 ) (32:2)

In this expression the Z2-value may be estimated from the pressure
curves in the figures just mentioned as an average value under the

c h0
stamping-out cone with a relative base radius value - ,



34. General Viewpoints on the Application of the Ulti-
mate Strength Theory to Reinforced Concrete Pavements

According to the viewpoints given in Section 31 the ultimate load
for a reinforced pavement should be judged on the basis of the load
causing commencement of crack formation in the top surface or, in the
case of double-reinforced slabs, yield in the top reinforcement. An
ultimate load defined in this way cannot be calculated according to the
methods of the elasticity theory, this being clearly shown by the earlier
analysis of the tests in series M and G according to the elasticity theory.

On the other hand, the ultimate load in question can be calculated
theoretically according to the ultimate strength method, due respect
being taken to the properties of the slab after the reinforcement yield
point has been reached, by applying the principles of the yield line
theory according to JOHANSEN, b ut it is assumed that the soil pressure
can still be estimated according to the elasticity theory. Under these
conditions and with simplified suppositions concerning the yield line
figure and the soil pressure distribution it is possible to set out relatively
simple formulae for the determination of the ultimate load or the ultimate
moment, summarized in 326. Examinations of the ultimate formulae
show that the approximate assumptions and simplifications carried
out when deriving them in general have a very small effect on the result.

The analysis of the test results from series M and G concerning the
loads causing top surface failure shows that it should be possible
to apply the formulae arrived at to reinforced concrete pavements.
It is, however, true that in many cases there are relatively large devia-
tions between the ultimate loads obtained from tests and according
to the ultimate load theory. It has been pointed out in the test analysis,
however, that the degree of unreliability is comparatively great both
in the determination of the experimental ultimate loads as well as in
the calculation of the theoretical loads. Particularly in the cases where
the ultimate loads were estimated indirectly through comparison between
the strain measurements in the main test and the detail test, as in the
case of the double-reinforced slabs, then the degree of unreliability can
become significant.

One condition which also contributes to a great extent towards the
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difficulties in the consideration of the test values, is the influence of
the membrane stresses. Particularly in the model tests the membrane
stresses are great and for several of these slabs with a large degree of
flexural deformation at failure (particularly the double-reinforced
slabs) then the membrane stress effect appears to have been of the same
magnitude as the effect of the flexural stresses. The estimation which
the author has attempted to make of the correction in the ultimate
load value due to membrane stresses, is to be considered as being very
rough, and it is clear that in the cases where the membrane stress effect
is significant compared with the ultimate load value, then the ultimate
load value must be judged as being very unreliable. In this respect
the slabs in the full-scale series G are much more favourable and the
result shows also that in these tests, too few of which alas were carried
out, closer agreement with the theory has been obtained.

As far as the theoretical ultimate load values are concerned, these
are calculated on the basis of the experimentally determined ultimate
moment values, and it has also been maintained (in Section 245 for
example) that considerable unreliability characterizes these values
which were obtained indirectly through the detail tests as well as the
fact that faults in the ultimate moment values have a direct influence
on the theoretical ultimate load value. Apart from this there are also
unreliable factors in this value due to approximations and simplifications
when compiling the ultimate load formulae, even if these factors —
as already mentioned above — have definitely a less significant in-
fluence than those earlier mentioned.

With respect to the points made above, the agreement between
the experiments and the theory must be judged as being fully satis-
factory.

The ultimate strength theory can be applied in the cases of both
resilient and elastic subgrade. In the analysis of t he model tests the sub-
grade has, as earlier, been considered as resilient while in the full scale
tests the subgrade was regarded as being elastic. The calculations in the
last-mentioned case according to the theory for resilient subgrade
have given considerably poorer agreement with the test results.

Further tests are described and analyzed in Part 5.
The flexural rigidity values for the test slabs which were determined

experimentally and used in the analysis correspond to the secant modulus
at yield point in the reinforcement. The theoretical calculations of
the flexural rigidity, based on Stage II and n= 15, have been shown
to give relatively good agreement with these experimentally determined
values and this method of determining the flexural rigidity in the case
of pavement design should be fully acceptable.



4. Load on a Free Edge or a Joint

41. The Elasticity Theory according to Westergaard

As mentioned in the earlier literary review, as far as the author has
been able to find out, only WESTERGAARD has treated the case where the
loading on the pavement is placed on a free edge or a joint which cannot
transfer flexural moment. WESTERGAARD st arts in this connection from
a case of loading with periodically repeated loading along the edge and
obtains the influence of a single load by allowing the period to increase
towards infinity [71]. He derives in this way an expression for the depres-
sion due to a concentrated load on the edge. Analogous with the rest of
his treatment of the problem of a slab on an elastic subgrade, WESTER-
GAARD assumes that the subgrade behaves as a resilient layer with a
modulus of subgrade reaction k.

With reference to these derivations WESTERGAARD in his earlier papers
[72, 74] states formulae for the depression and the moment under a
semi-circularly distributed load along a free edge (WESTERGAARD'S
loading case III). For the depression under the load the following expres-
sion is stated

= -JT( 1 + 0 A v ) < 4 1 : 1 )

This is actually the depression under a load concentrated in a point,
but the effect of small load distributions is stated to be comparatively
insignificant. For the moment under the centre point of the semi-circular
loading surface, WESTERGAARD quotes a formula which, after suitable
re-writing, can be expressed:

m e = — P (1 + 0.54 v ) 10.350 • 10log y — O.032J (41:2)1)

x) The derivation of this moment formula is not stated in WESTERGAARD'S pap ers.
Attempts by the author through integration of t he expressions for the concentrated load
in WESTERGAARD'S pap er [71] to arrive at the formula in question have not produced a
result in agreement with WESTERGAARD.
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In these formulae, as earlier, I — the elastic radius of r igidity, calculated
from the expression

WESTERGAARD has also produced a diagram covering the depression
and the moment of the edge load [72]. He has shown the depression in
the form of level curves for the depression surface in the neighbourhood
of th e concentrated load, and with the help of these it is possible to obtain
the depression curves parallel with and at right angles to the edge (see
Fig. 41:1). Since the depression surface according to Maxwell's theorem
can be considered also as an influence surface for the depression in the
edge due to a load in a certain point on the slab, it is possible to use the
level curves in order to obtain the depression in the edge due to concen-
trated loads at a varying distance from the edge, and for a load with a
moderately large distribution the position of the concentrated load can
be replaced by the centre of g ravity position of the loading surface. The
moment distribution curves of WESTERGAARD show the moment along
the free edge in the case of different load distributions, whereby the load
has, however, linear distribution along the edge. The values of the
moment under the loading centre which can be calculated from the for-
mula (41:2) and the values obtained from the curves just mentioned do
not agree at all — the latter are almost double so large as the former. It
should, however, be reminded that the load in one of the cases is semi-
circularly distributed while in the other case it is linearly distributed.
It should, however, be possible to assume that the moment distribution
outside the load distribution zone agrees more or less with that obtained
with a semi-circular distribution of the load.

In some later papers [76, 77], WESTERGAARD has derived and stated new
formulae for depression and moment with loading on the interor and on
the edge of a slab in such cases where the load distribution has other forms
than that of a circle. The edge loading formulae are based also here on
the earlier quoted original case of concentrated loading [71], If the
assumption is made, as earlier, in this paper that the pressure surface
between the slab and a loading wheel is circular, then the most important
types of loading surface are partly the semi-circular distribution (as
WESTERGAARD treated in his original formula), applicable in the case
when a loading wheel is exactly over a moment-free joint, and partly
the circular distribution tangent to the edge, applicable in the case
when a loading wheel is close to the edge of a pavement. For these two
important cases of loading it is possible, after suitable re-writing and

4
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simplification1) to obtain the following formulae for depression and mo-
ment under the loading centre:

in the case of a semi-circular load:

w e — — =- (1 + 0. 4 v ) |\ — 0. 3 2 3 (1 - f - 0. 5 v ) yj (41:3)

/ c c \r n e —  —  P (1 + 0. 5 v ) 10. 4 8 9 • 10log y — 0. 0 9 1 — 0 . 0 2 7 yl (41:4)

in the case of a circular tangent load :

1 p r c i
w e = T n r -T]r + 0.4v) I 1 -0.760 (1 + 0.5 v ) T| (41:5)

Y6 &

c c
r n e = — P (1 + 0. 5 v ) (0. 4 8 9 • 10log y — 0. 0 1 2 — 0. 0 6 3 y ] (41:6)

The formulae for depression2) (41:3) and (41:5) are in the case of load
distribution equal to zero identical with the depression formula (41:1)
stated earlier as applying for a concentrated load. On the other hand,
the moment formula (41:4) for the semi-circular case does not agree
at all with the earlier formula (41:2) for the same case. The formula
quoted here gives moment values which are considerably higher than the
corresponding values according to the earlier formula.

The formulae above take greater respect to the influence of the load
distribution than the old formulae, since more terms in the series develop-
ment are included, but they do not apply for other than comparatively

c
moderate load distribution, since only terms of the first order in y have

c
been included. As a matter of fact, the terms with y in the deflection

i
*) In the original formulae, the Poisson's ratio v is included in a considerably more

complicated functional relationship. Here, however, simplifications have been introduced
of the same type as WESTERGAARD himself introduced in his original formula [71] for
the case of edge loading and which are well applicable, for the small v-values here
concerned, within the region where the formulae apply.

2) WESTEBGAARD also states that the depression according to (41: 3) and (41: 5) at
small distances y at right angles to the edge decreases according to the formula

wy — we j"L ~ (0, 7 6 + 0, 4 v) • y^J

This formula has been utilized when making out the depression curves at right angles
to the edge in fig. 41: 1.
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formulae (41:3) and (41:5) express only the influence of the load distribu-
tion depending on the fact that the centre of gravity of the load
distribution surface (the semi-circle) at an increased radius becomes
an increased distance from the free edge, thus not the influence of the
magnitude of the load distribution surface in itself. If the centre of
gravity distance of the semi-circular load c = 0.425 c is inserted instead
of t he radius c in the formula (41:3), then this formula becomes identical
with (41:5).

A better idea of t he influence of l arge load distribution can be obtained
with the help of th e "influence charts" for pavements quoted by PICKET
and RAY [57] which in the case of the edge load treated here are based
directly on WESTERGAARD'S original formulae in his first paper [71].
These influence charts can be used as a help to calculate the depression

I
and the moment in a point of the edge and in a point at a distance — from

the edge due to an arbitrarily distributed load with an arbitrary position
within a zone of 2 I from the point in question. The author has utilized
this method in order to produce curves over the moment distribution
along the edge as well as the depression along and at right angles to the
edge in the case of various load distribution radius with semi-circular
load and circular load, tangent the edge. The results are shown by Fig.
41:1 and 41:2. The curves for moment and depression in the loading
centre for various values of lo ad distribution have also been drawn in. A
comparison between the values according to these curves and according
to the formulae (41:3) — (41:6) show results which are completely in
agreement in the case of small values of load distribution. A control
with the help of th e Picket-Ray influence charts of th e moment distribu-
tion curves for a linear load along the edge produced by WESTERGAARD
and mentioned earlier also gives full agreement.

It is thus obvious that the original formula (41:2) for edge loading
according to WESTERGAARD [72] is, at least from a theoretical viewpoint,
completely erroneous. Unfortunately it has become fairly wide spread
both in design specifications and handbook literature as well as in the
treatment, analyses and discussion of t est results,1) while the new correct
formulae according to [76] have attracted very slight attention.

The maximum moment of t he edge loading according to the formulae
(41:4) and (41:6) or the diagrams in the figures (41:2) have been
compared with the moments of the load on the interior of the slab

x) As far as Swedish conditions are concerned, it may be mentioned as examples in
this respect the Design Specifications of the Swedish Cement and Concrete Research
Institute [78] and the handbook BYGG. [54] The author has himself used the erroneous
formula in a report concerning loading tests on the Arlanda airport [39].
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Fig. 41:1. The depression lines along and, in adjacent points, at right-angles to the free
edge of a slab of semi-infinite extent subjected to a load with various types of load distribu-
tion acting on the free edge. The maximum depression under the loading centre for various
extent of load distribution is also drawn in (broken lines and special co-ordinate axis). The
curves apply to resilient subgrade.

The curves for a concentrated load (A=0) have been obtained directly from WESTER-
GAARDS level curves in [72] for v —0. The remaining curves have been drawn on the basis
of the Pickett-Ray influence charts [57]; these apply for v — 0.15, but the corresponding
curves for v— 0 have been estimated from the basis of the formulae (41:3) and (41:5)
centre values) as well as WESTEEGAAKD'S level cu rves in [72], given for v= 0and v= 0,25.
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TABLE 41:1. Maximum positive moment me of ed ge loading P on a slab of semi-infinite
extent (with i>= 0) on resilient subgrade according to the formulae (41:4) and (41:6)
and Fig. 41:2, compared with the corresponding moment of t he load on the interior of t he

slab mint according to Fig. 22:9.

Relative load
distribution

c
a==T

Moment of
semi-circular
load on the

edge
me«c

Moment of
circular load
tangent to
the edge

met(i

Moment of
load on the
interior of
the slab

mint

mesc met<J
Relative load
distribution

c
a==T

Moment of
semi-circular
load on the

edge
me«c

Moment of
circular load
tangent to
the edge

met(i

Moment of
load on the
interior of
the slab

mint
mint mint

0 . 1 0 . 5 8 3 P 0 . 5 0 7 P 0 . 2 3 2 P 2 . 5 0 2 . 1 7
0 . 2 0 . 4 3 8 0 . 3 6 6 0 . 1 7 7 2 . 4 7 2 . 0 6
0 . 3 0 . 3 5 4 0 . 2 8 6 0 . 1 4 5 2 . 4 4 1. 9 7
0 . 5 0 . 2 5 1 0 . 1 8 8 0 . 1 0 5 2 . 3 8 1. 7 9
1. 0 0 . 1 2 7 0 . 0 8 3 0 . 0 5 8 2 . 2 5 1. 4 3
2 . 0 0 . 0 3 6 — 0 . 0 1 8 2 . 0 0 —

(according to the diagram in fig. 22:9), and the results for some values
of the relative load distribution have been summarized in table 41:l.x)
The values in the table show that the relationship between the maximum
positive moments of the edge loading and of the load on the interior of the
slab decrease gradually as the relative load distribution increases — in
the case of the semi-circular load, the relationship is practically
constant. Fig. 41:3 shows that the relationship between these moment
quotas and the relative load distribution can very well be represented
by straight lines. The maximum negative moment m~ appears, to
judge by the diagrams in Fig. 41:2, to have approximately constant
value independent of the load distribution, since the negative
moment peak comes further from the loading centre with greater load
distribution.

With the help of the diagrams in fig. 41:3, the maximum positive
moments in the case of loading on a free edge can be set out in the form
of the simple equations:

in the case of a semi-circularly distributed loading surface

m + = P (1 + 0 . 5 v)I2. 5 — 0. 2 5 yjZ\ (41:7)

L) If corresponding comparisons are carried out with the edge loading moment cal-
culated according to WESTERGAARD'S original formula (41: 2) the result is obtained that
the edge loading moment is approx. 1.5 times greater than the moment of t he same load
on the interior of the slab, i. e. the loading exactly over a joint, which cannot transfer
moments (whereby half the load will form a semi-circularly distributed load on each
edge of th e joint) should give smaller stresses in the slab than the same load on the interior
of the slab. Such a result appears to be completely illogical and shows thus, also in this
way, that the formula in question cannot be correct.
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Circu/ak

Fig. 41:2 A and B. Moment distribution curves along the free edge of a slab of semi-infinite
extent with the load on the free edge. The maximum moment for various extent of load
distribution is also marked in (broken lines). The curves apply to resilient subgrade and
a Poisson's ratio for the slabs v=0 (Fig. A) and v=0,15 (Fig. B).

The curves for v= 0,15 have been drawn in directly on the basis of values in accordance
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with the PICKETT-RAY i nfluence charts [57]. The corresponding curves for v =0 have

been estimated from the basis of the formulae (41:4) and (41:6) (maximum values) as well
as WESTERGAAED'S m oment curves for a linear load (see page 231), given for r =0 and

v =0,25. These last-mentioned curves have also been utilized to obtain the moment values
at a larger distance from the loading centre than that obtainable from the influence charts.
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2,80

2,W

2,00

1,60

O Oj 1,0 N 1,3 2,0
Fig. 41:3. The relationship between the moment me of a load on the edge and mint of a load on
the interior of a slab (v=0) on resilient subgrade. The figure shows that the relationship

c
values for various extent of load distribution — can be represented by straight lines with

a sufficient degree of accuracy.

in the case of a circular loading surface tangent the edge

m+ = P( 1 + 0.51») 12.2 — 0.8 yj z\ (41:8)

where Z\ is o btained from the moment diagram in Fig. 22:9, page 54 for
a load on the interior of th e slab. For the maximum negative moment,
independent of the load distribution, can be written

m~ = — 0.060 P when v = 0 j
(41:9)

me = — 0.066 P when v = O. i s J

It would not appear to be an altogether too wild supposition that the
relationship between the moment of th e edge l oading and the moment
of the load on the interior of the slab can be calculated in a similar
way for elastic subgrade as for the type of subgrade WESTERGAARD
has reckoned with, namely resilient subgrade. The formulae (41:7)
to (41:9) should, according to this supposition, be of use for the
calculation of the edge loading moments, whether the subgrade is
resilient or elastic, whereby t he values of Z\ are obtained for the moment
in the case of a load on the interior of the s lab from the diagrams in fig.
22:7 on page 52 and fig. 22:9 on page 54 respectively, and thereby

c
determining the relative load distribution a — from the respective

Z-values,
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L =

4

/ D
•/ — in the case of resilient subgrade

3

2 D
Q in the case of elastic subgrade

WESTERGAARD has not stated the moment distribution curves or
any values of the moment for the deflection at right angles to the edge
of the slab. It can be assumed, however, that the negative moments in the
sections in question can hardly in any case be less than the negative
moments in the sections along the edge, since the edge in the first-men-
tioned direction carries the load with a cantilever effect. Along the edge
itself there is naturally no positive moment.

The question of t he correctness of t he edge loading formulae according
to WESTERGAARD and the relationships (41:7) to (41:9) set out here
would appear to require further clarification on the basis of tests. Not
much is derived, however, by a study of tests with edge loading carried
out earlier, and this is due to the fact that, when analyzing the tests, the
basis usually used was the original erroneous edge loading formula (41:2)
for which WESTERGAARD i s responsible. In the earlier mentioned test
review by BERGSTRÖM and assoc. [4] those authors state that the results
of edge loading tests show great deviations by comparison with the
theoretical values. In some of the tests with edge loading referred to in
this paper, included in a large series of loading tests with plain concrete
test pavements on natural soil (the Arlington tests) by TELLER and
SUTHERLAND [64] it was considered that good agreement was certainly
shown with the erroneous formula, but simultaneously also with the
correct moment curves stated by WESTERGAARD. Concerning later tests
a series of model tests by BONE [10], which were carried out under
conditions which should be similar to the theoretical conditions of
WESTERGAARD, are of special interest and the results here show good
agreement with the new formulae both for the semi-circular case and for
the case of a tangent edge load, formulae (41:4) and (41:6).

The problem will be discussed further in connection with the following
test accounts. The correctness of the suggested method for calculating
the edge loading moment according to the theory for elastic subgrade
will thereby be examined.

WESTERGAARD tre ats a further case of a load on a pavement, namely
the case of a load on a free corner (WESTERGAARD'S l oading case I, see
Fig. 41:4). He thereby considers the corner to be a cantilever, loaded
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Fig. 41:4. Case of loading with circularly distributed load Pona free corner (A) and on
a joint intersection (B).

from above by a circularly distributed load P tangent the corner and
from below by the soil pressure, estimated from the deformation. WES-
TERGAARD finds in this way that the dangerous section is at the following
distance from the corner

x1= 2 }/cJ (41:10)

(see Fig. 41:4) and quotes for the stresses in this section an approximate
expression which can be re-written to the moment formula

P [-(CImr = 1 (41:li;

where cx is the centre of g ravity distance of the loading surface from the
corner and I is as usual the elastic radius of rigidity for resilient subgrade.

For a circular surface with c1 = c|2 one thus obtains

m~ = - ^ [ l - 1 , 2 3 ( T T I ( 4 1 : 1 2 )
2

For the more usual cases, where the load P is standing on an intersection
of joints which do not transfer moment, but shearing forces (Fig. 41:4),
then the stresses will be greatest if P is standing exactly over the joint
intersection whereby a quarter of it is loading each section of the slab.
The moment in this case should be able to be expressed analogous with
(41:11), if the centre of gravity distance cx = 0,6 c, is inserted and one
thus obtains

P [-HC (41:13)
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Fig. 41:5. The relations according to the equations (41:12) and (41:13) between the
negative maximum moment and the load distribution with a load on a free corner and a
joint intersection respectively for a slab on resilient subgrade. The relationship formula

(23:4) between k and C is also shown in the figure.

No positive moments of significance occur in these cases. The negative
moments according to (41:12) and (41:13) are, at least in the case of
small and moderate load distribution, significant by comparison with
the negative moments in other cases of loading. Fig. 41:5 shows the
relationship between the moment and the load distribution, calculated
according to the formulae (41:12) and (41:13). For large values of the
relative load distribution the formulae would not appear to be applicable.

Loading tests with the corner loading case would appear only to have
been carried out on plain concrete slabs and, according to [4] such tests
show great variations when compared with the theoretical values
according to the formula (41:12). The agreement is particularly poor in
the case of thick slabs, this apparently depending upon the fact that
such slabs, due to their rigidity, are sensitive for poor contact with the
subgrade.

The author has not carried out any tests himself on reinforced pave-
ments. With slabs of this type, which are comparatively thin, agreement
with the theory could be expected to be fairly good.
1 6



42. The Ultimate Strength Theory

421. General
The expressions stated in the previous section are naturally applicable

only as Jong as the slab functions more or less elastically, that is to say
in the case of a reinforced pavement, only so long as the yield point is
not yet reached in the reinforcement. In order to calculate the ultimate
load, defined in the same way as in the treatment of th e case of loa d on
the interior of the slab, also here the yield line theory can be applied
under the same conditions as in the previous case.

The conditions in the case of l oading on a free edge are considerably
more complicated than in the case of loa ding earlier treated. The failure
line figure becomes a curve that can not be approximated with a semi-
circle, since this would violate the equilibrium conditions. The depression
"volume" and thereby the soil pressure volume become irregular in so far
as the depression increases more rapidly in a direction at right angles to
the edge than along the edge as the loading point is approached. This is
shown both by Fig. 41:1 and by the fact that the moment along the free
edge must be zero. Calculation of th e soil pressure is further complicated
by the fact that this irregular depression "volume" is cut by an un-
symmetrically negative failure line.

In order to study the problem with reasonable calculating work and
make it fairly easy to consider, it is therefore essential to introduce very
simplified suppositions concerning both the form of the failure line
figure and the form of the soil pressure volume. JOHANSEN has shown
[31, 32], that with comparatively good approximation the curved failure
lines can be replaced by lines in the form of a polygon. The simplest form
that can be used in this case is the triangular form as shown in Fig.42:1. A
discussion follows later as to the magnitude of e rror in the case of su ch
an approximation. The subgrade pressure is assumed to decrease linearly
from the loading centre both along the edge and at right angles to it
but at various rates, and between these lines the pressure volume can be
approximated with plane surfaces. The pressure volume thus obtains the
form of a pyramid with a triangular base (see Fig. 42:1). This approxima-
tion is naturally rather rougher than that used in the treatment of the
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Fig. 42:1. Presumed subgrade pressure distribution and failure line figure with a semi-
circular load on a free edge of a slab on soil. The probable actual pressure distribution

and failure crack in the top are also drawn in.

earlier case with a load on the interior of the slab, but in that connection
it has been shown that even large alterations in the form of t he pressure
volume have a comparatively small influence on the theoretical ultimate
load value.

422. Semi-circular load on an unstrengthened edge. Loading on a joint

The first case to be treated is that where the loading is distributed
along the edge in the form of a semi-circle, this case being, as earlier
mentioned, applicable for loading on a moment-free joint. The slab
is assumed to have the same reinforcement in both directions and this
implies that the moment along the failure lines is constant and inde-
pendent of the directions. The positive ultimate moment (yield moment)
is denoted as earlier m and the negative moment (corresponding to the
tensile strength of the concrete or the yield moment for the top rein-
forcement alternatively) m'. The notations are otherwise shown in
Fig. 42:1. The base triangle of the soil pressure pyramid has along the
edge a length of 2 t k and a height at right angles t o the edge = t .
The height of the pressure cone, corresponding to the soil pressure
under the loading centre, is written = p0. In the angle between the
negative failure line and the free edge and the negative and positive
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failure lines respectively there will be found, according to JOHANSEN [31]1),
the concentrated "corner forces"

Qi = ™>' tg <%

q 2 = [ m + m ' ) cot ( X

The equilibrium equations used consist of a projection equation for
the section of the slab inside the negative failure lines, a moment equa-
tion for this section of the slab around the free edge and a moment
equation for half this section of the slab around the positive yield line.
In this way one obtains the three equations:

r0 1 1
(a)P = rgtga:p0 — 2y p0r0 —r0tga — —

r 1 1
— 2 tg ap 0 r 0 tg cc — r 0 — + 2 m ' tg a+ 2 ( m+ m ' ) cot a

h z 0

4 c r 0 t 0 1 ? 0 3 2
( b ) p i ^ = r o t g « P o y -2 i lI"

} (42:1)
T 1 T T

— 2 tg ap 0 r 0 tg a—~ - j - — 2 m ' r , 0 tg a + 2 (m + m ' ) r0 cot a
t j c Z o 4

J P 4 C 1 ^ t y y ]

(C) I^= i*8 "-f V" 2r° tg"I 4 r" tg"-

r 0 r 0 1 2 3 t
- - ^ t g a ^ o ^ o t g a Y - - - r 0 t g a + W r0tg2<* - (m + m ) r 0

or after simplification

( \ V 1 T \1 — — - j — — j - tg« I + 2 \ m ' + (m + m') cot2 a]

(b) Pcot* 4"= T I 1 — — 7 7 % « )- 2 r 0 [ m ' — { m+ m ' ) c o t 2 o c ] | (42:2,
O 7 1 O y Z t 4: I j ç J

4 c 1 / 1 1 / * \
(c)Pcot2<% — = — p 0 r l 1 -— + 2r0[m'- (m + m')cot2a]

6 n å \ 4 t Z l h ]

By adding the equations (b) and (c) and by adding and subtracting
the equations (a) and (b) respectively one gets

X) JOHANSEN [31], pages 61 and 62.
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2 c / 3 r0 3 r0

P n V0 COt * (1 + COt ^ =
Po 0\1 ~ "8 T ~~ "8 Tk tg *

J , c o t ä ( 1+^ ^ )= Î ( 1 - I T - J i T k t s ° ) + i ( m+ m ' ) c o t 2 a < 4 2 : 3 )

P COt Oi 1
4 c

3 TI r0

2 9 / 1 ro 3 ro I
~ 3 p ° r ° 1 _ IT - I I 1 « 1 + 4 m '

If it is assumed as earlier that the soil pressure is proportional to the
load and can be expressed through the formula (see 41:3)

Po = 7k 12 (42:4)

one gets after insertion and simplification

2 c I
P n l T „ C O t x { 1 + °0t x) = y t P \ j ) 8l

3 ro 3 ro
8 t r tg ^

P cot a 11 +
4 c

3 n r,
3 r0 5 r ,

T y „ P \ — ) ( i - j Y - T r — t g « | +16 t r (42:5)

P cot a 1

+ 4 (m + m') cot2 a

4 c/ 4 c \ 2 /r0\2 / 1 r0 3 r0 \

These formulae can finally be rewritten thus

3

\ u

l ) T =

)) m m

P

2 c
71 I cot <% (1 -f- co t a)

» ' * [ 1 - | t ( 1 + ^ * « ) ]

) m' —

~ * [(1 + 3™ r j ^ " ~ 3^11

[(
4 c

3TI r0 COt ( X ~ ~ i y k \ l

Y 5 r<1
~ 8 t ~ 1 6 L

1 r0 3 r0

' - I T - Ï T ^ Z "

(42:6)

tg oi I • tg2 a

)]
These equations give, for every value of the angle oc, certain pairs of
values for m and m' expressed in terms of the ultimate load P. The
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m
relation between the ultimate moments —r thus corresponds to

m
a certain form of the failure line figure, because when the angle is
fixed, then the height of the failure line triangle r0 is determined through
the equation (42:6 a).

In order to be able to use the formulae (42:6) for calculation of the
ultimate load or the ultimate moment, it is necessary to determine
the constants for the soil pressure pyramid t, tk and yk. According to
the same principles as in the treatment of the interior load case, the
result of the elasticity theory is used, thus the depression curves shown
in Fig. 41:1 on page 234. It is obvious that the form of the pressure
volume alters very considerably with the radius of the loading surface.
By inserting the closest agreeing straight lines to the curves in Fig.
41:1 it is possible to obtain values of tk and yk in the case of various
distributions of the load. It is more difficult to estimate the ^-values
since the depression lines at right angles to the edge according to Fig.
41:1 are only obtained for the parts nearest to the edge, except for
the concentrated load case (c — 0) since the methods used do not allow
calculation of further values of the depression at right angles to the
edge. It is, however, obvious that the lvalue increases quite rapidly
with increased load distribution. The author has attempted to comple-
ment the available curve sections from the basis of the test material
available, this being shown in following sections. It is obvious that an
estimation obtained in this way of the lvalue is very unreliable but it
should be pointed out that the form of the soil pressure volume here,
as in the interior load case, has only a very weak influence on the result
of the ultimate load formula. This will be further discussed later.

On the basis of the theoretical curves and the tests mentioned, the
author has found that t and tk can be estimated with sufficient accuracy
from the simple relationships

t =1,5 Z + 1,27 c)
(42:7)

H — 3>0 I + 0,4 2 cj

the y^.-value i s taken directly from Fig. 41:1 according to the principles
quoted.

With the constants for soil pressure calculated in this way, calcula-
c

tions have been made for different values of load distribution y and

r0
for different angles a. First of a ll — was determined through successive
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TABLE 42:1. Ultimate moment values according to the formula (42:6) for a semi-circularly
distributed load on the free edge of a pavement.

The estimation of the subgrade pressure constants t, and yi is based on the elasticity
theory for resilient subgrade according to WESTERGAARD.

Relative
load dist-
ribution

c

T

Subgrade pressure
constants Failure figure Ultimate moment

Relative
load dist-
ribution

c

T
t
1

h
i Yk oc° r0

I
m + m' m' m

Relative
load dist-
ribution

c

T
t
1

h
i Yk oc° r0

I P ~T~ m'

0.1 1.63 3.04 0.40 45 0.760 0.207 0.206 O.Ol
50 0.697 0.249 0.172 0.45
55 0.635 0.299 0.142 1.11
60 0.584 0.362 0.116 2.12
65 0.531 0.450 0.093 3.85

0.3 1.88 3.13 0.37 45 1.18 0.166 0.162 0.02
55 0.990 0.240 0.110 1.17
65 0.828 0.364 0.070 4.21

0.5 2.14 3.21 0.34 45 1.48 0.135 0.132 0.03
55 1.24 0.199 0.088 1.25
60 1.13 0.243 0.070 2.49
65 1.04 0.302 0.054 4.56

0.7 2.39 3.30 0.32 45 1.74 0.110 0.107 0.03
55 1.46 0.165 0.070 1.36
60 1.34 0.202 0.055 2.70
65 1.24 0.250 0.042 4.94

0.9 2.65 3.38 0.30 45 1.98 0.091 0.087 0.05
55 1.66 0.137 0.056 1.45
60 1.53 0.168 0.043 2.89
65 1.42 0.209 0.033 5.34

approximation from the equation (42:6 a), after which the ultimate
moment values can be calculated from both the other equations. Each
angle corresponds, as mentioned above, to a certain value of relation-

m
ship between the ultimate moments —r.m

The result is shown in Table 42:1 and has also been represented in
the form of the diagram in Fig. 42:2.

By interpolation from the diagram it is possible to draw the result
in the form of a design diagram according to Fig. 42:11 which is more
suitable for design calculation, this diagram being included in the
summary Section 427, page 270. This diagram gives in the same way
as in the interior load case the relationship curves between load distri-

m + m'
bution and the moment condition — . The figure includes such

m
curves for different constant values of the relation —r, which can be

m
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m+m'

O 0,05 OJO Ofi OfO 0J5 0,30 m!—*—
puiï

ra+m'
Fig. 42:2. The ultimate moment values — for various relative load distribution

-^ult
c

values —— with a semi-circular load on a free edge of a slab on soil. The unbroken lines in

the diagram represent the relationship curves for various values of the ultimate moment
m

relation , the broken lines represent the relationship curves for various values of
m'

m'
the negative ultimate moment . The figure summarizes the result according to

-fult
Table 42:1.

used in design purpose if the relation between the ultimate moments
is known or can be obtained. In many cases with a given slab thickness
and no top reinforcement, the moment m' is decided from the strength
of the concrete, and to facilitate calculation in such cases, the figure
also includes curves for constant negative ultimate moment m' (as
also in Fig. 42:2).

In the calculations it became obvious that, particularly in the case
of small load distribution, the approximate relationship

m + m'

is obtained, whereby the error becomes greater with increasing values of
c m
y and . If this approximate value is inserted in the equation

(42:2 a), the equation can be simplified, whereby one obtains
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t
t g «

Instead of the equations (42:6 b and c) one can thus use the consider-
ably simpler approximate formulae

m + m'
(a) —jjp— =tg'«

(b)m + m' = — tg f l c j l — y t ( — ) |1 - — — ( 1 + — t g a ) | t g «

(42:8)

ro .whereby, as earlier, — is calculated according to equation (42:6 a)
i

through successive approximation. Calculations carried out in accord-
ance with these formulae give results which, in the case of small load

c
distribution y and small values of m:m', almost exactly agree with

the earlier calculations according to (42:6) and which, in the case of
c

large values such as — — 1.0 and m : m' = 5, deviates from the earlierL
calculated values by only approx. 3 %. (The deviations in the failure
line angle are, on the other hand, considerably greater).

These relatively convenient formulae (42:8) can thus be used for
the calculation of ultimate loads or ultimate moment instead of the
diagrams in fig. 42:11. See also the summary in Section 427.

423. Circular load tangent to the edge; unstrengthened edge

The above-mentioned case of loading should, as earlier mentioned, be
applicable in the cases where the load is close to a free edge. It is obvious
that if a wheel rolls out over an edge, if the strip of soil al ong the edge
of th e runway is loose or is at a lower level than the surface of the pave-
ment, then a large part of th e load can be transferred to a smaller surface
than the normal circular contact surface. In this case it will be a transi-
tional form between the case of loading treated earlier and that treated
in this section. See 424.

The analysis of t his case of load ing is completely analogous with the
previous presentation. Fig. 42:3 shows the failure line figure assumed.
It is obvious that the three equilibrium equations (42:1) in the previous
case have here a quite similar form, the only difference being that the
equation (42:1 b) in the left-hand side now has the expression P c instead
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Jac
+m

rk=ro tga.

Fig. 42:3. The presumed failure line figure with a circularly distributed load tangent to
the free edge of a slab on soil.

4 c
of P . After simplification and combination of th e three equations

one then gets, analogous with (42:3)

3 c
2 , „ c o t a U + i o o t Ä ) = P » , ' » l 1 _ i t - J t t g x

3 rn 3 r„

P cot all — —

q \ ^ / 3 r y
P cot a |!+— ) =J —- ^ - - ^ - t g a ) + 4 ( m + m ' ) c o t 2 ^

1 t 3 r
a i ' - ' M ' - T T — s » f 1 « " l + 4 m '

(42:9)

and after insertion in the usual expression (42:4)

V o = 7k • 12

one gets the final formulae which are analogous to the equations (42:6)

3

(a) j=

3 c
— — cot (X I 1 + — cot <xI L \ O 7Z

y i [ 1 _ 8 t ( 1 + ( , t g * ) ]

[('( b ) » + »' = T H l + 7 - ) t g « - 3 J - t ( f ) i 1 - i T " T 6 i , : t g a i t g 2 a
3 r„ 5 rf

(c)7th' = — I I 1[(' cot oc ~ yk — 1
1 rf 3 r,
4 t 8 11. tgajj

(42:1
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TABLE 42:2. Ultimate moment values according to the formula (42:10) for a circularly
distributed load tangent to the free edge of a pavement.

The estimation of the subgrade pressure constants t, tk and yk is based on the elasticity
theory for resilient subgrade according to WESTERGAARD.

Relative
load dist-
ribution

Subgrade pressure
constants Failure figure Ultimate moment

c
T

t
T

tk
1 Yk (X°

r0
I

m+m'
P

m'
~p~

m
m'

0.1 1.80 3.10 0.375 45
50
55
60
65

0.936
0.870
0.810
0.750
0.690

0.199
0.237
0.284
0.342
0.422

0.182
0.150
0.123
0.099
0.078

0.094
0.585
1 .320
2.460
4.390

0.3 2.40 3.30 0.32 45
55
65

1.50
1 .33
1 .12

0.151
0.216
0.381

0.119
0.077
0.044

0.27
1.80
5.98

0.5 3.00 3.50 0.27 45
50
55
60

1.93
1 .90
1 .68
1 .57

0.119
0.144
0.166
0.197

0.079
0 .065
0 .046
0 .038

0.50
1 .20
2.58
4.80

0.7 3.60 3.70 0.22 45
55

2.36
2.06

0.098
0 .138

0.054
0 .029

0.81
3 .83

0.9 4.20 3.90 0.175 45
55

2.86
2.54

0.0835
0.1140

0.0390
0 .0185

1.14
5.15

When estimating the values of yk, tk and t, the procedure is the same
as in the earlier treated case of loading and it is found that t and tk

can be estimated according to

t = 1,5 I + 3 c]
(42:11)

tk = 3, 0 I + c \

while yk is taken directly from Fig. 41:1. With the constants for the
soil pressure chosen in this way, calculations have been carried out in
the same way as in the previous case of loading for various values of
load distribution and for various angles a. The result has been compiled
in Table 42:2 and in Fig. 42:4. According to the same principles as in
the earlier treated case of loading, this diagram has been utilized to
present a more convenient design diagram. This is reproduced in Fig.
42:11 in the summary Section 427.

It can be pointed out that the approximate formulae (42:8) can also
be applied in the case of a circular load tangent to the edge, whereby
r0
— as usual is calculated according to (42:10 a). In this case rather
t
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j, * 1 * ' 1 * * i i • i i i i i i i i i i i i i i i i i j
0 0,05 0,10 0,15 0,20 0/5 0,30 0,35 m'

PV//

Fig. 42:4. The ultimate moment values for various relative load distribution
-^ult

values with a circularly distributed load tangent to a free edge of a slab on soil. The
unbroken lines in the diagram represent the relationship curves for various values of the

m
ultimate moment relation , the broken lines represent the relationship curves

m'
. m'

for various values of the negative ultimate moment . The figure summarizes the
-^ult

result according to Table 42:2.

poorer agreement was reached with the more exact formulae for larger
load distribution, but with moderate values of relative load distribution,
this method can well be used. See also the summary in Section 427.

424. Arbitrarly distributed load, twin load

The methods used above with an approximately triangular failure
figure can also, naturally, be applied for load surfaces of other forms,
for example oval loading surfaces or loads from double wheels. The
loading surface is assumed, according to Fig. 42:5, to be symmetrical
for an axis at right angles to the edge, and half the loading surface
centre of gravity distance x from the edge and y from the axis of s ym-
metry are introduced as characteristic load distribution constants.

One can then write out general equilibrium equations of the same
type as (42:1), whereby the right-hand side is completely unchanged
while in the left-hand side of equation (b) and (c) x and y respectively
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Case A

load'P
rn+m' - 0J?5P by strict formulae
m+m'"0J07P » approx. "
m+m'=0,/02P « diagram (circumscribingcircle)

m+m'" 0,067 P by strict formulae
+m'' 0,087P » approx "

m+m'* 0,085P » diagram
(cirajmscribing circlej

Case B

Fig. 42:5. Example of loading areas and approximate failure line figures in the cases of
non-circular loading areas on the edge of a pavement. Instead of the loading area radius
c, the loading area is characterized in such cases by the positions of the centres of gravity
x and y for half the area. The figure shows as an example the oval loading areas from twin
wheels with total wheel load P, exerted close to a free edge as well as over a joint
(load PI2). The failure line triangles drawn in and the moment values stated have
been calculated from the formulae (42:12) for twin wheels having pressure areas with a
width of 0.5 I a nd the center of gravity distance of the half-areas 0.2 I w ith a distance
between centres of 1.10 I, whereby the pavement is assumed to have an ultimate moment
relationship m : m'= 3. As comparison, the moment calculations according to the approxi-
mate method, equations (42:8) and (42:12 a), are shown as well as calculations estimated
from diagram 42:11 for the nearest corresponding circular and semi-circular areas circum-

scribing the actual loading area.

4 c
are inserted instead of ——. One thus obtains, in the same way as

371

in 422, the general ultimate moment formulae

x y
1,5 cot a I — + cot a

» t 1 - ? T(

t
1 + — tg(X

lk

P [(m + m' = — 1 + — tg a — — yk

3 r0 5 r0
1 — — —— — tg ( x \ tg2 a

8 t 1 6 ^ . '

m = [(•1 ~~ ~ cot a — — yk 4 t

3 r0
— TT — tg (X

8 t, ë )]

(42:1

where

x — half the load surface centre of gravity distance to the free edge
y = half the load surface centre of gravity distance to the axis of

symmetry
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The soil pressure constants t and t k are estimated from an expression,
analogous with (42:11)

t = 1,5 I + 3 x]
(42:13)

t jc = 3,0 I -(- x J

since the loading surface centre of gravity distance from the edge c
and x respectively determines mainly the depression. For the same
reason, the soil pressure pyramid height yk can be determined according
to the diagram in Fig. 41:1 or the table 42:2 for the corresponding cases
of a circular loading w ith radius c = x.

Instead of the equations (42:12 b and c), also here the approximate
formula (42:8) can be used. In normal cases and with a fairly concentrated
loading surface this formula will give good agreement with the more
accurate formula (42:12), but particularly in the case of larger distri-
bution of the load at right angles to the edge, the agreement is less good.
For the examples in Fig. 42:5 the moment values according to the more
accurate formulae (42:12) and the approximate method above have
been shown beside the figures

As long as the centre of g ravity position for the load surface in ques-
tion agrees fairly well with the corresponding positions for some of
the earlier treated loading surfaces, the semi-circular surface and the
circular surface, then the diagram in Fig. 42:11 applying for these
standard cases can naturally be used for the calculation. Fig. 42:5
also shows the ultimate moment values estimated in this way, calculated
for load distribution in the form of a circle or a semi-circular surface
circumscribing the actual surfaces. Agreement is fairly good, even very
good in example B in the figure.

Where load extension in the direction of t he edge is great, for example
in the case of twin wheels with large wheel interval both close to the
edge, then the approximation obtained by calculating with a triangular
failure line figure becomes rougher and rougher, and the use of a more
accurate failure line figure as shown in Fig. 42:6 can be motivated. Purely
from the point of view of principle, this particular case does not produce
any difficulties if it is assumed that the positive yield lines are at right
angles to the edge and the pressure volume limiting surfaces as usual
are assumed to be plane between the failure lines, but a systematic
treatment means a great deal of calculating work since the depression
curves must be determined for every loading centre distance, for example
with the PICKET-RAY i nfluence charts [57], and is difficult to account
in the form of f ormulae and tables or diagrams. The author has there-
fore abstained from a more detailed treatment, since the cases in practice
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-m'

-m'
Fig. 42:6. Alternative failure line for edge loading with a great extent along the edge,
for example twin loading with both the loading areas some way from each other along

the edge.

where the simpler failure line figure does not give an acceptable approxi-
mation, appear to be rare.

In cases with twin loading close to the edge with a large wheel inter-
val, it can instead be motivated to examine as to whether a failure
line figure with separate failure line triangles round each loading surface
will not be more dangerous.

425. Strengthened edge

The result of t he analyses above, even if th ese are very approximate,
appears to show that in the case of lo ading on a free edge and as a rule
also on joints, there are considerably larger stresses than when the loading
is on the interior of th e slab. There is thus a need of local s trengthening
of th e edge relative to the rest of th e slab. This can be carried out either
by thickening the edge or forming a special edge beam, or by intensify-
ing the reinforcement in the complete edge zone. In the case of reinforced
slabs, this last-mentioned method would appear to be preferable in cases
where it is sufficiently effective, since it does not require any special
cast-form arrangements.

