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Introduction

The present thesis is devoted to a theoretical study of some problems
concerning the dynamices of strings.* Preponderant interest is centred
on a particular class of problems related to the steady rotatory motion
of an elastic string. The study of such motions is of importance in
textile mechanics.

The treatment is theoretical in the sense that no experiments are
made in order to verify the results, and no particular attention has
been paid to problems which may have greater interest from the
practical point of view. Although admittedly highly desirable, a
systematic investigation of such problems would be very voluminous
as well as laborious. It should also be taken into consideration that
theoretical works in this field are rare, indeed, some themes discussed
here have not been treated previously.

No serious endeavours have been made to attain a high degree of
concentration, neither has the author’s efforts primarily been directed
towards making the exposition mathematically rigorous at every
phase. In some places a more penetrating analysis might be expected
and there the author has duly commented on this fact.

The thesis is divided into six chapters and two appendices.

In the first chapter the author derives the basic equations related
to arbitrary motions of a homogeneous and linearly elastic string. These
equations are valid in an arbitrary curvilinear coordinate system in
space. Tensor notation is used to some extent.

The second chapter is divided into two main parts. The first part
contains a brief discussion of the mathematical character of the basic
equations. These equations constitute a system of quasi-linear partial
differential equations which are shown to be hyperbolic for the
elastic string, while they are non-hyperbolic, if the string is inexten-
sible. The second part of the chapter is devoted to a short discussion
of discontinuities propagating along the string.

* By a string we understand here a one-dimensional, continuous medium of perfect
flexibility. The terms ‘thread’ and ‘filament’ are also common in the literature.



In the third chapter the basic equations of string motion are
specialized to be valid in a system of cylindrical coordinates. Dimen-
sionless variables are introduced, and a linearization process is outlined
for a small time-dependent motion superimposed on a steady rotatory
string motion; it is assumed that no external forces do act on the
string.

The fourth and fifth chapters contain the principal results obtained
by the author. These chapters are devoted to the study of inextensible
and elastic strings in steady rotatory motion, in the absence of
external forces. A more precise description of the problems treated is
given infra.

In Chapter six we consider a time-dependent motion in the form
of small vibrations superimposed on a simple kind of steady rotatory
motion of an inextensible string. This chapter is intended as an
introduction to the investigation of more general, time-dependent
motions of a rotating string. Such investigations may assume an
interest with reference to the stability of steady motions.

Two appendices on mathematical minutiae conclude the thesis.

As mentioned above the main subject of the work is the study of
a particular class of steady rotatory string motions.

A string motion is called steady rotatory (or steady rotational), if the
string moves with a velocity, the tangential velocity which does not depend
on time, along a curve which is fixed in a frame of reference, the latter
rotating with constant angular velocity round an axis fixed in space.

As regards the properties of the string we confine ourselves to
strings that are linearly elastic and homogeneous. A string is linearly
elastic in our sense of the term, if the logarithmic strain depends linearly
on the string tension. In the case of small strain the results obtained
are valid for most kinds of elastic strings. 4 homogenecous string in
unstressed state has the same mass per unit length in every point. An
inextensible string is obtained by putting the elastic constant equal
to zero.

As to the kinds of motion treated we restrict ourselves to cases
where no external forces act on the string. This implies that we dis-
regard gravity and air resistance. Such limitations need no particular
justification in a theoretical work like this. We also ignore the special
motions which take place in a plane perpendicular to the axis of
rotation.

By a string property we understand any dependent variable of the
basic equations formulated in Chapter 1, or equations that can be
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deduced from the aforesaid basic equations. The properties of the
steady string motions specified here are governed by a system of
ordinary nonlinear differential equations. The latter system is derived
in Chapter 3.

From our theoretical point of view it is of interest to investigate
and solve this differential system under as general conditions as
possible. In this matter we are confronted with certain difficulties as
there are no theorems available on the existence and uniqueness of
general boundary value problems in connection with nonlinear diffe-
rential systems. If we exclude string motions involving finite strain
in connection with non-zero tangential velocity, however, the system
will become amenable to elementary methods of integration.

In order to facilitate the determination of explicit solutions we
divide the class of problems, consisting of all possible boundary value
problems connected with our differential system, into a number of
subclasses.

Within each subclass treated in this thesis we establish a basic
problem which is representative of the class in the following sense:
If a problem belonging to a certain subclass has a solution (i. e., if
the corresponding motion really exists), then that solution is contained
in the solution of the basic problem. The basic problems are suitably
chosen as one-point (initial value) problems or closely related problems.
Their solutions are unique, but this circumstance does not imply
uniqueness of the solution of a particular boundary value problem;
in fact, several problems which possess an interest in this connection
actually are eigenvalue problems.

The separation into subclasses is made according to three different
bases of division.

In the first place we must distinguish between string motions that
take place with positive reduced string tension and motions with
negative reduced string tension. In the author’s terminology the reduced
string temsion is the quantity T—T—mv?, where T>0 is the string
tension, m the mass of the unit length, and » the tangential velocity
of the string. Steady rotatory motions with 7' >0 are treated in Chapter
4, and those with 7<0 are briefly discussed in Chapter 5.

The second basis of division is related to the magnitude of the
strain of the string and we consequently establish the following
division: (i) inextensible strings; (ii) elastic strings subject to small
strain; (iii) linearly elastic strings subject to finite strain. As concerns
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the last kind of strings we confine the treatment to motions which
take place without tangential velocity.

The third basis of division is related to the curve assumed by the
string as observed in a co-rotating frame of reference. If this curve
intersects the axis of rotation, we have a special (although important)
case which must be treated separately from the general non-intersec-
tion case.

We must make a further division for motions with negative reduced
string tension, 7<0, as shown in Chapter 5.

A schematic diagram, arranged according to the subclasses enume-
rated above, is placed at the end of this introduction; it shows the
designations of those basic problems which are solved in the thesis.

We must now briefly survey the literature in the field and in
neighbouring fields. The survey follows the contents of the chapters
of the thesis and is not intended to be complete.

The basic equations of inextensible and elastic strings with a fixed,
rectangular Cartesian coordinate system as frame of reference are
stated in several textbooks; in some of these works particular kinds
of problems are discussed, see for instance BEgHIN, [B1], and RouTs,
[R2]. Hamer, [H3], discusses the basic string equations as special
cases of rod equations, and valuable information on the string theory
may be extracted from the rigorous treatment of stress and strain
in connection with finite deformations of rods (and shells) by Erick-
SEN and TRUESDELL, [El].

No discussion on the transformation of the basic string equations
into curvilinear frames of reference seems to exist in the literature.
Neither has the author been able to find any general investigations
of the mathematical nature of the basic equations or the propagation
of discontinuities along elastic strings. Strong discontinuities on
inextensible strings are analysed by BreuIN, [Bl], and PAiLLoux,
[P1], [P3], and in connection with a particular problem by HAwmEL,
[H4].

A large number of papers are devoted to the study of spinning
problems; a survey and bibliography containing 37 papers up to 1955
may be found in three papers by DEetry, [D1]. The factor of gravity
is disregarded in all these papers on spinning theory and practice,
and the string is regarded throughout as inextensible; solutions which
also take air resistance into consideration, however, are of particular
interest. The tangential velocity is neglected since it is of minor
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importance in most spinning problems, but Mack, [M1], has shown
that it is possible to solve the problems here called (I1) and (I2) by
means of quadrature.

Steady rotatory motions of inextensible strings taking place in
a plane perpendicular to the axis of rotation (the gravitational effects
being neglected) are treated by HamEL, [H5], and Mack, [M2].

The problem of an inextensible string intersecting the axis of
rotation and being in steady rotatory motion without tangential
velocity round a vertical axis is rigorously analysed by KoLODNER,
[K2]. whose treatment also takes gravity into account. The stability of
particular motions is studied by CaveHEY, [C5], HaLL and HUNTER,
[H6], KoLopNER, [K2], and NERONOFF, [N2].

A special type of vibrational motion superimposed on a steadily
rotating string is discussed by STEVENSON, [S4], cf. also WricHT, [W1].

We shall end this introduction with a few comments on the disposi-
tion of the thesis and on particular concepts and notations that are
used throughout the work.

The decimal paragraphing system is employed and the equations
are numbered conformably. The footnotes are numbered consecutively
throughout the thesis.

The bibliography is arranged in approximate alphabetic order and
each separate work is given a code number, e.g. [B1] refers to H.
BrcHIN: Cours de mécanique théorique et appliquée. These code
numbers are used in the references in the text of the thesis.

Each chapter contains a list of the main symbols and conventions
used in that chapter.

The O-notation is used throughout the work. A function f(x) satisfies

(GO
f(x)=0(D(x)), «—0, it ———— is bounded for x—0.
D(x)

The term analytic (function) is used in the sense regular analytic.

The symbol=is employed in three different connotations: (i) f(x)=
=const. means that equality holds throughout the interval of defini-

ch ch
tion of f(x); (i) u= o that u« is defined as g (i) z'=z'(u, t)=
=(2;, . . ., ¥y, T, u) merely that we use three different ways of writing

(the row matrix) z'.

The symbol (a, b) signifies an open interval with a denoting the
left-hand end point and b denoting the right-hand end point. [a, b]
signifies the closed interval.
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1. The Basic Equations of String Motions

Symbols and conventions:

y',i—=1,2,3 Rectangular, right-handed, Cartesian coordinates, fixed

in space. Coordinates of the string points.

#' i—1,2,3 Arbitrary, curvilinear coordinates, fixed in space. Coordi-

nates of the string points.

(‘oordinate along the curve of the string. o=const. denotes
a particular string point.

Time coordinates.

Arc length of the string curve.

Surface generated by the string during its motion.
Velocity vector of the string point.

Acceleration vector of the string point.
Independent variable, defined by Eq. (1.2—2).
String properties, defined by Eq. (1.2—4).

Mass of the unit length of the string.

Mass of the unit length of the string for 7'=0.
String tension (force).

Elastic constant, see Eq. (1.2—18).

Arbitrary string property, scalar or vector.
Arbitrary, contravariant string property.

Metric tensor of the curvilinear coordinate system a'.
Christoffel symbol of the second kind.

Kronecker symbol.

Rectangular Cartesian components of the external force
acting on the unit length of the string.



K\ K; Contravariant and covariant components of the external
force in a curvilinear coordinate system.

H Quantity of string mass passing per unit of time through
a particular surface F(y', t)=0 which is fixed in space or
moving through space.

Symbols not included in the above list will occur now and then in
the text. All indices have the range of values 1,2, 3. The summation

convention is used. Concerning the tensor notation see for instance
[M3].

1.1. Description of the String and its Motion

In this section we shall give a description of the fundamental pro-
perties of the string and the motions that we are going to study in
this work.

1.11. The String

The string is defined and various assumptions concerning it are
made as enunciated in the following points.

1) A point of the string, or string point, is a point which is fixed with
respect to the material of the string. (A string point consequently
follows a certain 'molecule’ of the string.)

2) The string is assumed to have zero thickness and its mass is
therefore distributed along a curve, the string curve, consisting of the
string points.

3) An element of the string consists of the string material carried
by an arc element of the string curve. The definitions of the length and
the mass of the string element are self-evident.

4) The string is perfectly flexible and the state of stress in a string
point is completely determined by the string tension which is directed
along the tangent of the string curve. It is postulated that the string
tension cannot be negative, i. e. the string cannot sustain compressive
forces.

5) The string is elastic, i. e. the length of the string element is solely
determined by the string tension. We shall in general confine the treat-
ment to a linearly elastic string, i. e. to the case of a linear relationship
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between strain (defined in a certain manner, see section 1.25) and the
string tension.

6) The string is homogeneous, i. e. the mass of the unit length is the
same in every point, when the string is in unstressed state.

1.12. The Motion of the String

1) When a string (of finite or infinite length) moves through space,
it generates a surface S. Let the equation of S (in a rectangular,
Cartesian coordinate system) be

y'=y(0, 7). (1.1-1)

Let the independent variable r be the time. It is then clear that a
curve on the surface S with the equation y'=y'(0, 7,), 7,=const., is
the string curve at the time 7.

Let the curve 3'=y(a,, ), 6,=arbitrary constant, be the path of a
certain string point; the velocity vector of that string point is then
directed along the tangent to the curve y'=1y'(a,. 7). Let us specify o
as the unstretched length of the string measured from some arbitrary
string point. It is obvious that the independent variables o and 7
constitute a coordinate system on the surface S.

2) In general we shall assume that there exists no point on S in
which the tangent vectors to the coordinate lines o=—const. and

y3

~C=GCy(path of the string point)

T=T, (string curve)

y2

y!
Fig. I. Schematic sketch showing part of the surface S generated by a string, and

the coordinate lines o=0, and T=1, on S. The velocity vector v of the string point
o=0, at the time 7=7, is also shown.
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r=const. are collinear. This assumption implies that we exclude cases
where adjacent points of the string have the same path. When every
point of the string describes the same path we have the kind of motion
that is discussed in section 1.4.

3) We shall assume that the functions y'(s, 7) possess sufficient
properties of continuity. They must in general be twice continuously
differentiable with respect to o and 7. Along discrete lines on S,
however, there may appear discontinuities of different kinds, c¢f. Ch. 2.

4) Later on we shall use other surface coordinates than o, r and also
introduce curvilinear space coordinates instead of the rectangular,
Cartesian coordinates ' used so far.

1.2. Kinematics and Kinetics of the String

It is the purpose of this section to establish a system of equations
for the linearly elastic, homogeneous string. The system will be com-
plete in the sense that we can deduce from it any equation which, in
terms of mechanics, has a meaning for such a string.! Naturally, the
string may also have to satisfy initial and boundary conditions. The
mentioned system can be formulated in different ways. We shall start
from the expressions for the velocity and acceleration vectors with
o, 7 as independent variables and a rectangular, Cartesian system as
the frame of reference. The corresponding equations of motion and
kinematical conditions are well known and may be found in the
standard textbooks, e. g. [B1], [R2], [S3]. We next introduce a new
set of surface coordinates z,¢# on S and use them as independent
variables, and then a system of curvilinear coordinates as a frame of
reference in space. Then we shall discuss the elastic properties of the
string and finally put down the equations of motion and gather our
expressions in a system of equations which will be called the string
equations.

The transformation into curvilinear coordinates may be carried out
in conventional terms of the intrinsic geometry of a surface embedded
in a three-dimensional Euclidean space, cf. [M3]. For later applications,
however, we will find it preferable to employ a more specialized
technique.

! In certain points of discontinuity conditions obtain which cannot be deduced
from our complete system, c¢f. Ch. 2.
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1.21. Velocity and Acceleration Vectors in Lagrangian Formulation

The velocity vector »' and the acceleration vector f' of the string
point are determined by the expressions

) o
vi—=v'(0 ﬂ:»f.
cT
' (1.2—1)
. y'
f=f(o; )= =3

'T.

=)

where the variables are the same as in section 1.1.

1.22. A New Set of Independent Variables

Let z and ¢ be coordinates on S defined by

z=h(o, 1),
(1.2—2)
t=z.

We shall assume that this transformation is one to one, and that A
is at least twice continuously differentiable with respect to ¢ and 7.
We also assume that

)

(2. t)

el
(o

‘Q)
=

=-—%0, (1.2—3)

~ |
QD
Q

¢
S T)

From now on we shall regard every property of the string, i. e. every
dependent variable, as a function of z and ¢.
Let g—q(z, t), u=u(z, t) be string properties defined by

oh m,
to ~ myg
(1.2—4)
oh
’?T" =90

where m=m/(T)=m(T(z, t)) is the mass of the unit length of the string.
For an elastic and homogeneous string m depends explicitly of the
string tension 7' only, and m, is the value of m when 7'=0. The physical
interpretations of ¢ and » depend on the choice of 2 and will be
discussed later.

2
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y3

Zz=const.

y!

Fig. I1. Sketch illustrating the significance of the transformation Eq. (1.2—2) from
the surface coordinates o,7 into the surface coordinates z,t.

We now get the following expressions for the transformation of the
derivatives of an arbitrary string property A4 (scalar or vector)

04 m, o4
do  mq 0z’
(1.2—5)
04 0A 0A dA
o m s N

where, from the mechanics of continuous media, we adopt the term

d
substantial time derivative, symbolized by T From Eq. (1.2—1) we

obtain the following expressions for the velocity and acceleration
vectors of the string point

)
l

=z

~

] G o\[ o oy d%y’
f =(5 el “‘)( a T ) =

It may be observed that the substantial time derivative generally
does not commute with the partial derivatives.

We may remark that if, for some special string problem, we know
the string properties m, ¢, u as functions of z and ¢, we naturally can
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also determine the paths of the string points, i. e. the curves o=const.
on the surface S. Let the inverse transformation to Eq. (1.2—2) be

o=g(z, t)=
=1,
Then, from the identities in Eq. (1.2—4), we have

og mqu

ot my
The right member of this differential equation is a known function
of z and ¢, and together with an initial condition, for instance,

9(2, t))=9o(?)

the differential equation determines the function g. The path of an
arbitrary string point =g, is then the curve g(z, {)=a,.

We shall now discuss the physical interpretations of the string
properties ¢ and w.

Let s be the arc length of the string curve measured from an arbitrary
point. By the definition of ¢ we then obtain the following equation for
the mass of a string element of the length ds

mds=myda. (1.2—17)

Studying the change of an arbitrary string property 4 due to a small
displacement along the string curve we obtain the equality

0A : 0A
et DO
do

dz.

~
O,

m
Together with Eq. (1.2—5) this yields do— m—q dz; and from Eq.
0
(1.2—7) we then get

1
dz=7ds. (1.2—8)

Observing that z is a coordinate along the string curve ({=const.),
we may interpret ¢ as a measure of the longitudinal scale along that
curve.
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Fig. I1I. The decomposition of the velocity »' into components along the coordinate

lines z=const. and ¢=const. The arrows along the coordinate lines indicate positive

directions of the coordinates, and in the case reproduced here g and u are both assumed
to be positive quantities.

By the definition of s the unit tangent vector along the string curve

oy 1 oy
is —— = — ——. From the expressions for the velocity vector »" in
cs q 0z

Eq. (1.2—6) we can then conclude that ug may be interpreted as the
component of the wvelocity vector along the tangent to the string curve
(¢f. Fig. I11I).

Finally we consider two special choices of the coordinate z, i. e. the
function A(o, 7).

1) Let z be the arc length of the string curve, 7. e. let z=s. Choose an
arbitrary curve on the surface S which does not touch any string
curve and let this curve have the equation y'=y'(s,.t), s,— const.
Provided the motion is known, every curve s=—const. on S is then
determined. From Eq. (1.2—8) we have

g=q(z. t)=1 (1.2—9)

and u=u(z, t) is then the component of the velocity vector along the
string tangent.

2) Let z be one of the coordinates y', say y*, and let the string curves
nowhere touch a plane p*=const. Then the curves y'—y'(z.t).
z=const., are lines of intersection between the planes y*—const. and
the surface S. We get

— =1, —=0. (1.2—10)
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1
According to Eq. (1.2—8) —becomes the direction cosine of the tan-
q

gent to the string curve with respect to the * axis. By perpendicular
projection on the 3’ axes we obtain  as the y* component of the velo-
city vector.

1.23. Kinematical Conditions

Let z, t be the same set of coordinates on the surface S as previously.
Let s, t represent this set when z=s is chosen as the arc length of the

At

: ; e - : SRy
string curve. Since y'=7 (s, t) is the equation of the surface S, —- isthe

0s
unit tangent vector to the string curve and the equations
ay' oy
— =1, (1.2—11)
s 08
off oy oy oy
_:\_— N9 — IR :(
ds 0s? 0s otos
(1.2—12)

oy d [ oy .
os dt \ s |

hold everywhere on the surface S, provided that the derivatives
)
s
derivative in an arbitrary direction on S. Instead of Eq. (1.2—11)
we get in the general case

exist. Eq. (1.2—12) imply that is perpendicular to its own

oy oy
= L 2
=== [ —18)

i

D

There is another kinematical condition. The string properties ¢ and
u are both derived from the function h=#h(o, r) which defines the
curves z=—const. on S, ¢f. Eq. (1.2—4). By hypothesis, the partial
derivatives of % with respect to ¢ and r commute, and by means of
the expressions (1.2—5) we gev

o(m o(mqu
= 7 + — hq ) =0 (1.2—14)
ct oz
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In the special case of z=s we have ¢=1 and Eq. (1.2—14) will
then be slightly simplified. Eq. (1.2—14) corresponds to the equation
of continuity for a general continuous medium. It can be derived
directly from a kinematical study of the motion of a string element
during a small interval of time.

1.24. Curvilinear Coordinates

In the preceding sections we have studied the motion of the string
with a rectangular Cartesian system (coordinates designated ',
1=1,2,3) as a frame of reference in space. We now introduce a general,
curvilinear system with the coordinates ', i=1,2,3, and the metric
tensor gy, cf. [M3]. We transform the expressions (1.2—6) for the
velocity and acceleration vectors and the kinematical conditions
(1.2—13) and (1.2—14) to be valid in a general curvilinear coordinate

Y (8

(0} ]
system. For the contravariant tangent vectors — andw we have
0z )

yt  oal

25—
0z oz’

A~ A
oy ox
R

ot

where — means: corresponds to.
For the partial derivatives of an arbitrary contravariant vector
with space components. A°, defined on the surface S, we obtain

oAt 04" 2A! i ot
3 + ‘ =

oz oz oz
(1.2—16)
0A? 04" oA’ v ox™
T e E
o~ ot o {/Wn} ot
i
where —— is called the intrinsic derivative of A" with respect to z.

0z
In Eq. (1.2—16) {
defined by

k:n} is the CHRISTOFFEL symbol of the second kind



i 1 [ 0w og OFrm
e p g LOR
{km} =29 < ox* =+ ox™ 02? |’

where the conjugate metric tensor ¢ is defined by

; i
ke sk
9pi 9" =0 {0 if k+p°
and 0 is the KRONECKER symbol.
Scalar functions defined on S are not affected by the change of
reference system in space. We therefore get the following expressions
corresponding to Eqgs. (1.2—6), (1.2—13) and (1.2—14)

. da oz’ oz’
V= ——

i T

Ly
(074

‘. o' ot ot ov' O .
= 6t+uéz_8t+u82+' e
(1.2—17)
ozt ot
P =¢%

0z 0z

omg) | Amqu)

ot 0z

1.25. Conditions Governing the Properties of an Elastic String

So far we have not made any assumptions concerning the elastic
properties of the material in the string.