Fig. 42:7 shows an edge which has been strengthened by means of
an edge beam or a concentrated reinforcement band so that this gives
the edge increased ultimate moment = M and 31'. The reinforcement
parallel with the edge is also intensified relative to the reinforcement at
right angles to the edge so that the corresponding ultimate moments
become me — / .< • m and m'e — /x • m' respectively, m and m' are thus
the ultimate moments when bending at right angles to the edge. The
strengthened zone is assumed to include the complete failure line figure.

When calculating the concentrated failure line corner forces, due
respect must be taken to the edge beam or the intensified reinforcement.
The corner forces are obtained as usual according to JOHANSEN [31]
from the equilibrium equations for triangular elements between the
failure lines and the adjacent sections according to Fig. 42:8, and the
failure lines and sections respectively are assumed to be step-formed in
the directions of the reinforcement, whereby the ultimate moment is
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Fig. 42:7. Assumed failure line figure with the load on the free edge of a slab which is
strengthened in the edge zone with extra reinforcement giving ultimate moments of
me= nm and me = fx'm' re spectively, as well as an edge beam or extra reinforcing strip
in the edge giving edge moment with ultimate values M and M' respectively (for the
entire edge beam). Reinforcement at right angles to the edge (or the flexural strength of

the slab itself) gives ultimate moment values m and m'.

considered to be divided up into components in these directions. At the
free edge the corner force is unchanged, since if t he moment equations for
the corresponding triangular elements in Fig. 42:8 are set out around
a—a, then the components of the ultimate moment at right angles to
the edge cancel out each other and one gets

Q1 ds sin ß — m' ds cos ß + M' cos ß — M' cos ß

thus, as earlier, where ß -> (90° — oc)

= m' tg (x (42:14 a)

thus only dependent on the ultimate moment of bending at right angles
to the edge. The corner force Q2 in the angle between the positive and
negative failure lines can, according to JOHANSEN,1) be calculated from

A Q, i.A bad

\ /\Q2 l A cac/
Q2 aQ,a

mrm'

Fig. 42:8. Calculation of the failure line corner forces Q1 and Q2 in Fig. 42:7.

x) See [31], page 59.
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the partial corner forces from the two triangular elements abd and adc
in Fig 42:8.

Qz — ÂQi Aq%

When setting out the equilibrium equations for both the triangles,
the edge moments M and M' will not be included, since eventual
contributions from here to the ultimate moments in both the sections
at the points of the triangles cancel out each other. By taking the
moment of the triangle abd around bd it can be seen that A Q1 = 0. In
a corresponding way A Q2 will be found from the moment equation round
dc for the triangle adc:

A Q2 ds sin oc' + m ds sinoc sin doc + me ds cos oc cos doc + m' ds sin a sin doc +

-f m'e • ds cos a cos doc = 0

which at the limiting transition gives

A Q2 = — me cot oc — m'e cot oc

One thus gets
Q2 = (/< m + /<' m') cot oc (42:14 b)1)

Now the equilibrium equations for the section of the slab within the
negative failure lines can be set out in the same way as before. One gets

(a) P = p0 rl tgoc 1 -
1 r0

3 t
1 r0

3 t,.
tg oc I + 2 m' tg oc - f

+ 2 ( f i m -f fi'm') cot a

(b) P
4 c

3 71 V o 11
1 r 1 r,
2 T ~~~±Tktg 2m'rotg<* + (42:15)

(c)
P 4 c
2 3h

+ 2 (ju m + fi m') r0 cot oc

11 / i r0 I r,

2 t, tg oc) -

([A m + /<' m') + m' ro tg2 oc — (M + M')

These equations apply for the loading surface in Fig. 42:7 with a semi-
circular load distribution. In the case of o ther types of loading surfaces,
only the left hand side in the equations (b) and (c) are altered according
to the presentation in 423 and 424.

1) This result can also be obtained directly according to JOHANSEN [31], fig. 46.

1 7
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If the equations are treated in the same way as earlier one gets

2 c / 3 t 3 r \ 3
(a) P cot « (1 + cot tx) = p0 rl 11 — — ~r tg « ) — — (M + M') cot2 a.

TI r0 \ » t » th / r0

(b) P cot oc I 1+
4 c\ 4 { 3 r0

3 7T r 0 )' = 3 Po

MOSN

i 1 - ~8 t

4 c \ 2 ( 1 r0

371 rj1 = ~3 Po r\ 4 t

o rn

(c) Pcot« 1-—— =-p0fSll--——tg«) + 4m'
"k

and corresponding equations for the other types of loading surfaces.
3

With the exception of the fact that the term — (M + M') cot2 a in the
ro

equation (42:16 a) has been added, these equations are completely iden-
tical with the formulae (42:3), which apply to an unstrengthened edge, if in
the equation (b) of these formulae, (m + m') is replaced by (/u, m + // TO').

In order to be able to continue the calculations in a fairly simple form
it is assumed that also here it is possible to express the soil pressure in
the same way as for the cases handled earlier, namely according to (42:4)

Va = Yk • y

This assumption here naturally admits even more discussion than in
the earlier treated cases, since it is based on an analogy with the
elasticity theory for a constantly thick and unstrengthened slab, and a
strengthened edge, particularly where it is thickened, must obviously
influence the depression and thereby the soil pressure. By allowing the
stiffness of the strengthened edge to influence the value of the flexural
rigidity of the slab D in a suitable way, this value being included in the
expression for the elastic radius of rigidity I, then the expression for the
maximum soil pressure may be brought into fairly good agreement with
the actual conditions. When selecting a value for I, due respect should
be taken to the fact that it is the rigidity in the actual edge zone which
mainly determines the deformation and the soil pressure, so the flexural
rigidity of the edge beam should thus be distributed over a comparatively
narrow edge strip. The author finds it reasonable to assume that the
width of this edge strip can be selected to be equal to the elastic radius of
rigidity l\ in cases where the edge strengthening covers a greater width,
then only an edge zone with a width I should be taken into account when
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calculating. It should thus be possible to estimate the "effective"
flexural rigidity Dk of the edge according to the expression

D]c — 1 [Ajlab — bk) + (EI)J.] (42:17)

where ( E I ) k is the total flexural rigidity for an edge beam (edge zone)
with width bk (bk < I). The assumption is naturally particularly unreli-
able and will l ater be discussed on the basis of tests but, on the other
hand, an error when selecting the flexural rigidity has a very small
influence on the /-value.

If the assumed expression for the soil pressure p0 is inserted, and after
re-writing the equations (42:16), the final ultimate formulae for load
distribution in the form of a semi-circle will become

2 c 3 M + M '
— — cot a (I + cot a)+ — — cot2 a7 1 L L P

> ) / i m + f i m ' =
P

"[•-I H+Ï«")]
[(

8 t

4 c
371 Vn

3 r0

8 t 16 t . tg a tg2 a

m —
P
T

4 c
3TI r. cot a — — Y k l

3 r
8 t

tg a

(42:18)
For a circular loading surface tangent to the edge or for a loading surface
of a rbitrary form according to Fig. 42:5, one obtains in exactly the same
way the corresponding expressions, if t he first term in the denominator
of th e root expression in (42:18 a) is replaced by the denominator of th e
root expression in equations (42:10 a) and (42: 12 a), respectively, and
equations (42:18 b and c) by (42:10 b and c) and (42:12 b and c) respecti-
vely.

When estimating the soil pressure constants t and tk, the conditions
are complicated again by the influence of t he edge beam. This naturally
influences the form of the pressure volume to a certain extent since it
stiffens the slab only in the direction following the edge. Since
no theoretical analysis of the elastic deflection of an edge-strengthened
slab is available, and since the result of the few tests with a strengthened
edge carried out, these being described in the following, do not show any
significant difference in the form of the pressure volume in the case of
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various types of str engthening of th e edge, then the author considers that
the same expressions for the soil pressure constants can be used here as
earlier, i. e. select tk and t according to the equations (42:7) for the semi-
circular load, (42:11) for the circular load tangent to the edge and (42:13)
for an arbitrary loading surface, while yk is estimated from Fig. 41:1 in
accordance with the same principles used earlier.

In such cases where there is no edge beam or enlarged reinforcement
band, i. e. where M and M' = 0, the formulae will be completely identical
with those for an unstrengthened edge, if (m + m') in the equation (b)
is merely replaced by (fi m -f- fi ra'). This means that in these cases,
the results obtained earlier can be applied directly, as well as the dia-
grams, with the above-mentioned replacement of notations. In Fig.

ra
42:11, the value of t he relation —r should be replaced by the expressionra
I/< ra -)- // ra'

In the usual cases where the reinforcement
ra'

strengthening only concerns bottom reinforcement, then ju' = 1 and
the earlier result can be applied directly if m is put equal to me = /i ra.

Where there is an edge beam strengthening or a reinforcement band
w i t h u l t i m a t e m o m e n t s M a n d M ' , t h e n t h i s i n f l u e n c e s t h e v a l u e o f r 0

according to the equations (42:18). The design diagram can then not be
used, but the formulae (42:18) and corresponding must be used directly.
It becomes obvious, however, also here that in the case of moderate
large load distribution and normal1) cases of e dge reinforcement, then an
approximate expression corresponding to (42:8 a) can be used

a ra 4- a ra'
tg** = - (42:19 a)

ra

Avhereby (42:15 a) is simplified to theultimate moment formula analogous
with (42:8 b)

P
ii m+ fi' m' = — tg« j1- y,(y) [l- {^Y(i+ tg «)] tg«)(42:19b)

r
Here inserted with the values according to (42:18 a) or a corre-

sponding expression in the case of other loading surfaces. The agreement

1) By "normal" edge reinforcement, the author means a reinforcement which makes
a free edge with a circular tangent load or a joint edge with a semi-circular load equally
strong with the interior of the slab.
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with the more exact formulae is, compared with the corresponding-
approximate formulae for the unreinforced edge, as good or even better.

See also the summary in Section 427.

426. A discussion of the method

426.1. General
There remains a discussion of th e effect on the result formulae caused

by the approximations which were introduced when deriving them.
These imply that the failure line figure was approximated to be
triangular instead of having the correct curved form, and otherwise
the same assumptions were made concerning constant moment distri-
bution in the bottom crack and the simplified soil pressure volume
as in earlier treatment of the case with a load on the interior of t he
slab.

It should be sufficient to discuss only one of the edge loading cases
treated, and here the case with a semi-circular load onan unstrengthened
edge (the joint case) has been chosen as being the most important.

426.2. The approximation o f the failure line figure
Some idea of the errors committed by using a simplified triangular

failure line can be obtained by studying the simple case where the soil
pressure is constant = p. In this case, a ccording to JOHANSEN [31], the
correct failure line is in the form of a segment of a circle terminating in
two lines attangents according to Fig. 42:9. If in the usual way, a moment
equation is expressed for the section I of t he slab round the failure line
radius a — a, a moment equation round the loading centre for an element
II which is limited by two radii and a section of the circular failure
line, as well as a projection equation for the whole zone within the
negative failure line, one obtains

P 11
— txx — p —• rl tg a — r0 tg oc — m r0 -f- m' tg < x • r0 tg a71 A ô

P 2 12
— dcp — c = p — rl d(p —r0 —- r0 dc p (m + m') + q rl dcp71 ô Z o

P = 2 p — r\ tg (X -j- p - (ji — 2 a) 4- 2 m' tg <x q r0(7T — 2 oc)

(42:20)

Here x = the moment arm for the centre of gravity for the sector of
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m'tgoc

r'~rC-

Fig. 42:9. The correct failure line (according to JOHANSEN [31]) with the load on the
free edge of a slab on soil, influenced by constant subgrade pressure (left-hand figure).
The right-hand partial figure shows the position of t he centre of g ravity of a sector of the

semi-circularly distributed edge load.

the semi-circularly distributed load which falls 011 the slab section I
and according to Fig. 42:9 can be written

oc 4c oc 2 c
x — f sin —• = —— sin2 — = ——•

2 3 a 2 ,3 oc
^1 — cos a)

Furthermore, as usual, the shearing force along the circular failure line
is

m -f- m '
q =

r o

After insertion and simplification one obtains

P 2c I
•—• —— (1 — cos (x) = — p tg2 cx — m r0 + m' r0 tg2 <x

P 2c 1
^3

71 3 3
(42:20 a)

P = ]) rl tg oc rl (tz — 2 <x) + 2m' tg<% + (m + m') fa — 2«)

If the soil pressure is expressed in the same way as earlier from the
relationship

V = y
12

one obtains, after inserting and re-writing the formulae
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(a) P I l - y \ j ] — ( x+ tg o t
71

( b ) T = IFJ TT
C

7

2 m' tg /x+ 2 (m -j- m') I — — a

(42:21

m P i c
(c) tg2 a = —- — •— 7 0 j tg2 oc + 2 cos a — 9

m m 3 ti r0

m

m'

From these formulae it is possible to calculate the value of the ultimate
m

load for various values of load distribution and relationship —- whereby
m

calculation according to equation (c) is carried out through successive
approximation. In this connection, the approximate value can be used
as a basic value for tg a.

The values obtained in this way can be compared with the correspond-
ing values obtained through an approximate failure line corresponding
to that used when expressing the edge loading formulae. The formulae
concerning the corresponding case of lo ading (semi-circularly distributed
edge load), have the following form with a constant soil pressure p

[i-r ( t)*««] 2 m' tg oc + 2(m + m') cot- cc

2 c

tg2 (X

ti y I

m+ m'

m'

cot a (1 + c°t <*)

P i c m+ m '
— (tg X — 1) SS

! (42:22)

m' 3 TI r, m

which is obtained by allowing t and tk in the earlier formulae to proceed
towards infinity.

Comparative calculations according to (42:22) and (42:21) have been
c

carried out for several different values of load distribution y and moment

m
relation -—r. In this connection the soil pressure constant y has been

m

inserted with such a value that one obtains roughly the same failure
line figure (r„-value) according to (42:22) as in the calculations according
to the edge loading formula (42:6) with the same load distribution and
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TABLE 42:3. Influence of t he presumed form of t he failure line figure.
P

Comparative calculations at constant subgrade pressure p= y have been carried out

according to formula (42:21) with an exact failure line figure according to Fig. 42:9 as
well as formula (42:22) with a simplified triangular failure line figure according to Fig.

c
42:1 respectively for various values of the load distribution-y-and the ultimate moment

m
relationship —-, . The subgrade pressure constant y is selected so that the same failure line

figure is obtained from (42:22) and when calculating the edge load moment from (42:6).

Relative load
distribution

c
T

m
m' V

m
~P

from the exact
formula (42:20)

m
P

from the appr.
formula (42:21)

m appr.
inexact

0.1 1 0.30 0.158 0.1 47 0.93
2 0.28 0.243 0.239 0.98
4 0.26 0.352 0.372 1.06

0.5 1 0.19 0.103 0.101 0.98
2 0.19 0.147 0.164 1.11
4 0.19 0.192 0.248 1.29

0.9 1 0.15 0.071 0.073 1.03
2 0.15 0.098 0.116 1.18
4 0.15 0.120 0.1 69 1.41

moment relation, see Table 42:1. In this way the result obtained should
be the best possible as compared with earlier calculations of the edge
loading moments.

The results have been compiled in Table 42:3. The table shows that the
errors committed by using the approximate failure line are very insigni-
ficant for normally occurring values of load distribution and moment
relation; unsatisfactorily large deviations are first obtained with the
simultaneous large values of load distribution and moment relation.

426.3. Moment distribution in bottom cracks
Even less than in the case of a load on the interior of the slab is it

certain in the case of edge loading, that the positive moment along the
complete bottom crack have managed to reach its yield value before
top cracks have occurred. This depends upon the fact that the negative
moment within the elastic state increases relatively quicker in the case
of e dge loading than in the case of i nterior loading.

The influence on the ultimate load of such an incomplete yield along
bottom crack has been investigated here in exactly the same way as in
the interior load case, see Section 325:2. The equilibrium equations are
set out on condition that the positive moment is distributed as shown
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in Fig. 42:10 with a yield zone rp and an elastic positive moment,
which can approximately be assumed to decrease linearly towards a
value of zero at a distance / from the loading centre, whereby the moment
at the point of the failure triangle analogous with (32:13) is written

/
x m

f — r! p
m

The failure line corner force Q2 in the point of the triangle isobtained here
in exactly the same way as (42:14 b) to

Q2 — (x m + m') cot tx

while the corner force Q1 a t the free edge according to (42:14 a) remains
unchanged. The equilibrium equations, simplified and rewritten in the
usual way, obtain under these conditions the form

2 c 3 m
— — cot (x (1 -f- c°t <*) + ITni 2 r

Yk 8 t
tg cM

p

-(- m' — - l + rJ;i t g * 7 k 1 —
3 r0

¥ t

cot2 (X

[('
4 c

3TI rn

cot oc — j yk 4 t

16 h

3 r0

8 t,.

tg tg2 oc\

tg ajj

(42:23)

These formulae have been utilized for random calculation with some

different values of r , f and
m

m
When calculating — successive

approximation must be used and also from the beginning a suitable
m

value of — must be assumed. The results of the calculations shown

in Table 42:4 agree with the results of the corresponding calculations in
the case of an interior load in so far as the values of the ultimate
load are only insignificantly influenced by an incomplete yield moment

ro
distribution in the bottom cracks, while the value of — and here also

cx, thus the form of the failure line figure, are influenced rather more.
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y_\Presumed distribution of
yS \moment in crack o-a

cm'

|/77

Fig. 42:10. The assumed moment distribution and the failure line figure with loading on
the free edge of a slab on soil in cases where the positive moment in the crack o —a in the
bottom has reached the yield value only in part of the crack (incomplete plastification).

TABLE 42:4. Influence of incomplete plastification in the positive yield crack with a
semi-circular load on a free edge of a slab on soil.

The calculations are carried out according to the formulae (42:23); the soil pressure con-
stants t, tjç and yfc are taken from Table 42:1. The notations are as in Fig. 42:10.

C m

Moment distribution in
radial crack Crack radius

a=T m' /
7

rv
I

r<>
I

P

0.5 4 2.0 rP=r„
0.«
0.8
1.0

1.06
1.23
1.16
1.09

0.287
0.330
0.318
0.298

2.5 0.6 1.16 0.315

2 2.5 rp=r0

0.6
1.17
1.28

0.229
0.25O

0.1 4 2.5 rv=r„
0.3

0.528
0.555

0.456
0.47O

0.9 4 2.5 rp=ro
0.8

1.47
1.57

0.182
0.205
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426.4. The distribution of soil pressure
The influence of t he deviations from the assumed soil pressure volume,

i. e. the values t, tk and yk, have been investigated in the same way
as with the case of a load on the interior of the slab by inserting into
the edge load formulae values for the soil pressure constants which
deviate from the normal values. It proves here, as in the earlier
treated case of loading, that the influence of this is relatively insigni-
ficant, and that particularly associated decreases of the maximum
pressure yk and increases of the ^-values or vice versa produce very
small differences in the ultimate moment values.

427. Summary and discussion. Loading on a corner

From the previous treatment of the various cases of load distribution
and edge strengthening it is shown that in normal cases with
good approximation, the various ultimate moment formulae for a
load on a free edge or a moment-free joint can be summarized thus:

me + K = — tgoc i - yk>(T) [' -Vii1 +itg «)]tg (42:24 a)

me + me

m
tg2 a (42:24 b)

where — is calculated through successive approximation from the
v

expressions:

in the case of a semi-circularly distributed edge load (joint)

2 3 M + M'
— a cot a (1 + cot «) + — ^ cot2 ix

I
3 rn

7k
t

1- J T \1+ ^tg<*

(42:25 a)

in the case of a circular load tangent to the edge (free edge)

3

1.5 a cot « I 1 -j- —- cot ix I + —
371

3 M + M'
I

cot2 (X

»[1-'^(1+ £tg")]
(42:25b)
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in the case of a load distributed over an arbitrary loading surface

3

1. 5 COt ^ 1
f x y \ 3 M + M '
r^r + ~~£ cot (x ) + £ p c°t2

7k J 1

(42:25 c)

where

m and m ' = the ultimate moments per unit Avidth i n the slab parallel
to the edge of the slab (due to bending at right angles
to the edge)

= (i • m and me = // • m' = ultimate moments per unit width
in the edge zone at right angles to the edge (due to
enlarged reinforcement along the edge)

M and M' — the total increase in the ultimate moment due to an edge
beam or a concentrated reinforcement band along the edge

I — the elastic radius of rigidity according to the formulae
(42:27) in the following
c

a = — = the relative load distribution for a semi-circular load

or a circular load tangent to the edge w ith radius c
x, y = centre of gr avity distances to the free edge or to the axis of

symmetry at right angles to the edge respectively for half
the loading surface in the case of a n arbitrarily d istributed
edge loading

t, tk and yk = constants for assumed soil pressure distribution (see
Fig. 42:1) according to Table 42:1 and 42:2, whereby in
the case of an arbitrarily distributed load the same values
may be used as for a circular load tangent to the edge with
c — x. t and tk are estimated according to the formulae

3,0 t -J— x

The approximate formulae (42:24) should not be used for larger
c

values of load distribution a — y than approx. 1.0 in the case of a

semi-circular load or 0.« in the case of a circular load tangent to the
mk + m'k

edge and larger values of the moment relationship ; than
m
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approx. 5; in the case of smaller load distribution the formulae can
however be used for considerably higher values of t he moment relation-
ship. In the case of larger load distribution the more accurate formulae
according to (42:18) should be used instead and these can be written
in the general form

+me
P
4 jtgs«l

P
4

x \ 2 l r 0 \ 2 ( 1 r 0 3 r 0
o o t a - - y k \ j j

(4

When using the edge loading formulae, to start with, any eventual
edge beam strengthening moments M and M' should be estimated or
selected and then the formulae should be used to calculate pairs of
values for (mk -j- m' k) for various «-values, which provide alternative
reinforcement possibilities. Often m' is given from the earlier design of
the slab for the interior load case, and interpolation can then be used
to arrive at the necessary values of the edge zone strengthening mk and
m'k. In certain cases, the moment relationship can be determined from
the beginning according to (42:24 b) (as for example for slabs with only
an edge beam or an edge reinforcement band but without enlarged edge
zone reinforcement), and then the formulae (42:24) can be used directly
to determine (mk + m'k). In both cases it is necessary to make re-
calculation with more suitable values for M and M' if the result shows
that, in the previous calculation, the selected edge strengthening was
unsuitable.

In cases where the edge is not strengthened with a special edge beam
or reinforcement band, so that thus M = M' — 0, then the result
according to the ultimate moment formulae for the standard cases
can be expressed through the moment diagrams in Fig. 42:11. These
are based on the more accurate formulae (42:6) and (42:10). In many
cases these diagrams can also be used for other forms of load distribu-
tion surface. This is considered then to correspond to the semi-circular
or circular surface circumscribed.

In the current treatment of th e edge loading cases it has been assumed
that the soil behaves as a resilient bed with a constant resilience modulus
k. The estimation of the soil pressure constants t, tk and yk are based
on WESTERGAARD'S treatment of th e edge loading case, this being based
on the hypothesis concerning resilient subgrade. However, it would
appear not to be an altogether too illogical sup position to assume that
the result in this section can be applied also for soil with properties
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Fig. 42:11. Design diagram for a load on the free edge of a slab on soil; edge without edge
beam or concentrated reinforcement strip. For a semi-circular load and a circular load

, . . TO-)-TO'
tangent to the edge, the diagram gives the ultimate moment values of and

' ' -fultm e+m e . . . . c
respectively as a function of the load distribution a= -— . Relationship curves

I me +mehave been drawn in for various values of the moment relationships and I — 1 I
TO' \ TO' /

respectively (unbroken lines) as well as for various values of the negative ultimate moment
TO'

——• (broken lines). Here TO and TO/ respectively denote the ultimate moments of the
Pult
reinforcement at right angles to the edge (or the flexural strength of t he concrete respec-
tively), me and me the ultimate moments in an edge zone strengthened by intensified

reinforcement parallel with the edge.
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corresponding to those of elastic subgrade. When treating the case
of a load on the interior of the slab it has been shown that the ultimate
moment expressions obtained for both the types of subgrade are identical,
and that the only difference in this connection is that the soil pressure
constants have different values, but that the difference in the ultimate
moment values for the same relative load distribution is extremely
insignificant, depending upon the slight effect of the form of soil pressure
distribution (see section 325:3). The considerable difference between
both the types of subgrade becomes apparent in the different values
of the elastic radius of rigidity I, which results in different values of
the relative load distribution. It appears probable that a corresponding
argument can be applied for this edge loading case.

It should thus be possible on the basis of these assumptions to use
the equations (42:24), (42:25) and (42:26) respectively as well as the
diagram in Fig. 42:11 for both resilient and elastic subgrade, whereby
as earlier is valid:

in the case of resilient subgrade
4

D
l = z l k = \ ~ k ( 4 2 : 2 7 a )

in the case of elastic subgrade
3

2 DI = I = "
G (42:27 b)

and where the flexural rigidity of the slab at a strengthened edge is
written

A;= y [ Aiiab ~~ b k ) + ( E I ) k \ (42:27 c)

( E I ) j . — the total flexural rigidity of an edge beam with a width of
h & ) •

The investigation in section 426 has shown that the simplifications
made when arriving at the ultimate formulae have a comparatively
small effect on the result. It is, however, obvious that when deriving
the edge loading formula, more approximations have been made and
of a rougher nature than in the case of the corresponding expression for
the interior load. A particularly high degree of unreliability applies
to the suppositions which are necessary when treating the case of the
strengthened edge. It is therefore to be recommended that a higher
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safety factor is adopted when using the edge loading formulae. This
has comparatively small economic significance since the surfaces along
the edges and joints in question only represent a small part of t he pave-
ment. For the free edge, where the difficulties in placing sufficient
strengthening can sometimes become great, the necessary increase in
the ultimate load can be compensated by the fact that the loading on a
free edge represents a particularly exceptional case of loading, whereby
just there a lower degree of safety to failure may be allowable.

Concerning the cases of l oading on a free corner and loading on a joint
intersection not treated earlier in this section, then the treatment
in the previous Section 41 concerning the elasticity theory is applicable
also from the point of vi ew of t he ultimate strength theory. The danger-
ous section which occurs at a distance xx from the edge according to
the formula (41:10) (see Fig. 41:4), also corresponds to the negative
failure line at the ultimate load. The formulae (41:12) and (41:13)
and the corresponding diagram in Fig. 41:5 can thus be used for the
calculation of the necessary negative ultimate moment m'c at a free
corner or a joint intersection, and only this negative ultimate moment
influences the ultimate corner load.

The question concerning the suitable design of the strengthening
at the edges and joints will be discussed in section 44.



43. The Gothenburg Tests, Series G, Edge Loading

431. Performance of tests, test procedures and the results

The tests with two full-scale slabs on clay subgrade in Gothenburg
(Series G), which have been accounted in Section 25, also included a
number of test loadings on free edges. When the test slab G:2 (the
double-reinforced slab) was made, the reinforcement was allowed to
stick out round the circumference (see Fig. 25:7), and after the slab had
been tested by loading the centre, further concrete was cast all round
it so that it obtained a quadratic form with dimensions 8x8 metres.
One of the four sides thus obtained was left unstrengthened, one was
supplied with double closer reinforcement while two were thickened
and supplied with an extra reinforcement band nearest the edge.
Since the newly cast edge zone was only 0.5 metres wide in the middle,
the strengthenings could not be inserted over a greater width. The
design of t he four edges is shown in Fig. 43:1.

Casting and testing was carried out during the spring of 1946. The
reinforcement used consisted of deformed bars Ks 40 from the same
shipment as that used in the main tests while the concrete had the same

SLAB G2 Cast joint Cast joint
Edge /

Edge!

Edge2

Edge3

Edge 4

—t {— upper layer

06 c/c!2t.r.•
lower layer

8,00m

Fig. 43:1. Design of the four edges cast around slab G2. The sections are taken through
the edge centre and the 50 cm wide edge units outside the cast joints also represent the

cross-section of the detail test beams.
1 8
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Section A-A

50 ,50, 50 , 50, 50SO , 50, 50, 50 , 37, 10 60 r «7

1.

/ / 3 T? >f Tu 5 6 7 JaAJk 9. 10 '( >? f ^ $

Vtt %T"
\ïA %T*

o 1 — 29 = Dial gauges
r-i ~Ti2 =Strain gauges

Fig. 43:2. The location, in principle, of the measuring device used for the edge loading
tests. The location of the strain gauges varied somewhat between the different tests. The
dial gauges 1 —15 were attached to a measuring beam which ran along the edge (see Fig.
43:3), the outer ends of which were supported on the corners of the slab. The dial gauges
16—27 were attached to a measuring beam which was supported on the centre of the first
measuring beam and on the opposite edge of the slab. The absolute movements of the slab
edges were measured by means of the dial gauges 28, 29 and 30 which were attached to rods
driven down into a long pipe which was itself driven deeply into the ground (see Fig. 25:7).

composition as in the rest of tlie slab (see page 136). The compressive
strength, determined from eight test cubes, was 280 kg/cm2 with maxi-
mum deviation of +24 and —15 kg/cm2.

To use for the determination of the ultimate moment and the flexural
rigidity of the edge sections, four detail test beams, with a width of
50 cm and with a section and reinforcement as in the four edges, were
cast at the same time as the slab edges. See Fig. 43:1.

Loading was applied with the help of the same loading device as in
the main tests (see Fig. 25:3, page 138). The loading was transferred
to the edge of the slab by means of a semi-circular loading half-cylinder
with a radius of 40 cm and with the centre point exactly at the centre
of t he edge. The load from the jack was exerted on the centre of g ravity
of t his semi-circular surface so that it could be assumed that the loading



Fig. 43:3. Photograph showing the loading and measuring devices close to the edge centre.
The jack influenced the semi-cylindrical concrete load distribution unit. Round the loading
cylinder, the centre measuring beam rests with a yoke-shaped support on the centre of
the edge measuring beam. The strain gauges are arranged with their points directly onto
small steel plates attached by adhesive to the surface of the slab, punch marks having

been made in these plates.

was uniformly distributed over the loading surface (WESTERGAARD'S
loading case III).

During test loading, the following measurements were carried out:
a) Depression along the edge and at right angles to the edge in the

line of symmetry were measured with the help of dial gauges. These
were fitted on measuring beams and were arranged in principle in the
same way as in the main test, see Section 253. The ends of the measuring
beams were thus supported on the slab and the movement of these
ends were measured by means of dial gauges which were attached in
circular bars, these bars having been driven down into pipes which them-
selves were 6 — 7 metres long and had been driven into the ground.

b) Strain measurements were made at a number of points on the top sur-
face along both the measuring beams and along the bisector between them.
Strains in the top and bottom at approximately the level of the reinforce-
ment were measured on the side surface of the slab edge under the load. For
these measurements, strain gauges were used with a measuring base of 25
cm and of th e same type as used in the main tests, see Fig.25:9, page 142.

The measuring devices and the location of the gauges are shown
in principle by Fig. 43:2.T) The photograph in Fig.43:3 shows the loading
and test devices.

1) The exact gauge location in the various cases is shown by the sketches in association
with the result diagrams in the result supplement, Section 93.
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Edge/

Load stepnumbers:
6=13,5 tons t2-27,2 ions
7-/5,7 * 13-29,17 '
8-18,1 " /V'3/,6 "
9-20,2 " 15=34,0 "

10-22,5 « 76-36,3 "
17-21,8 «m

7
• crack at stated toad step
•' ' ' 1 stamping out crack

Fig. 43:4. Crack patterns round the loading areas at the four edges. The cracks are
marked with the number of the loading step causing the crack. Stamping-out cracks

are specially marked.

During the four test loadings the load was increased in steps of approx.
2 tons at intervals of a bout 5 minutes, the load increase generally taking
1 minute and the load was maintained constant for 2 minutes before
the dial and strain gauges were read off. During the increase in load,
observations were made of crack formation in the slab top surface and
the side surface of the loaded edge, the cracks being marked and numbered
as they were discovered. The loads causing the first crack which were
visually determined in this way as well as the ultimate loads which
were objectively estimated with the help of the strain measurements,
are introduced in Table 43:3 in Section 433.2 concerning the test analysis.

The load was increased until total collapse occurred due to stamping-
out failure which started in the casting joint in all four cases and spread
round or in the neighbourhood of the load distribution plate. The
stamping-out collapse occurred due to poor shear strength in the casting
joint at a lower load than normal but in all the cases concerned it was,



Fig. 43:5. Photograph of the crack pattern and stamping-out failure on edge 4. The
concrete load-distribution cylinder is still on the slab and the stamping-out crack is visible

inside and in front of this cylinder.

however, so high that it did not influence the normal moment failure.
The loads in the case of stamping-out failure are also included in
Table 43:3.

The crack patterns close to the four edges are shown in Fig. 43:4.
The photograph in Fig. 43:5 shows the crack formation and the stamping-
out at one of the edges.

The rest of the test results are stated in connection with the result
analysis and discussion in Section 433.x)

432. Material constants for slab and subgrade

432.1. Flexural rigidity and idtimate moment
The four detail test beams with the same section as the edges in the

main tests were all tested for positive moment, simply supported with
a span of 2.4 0 metres and with concentrated loads at points at intervals
of one third. Deformation at flexure was measured by means of a
curvature gauge within the zone between the loading points, except
in the case of the beam for edge 1, where the vertical deflection of the
centre point was instead measured by means of dial gauges in the centre
and at the supporting points. Strain gauges were also used to measure
the strain values in the top and the bottom surface as well as on the
edge corresponding to the outer edge of the slab and with the same
location of the gauges at the "steel level" as in the main test (see Fig.
43:2).

*) The complete result of the depression and strain measurements are described in
the result supplement, Section 93.
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Moment (v/idth50cm)
tm

Cunature

I
/

/

Cunature

/
/

Cunature

A
CunatureCunature

Moment (vidth50cm)

f Compression

Compression side
50,i

2U

Tension side

Strain

Fig. 43:6. Curvature and strain diagrams for the detail test beam belonging to edge 3. The
sketch beside the strain diagram shows the location of the strain gauges in principle. The
strain curves show the average value of the readings from the respective gauges. Correction
for the dead-weight of the slab has been carried out by moving the origin as shown in the

figure.

The results of the beam tests are summarized in Table 43:l.1) Fig.
43:6 shows the curvature and strain diagrams for one of the beams.
The calculated values from the beam tests of the flexural rigidity in
Stage I and II have been introduced in Table 43:1. Those in Stage II
are calculated from the secant modulus at the yield point. For the

1) The tests are fully described in the form of curvature and strain diagrams in the
result supplement, Section 93.
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TABLE 43:1. Slab G 2. Data for edge beams according to detail tests and calculations.
Calculations of the negative ultimate moment (at yield point in the top reinforcement)

are based on the test values from the negative flexure tests of t he detail test beams be-
longing to the centre loading of slab Gr 2 according to Table 25:1, these values having been
re-proportioned with respect to the differences in (nominal) thickness and reinforcement
according to the formulae (43:1). oc is assumed =220 kg/cm2.

Detail test unit from edge

Section, width 50 cm

1 2 3 4Detail test unit from edge

Section, width 50 cm '——J 1 1 1 1
Detail test unit from edge

Section, width 50 cm '——J Intensified
reinf.

Positive moment from tests tonm
at first concrete tension crack
ultimate moment (reinf. yield)

Negative ultimate moment
from calc. and Table 25:1 tonm

Flexural rigidity EI from tests kgcm2

for Stage I
for Stage II

EI from calculations kgcm2

for Stage I (n=10)
for Stage II ( n — 15)

Curvature from tests cm—1
at commenc. crack formation
at yield point

[Strains from tests °/00
at first concrete crack
at yield point in

steel level, tension side1 corresp. on compr. side

1.95
4.20 to 4.501)

1.6

33 • 108

190 • 108

35 • 108

~0.20

2.2
-0.7

~0.7
2.70 to 3.001)

1.0

52 • 108

18 • 108

71 • 108

16 • 108

2.0 • 10-5

15 to 26 • 10-51)

~ 0.18

2.9
-0.9

0.60
2.95

1.6

28 • 108

9.6 • 108

34 • 108

10.8 • 108

2.2 • 10-5

30 • 10-5

~ 0.15

2.2
— 1.3

0.60
1.75

26 • 108

7.3 • 108

32 • 108

6.5 • 108

2.2 • 10-5

24 • 10-5

0.1 5

2.2
-0.8

1) The two values represent the commencement and termination of yield in the rein-
forcement along the inclined beam surface where the various bars have different internal
lever lengths.

sake of comparison the theoretical values of the flexural rigidity have
also been introduced. The test result and the calculated values agree
very well.

The table also includes the values of the positive ultimate moment
given by the tests. In the case of the edge beams 1 and 2 part of the
reinforcement was situated along the inclined surface (see Fig.
43:1) and the ultimate moment value was therefore more undecided
since the upper reinforcement bars yielded first and then the other
lying along the inclined surface. The both figures in the table represent the
commencement and termination of yield. For a moment failure in the
bottom the lower value may be used, this applying to the first yielding
bar, while in the calculation according to the ultimate strength method,
the higher value may be used.
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All the test values have been corrected for the influence of the weight
of the beam itself (see Fig. 43:6).

Since the detail beam tests only included tests with positive bending,
the negative ultimate moment at the yield point in the top reinforce-
ment must be estimated by means of theoretical calculations. The
basis used here consists of the test values when testing for negative
deflection of the detail tests belonging to the centre point loading test
of the slab, Table 25:1.

The average value m' — 1 620kgcm/cm obtained according to Table 25:1
has thus been reproportioned for the four edge beam tests whereby,
according to GRANHOLM [20, 21]

Mu„ = o f A r h (l - ~\ ( 4 3 : 1 a )

where the "relative reinforcement percentage"

A oyie

V = ~ ± (43:1 b)

No respect has here been taken to the influence of double reinforcement,
and otherwise it has been calculated with nominal values of thickness
and covering layer, etc. The values for the ultimate negative moments
estimated in this way are introduced in Table 43:1. These values are
naturally very unreliable, but they will only be used for estimation
of the negative supplementary moment M' of the edge strengthening in
ultimate load calculation, whereby unreliability in the value of M' has
a very small influence on the ultimate load value.

Finally the table includes approximate values of the measured strain
on the tension side of the beams at the commencement of c rack formation
and the strain values measured against the edge surface at the "steel
level" on the tension and compression sides as well as the curvature
at the yield point. These values will later be used in the main tests to
estimate the loading on the respective edges Pybie in the case of yield
in the bottom. In order to estimate the ultimate load Pytw due to yield
in the reinforcement in the top, the corresponding strain values from the
detail tests belonging to the centre loading case must be used (Table 25:1 ).

432.2. Soil constants
For the further analysis, the same values have been used for the soil

constants as in the case of t he centre loading, namely according to Table
25:2



for low loading:

for high loading:

k = 0.45 kg/cm3,

k = 0.30 kg/cm3,
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C = 250 kg/cm2

C = 120 kg/cm2

It should be reminded that these values are calculated from the depression
volume in the centre loading tests for loads which are considerably
higher than those occurring during the edge loading tests. The depression
and curvature at the lower ultimate loads in the case of edge loading were,
however, of roughly the same magnitude as at the higher ultimate load in
the case of centre loading, and from this viewpoint the soil constant values
stated should be fairly correct. It should be taken into consideration, on
the other hand, that the theories and the formulae for the case of ed ge
loading are based on WESTERGAARD'S a ssumption of resilient subgrade
while the actual soil properties would appear to be closer to those of
elastic subgrade, so that it would perhaps be more correct to determine
the soil constant (the k-value) in connection with the actual case of
loading. WESTERGAARD himself expresses the opinion that the k-value
should be calculated from the depression in the case of the same loading
for which it was to be used. The analysis of the depression measurements
in the following section will serve to clarify this question.

433. Test results, treatment and theoretical analysis

433.1. Depression
The values obtained on the depression dial gauges are used, after

correction for the movements of the soil attached dials, to get the depres-
sion in the measuring points, and the results are exemplified in Fig. 43:7
and 43:8.*) Fig. 43:7 shows the depression lines at some of the loading-
steps for the most powerfully strengthened and the completely unstrength-
ened edge while Fig. 43:8 shows the depression in the centre of the
four edges. It can be seen that the influence on the depression of a local
edge strengthening is comparatively insignificant.

When making a theoretical analysis of the depression measurements,
respect must be taken to the edge strengthening. In the theoretical
treatment in Section 425 of the strengthened edge, the author has assumed
that in the calculation of the elastic radius of rigidity I for the edge zone,
it is reasonable to distribute the edge beam flexural rigidity (supple-
mentary rigidity) over a width = I acc ording to the formula (42:17). An
analysis of the depression values is very suitable to verify this assumption

*) All the measuring values and depression curves are to be found in the result supple-
ment, Section 93.
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Fig. 43:7. Depression lines at some of the loading steps for the most strengthened edge 1
and the unstrengthened edge 4.

Edge I
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Close reinforcement I 3

•natre inforcement f
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V.53,0

Fig. 43:8. The relationship between the load and the deflection in the centre of the four
edges.
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while the magnitude of I h as a comparatively large effect on the theore-
tical depression values since it is included in the corresponding expression
with a second grade factor.

The calculation of I m ust be carried out through successive approxima-
tion. The calculation is exemplified for edge 1. The flexural rigidity of
the edge beam {EI)n = 33 • 108 kgcm2, its width 50 cm. For the rest of
the slab the flexural rigidity Dslab = 14 • 106 kgcm2/cm applies according
to the Table 25:1, page 149. One then obtains for the edge zone, if it is
assumed that I — 110 cm,

In a corresponding way the other Z-values are calculated for the edges
in Stage I and Stage II. These and the corresponding relative load
distributions are introduced in Table 43:2.

By the use of these constants, the theoretical depression values in the
edge centre have been calculated with the help of th e diagrams in Fig.
41:1 and the formula (41:3); the depression values have been calculated
partly with a low load, 10 tons (Stage I), partly with loads lying in the
neighbourhood of the estimated ultimate loads (see Table 43:3 below).
The depression values calculated in this way have, in Table 43:2, been
compared with the corresponding measured depression values, and Fig.
43:9 shows also the theoretical and practical centre depression curves for
some of the edges. Fig. 43:10 finally shows a comparison of the de-
pression lines for the loads in question, according to theory and tests, for
the edge and the normal to the edge, whereby the theoretical lines have
been calculated on the basis of the depression diagrams in Fig. 41:1.

The result of this analysis of the depression values shows that fairly
good agreement exists between the theory and the tests. One thing that
is especially prominent is the good agreement according to Fig. 43:10
between the form of the theoretical and practical depression lines. The
assumption that the rigidity of the edge beam shall be distributed over a
width I, when calculating the elastic radius of rigidity for the edge zone
thus appears to be acceptable when calculating the deformation of the
edge, and it thus appears possible to use the same method for the estima-
tion of the soil pressure in the ultimate strength theory. The soil
constant values used also appear to be fairly correct.

1
D , = (14 • 106 • 60 4- 33 • 108) = 38 • 106 kgcm2/cm

^ 110

4

0, 3 0
= 106 cm and so on
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TABLE 43:2. Slab G 2, edge loading. Depression from tests and theory (resilient
subgrade).

Size of slab 8x8 m, thickness 15 cm, double-reinforced. Loading area of semi-circular
extent with radius c=40 cm.

Constant values for soil (resilient) and interior of slab from Table 25:1 and 25:2.
for low loading A:=0.45 kg/cm3 Di =70 • 106 kgcm2/cm
for high loading & = 0.30 kg/cm3 _Dn=14 • 10 ® kgcm2/cm

Slab G 2, edge no.

Section
Intensified

reinf.

DATA FOR THE EDGES
Flex, rigid, for 50 cm width edge
beam kgcm2

Stage I 190 • 108 !) 2 • 108 28 • 108 26 • 108

Stage II 33 • 108 18 • 108 9.6 • 108 7.3 • 108

Edge zone rad. of e last. rigid. £edge cm
low loading 140 117 1121) 1121)
high loading 106 96 86 83

c
Rel. load, distrib. a= y

low loading 0.29 0.34 0.36 0.36
high loading 0.38 0.42 0.47 0.48

DEPRESSION (J Jrom !?sts
\ J from theory F T F/T F T F/T F T F/T F T F/T

Centre edge depression cm
at 10 tons (Stage I) 0.38 0.42 0.90 0.52 0.62 0.84 0.59 0.67 0.88 0.62 0.67 0.88
at 25 tons (Stage II)2) 2.602) 3.122) 0.83 2.40 3.10 0.78 3.75 3.75 1.00 3.77 4.00 0.94

x) Here is used the same value as for the interior of the slab according to Table 25:5.
2) For edge 1, the depression is calculated at 30 tons which is nearer the ultimate load value.

Edge /
Load
tons

6,0 an

EdgedLoad
ions

centre
Z0 1}0 an3,0

Fig. 43:9. The relationship between the load and the deflection in the edge centre according
to tests and theory for loading on the edges 1 and 4. The theoretical curves are calculated
according to the formula (41:3) with the constants for the slab and the subgrade in accord-
ance with Stage I (î>=0,15) and Stage II (i> = 0). For the calculation of the rigidity of the
strengthened edge, the increased rigidity is assumed to be distributed over a width equal

to the elastic radius of rigidity I.



285

Perpendicular to edge. Along edge Fèrpendicuhr to edge Along edge

-IßEdge 2Edge /
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Fig. 43:10. The depression lines along the edge and perpendicular to the edge according
to test and theory for some of the loading steps when loading the edges on slab G2. The
theoretical depression lines have been calculated with the help of the depression diagram
in Fig. 41:1 and the formula (41:3). For the lower loading step, the constants for the slab
and the subgrade have been calculated according to Stage I and for the higher loading
step according to Stage II, see also the caption to Fig. 43:9. Since the figure is mainly
intended to show the good agreement in curve form between the theoretical and experi-
mental depression lines, load steps have been selected to give good agreement with the
theoretical centre depression. The theoretical curves actually apply to an infinitely long
edge so that the theoretical curves nearest the slab edges should be relatively more depres-
sed than the corresponding test curves. The figure also shows that this is generally the case.

433.2. The moment and the ultimate load according to the el asticity theory
The increase in moment and the various failure phenomena in the edges

of the slab can be followed by a study of the strain measurements on the
top surface of the slab and on the edge surface of the slab under the
loading point. The readings of the strain gauges, compiled in Fig. 43:11,
clearly marks the commencements of crack formation due to tension
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SLAB 2
EDGE 3

Load
tons

LoadLoad
tons

Stroinfo

Fig. 43:11. The results of the strain measurements from the test loading of edge 3. Over
the strain curves there is a sketch of the location of the gauges with the cracks marked
in, and the strain curves are grouped after the location. According to the detail tests
from the case of centre loading (Table 25:1), strain in the top surface at yield point is
2.4 — 2.5 °/00 and it is found from the strain curves for the gauges T9 and Tn—T12 respec-
tively that the corresponding ultimate load is about 26 tons. The two gauges T1S and
T14 on the outside of the edge (see Fig. 43:2) can be utilized for the determination of
moment and ultimate loads in the centre of the edge by comparing with the gauges located

in a similar position on the detail test beams.

failure in the concrete, but the difficulties are considerably greater con-
cerning the determination of the load when yield in the top reinforcement
begins. The magnitude of the reading depends namely on the exact
distance of the reinforcement from the concrete surface as well as the
distribution of the cracks. The strain gauges which,for example, included
two cracks between the measuring points, produced altogether excessively
high readings. The estimation of th e load at the commencement of yield
in the bottom reinforcement and at yield in the top reinforcement are
thus necessarily exceptionally unreliable.

The results of this e stimation which is based on a comparison between
the strain measurements in the main loading tests on the edge surfaces
of the slab and in the flexural tests on the corresponding detail test
beams, are shown by Table 43:3. Since no tests with negative flexure
were carried out on the detail test beams belonging to the edge loading
tests, then estimation of the ultimate load Pytie at yield point in the top
reinforcement is derived from the detail tests belonging to the centre
loading test where, according to Table 25:1 for the tests in question, a
strain in the top of 2.4 to 2.° °/oo was measure d at the negative moment
failure. Since these measurements are not applicable to the thickened
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TABLE 43:3. Slab G 2, edge loading. Loads at concrete crack formation and reinfor-
cement yield in bottom and top surface, estimated from curvature and strain measure-

ments, as well as visually observed crack loads and loads at stamping-out failure.
The two figures for loads estimated from the strain measurements, given in some cases,

show the lowest and the highest load values judged in accordance with the various groups
of gauges (see Fig. 43:2).

Critical values of curvature and strain at bottom surface failure P^cr and Ptfnt from
Table 43:1. Critical values of strain at top yield load Pflie are taken from Table 25:1 as
being 2,4-2,5 °/00.

Edge
no.

PfrCr tons PfrVie. tons Pfpr tons Ptî/ie tons
Stamping-
out failure

Edge
no. Curvature

measurem.
Strain

measurem.
Vis-
ual

Curvature
measurem.

Strain
measurem.

Strain
measurem.

Vis-
ual

Strain
measurem.

Stamping-
out failure

1
2
3
4

5
4.5
4

6 to 9
5
4
4

13
15
11
13

17
19
16

21 to 24
22

19 to 21
16 to 17

16 to 18
14
13
11

18
18
13

27 to 31
~ 251)

26
23 to 242)

41
32
27
30

1) Very unreliable value due to the fact that the strain gauge T7 was displaced at the
higher loading steps. The measurements for T7 are exterpolated from the movement of
the corresponding gauges at edge 3. The load value has also been judged from gauges
T9 and T10 compared with T10 on edge 1 at ultimate load.

2) The lower load value was obtained by exterpolation from the strain measurements
from Tl7.

edges, then failure in the top surface has been estimated from the basis
of th e strain gauges at right angles to the edge and in the bisector between
the edge and the normal (see Fig. 43:2). In the loading test on edge 2,
some of the strain gauges on the top indicating strains in the crack where
the yielding began were displaced during the testing. The estimation of
the ultimate load for this edge was therefore further complicated; the
figures given in the table are based on a comparison between the readings
of s ome of the strain gauges at this edge, which were not disarranged and
the corresponding strain gauges on edge 1.

The loads at concrete tensile failure and reinforcement yield in the
bottom under the loading centre can be estimated also from the curvature
of the slab edge. Although no special curvature gauges were used in
these tests, the curvature in the centre of t he slab edge can be calculated
from the differences between the depression values from the dial gauges
nearest the centre. Here the five measuring points nearest the centre have
been used and the curve form has been agreed in the form of 4-grade
parabola (see Fig. 24:7, page 91).1)

The curvature values obtained in this way have been compared with
the curvature values according to the detail tests from edges 2, 3 and 4

1) The complete results of the curvature calculations are shown in the result supple-
ment, Section 93. When calculating the centre curvature, due respect has been taken to
the fact that the distances between the five measuring points were not identical, see Fig.
43:2, as opposed to Fig. 24:7.
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at concrete tensile failure and reinforcement yield failure (see Table 43:1)
and the Pb and Pybie obtained in this way are shown by Table 43:3.
They agree generally fairly well with the values that could be estimated
from the strain measurements.

The last column in the table includes the load at which sh ear failure
occurred at the casting joint between the original circ ular slab and the
newly cast edges. This definite collapse, which corresponds to stamping-
out failure for the interior load case, was influenced considerably in
these tests by the poor shear strength in the cast joint. In all cases th e
loads in question, however, were above the estimated loads for top
surface failure.

Analysis of th e depression measurements showed that WESTERGAARD'S
formulae give the depression behavio ur for the edges fairly correctly, in
spite of th e fact that these were strengthened in opposition to the con-
ditions of th e theory. In order to examine whether this is also the case
when calculating the moments, the formula (41:4) and the corresponding
diagram in Fig. 41:2 were used to calculate the loads Pb and Pybie at
failure in the bottom. In this connection the I values calculated earlier
have been used for the calculation of the relative load distribution. The
positive ultimate moments mcr and myie in the case of concrete tensile
failure and bottom reinforcement yield respectively have been calculated
from the results of th e flexural tests on the detail test beams, see Table
43:1. In the case of the thickened edges it is, of course, n ot correct to
distribute uniformlythe ultimate moment valuesaccording to thetableover
the beam width 50 cm, since the height of th e beam and the distribution
of th e reinforcement vary considerably over the width. The moment can
be estimated to be distributed in the same way as the flexural rigidity
(moment of inertia), and the author has calculated the ultimate moment
values me in question close to the actual edge of the slab according to the
expression

me = Jfbeam (43:2)
1 beam

where, according to Fig. 43:12

^beam = the total ultimate moment of the edge beam according to
Table 43:1 (the lower values of the yield moment)

/beam = the total moment of iner tia of th e edge beam (see Table 43:1)
ie = the moment of inertia of the edge strip per unit width around

an axis coinciding with the centre of gravity axis of the
complete edge beam (see F ig. 43:12).
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^bea/.
width'/

Fig. 43:12. Sections at the calculation of the moment of inertia in formula (43:2). The
example shown in the figure corresponds nearest to the edge 1 in Stage II, and the "edge

strip" here corresponds to beam section CB concerning reinforcement, etc.

In this way it is possible to calculate the ultimate moment values at the
concrete tensile failure (Stage I,n= 10) and reinforcement yield (StageII,
n = 15) and the values are shown in Table 43:4. This method does not
claim to have any high degree of correctness; for example no respect is
taken to the twisting at the flexion of the unsymmetrical edges which
obviously exists, nor to the actual appearance of the concrete compression
zone.

The ultimate moment valuesused would, however, appear tobesufficient-
ly correct to show that the theoretical ultimate loads Pcbr and for the
thickened edges 1 and 2, as shown in Table 43:4, show particularly poor
agreement with the test loads. These have been introduced into the
table with the values taken from Table 43:3, whereby the lowest a nd
highest load values according to the various strain and curvature
measurements have been included. It is obvious that WESTERGAARD'S
moment formulae over-estimate the strengthening properties of an
edge beam to a great extent. This is also quite in accordance with
what could be expected since the thickened and stiffened edge must
"accumulate" a higher moment than the unthickened for which the
formulae and diagrams apply. For the unthickened edges 3 and 4, agree-
ment between the theoretical and practical results are also fully satis-
factory.

Calculations have also been carried out for the soil hypothesis of elastic
subgrade, whereby the formula (41:7) and the diagram 22:7 for the load
on the interior of the slab have been used. The elastic radius of rigidity
lp for the stiffened edges has been calculated according to (42:27 b and c)
completely analogous with the ^-value for resilient soil. As Table 43:4
shows, quite similar results are obtained, only with some highertheoretical
loading values; forthe completely unstrengthened edge 4, which best agrees
with the conditions of the theory, the assumption of elastic subgrade
means better agreement with the test values.

The definite ultimate load Pvtie due to yield in the top reinforcement in
the case of strengthened edges gives eve n worse agreement when calcu-
19
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TABLE 43:4. Slab G 2, edge loading. Crack and yield loads according to tests
and elasticity theory (resilient or elastic subgrade).

Slab size 8 X 8 m, thickness 15 cm, double reinforcement. Load area semi-circular with
radius c=40 cm.

Constant values for slab and soil as shown in Table 25:5.
with low loading k =0, 4 5 kg/cm3; C=250 kg/cm2 D=10 • 106 kgcm2/cm
with high loading & = 0,30 kg/cm3; (7=120 kg/cm2 D— 14 • 106 kgcm2/cm

Slab G 2, edge

Section

1

Intensified
reinforcement

DATA FOR THE EDGES
(see also Table 43:2)

Elastic radius of rigidity I cm

D ("low load ing
~Y Ihigh loading*-y

VMi,= D <low loading
\high loading

Relative load distribution a= j

® flow loading
Ifr \high loading

— /low loading
°e ~~ h \high loading

Ultimate moment from (43:1)
kgcm/cm

at bottom concrete failure mo-
at bottom reinf. yield myie
at top concrete failure mcr
at top reinf. yield myie

140
106

117
89

0. 2 9
0 . 3 8

0. 3 4
0 . 4 5

-5600
16200

' 3600

117
96

89
78

0. 3 4
0 . 4 2

0. 4 5
0 . 5 1

-2600
12000

-2300

1121)
86

83l)
67

0. 3 6
0 . 4 7

0. 4 8
0.60

1200
5900

3200

CRACK AND YIELD LOADS:
fF from tests (Table 43:3)
< Tfc from resil. subgr. theory
iTg from elast. subgr. theory

Load in tons
at bottom crack Ptfr
at bottom reinf. yield P^t/ie
a t t o p c r a c k P f r

at top reinf. yield Ptvie

6-9
21-24
16-18

27-31

Tjfc

14. 4

52. 3

60.0

16. 5

60. o 17-22
14

~ 253)

T*

7. 3

41 . 8

38. 3

9. 0

48 . 0
4-5

19-21
13
26

Tjfc

3. 5
22 . 5

53. 4

4. 4

26 . 7

4-6
16
11

23-24

1) Here the same values are taken as for the interior of the slab, see Table 25:5.
2) From Table 25:5.
3) Very unreliable value, see Table 43:3, note 1).
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Fig. 43:13. The relationship between the load and the moment in the centre of the edge
according to the tests and the elasticity theory for loading on edges 1 and 4. For the
strengthened edge 1, the test curves has been obtained by comparison with the strain
measurements on the outside of the slab edge and the corresponding measurements from
the detail tests belonging to it (see Fig. 43:2 and 43:6 respectively), whereby the distribu-
tion of the moment over the unsymmetrical edge beam width is assumed to be propor-
tional to the distribution of the moment of inertia. For the unstrengthened edge 4, the
test curve has been obtained in the corresponding way from the curvature measurements.
The theoretical relationship has been calculated for the hypotheses concerning both resilient
subgrade (according to formula 41:4) and elastic subgrade (according to formula
41:7 and diagram 22:7), whereby the constants for the slab and the subgrade for both
Stage I (Î>=0. 15) and Stage II (i> = 0) have been used. See also the caption to Fig. 43:9.

lated according to the elasticity theory methods, this being shown by
the last lines in the table. The theoretical values are obtained according
to formula (41:9), whereby the negative ultimate moment values for the
thickened edges have been calculated, on the basis of the corresponding
ultimate moment values according to Table 43:1, in the same way as the
positive moments have been obtained, by estimation through the formula
(43:2). In this case fair agreement with the test loads was only obtained
in the case of the completely unstrengthened edge 4.

The conditions discussed above are further clarified in Fig. 43:13 which
shows the relationship curves between the load and the moment in the
centre of the edge according to theory and tests for the edges 1 and 4.
The test curves have been obtained according to the methods shown
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Fig. 43:14. Strain distribution at some of the loading steps for the four edge loadings
along the edge and perpendicular to the edge. The slab is uncracked in the top surface
at these loads. The results from gauges with obviously erroneous movements (fitting

or function errors) have been eliminated.

in Fig. 24:22, page 108, by comparing the strain values in the slab
edge surface for edge 1 and the curvature in the centre of the edge for
edge 4 with the corresponding measurements obtained with the respective
detail test beams, whereby the moment values for slab edge 1 have been
given according to (43:2). The figures clearly show that agreement
between the theory and the tests at edge 1 is quite non-existent while
the agreement in the case of edge 4 is good and best for the assumption
that the soil is elastic.

The strain measurements can also give a certain idea of the moment
or stress distribution in the rest of the slab. In Fig. 43:14 the strain
values along the edge and at right angles to the edge at some of the loading
steps have been compiled for the four edges. It can be seen that the
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strain (and thereby the moment) increases rather more rapidly in the
section at right angles to the edge than along the edge, particularly in
the case of the strengthened edges but also in the case of the unstreng-
thened edge 4.

For the last-mentioned edge, the moment distribution along the edge
from the tests has been estimated from the strain curves according to
Fig. 43:14 and has been compiled together with corresponding theoret-
ical curves which were calculated according to the diagram in Fig.
41:2. The results are shown in Fig. 43:15. Agreement is fairly good but
it should be pointed out that the theoretical curve is here based on the
assumption that the subgrade is resilient and it is conceivable that this
perhaps less correct assumption of the soil properties can contribute
towards the fact that agreement between the theory and the tests is not
completely good.

433.3. The ultimate strength theory
It is thus obvious that the elasticity theory can not be used for the

calculation of the effect of s trengthening at the free edge. In the follow-
ing it will be examined if a better result can be obtained through the
ultimate strength theory.

When applying the methods in Section 425 to the test results, it
should be observed that the edge reinforcement M and M' respectively
in the edge loading formulae only consists of the difference between
the ultimate moment of the edge beam and the ultimate moment
of a n identically wide unstrengthened edge strip. For the unstrengthened
slab, the same ultimate moment values are assumed as those applying
for the central parts of the slab according to Table 25:1, thus

m = 2 900 kgcm/cm

m' = 1 600 kgcm/cm

m
— = 1 . 8
m

The calculation has been carried out according to the methods shown
in Section 427, whereby the soil is considered to behave as both resilient
and elastic subgrade. In the latter case it has been thus assumed
according to 427, page 271, that the same formulae and diagrams for
the ultimate load calculation can be used as for the "basic case" of

c
resilient soil, if t he value for the relative load distribution ae — — is used,

as a consequence of the Ze-value according to (42:25 b) for elastic soil.
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Fig. 43:15. Moment distribution along the edge according to test and theory when loading
edge 4. The test curves have been obtained from the strain measurements along the slab
edge, whereby the moment values with the exception of the centre value have been
calculated from strain values through the relationship

2 Dm=e
h

The theoretical curves have been calculated with the help of the diagram in Fig. 41:2
and the formula 41:4 with the constants according to Stage I for a load of P =4.3 tons and
according to Stage II for a load of P=11.2 tons.



295

TABLE 43:5. Slab G 2, edge loading. Ultimate loads at yield in top reinforcement
from tests and the ultimate strength theory.

Slab size 8 X 8 m, thickness 15 cm, double-reinforced. Load area semi-circular with
radius c=40 cm.

Constant values for slab and soil from Table 43:4.
Ultimate moment values for slab outside edges as shown in Table 25:1:

positive ultimate moment m=2900 kgcm/cm
negative ultimate moment m'=1620 kgcm/cm

at yield point for the reinforcement in question.

Slab G 2, edge 1 2 3 4

Section i n 1 1 1 1Section j
Intensified

reinforcement

DATA FOR THE EDGES (see also
Table 43:2)
Ultimate moment for entire edge beam
(width 50 cm) tm

positive M0 4.2-4.5 2.7-3.0 2.95 1.75
negative M0' 1.6 1.0 1.6 —

Supplementary moment for edge
strengthening tm

positive M 3.05 1.55 1.50 0
negative M' 0.80 0.19 0.79 0
M + M' 3.85 1.74 2.29 0

c
Relative load distribution a= j

(I from Table 43:2)
for resilient soil a& 0.38 0.42 0.47 0.48
for elastic soilae 0.45 0.51 0.60 0.65

ULTIMATE LOADS at top yield Ptvie
From tests tons 27-31 ~25*) 26 23-24
From theory tons

for resilient soil 24.4 22.5 24.9 20.o
for elastic soil 27.0 24.9 28.9 23.9

*) Very unreliable value, see Table 43:3, note 1).

The result of the calculations for the four edges are shown in Table43:5
where the theoretical values have been compiled together with the test
values according to Table 43:3. Agreement is as good as can be expected
with respect to the unreliability in the ultimate load determination and
the approximations and simplified suppositions on which the theoretical
ultimate load formulae are based. The closest agreement to the test
values are obtained in accordance with the soil hypothesis of e lastic sub-
grade.

It should be pointed out that in these tests, a certain incomplete
plastification in the positive yield lines must be assumed. According to
what was shown by the theoretical treatment, this should not influence
the theoretical ultimate load values to any great extent although it
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naturally contributes to a certain degree of the unreliability in these
values.

It seems to be clear, however, that the ultimate load formulae show the
strengthening effect of the edge beam fairly correctly. Both the tests
and the theoretical values show that this effect is surprisingly small. The
best effect of the strengthening is obviously obtained for edge 3, where
the edge has been given an increased ultimate moment but not such a
large degree of increased rigidity.



44. Summary and General Viewpoints

The tests discussed in the previous section consist naturally of too
little test material to provide basis for a definite judgement of the
formulae and calculation methods presented in Section 41 and 42, as
well as their applicability to free edges and joints in reinforced concrete
pavements. The test results give, however, certain comparatively clear
indications for this judgement, and the conclusions that can be drawn
will be summarized and further discussed in this section. Further edge
loading tests are described and analyzed in Part 5.

As far as can be judged in this respect, the tests have shown that the
depression formulae for edge loading and the corresponding diagrams
produced by WESTERGAARD can be well applied to reinforced pavements,
if the flexural rigidity of the slab is calculated on the basis of St age II.
The conclusion is thus here the same as in the case of the depression
due to an interior load, and the formulae and diagrams give also here
a fairly good idea of the deformation even up to such high loads that
the reinforcement under the loading point has assumed a plastic state;
depression calculations according to the elasticity theory can thus
(at least in the case of r esilient soil) be used as a basis for the estimation
of the distribution of soil pressure in the case of ultimate load calcula-
tions based on the yield line theory. In cases where there is an edge which
has been stiffened by thickening or the insertion of reinforcement strip,
then the deformation can be calculated as for a uniformly rigid edge
with a rigidity corresponding to that obtained if the strengthening is
assumed to be uniformly distributed over an edge zone with a width
equal to the elastic radius of rigidity I.

Concerning the calculation of the moments in the loading centre
in the case of a load on a free edge or a joint, then WESTERGAARD'S
moment formulae (41:4 and 41:6) and the corresponding diagrams in
Fig. 41:2 would appear to be applicable only for an edge without local
edge stiffening or, where the edge is strengthened, without the rigidity
being significantly increased in this way. The assumption of the author
that the relationship between the maximum moment of edge loading
and interior loading has the same value, no matter whether the
subgrade is resilient or elastic, would appear to be correct, and the
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formulae (41:7) and (41:8) based on this assumption would thus appear
to be applicable in the case of both resilient and elastic soil. When
designing a joint or a free edge for a reinforced pavement based on
failure due to the beginning of yield in the bottom reinforcement under
the loading centre, then it should be possible to use the moment for-
mulae quoted above according to the elasticity theory only in such
cases where the edge is unstrengthened or where it has not been given
a significantly increased rigidity due to strengthening, for example
through moderate increase of the bottom reinforcement. In the latter
case, strengthening must naturally be carried out in a sufficiently wide
zone of the edge so that the moment inside this zone cannot produce
failure in the unstrengthened slab, and it must be known or determined
how the moment decreases at a distance from the edge.1) It should be
reminded that the formulae and the diagrams for this case are based
on WESTERGAARD'S later moment formulae (41:4) and (41:6); the original
moment formula (41:2) — unfortunately the one most common in handbook
literature and design standards — has been shown to give erroneous
results.

It is, however, the opinion of the author that the design for the case
of edge loading, in the same way as for the case of interior loading,
should be based on the definite ultimate load, which gives failure in the
top through formation of cracks or yield in any top reinforcement.
The reasons for this, which are developed in more detail in Section 31,
apply fully also for this case of loading. Calculating an ultimate load
defined in this way, it would appear, judging from the tests (and also
theoretical considerations), that the elasticity theory formulae (41:9)
for the negative maximum moment can only be used for unstrengthened
edges on condition that the plastic state in the bottom has not been
reached (or is very insignificant) at the load in question. In all cases,
however, the ultimate strength methods according to section 42, which
are based on the yield line theory (as well as the assumption that the
soil pressure can be estimated according to the elasticity theory), appear
to give a good idea of the definite ultimate load and of the influences
of various types of edge strengthening methods.

It is certainly obvious that the conditions are worse in the case of
edge loading than in the case of an interior load as far as the yield line
theory assumptions concerning a completely plastification in the positive
yield lines is to correspond to the behaviour in practice. This depends
upon the fact that the negative moment is greater in relation to the

x) An investigation of this kind can be carried out to a certain extent on the basis of
the PICKET-RAY influence charts [57] which also give the moment values at a distance
1/2 from the edge.



299

positive moment in the case of edge loading than it is in the case of
interior loading, and the negative failure crack t ends therefore to occur
relatively earlier before a plastification in the bottom has reached so
far. Both theoretical examinations and test results show, however,
that an incomplete plastification of thi s type in the positive yield lines 
influences the ultimate load t o a comparatively small extent; a calcula-
tion in such cases according to the usual formulae, which assume a
completely plastification, only results in a moderate increase of the
ultimate load value.

The tests show that the formulae and diagrams derived according
to the principles of t he yield line theory can be used for both resilient
and elastic subgrade; the only difference in this respect is that the relative

c
load dis tribution a = y is calculated on the basis o f the Z-value for the

type of subgrade in question.
The four tests on the edges on slab G2 with various types of strengthe-

ning indicates quite clearly that local strengthening is relatively in-
effective. Apart from this, thickened edges imply considerable difficulties
from the point of view of moulding forms and reinforcement. The
simplest and most effective tj^pe of edge reinforcement consists clearly
of a n edge zone of more closely spaced reinforcement, possibly supple-
mented by a powerful reinforcement band nearest the edge. The en-
larging of the reinforcement should cover an edge zone which is so wide
that the failure line figure considered falls with in it; the height of t he
failure line triangle r0 gives an idea of the width of strengthening required.

In most cases t he pavement consists of a single-reinforced sla b and
it is naturally simplest in this case, if, with strengthening along the
edges an d joints, on ly an increase in the bottom reinforcement can be
considered satisfactory. In order to investigate the extent to which
this is possible, the author has in Table 44:1 calculated comparative
moment values for a single load with various load distribution, affecting
partly the interior of a pavement, partly a joint (with half the
load on each side of t he joint) a nd partly close to a free edge (see fig.
44:1, cases 1— 3). In the table it has been assumed that the negative
ultimate moment m in the three loading cases is identical (single-rein-
forced slab), and the relationship between the required positive ultimate
moments in the interior of the slab m as well as on the joint and the
edge me have been calculated and compared for various values of the
negative ultimate moment.

The table shows that, in the case of a joint, th ere should be no diffi-
culty whatsoever in producing the necessary strengthening by enlarging
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Fig. 44:1. Various loading eases for a circularly distributed load on a pavement divided up
into several section by means of joints which cannot transfer moment.

the reinforcement within a zone along the joint. The necessary positive
ultimate moment along the joints is in normal cases rather slightly
higher than the positive ultimate moment in the interior of the slab.
Concerning the free edge, the difficulties in producing the necessary
strengthening in the same way can be greater. It is often necessary
here to further strengthen the edge, preferably without edge thickening
however, but instead, for example, through a reinforcement band along
the edge or with locally inserted top reinforcement within the strengthen-
ing zone. Such a top reinforcement (or, in the case of double-reinforced
pavements, intensification of the top reinforcement) has the best effect
if the reinforcement is placed with the bars at right angles to the edge
so that the m'-value is increased, this being easily shown by an examina-
tion with the help of the diagrams in Fig. 42:11.

TABLE 44:1. Moment values according to the ultimate strength theory for a load on the
interior of a slab as well as on a joint and a free edge (cases 1, 2 and 3 respectively in Fig.
44:1). The positive ultimate moments are calculated for at the same value of the

negative ultimate moment in all three cases.
The ultimate moment values are calculated according to the diagrams in Fig. 42:11.
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0.2 0.06 0.118 0.058 0.138 0.078 1.34 0.362 0.302 5.20
0.05 0.118 0.068 0.160 0.110 1.62 0.420 0.3 70 5.44
0.04 0.118 0.078 0.201 0.161 2.06 0.490 0.450 5.77

0.5 0.04 0.089 0.049 0.108 0.068 1.39 0.182 0.142 2.90
0.03 0.089 0.059 0.137 0.107 1.81 0.219 0.189 3.20
0.02 0.089 0.069 0.202 0.182 2.64 0.258 0.238 3.45

0.9 0.03 0.064 0.034 0.066 0.036 1.06 0.097 0.067 1.98
0.02 0.064 0.044 0.091 0.071 1.61 0.113 0.093 2.11
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When judging the values in Table 44:1 and when designing the edges,
one may make use of a fact which has not been considered in the table
but is favourable for the edge, namely the influence of temperature
decrease and shrinkage. This influence, which will be treated in Part
6, can be assumed to decrease the negative ultimate moment m' in
the interior of t he slab since part of t he tensile strength of t he concrete
is engaged by the tensile stresses resulting when the slab contracts due
to temperature decrease and shrinkage. Close to a free edge or a joint,
which allow contraction, there are no such stresses and no reduction
of m'. In this way there is a considerably higher value of m' (but not
m'e) fo r an edge and a joint than for the interior of t he slab also in the
case of sla bs with completely unstrengthened top surface at the edge (such
as single-reinforced slabs). One should also take into consideration the
viewpoints mentioned earlier that loading on a free edge is a very ex-
ceptional case of loading, so that when designing the edge it may be
permissable to have a lower safety factor than for the rest of the slab.

Finally, concerning the case of a load on a free corner or a joint inter-
section, no tests with these cases have been carried out on reinforced
pavements to show the applicability of the formulae stated (41:10)
and (41:11). It is, however, obvious that the ultimate load here depends
only on the negative ultimate moment, while practically no positive
moment occurs in this case of loading. With failure in at least single-
reinforced pavements there will be no plastification whatsoever in the
slab but failure will occur as soon as the flexural strength of the concrete
has been exceeded, thus completely in accordance with the definition
of fail ure given in the elasticity theory. In this case of l oading it should
therefore be possible to allow considerably lower safety factors than
for the other cases of loading with "plastic" failure, and under such
conditions no extra reinforcement is generally needed in the corners.
See also the design example in Section 722.



5. Field T ests in Connection with Concrete
Pavement Work on Airports

51. The Väsby Tests (Series V)

511. A review of the tests

- During the years 1944 and 1945 a region at Upplands Väsby north of
Stockholm which was intended for use for an Atlantic airport project,
was the site of a comparatively extensive test programme with testing
of p avement slabs on a full scale. The programme included mainly plain
concrete slabs but was supplemented during the autumn of 1945 with a
series of four reinforced slabs, A, B, C and D, carried out in accordance
with a programme drawn up by the author. The slabs were designed on the
basis of t he earlier outline to the ultimate load method which was avail-
able at this time. The natural soil consisted of relatively loose clay
down to some considerable depth.

The intention was that all four slabs were to be tested up to an ultimate
load with cracks in the top surface with loading both on the centre of
the slab as well as on two opposite edges. Due to the fact that the test
device was not originally capable of producing a sufficiently high degree
of l oading, in the cases of the slabs A and B this ultimate load was not
reached in the centre of the slabs. The loading device was later supple-
mented so that in the case of the last two slabs C and D, the complete
test programme could be carried out.

The four test slabs were square, each side being 8 m. long. The slabs
A and B had a nominal thickness of 14 cm, the slabs C and D 17 cm; to
judge from the cut-out detail tests (see 513.1) the thickness in reality
would appear to have been rather greater. All the slabs had bottom
reinforcement consisting of d eformed bar Ks 40; the slabs B and D were
also reinforced in the top with deformed bar Ks 60, but this reinforcement
appears to have finished up so far under the top surface, to judge by the
cut-out detail tests, that it hardly functioned, so that all the slabs can be
considered from a functional point of view to be single-reinforced. The
amount of re inforcement used and the nominal positions of t he reinforce-
ment are shown in Fig. 51:1. On all the slabs, one of the edges had been
strengthened in a strip with a width of 1.5 m with doubly intensified
reinforcement in the bottom parallel to the edge.

The slabs were cast on a gravel subbase which, in the case of the slabs
A and B was 100 cm thick, in the case of C and D 15 cm thick. The
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Fig. 51:1. Test slabs for Series V, dimensions, reinforcement and subbase. The figures
show the nominal measurements; the actual thicknesses and especially the position of the

reinforcement in the top deviate to a more or less greater degree from these.

layer of gravel was spread directly on the surface of the soil (see Fig. 51:1)
and was compressed very carefully.

Test loading of the slabs was carried out by the Swedish State Road
Institute, and the Institute has also described the tests in a report [47].
The tests have also been referred to and analyzed according to the elasticity
theory by BERGSTRÖM and assoc. [4] and ÖDEMARK [53]; concerning
the edge loading tests, however, only by the first-mentioned and only
in a summarizing way.

The test values necessary for analysis in this section have been taken
directly from the Road Institute report [47].

512. Test procedure and results

Test loading was carried out with the help of a loading apparatus
designed by the Swedish State Road Institute. This consisted of a
system of beams laid up on trolleys which ran on rails on each side of
the test surfaces. The beams were loaded with counterweights and the
load was transferred to the slabs by means of a hydraulic jack fitted
between the slab and the system of beams. The load distribution plate
had a diameter of 80 cm. By adding extra counterweights it was possible
to come up to a maximum loading of approx. 120 tons.
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During the tests, measurements of the deformation of the slab were
carried out by means of d ial gauges, approx. 1.0 m apart, located during
the centre loading tests along two lines at right angles through the loading
centre parallel with the edges of the slab and, during the edge loading
tests, along the edge under loading and along the line of symmetry at
right angles to it. Apart from this the curvature was measured in the
centre of the slab and the centre of th e edge respectively, using curvature
gauges in accordance with the same principle shown in Fig. 24:7, these
having a measuring base of 2 m1).

Test loading in the centre of the slab w as generally carried out so that
the load was first increased up to the original maximum load on the
loading machine, approx. 80 tons, after which unloading took place.
After further counterweights had been added, in the case of slab C and D
extra loading was carried out up to and beyond the failure point. The
failure ring crack was noticed on slab C at 114 tons, on slab D at 101 tons.
No special arrangement had been made, however, to be able to
indicate the crack formation and the top surface was not dusted
with white chalk, so that it is probable that the crack had actually
occurred somewhat earlier. By studying the depression procedure at the
measuring points in the neighbourhood of the crack it is possible to
determine fairly accurately that the ultimate loads for both the slabs
were

slab C approx. 100 tons

slab D approx. 90 tons

During the test loading of the free edges, t he load distribution plate
was located in the centre of the side so that it was tangent to the edge.
Loading was carried out with only one increase until cracks in the top
surface occurred and generally some loading steps beyond this point.
The visually determined crack loads for the various edges were:

slab A: unstrengthened edge 36 tons, strengthened edge 46 tons

slab B: unstrengthened edge 40 tons, strengthened edge 54 tons

slab C: unstrengthened edge 28— 36 tons, strengthened edge 40 tons

slab D: unstrengthened edge 32 tons, strengthened edge 42 tons

It can be pointed out that no special precaution had been carried out to
indicate crack formation so that it presumably occurred at a rather

x) In the result supplement, Section 94, the depression values and curvature values in the
centre of the slab and the centre of the edge respectively are given for all the test loading
operations treated here.
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Fig. 51:2. Crack patterns when loading the slabs in Series V. The cracks which occurred
in slabs C and D during the first loading on the centre of the slabs, are shown as broken

lines.

lower load than the load at which the cracks were discovered. A study of
the depression gauge values close to the cracks does not give any reliable
results here.

Fig. 51:2 shows the crack patterns in the various cases. In slabs C and
D, crack formation due to edge loading was influenced by the circular
crack which had earlier occurred during test loading in the centre of the
slab. The crack loads given above for edge loading of these slabs are
therefore obviously altogether too low and these 'results, for this reason,
have not been included in the ultimate load analysis. In the case of sl abs
A and B, as already mentioned, no cracks ocurred during the test loading
of the centre of the slab.
20
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513. Material constants for slabs and soil

513.1. Flexural rigidity and ultimate moment
In order to determine the flexural rigidity and the ultimate moment,

special test beams were sawn out of t he test slabs after these had been
finally tested. According to the programme two such detail tests were
to be taken out of each slab, one from each direction of the reinforce-
ment, but by an unfortunate error, this was only done in the case of the
thinner slabs A and B. It was thus not possible, unfortunately, to carry
out any direct determination of th e material constant values for the slabs
C and D, just these slabs which were tested up to the ultimate
load during centre loading. An estimation can be made by comparing
with the results from the detail tests, which were sawn out of the slabs
A and B. In the same way the constant values for the strengthened
edges were estimated.

The four detail test beams, which had the approximate dimensions of
250x50 cm, were tested for positive moment simply supported with a
span of approx. 1.90 m and with two loading points at intervals of
approx. one third of th e length.1) The deformation was measured in the
usual way by the use of curvature gauges between the loading points.
The test device is shown in Fig. 51:3. During the test, the beams were
arranged with one end sticking out over the supporting point and after
loading up to failure, the uncracked part at this end was utilized for the
determination of t he negative ultimate moment, whereby this part of
the beam was subjected to flexure in the reversed position.

Fig. 51:4 shows the relationship between the positive moment and the
curvature for the four test beams. The flexural rigidity was calculated in
the way described earlier from the secant at the yield point. The summa-
rized results are shown in Table 51:1. This table also includes the result of
the theoretical calculation of the flexural rigidity based on Stage II with
completely uncracked tension zone and n = 15. The theoretical values
agree relatively well with the test values and it should thus be possible to
calculate the flexural rigidity for the slabs C and D as well as for the
strengthened edges by proportioning up the test values (average values)
in relationship to the theoretically calculated values. In this connection
nominal values of the thickness and effective thickness (see Fig. 51:1)
were presumed. The result is shown by Table 51:2.

Table 51:1 also shows the ultimate moment values for the four test
beams. The positive ultimate moments have been obtained from the
curves in Fig. 51:4, due attention being paid to the fact that, in the case

1) The tests were carried out by the Swedish State Testing Institute and the results
are shown in certificate no. 4945, issued by the Institute in March 1949.
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Fig. 51:3. The layout and test device for flexural testing of the detail test beams belong-
ing to slabs A and B. The deformation was measured by means of a curvature gauge
placed between the loading points. One end of the beam which projected beyond the
support point, was later subjected to flexural testing in a reversed position to determine

the negative ultimate moment.

of the top-reinforced beams B there is not such a distinct deviation of
the curves at the transition to the failure stage. This appears to depend
on the top reinforcement which, as mentioned earlier, lay comparatively
deep in the slab so that in the neighbourhood of failure it would
lie under the neutral layer and thus gradually be subject to an increased
tension, this implying that the moment value gradually increases. For
calculation of the ultimate moment in practice, it would appear most
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Fig. 51:4. Curvature graphs from the flexural testing of the detail tests shown in Fig.
51:3. The co-ordinate axis shown as broken lines at the bottom show the correction

for the deadweight of the unit.
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TABLE 51:1. Series V. Detail tests belonging to slabs A and B.

A 1 A 2 B 1 B 2
Average

value

Nominal thickness h0 cm 14 14 14 14 14
Actual thickness cm 14.1 15.3 14.8 15.6
Reinforcement, bottom 0 10 c/c 130 mm 0 10 c/c 130 mm

top 0 6 c/c 200 mm
Effective thickness h, nomin. cm 12.5 11.5 12.5 11.5 12

actual 12.1 11.9 12.8 12.3

Reinforcement percentage °l/ 0 0.5

Flexural rigidity Ei stage II kgcm2/cm 14 • 106 12 • 106 15 • 106 15 • 106 14 • 106

Theor. calc. Ein kgcm2/cm 11.3 • 106 11.0 • 106 11.7 • 106 12.6 • 106

Pos. ultimate moment m kgcm/cm 3290 3230 3380 3450 3340
Neg. ultimate moment m' kgcm/cm 1390 1690 1610 2100 1700

TABLE 51:2. Series V. Flexural rigidity and ultimate moment values for slabs and edges.
For the test slabs A and B and the unstrengthened edges on these slabs the average

values from the detail test beams according to Table 51:1 have been used. For the other
slabs and edges, the values in question have been estimated by calculation from proj^or-
tioning of the average values for the four detail test beams A and B.

Slab or edge

Test values Calculated values

Slab or edge
Slabs and

unstrengthened
edges

Slabs and
unstrengthen-

ed edges

C and D

Strengthened
edges

Strengthene
edges

C and D

Slab or edge

A B

Slabs and
unstrengthen-

ed edges

C and D A B

Strengthene
edges

C and D

Nominal total thickness h cm ] 4 14 17 14 14 17
Nominal effective thickness h0 cm 12 12 15 12 12 15

Bottom reinforcement 0 10 c/c 130 0 10 c/c 100 0 10 c/c 65 0 10 c/c 50
Reinforcement percentage °/0 0.50 0.50 0.52 1.00 1.00 1.04

Flexural rigidity Ei\ kgcm2/cm

OOo

60 • 106 103 • 106 60 • 106 60 • 106 103 • 10«

Flexural rigidity Eiji kgcm2/cm 13 • 106 15 • 106

OGO<M

22 • 106 25 • 106 47 • 106

Pos. ultimate moment m kgcm/cm 3260 3410 5400 6300 6600 10500

Neg. ultimate moment m' kgcm/cm 1540 1850 2500 1540 1850 2500
Moment at first concrete crack in
bottom mCr kgcm/cm 1300 1300 1900 1300 1300 1900

Curvature at yield-point cm-1 ~ 2.5 ~2.3 ~ 1.9 2.8 ~ 2.6 ~2.2
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correct here to take the moment at the yield point and completely
ignore the influence of th e top reinforcement bars. The ultimate moment
values according to the tests have been corrected for the moment
due to the weight of the unit itself. The average value of the
ultimate moments determined in this way have been used to obtain
the corresponding values for the slabs C and D as well as for the
strengthened edges by proportioning in accordance with the formulae
(41:3), whereby oc is placed = 350 kg/cm2. The calculation is shown in
Table 51:2.

Table 51:1 also includes the values of the negative ultimate moment
which was obtained during the testing of the uncracked end parts of
the test beams, these being subjected to bending with the main reinforce-
ment in the pressure side. The corresponding values for the slabs C and
D have been calculated from the average value of t he ultimate moments
obtained and re-proportioned with respect to the nominal difference in
thickness between the slabs A and B and the slabs C and I). The result is
shown in Table 51:2.

The table also shows the values for curvature at the commencement
of cra ck formation in the concrete tension zone and at yield point in the
reinforcement, which can be estimated from the deformation curves for
the detail test beams in Fig. 51:4 and which were used for the calcula-
tion of the flexural rigidity of the unstrengthened edges on slabs A and B.
For the other edges, the corresponding values for curvature have been
estimated in accordance with the relationship

1 m
Q Ei

513.2. Soil constants
The subgrade consisted, as mentioned above, of clay which was

comparatively loose down to some considerable depth. It was assumed
to function as an elastic subgrade.

When determining the subgrade constant, a calculation of t he average
depression from the centre loading tests can hardly be considered, since
the depression volume under the square slabs is almost impossible to
estimate. The only method remaining is to carry out an estimation from
the measurement values concerning deformation and then adopt the
elasticity theory. In this way both C and k values were determined in
order to permit analysis of the edge loading tests to be carried out in
accordance with both the subgrade hypotheses.

For the calculations (by the diagram in Fig. 22:11) the measurement
values for the centre depression during the centre loading tests on the
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TABLE 51:3. Series V. Determination of k- and C-values.
Calculations from the depression in the slab centre for given loads when loading in the

centre of the slab, whereby the depression diagram in Section 225 was applied. Flexural
rigidity as shown in Table 51:2.

The depression values at loading 2 are corrected for residual deformation after loading 1.

Slab A Slab B Slab C

C k C k C k RemarksP w0 C k P w0 C k P w0 C k Remarks

ton cm kg/cm2 kg/cm3 ton cm kg/cm2 kg/cm3 ton cm kg/cm2 kg/cm3

10 0.16 320 0.87 10 0.11 (520) (1.78) 10 0.15 270 0.60 Stage I
20 0.37 250 0.67 20 0.30 340 1.00 20 0.34 224 0.49

40 1.06 281 1.30 40 0.94 315 1.44 40 0.94 245 0.84 Stage II
50 1.60 220 0.90 50 1.43 240 1.00 50 1.35 202 0.64 loading 1
60 2.26 175 0.68 62 2.18 182 0.70 60 1.82 170 0.51
72 3.31 131 0.47 — — — — 76 2.92 125 0.34

70 3.07 133 0.45 80 2.95 131 0.36 Stage II
78 3.81 114 0.37 102 4.43 107 0.28 loading 2

113 6.45 71 0.16

slabs A, B and C1) were used and the values of the flexural rigidity in
accordance with Table 51:2. The Table 51:3 shows the result of the calcula-
tions for some of the loading steps and it becomes obvious that the value
of the soil constant, estimated according to this method, decreases
greatly with increased loading. This does naturally not only depend on
the fact that the properties of the subgrade alter when the loading and
deformation increase but also depends possibly most on the alteration in
the rigidity properties of the slab at the successive crack formation in
the bottom surface during increasing loading. For the calculation of
the C values in the table, the flexural rigidity D has indeed been assumed
to be constant, corresponding to Stage II over the complete slab.

The method used to determine the soil constant is thus particularly
unreliable. Since a faulty value of the soil constant only influences the

c
value of t he relative load distribution a = — to a relatively slight extent,

then the influence of this unreliability in the determination when cal-

1) See the result supplement, fig. 94:1. The depression curves in this figure have been
taken from the Road Institute report [47]. This report describes the depression measure-
ments for the two loadings which were carried out, each zeroed separately. In the test
supplement fig. 94:1, which is the basis for the calculations carried out here, in accordance
with the principles in 233 the deformations have been "restored to the first loading" and
the value for the highest loading steps which belonged to the second loading has thus
been corrected for the permanent deformation which remained after the first loading.