We shall assume that the string is in a state of simple tension and
confine ourselves to the case of a linearly elastic string, which we
shall define as a string in which the strain is proportional to the string
tension. It may be remarked that owing to the lateral contraction
of the string the stress-strain relation in general will not be linear.

By the strain we shall understand the logarithmic or natural strain,
cf. [H1], p. 9. The strain is generally assumed to be finite, and some
of the results obtained later may be extended to apply to a wider
range of elastic strings. For an element of the length [ of a linearly
elastic string subjected to the tension 7' we have by definition

l=l, exp (kT), m=mq,exp (—kT), (1.2—18)
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where [, and m, are the length and the mass per unit length, respec-
tively, of the unstretched element; £>>0 is the elastic constant of the
string and k=0 means that the string is inextensible.2

From Eq. (1.2—18) we have

I=ly (14+kT)+0 (kT)), m=my(1—kT)+-0 (KT)), kT —0. (1.2—19)

Neglecting terms O ((k7')?) we get the classical expressions valid for
small strain.

1.26. Equations of Motion. The Complete Equations

Taking s to be the arc length of the string curve, as we have done
previously, we get the following wellknown equation of motion for
the string element

F,

: oy A
== os —mf' +F'=0, (1.2—20)

cs

where 7' is the string tension, f' the acceleration vector, F' the external
force on the unit length of the string,® and m the mass of the unit
length. y' are rectangular, Cartesian coordinates in space. From
sections 1.22, 1.23 and 1.25 we have expressions for ', the kinematical
conditions and the conditions valid for a linearly elastic string.

Gathering all these equations into a single system we get the
following equations for a linearly elastic string

2 [ oy &y
—{Ty)—m Y | Fi—o,

0s 08 dt?
oyt oy :
a o (1.2—21)

om ¢(mu)

o T
m=m, exp (—kT).

This system is complete in the sense discussed in the beginning of
section 1.2. System (1.2—21) consists of five (scalar) partial differential

* The elastic properties of the material of the string cannot, of course, be completely
described by a single constant.

* If the external force on the unit mass of the string is P, we must replace F by
mPt.
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equations and one transcendental equation for the six dependent

variables y', 7', u, m, and we have s, t as independent variables. By

;\,,i

» in the first equation of the sys-

means of inner multiplication by

tem and taking into consideration the conditions of Eq. (1.2—12) we
get the following equations

oT du oyt oy Y
S i BNNC-R [0 QAN e
: m(dt+as azﬁ)+ P

TV : {1.2—22)
N AR @ et
5, (Ll = gl e e e =0

These two equations are equivalent and are equations of motion in
the direction of the string tangent.

We can, of course, formulate the equations (1.2—21) with z and ¢
as independent variables (s simply means a particular choice of z).

We then obtain
o (T oy dzy’ o
T(* = )—MQ‘Jt; +qF'=0,

oz \ g o0z
o o
z oz
0 (1.2—23)
d(mg)  mqu)
ot e

m=m, exp (—kT).

Finally we transform the string equations (1.2—23) to be valid in
a general, curvilinear coordinate system a'.
By means of the expressions (1.2—16) and (1.2—17) we get

§ T ox ) o \/[ ot or* i
o0z \ ¢ 0z L T Tt =

ozt oaF
e D
i 0z 0z 7%

(1.2—24)
o(mq) P c(mqu)

ot ' 0z

m=m, exp (—kT).
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In this system the contravariant force components, K', are determined
from the Cartesian components F'—=F, by means of the expression

At ouP
Ki—Fr— == i (1.2—25)
oy” ? o2t

Essentially, the systems (1.2—23) and (1.2—24) possess the same
mathematical properties. The following comments on system (1.2—24),
with obvious modifications, are consequently valid also for system
(1.2—23). System (1.2—24) consists of five (scalar) partial differential
equations and one transcendental equation for seven (scalar) depen-
dent variables: 2%, 7', m, ¢, u. There are two independent variables
z and . We have one more dependent variable than equations, but
we are free to choose the curves z=const. in an arbitrary manner on
the surface S, generated by the string in its motion.

In the following considerations the dependent variables will generally
be called string properties, and the systems (1.2—24) or (1.2—23) will
be called the string equations. These equations naturally do not yield
unique solutions of problems concerning the motions of a string. In
addition to the string equations we must possess a suitable system of
initial values and boundary conditions.

The questions of the existence and uniqueness of the solutions to
the system (1.2—24) present difficult problems which sometimes
become even more complicated by the presence of strong disconti-
nuities in the string properties. A brief discussion of the string equa-
tions, starting from system (1.2—21), is given in Chapter 2.

1.3. The Flow of String Mass Through a Surface

Sometimes it is of interest to determine the quantity of string mass
passing through a particular surface in space during the motion of
a string. The surface may be fixed or it may be moving through space.

1) Let us consider a surface D in a rectangular, Cartesian system
in space, and let ¢ be the time. Let the equation of D be

F(y',8)=0, (@a—1

where F is continuously differentiable with respect to %' and t. Let
h* be the velocity vector of a point P on D at the time ¢, and n; a
normal unit vector of D at P.*

* It should be observed that Eq. (1.3—1) does not completely determine ¢ but only
the component along n;. There is here no necessity of a more precise statement,.
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2) Let the positive side of D, at the time ¢, be defined as the set
consisting of all the points %' in space that satisfy the inequality
F >0. Let the negative side of D be defined accordingly.

3) Let v be the velocity vector of a string point coincident with
P at the time ¢.

From Eq. (1.3—1) we then obtain

oF ., OF ;
P — =0, (1.3—2)

(1.3—3)

ni=

or ( oF oF )“'2

oy' \ oyt oyt

As usual we take s to be the arc length of the string curve, and
y'=y'(s,t) to be the equation of the surface S, generated by the
motion of the string. We shall assume that the string does not touch
the surface D in the point P, and we then obtain

oy
os

n; —— %0, (1.3—4)

The quantity of string mass H passing through the surface D in
the vicinity of P per unit of time is determined by

0 2\=1
H=m (nl—i—) 1 (V¥ —RE). (1.3—5)

Combining the last equation with Egs. (1.3—2) and (1.3—3) we get

S oF &y'\™*(, oF oF
M\ B T e

s

We next write the equation of the surface S in the form y'=y(z.t)
with z as in section 1.22. Finally, adopting a general, curvilinear
coordinate system ', and writing the equation of the surface D as
F(2't)=0, we get

oF o\~ [ 0F oxf oF
H=malu-H\=e ox' 0z ok ot % @ ot ik8eh)

aF ox’

o

where by Eq. (1.3—4) —

may have positive or negative sign. If we choose the arc length s in
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such a manner that it increases on passing from the negative to the
2
C

positive side of D, then #; >0 and H >0 means that string mass

is flowing from the negative into the positive side of D.

1.4. The String Motion in a Fixed Path

We remarked in section 1.12, point (2) that the case in which the
string moves in a fixed path must be discussed separately. We now
consider such a motion in a rectangular, Cartesian system 3. fixed
in space, and take s to be the arc length of the string curve measured
from a fixed point. Using the same notations as previously we have
the following string properties:

y'=y'(s)  equation of the string curve;

w =u(st) velocity of the string point, directed along the tangent

At

oy

vector ——;
0s

T =T(s,t) string tension;
m=m(s,t) mass of the unit length of the string.

oy’

ot
that we may make use of the string equations (1.2—21). Rewriting
the first of the latter equations we get

Taking =0 into consideration, simple reflection will indicate

0 oy o(mu) oy .
il —oma® [ A

0s [(T =g ] ot 0s =,

ayi ayi
5 ok =1

g8 e (1.4—1)

m=mg,exp (—kT").

We shall not attempt a general discussion of this system but merely
make a few comments.
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1) If the external force F' on the unit length of the string does not
depend on time, and if the string is inextensible, i. e. k=0, then the
motion may take place with a constant velocity u. We then obtain

N3

G oy .
e [(T—muz)f] + B =0. (1.4—2)
s

cs

This equation implies that the string curve will be the same as the
curve of a string which is in statical equilibrium subjected to the
external force F', provided that m is the same and similar boundary
conditions hold. If the string tension is T:f(s) in the equilibrium
case, the tension of the moving string is T—T-+mu?. This result is
well known, ef. [R2]. p. 400.

2) If the external force is F'=0, the system (1.4—1) is satisfied by
T —mu?—const., m, u=const., for arbitrary functions y'(s). The string
curve may thus have an arbitrary shape and may also contain points
of strong discontinuities.

The latter fact is a consequence of results which will be presented in

T 1/2
¢—|——] relative to the string points, and from the preceding formu-
m

lae we get c=u. The discontinuity is then fixed in space, on condition
that it moves backwards along the string; in the opposite case the
string cannot possibly move in a fixed path.)

When the string is inextensible the motion now discussed is a special
case of the motion discussed in (1).

The result obtained for a linearly elastic string may be used for all
other kinds of elastic strings, since 7'=const. implies m—const. for
every homogeneous elastic string.



2. Discussion of the String Equations

Symbols and conventions:

y' Fixed, rectangular, right-handed, Cartesian coordinates.
Coordinates of the string points.

G Arc length of the string curve.

t Time coordinate.

74 String tension.

m Mass of the unit length of the string.

m, —— — —— —— —— — — — — in unstrained state.

u Tangential velocity of the string point.

e Rectangular, Cartesian components of the external force

acting on the unit length of the string.
x=[z;] Column matrix with elements a;., see Eq. (2.1—2).
x'=(x;) Row matrix, transpose of x.
AB Square matrices, see Eq. (2.1—4), Eq. (2.1—5).
A1 Inverse of 4.
1 Unit (three-row) matrix.

h=[k] Column matrix with elements %, see Eq. (2.1—3).

@ Row matrix, eigenvector with ordinal number ¢ of the matrix
pair 4, B, see Eq. (2.1—8).

o® Eigenvalue with ordinal number i of the matrix pair 4, B.

PO Variables defined by Eq. (2.1—14).

E Domain of the complex z, s, ¢ space.

& Coordinates in the s, ¢ plane.

D Jacobian of &, 4 with respect to s, t.

{4} Weak discontinuity in the string property 4, see Eq. (2.2—3).
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I Path of propagation in the s, ¢ plane of a weak discontinuity;
7 is the ordinal number.

w Propagation velocity in relation to the string points of a

weak discontinuity propagating along the path 1.

o, B :
T = 2 Unit vector along the string tangent.
U Elastic potential of the unit mass of the string.
c Propagation velocity of a strong discontinuity in relation to

the string points.

C The quantity of string mass passed by a strong discontinuity
per unit of time.

Symbols not included in the above list will occur now and then in
the text. Indices run from one to three, if not otherwise specified. The
summation convention is used. Partial derivatives are generally

of

written by the use of indices, e. g. f; means PR

2.1. Classification of the String Equations
2.11. Introduction

A definite problem concerning the motion of a string naturally
cannot be regarded as properly formulated unless the string equations
have a unique solution. This proposition immediately leads to an
inquiry into existence and uniqueness theorems for initial and bound-
ary value problems connected with the string equations. Particular
interest will be centred on initial value problems of the infinite string
and mixed initial — boundary value problems of the semi-infinite and
finite string. General problems of these kinds are complicated,
especially because of the presence of strong discontinuities,®> and we
shall consider it to be outside the scope of this work to give a thorough
discussion of such problems. In order to get some information con-
cerning these questions, however, we shall classify the string equations
in the usual manner according to the theory of partial differential
systems. We shall also briefly discuss the propagation of discontinuities
along the string.

5 Such cases are discussed by Hamer, [H4], and PaiLLoux, [P1], [P3].
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Anticipating the results, we assert that the string equations form a
quasi-linear, differential system which in the case of a linearly elastic
string (and all other kinds of elastic strings, too) is hyperbolic in the
sense used by CouraNT and others, ¢f. [(2], and [S1], p. 127. For the
inextensible string the system is not hyperbolic. Further, the string
curve is a characteristic curve for both kinds of string.® The latter fact
means that a problem with initial values prescribed along the string
(which may be finite or infinite) generally will not be a proper problem.

Special kinds of mixed initial — boundary value problems have been
investigated in connection with quasi-linear hyperbolic systems, cf.
[B3]. [C2], [C6]. Some of these problems may be of interest with
reference to the elastic string. The results obtained will not be valid
for the inextensible string.

To sum up, most dynamical problems related to a string, extensible
or inextensible, finite or infinite, are not easily attacked by rigorous
methods.

2.12. A First Order System of String Equations

We now turn to the study of the string in a rectangular, Cartesian
coordinate system ', and use the arc length s of the string curve and
the time ¢ as independent variables. From the string equations (1.2—21)
we easily obtain the following, first order differential system?

Ax,+ Bx,+h=0. (2.1—1)
In this equation we have adopted the index notation for the partial

ox
derivatives of the dependent variable z, e.g. x,— N ,&c. Further, x

and & are column vectors. The coefficients 4 and B are square matrices.
Writing 2’ and %’ for the transposes of x and & we have (with y' as
in Chapter 1)

x'=x'(u, t)=(xy, . . ., 29, T. u), where ]
z=y, 1=1,23, |
; 1_ (2.1—2)
Tir3=Ys>
xi-e(;:yzi;

® Anticipating later treatment we may mention here that strong discontinuities

7 The symbols @, z; in this chapter should not be confused with the curvilinear
coordinates x! appearing in Chapter 1.
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The coefficient matrices 4 and B are expressed (in partitioned form)
by

4=Tr i i
(T —mu?)1 E—Zmul Ty —MULy
: g —MUT g
Rl S L T e
"""" ur, urs Ury 0 0
I T —ku 1
Fr 1. @1—5
—ml 0 —may
Lo - —MTq
......... e
T e By @ ok Qe 0
< 0 0 0| -k 0

In these expressions / stands for the unit three-row matrix and every
excluded element is identically zero, i.e. zero for every z, s, t. F',
1=1,2,3, appearing in Eq. (2.1—3) are the rectangular, Cartesian
components of the external force. In equation (2.1—1) we have pre-
ferred to take the last of the equations (1.2—12) as a kinematical
condition instead of Eq. (1.2—11) which was used in Eq. (1.2—21). In
order to make the system Eq. (2.1—1) equivalent to Eq. (1.2—21)
the condition

z; =1, i=4,5,6 (2.1—6)

must hold along some non-characteristic curve, cf. [K1], p. 11.

Since the sum Eq. (2.1—6) appears frequently in subsequent deduc-
tions, we shall, for the sake of brevity, imply @; #;—1 throughout. In
Eq. (2.1—1) m and 7 are connected by the elastic condition
3
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m=mg, exp (—kT"),

see section 1.25. This equation is also implied throughout.

The equation (2.1—1) forms a quasi-linear system of partial differ-
ential equations in two independent variables s, ¢ and eleven dependent
variables x=(ay, ..., 2y, T, u).® The coefficient matrices 4 and B are
functions of the dependent variable x, but not of s and ¢. Further,
A and B are analytic everywhere in the (complex, eleven-dimensional)
x space. This is evident, since the elements of 4 and B are polynomials
in m and the elements of the vector « and, by the elastic condition
above, m is analytic in 7' for every 7' (which is an element of z). In
the most general case the vector h—h(s, t, ), i. e. F'=F'(s, t, ), but
as we do not discuss the inhomogeneous string % is unlikely to depend
on s explicitely. If F* emanates from a scleronomic force field / does
not depend on ¢ explicitely, and in the common, gravitational field F'
depends on the string tension 7' only. If the external force F'(s, t, x)
in the general case is analytic in its variables in a domain of the
(thirteen-dimensional, complex) s, £, 2 space, then, by definition, the
differential system Eq. (2.1—1) is analytic in that domain.

If the coefficient matrix 4 is non-singular, ¢. e. det A=+0, the inverse
A~ of A exists, and it is then possible to solve Eq. (2.1—1) with
respect to ;. det 4+0 holds in those points of the x space where

w0,
T —mu2+0,
(2.1—7)
1—kmu?+0,
Ths G Benotiall=0

hold true simultaneously. The last condition is satisfied by the implica-
tion of Eq. (2.1—6). In several cases, however, the first two conditions
are not satisfied everywhere on the string, ¢f. the discussion at the end
of section 2.14.

2.13. Characteristics of the String Equations
Hyperbolic Systems

Proceeding as in the works [S1] or [C2], we seek scalars p and vectors
7 and p which satisfy the equation

v (Axs+ B, +h)=p'(x,+ox,) +1'h=0 (2.1—8)

8 Concerning the term quasi-linear see for instance [S1], p. 36.
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The vectors 7 are called eigenvectors and the scalars o eigenvalues
of the matrix pair 4, B. This procedure means that we seek linear
combinations of the equations in the system (2.1—1) which will
contain the derivatives of each of the components of x in one and the
same direction in the s, ¢ plane. The latter direction is called a charac-
teristic direction; it is determined by the ordinary differential equation

dt
ds

=}

(2.1—9)

The integral curves of this differential equation are called characteris-
tics. The ditferential system Eq. (2.1—1) is a special one, in so far as
A, B and & depend explicitely on 2 but not on the independent variables
s and t. The same is consequently true of g, 7 and p also. It is, however,
of no particular importance as concerns the theoretical treatment of
the system (2.1—1). From Eq. (2.1—8) we get

v'(B—oAd)=0, (2.1—10)
det(B—oA)=0. (2.1—11)

The latter equations determine ¢ and 7, and if 4 and B are of the
order n, with 4 nonsingular, there are n roots ¢ of the equation
(2.1—11). Further, ¢®, k=1, ..., n, is an eigenvalue of the matrix
A'B, provided A is nonsingular. If 4 and B are both real, o may
be real or complex; distinct or multiple.

The differential system Eq. (2.1—1) is called hyperbolic in a point
(@y, 8y, ty) of the n+4-2-dimensional z, s, ¢ space, if every eigenvalue g“”
is real and the eigenvectors ¥ span the n-dimensional space at that
point.? If a system is hyperbolic in every point of a domain # in the
n-+2-dimensional space it is called hyperbolic in #. The fact that a
system is hyperbolic implies the existence of matrices K and K!
such that K~* A~! BK is a diagonal matrix. If A, B, K and the vector
h are analytic in F, the system is called analytic hyperbolic in &,
see [L1], p. 235.

It is well known that weak discontinuities in the functions a;(s, t)
propagate along the characteristics, cf. section 2.21.

The equations (2.1—8) are frequently called the characteristic
system (corresponding to Eq. (2.1—1)). Finally, we may point out

¢ The eigenvectors span the n-dimensional space, if, and only if, the rank of B-p4
is n-gp for a gp-fold eigenvalue o), and the same holds true for every eigenvalue.
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that the significance of the characteristics and the characteristic
system is not affected by transformations of the independent variables,

cf. [C3], p. 143.

2.14. The Elastic String
In the case of a linearly elastic string we have the elastic constant
k>0. We easily obtain the following expressions:

detA=uP*Q, (2.1—12)
o™, . .., 0 9=0, |
3 1
0® = —
= U
1
W e SR S \1/2
G ) 0 [mbwt (mk)"?], (2.1—13)
1 ,
0®, 0¥ = — 5 [mu+ ()],
1
019 o0 — = [mu—(mT)"2],

where Eq. (2.1—6) is implied to hold and
P=T—mu?,
(2.1—14)
Q=1—mku>.
We may remark that
1) If 77>0, 7. e. if the string tension is positive, every eigenvalue
Q(i), i=1, ..., 11, is real, and by an investigation of the rank of
B—0" A we can conclude that the eigenvectors 7 span the eleven-
dimensional space.
2) We let the domain E of the s, ¢, « space consist of all points
satisfying!?
T=0,
w, P, Q+0, (2.1—15)

xk :L‘k= ]., k:4, 5, 6.

10 The last condition in Eq. (2.1—15) may be replaced by a less restrictive one,
for instance, z,, x5, s not all zero, cf. remarks in connection with Eq. (2.1—6).
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The differential system Eq. (2.1—1), or Eq. (2.1—8), is then analytic
hyperbolic in E. It must be pointed out that while 7’<<0 is excluded
by hypothesis, vide section 1.11, 7', u, P=0 may occur in string points
that are interesting from the physical aspect. At a free end of a string
T—0, in a string point fixed in space =0, and motions where P=0
are discussed in section 1.4. All non-hyperbolic points of the s. ¢ «
space are therefore not without interest.

3) The curves x;=x;(s, t), {Z =W, 1=1,2,8; k=1, . . ., 11, 4.e. the
curves on the surface S (generated by the string in its motion through
space) corresponding to the characteristics, have simple physical
interpretations. The eigenvalue p=0 corresponds to the string curve,
0® to the paths of the string points and the others to the paths of
propagation of certain discontinuities which will be discussed in sec-
tion 2.2. The fact that the string curve itself corresponds to a charac-
teristic complicates the treatment of an initial value problem (in
the strict sense of the term), as was pointed out in the introduction
to section 2.1.

2.15. The Inextensible String
The inextensible string is characterized by k=0, implying m=my=
—=const. We then get the following expressions

det A=uP?, (2.1—16)

o®, 0@, o® 0@, 0®, 0?=0,

3 1
Q(o)_ —,

u

(8 O ! iz (@1==11)

0®, 9 = — — [mou—[—mo ]
l

010, 9(11): [mou ) 2]

By investigating the rank of B we find that only five linearly
independent eigenvectors correspond to the sixfold eigenvalue ¢=0.
The eigenvectors therefore do not span the eleven-dimensional space,
and the system Eq. (2.1—1), or Eq. (2.1—8), is consequently not
hyperbolic in any point of the s, ¢, « space in the case of an inextensible
string.
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2.2. The Propagation of Discontinuities Along the String

It is well known from the theory of the inextensible string that
discontinuities of the string properties may propagate along a string,
see for instance [B1], p. 412, [H4] and [P3].

Since there does not appear to exist any general survey of the
subject, the author considers it suitable to discuss the matter here.

We shall consider the string motion with rectangular Cartesians as
space coordinates and the s, ¢ coordinates of Chapter 1 as independent
variables. We shall use the terms weak and strong discontinuities.

1) Weak discontinuities are discontinuities in y.,. 7%,, vi,, (i=1,2,3),
T, T, mg, m, u,, u, or discontinuities of derivatives of higher order.

2) Strong discontinuities are discontinuities in !, o', (i=1,2,3),
T.m, .

It should be pointed out that weak discontinuities may be analyzed
by using the string equations in their characteristical form as a starting
point, while the presence of strong discontinuities necessitates a
particular treatment.