During the test of slab D, six loadings were carried out, the final loading after such a
comparatively long interval that definite deformation values in accordance with the
principle of first loading cannot be obtained for this slab.
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culating the moment and the ultimate load is fortunately comparatively
small.

When selecting suitable values for the subgrade constants attention
should be paid to the fact that the depression values at the highest
loading steps are influenced by the plastification taking place in the
centre zone of the slab. It would thus appear to be most correct to
estimate the subgrade constants at a load corresponding to or rather
higher than the load at yield point in the bottom reinforcement. For
this reason the following values were selected:

for slabs A and B\ C — 220 kg/cm2; k = 0.90 kg/cm3

for slabs C and D: C = 160 kg/cm2; k — 0.4 5 kg/cm3

These values are estimated on the basis of the centre loading case.
For the case of e dge loading the subgrade constant value should possibly
be determined at a lower loading, since the depression at ultimate load
in this case is smaller than in the case of centre loading. With respect
to the fact that the depression volume in the case of edge loading is
completely different compared to that in the case of centre loading, it
is not possible directly to compare the influence of the deformation on
the soil constant in both the cases of loading, and there would not
appear to be enough definite points to qualify the estimation of
other values of the soil constants in the case of edge loading. This
question is also treated in the discussion in 432.2 concerning the
determination of the subgrade constant in the Gothenburg tests and also
in the analysis of t he depression measurements in 514.2.

514. Test results, treatment and theoretical analysis

514.1. Loading on the centre of the slab
Table 51:4 includes the experimentally determined loads at yield point

in the bottom surface Pand crack in the top surface Pt for the slabs
C and D together with the corresponding theoretically calculated values.
The load Pvb%e for the slab C has been estimated in the usual way from
the curvature in the centre of the slab,1)2) compared with the theoretically
calculated curvature value at yield point according to Table 51:2.

The table shows very good agreement between the test loads and the

r) In the ease of s lab D, due to the irregular loading procedure mentioned in the note on
page 310, it was not possible to obtain reliable curvature values and thus not possible

to determine P^e.
2) See the result supplement, Section 94.
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TABLE 51:4. Series V. Loading on centre of t est slabs.
Ultimate loads from tests and theory (elasticity as well as ultimate strength theory).
Size of slabs 8x8 m. Loading area radius c= 40 cm.
When calculating the theoretical failure loads, the soil is assumed to be elastic subgrade.

Series V, slab C D

DATA FOR THE TEST SLABS
Total thickness h0 approx. cm 17 17
Reinforcement Ks 40

bottom 0 10 c/c 100 0 10 c/c 100
top 0 6 c/c 150

Flexural rigidity D kgcm2/cm 28 • 106 28 • 10«
Soil modulus C kg/cm1 160 160

) / 2 D
Elast, rad. of rigidity 1 = 1/ —Q- 70 70

c
Rel. load distribution a = ~ J ~ 0.57 0.57

Ultimate moment kgcm/cm
at pos. moment m 5400 5400
at neg. moment m ' 2500 2500

7900 7900

RESULTS
Load at yield in bottom reinforcement F r f M ton s

from tests 57 -1)

from theory 56
Load at failure in top concrete surface P t tons

from tests ~ 100 ~ 90
from elasticity theory 140 140
from ultimate strength theory 94 94

1) See note on page 311.

theoretical loads Pybie. Concerning the definite ultimate loads Pt,
agreement between the tests and theory is poor when calculating accord-
ing to the elasticity theory but good when calculating according to the
ultimate strength theory. The tests thus give the same results in all
respects as those earlier obtained.

514.2. Loading on free edges
The results of t he depression and curvature measurements on the eight

edges have been applied to the WESTERGAARD edge loading formulae
and the corresponding diagrams for depression and moment; the results
of these calculations have been compiled in Table 51:5. The values of
flexural rigidity, subgrade constants and ultimate moments, according
to the previous section, which were used in the calculations, are shown in
the table.

Theoretical values of the depression under the load have been calculated
from the diagram in Fig. 41:1 and the formula (41:5), and the result
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SLAB A SLABD
Strengthened edge

Centre deflection

Unstrengthened edge
bad

I /

Centre deflection

Fig. 51:5. Relationship between depression and loading in the centre of the edge from
tests and theory concerning the unstrengthened edge A and the strengthened edge D.
The theoretical curve lines are calculated from formula (41:5) with the constant values
for the slabs and the soil according to Stage I (with v = 0.15) and Stage II (with v = 0).

has been calculated for a loading of 40 tons which is in the neighbourhood
of a load corresponding to yield point in the bottom (Stage II) for the
various edges. For the unstrengthened edges C and D, the deflection at
36 tons is instead calculated, since the test loading was interrupted at
this lower load due to the early crack formation mentioned earlier. For
some of the edges, the theoretical and experimental relationship curves
between the load and the depression in the loading point have been
compiled in Fig. öliö.1) In these diagrams the theoretical relationship
curves for a low load (stage I) have also been drawn in, whereby the
constant values are obtained according to the Tables 51:2 and 51:3.

The Table 51:5 and the diagram in Fig. 51:5 show relatively good agree-
ment between the calculated and measured depressions. The deviations
reflect the unsure method when determining ^-values and the fact that
the soil appears to correspond more closely to an elastic subgrade while
the theory and the soil constant value concern resilient subgrade. With
respect to the slight influence of unreliability in the subgrade constant
when calculating the moments and the ultimate loads it can be considered
that the /c-value has been estimated with suitable values and it can be
calculated for the case of centre loading even when it concerns edge
loading, i. e. WESTERGAARD'S fo rmulae for depression show fairly well
the relationship between the depression due to edge load and interior
load on the slab.

*) For all the edges, the curves of this type are shown in the result supplement, Section 94.
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In order to calculate the loadings in the case of edge loading tests,
which corresponds to yield point in the reinforcement, the curvature
measurements in the centre of the edge have been compared with the
values of c urvature at the yield point obtained from the detail beam
tests and the corresponding calculations according to Table 51:2. In
some of the tests the increase in loading was terminated before the yield
point was reached according to this estimation, and the load in question
in these tests has been estimated by means of exterpolation from the
curvature graphs (the estimated values have been shown in brackets in
the table). On the whole the determination of the loads from the curva-
ture in this test series must be considered as being very unsure, since the
measuring values shown in the original report issued by the Road Institute
were altogether too sparse (too large loading steps) to admit a
completely sure determination of th e edge curvature, and the correspond-
ing curvature values at yield point used in the comparison were not,
in the case of most of the edges, determined directly from the deflection
tests on the detail test beams but instead were estimated by means of
comparative calculations (see Section 513:1 and Table 51:2). Apart from
this, some of the loads were, as mentioned above, estimated from exter-
polated curvature values.

The test yield point loads estimated in this way are shown in Table
51:5 together with the corresponding theoretical load values calculated
according to WESTERGAARD'S mo ment formula (41:6) or the diagram in
Fig. 41:2 and with the values of t he positive ultimate moment obtained
from Table 51:2. This calculation is thus based on WESTERGAARD'S
assumption of resilient subgrade. A corresponding calculation has also
been made according to the hypothesis of e lastic subgrade, based on the
assumption mentioned in Section 41 that the relationship between the
moments at centre and edge loading is the same for elastic subgrade
as for resilient subgrade.

The agreement between the load values at yield point estimated from
the tests and theoretically calculated is fairly good for most of
the edges and, with respect to the unreliability mentioned in deter-
mining the test values, in any case as good as can be expected. The
best agreement with the test values would appear to be when calculating
according to the elastic subgrade hypothesis and it would thus appear
that the method used for calculating moment for this type of subgrade
should be applicable.

It is obvious that the failure load values at bottom reinforcement
yield point obtained and calculated are in the immediate neighbourhood
of the definite top failure (in certain cases even somewhat higher). It
should thus be expected that the slab functions "elastically" right up
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TABLE 51:5. Series V. Edge loading on test slabs. Depression and ultimate loads from
tests arid the elasticity theory.

Size of slabs 8x 8 m. Circular loading area with radius c= 40 cm tangent to the edge.
In the calculation of t he theoretical depression values, the soil is assumed to be resilient

(constants with index k). When calculating the ultimate loads the soil is assumed to be
resilient as well as elastic (constants with index k and e respectively).

Slab series V, edge
Unstrengthened edges Strengthened edges

Slab series V, edge
A B C D A B C D

DATA FOR THE TEST SLAB EDGES
Total thickness, approx. cm 14 14 17 17 14 14 17 17
Reinforcement Ks 40 0 10 3/c 300 0 10 3/c 100 0 10 3/C 150 0 10 c/c 200
Flexural rigidity Du kgcm2/cm 13 • 106 15 • 106 28•106 28 • 106 22 • 106 25 • 106 47 • 106 47 • 106

Soil constants, high loading
resiliance constant k kg/cm3

soil modulus C kg/cm2
0.90
220

0.90
220

0.50
160

0.50
160

0.90
220

0.90
220

0.50
160

0.50
160

Elastic radius of rigidity I cm

-V? 62 64 86 86 70 72 98 98

<-W 49 52 70 70 59 61 84 84

c
Relative load distribution a = -y

0.65 0.63 0.46 0.46 0.57 0.55 0.41 0.41

c
ae~ /Le

0.81 0.78 0.57 0.5 7 0.68 0.66 0.48 0.48

Ultimate moment kgcm/cm
at bottom reinf. yield myie
at top concr. failure m'cr

3260
1540

3410
1850

5400
2500

5400
2500

6300
1540

6600
1850

10500
2500

10500
2500

DEPRESSION MEASUREMENTS
Depression at 40 tons cm

from tests
from theory

2.29
2.66

2.11
2.51

1.611)
2.571)

2.121)
2.571)

2.18
2.16

1.75
2.05

2.31
2.31

2.45
2.31

ULTIMATE LOADS
Load at bottom reinf. yield PtfM tons

from tests
from elasticity theory

resilient soil
elastic soil

(40)

22
29

40

23
29

29

26
32

(33)

26
32

46

37
45

45

38
45

(48)

48
53

(47)

48
53

Load at top concrete failure tons
from tests
from elasticity theory

36
26

40
31

46
26

54
31

x) The depression values for C and D unstrengthened apply at 36 tons which was the
maximum load for these edges.
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to the ultimate load and that it should thus also be possible to calculate
the load at top failure by means of the elasticity theory method. The
last lines in Table 51:5 show the result of a calculation of t his type for
the four ''undisturbed" edges of slabs A and B. The theoretical values
for the ultimate load have been calculated according to the formula
(41:9) whereby the negative ultimate moment values have been esti-
mated from the detail beam tests according to Table 51:1. The result
is however hardly encouraging. It is particularly obvious that the effect
of edge strengthening cannot be shown at all in this way while the
theoretical ultimate load according to the formula (41:9) is independent
of the strengthened positive ultimate moment. The test values show
clearly that an increase in the ultimate load is obtained by intensifying
the reinforcement in the bottom along the edge.

Apart from the high degree of unreliability in the negative ultimate
moment values, the reason for the poor agreement with the elasticity
theory would appear to be that, in spite of the fact that the yield point
load and the final ultimate load are so close to one another, there is
anyhow a levelling and a re-arrangement of moment which influences
the final rupture.

This matter will therefore be examined by considering if a better result
can be obtained by means of the ultimate strength methods in Section
42, in spite of the fact that the conditions for this (complete yield along
the cracks in the bottom surface) cannot be satisfied so well. Since the
negative ultimate moment can be taken as being equal in both direc-
tions and since the strengthened zone can be assumed to stretch itself
over the complete failure figure, it is not necessary here to follow the
methods in Section 425, which concern local edge strengthening, and
the ultimate loads can thus be obtained with the help of the diagram
in Fig. 42:11.

Calculation of the theoretical ultimate loads has been carried out for
both the subgrade cases, i. e. the soil being considered both as a resilient
and as an elastic subgrade. In this connection, the values of the elastic
radius of rigidity I according to Table 51:5 obtained by distributing
the edge beam rigidity over an edge zone with a width I, a nd the corres-
ponding values of the relative load distribution according to Table 51:5,
were used for the calculation in the two soil cases. The results are shown
in Table 51:6, and the table shows in most of t he tests remarkably good
agreement between the ultimate loads obtained theoretically and experi-
mentally. This is possibly rather surprising with respect to the fact
mentioned above that yield in the bottom surface cannot have spread
out so far before top failure occurred. It has, however, been shown
theoretically (see section 426:3) that such incomplete plastification in
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TABLE 51:6. Series V. Edge loading on test slabs. Ultimate loads at failure in the
top from tests and the ultimate strength theory.

Size of slabs 8x8 m. Circular loading area with radius c= 40 cm tangent to the edge.
In the calculation of the ultimate loads, the soil is assumed to be resilient (index k)

as well as elastic (index e).

Slab series V, edge
Unstrengthened edges Strengthened edges

Slab series V, edge
A B A B

DATA FOR THE TEST SLAB EDGES
(see also Table 51:5)
Ultimate moment kgcm/cm

positive myie =m

kgcm/cm
3260 3410 6300 6600

negative m' cr =m' 1540 1850 1540 1850
m

2.10 1.85 4.10 3.55
m'

4800 5260 7840 8450
c

Relative load distribution a=—j~

for resilient soil ai- 0.65 0.63 0.57 0.55
for elastic soil ae 0.81 0.78 0.68 0.66

ULTIMATE LOADS at crack in top tons
from tests 36 40 46 54
from theory

57for resilient soil 38 50 47 57
for elastic soil 45 50 54 59

the positive yield lines influences the ultimate load value to a compara-
tively small extent. The theoretical examination according to table
42:4 shows that application of t he usual ultimate load formulae in such
cases of incomplete plastification should give ultimate load values
which are rather too high. From this viewpoint, the theoretical ulti-
mate load values calculated according to the hypothesis of elastic sub-
grade should perhaps be in a more correct relationship to the test loads
than the loads according to the hypothesis of resilient subgrade, in
spite of the fact that the last-mentioned loads show better formal agree-
ment with the test loads.

It is however obvious that the effect of edge strengthening can be
estimated quite correctly by means of the ultimate load method no
matter whether the subgrade is assumed as being resilient or elastic.
The result is thus here the same as in the earlier treated edge loading
tests.



52. The Norrköping Tests, Summer 1948, Series N

521. Extent, performance and results

In connection with the extension of Norrköping airport in 1948,
the summer of this year was used to carry out a number of l oading tests
on reinforced concrete pavements in accordance with a programme drawn
up by the author. Tests on plain concrete pavements were also carried
out simultaneously, but these will not be treated here.

The programme consisted of the testing of two reinforced test
slabs C and D, 7 x 7 m, as well as application of test loading on two
zones of newly completed taxiways c and d. All the pavements were
about 16 cm thick with bottom reinforcement consisting of two-way
reinforcement 0 10 c/c 140 mm. One of the test slabs and one of the
taxiway pavements tested were also supplied with top reinforcement
0 6 c/c 250 mm, but as shown by later tests, this reinforcement was so
weak that the flexural strength of the concrete itself gave a higher
ultimate moment, so that also these test slabs can be considered as
being only bottom-reinforced and all thus similar in principle. The
taxiways tested consisted of four strips with a width of 4.125 m, separated
by longitudinal joints with bottom reinforcement right through and
with tongue and groove.

Fig. 52:1 shows the design of the pavement as well as a plan of the
test region with the test points treated here marked in. On the separate
test surfaces C and D only test loading in the centre point was carried
out, on the taxiways c and d test loading was carried out partly midstrips
exactly between joints, partly on the free edges which were designed
with extra reinforcement and thickening (see Fig. 52:1). Apart from the
points marked in on fig. 52:1, the taxiways were test loaded at a further
number of points but in these cases the load was not taken up to failure in
the top surface and these test loadings will not be treated here.

The reinforcement consisted of deformed bar with a yield point of
approx. 4600 kg/cm2. The concrete had a cement content of 285 kg/cm2.
Cube tests carried out showed an average 28 days compressive strength
of 526 kg/cm2 and standard flexural beams made showed an average
flexural strength of 54 kg/cm2.

At the site of the tests the subgrade consisted of c lay to some consider-
able depth. Both the taxiway pavement and the test slabs were laid
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Edae of taxiwoyc
fy/O

SlabC
Taxiwayc

Taxiwoyc

Test
slobs Edge of taxiway d

#£69c?50 Z0IO

Slab D
Tax.iway d

Fig. 52:1. Plan of the test zone (dispersal slab and taxiways) as well as the sections
of the tested independent slabs C and D and the taxiways c and d. The test slabs A and
B were unreinforced and are not discussed here. The test loading points are marked in
on the plan (only tests to failure are included).

out without any special subbase. The top soil was graded off and an
approx. 10 cm thick levelling layer of g ravel and crushed stone was laid
out and rolled with a smooth roller before the pavement was cast.

As in the case of the other investigations, special beams were made
as detail tests to determine the ultimate moment and the flexural rigi-
dity. Such beams were cast simultaneously with the casting of t he pave-
ment on the taxiways and the test slabs. The beams were 2.5 m long,
their thickness and reinforcement agreeing with that of the correspond-
ing taxiway or slab. For every testing place (independent slab or taxi-
way respectively) four such detail test units were made, two of which
corresponding to a strip from one of the directions of the reinforcement
in the pavement and two corresponding to a strip from the other direc-
tion.

The test loading was carried out in co-operation with the Swedish
State Road Institute and the Stockholm Air Port Building Committee.1)

*) A description of the tests concerning the individual slabs has been supplied by
BBBNBLI, [8] who was engaged in the tests representing the Stockholm Air Port Building
Committee. The author has not quoted or utilized the data in this report since they
have been found to be lacking in information and, to a certain extent, less correct (see
also note 1, page 185).
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The loading was applied with the help of the Road Institute loading
apparatus which has been earlier described in connection with the descrip-
tion of the Väsby tests, Section 51.

The test slabs and the selected zones of the taxiways were loaded
at all the test points with a circular loading plate with a diameter of
80 cm. The crack pattern plan on Fig. 52:2 shows the exact location;
during the test loading of the edges, the loading plate was located with
its edge 10 cm inside the free slab edge. The load was generally applied
with steps of 2 tons at intervals of 3 minutes. During the test the de-
formation of the slab was measured by means of dial gauges placed
along two directions at right angles. The curvature in the loading
point was also measured with curvature gauges which, however, as
opposed to most of the earlier tests, only measured the depression of
the centre point over a measuring base of 40 cm.1) Finally the strains
in the top surface of the slab were measured along the same lines as
the depressions with the help of strain gauges with a measuring base
of 25 cm of th e same type as used in the Gothenburg tests1) (see Fig. 25:9).

The loading was increased directly without any intermediate off-
loading to a load rather higher than the load where the circular failure
crack in the top surface occurred. No visual determination of this load
was made but it can in the usual way be calculated objectively from
the discontinuity in the diagrams of the strain measurements. The
ultimate loads thus obtained were

x) The necessary results from the deflection and curvature measurements have been
taken from the Road Institute test report which includes diagrams of the centre depression
and centre point deformation (curvature) as well as the depression lines for two or three
loading steps. The other test results (strain measurements, etc.) have been taken directly
from the original protocol.

For the loading points treated here (see Fig. 52:1) the test results are shown in the form
of centre depression and curvature diagrams as well as strain diagrams in the result
supplement, Section 95.

2) As early as at 35 tons, one of the strain gauges in this test loading showed a discontinu-
ity in its readings which could indicate a crack in the top surface. Since the strain was
here only approx. 0.07 °/00 and since the subsequent strain increase went relatively
slowly, this possible crack has not been considered as being a failure crack.

slab C, load on the centre
slab D, load on the centre

68 tons
50 tons
50 tons2)
57 tons
22 tons
12 tons
34 tons

taxiway c, load on the centre (test c:l)
taxiway d, load on the centre (test d:l)
taxiway c, load on the edge (test c:2)
taxiway c, load on the edge (test c:3)
taxiway d, load on the edge (test d:2)
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Test slabs

Taxiway d Taxiway c

cd

-Edge
distar.

?10 cm

Fig. 52:2. Crack patterns after testing the independent test slabs C and D and the taxi-
ways c and d with the loading areas marked (diameter 80 cm).

During the loading tests c:2 and c:3 on the opposite edges of taxiway
c, both the depression and the strain increased very rapidly already at
the beginning, about twice as rapidly as on the equally strong edge
of taxiway d, test d:2 (in test c:3 even more rapidly). The explanation
of this must be that the edges of this taxiway were not in contact with
the soil from the beginning and this caused large extra strains in the
taxiway and too low ultimate loads. The results of the test loading
on the edges of taxiway c have therefore not been included in the test
analysis.

The appearance of the top surface cracks is shown in Fig. 52:2 which
also shows the location of t he loading areas. During the two test loading
procedures c:l and d:l on the taxiways exactly between longitudinal
joints a failure line figure was obtained which went into the joints, i. e.
the type of failure which has been treated in theory in Section 324.
By comparison with the failure circles on the independent slabs C
and D (with the same thickness and reinforcement) it can be seen that
the crack radius here is larger and the failure figure is oval; at test point
d:l only half the failure figure has come up.

Another interesting observation to be made from a study of the ulti-
mate loads is that the tests on the double-reinforced taxiway c results
in lower ultimate loads than the corresponding tests on the single-rein-
forced taxiway d. This could show that the top reinforcement, which
is too weak to increase the negative ultimate moment, should even have
2 1
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an unfavourable effect which in such a case should depend on the fact
that the reinforcement causes fine shrinkage cracks in the surface which
function as failure indications. The corresponding effect was not ob-
tained in the case of the independent slabs.

522. Material constants for slabs and soil

522.1. Flexural rigidity and ultimate moment
The above-mentioned detail test beams were tested at the Swedish

State Testing Institute according to a programme made up by the
author. Of the beams from each testing place, two were tested with
the bottom surface (main reinforcement) in the tension zone (positive
moment) and two with the top surface in the tension zone (negative
moment). The beams were tested simply supported with concentrated
loads applied from above at points separated by a distance corresponding
to one quarter of t he length.1) During the test the deflection was measur-
ed in the centre point of t he beams and 40 cm on each side of the centre
point by means of dial gauges on both edges of the beam. The curvature
of the centre section lias been calculated from these measurements.
This calculation is naturally considerably less reliable than the corres-
ponding measurement by means of curvature gauges, the result from
the highest loading steps being particularly unreliable, the deflection
here being measured by means of rods graduated in millimetres. From
the curvature diagrams obtained in this way, the flexural rigidity in
Stage II (secant modulus values at yield point) and the ultimate moment
have been obtained in the usual way.2) The ultimate moment values
are particularly relatively unreliable, partly depending upon the un-
reliability in the curvature measurements mentioned above and partly
relying on the fact that the moment increases slowly even after the
yield point in the bottom reinforcement has obviously been reached.
The ultimate moments have been determined at the yield point of the
reinforcing bars and in the estimation of this value, measurements
of the development of the largest cracks have also served as a guide.2)
In all the calculations, corrections have been made for the moment due
to the deadweight of the unit.

The result of the detail beam tests is compiled in Table 52:1 where
the average values from the beam tests are included. The thickness of

1) The test results are shown in the Swedish State Testing Institute certificate no.
26546 of January 31st 1949. The results here have been obtained by the analysis of this
test protocol. See the note below.

2) Diagrams of the centre depression and curvature as well as the development of the
largest cracks are shown in the result supplement, Section 95.
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TABLE 52:1. Series N. Detail tests.
Test beams with a length of 250 cm, nominal thickness /i0=16 cm, and effective height

h=13,5 cm.
Each result shown in the table is the average value of two tests.

Detail test from slab and
taxiway respectively C D c d Average

value

Ultimate moment kgcm/cm
pos. moment m
neg. moment m'

3520
1810

3630
2060

3620
1780

3790
1700

3600
1800

Flexural rigidity at yield point Ei kgcm2/cm 19 • 106 23 • 106 24 • 106 26 • 106 23 • 106

Curvature at yield point cm—1 18 • 10-5 15 • 10-5 14. 5 • 10-5 15 • 10-5 15. 5 • 10-5

the test beams was about 16 cm and the effective height at the bottom
reinforcement was about 13.5 cm but these values varied somewhat.
Since it was not possible to carry out any direct measurements of thick-
ness on the test surfaces, and it can be assumed that the variation in
thickness is as great as it was in the detail test beams, it has been con-
sidered most correct, in the continued analysis of all the tests, to cal-
culate with the average values from the results of all the detail tests;
the variations in the results between the various detail test beams can
give an idea of t he spread in the constant values for the slab.

The table also includes the values of curvature at the yield point
estimated from the test curves. The average value has been used for
the estimation of the load Pf6 at yield point in the bottom surface
in the main tests.

522.2. Soil constants
Since there was not any possibility to calculate the depression volume,

the subgrade constants were e stimated in the same way as with Series
V on the basis of the depression values in the case of centre loading
according to the elasticity theory. Table 52:2 shows the results of
such C-value calculations for several different loading steps in the
neighbourhood of Pfe and Pt from centre loading tests on the four
slabs; for slab d, which was also studied concerning the case of edge
loading, the ^-values have also been calculated. As comparison, the
calculations have been made also for loads of 15 tons whereby the
corresponding flexural rigidity value in Stage I has been estimated
from the detail tests as an average value from the various tests.

In accordance with the principles discussed in 513.2 for the deter-
mination of th e subgrade constant for the Series V, the following values
are selected for the continued test analysis:
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TABLE 52:2. Series N. Determination of soil constant values.
Calculations from the depression in the slab centre under centre loading with the given

loads, whereby the depression diagram in Section 225 has been applied.
For calculation the values of the flexural rigidity from the detail tests were used:

Stage I: D\ =110 • 10 ® kgcm2/cm
Stage II: Du = 23 • 106 kgcm2/cm

Load
Slab C Slab D Taxiway c Taxiway d

Load
C C C k Remark

tons w0 C w0 C w0 C w0 C k Remark

cm kg/cm2 cm kg/cm2 cm kg/cm2 cm kg/cm2 kg/cm3

15 0. 2 6 4 210 0. 3 0 0 179 0. 2 7 2 197 0. 2 2 5 258 0. 5 6 Stage I

40 1. 1 5 200 1. 5 2 140 1. 2 0 190 0. 9 4 260 0. 9 9 Stage II
50 1. 7 6 150 2 . 6 0 88 1. 7 6 150 1. 3 0 230 0. 8 3 Stage II
60 2 . 7 6 105 - - 2 . 3 7 130 1. 7 4 190 0 . 6 7 Stage II

Slab C: C = 150 kg/cm2

D: C — 90 kg/cm2

c: C — 150 kg/cm2

d: G = 200 kg/cm2; k =• 0. 7 0 kg/cm3

The considerable differences between the subgrade constant values
for the adjacent and similar slabs C and D should be noticed. This
shows that very large local variations in the properties of the subgrade
can occur.

523. Test results, treatment and theoretical analysis

523.1. Loading on the centre of the slab
The failure load at yield point in the bottom surface Pybie for the

four test loadings on the centre of t he slabs (and the taxiways respecti-
vely) were estimated in the usual way with the help of the curvature
diagrams for the loading point compared with the corresponding curva-
ture values according to the detail tests, see Table 52:1. The ultimate
loads at failure in the top surface Pf, determined through analysis
of the strain measurements, have been given earlier. These test values
have been compared with the corresponding theoretically calculated
values and the results are shown in Table 52:3. The table also includes
the required data for the test slabs. When calculating according to
the elasticity theory, the subgrade is considered to function as an elastic
subgrade.

Concerning the load at bottom reinforcement yield Pybie, the agree-
ment between the test values and the values calculated in accordance
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TABLE 52:3. Series N. Loading on centre of test slabs.
Ultimate loads from tests and according to elasticity theory (elastic soil) as well as

ultimate strength theory.
Thickness of slabs, nominally 16 cm. Loading area circular with radius c=40 cm.

Test area type

Notation

Independent slabs Taxiways

D c 1 d 1

DATA FOR THE TEST AREAS
Reinforcement
Flexural rigidity Ein kgcm2/cm
Soil constant C kg/cm2

Calculation constants
Elast, radius of rigidity le cm

c
Rel. load distribution ae= -y

<-e
Ultimate moment kgcm/cm

at bottom reinf. yield myie
at top concrete failure m'Cr

Double

150

67

0.60

Single Double
23 • 106

90

80

0.50

150

67

0.60

3600
1800
5400

RESULTS
Ultimate load at bottom yield

from tests
from elast. theory

Ultimate load at top crack Ptfr
from tests
from elasticity theory
from ultimate strength theory

tons

tons

38
38

68
100

66

33
34

50
98
60

30
38

50
100

66

with the elasticity theory is satisfactory. The differences in the test
values from slabs C and D, for which slabs comparatively similar test
data are valid, give an idea of the spread, and a further impression of
this can be obtained by considering the ultimate moment values from
the detail tests according to Table 52:1. For the taxiways c and d which
had also comparatively similar test data, the variation in the ultimate
load values appear to be even greater and the theoretical values are
even higher than the test values. Concerning the load at failure in
the top surface Pf, the theoretical values according to the elasticity
theory lie much higher than the test values, and the tests thus confirm
earlier conclusions that the elasticity theory is not suitable in this case.

The theoretical loads according to the ultimate load theory lie, in the
case of the independent slabs C and D, between the widely spread test
values, while the theoretical loads for the taxiways c and d are consider-
ably higher than the test loads. For calculating purposes, no respect
has been taken to the effect of the joints, since according to the theore-
tical treatment of this case in Section 324, the effect of the joints on
the ultimate load would appear to be very small.

Concerning the independent test slabs, agreement between test and
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theory (with the obvious exception of Pctr according to the elasticity
theory) is thus as good as can be expected with respect to the spread
shown by both the similar tests. For the taxiways, on the other hand,
the theoretical loads all the way through are higher than the test loads.
The reason for this can naturally be referred to some extent to the in-
fluence of the joints, but appear mainly to depend on the extra stresses
of the tension forces due to shrinkage and also decrease in temperature
that can have occurred in the taxiways which were 40 m long. An
influence of t his type can be said to absorb part of th e ultimate moment
values, and with a reasonable reduction of the value (m -f- m' ) from
this viewpoint, good agreement may be reached. These questions will
be treated in a later Section 64. The subgrade constant values for the
taxiways can possibly also have been estimated as having excessively
high values, this appearing probable by comparison with the subgrade
constant value for the adjacent independent slabs. The reason also
in this case can be the above-mentioned effect of s hrinkage and tempera-
ture which produces a certain membrane stress effect in the slab and
thereby decreases the depression.

523.2. Test loading on the edge of the taxiway
As already mentioned, test loadings on the edge of the taxiway c

gave unreliable results and only the test loading d:2 is discussed here.
Since the taxiway edges are thickened and strengthened (see Fig. 42:1)
and no detail test beams of a corresponding type have been made and
tested, it is thus not possible to estimate the load Pf6 for bottom
surface failure.

The required data for edge strengthening has been estimated theore-
tically by proportioning from the corresponding test values for the un-
reinforced slab according to the detail tests. In this connection the
supplementary stiffening of the edge consists of a beam as shown in
Fig. 52:3 which contains a reinforcement strip along the edge. It is
thus possible in this way according to (43:1) (oc = 400 kg/cm2) to obtain
the supplementary moment of the edge beam.

5 17 1 — 0.0 7 0
M = 14 • 3600 — ——- = 3. 0 • 105kgcm

1 13. 5 1 — 0. 0 2 4 &

as well as the total jlexural rigidity of the edge beam

15500
( E I ) b e a m = 2 3 - 1 0 « = 3 6 - 1 0 » kgcm*
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A B C

Fig. 52:3. Section of the edge beam of the taxiways. The supplementary ultimate
moment M is calculated for the beam section AB with only supplementary reinforcement
while the flexural rigidity E /beam *s calculated for the entire edge beam AC with all

the reinforcement included.

where the denominator and the numerator in the fraction consist of the
theoretical values of the moment of in ertia for the complete edge member
and slab respectively, calculated for Stage II and n= 15 (see Fig. 52:3).
For negative deflection, the supplementary moment M' = 0 is considered,
since yield in the top surface is considered to exist because the concrete
cracks and the weak top reinforcement thereby has no significance.

With the use of these values and with the methods otherwise shown
by the theoretical treatment of the strengthened edge in Section 425,
the results of the test loading d:2 have been analyzed according to the
ultimate strength theory. The results are shown in Table 52:4 and
this table also includes the required data for the edge. The values of
the elastic radius of rigidity I have here been calculated according to
the earlier applied principle that the supplementary stiffness of t he edge
beam is distributed over an edge strip with a width I. The table also
includes the values of the centre depression in the edge according to
tests and the elasticity theory (resilient subgrade) compared with each
other, and agreement is relatively good. This confirms that the sub-
grade constant values here used are fairly correct and that the method
of estimating the flexural rigidity of the edge can be used.

The theoretical ultimate loads have been calculated with the con-
stants according to both the subgrade hypotheses. Agreement with
the test values is best for the assumption that the subgrade is resilient
but the theoretical loads in both cases are considerably higher than
the test loads.

It should be pointed out however that there can be a considerable
influence due to shrinkage and temperature also here. These factors
reduce the ultimate moment sum (me + m'e) along the edge, this directly
influencing the ultimate load. See also more concerning this in Section 64.

It should also be necessary in this case to count on very incomplete
plastification in the yield crack in the bottom surface. A rough estima-
tion of the curvature of t he edge beam at the yield point from the theore-
tical values of the ultimate moment and flexural rigidity for the edge
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TABLE 52:4. Series N. Loading on slab edge d 2.
Ultimate loads from tests and the ultimate strength theory (elastic and resilient soil).
Loading area circular with radius c=40 cm, placed with its edge 10 cm inside the edge

of the taxiway. The thickness of the taxiway is nominally 16 cm, data as shown in
Table 52:3.

Edge strengthened as shown in Fig. 52:1. Edge beam data:
extra flexural rigidity -Dbeam =24 • 108 kgcm2

extra ultimate moment M =3,0 tm; M'=0

Taxiway d, loading point d 2

DATA ON TEST SURFACE
Reinforcement Single reinf.
Flexural rigidity in edge zone Dedge

for elastic subgrade
for resilient subgrade

kgcm2

53 • 106

49 • 106

Soil constants
soil modulus C
resilience constant k

kg/cm2

kg/cm3
200

0.70
Elast, radius of rigidity Zedge

for elastic subgrade le
for resilient subgrade I&

cm
81
92

c
Relative load distribution a=-y

for elastic subgrade ae
for resilient subgrade a%

0.62
0.54

ULTIMATE LOAD at failure in top surface Pf
Ultimate load from test tons 34
Ultimate load from ultimate strength theory

for elastic subgrade
for resilient subgrade

tons
46
41

DEPRESSION at ultimate load
From tests cm 1.20
From theory (resil. soil) cm 1.40

beam shown on the previous page, shows by comparison with the curva-
ture measurements during the edge loading test that bottom reinforce-
ment yield point in the edge beam itself has hardly been reached at the
load for failure in the top surface. This should imply that the moments
in the thinner slab further in from the edge are considerably lower
than the yield moment. Under such conditions, strictly speaking,
it should not be possible to apply the ultimate strength method and,
respect being taken to the above-mentioned effect of temperature and
shrinkage, it is almost surprising that the ultimate loads calculated
from the ultimate strength method do not lie even further above the
test loads. It can be definitely stated that the edge strengthening in
this case is unsuitably designed so that its effect cannot be fully utilized.

Problems of a similar type will be treated further in connection with
the analysis of the tests in the following section.



53. The Arlanda Tests 1953 (Series A)

531. General. Review of tests carried out earlier and tests treated here

After the authorities for various reasons had abandoned the suggestion
to situate the planned Atlantic Airport for Stockholm at Upplands Väsby
(see Section 51), it was decided in 1949 to locate the airport at a place
close to Halmsjön 40 km north of Stockholm where Arlanda airport
is now being built. The subgrade conditions at this place were consider-
ably more favourable than in the case of other alternatives earlier
examined, since there was natural gravel subgrade or good possibilities
through the use of grading to produce a subgrade of compressed gravel
for the runways. In general it was therefore possible from the point of
view of load-carrying to select the alternatives of runways with asphalt
pavement or concrete pavement, it was however considered from the
point of view of maintenance and with the introduction into service of
jet-propelled aircraft to be most suitable with concrete runway pave-
ments.

The problem for this airport was thus partly different to the earlier
problem, since the subgrade here largely consisted of well compressed
gravel with a very high value for the subgrade constants (k- or C-value).
From the point of view of load-carrying, it was not essential to have
reinforced concrete pavements but it was considered valuable from
economical aspects to find out whether a reinforced pavement would
be more advantageous than an unreinforced. It was also essential in this
connection to study the subgrade and examine the applicability of the
calculating methods to subgrade conditions of this type.

For this purpose, loading tests were carried out during 1948—1949 on
four test slabs resting on a gravel subbase which was specially prepared
and compressed for the tests. The test programme was made up in
cooperation with the author. Of t he slabs used, one was unreinforced 35
cm thick and the others had bottom reinforcement and were 18 and 14 cm
thick respectively. Testing was carried out by the Swedish State Road
Institute and the tests have been accounted for in a report from the
Road Institute [48] as well as in papers by ÖDEMARK [53]and BERNELL [8].

The tests were however so far unsuccessful as visible failure in the top
surface of the reinforced slabs was not obtained during the first testing
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occasion in the summer of 1948 since the loading apparatus had too
small a capacity (maximum 100 tons). It was not until the following
spring when the loading possibilities had been developed, that failure
with visible cracks was obtained at very much higher loading values. A
closer examination of the strain measurements on the top surface which
were made simultaneously, shows however, that unreasonably high
concrete strain values were obtained, thus:

slab 12: visible failure crack 155 tons, strain 0.30°/00

slab 13: 140 tons, 0.46 °/00

slab 14: 100 tons, 0.44 °/00,

and in the case of all three slabs there were evenly increasing strain
values during the complete loading procedure without any sign of such
sudden strain increases which are usually found when a crack appears
in the top surface. This, as well as the study in other respects of the strain
measurements, shows that the slabs must have been cracked already
before the last loading, and if the strain values at concrete tension
failure obtained by testing the corresponding detail test beams1)
are compared, it is possible to estimate that the crack formation in the
top surface must have occurred in the neighbourhood of the maximum
loading to 100 tons during the summer of 1948 without the failure cracks
being discovered. Attempts to apply the ultimate strength theory to
these tests also show that the theoretical ultimate loads should be in
the neighbourhood of this load.

The test results from the 1948—1949 Arlanda tests would appear
however, for the reasons explained, to be altogether too unreliable to be
analyzed at least from the point of v iew of the ultimate strength method.
BERNELL [8] has analyzed the tests from the viewpoint of the elasticity
theory in agreement with the methods given by the present writer,
and has hereby shown good agreement with the theory, if the soil is
assumed to function as an elastic subgrade.

During the summer of 1953, the paving work on the first of the Arlanda
airport runways, the east-west runway, was commenced. The completely
prepared runway subbase consisted in its eastern part of a cutting in a
gravel ridge, in its central part of an approx. 3 m thick bank of gravel
from the ridge and in its western part of an approx. 1 m thick bank of
gravel from the ridge, very carefully laid out and compressed.

On the basis of &-value determinations directly on the ground
which had earlier been carried out on the runway subbase by the Swedish
State Road Institute, it was possible to come to the conclusion that the

1) Swedish State Testing Institute certificate no 27702
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runway from the point of view of l oad-carrying needed a concrete pave-
ment on its outer parts, while the centre part of the runway had such a
good load-carrying capacity that it could stand up to the assumed
wheel load pressure (45 tons) without the help of any rigid pavement.
But, due to the reasons explained earlier, it was desired to have a concrete
pavement also on this part of the runway.

Since the tests earlier carried out on test pavements, as mentioned
above, could not be considered to be completely sucessful, and since it
was also desirable to study certain other problems from an experimental
point of view, problems that were not sufficiently theoretically investig-
ated at this time, such as the design of joints and free edges, it was con-
sidered suitable to carry out new loading tests on test pavements on the
runway subbase. Tests were thereby planned so that they would be able
to supply direct information for the following design work concerning the
concrete pavement.

A special problem was presented in the design of the pavement on the
centre part of the runway with 3 m thick gravel subbase with, as men-
tioned, such a high load-carrying capacity that the surface could on the
whole accept wheel loading pressures of 45 tons without any rigid surface
layer. The pavement in this case only needs to satisfy demands of an even,
maintenance-free surface, but does not need to have, in itself, load-
carrying capacity and flexural rigidity, and the ideal pavement in this
case would, in point of f act, be a thin but tough membrane with a hard
surface. A concrete pavement nearest corresponding to this ideal
consists of a thin slab with a relatively powerful reinforcement in the
centre, i. e. mid-depth reinforcement. When loading such a slab, fine
tension cracks occur in the concrete at relatively low loading, after which
the slab functions as a reinforced slab with an effective depth similar
to half the total thickness both for the positive and negative moments.
Since there was no practical experience whatsoever of such thin slabs
on good subgrade, it was decided to carry out loading tests on a thin test
slab, laid on the section in question of the runway. The slab was arranged
so that tests could also be carried out on moment-free joints.

In order to obtain reliable data for pavement design on the rather
lower load-carrying outer parts of the runway, test loading was also
carried out on a "normal" test pavement with bottom reinforcement,
this being laid on the one metre bank in the western section of the
runway.

The joint edges must be designed so that shear forces occurring under
loading close to the edge can be transferred. If the joints, as being of the
usual design with tongue and groove, are calculated in accordance with,
for example, the methods suggested by WÄSTLUND-BERGSTRÖM [78], it
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is doubtful if a normal tongue and groove joint has sufficient strength
in the case of the relatively small slab thickness in question here. The
test programme therefore also included loading tests close to joints,
whereby tongue and groove joints as well a s other designs of joint edges
were tested.

In agreement with the viewpoints given above, the test programme
thus included two test pavements consisting each of three sections
separated by joints without dowels or through reinforcement, but with
the capacity to transfer shear forces. The slabs were designed and tested
in accordance with the following test programme:

I. Test area I, 16 cm thick with bottom reinforcement, subgrade of
soil with average load-carrying properties. (1 m thick gravel
subbase).
a) Loading on centre of slab (test 2).
b) Loading exactly over the two joints which were strengthened in

different ways (tests 1 and 3).
II. Test area II, thin slab on very good soil (3 m thick subbase). Slab

thickness 8 cm, mid-depth reinforcement with two types of rein-
forcement mesh.
a) Loading on the slab centre on two of t he sections with different

reinforcement (tests 9 and 10).
b) Loading exactly over a joint (test 8).
c) Loading on the free edges of the outer sections with different

reinforcement (tests 14 and 15). This programme point was not
planned from the beginning, so that the loaded edges were
completely unstrengthened.

III. Special testing of t he joint design, whereby the joint edges on both
the test areas were designed in three different ways, partly with
normal tongue and groove joints, partly with two types of "saw-
tooth" joints (tests 4 — 7 and 11— 13 respectively). The test loading
was carried out with the loading area tangent to the joint.

The design of the test slabs and the location of the loading points
in the various test loading experiments are shown in Fig. 53:1.

532. Test slabs, test devices and test procedure

The dimensions, thickness and reinforcement of the test pavements
are shown in Fig. 53:1. The joints between the three sections of the slab
in each test area were designed to be moment-free without any through
reinforcement; one of t he joints was strengthened in such a way that the
mesh parallel with the joint was twice as intensive on both sides of the
joint over a width which was calculated to cover the yield figure, while
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Thickness ofstab /6cm
Thickness of subbase ca100cm
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Joint reinforcement a
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Fig. 53:1. The test areas for the Arlanda tests 1953 (series A). The figures show the
dimensions of the test pavements and the reinforcement as well as the location of the
loading area for the different test loadings. The tests were carried out in the order shown

by the numbers.
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the other joint was strengthened by a reinforcement strip of deformed
bars Ks 60 on each side of the joint.

Both the test areas were laid on suitable places on the respective parts
on the runway, after the subbase of th e runway was levelled by using the
thinnest possible layer of sand which was rolled. The concrete was cast
directly on the subbase surface and was vibrated with a vibrator bridge.
The reinforcement consisted of w elded reinforcement mesh of c old-drawn
wire with the specified quality corresponding to Ns 60 (0.2-limit = 6000
kg/cm2). A 7-day flexural strength of 35 kg/cm2 was specified for the
concrete.

The strength of the reinforcement was checked by means of tension
tests both on the wire before the reinforcement mesh was welded and
on wires clipped out of the welded fabric sheet. For the 8 mm wire on
the 16 cm slab, the unwelded material showed a 0.2-limit of approx.
7000 kg/cm2 and an ultimate strength of a pprox. 8000 kg/cm2 with very
even values but on the welded material there was very uneven ultimate
strength values between approx. 6000 and 8000 kg/cm2. For the wire
on the 8 cm slab, both from the 5.6 mm mesh and the 7 mm mesh, the
unwelded material showed a 0.2-limit of approx. 6000 kg/cm2 and an
ultimate strength of 7700—7800 kg/cm2 and on the welded material, the
values for the ultimate strength varied between approx. 7000 and 8000
kg/cm2. The 0.2-limit was not determined on the welded wire but the
tensile strain at failure point was very uneven and, in some cases, was
outstandingly low.1) The uneven and less good values from the mesh
wire tests were explained by the manufacturer, saying that the mesh
had been manufactured with a great deal of urgency so that a less suitable
wire had been used and there had possibly been faulty settings on the
welding machines.

The strength of the concrete was checked by means of standard
flexural beams; three for each slab section. The flexural strength gave
an average value of 42 kg/cm2 (maximum deviation approx. 6 kg/cm2).1)

Simultaneously with the test pavements, 40 cm wide detail test
beams were made for use in flexure tests when determining the ultimate
moment and the flexural rigidity. For the test area I one pair of such
beams were made and for test area II two pairs of beams were made
with the same thickness and reinforcement as the test slabs in question,
whereby the reinforcement in each pair of detail tests was taken from
both directions of the same wire fabric sheet which had been used as rein-
forcement in the respective test areas (slab sections).

Loading was exerted on the various testing points with the help of
*) The full results of the mesh tests and the concrete tests are shown in the result

supplement, Section 96.
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Edge of test area

M
'50 ° Dia/Sau9es

•—11 Straingauges,measuring base25cm
M I Curvature gauges

Fig. 53:2. An example of the location of the measuring instruments for the test loadings
shown in Fig. 53:1.

the Swedish Road Institute loading apparatus (see 512). The diameter
of the loading distribution plate was80 cm. Between this and the test slab
surface, a pressure-equalizing wood fibre board was laid. The loading
device permitted a loading with a maximum of 124 tons. On the edge
loading tests 14 and 15, the loading plate was located so that it projected
about 10 cm outside the edge of t he test slab.

The depression of the slab at various points was measured with the
Road Institute measuring device by means of dial gauges fitted in
measuring beams, which were supported at large distance from the
loading point. Measurements were carried out along two directions at
right angles through the loading centre in points at a distance of 50 cm.
The curvature of the centre was also measured by, in common with the
Norrköping tests, measuring its relative depression over a measuring base
of 40 cm. The strain values in the top surface of t he slab were measured
along the measuring radii with strain gauges having a measuring base
of 25 cm (see Fig. 25:9). An example of normal gauge location is shown
in Fig. 53:2.!)

Concerning the special measurements carried out in the investigation
of the joint edge design, see the account of these tests in Section 536.

Testing was carried out in the same order as the numbering of the
test points in Fig. 53:1. The load was applied in steps of generally speaking
5 tons. In the tests on the thin slab, repeated loading and unloading was
generally carried out at 45 tons and at the top load as well as in some of

x) Complete results in the form of diagrams of the centre depression values and curva-
ture values as well as strain values are shown in the result supplement, Section 96. The
location of the strain gauges in the various tests is marked in on the respective diagrams.
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Test area I
Thickness of stab 16 cm

$ection3Section / Section2

Test area IT
Thickness of slab 8cm

Section ¥ i Section6

Fig. 53:3. The crack patterns after the test loading of the test areas I and II. The
position of the loading area for the different tests is marked in and under the number
of the test is shown how the crack lines are marked. The Roman numerals show the

order in which the cracks appeared.

the tests also at other loading steps. In this connection off-loading was
carried out in one step and the renewed loading in steps of generally 10
tons.

During the higher loading steps, the surface of the slab was inspected
thoroughly and any cracks were marked in. The crack patterns for both
the test areas are shown in Fig. 53:3. This figure also shows that the
crack patterns round some of the loading points merge with each other.
This is especially the case with loading close to a joint, and when judging
the results from these tests concerning ultimate loads or stresses in the
slab, respect must be taken to the fact that the test loading was carried
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out on zones of the slab which were already cracked. The main aim of
the test loadings in question, that of studying the effect of the joint
itself, were not however influenced by crack formation.

The result of the depression and strain measurements, as well as the
other test results, are shown and discussed in Sections 534—536.

533. Material constants for the slabs and the soil

533.1. Flexural rigidity and ultimate moment
The detail test beams which had dimensions of 250 X 40 cm, wére

tested at the Swedish State Testing Institute in accordance with a
programme made up by the author. The beams were flexurally tested
for positive moment simply supported in the same way as the detail
test in the V series as shown in Fig. 51:3, thus with one end projecting
over the support, and the flexural deformation and, in the case of the
8 cm beams, also the strain measurements on the tension and depression
sides were measured over a distance between the loading points. After
this first test up to yield point, the uncracked parts of the beam at
the projecting end were utilized for deflection tests in the reversed posi-
tions; in the case of the 16 cm beams failure tests were only carried out
without curvature measurements, while in the case of the 8 cm beams
all the measurements of curvature and strains were carried out as in
the first test. In some cases, contrary to the test programme, the last-
mentioned flexural test was carried out with the beam in the same posi-
tion as during the first test.

The results of the ultimate moment determinations are compiled in
Table 53:1. The values show comparatively great variations, particularly
in the case of the 16 cm slab, which are shown by the separate test
values in the table. This must obviously depend on the earlier mentioned
defects in the reinforcement mesh, so that failure in some cases occurs
far below the yield point of the mesh wire. It should be pointed out
that in the case of the 8 cm slab, there was no principle difference between
the values of positive and negative bending, while the section is fully
symmetrical with mid-depth reforcement, and in the table the positive
and negative ultimate moments have been considered as being identical.

The curvature measurements give the usual relationship diagrams
between the moment and curvature, from which the flexural rigidity of
the test slabs can be estimated. Concerning the thin 8 cm slab it is
obvious that the flexural rigidity at the transition to Stage II decreases
to a great extent, while the reinforcement is mid-depth, and the thickness
of the slab at crack formation decreases from the total 8 cm to the effective
4 cm. Deformation (and also strain) therefore increase rapidly after the
2 2
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TABLE 53:1. Series A. Results of tests on the detail test beams.

The table includes ultimate moment values from all the flexural tests with the average
values marked, as well as the average values of the other results.

Detail test from test area
slab section

1
2

II
53) j 63)

Total thickness h0, nominal cm
Effective thickness h, nominal cm
Reinforcement mesh Ns 60

16
13

0 8 c/c 100

8
4

0 5.6 c/c 100

8
4

0 7 c/c 100

Moment at concrete tension failure mCr kgcm/cm

measured values

average values
Neg. ultimate moment m' kgcm/cm

Pos. ultimate moment niyie kgcm/cm
measured values

average values

ri070
\1070

1070
12701)

f3000
3340

(4090
3500

(430
1374
j 459
(425
450

] [660
{ ) 610
( I610
J [760

6603)

(294
J 362
1294
(233
295

) f 860
1 1 (490)2)
I j (340)2)
J 1(250)2)

8603)

1
Curvature — cm—1

at concrete tension failure
at yield point

Strain at concrete tension failure °/no

1.1 • io-5

30 • 10-5 ~ 130 • 10-5

0.13 —0.20
~130 • 10-5

0.09—0.13

Flexural rigidity Ei from tests kgcm2/cm
at concrete tension failure (Stage I)
at yield point

Flexural rigidity Ei from calculations
stage II, n=15 kgcm2/cm

~100 • 106

12 • 10 «

11 • 106

~13 • 106

~ 0.5 • 106

0.50 • 106

~13 • 106

~0.5 • 106

0.65 • 106

x) Through an error only one test with negative flexure was carried out.
2) Failure due to ripped mesh wire close to the weld crossing.
3) The thin mid-depth reinforced slabs have the same resistence for positive and

negative flexure.

first crack has occurred but the gauge readings are influenced by the
positions of the cracks and the number of cracks as well as by how
rapidly the depth of the crack increases. The test values after crack
formation are therefore unreliable, and judgement of the procedure is
also made more difficult by the fact that, for some of the beams, repeated
loading and off-loading was carried out and that, in the case of many of
the beams, loading was not continued until the definite yield point in
reinforcement had been attained. In Fig. 53:4 the relationship between
the moment and the curvature is as far as possible represented in the
form of an average curve of the test results obtained from the various
detail tests (off-loading is not included here),1) and it can be seen that

x) The various test curves, also from the detail tests on the 16 cm slab, are shown
in the result supplement, Section 96.



339

Mom.
kgcm/cm
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20 W 60 80 lOÖ iPö m•/Où cm
Fig. 53:4. Average curve for the moment-curvature relationship for the 8 cm slab, esti-
mated from the detail tests. The Ei values used in the test analysis are shown beside

the corresponding secants.

the curvature increases almost instantaneously as soon as the first crack
has occurred. Yield does not occur u ntil very large values of curvature
have been attained.

Table 53:1 gives the estimated flexural rigidity values for uncracked
sections and at yield point. The corresponding curvature values have
also been introduced into the table. The test values of the flexural
rigidity have been compared in the table with the theoretically calculated
values of the flexural rigidity in Stage II (n = 15), and showing good
agreement with the test values.

It is however obvious that in the case of test loading on the 8 cm
test pavement, the deformations by no means reached the level which,
according to the detail tests, must correspondto the flexuralrigidity values
at Stage II, and since the test loading of the sl ab is to be considered as a
first loading of the same character as the flexural tests on the detail
beams, a considerably higher Ei-value must be used in the test analysis.
On the other hand, a runway pavement of this type will gradually pass
over into Stage II with a completely developed crack formation and
thereby attain a flexural rigidity which corresponds to the values cal-
culated above. In practical design it would thus appear to be most
correct to base calculations on an Ei-value in accordance with Stage
II as above. These questions are also discussed in connection with the
O-value calculations below as well as the analysis of the test results
in Section 535.
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The strain measurements in the detail tests on the thinner slab show
that the strain increases in a practically unlimited way after tension
failure in the concrete. The strain values at concrete tension failure
have also been introduced into the table.1)

533.2. Soil constants
The soil constants are determined in the same way as for the other

field tests from the centre depression of the test slabs under loading
on the centre of the slab sections.

For the test area I (16 cm) the depression values from test loading
2 were thus utilized and the values of the flexural rigidity of the slab
necessary for the calculation were taken from Table 53:1. The results
of the C-value calculations for Stage I and II are shown in Table
53:2.

For the test area II (8 cm) the depression values from the test loadings
9 (section 11:5) and 10 (section 11:6) were utilized. When calculating
respect must be taken to the fact that the deformation of the slab at
higher loading by no means corresponds to the flexural rigidity values
for Stage II as shown in Table 53:1. The Ei-value for a certain load and
depression has instead been selected so that it corresponds to the secant
modulus at the curvature measured at the corresponding load (see Fig.
53:4). The Ei-vahies estimated in this way and the calculated O-values
are shown in Table 53:2.

If, in the calculation of th e O-value, other ^i-values are selected there
will be a practically unchanged value of C. Even such extreme values
as the theoretically calculated Stage II values, as shown in Table 53:1,
give results which hardly deviate. This is also shown by a calculation
of the depression by using these values of Ei. Thus according to Fig.

TABLE 53:2. Series A. Determination of the soil modulus C from depression values
obtained from the test loadings on the centre of the sections.

Calculations in accordance with the depression diagram in Fig. 22:5, the values of
flexural rigidity being estimated with the help of the detail tests in Table 53:1.

Slab I, test 2 Slab II, tests 9 and 10, average values

P w D C P w D C
ton cm kgcm2/cm kg/cm2 ton cm kgcm2/cm kg/cm2

15 0.068 100 • 106 1500 20 0.088 13 • 10« 2900
90 1.27 12 • 106 700 45 0.25 3.5 • 10« 2700

.
90 0.60 2.0 • 106 2300

*) The strain curves for the various detail test slabs are included in the test supple-
ment, Section 96.
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22:5 and with the O-values according to Table 53:2, if Ei is put as being
equal to 0.5- 106 kgcm2/cm (section 11:9) one gets:

P — 45 tons; I

45- 103- 7.22

"I/2-0. 5 0 -1
[ 2700

06

7. 2 cm; y =5.55
L

IV n =
0.5- 106 0.058 = 0.2 7 cm — according to test 0.25 cm

3

P — 90 tons; I

90- 103 • 7.62

'2 • 0.50-10® c
2300 = 715 om; J = 5-30

=

0.5 106 0. 0 6 1 = 0. 6 4 cm — according to test 0, 6 3 cm

thus particularly good agreement.
The calculation of the O-value is thus, in cases such as this with very

large relative load distribution, almost completely independent of the
correct selection of the flexural rigidity. It is also obvious that the
O-value is here much more independent of the loading than in earlier cal-
culations of the same type where the varying rigidity conditions of the
slab have a greater influence.

Further control of the O-value is obtained by making a comparison
between the depression lines in theory and practice in Fig. 53:10 page
353. Calculations with other i^-values show that also the theoretical
depression lines are practically independent of the value for the flexural
rigidity.

534. The 16 cm test pavement. Test results, treatment and theoretical
analysis

534.1. Test results
In the loading tests on the various loading points of the 16 cm test

area I, the load was increased until failure occurred in the top surface
and then generally some loading steps beyond this point.

The results of the depression measurements have been compiled in
the form of depression lines, of which some examples are shown in
Fig. 53:5.*) Apart from the measurements with the load in the centre
of t he slab (test 2) and over the joint (test 3) one of th e tests with loading

x) Test results of the depression and strain measurements for all the tests are shown
in the result supplement, Section 96, in the form of depression and curvature diagrams
for the loading points as well as strain diagrams.
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Fig. 53:5. Depression lines for some loading steps for part of the tests on slab I. The
result from one of the joint edge tests is also included (test 4), and it is remarkable how

slight an effect the joint appears to have on the form of the depression lines.

beside a joint (test 4) has also been included for comparison, this test
being included in the examination of the joint edge design. The joint
edge tests are otherwise described in Section 536.

From the strain measurements1) on the top surface, load at failure
in the top surface Pt can be determined in the usual way. The ultimate
loads determined in this way are shown in Table 53:3.

Otherwise it is possible as usual to get some idea of t he moments and
stresses in the loading point by studying the curvature of the slab at
this point. The curvature values have been calculated from the deforma-

x) See note 1), page 341.
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TABLE 53:3. Series A, 16 cm test area I. Result of test loadings.
Loads at failure in top as well as at crack formation and yield in bottom, according to

test results from strain measurements (Pf) and curvature measurements {Pbcr, Pbyie)-

Load at failure Load at concrete Load at yield
Test Location of in top failure in bottom in bottom
no. load Pt Pbcr Pflie

tons tons tons

2 On centre of slab 2 95 13 90
1 On joint 1-2, b 60-65 — >Pt
3 On joint 2-3, a 80 — >Pt

tion of the centre point on a measuring base of 40 cm on the basis of
only the deformation of the centre point over this distance, but with
this short measuring base-line, the method should give sufficiently
accurate results.1) By comparing the curvature values for the centre
point as usual with the corresponding measurements on the detail
tests, it is possible to determine the loads for concrete tension failure
Pcbm and reinforcement yield Pf in the bottom surface for loading on
the centre of the slab.

In order to determine in the same way the load Pb when testing
the strengthened joints where there are no corresponding detail tests,
a theoretical estimation of the ultimate moment and flexural rigidity
for these joint edges must be carried out by proportioning in the usual
way from the results of the detail tests corresponding to the unstrengt-
hened slab. In this way (see the corresponding calculations on page
326, oc is assumed to be = 300 kg/cm2) one obtains:

Joint 2—3, strengthening a, mesh 0 80 c/c 50 mm

1 — 0 .09
mnie — 3500-2 — = 6600 kgcm/cmyle 1 — 0 .045 & '

137
Ein = 12 •106 — 20 • 106 kgcm2/cm

1 6600
= ^ = 33 • 10-5 cm-1

Qyie 20 • 106

Joint 1 — 2, edge strengthening b, reinforcement strip 5 0 10 Ks 60
approx. 26 cm wide.

For the entire edge beam with b = 25 cm, the following apply:

1.65 1 — 0.19
M0 = 25• 3500 = 3.2-105 kgcm

°vie 0. 3 8 1 — 0. 0 4 5 &

x) See note ]), page 341.
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5700
^beam = 12- 106 —- = 8.5.10®kgcm»

1 3.2. 105

— 7; 777. = 38-10 5 cm 1
Qyie 8-5-108

If the curvature values estimated in this way are compared with
the curvature graphs for the loading point, it can be seen that yield
failure in the bottom is never reached in the joint loading tests, i. e.
Pt < Pvbie. Edge strengthening is thus in both cases so far unsuitably
designed that it is not fully utilized when failure in the slab occurs due
to crack formation in the top surface. The P^e-values estimated are
shown in Table 53:3.

534.2. Load on the centre of the slab (test 2), theoretical analysis
To judge by the load values in the result Table 53:3 it is clear that

the centrally-loaded slab section at definite crack failure in the top
surface has just reached yield point in the bottom surface. The slab
should therefore on the whole follow the elasticity theory right up to
the ultimate load.

Calculations which are based on the theory for elastic subgrade,
compared with the test results in Table 53:4 also show that there is
good agreement between theory and test results. This also concerns the
load Pt at failure in the top surface. It should however be pointed out
that the ultimate moment values from the detail tests shown in Table
53:1 and on which the ultimate load values in Table 53:4 are based, are
very unreliable and show great spread. The negative ultimate moment
value has been obtained from only one test.

Calculation of the final ultimate load Pt has also been carried out in
accordance with the ultimate strength theory and the table shows that
agreement with the test values is also here very good.

It thus appears as far as can be judged on the basis of the unreliable
ultimate moment values, as if the ultimate load calculation can be
carried out on the basis of either the elasticity theory or the ultimate
strength theory. This obviously depends on the fact that with the
moment distribution for this comparatively extensive relative load
distribution and with the ultimate moment values in question, negative
moment failure is obtained at almost the same load as the load at which
the yield point in the reinforcement under the loading centre is reached.
In the case of large relative distribution the "elastic" moment curve is
otherwise already so evened out that it approximately satisfies the
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TABLE 53:4. Series A, 16 cm test area I. Loading on centre of section, test 2.
Loads at crack formation and yield in bottom and at failure in top from tests as well

as the elasticity theory and the ultimate strength theory.
The size of the slab section 6 X 5 m. Loading area with radius c= 40 cm.
The constant values for the slab and the soil from Table 53:1 and 53:2. The soil is

assumed to behave as an elastic subgrade.

Slab I, section 2. Stage I II

DATA FOR SLABS
Flexural rigidity Ei kgcm2/cm ~100 • 106 12 • 106

Soil modulus C kg/cm2 1500 700
Loading constants

Elast, radius of rigidity I cm 51 32
C

Rel. load distribution a= y 0.78 1.25

Ultimate moments kgcm/cm
with positive flexure m ~ 1100 3500
with negative flexure m' 1300

RESULTS
Ultimate load at bottom failure Pf, tons

from tests 13 90
from elasticity theory ~ 13 82

Ultimate load at top failure Pt tons
from tests 95
from elasticity theory 90
from ultimate strength theory 96

demand of the ultimate strength theory concerning constant moment
in the radial cracks out to the failure ring crack, and the influence of
"incomplete plastification" should thus in such cases be even smaller
than usual.

534.3. Loading on joints (tests 1 and 3), theoretical analysis
For this case of loading it has earlier been shown (see Table 53:3)

that yield point was never reached in the bottom reinforcement before
top surface failure occurred. The loading procedure is thus completely
within the elastic stage.

Table 53:5 shows the results of a test analysis according to the elasti-
city theory. Calculations have been carried out both for resilient and
elastic soil, in the last-mentioned case according to the supposition made
by the author in Section 41 that the relationship between the moment
of centre and edge loading is similar for both the subgrade hypotheses.
The k-value has thereby been calculated from the relationship formula
(23:4). When calculating the flexural rigidity and the lvalue for the
joint b strengthened with reinforcement strip it has been assumed in the
usual way that the flexural rigidity of the edge strengthening can be
distributed over a width I.
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TABLE 53:5. Series A, 16 cm test area I. Test loading on joints.
Theoretical analysis according to the elasticity theory and the ultimate strength theory.
Loading area with radius c=40 cm exactly over joints.
Flexural rigidity of the unstrengthened slab Ein =12 • 10 ® kgcm2/cm and its ultimate

\m =3500 kgcm/cmmoments { , , OAA , 6 '=1300 kgcm/cm
Soil constants C =700 kg/cm2, k= 4,5 kg/cm3.

Slab I, joint strengthening
Test loading no.

a
3

b
1

DATA FOR JOINTS 2-3 1-2
Strengthening along the joint

Flex rigid, of "edge beam" at joint b, width 25 cm,
calc. value EI beam kgcm2

Mesh 0 8 c/c
50 mm over a
width of 1 m

Extra 5 0 10
Ks60over a width

of appr. 25 cm

8.5 • 108

Flex, rigid, of edge zone, width I, Dedge
for resilient soil
for elastic soil

kgcm2/cm
20 • 106

20 • 106
23 • 106

25 • 106

Elast, radius of rigidity I
elastic soil le
resilient soil I£

cm
39
46

42
48

Relative load distribution
c

elastic soil ae— j- 1.04 0.95

c
resilient soil ajfc= -y- 0.87 0.83

Ultimate moment calculated for edge
for entire edge beam b, width 25 cm,
per unit width

kgcm
kgcm/cm 6600

3.2 • 105

13000

RESULTS
Ultimate load at top failure
Curvature in loading centre at ult. load

tons
cm—1

80
22-26 • 10-5

60 à 65
11-13 • 10-5

ANALYSIS ACCORDING TO ELAST. THEORY
m+max at ult. load

1
from tests, from curvature m= — • Ei

0

kgcm/cmm+max at ult. load
1

from tests, from curvature m= — • Ei
0

4400-5200 3500-4200
C

from theory with elastic soil
from theory with resilient soil

5000
6120

4170-4520
4810-5215

Ultimate load P( from theory tons 44 44
Depression values at ultimate load

from tests
from theory (resilient soil)

cm
1.12— 1.23

1.13
0.53 —0.69
0.83—0.90

ANALYSIS ACCORDING TO ULTIMATE
STRENGTH THEORY

Ultimate load from theory
for elastic subgrade
for resilient subgrade

87
75

83
72
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The results of t he calculations according to the table show that there
is fairly good agreement between the experimentally estimated and
theoretically calculated positive moment at the ultimate load, whereby
calculation according to the assumption of elastic subgrade gives the
best agreement with the test values. When judging the results, how-
ever, it should be remembered that the test values have been estimated
according to the expression

1
m — — Ei

Q

and that the flexural rigidity Ei was thereby inserted with the Stage
II-value applying at yield point while in the tests there was never any
question of reaching yield point in the bottom reinforcement.

The theoretical value according to the elasticity theory, formula
(41:9), for the definite ultimate load Pt agrees, on the other hand, very
badly with the test values. This can depend partly on the fact that
with these strengthened edges there is another distribution of the negative
moment than that assumed by the theory which is based on an unstreng-
thened edge. It should also be remembered that the expression (41:9)
for the negative maximum moment is based on the assumption of
resilient subgrade, while the soil functions more nearly as elastic sub-
grade. A comparison between the corresponding moment values in
the case of load on the centre shows that the maximum negative
moment for elastic subgrade is lower than for resilient subgrade, and
an analogy in this respect for the case of edge loading would thus give
higher values for the theoretical ultimate load.

It has been pointed out that the conditions for the ultimate strength
theory in the edge loading tests are by no means satisfied and the test
analysis according to Table 53:5 shows that the positive moment in the
loading point at the ultimate load is low, perhaps 50 % under the yield
moment. If, in spite of this, calculations are carried out according to
the ultimate strength method the result, according to the table, never-
theless shows relatively good agreement with the test value at least
concerning the ultimate load on the joint with a strengthening consisting
of intensified mesh in the edge zone.

If s ome calculations are however carried out according to the ultimate
strength theory (design diagram in Fig. 42:11) on the assumption of
different lower values of t he positive moment than that corresponding
to the ultimate moment, it will be shown that the ultimate load dec-
reases comparatively slightly with decreased positive moment. For
values otherwise applying to the joint a, the following are obtained:
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c
y = 1.04; m' = 1300 kgcm2/cm

P m + m'
m:m = 5 ; — = — = 33 . 2 m' P = 86 tons

2 0.180

m -f- m'
0.167

m -{- m'
0.150

m + m'
0.133

= 29.9 m' 78 tons

= 26.7 m' 70 tons

= 22.5 m' 60 tons

This explains that in Table 53:5 it is possible to get a theoretical ulti-
mate load value which lies only slightly higher than the test value (on
the assumption of elastic subgrade) in spite of the fact that there are
such great deviations between the positive ultimate moment value
used when calculating and assumed to have been completely reached
in positive yield cracks, and the actual positive moment distribution.
Corresponding observations have also been made concerning the Norr-
köping tests.

It thus appears that, at least from an estimating point of view, it
is possible to use the ultimate strength theory when calculating or
designing a joint or edge even if the conditions of the theory are not
satisfied. The conclusion reached earlier, however, remains that the
edge strengthening is faultily designed so that the extra reinforcement
cannot be fully utilized. In the correct design of a joint or edge,
the elasticity theory should be used to help check that the bottom rein-
forcement at the ultimate load attains or (from a calculating point of
view) exceeds the yield point and then locate other possibly necessary
reinforcement in the top surface, whereby the ultimate strength theory
may be used to calculate the nesessary reinforcement.

535. The 8 cm test pavement. Test results, treatment and theoretical
analysis

535.1. Test results
During the loading tests on the 8 cm test area II, the load was in-

creased generally in steps up to 45 tons (corresponding to the specified
maximum wheel load pressure exerted by traffic) after which repeated
loading and off-loading was carried out. The load was then increased
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Fig. 53:6. Depression lines for some loading steps from part of the tests on slab II.

to the maximum load, generally 124 tons, where one or two loading
and off-loading procedures were carried out.

The results of the depression measurements are exemplified in Fig.
53:6 which shows the depression lines for some of the loading steps
with some of the test loadings, as well as in Fig. 53:7 which shows the
centre depression and the curvature diagrams for test loading 10.x)

1) The results of the depression and strain measurements with all the tests are shown
in the test supplement, Section 96.
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Fig. 53:7. Centre depression and curvature diagram for test loading 10 on the centre
of slab section 11:6.

It is obvious that the depression and curvature graphs as shown in
Fig. 53:7 have a much more linear appearance than the corresponding
graphs in any earlier test. This clearly depends on the fact that the
variations of the rigidity of the thin slab under loading influence the
depression and deformation to a very small extent, a fact that has been
already discussed in connection with the determination of the soil
constants. At a relatively low load in the case of most of the tests, a
comparatively weak but obvious break-off point on the depression and
curvature graphs (see Fig. 53:7) was obtained. This would appear to
be caused by the occurrence of the first cracks in the bottom surface
so that the slab goes over from Stage I to Stage II. The flexural rigidity
is thereby changed to a particularly great extent in these slabs which
have mid-depth reinforcement, since the effective thickness has been
decreased from 8 to 4 cm (see Fig. 53:8).

As expected, circular cracks occurred in the top surface at a relatively
low load. In the usual way the crack load could be determined on the
basis of the strain measurements,1) and the crack load determined was
generally rather much lower than the load where the first cracks
could be observed. The crack width increased namely comparatively
slowly for loading above the crack load.

*) See note 1), page 349.
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Fig. 53:8. Stress distribution in Stage I and Stage II (theoretical) in the 8 cm mid-depth
reinforced slab for positive and negative moment. See also Fig. 53:9.

It should be pointed out that the occurrence of cracks in the top
surface on these slabs with mid-depth reinforcement does not imply
that the ultimate load has been reached but only implies that the slab,
also for negative moment, has gone over to Stage II and functions as a
reinforced concrete slab with an effective depth equal to half the total
thickness (Fig. 53:8). The definite ultimate load in the meaning formerly
implied is first reached when the reinforcement stresses in the annular
cracks reach the yield point. In spite of the fact that the loads in these
tests were generally increased up to 124 tons, thus to considerably higher
maximum loads than in the case of the 16 cm slabs, no reinforcement
yield was obtained in the annular cracks for any of the tests, however,
as far as could be judged from the strain measurements. The same
decision is arrived at by the fact that when the slab surface was inspected
after the termination of the test, the cracks had closed so much that
they were practically invisible.

Table 53:6 includes the loads at the first crack in the top and bottom
surfaces for the various test loadings estimated as mentioned above. In
order to clarify the behaviour of the slab even more, the table also includes
deformation phenomena: curvature in the loading point and the measured
maximum strain in the top surface at the highest test load, and from
these values the maximum stresses in the reinforcement by positive
and negative moment have been estimated. The slab is thereby assumed
to have gone over completely to Stage II with completely cracked
tension zone (see Fig. 53:8). In point of fact, the tests by no means
reach this condition, which according to Table 53:1 corresponds to a
curvature of ap prox. 130 • 10~5 cm"1, since the tension zone is, according
to Fig. 53:9, to a large extent active, and the reinforcement stresses are
thus considerably lower than those shown in the table, these values
representing a theoretical upper limit.

It is thus obvious that concerning all the test loadings on the 8 cm
slabs, the yield point in the reinforcement and thereby the ultimate
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Fig. 53:9. Theoretical (A) and actual (B) stress distribution and crack formation for
the 8 cm mid-depth reinforced pavement.

load of the slab was never even nearly reached. The slab functioned
completely within the elastic stage and the following test analysis
will therefore be completely based on the elasticity theory.

TABLE 53:6. Series A, 8 cm test area II. Result of test loadings.
Loads at concrete failure in top and bottom as well as estimated maximum stresses in

the reinforcement at the highest loading.
Stress calculations according to Stage II (completely cracked tension zone) and n=15.

Test
no.

Location
of load

Load at first
crack in
bottom

Pbcr

tons

Load at first
crack in top

ptcr

tons

Curvature anc
stresses (Stage ]
P=124 tons (test

pos. moment

estimated
I, n=15) at
8, P=95 tons)

neg. moment
Test
no.

Location
of load

Load at first
crack in
bottom

Pbcr

tons

Load at first
crack in top

ptcr

tons
1

—cm—1
Q

Or1)
kg/cm2

£t°loo Or2)
kg/cm2

9 Centre of slab 5 22 45 3 7 • 1 0 - 5 2000 0.7 600
10 Centre of slab 6 20 45 31 • 10-5 1500 0.7 550
8 On joint 4 —5, c

(load P=95 tons) 17 25 24 • 10-5 1050 1.2 900
14 On edge, slab 4 — (15) 36 • 10-5 1900 1.8 2500
15 On edge, slab 5 — (10) 46 • 10-5 2300 2.1 2300

11) ar= ~ (h—x)Er

'> °r=ErH r̂x

535.2. Theoretical analysis of the centre loading tests (tests 9 and 10)
As early as in the calculation of the C-values in 533.2, the elasticity

theory has been applied to the depression values of the slab in the case
of centre loading, and the soil modulus C has thereby been calculated
for several different loads so that agreement between theoretical and
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Fig. 53:10. Depression lines from test loadings 9 and 10 on the centre of t he slab sections
11:5 and 11:6, 8 cm mid-depth reinforced slab, from tests and the elasticity theory (elastic
soil). The theoretical curves are calculated in accordance with the diagram in Fig. 22:5
and with the values for the constants for slab and soil shown beside the respective curves.

experimental centre depression has been obtained. In these calculations
those secant values of the flexural rigidity were used, which can
be estimated from the curvature values under the loading centre
for the loads in question, if it is assumed that the relationship curve

1
M — — of t he test slab agrees with that of the detail test beams (Fig. 53:4).

The fact that the theoretical and measured depression lines also show
good agreement is demonstrated by Fig. 53:10. However, practically
the same depression values are obtained in the centre and also the
depression lines are in fairly good agreement for other values of the
flexural rigidity. As shown in 533.2 it is even possible to use
the very low theoretically calculated ^-values in Stage II without the
agreement being very much poorer. On the whole the theoretical deflec-
tion values appear to be practically independent of the value of f lexural
rigidity used for the slab.
23
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Since no actual ultimate loads were reached in these tests, the test
results are analyzed instead in such a way that the moments theoretically
calculated (for elastic subgrade) and experimentally estimated (from
curvature values) are compared for loads of 20, 45 and 90 tons. The
results are shown in Table 53:7 and the table also includes the calculation
data for the slab sections. As a value for flexural rigidity for the higher
loading steps has been used, in the same way as mentioned above,
partly the Ei-values which, according to the detail tests and Table
53:2, corresponds to the curvature of the slab in the loading centre
(columns 2 and 3) and should nearest represent the actual flexural
rigidity of the slab at the load in question; and partly the theoretically
calculated .Si-values for Stage II and n = 15 (column 4—7), which
represent a theoretical but by no means attained final stage for the
slab. The subgrade is assumed to function as elastic subgrade with
the C-values calculated according to Table 53:2.

With this thin slab very large values of the relative load distribution
are obtained, particularly with the theoretical flexural rigidity values
in columns 4—7 in the table. The moment according to the elasticity
theory has been obtained from the diagrams in Fig. 22: 7, where, however,
the negative moment values for the extended load distribution values
in the columns 4—7 can not be obtained (the calculation which form
the basis for the moment curves in Fig. 22: 7 have not been carried out
for larger values of relative load distribution than 3). Concerning the
test values of the moment in the table, the positive moments have been
estimated from the curvature in the loading centre and the negative
moments from comparison between the values of the strain in the top
surface and the strain measurements in the detail beam tests.1) With
respect to the fact that the measuring length for the strain gauges in
both cases was different (25 and 40 cm respectively) and that the mo-
ment distribution and crack formation was not comparable, together
with the fact that the vast spread between the different detail test
beam results (see the moment values in Table 53: 1), this method of
estimating the negative moments in the slab must be considered as
being very unreliable.

The table shows that agreement between these theoretically cal-
culated and experimentally estimated moment values under these
conditions is good.

One fact of particular interest is that the agreement concerning the
positive moments is approximately as good whether the "actual" Ei-
values according to columns 2 and 3 are used or the theoretical values
according to columns 4—7. This obviously applies in the same way

x) See the result supplement, Section 96.
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concerning the moments as earlier shown concerning the depression
values that the result in this respect is almost completely inde-
pendent of the value of the flexural rigidity of the slab. Columns 1 and
4—7 represent a type of "theoretical" loading procedure: after the flexu-
ral strength in the concrete is reached, the slab cracks in the tension
zone and goes over completely to Stage II with h = 4 cm (see Fig.
53: 8). The flexural rigidity thereby diminishes to a great extent and
the moments decrease suddenly, and then with continued loading
increase roughly proportionally to the loading. In point of fact the
procedure goes on instead according to columns 1 and 2 — 4, correspon-
ding to the detail beam testing according to Fig. 53: 4. The crack forma-
tion through the tension zone and the transition to Stage II proceeds
successively (see Fig. 53: 9); the flexural rigidity decreases then com-
paratively slowly and the moment remains constant or increases slowly.
The actual stresses in the reinforcement are, as earlier mentioned,
loiver than the theoretical stresses. Since it is probable that the repeated
loading and off-loading occurring in practice as a result of traffic gra-
dually give the slab a crack formation which corresponds to Stage II,
then it should be quite correct when designing to calculate with the
flexural rigidity and the moment and stresses which theoretically cor-
respond to this stage.

Concerning the negative moments, agreement between the theory
and the tests according to Table 53: 7 is as good as can be expected
with respect to the unreliable test values mentioned above. The extent
to which the negative moments change when the slab goes over com-
pletely to Stage II cannot be verified theoretically at these large values
of load distribution. To judge from the test results and the theoretical
moment curves, it would appear however as if the magnitude of the
negative moment has no significance when designing a slab such as
this where the reinforcement is of the mid-depth type.

The calculations in Table 53: 7 are based on the supposition that the
subgrade functions as an elastic subgrade. Calculations of the moments
according to the hypothesis of resilient subgrade give much poorer
agreement with the test results, particularly with the flexural rigidity
values in column 4 — 7, Stage II.

The test results and the discussion thus mean that when designing
a mid-depth reinforced slab of this type, the flexural rigidity of the
slab and the stresses in the reinforcement should be calculated on the
basis of the assumption that the slab has completely gone over into stage
II. The maximum stress is calculated from the moment under the loading
centre according to the elasticity theory and on the assumption that
the subgrade functions as an elastic subgrade.



357

535.3 Analysis oj the test loadings on joints and free edges
It is not possible to analyse the loading tests on the joint c and on

the free edges according to the same method as used above for the tests
concerning centre loading since the formulae and the diagrams for the
cases of edge loading in section 44 do not apply for the large values of
relative load distribution concerned here. The formulae (41:7) and
(41:8) for the relationship medge: mcentre have not been verified for

c
larger values of y than 1.0 for edge loading at a tangent and 2.0 for

joint loading, and the corresponding relationship curves in Fig. 41:3
show an unmistakable tendency to deviate upwards from the straight
line in the case of increased load distribution.

In order to give some idea of the conditions prevailing with these
large values of relative load distribution, Table 53:8 compares the mo-
ment values estimated from the test results (curvature) in the joint and
edge loading tests with the corresponding theoretical moments when
loading on the interior of a similarly reinforced slab. The flexural rigidity
is thereby estimated by theoretical calculations according to Stage
II and n = 15; as far as the slab strips along the joint with their streng-
thening are concerned there are no detail beam tests made for direct
determination of the flexural rigidity. When estimating the curvature
and moment for the edge loading tests 14 and 15, respect must be taken
to the fact that the slab was not in contact with the subgrade when
loading was commenced, this being clearly shown by the large initial
deformation shown by the depression and curvature diagrams.1) The
curvature values have been corrected as far as possible for this by
exterpolating the corresponding diagram lines to zero loading, and the
curvature thus obtained at a load of zero is taken as the initial value,
but the condition in question naturally contributes to increasing the
unreliability of the result.

As comparison the table also includes the corresponding calculations
for the centre loading tests 9 and 10, which can give an idea of the
accuracy and spread in agreement between the tests and theory.

The results according to the table give values of the relationship
between the positive moments of joint loading or edge loading on
one side and centre loading on the other, which by comparison with
Fig. 41: 3 and Table 41: 1 appear reasonable. When judging the result,
it should be remembered that the load area in the case of edge loading
projected 10 cm over the edge of the slab. This thus corresponds actu-
ally to a rather more concentrated load than that reckoned with, i. e.

1) See the result supplement, Section 96.
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TABLE 53:8. Series A, 8 cm test area II. Comparison between moments in the slab due
to a load of 90 tons on the centre of the slab and on a joint or a free edge.

Loading area with radius c= 40 cm.
Soil modulus C=2300 kg/cm2, elastic subgrade.

Slab All, test no. 9 10 8 14 15

Position of load, 90 tons centre of section joint free edge

DATA FOR SLAB SECTION OR JOINT 5 6 4-5 4 6
Reinforcement mesh
Flexural rigidity
Elast, radius of rigidity I

kgcm2/cm
cm

5.6 c/c 100
0.50 • 10 «

7.6

7 c/c 100
0.65 • 106

8.3

5.6 c/c 50
0.82 • 10«

8.9

5.6 c/
0.50 • 10«

7.6

o
« g

o

c
Rel. load distribution — 5.25 4.82 4.50 5.25 4.82

RESULTS
1

Curvature in load centre —

RESULTS
1

Curvature in load centre — cm—1 26 • 10-5 23 • 10-5 23 • 10-5 29 • 10-5 32 • 10-5

Max. strain in top surface e<max °l/ 00 0.46 0.48 1.3 1.8 2.1

ANALYSIS OF RESULTS
1

Moment in load centre m+max =— Ei
Q

ANALYSIS OF RESULTS
1

Moment in load centre m+max =— Ei
Q

kgcm/cm 130 150 185 145 205

£jmax
Max neg. moment m max — ^ x Ei

Moment from theory with load on

kgcm/cm 35 49 170 135 205

centre of a similar section m kgcm/cm 120 153 195 120 155

^centre : Ventre

Wjoint : ^centre

medge : ^ceiitrê

1.10 0.98

0.95

1.20 1.30

rather larger values of the centre loading moment and rather smaller
values for the moment relationship.

On the basis of th e curves in Fig. 41:3 or Table 41:1, in the case of
large values for load distribution, one can obviously state

^joint ^ ^centre' ^edge ^ ^ ^ ^centre

The results according to Table 53:8 remain within these limits. It is
clear that the case of loading on a joint has not given larger positive
moment in the slab than the load on the interior of the slab and that
the load on a free edge has only given comparatively slight increase
in the positive moment.

Concerning the negative moment, a theoretical analysis of the test
results is even more difficult and the formulae (41:9) cannot be used at
all to give an idea of the moments at these large load distribution values.
The negative moments according to the tests can be estimated from the
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maximum strain values (see the table) in the same way as the positive
moments from the curvature in the centre, according to the expression

_ er £t

Q Ii — x 2 h — x

where er is the strain in the reinforcement and et is the measured strain
in the top surface. If the negative moments estimated according to
the table are compared with the corresponding positive moments, it is
found that they are no higher than approximately the same magnitude,
and the same result is arrived at if the corresponding stresses in the
table 53: 6 are compared. The negative moments thus lack all signi-
ficance for design purposes, since the strength of the slab for positive
and negative moment is the same.

535.4. Discussion of the test results. General viewpoints concerning the
the thin mid-depth reinforced pavement.

The tests and theory have shown that the moment and stresses in the
pavement reinforcement are small compared with theyield point (0.2-limit).
For the wheel load of 45 tons assumed here, the safety factor con-
cerning the attainment of the yield point in the case of centre loading
is 8—9, even if t he theoretical values of f lexural rigidity are used. Accor-
ding to the normal viewpoints concerning designing, a slab such as this
may be considered as being robustly overdimensioned, and a normal
procedure in such cases would be to decrease the dimensions. A decrease
of t he reinforcement or the thickness of t he slab (this latter being hardly
advisable from the point of v iew of c onstruction) also implies, however,
a change in the flexural rigidity and thereby the moment. In order
to clarify the influence of this, the stresses have been calculated for a
number of different designs of pavement with various slab thickness
and reinforcement. On the basis of the dimensions for slab section 5,
the thickness has partly been varied with the reinforcement unchanged,
and the reinforcement has partly been varied with unchanged thickness,
in addition to which the thickness has been varied with a constant
reinforcement percentage (the same as in slab 5). The subgrade modulus
has been assumed as being equal to 2300 kg/cm2 and the flexural rigidity
and stresses have been calculated as being in stage II with n = 15.

Table 53:9 shows that in this example, a decrease of slab thickness
or reinforcement only decreases the stresses even further. Increase of
slab thickness implies considerably increased stresses while modifica-
tions of the reinforcement influence the stresses only to a very small extent.

The reason for this is obviously that, with these pavement having
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TABLE 53:9. Theoretically calculated stresses in the reinforcement due to a load of 45
tons with a load distribution c=40 cm on a thin mid-depth reinforced slab, Stage II,

n— 15. Soil modulus C=2300 kg/cm2.

Thick-
ness
K
cm

Reinforcement
cm2/m

Flexural
rigidity
Ein

kgcm2/cm

Max.
pos.

moment

Reinforce-
ment stress at
45 tons kg/cm2

Reinforcement 15 0 5.8 c/c 100=2.65 2.03 • 106 6.7 • 10-3 P 1680
const. 12 1.25 4.1 1290

10 0.83 2.5 940
8 0.51 1.3 630
6 0.26 0.7 450

Thickness 0 8 c/c 100=5.03

O00Ö
2.1 • 10-3 P 540

const. 8 0 7 =3.85 0.65 1.8 590
0 5.8 =2.65 0.51 1.4 670
0 5 =1.96 0.40 1.0 630
0 4 = 1.26 0.27 0.6 580

Reinforcement 15 4.96 10.2 • 10-3P 1400
percentage 12 3.97 5.8 1260
const. 10 3.31 3.0 950

8 2.65 1.3 630
6 1.99 0.5 450

such a low degree of fl exural rigidity, the subgrade with its good bearing
capacity carries practically the whole load directly under the load
distribution plate and the slab only functions to a very small extent with
distributing the pressure and influencing the deformation. The soil is
thus deformed on the whole in the same way as if the load had rested
directly on the soil, and the slab is forced to follow the soil. The radius
of curvature in the loading centre is largely independent of the slab
thickness, and thus the stresses in the slab are less, the thinner the
slab is.

Stresses due to traffic loading are thus very small no matter what
dimensions the slab has. The slab must however also admit the stresses
due to temperature variations and shrinkage. In this connection it
should be calculated that the reinforcement admits all the normal stress
resulting from similar temperature decrease and shrinkage. In practice
the influence from this often becomes dominating when calculating the
required reinforcement. These questions are treated in more .detail in
Part 6.