2.21. Weak Discontinuities

In essential the discussion in this section follows that in [S1], p.
135 et seq. We start from the string equations (1.2—21) and assume
the external force F' to be continuous in s, £ and '. This assumption
means that we disregard discontinuities caused by an external force.!!
If the latter is a field force, for instance the weight of the string,
our assumption is justified; but it is not valid in several cases of physical
interest.

We now introduce a new set of coordinates &, 7 in the s, t plane
by the one to one transformation

E=£(s, 1), [

(2.2—1)
n=n(s, ), |
(&, ) s
=26, 1) (2.2—2)

1 To make the investigation valid for discontinuities in derivatives of highér order
than those appearing in Eq. (1.2—21) we must, of course, make further assumptions
regarding the differentiability of F'.
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Assuming & and 7 to be sufficiently smooth we can use them as
independent variables in the string equations (1.2—21). The curve
&(s. t)=0 divides the s, t plane into two domains, (1) and (2). An
arbitrary property A=A(s, t)=A(s(&, n), {(&, 1)) (scalar or vector) of
the string is said to possess a discontinuity {4} along &(s, #)=0 if

{4}= lim [A(P,)—A(P,)]+0, (2.2—3)

P,,Ps>P

where A(Q) is the value of A(s,t) at a point @; P is a point on §=0
and P,, P, are points in the domains (1) and (2) approaching P
The property A then shows a jump {4} when crossing the curve
£—0. Let the following conditions hold true:

1) The string properties satisfy Eq. (1.2—21) in the open domains
(1) and (2).

2) yi, yi, T, m, w are continuous when crossing the curve £=0.

3) The intrinsic derivatives!? (y};),), (y{)n, T,, my, u, are continuous
on £=0.

4) The external derivatives (yi)s, )z, Ts, ms, uz may be discon-
tinuous on &£=0.

For the intrinsic derivative 4, of the string property 4 we obtain
(by equations (2.2—1), (2.2—2))

1

Ar,:As 31}'{“4: tr) S 3 (As St_At 58)'

Taking A to be any one of the properties listed in condition (2),
we obtain by condition (3)

{4,}+e{4,}=0, (2:2—4)
where
dt &
o (2.2—5)

is the derivative of ¢ with respect to s along the curve &(s, £)=0.
From the string equations (1.2—21) and the kinematical conditions
Eq. (1.2—12) we obtain the following system for the weak discon-
tinuities of the string properties,

12 ;. e. the derivatives along the curve &=0.
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{T v —muw,—muy } y,+(T—mu?) {y,, }—m {y, }—2mu{y} }=0,

i (i } =y {y}, }=0,

—_
1
o

l
(=]
-

{u, }:L {Tt+uTs };
{myj=—km{T,}, {m,}=—km{T,},

where we have summation on i=1,2,313 The Eqs. (2.2—6) together
with Eq. (2.2—4) and Eq. (2.2—5) give the essential information
about the weak discontinuities and their paths of propagation. There
are some differences between the elastic string, £ >0, and the inexten-
sible string, k=0. It is easy to verify that the possible paths of pro-
pagation of discontinuities coincide with the characteristics of the
string equations discussed in sections 2.13, 2.14 and 2.15. No dis-
continuity can propagate, however, along the characteristics deter-

]|
mined by p— — .14
Yy o %

We shall now discuss the elastic and the inextensible string sepa-
rately.

a) For the elastic string we have k0. Let the path of propagation

dt
(in the s, ¢t plane), corresponding to the directional derivative ¢ 7 o)

be symbolized by I, p=1, ..., 5.
We conclude from Eq. (2.2—6) that along IV

Q(I)IO,
(2.2—17)

(Ui }=— {w, }yi+0, i=1,2,3,

while all other properties remain continuous on ‘Y. For the vector
Y, a discontinuity parallel to the tangent vector y (of the string)
consequently propagates instantaneously along the string. It should
be observed that the acceleration vector remains continuous, since
the discontinuities {y; } and {u,} cancel each other.

13 The application of this method to problems containing discontinuities of vectors
in common space requires no particular investigation.

1 It may be pointed out that this discrepancy is due to the fact that on discussing
the characteristics we only make use of the last of the three conditions in Eq. (1.2—12),
while we here apply the first two.
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We next obtain, from Eq. (2.2—6), the following relations, valid
along I® and [®.15

1
NG 7 [mu:{:(mT)1 2]’

s}

i }=—0" {Yi}=(e)? {yie} 0, (2.2—8)
p=2, 3; 1=1,2,3,

where P—=7T —mu?. The other properties of the string remain conti-
nuous along [® and . The physical interpretation of the above
discontinuities is a jump in the acceleration vector perpendicular to
the tangent vector y! of the string curve.

Along I and I®, finally,

1
¢, 0= — - [mbeust: (mk)

k 1/2
{u )=+ (1) (;) ,

{T}="{T,}, p=4.5,
{m,} =—km{T,}, {m}=—km{T},

o
(V]
|

=

while the second order derivatives of y' remain continuous. Physically,
these discontinuities are interpreted by a jump in the acceleration
vector parallel to ¥/, a jump in the derivatives of the string tension
T and corresponding jumps in the derivatives of the mass m of the
unit length of the string.

Concerning the determination of the path I, i=1, ..., 5, we may
remark, that owing to the nonlinear character of the string equations
the differential equations (2.2—5) of the I2’s contain the dependent
variables of the string equations. The paths I consequently cannot
be determined until the string equations are solved. For the propaga-
tion velocities w'” in relation to the string points we obtain

wP=(p?) 1 —u, (2.2—10)

since we know from section 1.22 that u (in connection with the s, ¢
coordinates) means the velocity of the string point along the string.
Therefore

15 The notation here is different from that used in sections 2.14 and 2.15.



wP=o0,

T 1/2
2 —_—
w®, W=7 (— X

m
W, w® =T (mk)~12

As mentioned previously the first expression means that
the corresponding discontinuity propagates instantaneously. The
expressions for w® and w®, (w® and «w®) imply that the corre-
sponding discontinuities, see Eq. (2.2—8), propagate with the same
relative velocity in either direction. Comparison with the results
relating to small strain in the theory of elasticity indicates that
w®, w® correspond to the propagation velocity of transversal waves
along a tight string, while v, w® correspond to the propagation
velocity of longitudinal waves along a thin rod, ¢f. [R1], pag. 271
and 245.16 These facts become clear, if we let the string possess the
cross-section area A, Youna’s modulus of the material £, the stress
g, and the density ¢. We then get

. 1 ]
o=-7 =FEkT, ‘ w®, W =T [— |
= b (2.2—12)
1/2 ‘
mZA(]* w“)su’(s)—:!: ( ) J

This agreement is hardly surprising, remembering the physical
interpretation of the discontinuities.

Finally, we may remark that the equations (2.2—6) only give
information about the relative magnitudes of the discontinuities. It
is well known that it is possible to deduce conditions determining
the jumps {A} of the string properties 4 from the string equations
in their characteristic form, Eq. (2.1—8). These conditions appear as
ordinary differential equations for the {A}’s along the characteristics
(2. e. the paths of propagation of the discontinuities). In the absence
of solutions to the string equations the above equations will yield

1% It may be remarked that our results are valid for finite strain, provided the
material of the string is linearly elastic in the sense stated in section 1.25.
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only general, well-known results, and we therefore confine ourselves
to pointing out their most important consequences. The latter may
be stated as follows. There are only two possibilities for the jump
{—l} viz.
{A4}=0 on the characteristic, or
(2.2—13)
{4 }+0.

This means that a weak discontinuity cannot (in the absence of
discontinuous external forces) be formed in or vanish from an interior
point of a string. It must be forced on the end points or be present
in the initial state.

b) For the inextensible string, k=0, we obtain from Eq. (2.2—6)

0(1):0’

i Y=— {u, W +0, i=1,2,3, (2.2—14)

{T,}+0.

In addition to the discontinuities occurring on an elastic string, a
jump in the time derivate of the string tension may then propagate
instantaneously along the string. The expressions of Eq. (2.2—8) hold
(with the obvious change from m to my=const.) for the paths of
propagation [® and I®. The propagation velocities given in Eq.
(2.2—11) and the comments on the elastic string also hold with
appropriate modifications (the paths I and I may be regarded as
contained in IV).

2.22. Strong Discontinuities

We now consider the case when our linearly elastic string has a
discontinuity in one or more of the properties y., v', T, m, u, i. e. the
string tangent, the velocity of the string point, the tension, the mass
of the unit length, and the velocity component along the string tangent.
We shall assume that the discontinuities are not caused by external
point forces. It is well known that only one kind of strong discontinuity
can occur on the inextensible string, see for instance [B1], [P1]. We
shall find that this is the case also of the linearly elastic string, and
probably of all other kinds of elastic strings, too.
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) dt

Fig. IV. Schematic sketch of the propagation of a (strong) discontinuity in the
oyt

tangent \'ector;—/. The path of the point of discontinuity through space is
0s

designated I

We adopt the following notations (see Fig. 1V):

L The string curve at the time ¢.

L ——————— - — t+-dt.

r The path of the discontinuity point in space.
s The arc length of the string curve.

sp=sp(t) The value of s at the point of discontinuity (at the time
t). Indices 1 and 2 denote string properties immediately
to the left, §=s8p—0, of the point sp and to the right,
§=s p+0, respectively.

dl(dl,)  The length of an element of the string (passed by the
discontinuity during the time dt) in the left (right) position;
dM is the mass of the element.

t'=yi,i=1,2,3 The unit tangent vector of the string curve.

U=U(T) The elastic potential of the unit mass of the string.!?
an

0= ) The quantity of string mass passed by the discontinuity
per unit of time.
dl : S IR .
b= The propagation velocity of the discontinuity in relation

to the string.

The figure is drawn with reference to a discontinuity propagating in
the direction of positive s.

17 The existence U(7') is an immediate consequence of our assumption that the
length of an element depends explicitely on the tension only; ¢f. section 1.25.



Neglecting low order terms, we obtain
myexp (kT)=m,exp (kT';)=m,
my dl,=my dly,=dM,

7t dl, v dt=1h dl,+-vh dt,

—
o
(85}
—_
Tt

~

(v —vi)dM=(T, T ),
(Uy—Uyt-3 v v —5 v v}) dM =(T', o5 vi— T, 7} 0}) dt,

where we have summation on i=1,2,3. In this system the first equa-
tion is the elastic condition, the second implies conservation of mass,
the third is a kinematical condition obtained from Figure IV, the fourth
implies conservation of momentum, and the fifth is an energy equa-
tion. It may be remarked that a discontinuous external force will not
affect the discontinuity, provided it is not a point force. After some
further calculations we get from Eq. (2.2—15)

My 6 =My C3=0C,
[T —my (e2)?] i = [Ta—ms (c2)?] T3, (2.2—16)
2 (0P (Uy—Uy)=(Tf— (T
As the string is linearly elastic we get the following expression for U
b [ T exp (kT') dT
My
=Uy+ (mok) texp (kT) (kT —1), (2.2—17)

where U, is a constant.
We conclude from Eq. (2.2—16) and Eq. (2.2—17) that only one
kind of discontinuity can exist. We get

et = T=0=T,

Mg =10y=100 (2.2—18)

T 1/2
€ =Ca—0= I (—) .

m
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Only the tangent vector is consequently discontinuous.

This kind of discontinuity is possible, of course, also in the case of an
inextensible string. On comparing the above expression with Eq. (2.2—
11) we can observe that the strong discontinuity moves along the string
at the same relative velocity as a weak discontinuity of that component
of acceleration which is perpendicular to the string tangent. The strong
discontinuity therefore propagates along a characteristic of the string
equations, as HamerL, [H4], points out (in a case of plane motion).
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The String Equations in Cylindrical Coordinates

Symbols and conventions:
(Cylindrical coordinate, radial distance.
——————————— , polar angle.
—————————— . axial distance.
Arc length of the string curve.
Independent variable, defined by Eq. (3.1—6).
The time.
String tension.
Reduced string tension, defined by Eq. (3.1—10).

String properties, defined as in Chapter 1 and physically
interpreted on pag. 50.

Mass of the unit length of the string.

Contravariant, cylindrical components of the external
force acting on the unit length of the string.

Characteristical length.

Angular velocity of the string at steady rotatory
motion. — is used as a characteristical time.
w

Characteristical force.

Independent variable, dimensionless time, defined by
Eq. (3.1—6).

Dependent variable, dimensionsless radial distance,
defined by Eq. (3.1—8).

Dependent variable, see above.

Dependent variable, dimensionless string tension,
defined by Eq. (3.1—8).

Dependent variable, dimensionless reduced string
tension, defined by Eq. (3.1—10).



y Dependent dimensionless variable, defined by Eq.
(3.1—8) and physically interpreted on pag. 50.

0 Dependent variable, dimensionless string mass per unit
length.

7 Dependent variable, dimensionless axial velocity of the
string point, see Eq. (3.1—8).

Pyy & Dimensionless string parameters, defined by Eq.
(3.1—9).

Yi.1=1, ..., 6 Dimensionless, dependent variables for a small, time-

dependent motion superimposed on a steady rotatory
motion of a string, see Eq. (3.2—2).

h Dimensionless constant, see Eq. (3.2—5).

In this chapter derivatives are generally written by means of

o di oy
maices, €. q. Yy,— —.
veg. Y=

3.1. Dimensionless Variables

In this section we shall establish a complete system of equations for
the linearly elastic string which hold in a cylindrical coordinate system
fixed in space. In subsequent applications it will be convenient to use
dimensionless variables, and we shall introduce such variables from
the first. As we shall not deal with plane motion, the time and the
axial distance of the point (on the string curve) will serve as indepen-
dent variables in the string equations. Let us start from the system
(1.2—24) and let 2! be the distance from the axis, 22 the polar angle,
and 2* the axial coordinate of a point on the string curve. For the
metric tensor we have

gu=1l, goo=(2"), gu=1,
(3.1—1)
=0, 1+k.

The CHRISTOFFEL symbols are determined by

2 o [ et o :
12| led T 20 J2gf T (3.1-2)

all other Christoffel symbols =0.
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After some calculations we get from system (1.2—24)

/i a2 da?\? )
—al— a2t —myq —at|—-) |+¢K'=0,

dt? dt

T
78 ) d2a® (3.1—3)
71.:: 7

2 T d?a? 2 dat da?
+qK?=0,

(mq)+(mqu),=0,
m=m, exp (—kT),

where

(3.1—4)

K', i=1,2,3, are the contravariant, cylindrical components of the
external force (exerted on the unit length of the string), determined
from the Cartesian components by Eq. (1.2—25). In order to facilitate
the transition to dimensionless dependent and independent variables
we now introduce characteristical quantities of length, time, and force:

a =characteristical length,
— =characteristical time, (3.1—5)
«

T ,=-characteristical force.

On studying particular problems we shall later identify these para-
meters with well-defined physical quantities. Let now z and 7 be
dimensionless independent variables defined by

P=az,
- (3.1—6)

==t
(0]
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By this definition we have

B=a, 2,=22=0,
P P (3.1—7)
a

From the discussion at the end of section 1.22 we can conclude
a
(putting y*—a*=az) that 7 is the direction cosine of the tangent

vector of the string with respect to the a® axis. Further, au is the
component of velocity in the direction of the a® axis. The string
variables ¢(z, ) and w(z, 7) are then given physical interpretations.
The transformation Eq. (1.2—2), by which the independent variable

1
z was introduced, has a sense only if 7 +0, 7. e. if the string curve does

not touch any plane a*—const. Assuming this condition to hold we
choose ¢(z, 7)>a>0 (it should be noted that the equations (3.1—3)
are invariant under a change from ¢ to -¢). The velocity component au
may, of course, be positive, zero or negative.

In order to complete the transition to dimensionless variables we
introduce the variables &, ¢, o, 7, 1, o, functions of z, 7, by means of the
following expressions:'®

g,

T T,
r'=af, =@, —=—
qg a '

q=ay, u=wu, m=m;p.

The variables defined in this manner have simple physical inter-
pretations. & is the dimensionless form of the distance of the point
(&, @, 2) (on the string curve) from the z axis, ¢ is the polar angle
measured from a line fixed in space. Concerning ¢ we observe that

a
= T is the axial component of the string tension vector and that o

1
therefore is the dimensionless form of this force component. —_isthe
,I

axial component of the unit tangent vector of the string curve, hence
y=>1. u is the dimensionless axial component of the velocity vector.
o0 is the dimensionless form of the mass of the unit length of the string,
restricted by 1> >0.

18 The variables ¢, T which occur in this chapter should not be confused with the
0,7 in Chapter 1.
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We shall find it convenient to use two dimensionless parameters
p and x, defined by

marw*
= 2 >
adq (3.1—9)
o=k,

The constants p, and x, p, >0, x>0, will be called string parameters.
It can easily be verified that « is the logarithmic strain of a string
element subjected to the tension 7'y. The inextensible string is charac-
terized by a=0.

New variables may also suitably be introduced instead of 7" and o.
Let 7' and 6 be defined by

F:T—mmq?,
— a (3.1—10)
9T, H-

T will be called the reduced string tension and 6 the dimensionless
reduced string tension, although the latter is not the dimensionless
form of 7.

After straight-forward calculations the system (3.1—3) takes the
form?!?

(654)1_ —2]31 [(Q}’/“E ) + (E r+/‘l$zr) 975(9’3‘{'2/‘%%)]4‘
+,, e Kl_
(68%¢,),—2p, [(ey1&%@,)+ 07(E@: )+ oyl Ep,) 1+
a2
yE—— K2—0;
Zo (3.1—11)

6,—2p, (oyu)+y K2=0,

E+(Spr+1=02,
(07):+(eyu),=0,
o= exp [—ay(6+2pioyu®)].

19 The superseripts in K',K? K?® indicate the components of the force vector as in
Eq. (3.1—3), but everywhere else a superscript means raising to a power. This in-
consistency should not cause any confusion.
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Combining the first three equations in this system we get

(67),—2p:[(0y2 1)+ 0717+ 08 (£ — E@2) + 090, (E20,).] +

a
_+_,T_(EZKI_*_QSZ(PZK?_{_]XW):(L (3.1—12)
0

This equation corresponds to the second one in Eq. (1.2—22); it
is the equation of motion (for the string element) along the string
tangent.

The system (3.1—11) consists of five nonlinear partial differential
equations and one transcendental equation, the elastic condition.
There are two independent variables, z and 7, and six unknown func-
tions, &, ¢, 6, y, 1, o. We can add the equation (3.1—12) to the system
without changing its main properties.

3.2, String Equations for a Small Motion Dependent on
Time and Superimposed on a Steady Rotatory Motion;
External Forces Being Absent

In this section we shall specialize the string equations (3.1—11)
and (3.1—12) to apply to a small time-dependent motion superimposed
on a steady rotatory motion. These motions will be described more
exactly below. It is assumed that no external forces affect the motions.
Linearizing the string equations in the usual manner, they will be
separated into ‘steady’ terms and ’time-dependent’ terms. In Chapter
6 we shall make an investigation into a simple special case of such
a motion.

3.21. Description of the Motion. Linearization
The following conditions are postulated to hold for the motion:

1) No external forces act on the string. Therefore
R=K:=FK*=—0 (3.2—1)

hold everywhere in the strip ze(z,, 2,), 7=>0 which we shall take to
be the domain of definition of the motion. A point force equal to
the positive (negative) of the string tension vector acts on the string
at the boundary z=z,, (2=2,).
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2) Within the strip the dependent variables can be expanded in
power series of a small, real parameter ¢ according to the following
expressions?’

&(z, 1)=Eo(2)+ (2, ©)+0(&?), >0,
@(2, T)=1+@o(2)+eya(z, 7)+0(&?),

5(2, 7)=60(2)+ eya(z 1)+ O0(&2), .
(2, 1) =70(2) +2ya(z, 1)+O0(e),
(2, 7)=pro(2)+ £y (2 1)+ O(e2),

0(z, 7) = 00(2) ey (2, )+ 0(e).

Condition (1) implies that we neglect the effect of gra,vity on the
string and the air-drag.?* Terms not containing ¢ in Eq. (3.2—2) will
be called steady terms and the others time-dependent terms. Thus
e=0 corresponds to a steady motion. The time-dependent terms
constitute the so-called time-dependent motion. The functions y;(z, 7),
1=1, ..., 6, approximate the time-dependent motion. The expressions
(3.2—2) imply that, in the steady motion every string point, viewed
from a coordinate system rotating about the z axis with the constant
angular velocity o, will describe the same path £é=¢&(z), p=g, (z) with
a velocity g which we shall prefer to call the tangential velocity.
It is easily concluded from Eq. (3.1—7) that the angular velocity is .
We have consequently now given a physical interpretation of the char-
acteristical time :,lj

Adding the equation (3.1—12) to the system (3.1—11) and substi-
tuting the expressions (3.2—2) for the unknown functions, we get
a system each equation of which may be arranged according to
powers of e.

We now assume this system to be satisfied in such a way that
the coefficient of each power of ¢ is zero in each of the equations.

We then get

a) A non-linear system of ordinary differential equations (including
a transcendental equation, the elastic condition) for the steady
motion.

20 Naturally, we must assume that the expansion coefficients (functions of z and 7)
are sufficiently regular to guarantee the validity of the subsequent deductions.

21 A special case of steady rotatory motion in a gravitational field has been treated
by Korop~NERr, [K2], and steady rotatory motion influenced by air-drag by Mack,
[M1]; in those papers the string is assumed to be inextensible.
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b) A homogeneous, linear system of partial differential equations
for the unknown functions y,(z, 7),i=1, ..., 6, together with an
algebraic equation linear in y; (and homogeneous). The coefficients
of this system are functions of z formed by the steady terms.

¢) A rest-system consisting of homogeneous, linear partial diffe-
rential equations for higher order terms.

It is of great interest to study a time-dependent motion caused
by a small external disturbance acting on a string which initially has
a steady rotatory motion. The functions y,(z, 7), solutions of the
system (b), form a first order approximation of the time-dependent
motion. In such a case the parameter ¢ is an appropriate measure of
the disturbance. The system (b) will be non-homogeneous, if the
disturbance has the form of an external, distributed force acting on
the string in the interval in question. In order to be able to discuss
the time-dependent system (b) one must first, of course, determine
the essentials of a steady motion which is governed by (a).

The procedure outlined for the time-dependent motion may be
called a linearization, and (in general) the following two problems
will then result:

a’) A two-point boundary value problem for the system (a).

b’) A mixed initial-boundary value problem for the system (b).

Questions of convergence of the method (viz. the expansion of the
time-dependent motion in powers of ¢) will also arise.