With respect to that shown above, i. e. that the stresses caused by
traffic loading are always very low for slabs of this type, it is obvious
that the cases of lo ading with a load on a joint or a free edge do not need
to cause any trouble. The rather higher traffic loading stresses which
result in the last-mentioned case of lo ading are still relatively very small,
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and besides the stresses due to temperature and shrinkage on edges and
joints often fade out. It should thus not be necessary to strengthen
the edges or joints in any way for this type of slab.

Further viewpoints on the thin mid-depth reinforced slab and its
design are expressed in Part 7.

536. Examination of joint design

536.1. Test arrangement and measuring devices
Although the closer consideration of joints and joint effects lies outside

the framework for this paper it can be of certain interest to supply a
short description of the joint tests which were carried out in connection
with the Arlanda test programme.

The intention with this part of the test programme was to study
types of joint which function more effectively than the usual tongue
and groove joint, since this can be assumed to have insufficient strength
in the case of these thin slabs. In the case of tongue and groove joints,
joint failure occurs roughly as shown in Fig. 53:11 A with a stamp-out
failure under the groove, whereby hardly half the section of the thick-
ness is operative. By designing the joints in such a way as to connect
together the joint edges in a suitable way along their entire height, it
should be possible to get stamp-out failure to go through the complete
thickness as shown in Fig. 53:11 B.

In accordance with this programme, the joints between the sections
in the test areas I and II were designed in such a way that half the length
of e ach joint consisted of a normal tongue and groove joint while the other
half was designed as "saw-tooth joint" of two different types in accordance
with the last-mentioned principle. The design and descriptions of the
various types of joint are shown by Fig. 53:12. Fig. 53:1 shows where
the different joint types were located. On both slabs, joints of all three

Shearcrack

Fig. 53:11. Stamping-out failure for different types of joint. Fig. A shows the failure on
a normal tongue and groove joint while Fig. B shows the failure on a joint where the

slabs are joined over the entire height.
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TYPE Aa

TYPECandF

dowe/s 0/0 c/ciQQan
1-80cm

Fig. 53:12. The three types of joint edge tested. The principal design was similar for
16 cm and 8 cm test slabs. The types A and D as well as B and E represent "sawtooth"
joints where the edges are held together over their entire height. The tongue and groove
joint shown at C and F was fitted with very sparsely distributed and weak dowels, which
were only intended to prevent the slab sections from sliding apart but did not have any

types were incorporated, suitably dimensioned for the slab thickness
in question.

During testing the load distribution area was located so that it was
tangent to the joint, whereby the largest possible shear force was
obtained in the joint. The placing of t he load is otherwise shown in the
result Table 53:10. During loading the horizontal and vertical displace-
ments between the joint edges were measured by means of dial gauges
and strain gauges as shown in Fig. 53:131)

Fig. 53:13. Measuring devices and the location of the loading area for the joint tests.

x) Apart from this the joint tests were used to carry out the same measurements of
deformations and strains as in the case of the other loading tests. The depression, curva-
ture and strain diagrams are shown in the result supplement, Section 96.

significance for the transfer of shearing forces or moment.

° Diai gauge
=° Strain gauge
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TABLE 53:10. Test series A:III. Testing the design of the joint edge.

Test
Slab

thick-
ness
cm

Joint
type

Location of Max
loading

Horizontal
joint displ.

cm

Vertical
joint displ.

cm
Slab

thick-
ness
cm

Joint
type tons 45

tons
Max.
load

45
tons

Max.
load

, lllllllllllll I
4 16 B ! ]

95 0.008 0 0 0.06
r 1

i iiiiiiiii1 1 i
5 A 95 0.017 0.023 - —

i I

i iiiiiiiiiiiiii t i
6 C r> i 100 0.025 0.043 0 0 .06

i 1

i lllllllllllll .
7 C

i j
100 0.02 7 0.03 6 0 0.07

i i

i minium i
11 8 F ! 124 0.018 0 - —

—
i

—JCAT?
! Illlllllllllll

i
—JCAT?

12 F : > 124 0.012 0 .022 - —

1

i 1 lllllllllll! 1
13 F > 124 0.017 0.024 0 .02 0.08

1 1

No shear failure in any of tests

536.2 The test results
No shear failure in the joints was obtained by any of the test loadings.
On the test area I all the types of joint were tested with maximum

loads of 95—100 tons. On the test area II only the tongue and groove
joints were tested with maximum loads of 124 tons; since these did not
give rise to failure, it was considered unnecessary to test the other types
of joint which were less suitable from other viewpoints. Instead one of the
tongue and groove joints was tested on both sides of the joint whereby
in test 12 an attempt was made to induce a failure in the upper "tongue"
of the groove. The load was therefore located a small distance from the
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joint so that eventual shear crack would not be prevented by the
loading from the load distribution plate.

Table 53:10 shows the result from the various test loadings, whereby
the position of the load as well as the horizontal and vertical load displa-
cement for 45 tons and the maximum load are shown. It can also be
pointed out that cracks occurred transversely over the joint tongues
in the top surface on the joint types A, B, D and F (saw-tooth joints),
this clearly depending on the fact that the joint edges had become
too much bonded together.

The test showed that all the types of joint gave more than sufficient
strength concerning shear failure and that the joint deformations in all
cases were very insignificant. Since the sawtooth joints are difficult
to cast and design and since, at least in the models here used, do not
allow dilatation, there does not appear to be any reason to cease using
the usual tongue and groove joints. This type of joint appears to have
sufficient shear strength even in the case of very thin slabs. With such
slabs, which are only used on soil which has a high load-bearing capacity,
such a large part of the load is carried directly by the subgrade, that
the shear force transmission over the joint is insignificant.



6. Influence of Temperature and Shrinkage

61. General Review. Calculation of Stresses

611. Various reasons causing stresses in concrete pavements

In the previous presentation in this paper, the influence on reinforced
concrete pavements of only the wheel load stresses has been studied.

There are, however, also other causes of stress in the pavement.
Among these may be mentioned:

a) Temperature variation in the pavement.
b) Shrinkage and swelling in the concrete as the result of processes

associated with the hardening procedure or under the influence of a
varying degree of moisture.

c) Unevenness in the subbase and settling in the soil.

The factors mentioned under point c) above give in many cases
the largest stresses in the pavement, stresses of a type that can
result in serious damage. Reference can here be made to the cases
in tests earlier referred to, where there have been zones with poor contact,
a so-called "miss", under the pavement. It is, however, impossible to
take any respect to such conditions when working out calculations;
for the calculations it is necessary to assume an even and homogeneous
subbase. As far as resisting the influence of unevenness in the subgrade
is concerned, however, the reinforced slabs, as a rule, would appear to be
much more advantageous than the considerably thicker and more rigid
plain concrete slabs since, due to the lower degree of flexural rigidity,
the reinforced slab is much more able to follow any existing unevenness
in the soil without such large stresses resulting. On the other hand it
can naturally be pointed out that a more rigid slab has better properties
concerning the bridging over of very localized soil unevenness.

The other factors resulting in stresses in the slab mentioned above,
namely temperature variations as well as shrinkage and swelling, are
much easier to get at from a calculating point of view and they can be
treated in a similar way. The cause of s tresses occurring in the concrete
is that the deformations produced by the factors mentioned are prevented
by the fact that the slab is more or less locked for different reasons.
Increases in temperature and swelling thereby result in compressive
stresses, temperature decreases and shrinkage result in tensile stresses.
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612. Stresses in pavements with joints

In normal cases attempts are made to limit the temperature and
shrinkage stresses by dividing up the pavement at suitable distances
through joints, which allow a certain amount of movement between
adjacent slab edges. When calculating the stresses, each particular part
of the pavement between such joints can be considered to be a unit,
the movements of which are determined by its own weight and by the
friction against the soil.

When studying these conditions it is simplest to divide up the influence
of temperature and shrinkage into two parts:

1. Uniform temjjerature variations (average temperature variation),
including shrinkage or swelling. Due to the fact that movement is
partially prevented by the friction of the pavement against the soil,
the result is a constant strain over the complete cross section, corres-
ponding to a normal force in the pavement. Dangerous stresses from a
designing point of view gives thereby only the tensile force Nt due to
temperature decrease and shrinkage.

2. Temjjerature variations (or shrinkage respectively) through the
slab, caused by rapid heating up or cooling off of the top surface, result
in temperature differences between the top and bottom of the slab. An
influence of this type tends to produce warping in the slab, this being
completely or partially prevented by the weight of the slab itself and
the contact with the soil, the result being a corresponding flexural
moment mt. In principle, mt can be positive or negative (a positive
warping moment however caused by a heated top surface cannot reason-
ably occur simultaneously with a tensile force Nt of u niform temperature
decrease), but in practice the positive mt has the greatest significance.
Rapid heating due to sunshine on the top surface can result in consider-
able differences in temperature between the top and bottom surfaces,
while a corresponding cooling of the top surface always proceeds less
rapidly and is not so intensive.

The resulting influences of temperature and shrinkage, the tensile
force Nt and the warping moment mt can be estimated theoretically.
Calculation of the tensile force is based on the frictional effect between
the pavement and the soil, and estimation of the warping moment
is based on calculations and experimental determinations of the tem-
perature distribution throughout the slab. An excellent presentation
of the theories and the methods of calculation as well as a review of
literature and research within this field has been supplied by BERGSTRÖM
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[6], and the calculating methods, adopted for practical application, are
summarized in the Swedish Cement and Concrete Research Institute
(CBI) design specifications for concrete pavements [78].

In accordance with the principles stated and the papers mentioned,
the tensile force Nt, caused by the friction against the soil due to the
contraction of the slab can be written

where
f s = the coefficient of f riction between the pavement and the soil
L, h0 = the length of the pavement between joints allowing contraction,

and its thickness respectively
x = a distance nearest the centre of the pavement, where the move-

ment due to temperature decrease is so small that friction is
not fully achieved, sliding tests having shown that this requires
movements exceeding approx. 1.5 mm.

With the normal assumption concerning temperature decrease (accord-
ing to [78]) and with a reasonable addition for movement due to shrin-
kage, then the values of x are obtained between approx. 4 — 5 m, i. e.

x
the term — in the equation (61:1) can generally be neglected compared

O
L

with if the length of the sections in question are fairly large, as

normally used in reinforced concrete pavements. It is then possible
(as always on the safe side) to write

N t = 1.2 h 0 f s L (61:2)

N t is obtained in t/m if h and L areexpressed in m.
The coefficient of friction f s can be estimated from sliding tests with

slabs or from the measurements of the movements and forces in the
free end of pavements actually constructed. The CBI design specifica-
tions based on earlier American tests [41], give the values of fs as
2 — 3, depending on the thickness of the slab. Later American experi-
ence and tests [3] show that these values are fairly high and that a
value fs= 1.5 is always on the safe side, and the latest recommended
practice [1, 3] suggest a value fs = 1.5 for fully developed friction in
normal cases (sand or gravel subbase).
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The stresses due to the warping moment mt for a plain concrete slab
can be written as

E
° m t = x _ v « A T m (61:3 a)

where ATm is the difference between the average temperature in the
slab and the temperature in the surface in question. According to
[6], in the case of slab thicknesses between approx. 10 and 30 cm, it
is possible to reckon with a temperature difference ATm in the bottom
surface of approx. 4° C when heating up the top, and 1.5—2° C in the
top surface when cooling the top. With a reasonable value of the slab
elasticity modulus E and a temperature coefficient oc = 10-5 this
formula (61:3 a) will thus give as the most dangerous tensile stresses
from warping for a plain concrete slab:

obmt = approx. 14 kg/cm2 in the bottom
(61:3 b)

olmt = approx. 7 kg/cm2 in the top

these being largely independent of the slab thickness. The second top
surface value may also apply to a single-reinforced slab.

In earlier discussion of the concrete pavement problem, the elasticity
theory has, as mentioned (see 21), always been the basis, and the calculating
methods have been primarily aimed at plain concrete pavements. The
method for calculating the temperature influence has always been to
estimate, as above, the supplementary stresses of t emperature and shrink-
age, which can be superimposed on the wheel load stresses when designing
a pavement, whereby the most dangerous combination of stresses may
not be allowed to reach failure (flexural concrete strength).

In the case of reinforced pavements and particularly when applying
the ultimate strength theory, it is essential to carry out a more accurate
study of how the stresses of wheel load and of te mperature and shrinkage
are combined in practice. It is obvious, at least in the application of
the ultimate strength theory, that these stresses cannot be directly
superimposed. These conditions of special interest for this investigation
are treated in Sections 62 and 63.

613. Jointless, so-called continuous reinforced pavements

Conditions are completely different, however, in the type of pavement
which is entirely without movable transverse joints, or where these joints
are some considerable distance from each other. Pavements of this
type are usually called continuous (continuously reinforced) pavements.
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Characteristic for this type of pavement is the fact that the slab, due
to its great length between joints, can be considered as being completely
locked concerning gliding movement due to uniform temperature varia-
tion and shrinkage. The slab has thus absolutely no length variation
over at least some distance between the joints. The result of t his is that
even with moderate temperature decrease together with shrinkage,
there will be tension cracks right through the pavement, and the cracked
parts must be held together by reinforcement, which must then absorb
all the stresses due to temperature and shrinkage. In order to prevent
the cracks first occurring from widening, the reinforcement must be
designed so that the yield point is not exceeded. Instead, in such a
case, with further temperature decrease and shrinkage, even more and
closely spaced cracks will occur, and by the use of well-distributed rein-
forcement with good bonding properties (deformed bar or welded mesh
of tightly spaced type) then the crack formation becomes so closely
spaced and the cracks themselves become so fine that they are completely
without significance.

Due to the closely-spaced crack formation thus caused, the flexural
rigidity of the slab for moment in both directions is so small that the
warping effect due to uniform temperature distribution can be neglected.
Respect need thus only be taken to uniform temperature decrease.

In order to determine the required reinforcement in a continuous
pavement with respect to the influence of temperature and shrinkage,
the condition above is used as a basis, i. e. the fact that the reinforce-
ment in the cracks may not exceed the yield point (0.2-limit). If a
section of the slab between two cracks as shown in Fig. 61:1 is considered
from this point of view, then the reinforcement should be designed so
that the tensile stress ocJ in the reinforcement in the crack is lower
than the yield point value, when the concrete in the central zone between
the cracks just reaches the tensile strength ot. Further falls in tempera-
ture then give a new crack instead of in creasing the reinforcement stress
in the old cracks (whereby the stress there instead decreases).

The total maximum tensile force Nt can thus be written

Nt = oc; Ar = ot Ac + o° Ar (61:4 a)

or with

Ar

1
oc; = — ot + o°r (61:4 b)

/<
2 4
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ÎK -max

•er

Fig. 61:1. Assumed distribution of bond stress rj between the concrete and the rein-
forcement along the distance between two cracks in a continuous reinforced pavement
as well as the corresponding stresses ac in the concrete and or in the reinforcement. Bond
is assumed to be completely transferred over a stretch x^ nearest the cracks. The diago-
nally shaded surface over the ac diagram corresponds to the expression in brackets in the
f ina l formulae (61:11) and (61:12) for the crack width ô and the crack di s tance L.

where o° is th e stress in the reinforcement in the central zone between
the cracks. If it is further assumed that the bond stresses between
the steel and the concrete as shown in Fig. 61:1 are transferred on to a
stretch xb nea rest the cracks, which is less than half the distance between
the cracks, then midway between the cracks there is a zone wh ere no
slip occurs between the steel and the concrete; this assumption will be
discussed later. The resulting strain due to stress, temperature increase
T (the coefficient of length extension a is assumed to be the same for
concrete and steel) as well as shrinkage esh of the concrete itself will
then be similar for concrete and steel (see Fig. 61:2):

It °°rT + £sh — ^ = Oi T — —

or

°r = Er (£<ult — esh) (61:5)

where fjl!t is the ultimate strain of t he concrete at the tensile strength
ot. If (61:4) and (61:5) are combined, the result is
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Fig. 61:2. Schematic presentation of the deformation on a unit length midway between
the cracks in the pavement shown in Fig. 61:1. The original condition is represented
by I, while II shows the condition if t he steel and the concrete are permitted to be freely
deformed under the influence of temperature decrease T and shrinkage esft in the concrete.
Ill corresponds to the actual condition in the co-operating section, whereby it is assumed

that there is no internal slip between the concrete and the reinforcement.

or

1
= — ot + Er (£tult — esh) (61:6 a)

n \ — e s h E r (61:6 b)

whereby as usual

,,uit
E. ~ 71 E.

Er
with suitably selected value of n — (comparatively high, since

C

the concrete is assumed to have reached the tensile strength stage).
The required minimum reinforcement to absorb the effect of tempera-

ture and shrinkage can thus be calculated according to (61:6), if ocf

is written as oyie equal to the yield point of the steel:

Ht——x (61:7 a)
Jyie Er (£" — esh)

The strain values in the denominator are difficult to state but it should
in any case be certain that esh > £^lt;. Always on the safe side, these values
may be assumed to be similar and the reinforcement can be calculated
from

/'min = — («1:7 b)
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The corresponding value of the tensile force Nt due to temperature
and shrinkage, also with another reinforcement percentage > //min, can be
written with the same simplification as

Nt v h0 ot per unit width (61:8)

It should be pointed out that these expressions, even the "more exact"
according to (61:6), are completely independent of the temperature T\
it is only assumed that the influence of temperature and shrinkage is
so great that the tensile strength in the concrete has been reached.
The expression thus also applies for only shrinkage.

In cases where the length of the runway between the movable trans-
verse joints is so great that the tensile force Nt, calculated according
to (61:2), is greater than the value according to (61:8), then the pave-
ment must be considered as being continuous and calculations must be
carried out in accordance with the methods quoted. This thus happens
if the distance between the joints

10 o.t , . , ,L > ——— metres (ot in kg/cm2

^•2 Is

If it is assumed that fs — 1. 5 and ot — 30 kg/cm2, then a "limiting
length" L k 170 m is arrived at. With a distance between the joints
exceeding or in the neighbourhood of th is value, then movable transverse
joints are only detrimental and result in very large joint movements.
Considerably shorter distances between joints should thus be selected
or a completely joint-free continuous pavement should be designed.

The expression for jumin according to (61:6 b) was quoted as early
as 1933 by VETTER [69], who has also shown how to estimate the distance
between the cracks, whereby he assumed that the bond has a constant
distribution, but he does not appear to have mastered the occurrence
of cracks of finite width and the factors influencing this width of the
cracks.1) The author will discuss these problems below and also make
more general assumptions concerning the distribution of the bond
stress.

If the alteration in length of the reinforcement and the concrete
A L is studied over the complete distance L between two cracks in Fig.
61:1, in the case of a completely arbitrary stress distribution it is possible
to write

x) Vetter's expression has been quoted and developed by Zuk [79], who has also stated
some expressions for the crack width.
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^ ^steel — ® — (X T L 2 f -J Er

A L„ ô — * T L + e s h L 2 f -?LJ K

dx

dx

(61:9)

where the relationship between the stresses in the reinforcement and
the concrete or and oc respectively in an arbitrary section is, analogous
with (61:4)

1or + — °c — °7 — constantf.1 (61:10)

If the equations (61:9) are subtracted the result is

^ — esh L 2 °r °c
E~ ~ E , dx

or, respect being taken to the assumption that the bond stress is trans-
ferred on a certain distance xb nearest the crack, while the stresses on
the centre part are constant, o°r and at respec tively

xb

à — L ( esh + E, E, 2 Xu E~ E + 2/( En
dx

The first bracket is similar to 0 according to (61:5). If o® and or are
eliminated through the equations (61:4) and (61:10), the result will be
after simplification

Xb

2 / 1
(5 = E„ ix n i I otxh J oc dx j (61:11;

If this expression is inserted in the last of the equations (61:9), the
result is

xb

L =
ju Er I (x T + es

°txb — I °c d x ] (61:12 a)

Ec

which, in the same way as (61:7) can, with sufficient accuracy, be written
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Fig. 61:3. Various assumptions concerning the distribution of bond stress between the
reinforcement and the concrete in a tensile test. Thecurves show schematically the results of:

A — GRANHOLM [23] and BERNANDER [7] on the basis of theoretical
calculations according to the elasticity theory.

B — BERNANDER [7] from tests.
C — KUUSKOSKI [42] from tests. Similar test curves have also been obtained

by PARLAND [55].

/i Er oc T

xb

° t x b — / ° C dx (61:12 b)

xb and oc in the equations (61:11) and (61:12) can be calculated if the
distribution of the bond stress rb is known since the following applies
generally (see fig. 61:1)

oc Ac = V S *b dx (61:13)

or over the complete bond stretch xb

xb
°t Ac = V S *b dx (61:14)

where p is the total circumference of the reinforcement area. The expres-
sion with the integral in brackets in (61:11) and (61:12) means in point
of fact the area outside the stress curve oc in fig. 61:1 and can thus
easily be calculated, if the stress distribution is known.

Knowledge concerning maximum values of the bond stress and
its distribution is incomplete. Theoretical calculations based on the
elasticity theory and carried out by GRANHOLM [23] or BERNANDER [7]
show that the bond stress decreases very steeply from the crack and
inwards (Fig. 61:3). In actual practice the conditions are considerably
more irregular. In the case of deformed bar the result is, as shown by
experiments with tensile tests on reinforcement embedded in a concrete
unit carried out for example by KUUSKOSKI [42], BERNANDER [7] and
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PARLAND [55], plastic deformation or crushing in the contact surfaces
between steel and concrete, and considerably more uniform distribution
curves occur (Fig. 61:3), while in the case of sm ooth bars bonding ceases
altogether and will be substituted by pure friction in the parts nearest
the crack. Reinforcement mesh (of smooth wire) gives a mainly
discontinuous bond anchorage in the cross wire welding points. The
tests referred to here are, however, aimed at the conditions in the tension
zone for beams under flexure, and the test units have generally much
shorter length and considerably higher reinforcement percentage than
what will correspond to the conditions in continuous concrete pavements.
In order to clarify the conditions in this case even more, it would
appear to be necessary to have tests carried out specially prepared for
this purpose.

•For the aim in question, namely to give a general idea of t he distance
between the cracks and the crack width as well as the factors influencing
these, it would appear to be sufficient to examine some simple cases of
assumed bond stress distribution. Here cases are studied with constant
and triangular stress distribution over the bond stretch xb as shown
in Fig. 61:4; the actual bond stress in the case of deformed bar
would appear to have a distribution lying somewhere between both
these extreme cases.

For these cases, equations (61:14) and (61:12) give the following ex-
pressions for deformed bar (or smooth bar):

with uniform distribution as shown in Fig. 61:4 A

O, 0
max

T b P r£iax 4 nmax

L u Er x T Xb
(61:15 a)

with triangular distribution as shown in Fig. 61:4 B

o t A 0_'
^ tri ri Y m» Y r%T™ax rp T™x 2flmax

T b P
max

L 3 // Er x T X"

2 ot
(61:15 b)
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•max

Fig. 61:4. Stress in the concrete between two cracks in a continuous reinforced pave-
ment with several simple cases of assumed distribution of bond stress between the
concrete and the reinforcement. Cases A and B represent extreme cases of distribution
with smooth or deformed bar, case C shows the distribution with welded mesh reinforce-
ment (smooth wire) if i t can be assumed that all bond anchorage is transferred through the
cross wire welding points (in the case of the figure three cross wires). The diagonally

shaded areas represent the brackets in the equations (61:11) and (61:12).

where 0 is the diameter of the reinforcing bars. It can be generally
shown that other conceivable cases of stress distribution give similar
expressions to those above with the numerical coefficients between the
values in (61:15 a) and (61:15 b). In the expression for <5, it is also possible to

1
neglect n compared with — and thus the expression for crack width can

Ii
generally be written

°t A r 1 0
L 3 ) E r r r x p V * = ( 1 - 0 ^ L 3 ) ^4 ^ E r ( 6 1 : 1 5 c >

Where the reinforcement consists of welded m esh, made up of s mooth,
cold-drawn wire it can be assumed that the bond, at least in the crack
condition, is transferred mainly through the welded cross wires nearest
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the crack. The bond stress distribution between concrete and rein-
forcement will then be step-formed as shown in Fig. 61:4 C and if it is
assumed that the bond stress is transferred through m cross wires with
a spacing d and that the cracks occur in the spacing centre, the result is:

xb = [ m — —\ d

L =

ô =

fi Er (x T m d

E . \ ~ + n ] m d

(61:16 a)

In normal cases, the bond stress would appear to be transferred through
2 — 3 cross wires. With the simplification used earlier it is thus possible
to write an expression for the crack width with mesh reinforcement as

<3 » (2 -r 3)
Er

(61:16 b)

It should be pointed out that the expressions for the crack width
are completely independent of the temperature difference T. This
applies naturally only concerning the maximum crack width just before
the occurrence of a new crack.

The formulae above are applied to a normal case of c ontinuous pave-
ment occurring in practice. The following values are adopted:

ot — 30 kg/cm2 (note: pure tension)

°ilie — 6000 kg/cm2 (mesh Ns 60 or deformed bar Ks 60)
T = 50 °C, a = 10~5

which appear to be fairly representative values for a normal pavement.
The required reinforcement percentage fi will then be, according to

(61:7)

30
> 6000 = °'5 0//°

It is particularly interesting to study the bond stretch xb relative to the
distance L between the cracks. The formulae (61:15) and (61:16) give
generally, with a reinforcement percentage /x = 0.5%
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with uniform redistribution

with triangular redistribution

xb = 0.18 L
xh = 0. 2 7 L

with mesh with redistribution on
two cross wires L = 2 • 5.7 d\ xh — 0.13 L
three cross wires L = 3 • 5.7 d; x b = 0.15 L

It is obvious from these calculations that, completely independent of
the bond distribution and the maximum bond stress, the bond between
the reinforcement and the concrete in normal cases always transfers on
a stretch considerably shorter than half the distance between the cracks.
The assumption made when deriving the formula (61:7) for the calcula-
tion of the required reinforcement percentage, namely that the bond
stress is equal to zero on some stretch midway between the cracks, must
thus be correct. It is also clear that a new crack between two earlier
cracks can occur anywhere on this relatively long stretch where rb — 0
(see Fig. 61:1). Generally speaking the distance between cracks obtained
should be shorter than that expected from the formulae (61:15) and
(61:16); these formulae represent the largest possible distance between
cracks (and also crack width).

With some different values of r™ax for the example of a slab with
a thickness h0 — 10 cm and reinforcement 0 8 c/c 100 (fi = 0.5 %)
the following crack data are obtained

rb = 50 kg/cm2 L = 135—180 cm ô = 0.7 —0.9 mm

xb = 100 kg/cm2 L ----- 68— 90 cm ô = 0.35 —0.45 mm

xb = 150 kg/cm2 L = 45— 60 cm ô = 0.23—0.30 mm

and with reinforcement wire fabric with a mesh width between the
transverse wires of 10 cm and longitudinal wires of 0 8 c/c 100 (fx — 0.5 %)

It is obvious that the reinforcement must have a good bonding pro-
perty in order to obtain a sufficiently small crack width (maximum
0.3 —0.4 mm would appear to be acceptable). With concrete of t he good
quality used for pavements, it should be possible to count on suffi-
ciently high values for the bond (r™ax = 150—200 kg/cm2) to obtain
satisfactory crack formation if the reinforcement consists of deformed
bar. Smooth bar, on the other hand, cannot be used for continuous
pavements. Smooth wire mesh would not appear to give acceptable crack
width either; in such cases mesh made of deformed wire may be preferred.

In the discussion above, respect has only been taken to the behaviour

L = 120—150 cm ô = 0.6—0.9 mm
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of the pavement with prevented contraction due to lowered temperature
and shrinkage. With considerable temperature increase, large com-
pressive forces are obtained in the pavement and the risk for blow-up
can occur. According to both theoretical examinations of ZUK [79] and
the experiences of American test pavements, this risk would appear
to be practically non-existent. These examinations carried out by ZUK
also showed neither blow-up phenomena nor other unfavourable move-
ments either in horizontal or vertical curves in a continuous pavement.

Up till now only the influences of temperature and shrinkage have
been considered and no respect has been taken to the function of the
pavement under traffic wheel load. When judging this, it must be
remembered that the pavement is so cracked through, at least trans-
versally, that its possible capacity to absorb positive or negative mo-
ment depends on whether the reinforcement is designed so that it also
functions as structural reinforcement taking flexure. From this view-
point it would appear to be most correct to have the reinforcement in
the neighbourhood of the centre plane of the concrete so that it can
function as tensile reinforcement for both positive and negative moment
according to the principles applied to the thin slabs belonging to the
Arlanda tests (Section 535). This requires however very good and even
subgrade or subbase to be able to design the slabs so thinly that the
pavement will be economical in practice. In the case of soil with a
lower load-carrying capacity, then the effective slab thickness may
be increased by displacing the reinforcement rather downwards (larger
effective depth for positive moment) or by using double reinforcement.
The stress in the continuous longitudinal reinforcement due to wheel
load (as well as the required transverse reinforcement) can be calcu-
lated in the usual way on the basis of the elasticity theory. It may also
be possible to make the main part of the wheel load stress to be taken
up by bottom reinforcement transversely across the runway but the
function of the slab in this case is difficult to analyze theoretically.1)

1) According to an analysis by ZUK [79] the runway which is cracked through trans-
versely is considered to be flexurally rigid in transverse direction (with the uncracked
section according to Stage I), while in longitudinal direction the transverse cracks between
the strips only transmit shear forces. In order to solve this problem, Zuk has been forced
to introduce new and unknown ^-values for the force transmission between the strips.
The problem in this form would appear to be treated in a more complete way according
to the methods quoted by GRANHOLM fo r the groove-and-tongue boarded floor [24]
or according to the strip method presented by KÄRRHOLM [43], Only utilizing the flexural
strength of the concrete according to Zuk will give the design of uneconomically thick
slabs, but the same viewpoint can naturally be used also for slabs with transverse flexural
reinforcement. The viewpoint as such, however, appears to be unnecessarily conservative
since a certain moment-transferring effect in the transverse cracks may always be
presumed since the continuous reinforcement also functions as flexural reinforcement.
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The question as to how the stresses of temperature and shrinkage
in the continuous reinforcement are to be combined with traffic loading
stresses requires also a closer consideration. The most convenient way
would appear to be to add up directly the stresses caused by the respec-
tive influences and make sure that the resulting stress falls short of the
yield point by the necessary margin of s afety. It is however obvious that
if the pavement is subjected to wheel load just when it is subjected to
the maximum stresses of temperature and shrinkage in the stage just
before the occurrence of a new crack, then new cracks will occur which
reduce the stresses in the reinforcement. According to this viewpoint
it should thus be sufficient to check the longitudinal continuous rein-
forcement for temperature and shrinkage as well as for traffic loading
separately.

These and many other unanswered questions concerning the con-
tinuous concrete pavement can hardly be judged and solved otherwise
than on the basis of tests. To a large extent the detail problems can
best be studied by means of model tests on slab strips subjected to
tension.1) Finally the function of the continuous pavement must be
judged, however, on test roads subjected to normal traffic or, preferably,
special test traffic. Experiences from such test roads mainly American
(see Section 71) show generally that the pavement functions well and
that the necessary reinforcement can be calculated according to the
methods given.

Then, both the theoretical calculations and the experiences from
work carried out show that in the case of continuous pavements, a
reinforcement percentage so high as 0.5 % or even rather higher must
be reckoned with in the case of normal qualities of concrete and rein-
forcing steel. This shows that the type of pavement in question would
appear to be economically advantageous only if the thickness of the
slab can be maintained at a fairly low level. The type of t hin pavement
with mid-depth reinforcement which was tested during the Arlanda
test series (Section 535) would appear to be suitable for continuous
pavements.

The theoretical analysis indicates, however, further possibilities of re-
ducing the necessary reinforcement. As shown by(61:7), the reinforcing steel
used should have the highest possible yield point, and the new Swedish
type of cold-drawn deformed bar (Kam 90) would appear to be excel-

*) The only tests of this type found by the author has been carried out by GUTZWILLBR
and WALING [25] but provide a poor basis for the verification of analysis and formulae
in this section, because the test slabs were designed with crack indications right through
which gave cracks at pre-determined distances from each other right from the beginning
of testing.
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lent as reinforcement in continuous pavements. From the same view-
points, concrete with the lowest possible tensile strength should be
used. This can hardly be effected, however, by a considerable decrease
in the cement content since the demand for resistance to wear and
resistance to frost would appear to make essential the use of high grade
concrete. Other steps should be used in an attempt to decrease the
tensile strength, for example suitable concrete composition or certain
additives. A further point worth consideration is that of producing
closely spaced crack indications transversely simultaneously with the
casting, or to examine the possibility of producing a high degree of
shrinkage in the concrete at a low age, when the tensile strength is low,
by the use of certain suitable additives, since this means according to
(61:12 a) the occurrence of closely spaced and non-dangerous crack
formation permitting the use of decreased reinforcement according to
(61:7 a).



62. Effect of Temperature and Shrinkage on the Ultimate
Moment and the Ultimate Load in a Reinforced Con-

crete Pavement
The effects of temperature and shrinkage previously discussed, the

tensile force Nt and the moment mt, do not form any "external" loading.
They are only caused by the fact that the deformations in the pavement
are prevented since the possibility of movement in the slab is limited.
If these "locked" deformations can be released, th en the stresses caused
by them also d isappear.

This argument can be used concerning a study of the effect of temp era-
ture and shrinkage in combination with the external loading due to
traffic. If we assume that the pavement is subjected to a tensile force
Nt or a positive moment mt due to the temperature, giving rise to tensile
stresses in the reinforcement, and that the pavement is t hen subjected
to an increasing ex ternal loading, it is obvious that the stresses caused
by this are added to the temperature stresses, only as long as the rein-
forcement has not reached its yield point. As soon a s this stress in the
reinforcement is reached, then the tensile strain corresponding to the
effect of the temperature is released without any further increase in
stress, and thereby the phenomenon discussed above occurs, namely
that the temperature effect completely disappears. This discussion
implies that temperature and shrinkage do not influence the value of
the positive ultim ate moment myie.

The situation concerning t he negative ultimate moment is, however,
completely differen t concerning a pavement with no top reinforcement.
In such a case a typical brittle failure occurs at the moment the flexural
strength limit of t he concrete is reach ed, and after the negative failure
line has thus occurred, the ultimate moment decreases to zero. The
tensile stresses occurring in the pavement due to temperature and
shrinkage (in this case a combination of Nt and negative mt can be
considered), reduce the tensile strength available to take up the negative
moment from the wheel load a nd this thus decreases the negative ulti-
mate moment to the same extent.

In this case the superimposition principle applies up to the brittle
failure point, and, apart from the insignificanteffect of the reinforcement,
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Fig. 62:1. Section of sin gle-reinforced slab under the influence of a mobile wheel load. The
section is assumed to be first loaded by the positive moment m which gives tension cracks
in the reinforced side (crack depth /) and then by the negative moment m'. That part
of the section under tension which is within the crack depth / is thereby inactive. The
circumstances are accentuated even further if the section is simultaneously loaded with

tensile force.

the flexural strength can thus be written as for an unreinforced section

o, = CO
ll 0

Jmt
6 m'

(62:1)

where the factor œ has been introduced in order to correct for the differ-
Nt

ence in ultimate values between the pure tensile strength of —r— and
"0

the flexural strength a f , calculated in accordance with Navier's principle
with linear stress distribution. olmt is the flexural stress in the top
surface due to the negative warping moment mt according to (61:3).
Thus, according to equation (62:1),

m = hl
6 'mt ~f- CO

h n
(62:2)

which implies that, when designing, the flexural strength o f of the
concrete must be reduced with respect to the tension stresses of tem-
perature and shrinkage when calculating the negative ultimate moment
r r i .

Here, however, there is a complication when applying this to practical
conditions with mobile wheel loads. It can be considered that the complete
pavement, due to the mobile moment loading, gradually develops a
crack formation which stretches up from the bottom surface towards
the neutral layer. In slab sections influenced by negative moment this
crack formation will generally extend into the functional tension zone
(see Fig. 62:1). This situation naturally occurs also if there is no in-
fluence of temperature and shrinkage, but should be even further accented
if there is such an effect, since the significance of the tension zone then
increases. The problem has been studied in a practical case in connec-
tion with the model tests, namely for slab Mil:20 where the ultimate
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load occurred after the slab had been earlier loaded at two points
just over the final negative failure crack (see Fig. 33:1) and in this test
there was no apparent effect of this pre-crack or pre-deflection pheno-
menon. It thus appears probable from this test, that this effect can be
ignored and the negative ultimate moment can be calculated according
to the expression (62:2).

In the case of a double-reinforced pavement, the conditions are diffe-
rent. Since here a completely cracked-through section must be reckoned
with, then the tensile force Nt must be completely admitted by the bottom
and top reinforcement. On the other hand, the negative moment failure
in this case depends on the yield in the top reinforcement and the same
cancelling-out of the temperature effect may occur as in the case of positive
ultimate moment. In the case of a double-reinforced pavement, it should
thus not be necessary to pay respect to the influence of temperature
and shrinkage when calculating either the positive or negative ultimate
moments. The reinforcement, on the other hand, should be able to
admit the tensile force Nt alone with the required degree of safety.
This design condition agrees in fact with that reached in Section 613
concerning the continuous reinforced pavements.

These conditions which are discussed purely theoretically in this section
need, however, further clarification and confirmation through tests.
In the next section the author will describe tests of this type which were
planned in order to illustrate directly the influence of combinations of
tensile forces and flexure for positive and negative moment loading
of a single-reinforced slab.



63. Tests with Flexure and Tension on Concrete Slabs

631. Definition of problem and test programme

The investigation which was planned for the experimental study
of t he combination of te nsile and flexural forces on concrete slabs should
attempt to clarify the following questions in agreement with the hypo-
theses and discussions in the previous section:

I. The influence of tension in combination with flexure due to positive
moment (tensile stresses in the reinforcement).

II. The effect of tension in combination with flexure due to negative
moment, the possibility in this case of applying the equation (62:1)
and the magnitude of t he factor to in t his equation.

III. The influence of a "pre-deflection" with crack formation due
to positive moment on a flexural loading due to negative moment with
or without the combination of tension.

Literary studies in connection with the planning of t hese tests showed
that the problem of simultaneous tension and flexure of concrete has
been handled very sparsely earlier both experimentally and theoretically.
It was therefore considered suitable to extend the test programme to
include a more general investigation of t he loading cases of p ure tension
as well as combined flexure and tension of concrete. The programme
was therefore made more extensive and more detailed measurements
were planned than were originally necessary for the examination of
the more special problem within the scope of this paper.

The author intends to take up this larger problem by itself in connection
with a detailed analysis not yet carried out of the very extensive test
material that the tension-flexure tests resulted in. Within the frame-
work of this paper, some rather more limited and reviewable results
are accounted, these being aimed directly at the questions concerned
with the design of con crete pavements according to the ultimate strength
theory.

The tests were carried out as loading tests with combined tension
(with constant strain) and flexure on strips of concrete. All the test
units were made with a width of 20 cm and a total thickness of approx.
2 5
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5 cm, length approx. 1 m. The investigation was divided up into three
test series in agreement with the programme questions above:

Series I. Reinforced slab strips, tension simultaneous with positive
moment (the reinforcement in the tension zone). Reinforcement of
2 0 6 Ks 40. Within each group of four test units, one was tested with
flexure alone up to failure, two with a tensile force of approx.
1000 or 2000 kg as well as a flexural moment up to failure, and the fourth,
with only tension to failure. The last-mentioned test unit was not rein-
forced.

Series II. Unreinforced slab strips, tension together with moment.
Four test units in each group were tested in accordance with the same
programme as that applying to Series I.

Series III. Reinforced slab strips, which were first subjected to a
so-called pre-deflection of positive moment and then tested to failure
with negative moment and tension. The various groups of test units
were supplied with two types of reinforcement, 2 0 6 and 2 0 4, and
were tested with a tensile force N — 0, 1000, 1500, 2000 kg. The test units
within each group were tested with the same tensile force, but the pre-
deflection (curvature during pre-deflection) was varied or double tests
were carried out with the same pre-deflection; in normal cases pre-
deflection was carried out with a positive moment, which gave a comple-
tely cracked-through tension zone in stage II. Apart from this, each
group included an unreinforced control unit which was tested only for
tension.

632. Test units, test devices and test procedure

The test units for the tension-flexure tests were designed in accordance
with Fig. 63:1. In each group of four test units, one was designed as a
pure tension test (always unreinforced), and these test units were cast
with a narrower centre section in order to insure failure crack in the
centre zone. A total of 104 test beams were manufactured, some of
which were unsuccessful for various reasons during casting, managing or
testing.

The test beams were cast four at a time in the same mould with a
masonite bottom and intermediary walls of U-beams, and from the same
batch three standard test cube units and three standard deflection
beams were also manufactured The concrete maintained 480 kg/ma

c e m e n t w i t h t h e pr o p o r t io n s c e m e n t : g r a v e l : s a n d : w a t e r = 1 : 2 . 35 : 1 . 4 0 : 0 . 4 .

The consistency was maintained at approx. 12 VB°.
As shown in Fig. 63:1, the test units were designed with narrowed ends.

As a support and for the application of t he tensile force, transverse pins
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Fig. 63:1. Test units for the tension-flexure tests. The normal test units according to
the left-hand illustration were made both reinforced (series I and III) and unreinforced
(series II). The right-hand illustration shows a test unit for pure tension testing (always
unreinforced), of which one was included in each casting group of four units.

The narrowed ends of the test units have cast-in transverse pins consisting of 20 mm
shaft steel, this serving as a support and a means of applying the tensile force. See Fig.
63:2.

consisting of 20 mm shaft steel were cast in, and since these were fitted
in recesses in the mould sides of U- beams, fairly good force centration
could be relied upon. The transverse pins were anchored in the ends of
the test units with the help of th ree brackets according to Fig. 63:2. There
was no direct anchoring between the support pins and the reinforcement.

The transverse pins were attached to the support block as shown
in Fig. 63:2, where the load transfer was applied through the medium
of ball bearings. The support blocks were fitted in the tension heads of
the testing machine used. Since the testing machine applied forces
in such a way that the lower tension head is screwed downwards, a
constant strain in the test unit is maintained, thus in principle the same
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Fig. 63:2. Support block, used both as support and to transfer tensile force to the test
units during the tension-flexure tests. The block was attached to the tension head in
the test machine through the bolt on the right (see also Fig. 63:4). The force was trans-
ferred to the test unit support through two shafts at right-angles, carried in ball bearings,
the Cardan suspension of which gave freedom from support moment in all directions. The
last shaft consisted of the test unit support pin, shown on the figure with its three

anchoring brackets.

force transference as that obtained due to the tensile force caused by
temperature.

The flexural moment was transferred to the test units through a
screw jack which was placed between the pillars of the machine and a
load-distributing beam, which transferred the flexural force by means
of two loading rollers against the test slab strip (see Fig. 63:3 and 63:4).
The load was measured by means of a ring dynamometer as shown
in Fig. 24:14.

Testing was carried out in principle by first applying a tensile force,
this implying that the beam got a constant strain. Any eventual moment
due to eccentric attachment could be compensated for by the suitable
application of flexural force. After the tensile force had reached its
intended value, the beam was bent to failure.

During the testing, measurements were made of t he flexural deforma-
tion between the loading points by means of a curvature gauge. The
strain values were also measured with a pair of strain gauges on each
side. Fig. 63:3 and 63:4 show the test device and the location of the gauges.

After testing to failure, both parts of the beam on each side of the
failure section were used for flexure tests, these being carried out in
the way shown in Fig. 24:15, page 98. Only the ultimate load was
measured in this case. In some of the cases one of t he halves in question
was too short to be used.

More detailed information about the test procedure in the three test
series is supplied in the following sections in connection with a descrip-
tion and discussion of the results.
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Fig. 63:3. Schematic sketch of the test unit and the test device used in the tension-
flexure tests.

Fig. 63:4. Photograph of the test device for the tension-flexure tests with the test unit
fixed in the testing machine.

033. Test results, treatment and analysis

633.1. Series I, positive moment and tension.
In the tests in Series I with tension and positive flexure of rein-

forced test slabs, the tension was applied completely before the flexure
loading was applied. It was noticed that the tensile force began to
decrease in connection with first crack formation in the tension zone,
and that it later successively decreased until moment failure occurred.
A further powerful reduction in tensile force then appeared. In one test
(test A:3) failure suddenly occurred in connection with the appearance
of t he first tension crack, which in this case with the application of v ery
large tensile force appears to depend on the fact that the residual con-
crete section received excessively large tensile stresses before the counter-
acting flexural moment had achieved any significance.
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TABLE 63:1. Tension-flexure beams, series I, reinforced test units, test loading with
positive moment.