We shall thoroughly discuss the equations of steady motion in
Chapter 4. A strange type of steady motion is briefly discussed in
Chapter 5, and in Chapter 6 we shall study a simple vibration problem
for an inextensible string.

3.22. The Equations of Steady Motion
From Egs. (3.1—11) and (3.2—2) we obtain the following system
valid for the steady terms
(68,),— 653 +-2p10y+4proyuée, =0,
(68%,),—2py0ypu(£%),=0,

6,=0,
(67).+2p,08€,=0, (3.2—3)
&4 (Ep, )2+ 1=7%

(oyn),=0,

o= exp [—ay(s+2p0yu®)],
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where index zero has been omitted for the sake of brevity. The fourth
equation of the system corresponds to Eq. (3.1—12) and the first
four equations are consequently not independent. From the equation
(oyu),=0 we get pyu=const. along the string. This fact has a simple
physical interpretation as is shown later, see remark (1). Since o(2),
y(z)<oco according to assumptions made previously, we have two
possibilities for u(z), viz.

1(2)*£0, or u(z)=0.

The tangential velocity of a string point is ug=amuy; in a steady
rotatory motion this velocity consequently cannot be zero in one
point unless it is zero everywhere, a result which is almost self-evident.
For u(z)#0 the system Eq. (3.2—3) gives

1
6(8,, —E@2)+2pih — E4-4pihép, =0,

6(&%p,),—4p,hEE,=0, (3.2—4)
oy, +2p,0&€,=0,
£+ (e +1=7"

where the following equations hold

o=exp [—ay (6+2p.hu)],

oyu=h=const.
and

g=-const. (3.2—6)

For a motion where y(z)=0 the first equation of the system (3.2—4)
becomes

6(&,,— @) +-2pi0yE=0, (3.2—7)

while the others are valid if we put A=0. In the case of an inextensible
string a=0=>p=1 and the tangential velocity of the string point is
therefore the same everywhere.

The system Eq. (3.2—4) is a nonlinear system of differential equa-
tions for the unknown functions &(z), ¢(2), 7(2), x(z) and g(z); these
functions are further connected by Eq. (3.2—5). «, p; are constants,
¢f. Eq. (3.1—9). The system is determinate since there are three
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independent differential equations and two other equations. These
equations, or equivalent equations, may be derived directly from the
conservation laws of classical mechanics, as is generally done for the
case =0 (inextensible string) in works on textile mechanics, see for
instance [M1].

In the following considerations we shall take it as understood that
the equations (3.2—4) to (3.2—7) are defined on some interval (z,, z,)
of the z axis. We may remark that

1) The same quantity of string mass flows per unit of time through
every plane z=const. This is readily apparent from section 1.3, Eq.
(1.3—6). In the latter equation we put F(z', {)=2a%— const. =0, and

oF oF or®
consequently e aaCz.EOemd by Eq. (3.1—7) Ey =0. Hence
oF o'

~—— = =0= H=mqgu=myawh=const.
ox* ot 1 .

—a
2) From Eq. (3.1—10) and Eq. (3.2—6) we obtain TT] =T ,=const.

Now, ¢>0 which implies that 7" cannot change sign along the string.
Since 7' is the difference between two functions which are positive
definite, three different possibilities exist (we shall take no interest in
the pathological case 7'<<0), wiz.

a) 70 = >0,

b) —mu%f_<_?<0 = —2poyut<s<<0

c) 2'=0 =2 ==l

Case (c) does not possess any interest, since by Eq. (3.2—4) it implies
either £=0, or p,=0=>w=0 (though a strange case of motion with
Eé=const. 0, ¢,—=—1/2u=const. has, unfortunately, been passed
over). The other two cases correspond to entirely different types of
steady motion. Case (a) is exhaustively discussed in Chaper 4. Several
special types of case (a) have been treated by various authors. Case
(b), which obviously is possible only if ;=0 (i. e. non-zero tangential
velocity), has apparently not been discussed before. We shall devote
Chapter 5 to a brief investigation of this case.

3) In case (a) we find it suitable to choose 6=1, implying Tozfa/q.
The denomination of 7', as the z component of the reduced string
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Lk a
tension 7' is justified, since —is the direction cosine of the string
q

tangent with respect to the z axis.® In this way the characteristical
force T is given a physical interpretation. In case (b) we analogously
choose 6=—1.

3.23. A Special Case of the Linearized Time-Dependent Motion

The mixed initial-boundary value problem (b’) in section 3.21,
which results from the linearization process, will in general turn out
to be quite complicated. In the case of an elastic string the differential
system is a linear hyperbolic system,? but the coefficient functions
determined by the steady motion will become complicated. For
the inextensible string the differential system is not hyperbolic, but on
the other hand the coefficient functions are comparatively simple.

We now deduce the equations of a linearized time-dependent rotary
motion for an inextensible string in the case of a steady motion
characterized by the following condition

Pol(z)=po(2)=0. (3.2—38)

This means that in steady motion the string is contained in a plane
which rotates with constant angular velocity about the z axis. The
string itself has no tangential velocity. The steady motion is therefore
a simple and well-known motion, satisfying the following equations

Szz+2p17§=0’
}’z+2p1§§z=0: (32—9)
E+1=22

Putting 6=1 (c¢f. remark (3) in section 3.22) these equations are
immediately obtained from Egs. (3.2—4) and (3.2—7), and it can
easily be seen that only two of them are independent. We next apply

2 Actually, we may define the reduced string tension as the contravariant vector
— ot
T —.
os
2 In a recent paper Zpawovi¢, [Z1], has investigated initial value problems for
hyperbolic differential systems on the plane with homogeneous two-point boundary

conditions (by means of separation of the variables).
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the linearization process outlined in section 3.21 to the system (3.1 —
—11). For a=0, K'=0 (i=1,2,3), ¢o(2)=p,(2)=0 we then get

ylzz_21’17’(?/1n—3/1_?/1z§§z}’—2_2y2r5)+y3§zzzo=

Yoer—2P1Y Yaee+ 24181 4-2y5E71E,) 4295, 671 £,=0,
Y3.—2P17Y5:=0, (3.2—10)
Y1z &+ 7(Y57).=0,

?/4_?/1zstz7’_1:0,

where we have omitted index zero for the steady terms just as in
equations (3.2—9). This is a homogeneous system of linear partial
differential equations for the unknown functions y,(z, 7),i=1, .. .,5.
The coefficient functions satisfy Eq. (3.2—9) and they consequently
depend on z but not on 7; p, is a string parameter, c¢f. Eq. (3.1—9).
The system is not hyperbolic, and this was not to be expected since
we are dealing with an inextensible string, cf. section 2.15.

The unknown function y,(z, v) appears only in the last equation.
This equation may therefore be regarded as defining y,, and we can
exclude it without changing the properties of the system. We shall

return to this kind of motion in Chapter 6.



4. The Steady Rotatory Motion of the Linearly
Elastic String in the Case of Positive Reduced
String Tension and in the Absence of External
Forces

Symbols and conventions:

Most of the symbols used in this chapter are the same as those in
Chapter 3; the following list is therefore incomplete.

p, Dimensionless string parameter, defined by Eq. (4.2—4).
fp ———————— — — — , —— — — Eq. (4.3—3).

b — — — — — constant, initial value, see Eq. (4.1—2). a and b
also occur as end points of an interval of the z axis.

k  Modulus of various elliptic functions and integrals. & also denotes
an elastic constant.

k;,i=1, ..., 4 Constants, determined by Eq. (4.2—13) or Eq.
(4.3—14).

m, ny, ny, ny  Constants, determined by Egs. (4.3—13), (4.3—14) and
(4.3—16).

4,0 (C'onstants, determined by Eq. (4.3—19).

Moy Ky Ko Constants, determined by Eq. (4.3—20).

The symbols denoting elliptic functions and integrals agree with those
used by Byrp and FrIiEDMAN, [B2].

4.1. Introduction

Before we start the systematic treatment of the steady rotatory
motion of the elastic string we may suitably give a survey of those
steady-motion problems which will be treated later.
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x3zaz 4

Fig. V. Sketch of the steady motion described in section 4.11. The broken curve
A’B’ is the trace of the string curve in the plane 2%=z=0. In the case reproduced
here the string is assumed to flow from A4 to B.

4.11. A Two-Point Steady-Motion Problem

The following problem may be considered typical for a certain class
of problems in textile mechanics. T'he following premisses are given:

1) A flexible, linearly elastic string with the mass m, per unit length
in unstrained state, and the constant of elasticity & (k defined as in
section 1.25).

2) A cylindrical coordinate system 2, 22, 23 fixed in space, cf. Fig. V.
We define the dimensionless coordinate z by x*—=az, where a is the
characteristical length in the problem.

3) Two moving points 4 and B. Their motions are defined by
¥ , 2,=const., 2% =wt,

¥}, zg=const., 25 =wt+9,

where o, 6=const., and zz > z,. The points 4 and B are consequently
fixed in a coordinate system rotating with the constant angular
velocity » about the z axis.

4) A quantity of string mass H—const. which flows through A4
towards B (or in the opposite direction) per unit of time along a string
curve containing 4 and B. It is assumed that the motion is steady in
our sense of the term, cf. section 3.21; the string curve therefore does
not change its shape.
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5) No external forces act on the string in the interval (z, zp). 1. e.
the effects of gravity and air-drag are neglected.

6) One more condition in addition to those given in (3). This condi-
tion may be

a) Information concerning the total mass of the string elements in

the interval (z . zz). This is a probable condition for motions without

tangential velocity, 7. e. for H=0.

b) Information concerning the magnitude of the string tension in

some string point on the interval [z, zg].

¢) A more general condition than (a) or (b), e. g. a connection between
the total string mass in the interval (z,, z;) and the string tension at
the point 4. Such a condition and still more general ones may occur
in problems of textile mechanics.

Necessary requirements include
7) All data for the string in the interval (z,. z3).2> We consequently
require:

a) The equation of the string curve
#l—mpl (3}
2=wt+g (2).

b) The tangential velocity or the z component of the velocity vector.

¢) The string tension 7'=7'(z) which by the elastic condition deter-
mines m=—m(z).

It may be remarked that

8) The string equations of the steady rotatory motion, Eq. (3.2—4),
must hold on (z,. zp).

9) It is not known from the beginning whether the reduced string
tension 7' is positive or negative, cf. section 3.22, remark (2). Apparently
a solution of the problem always exists for T >0. Solutions for 7'<0
exist, at least in some special cases, c¢f. Chapter 5.

10) From a physical point of view it might be expected that the
informations in points (1) to (6) should uniquely determine the solution

25 In the case of positive reduced string tension (cf. section 3.22, remark (2)) the
interval of definition of the occurring functions may always be extended to be the

whole z axis. 2
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of the problem, but this will not be true in general.2® Apparently no
existence or uniqueness theorems directly applicable to two-point
problems of the present type are to be found in the mathematical
literature. Questions concerning existence and uniqueness of two-point,
problems are left open in this thesis.

11) It is not easy to obtain explicit solutions of a two-point problem
by direct attack. We shall therefore set one-point problems (initial
value problems) with conditions for the string tension of the kind
(6) (b). It will then be demonstrated that if a two-point problem does
have a solution it is contained in the solution of a one-point problem.
The uniqueness of the solutions of the one-point problems occurring
here follows from elementary theorems on ordinary differential
systems.

4.12. Two Steady-Motion Problems Relating to an Inextensible
String

We now set two basic problems for an inextensible string. They are
equivalent to the two-point problems discussed in the preceding sec-
tion. The first one, called (I1), refers to a case, where the string curve
does not intersect the z axis. In the second one, (I2), the string curve
has at least one point of intersection with the z axis. Both problems, of
course, start from the system Eq. (3.2—4).

(I1) Problem: To find functions &(z), ¢(2), y(z), defined on some
wnterval (a, b), a<<0<<b, such that they satisfy
a) The differential system

(é‘:z(pz)z_4plh§§zzo’
v,+2pEE,=0, (4.1—1)
2
&+ (o, P +1=p~
b) The initial values®?
£(0)=1, p(0)=0, ¢,(0)=b, y(0)=(1+b%)"%, (4.1-2)
26 In an (unpublished) paper on the theory of ringspinning the author obtained an
infinitely enumerable set of solutions to such a problem. Instable motions, indicating
non-uniqueness, are well-known in textile technology, cf. also [N1].

7 The initial value b is not to be confused with the right end point of the interval
(a,b). /
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where the following inequality is valid
b2 —2p,(14-b%)/2—4p, kb >0. (4.1—3)

(I2) Problem: To find functions &(z), ¢(z), y(z), defined on some
interval (a, b), a<<0<b, such that they satisfy
a) The differential system Eq. (4.1—1)
b) The initial values
£(0)=¢(0)=0. (4.1—4)
¢) The condition
&.=0 for £=1. (4.1—5)

In problems (I1) and (I2) p, and A are real constants and p,>0,
while % is not restricted. Omitting the first of the equations and putting
x=0, 6=1 in Eq. (3.2—4) we immediately obtain the system Eq.
(4.1—1). Problems (I1) and (I2) will be completely solved in section
4.2. Anticipating the results in that section we may remark that

1) The existence and uniqueness of the solutions of (I1) and (I2)
are guaranted by basic theorems in the theory of ordinary differential
systems. The solutions will be obtained in terms of elliptic functions
and integrals by straight-forward calculations. The latter property of
the steady rotatory motion of an inextensible string has also been
discovered by MAck, ¢f. [M1]. Mack used a method of representation
entirely different from ours and does not make a penetrating study of
the matter as the air-drag problem constitutes his major interest. We
shall examine the subject thoroughly, especially since we need the
results when studying the elastic string.

2) Problem (I1) is a one-point problem in the strict sense of the term,
whereas (I12) is not.

3) The functions &(z) in (I1) and (I2) turn out to be periodic func-
tions, we may take their intervals of definition to be the whole
z axis. The condition Eq. (4.1—2) means that £(0)=1 is an extremum
of £(z), and condition Eq. (4.1—3) that we choose it to be a minimum.
These two conditions therefore do not imply any specialization, but
merely a normalization of the function &(z). In fact, £(0)=1 means
that the characteristical length a, cf. (3.1—5), is the smallest distance
between the string curve and the z awxis. Similarly, the condition Eq.
(4.1—5) for problem (I2) means that a is the greatest distance between
the string curve and the z awis.
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4) Problems (I1) and (I2) will prove to be equivalent to the two-point
problems of section 4.11, ¢f. section 4.23.

4.13. Two Steady-Motion Problems for an Elastic String in the
Case of Small Strain

In section 4.3 we shall treat those two basic problems for an elastic
string which are analogous to problems (I1) and (I2). We shall assume
that the strain x—=£k7'jis small and so obtain solutions valid in the vicinity
of =0 and correct up to and including terms O(x), x—>0. A common
linearization process will lead to equations that are singular at the
turning points &,=0, and in order to avoid such difficulties we shall
adopt a special method. The solutions so obtained will be valid on
any finite z interval. We shall call these problems (E1) and (E2),
corresponding to (I1) and (I2), respectively.

4.14. Two Steady-Motion Problems for a Linearly Elastic String
and Finite Strain

In section 4.4 we shall treat two basic problems related to the steady
motion of a linearly elastic string, when the latter has no tangential
velocity. These problems are analogous to problems (I1) and (I2) and
will be called (E3) and (E4), respectively. No restrictions are imposed
on the magnitude of the strain.

4.2. The Steady Rotatory Motion of the Inextensible String
in the Case of Positive Reduced String Tension

Two problems, (I1) and (I2), related to the inextensible string were
set in section 4.12. We now proceed to the solution of these problems,
and at the end of the section we shall briefly discuss the possibilities
of finding solutions of two-point problems, starting from the solutions
of (I1) or (I2).

4.21. The Existence and Uniqueness of the Solution of Problem
(11)
The differential system Eq. (4.1—1) is easily transformed into the
vector differential equation
x,=A(), (4.2—1)
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where x and 4(z) are column vectors in the five-dimensional space.
Writing 2’ for the transpose of @ we have

(4.2—2)
i IR
and
A@)= | =, i (4.2—3)
2oy 2P — 2Py,
Ty
2PyTy— Ty y2y
| 2Py _
where p, is a constant
Po=2p;h. (4.2—4)

The initial values defined by Eq. (4.1—2) obviously correspond to

2'(0)=k'=(1,0,0,b, (14+b2)'3). (4.2—5)

From the above equations we can conclude that the elements 4,
of A are rational functions of the elements z, of z; 7, n=1, .. ., 5. We
write G for the domain Re(z,)>0 of the complex five-dimensional
space, and it is evident that 4 (z) is analytic and regular in ¢ and also
that x(0)=Fke@. From theorems on ordinary differential systems it
therefore follows that problem (I1) has a unique solution, «(z), which
is analytic in the neighbourhood of the point z=0, ¢f. for instance
[H2], [P2]. This neighbourhood may be extended to consist of all
points z such that «(z) is in the interior of . Moreover, the solution is
analytic in the parameters p,, p, and the initial value b.

4.22. The Existence and Uniqueness of the Solution of problem
(12)

The transformation of the string equations from rectangular Carte-

sians to cylindrical coordinates is singular for #;=0. Strictly speaking,

this fact means that the equations (4.1—1) become meaningless for
5
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£—=0 (x,—a&, a=const.) and that consequently problem (12) is not a
proper one. From the first of the equations (4.1—1), however, we
conclude that

&p,— p,E2=const.

Now, this constant may be zero for some kind of motion and then

@,= py=const. (4.2—6)

Further, a string curve intersecting the axis of rotation (£=0) is
permitted by this kind of motion, a motion which can easily be shown
to correspond to the solution of problem (I12).

We now set a one-point problem equivalent to the problem (I2).

(12") Problem: 7o find functions x;(z), 1=1.2,3,5, defined on some
interval (a, b), a<<0<b, such that they satisfy

a) A differential system Eq. (4.2—1) where, using the same notations
as in the preceding section

(4.2—17)
A@)=] =
—pia,—2p,
P2
—2p,2,%,
b) The initial value
2'(0)=(0, by, 0, (1+83)"?). (4.2—8)

As previously, p,. p, are real constants and b, is a positive constant.
The initial value a,(0)=b, is equivalent to the condition &,=0 for
&=1, ¢f. Eq. (4.1—5), since the solution of problem (I2) yields &,(0) >0,
say &,(0)=b,, see Eq. (4.2—20).

Now, the elements of A(x) are integral functions of z;, i=1,2.3,5,
so that the solution of (I2’), and in consequence the solution of (I2),
is analytic in z for every z such that z; is finite. Moreover, the solution
is analytic in the parameters p,, p, and the initial value b,.
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f(E)=(A-pEY)2=y?

9(g)=1+£"%(B+p,k?)?

i
£y £, B E

Fig. VI. The graph explains the situation of case (1). For £e(&,,&,) the conditions
£,2>0 and p>1 are satisfied. For &> &, one has &,2> 0 but » <0, ¢f. note 28. In case
(2) the two points of intersection, £=§&, and &£=§&,;, disappear.

4.23. The Solutions of Problems (I1) and (I2)
Writing p,=2p,h we get from Eq. (4.1—1) for problem (I1)

7‘*‘))1&2:44,
£, —p,&*=B, (4.2—9)

S=(A—pEP—1—E X B+p),

where A and B are real constants (arbitrary, so far). We take B0,
since B=0 leads to problem (I2).
There are now two possible cases:

1) A and B are such that &, regarded as a function of & has three
real zeros, & >&,> & >0.28 It is not difficult to show that the expres-
sions Eq. (4.2—9) are physically significant in the interval [&;, &,] only
(see Fig. VI).

2) A and B are such that &, has only one zero. It is easily demon-
strated that this case has no physical significance.

It is now clear that for any steady rotatory motion with positive
reduced string tension and such that the string curve does not intersect
the axis of rotation, the function &(z) can assume the values &,<&<E,
only. Further, £,=0 for £=¢§, and &=¢&,. It is evident that no physical

¢ It should be noted that (by definition) y > 1 and that we may take & to be positive.
The constant p, is also positive.
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specialization is imposed on such a motion by the introduction of the
initial values Eq. (4.1—2). Together with the restrictions formulated
in Eq. (4.1—3) the initial values imply that letting &,—1 we normalize
the string curve (cf. section 4.12, point (3)) and that we fix it so that
&=1 occurs at ¢=0, 2=0.

By varying b we can cover any possible string motion of the type
in question here. It should be observed that for given p, >0and p, we
cannot choose b arbitrarily but are restricted by Eq. (4.1—3). The
latter restriction implies that b must be chosen outside the open
interval (b,, b,) where b,<<0 and b, >0 are roots of the equation

f(b)=b*—2p,(1+82)12—2p,b=0. (4.2—10)
From Eq. (4.2—9) we now obtain
(E&.)2=pY(E—1)(ks—E)(k,— &),
Ep,=b4py(£—1), (4.2—11)
y=(140)"2—py(8—1),
where we have to regard
&%€[1, k,]. (4.2—12)

We have introduced k, and k, instead of & and &. The following
relations are valid:

1
k=@ + o (7@ —(b—p2)1'",

1 ,
ky=0Q ——— [P}Q*— (b—p,)*1",
P’ (4.2—-13)

&~

0— [1+ (&)2 T (1+b2)“‘3]
o3 9 P1 P1 '
1(b)=b>—2p,(14-b2)"*—2p,b >0.

Excluding the special cases b=b, or b,, f(b;)=f(b,)=0, we can
integrate the first of the equations (4.2—11) directly, we then obtain
2=2(&) as an elliptic integral of the first kind, c¢f. [B2], pag. 72. In-
verting, we get £é=£&(2) as a periodic function; its domain of definition
may be taken to be the whole z axis. Then, y(z) is obtained directly
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from the last of the equations (4.2—11) and ¢(z) from the second one.
After some calculation we get the following solution of problem (I1):

£(z)=[14(ky—1)sn*((2))]'",

@ =pet P (B 1) R (2(e), k—1)
G RO =NERER S o o

7(2)=(1+4b%)"—p,(k,—1)sn® (£ (2)),
L(z)=2py(k;—1)"2, ze(—o0, c0).

In these expressions the modulus £ of sn(Z)=sn(Z, k) and 71(E, ky—1)=
=1I(Z, k,—1, k) is determined by

Jey—

k1"

= 0<k<l, (4.2—15)
where k, and k, are the same as in Eq. (4.2—13) and f(b) >0 holds.
Further, the constants p, and p, are real and p, >0, while p, is not
restricted. The solution of problem (I1) given by Eq. (4.2—14) will
be discussed in the next section.

In the special cases f(b)=0 we have

p(z)=bz, (4.2—16)
(1482)1%,

where b is a root of the equation (4.2—10). In these two cases the
string curve is a circular helix.

We now turn to problem (12). From system Eq. (4.1—1) and the
discussion in section 4.22 we obtain

7(z)

r+m&=A4,
P:="P2, (4.2—17)
E=(A—p&P—1—p3e.

It is clear that 4 >1 (¢f. note 28) and it is easily deduced that the

preceding expressions will be physically significant for &e[—§&,, &,]
only, where £=¢&, is the smallest positive zero of &, regarded as a
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f(E)=(A-pE?)?=y?
g(g)=1+pjE?

Fig. VII. The graph shows that the conditions £,*>0 and y>1 are satisfied for
|§] <&,. For |&|>&, one has <0, c¢f. note 28.

function of & (see Fig. VII). Normalizing the string curve, we write
&,=1 and take &=¢=0 for 2=0, 7. e. we introduce the conditions
Eqs. (4.1—4) and (4.1—5). Consequently any steady rotatory motion
with positive reduced string tension such that the string curve intersects
the axis of rotation is determined by the solution of problem (12). From
Eq. (4.2—17) we obtain

P\’
§i= (7) (I—£n(1—Fke%),
P:=P2 (4.2—18)
y=014+p)"+p(1—8),

where the range of & is [—1, 1] and k is determined by

3 [1 (Pz)2 2 1 21'2]_1:2 (4.2—19)
=15, ) ot ! 216

1

After some elementary calculations we get the following solution
of problem (12):
& (2)=sn (z %),

¢(z)=p22: (4.2_20)
7(@)=1+py)" *+p cn2(z, %‘) ,

2e(—o0, c0).
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) )
The modulus % of sn (z T—kl) and cn (z LAI) is determined by Eq.

(4.2—19). p, and p, are real constants and p, is positive, while p, is
not restricted.

4.24. Discussion of the Solutions of Problems (I1) and (I2)

In this section we shall briefly discuss the solutions of problems
(I1) and (I2) with special regard to the possibilities of obtaining
a complete determination of all the string properties, starting from
the physical conditions in one or two points (cf. section 4.11). It is
only to be expected that one-point problems are more easily approached
than two-point problems. Three physical quantities will be considered
known a priori, viz. m, o, and H (the string mass per unit length, the
angular velocity of the string curve, and the quantity of string mass
flowing through every surface z=const. per unit of time). These
quantities are constants in the case of an inextensible string in steady
motion. We first discuss the solution of problem (I1) and start by
transforming Eq. (4.2—14) into physical variables. We also add
expressions for the arc length s of the string curve and the string
tension 7'. From equations (1.2—8) and (3.1—8) we get ds—aydz and
from Egs. (3.1—8) and (3.1—10) T'=T(yi+2p,07**). Now, =1,

>
Pa ) We recall

2
“P1
that a'=a&, ¢, 2®=az are the cylindrical coordinates of the string point
observed from a frame of reference rotating with the string curve.

With respect to such a frame, every string point has a constant

o=1 and yu=h= ?I;:_, so we obtain 7'=1T, (y -
SECY

H
velocity ug=awh= " (cf. section 3.22, point (1)). After some cal-

culation we obtain the following arrangement of the physical string
properties as functions of the axial coordinate z (cf. Eq. (4.2—14)):

2'(z)=a[l1+4(k,—1 )sn2(E(2)) ]2,

b—p, ~1/2
@(2)=pz + n (ky— 1)~ (E(2), ka—1),
s)=a 1+ — (b — L) —BEE)},  (42-21)

T()=T, [ 2, +(1+bz)1’2—211(kz—l)Snz(C(z))],

E(z)=2p,(ky—1)*2, ze(—o00, o0).
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According to Egs. (4.2—15) and (4.2—13) the constants k, &, and
k, may be expressed in terms of p,, p, and b. 7, and a may also be
expressed in terms of p,, p, (and, of course, in the a priori constants
m, w, H). We then get from Egs. (3.1—9), (4.2—4) and the above

equality 7= 5
p 2H
S
Py mw
(4.2—22)
i p, 2H?
T=— .
VAL

The three constants p,, p, and b are the dimensionless parameters
of the string,?® and if they are known, it then follows from the ex-
pressions Eq. (4.2—21) that all the physical string properties are
known in every point of the string curve. Instead of these three para-
meters we may use a, 7'y and b which have the advantage of possessing
simple physical interpretations (a is the smallest distance from any
point of the string curve to the axis of rotation, 7', is the axial com-
ponent of the reduced string tension vector, and b is the cotangent of
the angle of elevation of the string curve at a point of distance a from
the axis of rotation). We prefer to use p,, p, and b, since they are
dimensionless and yield simple expressions. In order to obtain the
expressions Eq. (4.2—21) we have introduced a simple set of one-
point conditions, viz.

xl(O):a, x:(O)ZO’ (P(O):O;
(4.2—23)
¥(0)=b, s(0)=0,

and we have also introduced the parameter 7,.3° It is most improbable,
however, that 7', and such simple conditions as Eq. (4.2—23) should
be available in a physical problem, cf. section 4.11. The main difficulty
in solving a particular problem of steady rotatory motion of an inextensible
string will consist in determining the string parameters p,, p,, b (or

2% A more precise statement would be: p,, p, and b are the three parameters of the
(inextensible) string in case of a steady rotatory motion such that the string curve
does not intersect the axis of rotation.

30 We could also introduce 7, by means of an initial value of the string tension 7',
2

H
viz. T(0)= — +T,(1+b*)1/2. This fact can be verified by Eqs. (4.2—21) and (4.2— 22).
m



73

a,T,,b) and adjusting the string curve in such a way with respect to the
cylindrical coordinate system that the available set of boundary conditions
and other conditions are satisfied. For instance, let the motion satisfy
conditions (3) of section 4.11. We then have to find string parameters
P Pa, b and z,, z; that satisfy

aM(zy)=2l, '(zp)=2p,
P(2p)—@(24)=0,

1 Ps M
TR e

where 2!, z},, 4 and C' are known quantities and 2'(z) and ¢(z) are the
same as in Eq. (4.2—21). (It should be noted that C' is the physical
distance between the planes z—=z, and z=z5.) In order to be able to
determine the unknown quantities we need one more condition, as
predicted in point (6) of section 4.11. The determination of p,, p,, b,
z,, zp will generally involve intricate computations, especially in such
cases where several different string motions have to be joined.

It must be pointed out that we cannot expect the determination
of the set p,, p,, b, z,,2p to be unique. It is known that infinitely
many solutions are theoretically possible for a simple motion corres-
ponding to a special case of problem (I12), ¢f. the paper by NERONOFF,
[N1], containing a discussion on stability; see also [H6], [K2], and
note 26. This state of things has nothing to do with the uniqueness
of the solutions of the problems (I1) and (I2) as stated here.

So far, we have discussed the case of a steady rotatory motion,
when the string curve does not intersect the axis of rotation (corres-
ponding to the problem (I1)). We now turn to the case of an inter-
section between the string curve and the axis of rotation, corresponding
to problem (I2). This is a most special case, in so far as there are
small chances that any set of one-point or two-point conditions would
produce such an intersection. In several textile devices, however, for
example spinning machines, the string is forced to pass through a
small guide eye placed centrally with reference to the axis of rotation.
It is not difficult to show that the solution of problem (I1) turns into
the solution of (I2) when we pass to the limits a—0, b—p,.3! The solu-

31 Tt should be observed that a has different meanings in problems (I1) and (12),
respectively.
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tion of (I2) consequently provides an approximate solution of (I1) for
the kind of problem outlined above.

Transforming the solution Eq. (4.2—20) of the problem (I2) into
physical variables and adding expressions for the arc length of the
string curve s and the string tension 7' we get

/
2! (z)=a sn (z %),

Ps ¥ 1 P (4.2—25)
o |-+ vt m ()],

1

[
=
©
<
Il

73 . P
T(z)=T, [2—1)1 + (14-p,)'*+p, cn? (2 7)] ;

where £ is determined by Eq. (4.2—19) and we choose s(0)=0. The
equalities Eq. (4.2—22) hold true in this case too. There are two
independent parameters p,, p, in Eq. (4.2—25). Alternatively, we
may use a, 7', instead of p; and p,. The comments on Eq. (4.2—21)
are in the main valid for Eq. (4.2—25) also, but the computational
difficulties are considerably smaller for Eq. (4.2—25), since there are
only two parameters to be determined and the elliptic integral of the
third kind in the expression for ¢(z) has disappeared.

4.3. The Steady Rotatory Motion of an Elastic String in the
Case of Positive Reduced String Tension and Small
Strain

In this section we treat the basic problems (E1) and (E2), 7. e. the
analogues for an elastic string to the problems (I1) and (I2). We shall

assume that the reduced string tension is positive, 7. e. 7'>0, and
that the strain of the string is small everywhere, i.e. x=£k7,<1,
cf. section 3.22. According to point (3) of section 3.22 we put =1
in the system Eqs. (3.2—4), (3.2—5). Excluding the first equation of
Eq. (3.2—4) we have

(52902)2——21)2552:0,

7.+ 2p1 066,=0, (4.3—1)
E4(Ep,P+1=2%
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and from Eq. (3.2—5)

ﬂ( I 1)]
—expif——|Vy =il 432
0 p[ = + % o ( )

The parameters p,., p, and f of these equations are connected with the
a priori constants m,, o, H, k and the characteristical quantities a, T
according to

i , @
Pr= 7 my (1)"'?0 y
a
Po=2ph=wH o (4.3—3)

0

B=u pr=— mw*ka’.

The system Eq. (4.3—1) consists of three ordinary, nonlinear
differential equations for the functions &(z). ¢(2), y(2). Eq. (4.3—2) is
a transcendental equation which determines p as a function of y. The
parameters are real and p, >0, p,#0, 0<f < 1. We exclude the special
case p,—0 (which implies zero tangential velocity), since this case
will be treated in section 4.4. The function p(y)=p(y, ) turns out to
be multiple-valued mathematically, but if we take o(y)=>1 as 0,
then o(y) is analytic in y and 8 for every y and p, >0, if § is sufficiently
small.3 This is a consequence of a theorem on implicit analytic func-
tions, see for instance [S2], p. 170.

Compared to the corresponding system Eq. (4.1—1) of the inexten-
sible string Eq. (4.3—1) is further complicated by the presence of the
variable o=p(y). This complication is not serious from the mathema-
tical point of view, however, since Eq. (4.3—1) is analytic in its
variables and parameters. The solution of a one-point problem in
connection with Eq. (4.3—1) will consequently be analytic in the
independent variable z, the initial values and the parameters (in the
neighbourhood of f=0). The solution therefore admits of series
expansions after powers of . This property is most valuable, since
the exact solution of the problem (for arbitrary values of f8), though
it probably might be found, is too complicated to be of practical
interest. We will therefore seek approximations, linear in f§, to the

3 Tt should be observed that f=0 means an inextensible string for which g=1.
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solution of our problem. The search for linear approximations does
not need any special justification; it corresponds to the common
approximations in the classical theory of elasticity.

It would be natural to apply a linearization on approaching the
problem of approximation, 7. e. to add terms linear in f to the solu-
tions of the corresponding problems for the inextensible string. Neglect -
ing terms O(f?), f—0, a system of linear differential equations would then
result from Eq. (4.3—1). This system, however, is singular at the
turning points &,=0, as may be seen from Eq. (4.3—1). Such a diffi-
culty might be surmounted by an application of the PLK method,
cf., for instance, [T2], but the attempts in this direction by the author
have failed so far. Moreover, the coefficients of the differential system
will consist of elliptic functions and such a system is not easily treated,
however simple the boundary conditions may be.*

In order to avoid the difficulties just pointed out we shall apply
a method which is a most special one, since its application is confined
to this very problem, or at least to a small class of problems.® The
details of the method will be elucidated later on.

In subsequent deductions we shall frequently meet statements in
the form, the function f=f(z, p,, p,, f) is analytic in its variable x
and the parameter f. It should be understood that the statement is
true for every x of current interest, if § is in a sufficiently small
neighbourhood of zero and the parameters p,, p, are real, and p, > 0.

We now return to the system Eqs. (4.3—1), (4.3—2). Expanding
after powers of f and making some elementary calculations, we get

0=1—£(?’+

AT
i
(4.3—4)
1
= ﬂmQ—sz)] +6* G,

&~

y=A—p(E—1) [1—

where (=@, (y, f) is analytic in the variable y and the parameter f,
and further G,=0(1), 0. G,=G,(&, f) is analytic in & and f and
(,=0(1), f—>0. 4 is an arbitrary constant and @ is a constant deter-
mined by

P2 \? 2
2Q0=1+4 ? 4+ —4. (4.3—5)

3 Of. Chapter 6 where a related problem is discussed.
3 A mathematician might well ask if it deserves to be termed a method.
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From Eq. (4.3—1) we also obtain

Byt B P,
(4.3—6)
Y= 572(3-{-)9252),

where B is an arbitrary constant.
From now on we must consider the two problems (E1) and (E2)
separately.

4.31. Problems (E1) and (E2)

We now formulate the basic problem (E1) for the steady rotatory
motion of an elastic string, when the strain is small and the string
curve does not intersect the axis of rotation.

Let the functions &'(z, B), ¢'(z, B), ¥'(2, B) of the variable z and the
parameter f be defined, for z on some interval [a’, b'], a’<0<b’, and for
B in a neighbourhood of f=0. Let these functions satisfy

a) The differential system Eq. (4.3—1), where o=o(y, ) is defined by
Eq. (4.3—2).

b) The initial values

£(0, /=1, ¢'(0, )
@10, B)=b, »'(0, B)=(1+b*'2,

where b is a real constant such that for some positive number M

Il

O;
(4.3—7)

f(b)=b2—2p, (1422 —2p,b > M. (4.3—8)

We call the functions &z, B), ¢(z, B), (2, p) a solution of the problem
(E1) on the interval (a, b) c [a’, b'], a<<0<<b (cf. note 27), if, for z€ (a, b)
and in a neighbourhood of =0, they satisfy

¢) The initial values Eq. (4.3—17).

d) The conditions

§—&, p—¢', y—y'=0(F), 0. (4.3—9)

e) Some further conditions of comtinuity.

The following comments may be made concerning problem (E1):

1) The condition Eq. (4.3—8) means that &'(0, f)=1 is a local
minimum of &'(z, f) provided that f§ is small enough. This condition
implies no specialization, cf. point (3) of section 4.12.
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2) The conditions of continuity imposed on &, ¢, y will depend on
the kind of string property we want to approximate. If, for instance,

ner

we want the approximation of - (linear in f), then &(z, #) must be

2"’
g ¢
The method employed in this thesis will provide functions &(z, f8),
@(2, ), y(2, f) which are analytic in z and f, and further supply
approximations of derivatives of any order.

3) It will become clear in the next section that £'(z, ) must be a
periodic function of z; the domain of definition of &, ¢, " may
accordingly be taken to be the whole z axis. The functions &, ¢, y
(solution of (E1)) may also be defined on the whole z axis and provide
the required approximations valid for any finite z, if 4 is small enough.

We now proceed to the problem (E2) which is the counterpart of
(E1) when the string curve intersects the axis of rotation. We use a
formulation of the problem (E2) similar to that given for (E1), with the
exception that we replace the conditions Eq. (4.3—17) by the following
exPressions:

of the class C" and the condition — &N =0(p?), —~0, must hold.

&'(0, B)=¢'(0, B)=0, (4.3—10)

£=0 forf'=1. (4.3—11)

Comments (2) and (3) on problem (E1) are valid for (E2), too, and
Eq. (4.3—10) means that z=0 is a point of intersection between the
string curve and the axis of rotation. The condition Eq. (4.3—11)
means that the amplitude of &'(z, f) is normalized to be 1 and does
not imply any specialization, ¢f. point (3) in section 4.12.

4.32. The Solution of Problem (E1)

Proceeding now to the solution of problem (E1) it is evident that
the functions &’(z, ), ¢'(z, f), 7'(z, f) must satisfy equations (4.3 —4)
and (4.3—6). We may here make the same investigations concerning
the constants 4 and B as we did in section 4.23. Since the influence
of the parameter $ on y’ and &, may be made as small as we like, the
result will be essentially the same as in the case of the inextensible
string. We can therefore conclude that 4 and B must be such that
&,, regarded as a function of & and f, has three zeros EB)>E& (B)>
> &(B) >0. These zeros are analytic in § and are real for any real f.
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The expressions Eqs. (4.3—4) and (4.3—6) are physically significant
for &el&;, &] only. We may put &(f)=1 which means that we let
the string parameter @ be the smallest distance between the string
curve and the axis of rotation. Just as in problem (I1) we can introduce
the initial values Eq. (4.3—7) without loss of general validity. The
special case &,=¢&, is excluded by the inequality Eq. (4.3—8). We
consider this helix case separately in section 4.34. We shall find it
convenient to write (&,)*=kyn, where n,=1+0(p), f—0. (It should be
observed that k, here is the same parameter as in Eq. (4.2—11).

It is our aim to find an approximation &(z, f) of &'(z, f), and the
key to the problem is a quartic in (£,)* which provides an approxima-
tion, linear in f3, of the expression for (&,)%, 7. e. the first of Egs. (4.3—6).
The next step in the derivation of this quartic consists in expressing
£ as a function of & and f in a suitable form. The expression so
obtained must be valid for (&)%€[l,kyn,]. After some elementary
calculations we get the following expressions which (in the case of
small strain) hold true for any steady rotatory motion of an elastic string
which does mot intersect the axis of rotation,

(&&= P2 +mB)((E)2—1)(kegny— (&) X
X (kg — (&)1 HB(E )1 +B2Go),
(&)@, =b+pa((6")2—1),
y = (140212 —py (&) —1) [1— 3 2@, — (&'))] +5*Go,

(4.3—12)

where (&')2€[1,kyn,], Go=G4(&', ) and Gy=Gy(&', f) are analytic in
& and p and are real for real values of & and p. They possess the
properties G,—=0(1), G—=0(1), f—>0. Moreover, n,=n,(f) and n,=n,(f)
are analytic in . The following expressions determine the parameters
in Eq. (4.3—12):

m:—(k1+k4)3
kyk 4
n=n(f)=1—p i (4.3—13)
— kykes
ny=mny(f)=1+p ks +0(p?), p—>0,
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k1:Q1+R, kzle_R:

k3:Q2+R7 k4=Q2_R:

P2 \* 2 g

2@=1+—] +— (1+8)'%
Bl B (4.3—14)
I23%

1 .
R=—[piQ;—(b—p.)"1">
P1

The constants m, k, k,, ks, k, are all real for p, >0 and we have
key>k,>1. These facts can be verified directly, but they can also be
concluded from section 4.23 and inequality (4.3—8). (In section
4.23 k, and k, are real and have the same meaning as here, and if
f(b) >0 in Eq. (4.2—13), then k, >k, >1.) Therefore, n, and n, are real
if p is real, and obviously n,=1+40(g), n,=1+0(f), 0. The ine-
qualities kyn, >kyn, >1 then hold, if p is sufficiently small.

Regarding z as a function of #=(&’)?, the fact that z, is singular
of the order O(x'2), 250, at z=1 and az=kym, is readily ob-
tained from the first of the equations (4.3—12). Within this in-
terval z, is finite and positive (by a proper choice of sign), if g is
sufficiently small. If we then put z(1,8)=0, the function z=z(¢, f8) is
defined for t€[1,k,m,] and can be obtained by means of quadrature.
Moreover, z(t, ) is strictly increasing and the inverse function (£')2=
=t=I(z, #) consequently exists and is defined on z€[0, z(kyn,, B)].
Further, ¢(z, f) may be re-defined as a periodic function of z with the
period 2z(k,n,, #). Once we have determined (£)* as a function of z
and the parameter f, y'=y’(z, #) will be obtained directly from the
last of Eqs. (4.3—12). Integrating once with respect to z we get
¢'=¢’(z, p) from the second of the equations (4.3 —12). In order to be
able to determine the functions &'(z, ), ¢'(z ), »'(2, /) we must
calculate the functions ¢/, and @; that appear in Eq. (4.3—12), e. g.
by computing their series expansions after powers of 5. It would be
very laborious to do so and we therefore restrict ourselves to the
search for functions &(z, ), ¢(z, f), y(z, ) satisfying conditions (c),
(d) and (e) of section 4.31. In other words, we proceed to find a solu-
tion of problem (E1).



As a solution of the problem (E1) we choose functions &(z, ), ¢(z, (),
y(z, p) such that they satisfy
a) The system

&=t, £>0,
t?:4P§(1+mﬂ)(t_l)(kznz_t)(kmx—t)(l+ﬁt),
(4.3—15)
tp,=b—+p,y(t—1),
y=(1+5"2—p,(t—1)[1— 3 B2Q:—1)],
where te[1, kyn,|; and n, is determined by
1 ks 4316
M= +ﬁ kl_kz S ( LY )

Egs. (4.3—13) and (4.3—14) are valid for the other parameters. b is
assumed to satisfy Hq. (4.3—8).
b) The initial values Eq. (4.3—7), 1. e.

t(0, B)=1, ¢(0, B)=0. (4.3—17)

In order to be sure that &, ¢, y do constitute a solution of (E1) we
must show that the conditions Eq. (4.3—9) are satisfied everywhere
in the domain of definition of the functions. At first glance it might
appear evident that these conditions should be satisfied, since the
system Eq. (4.3—15) is obtained from Eq. (4.3—12) by omitting terms
of the order O(5?), f—0, but owing to the singularities of the integrand
in the integral which determines z=z(t, f) things become somewhat
complicated. We therefore discuss this question in greater detail in
Appendix Al.

After some calculations we get the following solution of problem (E1):

£z, f)=1+ (22— 1)(1+p)sn*(42) [1+Pres—P(,—1)sn*(12)] 7,
1
¢(z, f)=2[P:(1+B)—pb]+(b—pa)(1+B) — II(Iz, 8%), (4.3—18)

y(z, B)=(1+b)2—p (1) 1— § (2@, — &),

where £ >0 and z€[a, b]c(—oo, co).
6
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The parameters 7, k, 6> appearing in Eq. (4.3—18) are determined by

A= 2(B)= o[ (2,—1)(1+Px,)]*2,
BR=k(B)=(%y—1)(1+B%) (76;—1) 2 (1+B2,) Y k>0, (4.3—19)

?=0*f)=(2— 1)(1+ﬁ32);]:

where k is the modulus of sn(2z)=sn(Jz, k) and 71(iz, 6*)=11(}z, 6%, k).
For the parameters x,, ;. #, we have

o= %o(B)=13(1+mpB)=pi[1—P(k,+k,)], #y>0,
1= 11(B)=kyny=Fky[1—pleoky(ky— k) '], (4.3—20)

#y=%y(B)=kony=1k,[1 +/jk1ka(k1—k2)fl]:

where k,, k,, ks, k, are given by Eq. (4.3—14) which also determines
@, . If the four parameters f, p,, p,, b are given, then the solution Eq.
(4.3—18) of problem (E1) is completely determined. As was shown in
a previous discussion x;, >x,>1 and consequently 0<<k<1 for suffi-
ciently small values of £.