All test beams reinforced with 2 0 6 Ks 40; unreinforced control test unit not included.

Dimensions: Main tests
Width

6=20 cm
Flexural tests on

half-beamsTest
Width

6=20 cm
Flexural tests on

half-beams Tension, kg
Flexure

at failure

Ult. moment
group j\eim. ^ k? o Myie Flexure

at failure
Myie

and Total
thick-
ness

h0 cm

Eff.
thick-
ness
h cm

at "normal imm.
Flexure

at failure at "normal
No. Total

thick-
ness

h0 cm

Eff.
thick-
ness
h cm

thickness"
h=5.0 cm

kgcm

at mom. 0

Na

before
failure

N

P

kg

thickness"
h =5.0 cm

kgcm

A:1 5.20 4.65 8400 0 0 420 7900
2 5.25 4.60 10100 1000 500 562 10700
3 5.32 4.74 9300 2400 2300 1441) —

B:1 5.38 4.91 /8300
\9300 0 0 636 11300

2 5.15 4.71 11000 1000 500 562 10400
3 5.34 4.76 10300 2000 1050 526 9700

C: 5.30 4.85 7900 0 0 630 11400
2 5.54 5.13 7500 1000 640 628 10700
3 5.30 4.80 7700 2000 1260 658 12000

1) Sudden failure occurred here when the first cx-ack in the tension zone appeared.

The test results as shown in table 63:1 confirm completely the hypo-
thesis presented in Section 62, that the tensile force does not influence the
positive ultimate moment. In order to be able to compare the ultimate
moment values from the main tests more easily, these are re-calculated
to apply to a normal height of 5 cm; the same applies to the flexural
tests on the half-beams (in most cases only one of the half-beams was
tested for positive moment). The spread in the ultimate moment values
is certainly significant but no general tendency to decreased ultimate
moment value in the case of increased tensile force can be observed.
Besides, the same spread applies between the ultimate moment values
from the flexural tests on the half-beams but good agreement has been
reached, at least in the case of g roups A and B, between the values from
the main tests and the corresponding half-beam tests. In series C,
however, the half-beam values lie fairly far below the corresponding
values from the main tests, but the low values appear here to depend
on errors in the force registration (manometer), and it is obvious that the
moment values from the half-beams have approximately the same
internal variations as the moment values from the corresponding main
tests.

The tests in Series I thus show clearly that the positive ultimate
moment myie can be calculated without respect to the influence of the
tensile stress due to temperature and shrinkage.
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633.2. Series II, unreinforced test beams
In Series II, which included testing with combined flexure and tension

on unreinforced test beams, the test results, shown in Table 63:3, have
been analyzed according to the simple superimposition formula

N M
Of = to — + (63:1)

in agreement with formula (62:1). During the introductory test pro-
cedure, when only the tension was applied, it became obvious in most
of the tests that the attachment through which the tension was applied
was somewhat eccentric so that a certain flexural moment was obtained
by only the tensile force (readings on curvature gauge). The formula
(63:1), however, is only valid with completely centrally applied tensile
force, and therefore, in the calculation of the moment M in formula
(63:1), the flexural ultimate load P was corrected with that force P0

which was found necessary, when applying flexure, to return the
curvature value to zero (M = 0). See Table 63:2, note 1.

Otherwise, it was found out during these tests that the tension
did not decrease at all or decreased only very insignificantly during the
flexural procedure up to the sudden failure.

The analysis of the results according to (63:1) is shown in Table 63:2
for a factor to =1.7. This factor is selected as an approximate average
value

of
to = — (a)

°t

for the pure tension t ests. The result figures of of in the last column
in the table show that the calculating method used gives reasonable
results. There is certainly quite a large spread between the results
from the different tests, even within the same group of test units
from the same batch of concrete, but the spread between the pure flexural
strength values from the flexural tests on the half-beams is just as
large, and the agreement between of according to the result analysis
with the formula (63:1) and according to the flexural tests on the half-
beams from the same test unit is strikingly good all the way through.

The test results thus show that with combined flexure and tension
on an unreinforced concrete slab, it is possible to calculate the strength
on the basis of the pure flexural strength according to the formula (62:1)
o r ( 6 2 : 2 ) , w h e r e b y ( a t l e a s t i n t h i s c a s e ) i t is p o s s i b l e t o p u t to = 1 . 7 .

This value lies rather high in comparison with current information —
for example in the CBI design specifications [78] a factor œ = 1.5 is
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TABLE 63:2. Tension-flexure beams, series II, u n r e i n j o r c e d , test units.

Test
group
and
No.

Standard
flex, beams
aver, value
of 3 tests

o f
kg/cm2

Dimensions
in failure

section
cm

Flexural
tests on

half-
beams

O f
kg/cm2

Main tests Analysis from equ. (63:1)
Test

group
and
No.

Standard
flex, beams
aver, value
of 3 tests

o f
kg/cm2

Dimensions
in failure

section
cm

Flexural
tests on

half-
beams

O f
kg/cm2

Load at

Tension
N kg

failure

Flex-
ure

P kg

Flex-
ure at
M =0
Po kg

Formal
stresses1)
kg/cm2

O f =
— o j a y oM

U)= 1.7

Test
group
and
No.

Standard
flex, beams
aver, value
of 3 tests

o f
kg/cm2

K b

Flexural
tests on

half-
beams

O f
kg/cm2

Load at

Tension
N kg

failure

Flex-
ure

P kg

Flex-
ure at
M =0
Po kg O N O M

O f =
— o j a y oM

U)= 1.7

A:1 30 5 20 20 33, 35 0 174 0 33.8 33
2 5 20 20 31 1000 88 9 9.6 15.3 32
3 5 10 20 38, 43 1960 66 34 19.1 6.4 39
4 5 20 20 45, 45 2700 0 26.0 0 44

B:1 37 5 40 20 35, 37 0 185 0 33.3 33
2 5 25 20 42, 45 1000 163 13 9.5 28.6 45
3 5 35 20 46, 46 2000 90 35 18.7 10.1 42
4 5 30 13.5 34 1700 0 23.8 0 40

C:1 41 5 10 20 49 0 252 0 50.9 51
2 5 30 20 46 1000 175 9 9.4 31.0 47
3 5 35 20 46 2500 54 32 23.4 4.0 44
4 5 35 13.5 39 1900 0 26.3 0 45

D:1 36 5 10 20 42, 40 0 190 0 38.4 38
2 5 15 20 39, 38 1000 120 17 9.7 20.3 37
3 5 25 20 37 2000 70 37 19.1 6.3 39
4 5 20 13.7 37 1500 0 21.0 0 36

E:1 38 5 40 20 41, 43 0 211 0 38.0 38
2 5 37 20 41, 37 1000 130 14 9.3 21.1 37
3 5 35 20 44 2020 85 39 18.9 8.4 41
4 5 30 13.7 38 1490 0 20.5 0 35

N N M 6
l ) ~ x = b h o ; < y M = ( P - Po ) b h 2

stipulated — and the value would appear to vary to a great extent
depending on the thickness of the slab, the composition of the concrete,
etc. On the other hand it can be correct in the case in question to select
a comparatively high value of to w ith respect to the fact that the esti-
mation of the tensile force due to temperature and shrinkage is very
unreliable.

633.3. Series III, reinforced pre-de fleeted test beams, negative moment
and tension.

The tests in Series III, which was the most extensive of the test series,
were intended to be similar to the conditions for negative moment
loading of a cross-section of a single-reinforced pavement which had
earlier been subjected to positive moment loading due to a mobile load
and thereby developed cracks in the bottom through the reinforced
zone. For this reason, the single-reinforced test beams in this series
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were subjected, after being fitted in the test machine, to a positive " pre-
deflection" of a flexural single force in the centre, which caused crack
formation in the reinforced side and through the whole tension zone.
Then the beam was tested for failure with tensile force simultaneously
with the usual flexure loading from the opposite side, this causing a
negative moment.

With certain of the first tests carried out with a large tensile force
(N approx. 2000 kg) it became obvious that eccentricity due to the
pre-cracking had become so great that failure occurred due to this
tensile force before its full value had been reached and flexure had been
applied; in this way many of the tests became unsuccessful. By com-
pensating the deflection due to this eccentricity under the application
of tension by means of a flexural force which maintained the curva-
ture at zero the whole time, this undesired case of failure was avoided
in later tests.

In most of th e tests a "normal"' pre-deflection was applied with crack
formation throughout the complete tension zone if S tage II is assumed.
This type of crack formation would appear to be the type to be
expected after some considerable time of normal traffic on a single-
reinforced pavement, designed with a reasonable margin of safety
(1.7 — 2, see Part 7).

On the whole it is these tests with "•normal" pre -deflection which are
described in Table 63:3, and the depth of the crack formation zone in
pre-deflection has been checked partly through visual observation
(with a magnifying glass) and measurement, partly through the cal-
culation of th e position of t he neutral layer from the curvature measure-
ments carried out during the pre-deflection. These values agree com-
paratively well, and agreement with the theoretically calculated posi-
tion of t he neutral layer is also good (see th e table, note 1).

It is remarkable that the failure crack in the main test with negative
flexure in a large number of tests occurred beside the pre-crack (see
Table 63:3). This implies that pre-cracking on the whole lacks signi-
ficance for strength at negative flexure. The test analysis in Table 63:3
confirms this conclusion. The flexural strength of has here been cal-
culated according to the formula (63:1) as for a homogeneous section
without re spect being taken to the pre-cracks, and the result shows fully
reasonable values, where no influence of the pre-cracks can be traced.
As in the case of the preceding test Series II, spread is certainly large,
but if comparison is made between the formal calculation of the af -
values and the flexural tests on the corresponding non-cracked half-
beams, as well as the result of the pure tension tests included in each
group (whereby the flexural tests on the corresponding half-beams have
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also been taken into consideration), fully acceptable agreement is
reached in practically all cases, and also here the value of 1.7 for the
factor to i n the equation (63:1) appears to be fairly correct.

A number of tests was also carried out with test beams which were
subjected to more powerful preflexure, whereby the positive deflection
was taken so far that strain values were obtained in the reinforcement
quite a long way in the yield zone. Some of these tests, particularly
with test units with the more powerful reinforcement 2 0 6 and with
no or comparatively small tensile force, gave exactly the same result
as those discussed above, these being shown in the table (the pre-deflec-
tion magnitude is shown by the curvature value and the depth of the
crack zone). Other tests of this type — and this applies particularly
to the tests with large tensile force and weak reinforcement, 2 0 4
(reinforcement percentage /a ä 0,25 %), — show, on the other hand,
decrease in strength compared with the earlier mentioned tests, in
most cases, however, comparatively moderate. In special tests with the
largest tension (1500 — 2000 kg) sudden failure occurred in many cases
when only tension or a very low moment loading was acting. It should be
pointed out, however, that for these test units a normal tensile force due
to temperature would only correspond to 500 — 600 kg (see formula
(61:2)).

The author thus finds that in normal cases of single-reinforced pave-
ment design, the strength for negative moment loading can be estimated
without respect being taken to pre-cracking phenomena, and thus the
formulae (62:1) or (62:2) can be applied when calculating the negative
ultimate moment.



64. Summary and Application on Field Tests

The treatment of the influence of temperature and shrinkage on
concrete pavements in this Part 6 is comparatively short and is primarily
intended to show how respect can be taken to the above-mentioned
influences when applying the ultimate strength methods for calculating
reinforced concrete pavements, as developed earlier in this paper. In
the description in Section 63 of the tests carried out with the applica-
tion of c ombined tension and flexure, generally speaking only those results
are shown which are significant for the problems concerned in this
connection.

The influence of d ecreased temperature and shrinkage can be assumed
to correspond to the stresses in the pavement from a tensile force Nt

according to the formula (61:1) and a warping moment mt giving rise
to flexural stresses omt according to the formula (61:3 a). In the case
of normal single-reinforced pavements with transverse joints at a fairly
large distance from each other, these stresses can be summarized as
follows:

N t = 1.2 h 0 f s L tons/m, if L — joint distance in m
/, =1.5 in normal cases

o\nt = 7 kg/cm2 tensile stress in top

h0 = slab thickness in m

(64:1)

The most dangerous cases of loading occur when the effect of te mpe-
rature decrease and shrinkage as mentioned above take place at the same
time as wheel load stresses.

As shown by theoretical consideration and tests carries out on
test units used for simultaneous flexure and tension, when designing
a single-reinforced concrete pavement according to the ultimate strength
method no respect needs to be taken to the influence of t emperature and
shrinkage when calculating the positive ultimate moment myie, while
when calculating the negative ultimate moment m' the flexural
strength of t he concrete must be decreased by the stresses due to tempe-
rature and shrinkage according to (64: 1). The above-mentioned tests
carried out on test units which, before being subjected to ultimate
loading with negative moment have been subjected to pre-deflection
with crack formation due to positive moment, show that in normal
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cases and with a not altogether too small reinforcement percentage (/< >
approx. 0.3 %), the influence of the pre-cracking phenomenon (see Fig.
62:1) can be neglected and the negative ultimate moment can be cal-
culated as for an uncracked section.

The ultimate moment values for single-reinforced concrete pave-
ments can thus be calculated as follows:

m = the ultimate moment of the reinforced section

where of is the flexural strength of t he concrete slab and the remaining
m a g n i t u d e s a r e d e c i d e d i n a c c o r d a n c e w i t h ( 6 4 : 1 ) . T h e f a c t o r w = 1. 7

has been obtained from the tests according to Section 63 and should
be on the safe side.

When calculating the ultimate load according to the formulae and
the diagrams for the ultimate strength method, the moment sum (m+ m|e(l)
according to (64: 2) shall be used. It should be pointed out, however,
in this connection that the influence of the normal force and thereby
also the negative ultimate moment according to (64: 2) is in most cases
different in directions along and across the pavement. The lowest value
of the moment sum may be taken, however, when designing the interior
of the pavement. Beside the edges and the joints which have the possi-
bility to move, the effect of the temperature will be zero in a direction
at right angles to the edge, this meaning that when designing edges and
joints, the negative ultimate moment m' does not need to be reduced
but only m'e. This circumstance decreases the necessity of strengthe-
ning the edges and joints.

In the Norrköping tests, described in Section 52, test loading was
carried out on finished taxiways, and it was pointed out in the discussion
of the results from these tests that the influence of temperature and
shrinkage on these 40 m long taxiways could be significant and could
partially explain the comparatively poor agreement between the ulti-
mate loads in test and theory. An estimation of t his will be carried out
in accordance with the methods summarized above.

Since the tests were carried out during the summer at normal tempe-
ratures, it can be assumed that there was no apparent effect of w arping.
On the other hand a comparatively moderate temperature decrease of,
for example 5° C, together with probable shrinkage which can be assumed
to correspond to a temperature decrease of at least 10° C, produced
quite sufficient movement to give fully developed friction under the

["< - + L7 hJ

(64:2)
= rn 1 m,
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larger part of t he taxiway. The normal stress of this can thus be es ti-
mated in accordance with (64: 1) and, with fs= 2.5 the result is

L = 40 m, h0 = 16 cm

Nt — 1.2 • 0. 16 • 2.5 • 4 0 = 19 tons/m

This corresponds to a tensile stress

19 • 103

= TeTTÖÖ = 12 kg/cm'2

which gives a reduction of th e negative ultimate moment, which accor-
ding to (64:2) can be estimated to be

162

A m't = —— 1. 7 • 12 « 900 kgcm/cm

With reasonable assumptions concerning temperature and shrinkage,
there may thus bea very considerable reduction of m which, according
to the detail tests (Table 52: 1), was equal to 1800 kgcm/cm.

Due respect being t aken to this not improbable decrease in negative
ultimate moment, when calculating ultimate loads for the taxiways c
and d with the data according to Table 52:3, the following results were
obtained:

a) Load on the centre of th e section, test c:l and d:l (see Tabl e 52: 3)

m — 3600 kgcm/cm; m'TcA = 1800—900 = 900 kgcm/cm

From the diagram in fig. 32:14:

c 4500
Test c:1; — = 0.60; Pt = = 55 tons — according to the tests 50 tons

c 4500
Test d:1; — — 0.66; Pt = — = 58 tons — according to the tests 57 tonsi ' 0. 0 7 7 °

b) Load on the edge of the taxiway, test d:2 (see Table 52:4):

m = me — 3600 kgcm/cm

m'e = 900 kgcm/cm; m' = 1800 kgcm/cm

In addition to this an edge beam according to Table 52:4
According to the formulae in 427 the ultimate load will be:

Pt — 39 tons — according to the tests 34 tons.
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The agreement between the ultimate load according to theory and
tests is here considerably better than the result according to the Tables
52:3 and 52:4, where the theoretical ultimate load values have been
calculated without respect to the probable influence of temperature
and shrinkage. This influence can obviously be significant in the case
of the large section lengths in question.

When carrying out calculations according to the elasticity theory,
the stresses caused by temperature and shrinkage according to (64:1)
are added, in accordance with the superimposition principle, to the
stresses caused by wheel load.

On pavements without transverse joints, the so-called continuous
reinforced pavements, with respect to temperature and shrinkage a
longitudinal reinforcement is required with a reinforcement percentage
according to

,u > — (64:3)
°yie

where

at = the strength of the concrete towards pure tension

oyie = the yield point of the steel

This reinforcement does not appear to require intensification with
respect to traffic loading. The crack width ô can thus be judged by
estimation according to theoretical analysis:

with deformed bar reinforcement

of 0
r5 = (1.0 - 1.3) 7— —— (64:4 a)

Tfo t: j iÅ JOJ ^

where

Tmax _ maximum bonding strength

0 = the diameter of the reinforcing bars (deformed bar),

with mesh reinforcement (of s mooth wire)

< 5 = ( 2 - 3 ( 6 4 : 4 b )
rjr jU

where

d = mesh width between cross wires.

Further viewpoints concerning the effect of temperature and shrin-
kage when designing concrete pavements are included in Section 72.



7. Practical Viewpoints on Reinforced Concrete
Pavements. Design Methods

71. General Viewpoints. Some Experiences from Pave-
ment Work Carried out

When the thought of building airport runway pavements of concrete
with a relatively powerful structurally active bottom reinforcement was
originally put forward in connection with the introductory discussions
in 1944 concerning an airport near Stockholm for the heavy Atlantic
traffic, the idea was primarily to find a type of pavement which would
have sufficient load-carrying capacity for the heavy wheel loads and
the very poor soil properties concerned in the Väsby project which was
then topical. The closer examination of this type of structure which
followed, the results of which are presented in this book, soon showed
however that there were many advantages apart from increased load-
carrying capacity with this new type of structure, which was called
"structurally reinforced concrete jjavement" as opposed to the earlier used
plain or slightly crack-reinforced types of co ncrete pavement, also if t he
properties of the soil did not make such a pavement essential from the point
of vie w of load-carrying. Comparative economical calculations which have
been carried out for many airport projects have shown that the type of
pavement generally means good economy; this question will be further
discussed in Section 73. Apart from this, considerable technical and
constructional advantages appear to be present with the use of struc-
turally reinforced pavements in comparison with the often very thick
unreinforced concrete pavements otherwise essential. Perhaps the
greatest advantage is the fact that with structurally reinforced pave-
ments the distance between the transverse joints can be made fairly
large — it is these transverse joints which, in the case of concrete pave-
ments, have been the most troublesome constructional part and that
which has been least able to stand up to traffic.

After this new type of pavement had been brought forward in
connection with the preliminary presentation of the earliest test results,
quite a lot of a irport pavements of this type have been built in Sweden.
In many cases the author himself has had the opportunity to apply
directly the theoretical methods of calculation and test results then
available to the designing problem in question. This Avas the case in the
extension of Norrköping airport in 1948 where also some of the taxiways
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were used as objects for test loading (see section 52) and where moreover
precise studies of working methods were carried out. Another case is
the first built east-west runway at Arlanda airport where the result of
the test loading, as shown in Section 53, was directly used in the sug-
gested design of the runway pavement to be built. Apart from this,
the author's calculation methods have been applied to the design of
pavements on many military airfields. In other cases structurally rein-
forced pavements built have been designed on the basis of the elasticity
theory method, whereby the methods developed by WESTERGAARB
and HOGG for plain concrete pavements have been applied with suitable
modifications [54, 78], The test material described in this paper is,
as a matter of fact, the first to show that it is really correct to apply
this theory also to reinforced conrete pavements within the elastic stage
and with suitably selected material constant values for the slab and
the soil.

As a matter of fact structurally reinforced pavements would appear
now to have become the normal type of pavement in Sweden for run-
ways on airfields with heavy traffic. As far as the author has been
able to determine, this type of pavement on the whole has shown itself
to be very good in practice.

From a constructional point of view, the first reinforced pavements
at Norrköpings airport showed certain problems which are associated
with the reinforced structure.1) Trials were carried out there with, for
example, double-reinforcement which showed that there were great
difficulties in its use. Also the through reinforcement at the longitudinal
joints which was specified for this pavement in order to make the joints
transfer moment, proved difficult to insert from the point of view of
constructional technique. In some later projects, after more was known
about the function of the joints, the through reinforcement was comple-
tely disposed with; this was the case for the first time with the above-
mentioned first constructed runway at Arlanda. On the whole the
problems from a constructional point of view now appear to have been
solved, at least concerning pavements with only bottom reinforcement.

Also from the functional viewpoint, the reinforced pavements have
come up to expectations. An inspection carried out by BERGSTRÖM
and ÖRBOM2) during 1953 and 1954 on some airfield pavements of

1) A description of the studies of constructural technique during the work carried
out at Norrköping has been supplied by Bernell in a typed report in 1948 from Kungliga
Väg- och Vattenbyggnadsstyrelsen (Royal Swedish Board of Roads and Waterways).

2) The report of the inspection as far as crack formation and joint damage is concerned
is unpublished, but the inspectors have willingly placed their observations in this matter
at the disposal of the author.
2 6
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concrete showed that crack formation and joint damage was very
moderate for the pavements which had been built on the structural
reinforcement design. Concerning the above-mentioned first runway at
Arlanda airport, this was so far unsuccessful since during grading work
the runway was given excessive inclinations and lateral slopes; it was
therefore condemned from the point of view of aircraft safety and will
be relaid during the extension work now being carried out. No com-
plaints have however been made concerning the pavement, and during an
inspection carried out in December 1959, it was found that the pave-
ment was in good condition. It is true that during the six years since
it was built there has only been very occasional aircraft traffic, but
during the last two years in connection with the extension of the new
runways, there has been very intensive traffic with heavy trucks with
rear axle pressures of up to 20 tons. Of course the wheel loads for which
the pavement was designed have by no means been reached, but on
the other hand the loading area from the truck wheels is more concentrated
and great dynamic forces must have occurred. During the inspection in
question it was found that crack formation was very slight, and comparison
with the crack charts made out during the inspections immediately
after the completion show that most of the cracks occurred as early as
during the building period. There was no significant separation in the
completely reinforcement-free longitudinal joints in spite of the fact
that the runway was not provided with any edge strips whatsoever
which could have had an anchoring effect in this respect.

In an other field of use where concrete pavements occur, namely roads,
the structurally reinforced type of concrete pavement, on the other
hand, hardly seems to have been used at all in practice. A very suitable
study object for this field of use is the private stretch of road which was
laid in 1957 by Skånska Cementaktiebolagets factory in Hel lekis be-
tween the lime quarries and the cement factory, this road being built
with structurally reinforced pavement. This road is particularly inte-
resting since it has perhaps the most intensive traffic of any road in
Sweden with a continuous stream of limestone-loaded special trucks
with about 21 tons rear axle pressure. It is also interesting from the
point of view that it was the first modern road in Sweden which was
built in one operation, i. e. the pavement was laid as soon as the subbase
was completed [40]1). The pavement consisted of a 14 cm thick concrete
slab with bottom reinforcement of welded wire fabric made of cold-
drawn steel. This was laid out directly from rolls, which made it difficult
to get the mesh to lie flat in its correct position during casting. The

x) A detailed description of the building of this road is included in Svenska Vägföre-
ningens Tidskrift, Volume 8, 1948, and in Cement- och Betong, Volume 6, 1947.
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distance between the transverse joints was 24 m, and the pavement
was designed according to the ultimate strength method for a wheel
pressure of 10,5 tons with a certain dynamic supplement and for an
factor of safety of approx 1,6 concerning failure through crack forma-
tion in the top. During the whole time the road has been in use, traffic
has been extremely intensive with an average frequency of approx.
100 trucks per day in each direction, running in one direction fully
loaded the whole time and often with an overload of 10 %. Due to
certain crack formation and surface damage, a careful inspection was
made of the pavement during the year 1954, an inspection in which
the author had an opportunity to take part [22, 40]. It could thereby
be determined rather definitely that the damage was of comparatively
moderate extent and did not diminish the function of the road in any
way, and it was also found that at least the most serious crack damage
most probably depended on unevenness in the subgrade (culvert and
old embankment crossings, etc.) as well as insufficient drainage and
disposal of water from the edges of the road, this causing washed-out
subgrade at some places. Moreover, unevenness in the position of the
reinforcement caused by the unsuitable system used for laying it, may
have caused some crack formation.

It appears to the author that the mainly good experience from this
road with its exceptionally hard traffic should be utilized when pro-
jecting public roads in Sweden. The rapid development in traffic towards
greater intensity and increasing wheel load have resulted in the fact
that the existing concrete pavements of unreinforced or crack-reinforced
type do not stand up to the stresses, and this has caused a sort of
concrete pavement crisis concerning roads. It is possible that the
structurally reinforced pavement can contribute to a solution of the
problem. In any case the experiences available can well motivate that
this type of pavement should be thoroughly tested under normal
road conditions together with other types of pavement. On the whole
in Sweden, there appears to be a lack of tests concerning running
of traffic on special test road stretches. In viewT of the gigantic deve-
lopment programme at present planned for Swedish roads, such rational
traffic tests with comparisons between pavements of different types
would appear to be absolutely necessary.

It would appear to be eminently desirable to try to find possibilities
of giving concrete, with its durability and light surface, its leading
place again among pavement material. Instead of this, the tendency
within road building technique just now would appear to be that the
load-carrying capacity of the subbase itself is being increased and the
pavement is being made of a nonrigid asphalt covering. But even with such
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a type of subbase, and obviously with a good natural subgrade, replace-
ment of the soft pavement by a concrete pavement could be considered,
namely a concrete pavement of the type consisting of thin, powerfully
mid-depth reinforced slab which was the subject of experiments during
the Arlanda tests (Section 53). This type of pavement came forward
during the projection of the Arlanda runway just because of the fact
that the runway subgrade had sufficient load-carrying capacity to
withstand the stipulated wheel load without any rigid pavement, but
that a concrete pavement was desired in any case because of the other
advantages of this type of pavement material. The idea was that the
pavement should function as a reinforced concrete slab with an effective
depth equal to half the total thickness for both positive and negative
wheel load moments which, in this case, are of r oughly the same magni-
tude.Fine tension cracks thereby occur both in the top and the bottom sur-
face and the slab will take a very low degree of flexural rigidity, i. e. it func-
tions on the whole as a non-rigid pavement. Wheel load stresses are
very low, in practice the thinner the slab is the lower they become, this
being shown in Table 53: 9.

The good results shown from the 1953 tests at Arlanda (see Section
535) prompted the author to come forward with a suggestion that
about 1/3 of the runway in question should be designed with this thin
type of pavement. As the result of doubts from the authorities respon-
sible for the building, a test stretch of only 80 m was however built.
This test stretch was obviously too small to provide experience of construc-
tional technique during the building work, and the contractors found
that there were considerable difficulties in producing such a thin pave-
ment. In this case the same machines and the same technique were
used as for the building of the thicker pavement on the rest of the
runway, and there is no reason to believe that, with working technique
and equipment directly suited for this task, there should be any special
difficulties in producing perhaps even thinner pavements than the
8 cm slab used here. It should be pointed out that it is not
necessary to set up any great demands concerning tolerances in the
thickness or the position of the reinforcement, this being shown by
Table 53: 9.

During the above-mentioned inspection of t he old runway at Arlanda,
the 8 cm slab in the test pavement showed crack formation within the
loaded section completely in accordance with predictions, thus with
only very fine cracks in the surface. No cracks had opened or caused
any other surface damage. In the sections which had not been subjected
to loading there were no visible cracks whatsoever. The pavement was
also in very good condition otherwise.
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Tests, calculations and experience available up to date,1) thus show
that the thin slab with mid-depth reinforcement is a suitable type of
pavement, also for roads, in such cases where a subbase with uniform and
high load-carrying capacity exists or can be produced fairly simply.
There is no doubt that the type of pavement is economical with suitable
working technique (see also Section 73). Also from a technical viewpoint,
a thin pavement with mid-depth reinforcement has advantages compared
with a more rigid pavement in the cases good soil conditions make
possible free selection. According to the results shown by tests and
theory the stresses on joints and free edges are comparatively small,
and these details can be designed in a simpler way than with a more
rigid pavement. The tensile forces due to temperature decrease are
small and the stresses due to un-uniform temperatures are negligible with
a thin slab so that the dilatation joints can be placed at large distances;
particularly for road pavements it would be a great advantage
to be able to have the transverse joints, which are troublesome
from a constructional and traffic point of view, at large distances from
each other and the joints can then be given a better and more costly
design. Apart from this, the less rigid pavement should be able to follow
settling in the subgrade better without cracking — this advantage
should be particularly obvious by comparison with normal plain or
crack-reinforced road pavements. On the other hand a thin slab has
obviously a poorer capacity to bridge over very localized unevenness
in the subgrade, for example in the levelling layer, without suffering
from deformation at such places. There is, however, no risk that
the pavement will crack right through in such cases, something which
can often happen with a more rigid pavement. Whether damage of
one or the other type is most troublesome can only be decided by traffic
tests. On the whole only rational tests on test roads can provide the
basis for a general judgement concerning the suitability of the thin,
mid-depth reinforced concrete pavements for road pavement purposes
in various cases. It appears to the author that this should be worth
an careful examination.

The thin, mid-depth reinforced pavement should also provide the
possibility, in a fairly economical way, to carry out pavement projects
of the type which are usually called continuously reinforced pavements
(better name: continuous reinforced pavements). This type of pave-
ment is designed completely without transverse joints or with transverse

x) Similar types of thin, reinforced pavements were also included among the pave-
ments in a test road project at Oxten in England, and a 5-year report from 1955 by LOE
[46] shows that these pavements, apart from certain joint damages, exhibit good condi-
tion with closely spaced, hair-fine cracks.
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joints at very large distances from each other (see 613), and a powerful
reinforcement is necessary to hold together and closely space the cracks
occurring due to the particularly intense effect of temperature decrease
and shrinkage caused by the fact that, due to its lack of joints, the
pavement must be considered as being completely locked to the sub-
grade. It is obvious that a pavement of this type combining the large
advantages of a concrete surface with the jointlessness of asphalt pave-
ment must be regarded as almost ideal from the point of view of road-
building engineers; the joints in the traditional concrete pavement are
still, 110 matter how it is designed, its weakest element from the point of
view of design, traffic and maintenance. The continuous reinforced
concrete pavement has recently been the object of great interest parti-
cularly in the United States and during the last ten years many test
roads with pavements of this type have been built and studied thoroughly.
A committee report from the American Concrete Institute [2] gives a
good review of the experiences and results from these test roads and
detailed reports are available from many of the projects in question
(see, f or example, [16, 45, 67, 68]). In practically all cases there is very
good experience from about 10 years function with normal traffic (20
years in one case [16]); the pavements are generally in good condition
with close crack formation consisting of fine and completely harmless
cracks. A couple of test stretches have also been made in Sweden
with this type of pavement; a project of this type (Ängelholm) has
just been completed; another (Törnevalla), completed in 1953,
has shown too intensive crack formation, according to the Swedish
State Road Institute report [44], apparently depending on too
weak reinforcement. This type of pavement requires, unfortunately,
a comparatively high percentage of reinforcement. Theoretical con-
siderations (see Section 613) show that in normal cases a reinforcement
percentage with a minimum value of 0.5 % or rather higher must be
reckoned with, and experience from the American test roads appear
to confirm the correctness of this figure. With the pavement thick-
nesses of 7" —10" used in the United States, this implies an excessively
large amount of r einforcement which from the point of v iew of e conomy
would appear to prohibit the use of this type of pavement altogether.
The question comes into an entirely different light, however, in cases
where the load-carrying capacity of the subbase permits designing the
pavement as a thin mid-depth reinforced concrete slab; with a slab
thickness of about 8 cm, the amount of steel needed for the continuous
design is comparatively moderate. Attention should also be paid
to the possibilities of displacing the reinforcement downwards or desig-
ning it as double reinforcement to strengthen the concrete slab without
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requiring to thicken it so much. The possibilities of reducing the required
reinforcement by using even higher grade reinforcement (type Kam 90)
or by reducing the tensile strength of the concrete in other ways have
been discussed earlier. This and other questions concerning the
continuous reinforced pavement, which were mentioned in Section
613, require extensive research, and it would appear to be a matter of
the greatest interest on the whole if this type of pavement with its
extensive technical advantages is made the object of continued and
intensive investigations.



72. Design of Reinforced Concrete Pavements
721. General principles

In design calculations for reinforced concrete pavements it is ob-
viously possible, as for all reinforced concrete structures, to adopt
either methods according to the elasticity theory and base the strength
demands on the permissible stresses, or to use the ultimate strength
method based on the plasticity theory — as far as the slab is concerned
the yield line theory — and determine the load-carrying capacity with
a suitable safety factor.

When designing in accordance with the elasticity theory it is possible,
in agreement with the theories and the test results in this paper, to
calculate the maximum stresses that occur due to wheel load, tempera-
ture and shrinkage and make sure that the most dangerous combination
of these stresses does not exceed the permissible stresses, which in this
case may be determined for the positive moment in relationship to
the yield point of the reinforcement and for the negative moment
in relationship to the flexural strength of the concrete (with single-
reinforced pavements) with a very small safety factor. When calculating
wheel load stresses, the formulae and the diagrams in Section 225 can
be adopted for the case of loading on the interior and the formulae and
diagrams in Section 41 for the edge loading case, while the stresses caused
by temperature and shrinkage can be estimated as described in Section
64. Tests show that the flexural rigidity of the slab can thereby be
estimated theoretically on the basis of stage II with an inactive tension
zone and n = 15. Otherwise, the principles given in the design specifica-
tions from the Swedish Cement and Concrete Institute (CBI) 178]
can be applied.1) The elasticity theory, however, would not appear to
apply for strengthened edges or joints.

In accordance with the viewpoints earlier presented in this paper, the

x) These specifications [78] quote, as earlier pointed out (see Section 64), the stresses of
edge loading with a faulty formula. Apart from this the expressions given for the negative
maximum moment only apply for small values of the relative load distribution and the
instructions concerning the calculation of flexural rigidity appear to be vague. The
suggested safety factor against failure in the top surface (tensile strength in concrete),
would appear to the author to be rather on the low side.
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author would like to point out, however, that the ultimate strength theory
gives a more correct idea of the load-carrying capacity of a reinforced con-
crete pavement and thus considers that designing should be carried out in
agreement with this method, whereby a higher margin of safety should
of course be adopted. The ultimate strength method has also the advantage
that it can be used also for designing strengthened edges and joints.
The method to be used when designing a normal, structurally bottom-
reinforced concrete pavement is described in more detail in the following
Section 722.

For thin mid-depth reinforced pavements of the Arlanda type, the
elasticity theory should always be used in design calculations for the
reasons shown in the account of the tests. This method is explained
in more detail in Section 723.

722. Design of structurally reinforced concrete pavements according
to the ultimate strength theory

722.1. Principles and loading assumptions.
The specifications given below for designing reinforced concrete pave-

ments are based on the ultimate strength method as it is presented in
this paper from theory and tests. The flexural rigidity of the pavement
is assumed to be calculated in accordance with Stage II with a completely
inactive tension zone and n = 15, the soil being assumed to act as an
elastic subgrade with a known soil modulus C.

The pavement is to be calculated for wheel load in combination with
effect of temperature decrease and shrinkage, this giving the desired
safety factor aginst ultimate load. It is generally possible to write

P = the most dangerous loading from wheel load.
f ( m + m ' ) is a function relationship depending on the extent and

the form of the loading area as well as the flexural rigidity of the
slab D and the soil modulus C, collected together in the magnitude

s P = f ( m - f - m ' ) (72:1)

where

3

elastic radius of rigidity I

m — the ultimate moment of the slab per unit width for positive flexure,
calculated on the basis of the reinforcement yield point oyie (o02).
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m the ultimate moment of the slab for negative flexure, for single-
reinforced slabs calculated on the basis of the flexural strength
of the slab of. Following the suggestion of the so-called Flexure-
Tension Committee [63], the flexural strength o^tand checked on
standard flexure beams, shall be reduced by 10 %. In the cases in
question m' is also reduced for the effect of temperature and shrinkage
according to section 64. It is thus possible to calculate

mred — m A ml

m =

A ml

h2

0. 9 o!tand —
' r* (72:2)

+ 1.7
Nt K

where olmt and Nt are estimated from (64:1).
s — safety factor for failure due to crack formation in the top surface.

The reinforcement thus determined should naturally, in the cases
where cracks may occur right through, be able to absorb all the tension Nt

alone without yielding. The reinforcement Aa should thus be checked for

A, <

Moreover, the slab thickness h0 chosen or determined must be controlled
for stamping-out collapse according to Section 333 and the result must
fulfil the condition

> 3 - P (72: 3)

where
Pstamp = stamping-out load calculated from formula (33: 2).

This failure case can be dangerous only if the wheel load is great in
relation to the load distribution area.

722.2. The safety factor.
It is a difficult question to decide the value to be given to the safety

factor s. The test material in this paper has not been aimed at
clarifying questions of this type. This requires the results from tests
with running traffic on test roads together with experience from normal
traffic on paved roads and runways and from repair work on any failure
cracks occurred. Only some general viewpoints will therefore be presented
here.
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It is obvious that the safety factor in this case should be selected
considerably higher than when calculating from the elasticity theory.
In the latter case, the ultimate load is assumed to be reached at yield
point in the bottom reinforcement, whereas the definition of failure accord-
ing to the ultimate strength method assumes that the reinforcement has
actually yielded to a certain extent. In order to avoid permanent de-
formations with normal loads a safety factor of 1.6 — 2.0 may be enough.
On the other hand it can be pointed out that the load-carrying capacity
of t he slab is by no means exhausted even at failure point in accordance
with the definitions adopted here. Failure in this meaning is first ob-
tained at stamping-out, and this case of fa ilure does not imply any risk
of catastrophe either but only more or less extensive material damage.
In this case it is possible, without risk of catastrophe, to adopt the
principle in accordance with which the safety factor is to be determined
from the condition that the costs of the pavement together with the
repair costs of any possible failures shall be a minimum.

Due respect must also be taken to the frequency of the heaviest
wheel load for which the pavement is designed as well as to the intensity
and the composition of other traffic. It would thus appear motivated
to adopt a considerably lower safety factor when designing for wheel
load for example from an aircraft, which only uses an airport in excep-
tional cases, while higher safety factors can be motivated for example
on taxiways on airfields with uniform frequent and heavy traffic, as
for military airfields used for squadrons of heavy types of aircraft.
Extensive investigation of this problem has been carried out by the
United States military air force authorities [50, 58], An example of a
pavement, where a very high frequency of just the heaviest type of
traffic for which it is designed should motivate a higher safety factor,
is the Hällekis road mentioned earlier [22],

With consideration to the fact that the loading case of wheel load
together with maximum effect of temperature and shrinkage for which
design has been carried out is to be considered as exceptional, it can
however be motivated to allow a certain reduction of the otherwise
necessary safety factor. According to the Swedish Concrete Specifica-
tions, a decrease of safety factor by 30 % is permissible with stress
combinations of this type. A reduction as large as this would not appear
to be applicable in the pavement case, since at least the temperature
and shrinkage stresses of friction are normally frequent.

Thus, in every special case an attempt should be made to judge the
necessary value of the safety factor with due respect to the traffic condi-
tions and other conditions prevailing. By way of guidance, a safety
factor of 1.6 to 2.0 in normal cases would appear to be reasonable.
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722.3. Dynamic loading effect.
One condition which has not been mentioned in the discussion of the

safety factor is the occurrence of dynamic loading effect, which in the
cases in question can instead be added as a percentual dynamic supple-
ment to the traffic loading. This question is not yet investigated to
any great extent; only a few general viewpoints of importance when
judging this factor are given here.

Extensive tests and experience from military airfields in the United
States [58] show that in the centre sections of the runways, where take-
off and landing movements occur, there will be no dynamic loading-
effect at all but instead, in certain cases, the wheel load can be even
reduced since the wings carry part of the load. On the other hand
a lesser dynamic loading supplement of the magnitude of 10—15%
would appear to be motivated at the ends of the runways and on
the taxiways and disposal slabs where the aircraft taxi slowly or stand
still with the engines running.

As far as road pavements are concerned, the dynamic effect from
traffic is of considerably greater significance and depends primarily
on the unevenness in the surface of the pavement. Even with good
pavements a certain degree of unevenness must be reckoned on, this
giving impact supplements of between 20 and 40 %, and on pavements
in rather poorer condition values of up to 100 % would not appear to
be unreasonable.

722.4. The soil modulus C.
When designing a pavement it is necessary to know the soil modulus

C. The difficulties in determining this very inconstant soil factor have
earlier been discussed (Section 233).

The most reliable method of determining the C-value is to carry out
loading tests on pavement test slabs on a full scale, and this method has
been discussed in some detail in Section 233. With extensive pavement
works where the correct designing is of great economic significance,
this method — even if e xpensive — is well worth carrying out.

For less accurate demands, it is possible to estimate C on the basis
of loading tests with small rigid slabs directly on the soil surface,
so-called 1c-value determinations, whereby the diameter is usually 80
cm. According to the known relationship between the load P and the
depression w the following is obtained:

P
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where R = the radius of the slab. This method is very suitable for routine
examinations, for example in cases where variations in the properties
of the soil are examined along some considerable road distance. See
also [78].

With pavements on a strengthening subbase and where it is desirable
to compare the effect of v arious types of subbase layers under the pave-
ment, it is possible to quote the properties of the '•composite" soil with
an average modulus Cav, which can be calculated in accordance with
the methods given by ÖDEMARK [53, 54].

In many cases it is essential to use hand-book information1) and a
general knowledge of the types of soil in order to estimate a reasonable
soil modulus value at least preliminarily; this can otherwise be motivated
if it only concerns a pavement of a comparatively small extent. In
such cases a low C-value on the safe side should be selected; it is advan-
tageous to know that the influence of the C-value on the calculation is
comparatively small.

As a very general guidance for such an estimation, merely giving the
magnitude of the C-value, may be mentioned:

722.5. Constructonal design. Joints.
Normally pavements of this type are designed with single-reinforce-

ment in bottom. Along the free edges it can sometimes become essential
to place certain top reinforcement as strengthening. The concrete
should have a high flexural strength, at least of — 40 kg/cm2 — in
most of the pavement work carried out for airfields a standard beam
flexural strength 0^taiKl ^ 48 kg/cm2 has been specified.

For constructional reasons, wider pavements for runways or taxi-
ways must be cast in strips (sections), separated by longitudinal joints
at a distance from each other which is determined by the width of the
working machine (usually 5—7.5 m). The longitudinal joints can, as
shown in Fig. 72:1, be designed in one of two alternatives:

a) Reinforcement in bottom through the joint which transfers the
positive moment. The joint reinforcement is usually designed as
junction bars between the reinforcement on both sides of the joint

x) See, for example, the Swedish hand-book BYGG, volume II [54], section 338:224, page
786.

Gravel, closely compacted
Sand, closely compacted .
Sand, loosely compacted .
Clay

1000 —2000 kg/cm2

500—1000 kg/cm2

100 —200 kg/cm2

20 — 200 kg/cm2
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Longitudinal cast ^'pints

a- aspho/f sea/

Passing reinforcement
generally joining sfeel

aspho/f sea!

Dilatafion joints

Contraction joint

Movable dowel

Expansion joint

ha/f part asphalt cocrted

&
_t 1 î_

Elastic spacer
Movable dowel

Sleeve

Fig. 72:1. Various types of joints in reinforced pavements.

and should then be designed with a 40 % increased area and length
= double the normal junction length. Tongue and groove transfers
the shear forces. The joints in this case do not weaken the pavement
(see 324) and do not need to be specially calculated.

b) Completely moment-free joints without through reinforcement but
with tongue and groove, which transfers shear forces. The joint
edges must in this case often be strengthened (see Section 424) whereby
certain intensified reinforcement close to the joint is usually sufficient.

The type of lon gitudinal joint to be selected depends on a comparison
in costs between the troublesome working procedures for a) and the
generally rather greater consumption of steel in b).

In order to avoid excessively large temperature stresses caused by
friction, the runway is divided up by transverse joints designed as
dilatation joints, which allow for movement due to temperature and
shrinkage. The distance between these joints L completely determines
the magnitude of the frictional forces and when selecting the distance
between joints the costs and the disadvantages to traffic caused by
more frequent joints must be weighed up against the costs for increased
dimensions which result from the decreased negative ultimate moment
with a large distance between joints; the normal joint distance may be
25— 40 m. Two joint types of this sort occur, namely contraction joints,
which only allow contraction on adjacent slabs, and expansion joints
which also allow increase in length. Fig. 72:1 shows example of suitable
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joint design. It would appear to be advisable to design each third joint
as an expansion joint. It should be pointed out that the longitudinal
joints of type b) also function as contraction joints while, when using
joints as shown at a), longitudinal contraction joints must also be arran-
ged at the same minimum distance from each other as they have along
the pavement.

If possible free edges and joint edges should be designed without
thickening; the required strengthening should primarily be reached by
intensifying the reinforcement.

The pavement is usually laid out directly on the soil or subbase
after the surface has been levelled with a thin compressed layer of
fine sand. In order to decrease friction between the runway and the
soil and in order to obtain a better casting surface downwards, in many
examples of constructional work paper has been laid out on the pave-
ment base before casting. With the normal procedure of c asting directly
on to the surface of the sand, the author will recommend that the total
thickness h0 is reduced by 1 cm when calculating m', since the lower
casting surface will be somewhat uneven and mixed up with sand.

Before casting, all the reinforcement should be laid out on the pave-
ment base and fitted accurately at its correct height on clamps of concrete.

722.6. Calculation methods.
The calculation procedure when designing a single-reinforced pave-

ment is shown by the examples below. References to the required
formulae and diagrams have been specially marked, and some of the
points in the calculations have been supplied with more general
commentaries in the form of notes.

A. Loading due to single wheels
1. Calculation conditions
Load: Wheel load P =20 tons from single wheel, tyre pressure p — 6 kg/cm2

No dynamic loading supplement is added
Soil modulus C is assumed to be=100 kg/cm2 (normal clay soil)
Pavement thickness h0 is selected =16 cm

reinforcement covering layer = 3cm
max. distance between joints L = 50 m

Note
If the thickness selected shows itself to be less suitable (for example gives an

excessively low or high reinforcement percentage) the calculation must be carried
out again with another value. Calculations are often carried out for different
values of h 0, after which an economic comparison is made. The same thing applies
concerning the selection of the distance between joints L.

Material-, reinforcement of welded wire fabric Ns 50, concrete with a*tan(î =48 kg/cm2.
The safety factor is selected as being 1.8 (see 722.2).
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2. Negative ultimate moment and temperature effect

Note
When calculating the negative ultimate moment the author recommends that

the total thickness h0 is decreased with, by example 1 cm, if t he slab is cast directly
on the sand base. The reason is that in this case a somewhat uneven bottom surface
must be reckoned with.

The negative ultimate moment with a thickness reduction of 1 cm becomes

152

m'=0.9 *48 =1620 kgcm/cm according to formula (72:2)
6

Reduction for temperature stresses: if the soil friction fs is taken as being 1.5, the result is

Nf— 1.2 • 0.1 6 • 1.5 • 50 = 14.4t/m

o'lnt~ 7 kg/cm2 according to formula (64:1)

152/ 144\
Amt— —"I 7+ 1.7 • "y^rj =870 kgcm/cm according to formula (72:2)

wred = 1620—870=750 kgcm/cm

3. Designing the interior of the slab

31. Load distribution and radius of rigidity

The load is assumed to be circularly distributed

20 • 10s

Loading radius c= |j =32.5 cm
6 - t t

When calculating the flexural rigidity of the slab it is assumed that ^ =0.3 %, rein-
forcement of 0 6—7, h =12.3 cm (average value).

The flexural rigidity can be estimated in a simple way with the help of fig. 72:2

2.1 • 108 12.3 3

D— 0.37= 8.0 • 106 kgcm2/cm
15 12

Note
After the required reinforcement has then been calculated in 33, // is altered

where necessary, and recalculation is carried out from here onwards.

3
, /2 • 8.0 • 106

Elastic radius of rigidity 1= |j —— =54 cm in accordance with formula (72:1)V
c 32.5

Relative load distribution a = — = =0.60
I 54

32. Ultimate moment

In accordance with the design diagram fig. 32:14 B
is

m-\-m' c
=0.081 for — =0.00

PuIt I
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Fig. 72:2. Diagram for the calculation of section values for single-reinforced concrete
slabs in Stage II (n = 15).

If Pnl t=sP and m' =nije^ are inserted, then

(M-F-M')REQ =1 .8 • 20 • 103 • 0.081= 2900 kgcm/cm

wieq =2900—750= 2150 kgcm/cm

33. Reinforcement

The required reinforcement can suitably be calculated in accordance with the n-free
method, for example according to GRANHOLM [21], page 183, whereby ar—a§ 2=5000
kg/cm2, (Tc=200 kg/cm2, thus:

27
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12.62

200=15; c= 1.035
2150

2150 • 100
Ar— —— 1.035 = 3.6 cm2/m

12.6 • 5000

Note
Here the effective depth is taken down to the bottom reinforcement layer, which

is placed along t he runway. In the upper layer it should be possible to select the
same reinforcement in spite of the lesser depth, motivated by the lower temperature
effect and thereby higher value of m' in this direction, on condition that the longi-
tudinal joints are made reinforcement-free. Otherwise, closer spaced reinforcement
is inserted in the upper reinforcement layer

The reinforcement corresponds to ,«= 0.29 %, which agrees so well with the assumption
made according to 31 that no recalculation need be carried out.

Control of the stress in the reinforcement due to temperature and shrinkage, if a through
crack appears, gives

Nt 14.4 • 103
ocr= — = =4000 kg/cm2 < rrn 2

r Ar 3.6 0 - 2

Thus, select for example the reinforcement

0 6.8 c/c 100 mm, Ns 50

34. Control for stamping-out
The selected slab thickness h0=16 cm shall be controlled for stamping-out according to

formula (33:2)
whereby the factor Z2 for the average soil pressure under the loading area can be estimated
according to the diagram fig: 22:6

c c+ Ä0
— = 0.60; = 0.89; Z 2 X 0.10
1 I

Pstamp [!—^ • 0.89 2 • 0.10]=1.4 • 0.9 • 48 • 16 (2 • 32. 5+16)
Pstamp = 105 000 kg > s • P

4. Designing the joints
The joints are made moment-free without through reinforcement. The edge zone is

strengthened with intensified reinforcement if necessary.

41. Load distribution and radius of rigidity
20

With the joint case the load is pult=1.8 •— =18 tons, distributed over a semi-circle

with radius c=32.5 cm. Assume ,14 = 0.35 °/0 (somewhat increased joint reinforcement)

2.1 • 106 12.3 3

T)= • • 0.4 2= 9.1 • 106 kgcm2/cm
15 12

3

2 • 9. 1 • 106
I= 1/ =57 cm

100

— =0 .57
I
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42. Ultimate moment
According to 2, if i t is assumed that no top reinforcement is necessary, then

m'=1620 kgcm/cm at right angles to the joint
m'e =750 kgcm/cm along the joint

Note
Since the joint here is designed without through reinforcement, then there is no

effect of t emperature in the direction at right angles to the joint and an unreduced
m'-value can thus be reckoned with.

In accordance with the designing diagram fig. 42:11 A

m' 1620 c
= 0.09 and — =0.57

P 18 • 103 I
me +m[

=0.175
-Pult

(we + T Og)r 0q= 18 * 10s * 0.175=3150 kgcm/cm

me— 3150— 750=2400 kgcm/cm

33. Reinforcement
1 12.62 2400 • 100

— = 200=13 A r = - 1.042 = 4.0 cm2/m
m 2400 12.6 • 5000

This corresponds to /^äO.33%, no recalculation.
The difference compared with the normal reinforcement in the centre of the section

is insignificant. Over a width which approximately corresponds to the height of the failure
roline triangle -y- x 1.3—1.5 (see table 42:1), i. e. approx. 1 m, the difference corresponds

to a reinforcement with a cross section of approx. 0.4 cm2. This reinforcement can simplest
be added in the form of a pair of e xtra edge wires, for example

joint reinforcement extra edge wires 2 0 6.8
Note

If instead the longitudinal joints had been in the form of joints with through
reinforcement ( junction bars) as shown in Fig. 72: 1, alternative a), then no special
calculation of t he joints had been necessary. The junction bars are given an area,
if they consist of Ks 60

50
^iJomt _ i_4o . 3_e • = 4.2 cm2/m,

r 60
for example 0 12 c/c 250, length 2 • 35 • 1.2 = 85 cm

5. Designing the free edges
51. Load distribution and radius of rigidity

The free edges are designed for circularly distributed load tangent to the edge.
Here it is assumed that /x=0.90 %

12.33 2.1 • 106

D= 0.84= 18.2• 1 0® kgcm2/cm
12 15

3
. , 2 • 18.2 • 106

1= 1/ = 71 cm
100

— =0.46
I
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52. Ultimate moment
In the same way as when designing the joints, the design diagram gives fig. 42:11 B

m' 1620

P ~
= 0.04 5 and — =0.46

36 • 103 I

me + m

ult
= o . i s ;

(ME+M^)RÊ =36 • 103 • 0. 187= 6750kgcm/cm

me=6750—750=6000 kgcm/cm

This corresponds to rather more than double the moment in the interior. It can here be
suitable to insert double edge mesh as well as extra re inforcement strip along the edge.

In this case, for the edge mesh reinforcement according to GRANHOLM [21] page 55

0 6.8 c/c 50= 7.25cm2/m; /u =
7.25

12.6
= 0. 57 % ;P= 0.5'

5000
100 • 2 00

= 0.14

1 / 0.14
m= • 7.25 • 500 0 • 12.6 I 1 ] =4250 kgcm/cm

100 "

A comparison with the value calculated above can make an estimation of an edge
strip moment of M =2.0 tm reasonable

Then, in accordance with the formulae (42:24 b) and (42:25 b)

4250 + 750
tg2 oc = =3.1

1620

1.5 • 0.46 • 0.5 68 (1 + 0.425 • 0.568 ) +
3 2 • 105 1

71 36 •103 ITT
0.28

j 3 r0

~ ~8 l 2.
1 / 2.88

1 + - - 1
3.46 ,.)]

0 .5 J

0. 2 8 1 — 0.321

By successive approximation (rapid convergence) is obtained

r
°— = 1 . 6 0
I

and then, in accordance with

P
me + me ~

With selected values for mp and m

3 2.88 \

2.88
1.76 {1 — 0.28 • 1.60 2 I 1 — I 1+ 1.76

3.46

the formula (42:24 a)

1.76 } =0.1 39 P

4250 + 750
P= = 36 ton

0.139

is obtained, this agreeing with the actual value and the value assumed above -Pu]t = 36 tons.
It is thus possible to select M— 2.0 tm.
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With an active concrete width for the edge strips3 • h0 one obtains, if the edge strip
reinforcement consists of deformed bar Ks 60

1 3 • 16 • 12.62 2 • 105
— = . • 200 = 7.5 A.= 1.077 = 2.8 cm2

m 2 • 105 12.6 • 600 0

Control of the edge zone flexural rigidity: over a width of 1= 71cm

7.95
^edge==2.8 + 0.71 • 7.25 =7.95 cm2 , u= =0.90%

r 71 • 12.6

This corresponds to the assumed value and no recalculation is necessary.
It is thus possible to select for example

edge reinforcement 0 6.8 c/c 50 mm Ns50 + 20 14 Ks 60

Note
Obviously the case of loading on a free edge can also be regarded as being such

a rare case of loading that the safety factor can be reduced considerably. From this
viewpoint it can be unnecessary to have any edge strengthening beyond that inserted
along the joints.

6. Control of joint intersections

Note
With this case of loading with the loading area over a joint intersection, the

calculation according to 427 agrees with the elasticity theory (Section 41). With
respect to the fact that in the case of failure in the top there are practically no
stresses at all in the reinforcement, then a considerably lower safety factor is
satisfactory, equal to that otherwise prescribed for calculation according to the
elasticity theory (se section 44). A safety factor of approx. 1.8—1.4 would appear
to be quite sufficient in any case.

In accordance with the diagram fig. 41:4
3

&=0.166

4

1004
= 0.38

8 • 106

8 • 10« c
l]c= 1/ =68 cm; — =0.48

0.38 Ijç

m~
=0.06 m77 = 0.06 • 20 • 103=1200 kgcm/cmp n

1620
Safety factor s = .=1.35

1200
which would appear to be quite sufficient.

B. Loading from an aircraft undercarriage with tandem twin wheels.
1. Calculation conditions

The same runway is to be checked for an aircraff load with a wheel loading=40 tons,
distributed over tandem twin wheels with four loading areas as shown in Fig. 72:3. Tyre
pressure p= l kg/cm2.

Loading radius for the four loading areas c=
40 • 103

=21.3 cm.
4 • 7 • 7i
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âOcw

Fig. 72:3

2. Load on the interior of the slab

The ultimate load is calculated in accordance with diagram in fig. 32:14

x=25 cm c= 2.36 £ = 59cm

d = 80cm

According to A 31 is I = 54 cm. Thus

c d
— = 1.09 ; — = 1.48
I I

m + m'
= 0.037

Pult

With m + m' = 2900 kgcm/cm according to A 32, then

2900
-Pult = =78.5 tons

0.03 7

Safety factor s = = 2
40

3. Load on a longitudinal joint {Fig. 72:4)
According to A 42, the joint edges are designed so that

me + m'e = 2900 kgcm/cm

m' = 1620 kgcm/cm

and with an extra reinforcement 2 0 6.8 = 0.72 cm2, which all gives

0.72 • 100
H = 0.33 +

3 • 16 • 12.6
= 0.45 %

p = 0.45 • 10~2 •
5000

= O.ll
200

according to [21]



Momenffree joint

Fig. 72:4

With the load located as shown in the figure and Z = 57 cm according to A 41 then

0.70
I

25 y 40
= 0.44: — =

57 I 57

The soil reaction pressure constants can be estimated thus:

t = 1.5 I + 3 • 0.44 I = 2.81 l~

tic = 3.0 Z + 0.44 I = 3.44 I

yk = 0.29
according to 427

The ultimate load — is calculated according to 427, formulae (42:25 c) and (42:26)

(the approximate formula (42:24 a) cannot be used here since the load distribution is
too large) by trial and error and successive approximation.

P
Assume tg2 oc = 2.9 -—• = 50 tons

2

— - 1.90 ; —
I I

1 P
2900 =

4 2

1.5 • 0.59 (0 .44 + 0.70 • 0.59) +
3 0.44 • 105 1

57 50 • 103 2.9

0.29 ^1 —
1.90

2.81

0.44 \ 4
1 + I 1.7 — — 0.29 • l.{

1.88 / 3

2.81
1 + * L7

3.44

3 l.i

8 2.81

1620 =

5 1.88

16 3.44

1 F il
4 T H
3 1.88

8 3.44

• } )1.7 I • 2.9 > = 0.0383 P; P = 76 ton

0.44
0.59 0.29 • 1.?

3
[(.-±±51
Ly 4 2.81

= 0.0156 P; P = 104 ton

= l.f
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P fons

itfoc.

- ^

itfoc.itfoc.itfoc.
2,0 z? 2,V- 2,6 2,3 3,0

Fig. 72:5

tg2 oc = 2.1 -—- = 50 tons
2

Assume

In the same way the following are obtained

— = 2.02
I

2900 = 0.0313 P;

1620 = 0.0189 P;

P = 93 tons

P = 86 tons

By interpolation between these values, for example as shown in Fig. 72:5, the following
at last are obtained

P = 90 tons tg2 a =2.25

If these values are checked by means of the formulae above, then

= 1.99

Thus

I

2900 = 0.03 21 P;

1620 = 0.0180 P;

Pujfc = 90 tons;

P = 90 tons

P = 90 tons

90

70
= 2.2

V
4. Load on a transverse joint. \

With the load located as shown in Fig. 72:6, in the same way as above, the following
are obtained:

V 25
0.70 — =

I 57

x 40

I ~ 57

t = 1.5 I + 3 • 0.70 I = 3.60 I

tk =3.0 Z + 0.70 I = 3.70 I

yk = 0.22

With the same procedure as before, the result will be

79

0.44

Pult =79 tons
40

= 2
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Momentfree ioinf'

Fig. 72:6

5. Load on a free edge.

According to A 52 the following apply to the free edge

me -f- m' e = 5000 kgcm/cm

m' = 1620 kgcm/cm

M = 2.0 • 105 kgcm

With the load located as shown in Fig. 72:7 in the same way as above, since I = 71 cm,
according to A 51 the following are obtained

x 46.3 y 40
— = = 0.65 — = = 0.56,

I 71 Z 71

and the ultimate load is obtained after the calculating procedure as above

69
-Pult = 69 tons s = —— = 1.7

40

This safety factor is rather lower than that for which the rest of the runway has been
designed, but with respect to the fact that this case of loading is particularly exceptional
then the result may be accepted.

Free edge

Fig. 72:7
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The result of the calculations under B thus show that the loading of
an aircraft undercarriage with a load of 40 tons, distributed over four
loading areas, does not produce a more dangerous case of loading than
a single load of 20 tons; as a matter of f act the safety factor with a load
on the interior of the runway and on the joints is higher with the larger
load than with the smaller. This result is, on the whole, generally appli-
cable when comparing the effect of loads from single and combined
loading areas.

723. Viewpoints on the design of structurally mid-depth reinforced
pavements (including continuous reinforced pavements)

723.1. Principles and loading assumptions.
The type of pavement considered here would appear to be economical

only in such cases where the soil itself or the subbase has such a good
load-carrying capacity that a rigid pavement is not necessary from
the point of view of load-carrying, and the pavement can then be made
very thin. This demands a high value for the soil modulus, usually at
least 500—1000 kg/cm2.

The viewpoints in this Section 723 are primarily concerned with thin
mid-depth reinforced pavements with dilatation joints, that is to say
pavements of the type included in the Arlanda tests. It should, how-
ever, on the whole also apply to jointless, so-called continuous reinforced
pavements. Since there appears to be a lack of tests and practical
experience from these types of pavement, then these viewpoints should
be considered more in the form of guidance for continued tests than as
specifications for practical design.

This type of pavement thus consists of a relatively thin concrete
slab with reinforcement in the centre plane. The calculating methods
are based on the elasticity theory, whereby the pavement, under the
effect of flexural loading, can be considered as a reinforced concrete
slab with an effective thickness equal to half the total thickness. The
flexural rigidity is calculated for this effective depth in accordance
with Stage II and with n — 15.

Pavements of this type with dilatation joints are designed for the
condition that the stresses in the reinforcement due to wheel load
together with temperature and shrinkage give the required safety
concerning the yield point oyrie

o r = s oîraffic + oîemp < ofe (72:5)

where
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^traffic _ ^.jle rejnforcement stress due to the largest wheel load occurring
according to the elasticity theory.

0temp —the reinforcement stress due to temperature and shrinkage,
whereby it must be assumed that the whole of the normal
stress Nt is taken up in the reinforcement Ar in the crack section
while the influence of warping in this case is negligible, since the
flexural rigidity of the slab is very small and the crack spacing
is small. Thus

Nt
0temp = _L (72;6)

r

where Nt is calculated according to (64:1).

s =the safety factor for wheel load.

Continuous reinforced pavements may be designed for the condition
concerning the reinforcement stress longitudinally (see Section 613)
that the stress contributions corresponding to the terms in the equation
(72:5) do not separately exceed the yield point:

ötemp

s otrafffc J =
179-7\

Generally the influence of temperature and shrinkage is thereby the
deciding factor, and the longitudinal reinforcement can thus be selected
in accordance with the condition (64:3), whereby an addition of 20 %
for "hyper-strength" in concrete may be reasonable. If the strength for
pure tension ot is estimated from co = ofjot= 1.7, according to the test
results in Section 63, thus the reinforcement can be calculated from

/« > 0. 7 • (72:8)

after which the wheel load stresses must be checked in accordance with
the elasticity theory. Transversely the design is completely in accordance
with (72:5). Moreover crack formation is checked according to 64,
formula (64:4).

When selecting the safety factor s for wheel load stresses a relatively
high value should be taken for these types of pavement compared with
that which is otherwise recommended when designing in accordance
with the elasticity theory. The author suggests a safety factor = 1.8— 2.
This is mainly motivated by the fact that the influence of very local
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unevenness in the subgrade, for example in the levelling layer, gives
under wheel load a comparatively large supplement to the reinforce-
ment stress, because a slab of this type has only a very limited capacity
to bridge over such local unevenness in the soil in the way that a more
rigid slab cando. Anextra increasein the safety factor canalso be motivated
by the fact that the variations in thickness or position of reinfo rcement
result in larger percentual deviations than in the case of a thick slab;
Table 53:9 shows however that such variations in the dimensions have
a relatively small effect on the stresses.

Concerning possible dynamic effect, the same viewpoints apply as
for the bottom-reinforced slabs. A dynamic loading effect however is
of less significance wi th this type of sla b, since the wheel load stresses
on the whole here are small.

The soil reaction pressure is large; maximum soil reaction pressure
can be estimated according to the elasticity theory, the diagram in Fig.
22:6 B. A check must be carried out to insure that this pressure is
lower than the failure strength of the soil itself with a satisfactory
margin of safety.

723.2. Design.
Pavements of this type should be constructed with a relatively thin

slab of 6—10 cm thickness and with mid-depth reinforcement. The
stresses are usually lower the thinner the slab is made. From the point
of view of construction, however, it may not be possible to use less
reinforcement than approx. 0 5 c/c 100 mm, and this reinforcement is
suggested as being the specified minimum.

Since the reinforcement located in the centre plane of th e slab serves
as flexural reinforcement for both positive and negative moments, then
no high demands are made on the concrete from the point of view of
strength. On the contrary, it is an advantage to have a low flexural
concrete strength which implies closer crack distribution and, concerning
the joint-free type, also a lower normal force Nt due to temperature
(see (61:8)). The demands made concerning resistance to wear and
resistance to frost would generally appear, however, to demand the use
of fairly high quality concrete. The reinforcement used should be the
type with good bonding, deformed bar or wire fabric with small mesh
spacing and preferably made of deformed wire.

It should be an advantage with this type of concrete pavement
to increase the distance between the transverse joints considerably,
up to perhaps 60 — 80 m, which can be made without sacrificing the
demand for good economy. The desire to increase the distance
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between the joints more and more shows the way to the continuous
design with no transverse joints whatsoever.

Concerning the joints and the design of the joints in the cases in
question, the same viewpoints and principles apply as those described
in connection with the pavement with bottom-reinforcement. No slab
thickening or even strengthening of the reinforcement along the joints
is necessary with this type of s lab. On the free edges, a certain increase
in the reinforcement can possibly be actual.

With this type of pavement, it is not necessary to make any strict
demands for accuracy concerning the thickness or the position of the
reinforcement, since this — as shown earlier — has a very small influence
on the stresses in the slab.

723.3. Calculation methods.
The calculating procedure when designing a thin pavement is shown

by the examples below, in which references to the required formulae
and diagrams have been marked.

A. Pavement with transverse joints
1. Calculation conditions
Loading-, wh eel load 40 tons from single wheel, tyre pressure p = 8 kg/cm2

Soil modulus C assumed = 700 kg/cm2

(sandy soil, comparatively well packed, permissible soil reaction pressure approx.
8 kg/cm2)

Pavement thickness h0 is selected = 8 cm
max. distance between joints L = 50 m

Material: reinforcement of welded mesh Ns 60 with o"0 2 = 6000 kg/cm2

2. Design
21. Load distribution — calculation analogous with 722:6 A 31

I / 40 • 103
c — y = 40 cm

\ 71 ' 8

Assume that the necessary reinforcement is 0 6 c/c 100 =2. 8 cm2/m

2.8 43 2.1 • 106
u = = 0.70 % Ei = -0.70 = 0.52 • 106 kgcm2/cm

4 12 15
3

1 / 2 • 0 .52 • 106 c 40
I = / = 11.4 c m: — = = 3.50

r 700 i 11.4

22. Stress control
The influence of wheel load is calculated according to the diagram fig. 22:7

TO traffic _ 0.0052 • 40 • 103 = 208 kgcm/cm
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The stress according to Stage II

x — 0.3 6 • 4 = 1.44 cm according to

208 • 1 00

fig. 72:2

traffic

2.8 4 —
1.44

2100 kg/cm2

The influence of temperature is calculated according to

Nt = 1.2 • 0.08 • 1.5 • 50 = 7.2 t/m

formula (64:1)

Ttemp. __ 7.2 • 103

2.8
2500 kg/cm2

Design critérium according to
gives, if the safety factor is put as = 1.8

or = 1.8 • 2100 + 2500 ä 6000 kg/cm2

The assumed reinforcement can be accepted.

23. Control of soil reaction pressure

According to the diagram

formula (72:5)

fig. 22:6 B

40 • 103
/pllldA

11 .4 2

which is permissible in this case.

0.026 = 8 kg/cm2

24. Reinforcement

Alternative 1, reinforcement-free longitudinal joints (Fig. 72:1, alternative b). In this
case the temperature stress transversely is very small and minimum reinforcement
can be used.

Reinforcement: mesh Ns 60 0 6 c/c 100 longitudinally
0 5 c/c 100 transversely

Alternative 2 doweled longitudinal joints (Fig. 72:1, alternative a). The joint dowels
are calculated only for temperature. With a 50 m wide runway, if deformed steel
Ks 60 is used, then the following is obtained

1.4 • 7.2 • 10s
^dowel _ _ cm2/m — 0 8 c/c 300 mm

r 6000

Reinforcement: mesh Ns 60 0 6 c/c 100 in both directions
longitudinal joints with Ks 60 0 8 c/c 300 mm

B. Continuous reinforced pavement
1. Calculation conditions
Loading and soil the same as in A
Pavement selected 8 cm thick, completely without transverse joints
Material: reinforcement of cold-drawn deformed bars Kam 90 with aq 2 = 9000 kg/cm2

concrete with gStand = 48 kg/cm2
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2. Design
21. Longitudinal reinforcement

The reinforcement is estimated from formula 72:8

48
/^min — 0.7 • 9000

= 0.38 %

Select, for example, reinforcement 0 6 c/c 90 mm
The crack width can be estimated according to formula 64:4 a

302 0.6 • 1002

Ô Ä (1.0 ^ 1.3)
120 4 • 0.402 • 2.1 • 106

Ä 0.03 -f- 0.04 cm,

whereby the maximum bond stress has been assumed to be r™ax = 120 kg/cm2.
This crack width may be accepted. The longitudinal reinforcement thus will be

22. Control for wheel load stress.
In accordance with A2, wheel load alone gives a stress in the longitudinal rein-

forcement of (jtraffic = 2000 kg/cm2.

23. Transverse reinforcement
The calculation here agrees completely with the calculations under A, and the design

critérium is adopted according to formula 72:5
Different results are thus obtained also here if the longitudinal joints are designed

with or without through reinforcement.

Kam 90, 0 6 c/c 90 mm



73. Economical Viewpoints

In order finally to clarify to some extent the economical advantages
to be derived from the types of pavement treated in this paper, the author
has devoted this section of the paper to some cost calculations for pave-
ments according to various alternatives as applied to some practical
pavement problems. Comparisons are made between the thick, unrein-
forced pavement, the normal, bottom-reinforced pavement and (in
suitable cases) the thin, mid-depth reinforced pavements, and the cases
treated concern pavements for airfield runways, partly on very poor
soil, partly on good soil, as well as pavements for roads of the highway
type. The comparisons only concern the cost of the concrete slab it-
self. The calculations are carried out in a simple way on the basis of unit-
prices, these in their turn being calculated from a summary of the costs
for pavement work carried out for the Swedish Air Force during the years
1956 —59; the prices applied consist of "balanced" average values for
unit-prices from a large number of work. These unit-prices as well as
other conditions for the calculation are shown in Table 73:1, which gives
the result of the cost calculations.

Judging by the cost figures in the table, the unreinforced pavement
is 'particularly unfavourable from the economical point of view. This
applies to the cases with both bad and good soil, in the latter case it
is even more accented. The cost for the structurally bottom reinforced
pavements are about 55—70 % of the costs for the unreinforced pave-
ments. The lowest price is arrived at for the thin, mid-depth reinforced
pavements with joints, while the joint-less continuous pavements are
a little more expensive.

It is, however, obviously clear that the result of cost calculations of
this type must be judged with a great deal of caution. The unit-prices,
where it is possible to fix such prices at all, depend to a great extent
on periodical alterations in the price of raw material and labour costs
as well as on local conditions and the extent, planning and organization
of the work; it is characteristic in this respect that the collocation of
cost specifications from which the unit-prices in Table 73:1 have been
derived, show variations in total costs for similar pavements of up to
almost 80 %. However, it is on the basis of simple calculations of this
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Table 73: 1. Estimated costs for various types of pavement for airfields and roads.
Calculations carried out in accordance with the directions given and examples quoted

in Section 72. Calculating method and safety factors:
for plain concrete pavements: elasticity theory s = 1.0

(for wheel load only s — 1.25)
for bottom-reinforced pavements: ultimate load theory s = 1.70
for mid-depth reinforced pavements: elasticity theory

wheel load s = 1.80
temperature s = 1.0

Unit prices for cost estimation:
Mould, adjusting subbase, casting, compressing and levelling

of concrete 5: 50 Sw. Cr./m2

Cost of concrete 70: 00 Sw. Cr./m3

Reinforcement cost (welded wire fabric Ns 60) 1: 00 Sw. Cr./kg
Joint costs:

longitudinal joint 0: 50 Sw. Cr./m2

angle alteration joint (unreinforced slab, c/c 5 m) 5: 00 Sw. Cr./m
contraction joint 16: 50 Sw. Cr./m
expansion joint, c/c 80—100 m 20:00 Sw. Cr./m

Type of pavement, loading,
C-value

Distance
between

transverse
joints

m

Total
thickness

K

cm

Rein-
forcement

kg/m2

Cost

Sw. Cr./m2

AIRFIELD PAVEMENT, loading 60
tons, 0 90 cm

C = 150 kg/cm2

Plain concrete pavement 25 50 - 42: 50
Bottom-reinforced pavement 40 18 12.4 31: 45

20 10.5 30: 95
22 8.9 30: 80

C = 1 000 kg/cm2

Plain concrete pavement 25 41 - 36: 30
Bottom-reinforced pavement 40 14 4.70 20: 90

12 4.20 19: 10
Mid-depth reinforced pavement 40 8 3.15 15: 10

80 8 4.25 16: 10
Continuous pavement oo 8 5.20 16: 80

ROAD PAVEMENT, loading 5 tons
with 80 % dynamic,
suppl, 0 40 cm.

G — 1 000 kg/cm2

Plain concrete pavement
Mid-depth reinforced pavement

Continuous pavement

25
40
80
oo

18
8
8
8

3.60
4.55

5.20

20: 10
15: 65
16: 40
16: 80

28
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type that the designer must judge the most economical type of
structure, and even comparatively large internal variations between the
various unit-prices only have a comparatively small effect on the rela-
tionship from an economical point of view between the types of pavement
compared.

One condition which has a more marked effect on the final result of
a cost comparison, is the selection of the safety factor for the various types
of pavement. Particularly difficult here is the selection of the internal
relationship between the safety factors when calculating the various types
of slab in accordance with the elasticity theory and with the ultimate
strength theory respectively. In the examples shown in the table, the
safety factors have been selected in accordance with the general view-
points presented in Section 72. A definite idea of the essential safety
factor in various cases can, however, only be obtained on the basis of
experience from test roads and from normal traffic on roads with pave-
ments of the types in question. The same applies to another question
which has equally large economic significance for the pavement, namely
the maintenance and repair costs and the lifetime of the pavement on
the whole. The only thing that can be said here is that damage due to
crack formation and other causes should probably be less extensive in the
case of thin reinforced pavements than in the case of t hick unreinforced
pavements. The limited experience available from pavements actually
built also show this tendency.

It is thus obvious that the new types of reinforced pavements, for
which calculating methods have been presented in this thesis, can imply
large economic profit concerning constructional costs. As far as can be
judged from tests carried out on test pavements and from the limited
experience from pavements actually constructed, these types of pavement
function well from a technical viewpoint. It is however essential to
obtain further experience from traffic tests on experimental stretches and
from pavements works, particularly in the scope of road-building, to
get answers to the many questions not yet solved concerning the
practical use of structurally reinforced concrete pavements.



8. Summary and Bibliography

81. Summary

This thesis concerns the results of a n investigation concerning manner
of f unction and calculating methods for concrete pavements on airfields
and roads with flexurally rigid active so-called structural reinforcement.

The Introduction (Part 1) gives a review of t he problem. The enormous
development of roa d and air traffic in recent decades has shown that the
unreinforced or weakly crack-reinforced concrete pavements hitherto
used have insufficient load-carrying capacity, and this makes efforts to
find other types of design essential. It is then obviously convenient to let
the large positive flexural moment under the loading wheel b e taken up
by a fairly heavy reinforcement in the bottom of the pavement. It is then
also suitable to utilize the property of the reinforced concrete slab for
levelling the moments during yield in the reinforcement, and the slab can
thereby be treated in accordance with the principle presented by
K. W. JO HANSEN in his yield line theory [31].

In Part 2 the behaviour of the reinforced concrete pavement within
the elastic stage is s tudied.

In Sections 21 and 22 there is a presentation of the elasticity theory
for slabs on elastic subgrade primarily in connection with methods
quoted by HOLL [29, 30], It is thereby assumed that the soil behaves
both as a resilient bed, a so-called resilient subgrade, and also as an elastic
semi-infinite medium, an elastic subgrade. Primarily the infinitely extend-
ed slab is treated, but also slabs with finite extent are discussed
and certain results are deduced. The results of t he theoretical treatment
are summarized in 225 in the form of form ulae and diagrams concerning
depression, soil reaction pressure and flexural moment both in the loading
centre and in points outside the loading area.

In the following Sections 22 to 25 a description is given of tests
carried out in the form of model tests within the laboratory of the
Department of Structural Engineering and of full scale tests under
laboratory conditions. Section 23 concerns the difficulties encountered
in test analysis particularly concerning the determination of the flexural
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rigidity of the reinforced slab as well as the subgrade constants for the
natural soil. A theory is also presented for the estimation of t he influence
on the ultimate load of the membrane stresses in tests with the thin
model slabs. Section 24 describes the extensive series of t ests on model
slabs which were intended to provide the basis for a systematic study of the
problem of r einforced pavement slabs. The test slabs were 2 — 8 cm thick
and rested on a bed of porous wood fibre board, and during the test
series variations were performed concerning the hardness of the subgrade,
the thickness of the slabs, the strength of the concrete, the amount of
reinforcement and the conditions of loading (single loading, twin loading,
mobile load and repeated loading). Section 25 contains a description of
loading tests on two full scale slabs, these tests having been carried
out under laboratory conditions on clay soil in Gothenburg. During these
tests accurate measurements were also made of the pressure between
the slab and the soil by means of pressure cells of acoustic type.

The results from the tests were analyzed according to the elasticity
theory, and good agreement has been proved between the test results
and the theory concerning depression and soil reaction pressure as well as
concerning flexural moment, in the latter case however only below yield
point in the bottom reinforcement. In the case of higher amount of loading
it was obvious that the elasticity theory can not be applied in this respect;
agreement was thus very poor between the ultimate test loads at crack
formation (or at yield point in the reinforcment for double-reinforced
slabs) in the top surface and the corresponding calculated loads from the
elasticity theory.

Part 3 concerns the reinforced concrete pavement from the viewpoint
of the yield line theory, and an ultimate strength method is presented
for the calculation of the load-carrying capacity of t he pavement which,
according to the opinion of the author, should be assumed to be equal to
the load that gives rise to cracks in the top surface for a single-reinforced
slab and yield in the top reinforcement for a double-reinforced slab. Itwas
hereby assumed with reference to the results from the tests in Part 2,
that the soil reaction pressure can be estimated according to the elasticity
theory also if t he slab has come into the yield stage and functions accord-
ing to the yield line theory.

In accordance with these principles a study is made in Section 32 of
loading on the interior of a slab with single load, twin load and load
distributed over arbitrary areas. A discussion of the influence of the
simplifications and approximations introduced when deriving the
ultimate load formulae shows that such approximations lack significance
on the whole. In Section 326 there is a summary of formulae and dia-
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grams for the design of reinforced pavements in accordance with the
ultimate strength theory.

In Section 33 the theoretical results thus derived are applied to the
laboratory tests which have earlier been treated in accordance with the
elasticity theory. The analysis shows that agreement between theory
and test is as good as the unreliable test conditions allow.

Part 4 concerns the cases of loading where the load is operating on a
free edge or on a joint which cannot transfer flexural moment.

In Section 41 is given a review of the results by WESTERGAARD applicable
to this case on the basis of the elasticity theory, and these results are
summarized in diagrams showing depression and moment caused by a
semi-circular load or a circularly distributed load on a free edge or on a
corner (joint intersection).

Section 42 deals with the loading cases in question from the viewpoint
of the ultimate strength theory with the same assumptions concerning
the soil reaction pressure as those made when treating the case with
the load on the interior of the slab, and formulae are hereby derived
for the calculation of ultimate loads and ultimate moments in the case
of loading on a free edge when the load is semi-circularly distributed,
circularly distributed or has an arbitrary load distribution area. The
influence of various types of edge strengthening (thickening or extra
reinforcement) has also been observed. The results of the theoretical
treatment are summarized in 427 in the form of f ormulae and diagrams
for the design of fr ee edges and joints for reinforced concrete pavements.

Section 43 describes the tests with load on free edges carried out on
one of the two full scale slabs which were made and tested on clay soil
in Gothenburg. The slab was originally circular, but after the testing
with a load in the centre was finished, it was completed to a square
form by casting all around, and the four edges were designed with
various types of thickening and with strengthened reinforcement. The
results of the four test loadings show relatively good agreement in the
test analysis with the elasticity theory concerning deformation, and
agreement is also good within the elastic stage concerning the moments
for the unstrengthened edge. Concerning moments and loads for the
strengthened edges as well as the ultimate loads for all four edges at
definite failure due to crack formation in the top, agreement with
the elasticity theory is very poor. In these last-mentioned cases, however,
the ultimate strength theory gives results which agree rather well.

A summary of viewpoints concerning this case of loading and general
viewpoints concerning arrangement of edge and joint reinforcement
are presented in Section 44.
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Part 5 describes three series of field tests which were carried out in
connection with planned work at various airfields. These tests have
been carried out in co-operation with the Swedish State Road Institute
and the Stockholm Airport Building Committee.

Section 51 concerns tests with a series of test slabs which were laid
out in connection with preliminary investigations for a projected airfield
at Upplands Väsby. Section 52 concerns a series of tests carried out in
connection with the extension of Norrköping airfield in 1948. In both
these series of tests, the test slabs were carried out with the same thickness
and with the same design as it was planned to use for the future pavement
work. During the Norrköping tests, experiments were also carried out
directly on a pair of completed taxiway pavements. Test loadings were
made both on the centre and on the edges of the test slabs. The results
of the tests have been analyzed both according to the elasticity theory
and according to the ultimate strength theory, and the results give further
confirmation to the theories and calculating methods presented earlier.

Section 53 contains a description of a series of loading tests carried
out on two test pavements which were laid out on the final subbase for
the first planned east-west runway at Arlanda airfield. One of these test
pavements was reinforced in the bottom in the normal way. The other
which was laid out on a part of the runway where the subbase and the
soil had a particularly good load-carrying capacity, had the form of a
very thin structure with a slab thickness of 8 cm and with the rein-
forcement in mid-depth position. This type of pavement was intended
to be a replacement for a non-rigid asphalt pavement which, from the
point of view of load-carrying, had been satisfactory on this part of the
runway. Both the test surfaces were loaded in the centre as well as on
and beside the joints, which were arranged in the test surfaces, and also
(concerning the thin pavements) on the free edges. An analysis of the
test results concerning the thicker pavement showed that the conditions
for the ultimate strength theory with this very good subgrade was only
partially satisfied and that the reinforcement yield in the bottom cracks,
which is a condition for the applicability of the yield line theory, only
occurred to a very small extent with loading on the centre of t he slab and
did not occur at all with loading on the joints. In spite of t his, however,
the ultimate strength theory gives relatively good agreement with the
test values. As far as the thin mid-depth reinforced test pavements were
concerned, the results of the test loadings showed that even in the case
of the highest load, 124 tons, the stresses in the reinforcement had not
come anyway near the yield point and that the stresses in the pavement
on the whole were very small. Analysis of the test results according to
the elasticity theory showed good agreement. It is obvious that such thin



439

slabs should be designed completely in accordance with the elasticity
theory. A closer theoretical investigation of the stresses in thin slabs of
this type shows that the stresses become less the thinner the slab is made
and that the load-carrying capacity of the soil itself takes up the wheel
load to a great extent.

A number of t est loadings were carried out on the two test pavements
also with the loading area close to the joints, the edges in contact being
designed in different ways. The results showed that the usual tongue
and groove joints always give satisfactory transference of shear forces.

Part 6 includes a study of the influence of te mperature variation and
shrinkage on the reinforced concrete pavements. Section 61 gives a
review of t he general methods of calculating the stresses due to tempera-
ture and shrinkage in normal pavements with joints. The author has
also made an attempt to produce a theory for the calculation of the
necessary reinforcement and the crack formation in joint-less, so-called
continuous reinforced pavements.

In Sections 62 and 63 there are discussions of t he special problems that
occur from the influence of temperature and shrinkage in reinforced
pavements when these are calculated in accordance with the ultimate
strength theory, and on the basis of three series of t ests carried out with
combined tension and flexure on unreinforced and reinforced concrete
slab strips it appears probable that the positive ultimate moment is not
influenced at all by temperature decrease and shrinkage, while the
negative ultimate moment can be calculated for a reduced flexural stress
where part of the tensile strength of the concrete is taken up by the tensile
and flexural stresses caused by temperature and shrinkage. This section
also concerns a discussion of the problems associated with the fact that
a single-reinforced slab subjected to traffic from mobile loads becomes
gradually cracked right through from the bottom up to the neutral layer
at positive flexure and that part of th is cracked cross-section falls within
the tension zone at negative flexure. Tests with tension-flexure beams
appear to show that in normal cases of tension and reinforcement, this
effect lias no influence on the negative ultimate moment calculated in
the way mentioned above.

The results of the theoretical and experimental investigations in this
part are summarized in Section 64.

In the concluding Part 7, Section 71 contains a review of the experiences
from pavement work already carried out with structurally rein-
forced pavements, mainly in Sweden. Several airfield pavements have
been built in accordance with the principles and partly on the basis of the
calculating methods presented in this paper, and it has been found that
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these pavements have functioned well during the time they have been
in use. As far as road pavements are concerned the methods have not
been adopted, however, with the exception of a private motor
truck transport road at Skånska Cement AB factory in Hällekis, and this
road has functioned relatively well under the exceptionally hard traffic
to which it is subjected. In the scope of road pavements, further tests
must be carried out with experimental roads. In this connection the
thin, mid-depth reinforced type of pavement as used in the Arlanda
tests ought to be tried out, also designed as a completely joint-less
continuous pavement. This last-mentioned type of pavement on American
test roads has been shown to give very good experiences; in these cases,
however, relatively thick and also heavy reinforced slabs have been used.
It would appear probable that thin slabs on a good subbase in certain
cases would provide a suitable and economically advantageous design
for concrete pavements on roads.

In Section 72 the author has presented suggestions for designing
specifications and calculating methods for structurally reinforced
pavements. For the bottom-reinforced type of pavements, these
suggestions are based on the conclusions and results reached in this
thesis, namely:

a) The reinforced concrete pavement functions as an elastic slab up to
yield point in the reinforcement, but even at loads exceeding this,
the soil reaction pressure can be estimated in accordance with the
elasticity theory. The flexural rigidity of the slab can be calculated
on the basis of Stage II and n — 15.

b) The pavement can be assumed to have reached its ultimate load when
the top surface shows the first crack. For the positive moments under
the loading surface, the slab has thereby reached the plastic stage
with yield in the reinforcement, and the behaviour of the slab can be
judged from the yield line theory. The safety factor for this ultimate
load should be selected fairly high, for example from 1.7 —2 in normal
cases.

c) The influence of temperature and shrinkage concerning the positive
ultimate moment is zero, while concerning the negative ultimate
moment it corresponds to a reduction in the flexural strength of the
concrete.

For the thin, mid-depth reinforced slabs, the suggestions for designing
specifications are based on the elasticity theory.

Section 73, finally, shows by means of comparative cost calculations
that the new types of reinforced concrete pavements from an economical
point of view are vastly superior to the unreinforced pavements.
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