For =0 the solution of (E1) turns into the solution of (I1). This
trivial result is readily perceived from Eqs. (4.3—18) and (4.2—14).

By the method applied here we have obtained an approximation
&(z, p) of the function &'(z, ), where &’ is determined by Eq. (4.3—12)
and the initial value £'(0, f)=1. The approximation is true up to terms
linear in f. It is also possible to obtain approximations of higher order,
since we can write the first equation of Eq. (4.3—12)

(&'EP=Qu(&’, B)14-"H),

where @), is a polynomial in (£')* the degree of which is increasing
with n, and H=H (&', §) is analytic in & and . Let £&=£&(z, ) be the
nth order approximation of £'(z, ) with respect to . As previously for
n=1, we can determine & from the differential equation

(&) =Qu(&, P)

and the initial value £(0, f)=1. We obtain &(z, ) as the inverse func-
tion of a hyperelliptic integral the class of which depends on =, cf.
[B2], p. 252.
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4.33. The Solution of Problem (E2)

We start by considering the functions &'(z, ), ¢'(z. ), (2, f) which
satisfy Eqs. (4.3—4) and (4.3—6), just as we did for problem (EI).
In this case the string curve intersects the axis of rotation (£=0); the
constant B in KEq. (4.3—6) must then be zero and we get ¢,=p,=
—const. f is a small parameter, so we conclude, as for problem (I12)
in section 4.23, that A is a constant such that & ; . regarded as a function
of & and f, is physically significant for &'e[—&;, &]. At the end points
of the interval & —0. Without loss of general validity we can take
5;:1, and we then let the characteristical length @ be the greatest
distance between any string point and the axis of rotation. We also
let the origin of our cylindrical coordinate system be a point of inter-
section between the string curve and the axis of rotation, and the
conditions Eqs. (4.3—10) and (4.3—11) are then satisfied. After some
calculation we get the following system from Eqs. (4.3—4) and (4.3—6),
a system which (in case of small strain) is valid for any steady rotatory
motion of an elastic string intersecting the axis of rotation:

(&'E P=pi(E" R —(&')2)(2Q— (&) g+ D) (1+£G,),

@2 ="Pe> (4.3—21)
y' =142 P—py((E"P—D1)[1 — 3A(2Q—(&))] 45,

where (&')2e[—1,1]; Go=G,(&', p) and G,=G (&', p) are analytic in &’
and . The parameters ) and ¢ are determined in f, p,, p, by

Pz \* & 211/2
2Q=1+ % +—(14+p3) "%
1

P1
1| i
g=1—p{1+— (1--p)").
P1

It should be observed that 2¢Q) >1, since by definition p, >0, cf. Eq.
(3.1—9). Then, for small values of £, E; #0 for £’e(—1,1), and we may
take £>0 in that interval. According to Eq. (4.3—10) we put z=0
for &=0, and we can obtain z=z(&’, ) from Eq. (4.3—21) by means
of quadrature. z(&’, #) would be strictly increasing, and it consequently
does possess an inverse &'=¢&'(z, f). From the last of the equations
(4.3—21) we obtain y'=y'(z, p) . p'=¢'(z, p) is readily derived from
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Eq. (4.3—21) and the condition Eq. (4.3—10). Since the evaluation
of &'(z, ) in this way would be a laborious procedure, we restrict
ourselves to search for such solutions of the problem (E2) as specified
in section 4.31.

As a solution of problem (E2) we choose functions &(z, f3), ¢(z, f3).
y(z, p) such that they satisfy

a) The system

Szzt’

£ =4pit(1—1)(2Q—1t)(q+pt),
(4.3—23)
=05,

= (14p) 2 —pyt—1)[1—3P(2Q—1)],

where te[0,1] and the parameters Q and q are the same as in Eq. (4.3—22).
b) The imitial values

£(0, B)=g(0, B)=0. (4.3—24)

In order to constitute a solution of the problem (E2) the functions
¢, @, y must also satisfy the conditions Eq. (4.3—9). The proof might
be carried out in the same way as for problem (E1), ¢f. Appendix Al.
After some calculation we get the following solution of problem (E2):

£(z. f)=sn(22)[1—pen(2)|"*,
(2, B)=Dp2, e

¥z B)= (1422 4-p(1— &) 1—38(20—2)],

where z€[a, b]c(—oo, co).
The elliptic modulus 4 and the parameters 7 and ¢ are determined by

k=(2Q) "[1-+52Q— 1),
= (ZQ 1/2 ] _L ﬁ 1 2\1/2
—1’1 ) 2 p]_ ( +2)2) ’ (43—26)

Pa\? 2
20—1+ () + - (a
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If the three parameters f, p,, p, are given, then the solution Eq.
(4.3—25) of the problem (E2) is completely determined.

For =0 the solution of (E2) turns into the solution of (I1), as
might be expected.

4.34. A Special Case of Problem (E1)

On excluding condition Eq. (4.3—8), the problem (E1) may have a
solution for which the string curve is a circular helixz at certain values
of the parameters p,, p, and b.

Introducing the initial values Eq. (4.3—7), we find that the string
curve is a helix, if p,, p, and b are such that the equation

SO0 2B (182 iy Y] —
—B2GL((1+b>)'2, B)=0 (4.3—27)

holds true. In Eq. (4.3—27) f(b) is the same function as in Eq. (4.3—8),
and G,(y, p) is the same function as in Eq. (4.3—4), ¢. e. (7 is analytic
in y and g, and G;,=0(1), f—0. The equation (4.3—27) means that &,,—0
for =1, @,=b, y=(1+b%)"% and it is easily derived from the first of
the equations (3.2—4) and also from Eq. (4.3—1). Eq. (4.3—27) may
also be considered to be the condition for k,n,—1 in Eq. (4.3—12).
After some elementary calculations we find

b=by+pb,+0(B2), B0, (4.3—28)
where b, and b, satisty

f(bo) o 0)

1+b(2) 2 211/272 2 2\1/271—1 (£.3—29)
by=— 4—60 [65+2p:(14-b5)"*1° [2p,+-b5(1+-bg)" 1"

f(by)=0 always has one positive and one negative root (i. e. for any
ps and p, >0), cf. section 4.23.3%

There is one value of b,, of course, for each of the roots of f(b,)=0,
and Eq. (4.3—29) shows that they are both finite. In the case of an
elastic string we may regard b, as a linear correction to the values b=b,
which we obtained for an inextensible string. There is no difficulty in

35 It should be noted that b, is not the same constant here as in section 4.23, where
it is the positive root of f(b)=0.
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calculating higher order terms in the series expansion of b after powers
of f (the elastic parameter).

To sum up, we may claim that the string curve may be a helix for
any pair of permissible values of p, and p,, if b assumes either of the
two values satisfying Eq. (4.3—27). These two values of b are different
in sign, and if b is positive the curve will be a right-handed helix and
vice versa. b is the cotangent of the helix angle.

4.35. Discussion of the Solutions of Problems (E1) and (E2)

The expressions Eq. (4.3—18) and Eq. (4.3—25) give the solutions
to the basic problems (E1) and (E2) for the steady rotatory motion
of an elastic string in the case of small strain and the absence of
external forces. The solutions are correct up to terms linear in the
elastic parameter 5. The four parameters, f, p,, p,, b. constitute the
solution of (E1); the parameter b does not appear in the solution of
(E2).

Compared with the solutions of the corresponding problems for
the inextensible string, (I1) and (I2), the solutions of (E1) and (E2)
are more complicated. In principle, however, the difficulties connected
with the determination of the string properties starting from physical
boundary conditions are the same regarding both the elastic string
and the inextensible string.

The evaluation of the physical string properties may be carried
out in a manner similar to that used in section 4.24. The determina-
tion of the total string mass in an arbitrary interval on the string
curve, i. e. the evaluation of the integral [maoydz, will cause no
difficulties; p=o(y) is given by Eq. (4.3—4) and y=y(§) by Eq.
(4.3—15) or (4.3—23). (This particular problem does not occur in
case of an inextensible string since in that case the string mass is
proportional to the length of the string curve.)

The physical string properties will be completely determined if
we are able to determine the parameters p,, p,, b (or, equivalently,
a,T,,b) on condition that the a priori constants m,, w, H, k are
known. It should be observed that the elastic parameter § can be
determined in p, and p, (and the a prior: constants) by means of
Eq. (4.3—3); the latter equation also gives the connection between
a, T, on the one hand and p,, p, on the other. In the case the string
curve intersects the axis of rotation, problem (E4), parameter b
disappears.
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There are consequently three parameters (fwo in the case of inter-
section) to be determined from the boundary conditions and other
available physical conditions. This situation is quite similar to that
occurring for the inextensible string. It is also to be expected that
for a particular string problem we can obtain a first order approxi-
mation of the solution, if we regard the string as inextensible. It
must be pointed out, however, that the parameter values p,, p,, b,
obtained in this way, must be modified when elasticity is taken
into account.

4.4. The Steady Rotatory Motion Without Tangential Velocity
of an Elastic String

When the string rotates without tangential velocity, an arbitrary
string point describes a circle which has its centre on the z axis. It is

evident from section 3.1 that =0, T=T hold true everywhere on
the string, or, in dimensionless variables, =0, 6=0. When no external
forces act on the string, it follows from section 3.2 that =o=const.
and as previously we can take 6=1. This means that the string
parameter 7', is the component of the string tension vector on the 2
axis. From Egs. (3.2—4) and (3.2—7) the following equations then
result

(2 ) 50
Py

¢, =B, (4.4—1)

£+ (Ep)+1=y"
In these equations A>0 and B are arbitrary real constants and
P, B are parameters, c¢f. Eq. (4.3—3). It should be noted that no
restriction is laid upon the magnitude of the strain in the string.
Two different cases now appear, corresponding to (E1) and (E2)
(the equivalent problems in case of small strain and non-zero tangen-
tial velocity).

1) B+0; the string curve has no point of intersection with the axis
of rotation. We conclude from Eq. (4.4—1) that in this case 4 and B
must be such that

£, =0 if =& or =,

£ >0 if &e(&y, &),
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where &,>&>0. We can take &=1, as we did in problems (I1)
and (EI), and it then implies that the characteristical length @ in
the problem is the smallest distance between the string curve and
the axis of rotation. The basic one-point problem which results from
B=+0 will be called (E3).

2) B=0; the string curve intersects the axis of rotation in one or
more points. We conclude from Eq. (4.4—1) that in this case
@p=const., 7. e. the string describes a plane curve. Except for the trivial
solution £=0, a real solution of Eq. (4.4—1) can only exist, if 4
is such that

=2 . =
& >0 for fe(—§&, &),

£,=0 for |E|=%,.

We put & =1 and the characteristical length a is then the greatest
distance between the string curve and the axis of rotation. The
basic one-point problem connected with this kind of motion will be
called (E4).

4.41. Problem (E3)

(E3) Problem: 7o find functions &(z), p(z), y(z) defined on some
interval (ay, a,), a,<<0<a, and constants A and B such that the following
conditions obtain

a) The system Eq. (4.4—1) is satisfied.

b) The inatial conditions

H0)=1, p(0)=0, ¢, (0)=b, p(0)=(14E)?  (4.4—2)

are satisfied. b is a real constant which satisfies the inequality®®
1/2 p 1/2
f(b)=b>—2p,(1+b%)2exp | — ? (14822 ) >0. (4.4—3)
1

Otherwise b is an arbitrary quantity. p, and j are parameters of
the system connected with the a priori constants m, o, k and the
characteristical quantities @ and 7', according to the expressions
Eq. (4.3—3).

3¢ This inequality proves that £(0)=1 is a local minimum. The helix case f(b)=0
is treated separately.
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The solution of problem (E3) is easily obtained. Egs. (4.4—1),
(4.4—2) imply that #(z)=(&(z))* must satisfy a separable differential
equation

where

2
glt)—t [%log(o—ﬂ(t—l))] —t—t,
(4.4—4)
p’ 1/2
C =expl|— (1))
P
It will be evident from previous discussions that g(¢f)>0 for
te (1,t,), where t, depends on the parameters p,, # and the initial value b.
In the neighbourhood of {=1 and t=t, g(t) satisfies

9(1+¢)=eg,(1)+-0(¢?), e>+0,
g(t,—e)=—eg,(t,)+0(e*), e>+0,
where ¢,(1)>0, g,(t,)<<0. z=z(t) can consequently be obtained by
quadrature. Taking z(1)=0, c¢f. Eq. (4.4—2), we get

)= (9(r) Ydr. (4.4—5)

le et
u\_

z(t) is defined on [1,t,]. We now introduce L=z(t,), ¢. e.

2L = [(g(x) Vidx. (4.4—6)

—

Now, since z(t) is strictly increasing, it possesses an inverse
F(z)=t(z)=(&(2))* which is defined on [0, L]. By the introduction of
F(—z)=F(z), F(z+2L)=F(z), F(z) is extended to be an even periodic
function with the period 2L. As a solution of the problem (E3) we
then obtain

pl2)=b [ (F(2))e, (44-7)
0

7 (2)= % log[C—A(F(z)—1)],
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where C is a constant determined by Eq. (4.4—4) and F(z)=i(z)
is the inverse of z(¢f) which is defined by Eqs. (4.4—5) and (4.4—4).

The period 2L of &(z) is determined by Eq. (4.4—6), where t=t,
is the second zero of g(f) (the first is ¢=1). The physical distance
2'(z)=aé(z) between the string points and the axis of rotation is
immediately obtained from Eq. (4.4—7), and the derivation of the
string tension 7'(z), and the arc length s(z) of the string curve can
easily be carried out, cf. section 4.24. It must be observed. however,
that the integral defining z(f) (the inverse of F(z)) is not an elementary
one.

We now turn to the keliz case which has been exluded so far by the
condition Eq. (4.4—3). It is clear that the equation f(b)=0 has two
solutions, b=-+0,.27 If b=-4b,, we have

¢(2)=+£byz, (4.4—8)
y(2)=(1-+b])*2.

In this case the string curve will obviously be a circular helix.

4.42. Problem (E4)

(E4) Problem: 7o find functions &(z), ¢(z), y(z), defined on some
anterval (ay, a,), a,<<0<a,, and constants A and B such that the following
conditions obtain:

a) The system (4.4—1) s satisfied.

b) The imtial conditions

£(0)=p(0)=0 (4.4—9)
are satisfied.

c) The condition
§,=0 for &=1 (4.4—10)
18 satisfied.

The solution of this problem is obtained by straight-forward cal-
culation. As mentioned previously, the constant B must be zero

37 If the string has a non-vanishing tangential velocity, the negative and positive
roots are different in magnitude, owing to the acceleration of Coriolis.
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and the string curve is a plane one, i. ¢. g=g(z)=const. The solution
of problem (E4) may be written

£(z)="Fo(2),

0, (4.4—11)

¢(2)
y(2)=[1+F3(z)]2

where F,(z) is the inverse function of z(£); the latter is defined by

2(8)= F(gole)) ™ dr,
N ﬁ AT (4.4—12)
Gole)= Wlog(expf];Jrﬁ(l—r-)) =y,

By the extension F(—z)=—F(z), Fo(2L,—2)=F(z), where
1
Ly=2(1)={ (g () **dx, (4.4—13)
0
we may take the domain of definition of the solution Eq. (4.4—11)
to be the whole z axis. &(z)=F(z) is obviously an odd, periodic func-
tion with the period 4L,.

4.43. Discussion of the Solutions of Problems (E3) and (E4)

Fundamental theorems on ordinary differential systems indicate
that the solutions of problems (E3) and (E4) are unique and analytic
in the independent variable z, the elastic parameter f, the parameter
py, and the initial value b. The solutions are of general validity in
the sense that, if a problem concerning a steady rotatory motion
without tangential velocity of a string does have a solution, the
latter is then contained in the solution of either problem (E3) or
problem (E4).38

No restrictions have been imposed with regard to the magnitude
of the strain in the string, but the expressions obtained are naturally
only valid for a string which is linearly elastic in our sense of the
term, see section 1.25.

Evidently, other kinds of elasticity will give rise to different expres-

38 On condition that no external forces act on the string in the domain in question.
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sions, but if the strain in a point of the string is completely deter-
mined by the string tension in that point, then a system essentially
identical to Eq. (4.4—1) is valid. It is only the function exp (8 p,~ ! »)
in the first equation that has to be changed for another function

)
of the wvariable y. The function exp (ﬁ ;') = o] / exp (ﬁ 7);fzdz
P1 p P1

comes from the third equation in the system Eq. (3.2—4) and change
of the elastic condition simply leads to another function of y (other
than the exponential one) under the integral sign. The ultimate
consequence of a change to another kind of elasticity (than the linear
one) is that the functions g(f) and ¢,(t) that occur in the solutions of
problems (E3) and (E4) have to be changed for other related functions.

The practical difficulties in finding a solution of a particular string
problem connected with problem (E3) or (E4), ¢. e. to find the charac-
teristical quantities a, 7', (or alternatively the parameters p,, f3, cf.
Eq. (4.3—3)) and the initial value b, are related to those discussed
in section 4.24. An additional complication is caused by the presence
of non-elementary functions.

There must exist a close connection between the solutions of the
problems (E1) and (E2) on the one hand, and (E3) and (E4) on the
- other, since, putting p,=0 in the former case, we get approximations
linear in f for the latter. It is also possible, of course, to obtain these
approximations directly from the solutions of (E3) and (E4). We
cannot, however, expand the functions (g(r))~*2 or (g,(z))"'* after
powers of f and then integrate termwise, since the intervals of inte-
gration contain singular points. The solutions of (E3) and (E4),
in the form stated here, are consequently not suitable in the case of
problems involving small strain.



5. The Steady Rotatory Motion of an Inextensible
String in the Case of Negative Reduced String
Tension and in the Absence of External Forces

The symbols and notations used in this chapter are essentially
the same as those in Chapter 4.

5.1. Introduction

There are two different kinds of steady rotatory string motion
possible, as shown in section 3.22. The first one is well-known in
textile mechanics, and is characterized by the fact the so-called
reduced string tension 7'—mu?q® is positive. This type of steady
motion was studied in some detail in chapter 4. The second type,
characterized by negative reduced string tension, has apparently
not been observed or discussed earlier.

It will become clear that motion with negative reduced string
tension is possible only if the tangential velocity uq (cf. section 1.22)
is higher than the highest circumferential velocity occurring in any
real string point, see Fig. VIII. By a real string point we mean a

Fixed axes\(—‘

Fig. VIII. The broken curve (circle) is the path of a point on the string curve, fixed

with respect to a co-rotating frame. It should be noted that this path does not coincide

with the path of any string point. The circumferential velocity is tangential to the
above curve.
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point, where the string tension is not negative, i. e. 7>0. (String
points with 7'<<0 may occur in formal solutions of string problems,
but the solution has no physical significance in such points.)

The author suggests that motions where the above condition is
satisfied do not occur in industrial practice, although they are easy
to generate. As no theoretical objections have been advanced against
the existence of the steady rotatory motion with negative reduced
tension, the author has considered it proper briefly to investigate
this type of motion in spite of the above-mentioned suggestion. We
will only discuss motions analogous to those of problem (12), i. e.
motions of an inextensible string such that the string curve intersects
the axis of rotation. For this kind of motion we must distinguish between
two cases, as will become apparent later on. If we had to consider
motions in which the string does not intersect the axis of rotation,
i. e. problems analogous to (I1), matters would become more com-
plicated. Moreover, problems for an elastic string with negative
reduced string tension would involve tedious calculations.

5.2. The String Equations. The Two Cases

We shall start from the string equations in the form of Eq. (3.2—4).
Since we shall deal solely with an inextensible string, we put p=p(2)=1,
and just as in Chapter 4, we introduce p,=2p,h=2p,yu. In accordance
with remark (3) in section 3.22 we take =const.—=—1. Observing
that a change of sign for 6 in Eq. (3.2—4) has the same effect as a
change of sign for p, and p,, it becomes evident that we can apply
the deductions carried out for problem (I2). We also have to take
into consideration that the string tension o (the dimensionless form)
must not be negative; this condition was automatically satisfied in
problem (I2). By appropriate changes of sign and adding the condi-
tion 6>0, we then get from Egs. (4.2—17)

E=(A+p&r—1—pie,

P=—Ps,

y=A~+4p, &, (5.2—1)

o=2p,yu*—1=p} —1>0,

2pyy
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where 4 >1 is a constant of integration. It is true that any steady
rotatory motion of an inextensible string must satisfy Eq. (5.2—1)
provided that the string intersects the axis of rotation and that
the external forces are neglected. We now have to consider two different
cases, depending on the magnitude of the constant 4. If 4 is suffi-
ciently small compared to p, and p,, & will become zero for two
positive values of £, and we then get a situation similar to that in
problem (I2). For large values of 4 & will be positive for any (real)
£ and we then get entirely different solutions of Eq. (5.2—1). A
further complication is caused by the condition ¢=>0.
The “critical” value of 4 will be called 4,; it is determined by

Y21 1 Pg

Ay= — +——. 5.2—2
= T L ( )

0=>0 implies pi>2p,, hence 4,>1. We now have the two cases:

a) A,>A >1. In this case there are two values &, and &,, &, >§, >0,
depending on p,, p, and A4, and such that &2=0 for |§[=§&,,and |&|=
—&,. It turns out that ¢>0 holds for [§|<&, and Eq. (5.2—1) is
consequently physically significant for |&|<<&,, if 4,>A4.

b) A>A,. In this case & >0 for every real & but 6>>0 only holds
for |&|<<& where & depends on p;, p, and 4.

We call the basic boundary value problems connected with these
two cases (IN2a) and (IN2b). I means inextensible string, N negative
reduced string tension, and 2 that the string intersects the axis of
rotation, ¢f. (I2). On considering the two cases for given values of
p, and p, we find that at the point of intersection y is smaller in case

1
(a) than in case (b). Now, ? is the direction cosine of the string tan-

gent with respect to the z axis, and the string consequently intersects
the z axis at a smaller angle in case (a) than in case (b).

5.21. Problem (IN2a)

We can without specialization take the smallest zero of &, to be
&=1. This means that the characteristical length a of the problem
is chosen as the greatest distance between any string point and the
axis of rotation.

(IN2a) Problem: 7o find functions &(z), ¢(z), y(z), o(z) defined on
some interval (—b, b), a constant A, and the parameters p,, p, such that
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a) The system Eq. (5.2—1) is satisfied.
b) The initial values

are satisfied.
¢) The condition
£&=0 for £=1 (5.2—4)
18 satisfied.
The existence and uniqueness of the solution follows from basic

theorems on differential systems, ¢f. section 4.22. The solution is
readily obtained. From Eqs. (5.2—1) and (5.2—4) we get

A=14p)2—p, (5.2—5)
The inequality ¢>0 is satisfied for every & of interest, if
Py =2py(A+p)=2p,(1+p)">
On solving this inequality with respect to p, we get
P2 =2ps [Pt (L4+p7) %] > 4], (5.2—6)

A necessary condition for 6> 0 to hold is consequently that |p,| >2p,
or, expressed in physical quantities, it is necessary that the tangential
velocity uq satisfies

awm

— I e
lug|=aw |h| 2 |ps| >aw.

aw is the highest circumferential velocity of any point on the string,
and this velocity must be lower than the tangential velocity (which
is the same for every string point). Factoring the expression for &
in Eq. (5.2—1) we get by means of Eq. (5.2—5)

S=pi(1-8) [1 h (&)2 g — 52] :
ik P Py .

It is evident that &>0 for |&|< 1, and also that & has a simple
zero for |&|=1, if we exclude equality in Eq. (5.2—6). Using the
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results from problem (12) in section 4.23 we get the following solution
of problem (IN2a):

P
§()=sn (z ’7) ,
@(2)=—p,z,

- P
7(2)=(1+p}2 —p;cn? (Z IT) :

1

Sy ——
T =P )

where ze(—oc, co) and the modulus £ of the elliptic functions is

determined by
Ps 2 9 —1/2
. N [ 211/2 =
= [lT(p ) gy Y ] ' S

1

The restriction Eq. (5.2—6) must be satisfied by p; and p,. If
equality holds in Eq. (5.2—6) then &{—-1=-z—>cc as then the elliptic
modulus k—1. The solution Eq. (5.2—7) is closely related to the
solution of problem (I2), but has an important change of sign for the
last term in the expression for k. We can transtorm the solution into
physical variables without difficulty and also determine the length
of the string curve, as we did in section 4.24 for problem (I2).

5.22. Problem (IN2b)

We can without specialization take &—1. This means that the
characteristical length a of the problem is the distance between the
axis of rotation and that point on the string, where the string tension
T' (or ¢ in the dimensionless form) becomes zero.

(IN2b) Problem: 7o find functions &(z), @(z), y(2), o(z), defined on
some interval (—b, b)., a constant A, and the parameters p, and p, such
that

a) The system Eq. (5.2—1) is satisfied.

b) The initial values

£(0)=g(0)=0 (5.

Ot
bo
I
w
N

are satisfied.

3
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¢) The conditions
6=0 and &,=e>0 for £=1 (5.2—9)

are satisfied.

The condition &,=¢>0 in Eq. (5.2—9) has been introduced in
order to guarantee that &(z) has no turning point or, equivalently,
that A >4,. The solution of the problem is readily obtained. The
constants 4 and & can be determined in terms of the parameters p,
and p,.

From Egs. (5.2—1) and (5.2—9) we get

1
T
A=ty 5
(5.2—10)
2= —pi—1.

i

From the last expression we have
pi=2pu[pi+(1+pi+e)' 1 > 2pi [p+ (1 p1) 2] > 497 (5.2—11)

A necessary condition for (IN2b) to have a solution is then that
the tangential velocity of the string is higher than the highest circum-
ferential velocity occurring in any real point of the string (i. e. any
point with 6>0). This condition also appeared in problem (IN2a).
After some calculation we get the jollowing solution of problem (IN2b)

[ 1—cni(2) ]1"2
cR)=l === Il » 70

1+cné(z)
&(—2z)=—£&(2),
‘P(Z):—pzz:
1 (5.2—12)
Y@)=p 5 —pill— &G,
2 1
o)=p, 2pyp(2) :

C(Z):2p102, ZE[—b, b]'
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£(2)
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Fig. IX. Graph showing the main feature of the string curve in the case (IN2b).
The vertical asymptote of £(z) is z=(p,C)~1 K (k). The point z=b, £=1 is a point of
inflection.

In these expressions we have the elliptic modulus k. The constants
k, C, and b are determined by

k=[5 (1+C2)]'2,

& 2
=1+ (a) , O>1,
U
L (5.2—183)
b— :);71—0 F ((pl),
Cc2—1
(p=—arccos Czﬁ s

where F(q,)=F(¢,. k) is the incomplete elliptic integral of the first
kind. The constant ¢ is determined in terms of p,, p, by Eq. (5.2—10),
and p,, p, are restricted by the fact that ¢ must be real. The trans-
formation of the solution into physical variables is easily carried out,
cf. section 4.24. It is not difficult to show that the second derivative
&,, is negative for ze(0, b) and zero at z=b; the delineation of the
function &(z) is given by Fig. IX.



6. A Vibration Problem of the Inextensible String

Symbols and conventions:

Y =1, =

N

P1=2p

gepl =1, ..

1
9y, i (:C) 1=1, 2

Dimensionless variables describing a small time-
dependent motion of the string and defined as in
Chapter 3 for i=1,...,5 and by Eq. (6.2—3) for
1=6,7.

Dimensionless, independent variable, cylindrical co-
ordinate defined by Eq. (3.1—6).

Independent variable, dimensionless time, defined
by Eq. (3.1—6).

Variable of a steady rotatory motion, dimensionless
radial distance, defined by Eq. (3.1—8).

Variable of a steady rotatory motion.—is the
/I

direction cosine of the string tangent with respect
to the axis of rotation (the z axis).

String parameter, defined as in Chapter 3. p is used
as perturbation parameter for the vibration problem.

Independent variable used instead of z and defined
by Eq. (6.2—2).

., 6 Functions defined by Egs. (6.2—6) and (6.2—7).

3, ... Coefficients in the series expansion of g, (x, p)

after powers of p.

x=nx,=n,(p), 1=1,2,3, ... Dimensionless natural, circular frequency

of the vibratory motion, defined by Eq. (6.2—9).
Ordinal number » usually omitted.

First term in the series expansion of «(p) after
powers of p, zero order approximation.

. General term of the above expansion, pertubation

of the order z.



101
By 5y End points of the basic interval of the x axis. [a,, a,]
is the interval of definition of the vibratory motion.

Aﬂ(x), Bv,l(.zr), =1, 3, 6,7 Dependent variables of the (separated) vib-
ratory motion, see Eq. (6.2—9).

Y (x)=Y (x, p), n=1, 3, 6, 7 Dependent variable used instead of 4,

and B,.

Y, o) First term in the series expansion of Y (x, p) after
powers of p, zero order approximation.

Y, @), i=1,2.3, ... General term of the above expansion, pertuba-
tion of the order .

D, L, M Differential operators, depending on p, defined by
Eq. (6.2—12).

L= Differential operator obtained from L by putting
p=0, first order ’approximation’ of L and .

L;, M;, i=1,2,3, ... Pertubation’ of the order ¢ of the differential
operators L and M. L;, M. are first order differential
operators.

C, Boundary value, see Eq. (6.2—14).

I, m=1,2,3, ... Eigenvalue of a Sturm-Liouville eigenvalue problem,
defined by Eq. (6.3—13).

W, =1, () Orthonormal eigenfunctions of the above problem.

@55 090 Coefficients in the series expansions of Y, ((x) and
Y, o(x) after the eigenfunctions u,(x), see Eq. (6.3—
—I15).

d, Expansion coefficient, defined by Eq. (6.3—16).

K., Hy Functions of 7, and «,, defined by Eq. (6.3—16).

(f,9)=[zfgdx  Inner product of the functions f(x), g(x).

S(x) Function of ~,, defined by Eq. (6.3—20).

D, 5. m=1, ..., 4 Functions of x and «,, see Eq. (6.3—23).
Y, (@), Y} \(2), u=1, 6 Functions defined by Eq. (6.3—25).

ay n Expansion coefficient, defined by Eq. (6.3—30).
T (o) Function of x, defined by Eq. (6.3—33).
(DM’ n=1,...,4;2=1,2,3,... Functions of # and of perturbations

x; up to the order 7, see Eq. (6.3—34).
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Symbols not included in the above list will occur now and then in
the text.

Greek subscripts are used to denote numbering of various functions,
Latin subscripts are used to denote ordinal numbers of approxima-
tions, perturbations, and also for eigenvalues, eigenfunctions and ex-
pansion coefficients. Latin superscripts denote powers.

The summation convention is used for Latin but not for Greek
indices.

6.1. Introduction

In this chapter we shall study a problem of vibration in connection
with the linear differential system Eq. (3.2—10). In this system the
independent variables are z (the dimensionless axial distance of a
point on the string curve) and 7 (the dimensionless time). There are
five dependent variables y;(z, ) and the system is valid for a small
time-dependent motion superimposed on a special kind of steady
rotatory motion of an inextensible string. The coefficients of the
system are constituted by the periodic functions £(z), y(z), and a real,
positive parameter p,, they consequently do not depend on the time 7.

The functions £(z) and y(z) are determined by the steady rotatory
motion on which the time-dependent motion in question is super-
imposed. The steady motion was studied in a more general form in
Chapter 4, and the functions &(z) and y(z) may be taken from Eq.
(4.2—20) if we put p,—0; in that equation it means that the string
has no tangential velocity at the steady motion. The string curve of
the steady motion is a plane one and it intersects the axis of rotation
at equidistant points.

The system Eq. (3.2—10) is linear and homogeneous and has
coefficients with simple properties; yet most problems of technical
interest connected with that system are quite complicated. This will
be evident, if we recall that the system is not hyperbolic (the string is
inextensible) and that curves r=const. are characteristics, ¢f. Chapter
2. We shall therefore confine ourselves to a simple vibration problem,
which we will describe more precisely in section 6.2.

In order to be able to obtain results of practical interest we must
restrict our investigations to the case of small values of the parameter
py. It will be clear from Eq. (3.1—9) that a small value of p, means
that the string tension 7' is large everywhere compared to the quantity
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ma22.3 This is actually true in many problems of practical interest
and our specialization is therefore justified. The treatment of the
vibration problem for small values of the parameter p, is characterized
by the use of the method of separation of variables and then the applica-
tion of a pertubation method to the resulting system of ordinary, linear
differential equations.

The system Eq. (3.2—10) must have a meaning for p,=0, if the
perturbation method is to work. It should be observed that the
functions &(z) and y(z), which constitute the coefficients of the system,
depend explicitely on p,, ¢f. Eq. (4.2—19). It can easily be verified
that the (real) period of the functions &(z) and y(z) is 4K(k), where
K (k) is the complete elliptic integral of the first kind. A simple investi-
gation of Egs. (4.2—19) and (4.2—20) shows that for p,=0, K=0(p; '),
p1—>0. This property of K has the physical significance that if the
string tension tends to infinity, then the ratio between the period and
the amplitude (which is the characteristical length) of the string curve
(in the steady motion) also tends to infinity. In order to overcome
this difficulty we shall introduce at:am(z %) as a new independent
variable instead of z in the system Eq. (3.2—10). am(u)=am(u, k)
is the elliptic amplitude funection, ¢f. [B2]. It will readily be seen that
&, y, and the coefficients of the system will be trigonometric functions
of  with the period 2x.

We shall not concern ourselves with questions regarding the existence
and uniqueness of the solution of the vibration problem, neither shall
we discuss the convergence of the perturbation method applied. Con-
sequently, we cannot affirm that the problem is properly stated; the
results obtained are, of course, merely formal.

It may be remarked, however, that circumstances are favourable
in so far as the coefficients of the ordinary differential system to be
treated by the perturbation method will be analytic in the perturba-

tion parameter ]):-;— p, and the independent variable x, provided that
p is sufficiently small.

39 It will readily be observed that small values of p, correspond to large values of

T,, and by Eq. (3.1—8) to large values of 7’; it should be noted that 1=‘,u_>_1 and
a

that « is the greatest distance between the z axis and any point on the string curve
(in the steady motion).
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6.2. Transformation of the Basic System
The Vibration Problem

The differential system Eq. (3.2—10) shall now be transformed into
a more suitable form. Let us introduce the parameter p defined by

P (6.2—1)

the independent variable z defined by
)
r=am (z %), (6.2—2)

and the dependent variables y4(x, 7) and y,(x, 7) defined by

Ye=YaS, )
= (6.2—3)
Y:=Ysy | p-

The following condition must hold in order to ensure the existence
of ys(x, ) when p—0

y.—0(Vp ), p—>o. (6.2—4)

Keeping in mind that the parameter p, of Eq. (4.2—20) is zero (the

string has no tangential velocity in the steady motion on which the

time-dependent motion is superimposed), we get the following system
after some elementary calculation

Y12 1 (Y1 =Y o+ 2Y4:) +3Pg. sin 2 Cos 2y, —g, sin @ =0,
Yerz 91U 6—Ygre— 201.)— Pgs SIn & €OS & Yy, — 49, €OS T y,=0,
Y7z 2PY5 €OS X Yy, =0, (6.2—5)
Y3:— 29 4Y 7 =0,
Ya—4pge cos xy,,=0.
In this system g,—g (x, p), =1, ..., 6 are functions of the indepen-

dent variable x and the parameter p. They are defined by the following

expressions
91:G1_1G2, 92:(G1G2)~1(1+'§P cos? x),
)—1;‘2

93=G1_'1, 9.=(G,
gszGi"zG'z_l, ge:G'le_l:

2
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where
G,=0G,(x, p)=1+p cos® z,

(6.2—17)
G,=G,(x, p)=142p cos® z.

The functions ¢ (z, p) are analytic in  and p for every w, if p is
sufficiently small. Tt is then clear that all the functions g, may be
expanded after powers of p, and that the series obtained in this way
are absolutely and uniformly convergent and posses a common,
finite radius of convergence for every x. Moreover, the functions g,
satisfy

g,(x, p)=1+0(p), p—>0, »v=1,..., 6. (6.2—8)

The first four equations of the system (6.2—5) constitute a system
of linear, homogeneous partial differential equations for the functions
y,(x, 7), n=1,3,6,7.

" The last equation of the system (6.2—5) defines the function
y4(z, 7) and can be excluded from the system. The coefficients of the
differential system are trigonometric functions and (regular) analytic
in the whole complex « plane, if p is sufficiently small. As mentioned
previously the differential system is not hyperbolic. The unknown
functions y,(x, 7) represent small, time-dependent motions super-
imposed on a steady rotatory motion of the string. It will be recognized
from section 3.21 and Eq. (6.2—3) that », and y, correspond to the
time-dependent changes of the radial and angular distances of the
string points. Further, y, determines the string tension, and y, the
tangential velocity. Finally, y, determines the direction cosine of the
string tangent vector with respect to the axis of rotation, hence its
connection with y,,, cf. the last equation of Eq. (6.2—5).

We now turn to the vibration problem which we will formulate in
the following way:

Problem: To find real constants x and functions A/l(x), B#(x),
1=1,3,6,7, defined on an interval [a,, a,], and such that

a) The differential system Eq. (6.2—5) is satisfied, for xe (a,, a,) by
y'u(x, r):A#(x) cos (ocr)—I—Bﬂ(x) sin (x1). (6.2—9)

b) The homogeneous boundary conditions
y,(ay, 1)=y,(ay, 7)=0, v=1,6,7 (6.2—10)

are satisfied.
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X=ay L
)

Fixed axes

==
]
wt 13

Fig. X. The figure illustrates the situation of the vibration problem. The end points
of the string are fixed in the co-rotating plane at x=a, and x=a,. The broken curve
contained in the co-rotating plane is the string curve of the underlying steady motion.

The problem which we have set just now implies that we study an
inextensible string on the interval a,<<@<<a,. The end-points of the
string are fixed in a plane rotating with constant angular velocity o
round the 2 axis which is contained in the plane and fixed in space,
cf. Fig. X. The end-points of the string then move in two fixed circles

which are assumed to be non-coplanar. The string has a small vibratory
27

motion with the dimensionless period —— around its steady motion
0.4

curve (the broken curve in the figure). We seek the possible modes of
vibration and the natural frequencies x.

A few preliminary remarks may be made concerning the problem.
The string curve of the steady motion is normalized so as to have the
maximum distance a to the axis of rotation (it may happen, of course,
that no turning point of the string curve falls in the interval (a,, a,)).
and the curve intersects the axis of rotation at @=0. The effects of
gravity and air resistance are disregarded. The length and shape of
the string in steady motion is determined by Eq. (4.2—25), where we
have to put p,=0, p;=2p and sn (z l;:—):sin z as in Eq. (6.2—2).
By varying the magnitudes of a, p, a,, a,, we can cover any possible
type of the described motion. Later on we shall confine ourselves to
small values of p, 7. e. to flat string curves.

It should be observed that no boundary condition is imposed on the
function y,(x, r) which corresponds to the string tension. This appears
reasonable from the physical point of view.

We now return to the system Eq. (6.2—5) and substitute the ex-
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pressions Eq. (6.2—9) into that system. Studying the cos (x7) terms
we conclude that A4,(x), A,(x), Bg(z), B,(x) must satisfy the ordinary
differential system

LY, +2xg,Y ¢—g, sin 2Y3=0,
MY +2xg,Y,—4g, cos v ¥ ,=0,
(6.2—11)
DY ,—2xpg; cosx DY,=0,
DY,—2xg9,Y,=0,

where we have used the symbols ¥, =Y (x) for the unknown func-
tions, and D, L, M symbolize the following differential operators

o d
iz
i . , g (6.2—12)
L—=D*+3pg, sin xcosx D-+g,(14+x2),
M= D2—pg, sin & cos x D-+g,(14x2).
The functions ¢,=g, (x, p) are the same as in Eq. (6.2—6).
From the boundary conditions Eq. (6.2—10) we obtain
Y o) =¥ (a:)=0. p—18T. (6.2—13)

We have now to consider the sin (x7) terms which are obtained by
the substitution of the expressions Eq. (6.2—9) in the system Kq.
(6.2—5). It can easily be verified that the functions B,(x), Bj(x).
—Ag(x), —A,(x) must satisfy the ordinary differential equations
(6.2—11) and naturally the boundary conditions Eq. (6.2—13), too.

The essential properties of the vibratory motion in question are con-
sequently determined by the solution of the boundary value problem
constituted by the system Eq. (6.2—11) and the boundary conditions Eq.
(6.2—13). It will prove convenient, however, to add one more boundary
condition to the problem. We take this condition to be

Yy(a,)=C,, (6.2—14)

where (',#0 is an arbitrary constant not depending on the parameter p.

We conclude from section 3.21 that this condition implies that the
dimensionless reduced string tension 6 at the end point z=a, of the
string oscillates around its steady-state value G,=1 according to the
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expression £C; cos (a7). (A sin (x7) term may also be present, of course.)
We may normalize the oscillation and take C\;=1, and the small
parameter ¢ is then interpreted as the amplitude of the oscillation of
the dimensionless reduced string tension at x=a,. It will become clear
from the perturbation method, as applied to the boundary value
problem in the case of small parameter values p, that the functions
Y () become proportional to (', while the natural frequencies x do
not depend on (. These circumstances are not surprising, if we recall
that we are concerned with a small, linearized motion.

It may be expected that our boundary value problem will only have
a solution, if » belongs to a particular set of real numbers which we
will call the set of natural frequencies, or the Nf set. The determination
of this set is the most important part of the solution, while the func-
tions Y, (z) are of secondary interest. At this stage we know very little
about the Nf set, but may expect it to be enumerably infinite with no
point of accumulation other than infinity. It can easily be verified that
if a number x belongs to the Nf set, then —x also does so. The Nf set
must depend on the parameter p, too, but in what manner we do not
know.

6.3. Outline of a Perturbation Method

6.31. Preliminary Considerations

In the following considerations we shall understand it as implied
that « is a natural frequency; if necessary we shall indicate a particular
natural frequency by means of a Greek subscript, e. ¢. x,. We now
turn to the boundary value problem constituted by the differential
system Eq. (6.2—11) and the boundary conditions Egs. (6.2—13),
(6.2—14); p being a small (real) parameter. We shall assume that the
natural frequencies x=wx(p) and the functions Y p@)=Y (x, p) have
power series in p such that they permit all the subsequent derivations
for ze(a;, a,) and p in a neighbourhood of p=0. We may conse-
quently write

[X(p):‘)io"s
it i (6.3—1)
Y'u(xa P)ZP If’u, i(x):
where we have ©=1,3,6,7; 1=0,1,2,3, ..., and summation on ¢.% x;

and Y, ;(x) do not depend on p. Then, for the differential operators

1 5% of course means the ith power of p.
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L. M and the coefficient functions g,(z, p) of the system Eq. (6.2—11),
we get

L:piLi’ ]‘II:piﬂIr” gb(l’, p):pigy,i(x)y (6.3—2)

where v=1, ..., 5; i=0,1,2,3, ... L;, M, are differential operators of
the first order; L;, M; and g, ;(x) can be calculated from Eqgs. (6.2—6),
and (6.2--12), and they may consequently be regarded as known. We
shall call ~, and Y, () perturbations of the order n for x(p)and Y,
(z, p), respectively. The finite sums p'x; and p'Y,, ;, i=0.1,.. ., n, are
called approximations of the order nfor a(p) and Y ,(z, p). The same deno-
minations are used for L, M and g, (x, p). It should be observed that
Greek subscripts are used for the numbering of the functions Y, Y,

. is Gas - - ., while Latin subsecripts indicate the ordinal numbers of
the perturbations of these functions, of x, and of the differential
operators. The summation convention is applied to Latin subscripts
and superscripts.

The following expressions for the zero order approximations are
easily obtained:

Ly=M,=D*+1+42,

(6.3—3)
gy, o@)=1, »=1,...,5.
For the perturbations of the order i we have
Li=L; ,+(1+ad)g, i+2x¢x;,
1 0)91, —+20x00%; (6.3—4)

M=M; +(1+od)g, i+ 2x0%;

where L. , and M, | are (linear) differential operators of the first
order with coefficients which are constituted by «; , and lower order
perturbations of « and of the known functions g, ,(z), =017
i—1. L; and M, are consequently linear in «;, which is an important
property.

Substituting our series expansions in the system Eq. (6.2—11) and
arranging the terms in suitable order we get

PLILi 1 Yy x 2009y, i 11 Y 60—, i S0 2 Y 5 1]=0,
PIM; 1Y 1209y i 11 Y1,0—494,ix €08 Y5 1]=0,
PIDY; i —2095 ;4 gy cos & DY, ;]=0,

Pi[D Y3, i—200G, i1k Yv, 11=0,

(6.3—5)

where we have summation on 7 from 0 to oo, on k, I from zero to 1,
and where functions g, ,(x)=0 for n<<0; »=1, ..., 5.
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From the boundary conditions Eq. (6.2—13) we have

P'Y, (a)=p'Y, (a,)=0, u=16,7. (6.3—6)

From the boundary condition Eq. (6.2—14) we finally obtain

Ya,o(a'l):OOs 6 3_7)

The last equation is a consequence of our assumption that ', does
not depend on p. The boundary value problem now consists in finding
the perturbations «, and Y, (), ©=1,3,6,7, of every order i. As
implied previously, it should be understood that the functions ¥ u, i(®)
shall be defined for z€[a,, a,]. We now let our conditions be satisfied
in such a way that the coefficients for p’ in the system Eq. (6.3—5)
and the boundary conditions Eq. (6.3—6) are zero for every value of 1.
We then get a boundary value problem for every i.

6.32. The Zero Order Approximation
Putting i=0 in the system Eq. (6.3—5) we get

LY, o+26,Y; y=sin 2¥

3,00
LYoo o200,V - —d co8s 2%, -,
0t 0 otq,0 7,0 (6.3—8)
Dk, =0,
DY3,0:20L°Y7'0,

where the second order differential operator L, is determined by Eq.
(6.3—3). The boundary conditions become

Y, ola))= Y, o(@)=0, u=1.,6,1, (6.3—9)
Y, o(0)=0:
It is evident that ¥, ; and Y, , satisfy®
Yo d@)=Ch,
EUEinC (6.3—10)
Y, o(z)=0.

4 The condition Eq. (6.2—4) is obviously satisfied, if Y, =0, since then Y ,(z, p) =
=0(p), p~>0.
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It remains to find x,, Y, o(x), Y o(x) such that they satisfy the
differential system

LY, o+2x,Y, ¢=Cysin z,

(6.3—11)
L0Y6,0+2‘\.0Y1,0:O’
and the boundary conditions
Y/t.o(al): Y,u,o(a'z):()» u=1,6. (6.3—12)

This problem can be treated as a Sturm-Liouville problem. The
eigenvalues 7, and the normalized eigenfunctions u, (), of the related
Sturm-Liouville eigenvalue problem
D2y Ju=0,
(6.3—13)
w(ay) =u(ay) =0

are easily found to be

(6.3—14)

12 =
w,(x)= ( ) sin (V?.,, (x—al)),

Ap— 0y
where n=1,2,3,... As shown in Appendix A2, the functions
Y, o) and Y, (x) can be expanded in series of the orthonormal
functions u,(x).1?

After some elementary calculations we obtain the following results
for the zero order approximations xo, Y, o(x), n=1,3,6,7:

Y, o(@)=C¢ 2 ay ,un(x),
1

Y, o@)=C 2 by, ,un(),
1

Y, o(x)=C,,

(6.3—15)

Y7,0(x)50:

42 These series become Fourier sine series. The same method applies also in the
case of a general Sturm-Liouville operator instead of L.
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where the expansion coefficients a, , . b, , are determined by

ao, n:dnEan B
bo, n— —2x0dan )

dh=(u,, 8In )= js u,(x) sin zdz, (6.3—16)

a;
E,=1+4a2—1,,
H,,:(Ef,—fixg)_l.

/, and wu,(x) are determined by Eq. (6.3—14). The computation of d,,
is not carried out here; it is, however, an elementary operation.
(H,) '=E} —4x2+0 constitutes a necessary condition for the existence
of ¥, o(z) and Y o(x). This condition can be written

(14-oa%—1,)2—4a240. (6.3—17)

The results can be summarized as follows:

1) No conditions except those of Eq. (6.3—17) are obtained for the
set of zero order approximations x, of the natural frequencies x.

2) The functions Y‘uyo(x), 1=1,3,6,7 are uniquely determined for
given n,. Y, ; and Y, ; are obtained as sums of Fourier sine series and
become proportional to C,. The latter series converge absolutely and
uniformly, cf. [C4], p. 293.

3) It can immediately be concluded from Eq. (6.3—15) that neither
Y, o@)=0nor Y, ((x)=0, z€[a,, a,], is possible. The vibration therefore
cannot possibly take place in a plane, neither can it be purely circum-
ferential.

We shall make no further comments on these results at present, but
turn instead to the first order perturbation Y.  (x). Putting i=1 we
get from the third equation of the system Eq. (6.3—5) and the bound-
ary conditions Eq. (6.3—6)%

DY, —2x,cosx DY, =0,
(6.3—18)
Y, (&)= Y“(az):().

These equations determine Y, (x) and give a further condition.

13 The third equation of the system simply implies conservation of string mass,
Z.e. string length, in the interval [a,,a,].
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Integrating the first expression over the basic interval [a,, a,] and
regarding Y, (@)=Y, ((a,)=0 we get®

(¥ o 8in 2)=0. (6.3—19)

Substituting the series for ¥, ((x) in Eq. (6.3—19), reversing the
order of summation and integration, and employing the notation d,,,
we get the following equation, expressing a necessary condition for the
convergence of our perturbation method

S(\O): ) diEan:

n=1

V8

L

S (1402 — L)[(1+oa2—1,)2—402]"1=0. (6.3—20)

n=1

]

This equation can be regarded as a condition for x,, and consequently
every x, satisfying Eq. (6.3—20) is the zero order approximation of a
natural frequency x. The coefficients d,, are easily obtained from their
defining equation in Eq. (6.3—16). There exist two different cases
depending on the length of the basic interval [a,, a,]:

a) If the basic interval is such that a,—a,+kx, k being an arbitrary,
positive integer, we have

d,=)2 4(a;—a,) " V3(2,—1)"! (sin @,—(—1)" sin a,), (6.3—21)

nx \?
where, from Eq. (6.3 —14), 1,= ( )

Ay—a,
b) If we have a,—a,=kx we get

dy=)2 4, (k)2 (2,— 1)~ Lsin ay(1—(— 1)), n+k,
d]r:% V%I_ COS a4,

n

where 7, =

Equation S(x,)=0 gives rise to the following comments:
1) The infinite series S(x,) converges as X n*.
2) S(x,) is an even function; the set of zero order approximations of

the natural frequencies is therefore symmetric with respect to zero.

“ The case xy=0 which provides Y, ;=0 does not interest us, since it implies
steady motion, cf. Eq. (6.2—9).
8



114

3) The condition Eq. (6.3—17) is automatically satistied for those
xo which satisfy S(x,)=0.

4) The sum of the series defining S(x,) can be obtained by a method
known from the theory of functions of a complex variable, ¢f. [T1].
p. 114. The result is a finite sum of products of trigonometric functions
(of x,, @; and a,) and algebraic functions (of x,).

5) The author would advance the conjecture that the set of real ~,
satisfying S(x,)=0 is enumerably infinite and has no other point of
accumulation than infinity. At least this comes true in special cases of
case (b). In the general case (a) the evaluation of S(x,) is rather tedious
and it will not be reproduced here.

We have now succeeded in finding the zero order approximations
xg, Y, o(®), p=13,6,7 of our boundary value problem, at least in
principle. We now turn to the problems involved in the determination
of the pertubations of the first and higher orders.

6.33. Pertubations of the First and Higher Orders

We shall first approach the determination of the first order perturba-
tions «, Y#,l(x), u=1,3,6.

The perturbation Y, () is already known from Eq. (6.3—18) and
it is clear that it is proportional to O, since this is the case of ¥, ((x).
In the system Eq. (6.3—5) we put i=1 in the first, second and fourth
equations. In the third equation of the system we put i=2. The follow-
ing system results:

LY, 1 +2x0Y . =—20 (oY o+ Y, o) F8in 2V 5 1+ Py s
LY 1 +200Y, 1=—20(xY g g+ Yy, o) 4 cO8 Y, 1 +D, o,

(6.3—23)
DY, ,=20,Y, ;+20, Y, o i Do
DY, ;=2cos (DY, o+ xoDY, 1)+Dy o,
where we let Y, ((x)=0 conformably to Eq. (6.3—10).
The following boundary conditions have to be satisfied:
Y[l,l(al): Y, 1(as)=0, u=1.6,
Y, 4(a)=0, (6.3—24)

Y, .(a)= Y7, 2(@3)=0.
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The functions (D,Ho, y=1,...., 4 in the system Eq. (6.3—23) are
known functions of x and x, and proportional to €, they consequently
do not contain a; or the unknown functions Y. 2 o() and Y#,l(x),
1=1,3,6. Evidently we have one system of this kind for every «, in
the set of zero order approximations of the natural frequencies. The
differential operators occurring in the left members of the differential
system Eq. (6.3—23) are wholly identical to those in the system
Eq. (6.3—8) which governs the zero order approximations.

Regarding ~, as an arbitrary parameter the system can be integrated
step by step. The right member of the third equation in the system
(6.3—23) contains only known quantities. Taken together with the
boundary condition Y, (a,)=0 we are able to obtain a unique deter-
mination of ¥, (x) which becomes proportional to €, and does not
depend on «,. Now, the right members of the first two equations of
the differential system Eq. (6.3—23) are known (if we consider «,
as known). We can therefore consider these two equations and the
boundary conditions as a Sturm-Liouville problem for the unknown
functions Y, ,(z) and Y (). We can write the solutions in the form

Y1, 1(1'):3'1 Y;, 1+ Y;I, 1’
(6.3—25)
Yo @)=Y+ Ye,1

where the functions Y;“: 17;1,1(95) and Y;'“: YZ,1(x)= 1=1,6, do not
depend on «,. These functions can be expressed in terms of absolutely
and uniformly convergent series of the eigenfunctions u,(z) of the
problem Eq. (6.3—13). At the moment we shall take no interest in
the explicit computation of these series. It now remains to determine
x;. The last equation of the system (6.3—23) together with the bound-
ary conditions Y, ,(a,)=Y, ,(a,)=0 determine the functions Y, o(x)
and also provide a further condition which is a linear algebraic equa-
tion for x,. Integrating the differential equation over the basic interval

[a;, ;] and taking into account the boundary conditions, we obtain?3
204(Y,, 4, 8in @)+ 2040 (¥ 4, sin )+

+20( ¥}, 8in @)+ (D, o, 1)=0. (6.3—26)

** It should be observed that Y’;; and ¥”, , are both zero at the end points of the
basic interval, ¢, and a,.
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The first term is zero according to Eq. (6.3—19), and Eq. (6.3—26)
is a linear equation for «,; since none of the inner products depend on
x;. We get a value «, for every particular «, in the set of zero order
approximations of the natural frequencies, provided that the following
condition is satisfied:

(Y3 1, sin z)+0. (6.3—27)

This condition is extremely important to our perturbation method, and
we shall therefore try to give it a more explicit formulation. First we
must determine the function Y| ,(z). Substituting the expressions of
Eq. (6.3—25) in the first two equations of the system Eq. (6.3—23)
and extracting the terms depending on «x, (observe that Y, ,(z) and
Y, ,(x) do not depend on «,), we get the following equations for ¥ ,(x)
and Y ,(z):

LYy 14200 ;=—2(x Y, o+ Y o),

, (6.3—28)
LoY¢ 1+ 200 Yy 1 =200 Y o+ ¥, o)
The boundary conditions to be satisfied are
Y, (=T, (as)=0, p=1.8; (6.3—29)

This Sturm-Liouville problem is essentially the same as the previous
one which determined Y, ((x) and Y ((x). After some calculations we
get according to the results elaborated in Appendix A2

=

n

I b~ 8

> @y, (), (6.3—30)
1

where
g, w=Hp (Bl 20005 o)
&y w=—200(Ty o> Un)—2(¥, s Un); (6.3—31)

n

! >
dy n=—200(¥ g o> Un)—2(Y; o5 Un)-

In Eq. (6.3—31) E, and H, are determined by Eq. (6.3—16). The
coefficients d; , and d, , are the expansion coefficients of the right
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members of Eq. (6.3—28) with respect to u,. It can be concluded
from Eqs. (6.3—15) and (6.3—16) that

(Y5, 0> un)=Coay ,=CoE,H,d,,
(Yq 0> un)=Coby ,=—2Cx,H,d,.
After some calculation we get
ay, n=—2C o H2d, (B2 —4E,+4x3), (6.3—32)
where d,=(u,, sin z) according to Eq. (6.3—16). From the condition

Eq. (6.3—27) and from Eq. (6.3—30) we obtain by termwise integra-
tion

| b8

@
’ . ’
a ,(sinx, w,)= 2 a, ,d,%0.

n=1 n=1

Substituting Eq. (6.3—32) in the last expression and deleting some
non-essential factors we obtain

T(xo)= = d2HZ(B2—4E,+452)+0 (6.3—33)

n=1

as the condition for the existence of the first order perturbations x,. In the
inequality (6.3—33) £,, H, are given by Eq. (6.3—16), and d, is
given by Eq. (6.3—21) or Eq. (6.3—22).

The following comments are relevant to the above considerations:

1) The infinite series in Eq. (6.3—33) converges as Xn°.

2) The sum 7'(x,) of the series can be obtained in the same way as
S(xy), cf. section 6.32. When 7'(x,) is obtained in this way it has the
form of a finite sum of products of trigonometric functions (of x4, a,
and a,) and algebraic functions (of x,).

3) It is a necessary condition for our perturbation method to work
in the case of a particular value of x, that 7'(~,)+0. If it happens that
the set of real zeros of S(x,) and the set of real zeros of 7'(x,) are
disjoint (for given boundary coordinates @, and a,), then it is possible
to determine all the first order perturbations «,;. It is the author’s
conjecture that this comes true, since it seems most unlikely that the
two functions S(x,) and 7'(x,) should possess coincidental zeros. The
proof of this conjecture seems to constitute a difficult problem.
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Summarizing our results regarding the first order perturbations, we
assert that a;, ¥, ;(2), u=1,3.6 do exist and are uniquely determinable,
if the condition 7'(x,)=0 is satisfied. Then the second order perturba-
tion Y, ,(z) also does exist and is uniquely determinable.

We now turn to the perturbations of the arbitrary order i for ~.
Y (), u=1,3.6, and the order i+1 for Y ,(z). Assuming that all lower
order perturbations are determined, we get from system Eq. (6.3—5)

LoY, i+20 Yy ==20(xo Y1 0+ Yg,0)Fsin 2y, 4D, .,
L, Ye, i+2‘0Y1, == _z-xi("oye,o“_ Yl,o)’f‘4 COST'Y7, i+ Dy i1>

(6.3—34)
DY, —20,Y, 4+ Dy ; 4,
DY, ;. ;=2cos 2(x; DY, g+xoDY, )+Dy; 4.
where the functions (D,h 1. =1, ..., 4 are known functions of x and

of perturbations ~; up to and including the order i—1. The boundary
conditions to be satisfied are the same as those for the first order
perturbations, ¢. e. the conditions Eq. (6.3—24) are valid with obvious
changes of the second subscripts.

The system Eq. (6.3—34) is essentially the same as Eq. (6.3—23),
and it is not difficult to show that all the important results obtained
for the first order perturbations also apply to perturbations of arbitrary
order. In particular, the condition 7'(x,)=0 is the condition of existence
of the perturbation «,. The latter fact is easy to prove from the system
Eq. (6.3—34), since the term depending on «x; in the function Y, ()
will become exactly the same as the term depending on ~; in the
function ¥, (2), 1. e. equal to ¥ (x).

We now conclude our discussion of the perturbation method applied
to the vibration problem as set in section 6.2 with the following
summary:

It is possible to obtain perturbations of arbitrary order of a particular
natural frequency x and the functions ¥, (), #=1.3.6.7 provided that
the condition 7'(x,)=0 is valid for the zero order approximation x, of
the natural frequency in question. The zero order approximations x,
are the real roots of S(x)=0. S(x,) is defined by Eq. (6.3—20) and
T(xy) by Eq. (6.3—33). The zero order approximations and the first
order perturbations are not difficult to calculate for given boundary
coordinates @, and a,. The explicit calculation of higher order perturba-
tions will be laborious. We do not know whether the perturbation
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method converges or not. Our results are consequently only formal
although the perturbations are determined without ambiguity. It is
to be expected that the perturbation method discussed here will
apply to more general problems. One might, for instance, study a small
time-dependent motion of an inextensible string which is initially in a
state of steady rotatory motion with no tangential velocity and initially
possessing a plane string curve. The perturbations causing the time-
dependent motion may be acting on one end of the string or along the
string and may depend on the time, they may, for instance, be periodic
functions of the time. In its initial state the string may be deflected
from its steady state curve and possess a velocity in relation to a steady
rotating frame. Starting from the system Eq. (3.2—10), as we did in
the vibration problem, we can apply the Laplace transformation to
the time variable (instead of separating the variables), and then
apply the perturbation method to the resulting ordinary differential
system.

Our choice to study a vibratory motion as an illustration of this kind
of motions is based on the fact that it is the simplest time-dependent
motion to be found.



Appendix Al

In section 4.32 we solved the problem (E1). The solution was
regarded as an approximation, linear in the elastic constant  and
valid for small values of f, of the solution of the basic one-point
problem for the steadily rotating and linearly elastic string, when the
string does not intersect the axis of rotation. The functions constituting
the approximate solution were denoted &(z, ), ¢(z, ), y(z, f) and the
functions to be approximated were denoted &'(z, f) ¢'(2, ), ¥'(z, B)-
In this appendix we shall prove that the conditions Eq. (4.3—9)
are satisfied, 7. e. that

§—& p—o', y—y'=0(p?), p—>0 (Al—1)

hold true if z occurs in an arbitrary, bounded interval. The functions
&, @, y satisfy the differential system Eq. (4.3—15) and the initial
values &(0, f)=1, ¢(0, f)=0. The functions &', ¢’, ' satisfy the
differential system Eq. (4.3—12) and the same initial values. It was
shown that & and & are periodic in z and have positive upper and
lower bounds. Furthermore, all the functions discussed are analytic
in z and in the parameters of the systems for every z on the real axis,
on condition that f is small enough. This is true, because the system
Eq. (4.3—1) from which we started the derivation of both the systems
Eqgs. (4.3—12) and (4.3—15) is analytic in its variables and parameters
for &£ >0 and sufficiently small values of 5. For the moment we assume
that &(z, f) and &'(z, f) satisty the condition in Eq. (A1—1) for some
arbitrary z interval (a,, a,). We then obtain

E—(&)P=(E4-E)E—E)=0(p), p—~>0 (A1—2)
and from Egs. (4.3—12), (4.3—15)

[(p—@")|= [b—p,| [E72(&) 2| |8— (&S| <M,p%.  (A1-3)

M, is a positive number which does not depend on z, and the inequality
holds if f§ is sufficiently small. By the initial conditions ¢(0, f)=
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=¢'(0, f)=0 we have at once |p—¢'|<|z|M,p* or, equivalently,
p—¢@'=0(f?), f—~0 for ze(a,, a,). From Eqgs. (4.3—12), (4.3—15) we
also get y—y'=0(p?), p—~0.

It remains to show that &—&'=0(?), f—0, is valid. The first equa-
tions of the two systems (4.3—12) and (4.3—15) may be written

(&8, P=T[ko(ny+ 1K) —(&')I[1+0G5]Q(E', B), (A1—4)
(§& )= (kgn,— E)Q(E, ), (Al—35)

where 1=0=/%. K=K(f) is analytic in f, and G,=0G,(¢&, p) is analytic
in z and /5. Moreover, K=0(1), G,=0(1), f—0. Q(&', f) is a polynomial
of the third degree in (&')* and analytic in . Regarding 4 and 0 as
parameters of the equation and adding the initial value &'(0, 8, 1, 0)=1
to Eq. (A1—4) we have an initial value problem which determines the
function &'=§&'(z, p, 1, 0). This function becomes periodic in z; analytic
in z and in the parameters in the neighbourhood of f=71=0=0, for
every real z. We can consequently expand &' in a power series of
p, 4,0 with coefficients which are analytic in z. We then obtain

§'(z, B, 2, 0)=[(2)+P(2) + 2g2(2) +0g5(2) +
+O(B)+0(B2)+0(Bd), B, 4, 60,

(A1—6)

where [, ;. ¢., g5 are analytic. With £(0, 8)=1, we get from Eq. (A1—5)
&(z, B)=1(2)+P9(2)+0O(p?), p—>0. (A1—T7)

Evidently the functions f and ¢, in Eq. (A1—7) are the same as in
Eq. (A1—6), since for /1=0=0 &'=¢& must hold for every z and p of
interest. (The differential equations (A1—4) and (A1—5) coincide for
2=0=0, and & and &’ satisfy the same initial value.)

From Egs. (A1—6) and (A1—7) we obtain

E— &' — — 1g,y(2)—0g3(2) +0(B2) +O(B 1)+ O(B9).

Recalling that i=0=p> we readily get the desired expression
E—E=0(p?), p—0, which holds for every real z.

It is also concluded that the derivatives (with respect to z), of
arbitrary orders, of the functions {—¢&', ¢—¢’, y—y are of the order

O(p?).



Appendix A2

In section 6.32 we were faced with the problem of solving the
following boundary value problem for two functions () and y,(x):

Lyy,+20y,=C sin z,
Lgys+2xy,=0, (A2—1)
yila)=yi(as)=0, i=1,2,
where x and ' are real constants and the differential operator L, is
defined by
Ly=D*4-1+4-02,
d

D:d_x'

Problem (A2—1) is a special case of the problem
Ly, +x0y2=h.
Lys+oaz0y,=Fs. (A2—2)
Yi(a)=y;(b)=0, 1=1.2.

oy, are real constants, f;=/f;(x) and f,=/f,(z) are arbitrary, continuous
functions of x, and L is a Sturm-Liouville operator defined by

L=D(pD)-+ 0, (A2—3)

where p=p(x) and g=p(x) are positive and continuous for z€[a, b].
. is a real parameter. Essentially, the following derivations remain
valid, if we change L for the general Sturm-Liouville operator D(pD)--
~+20—q. where g—¢q(x) is a continuous function. For obvious reasons.
we may call the problem (A2—2) a Sturm-Liouville problem. The
author has not been able to find any treatment of such a problem in
the literature, although it is quite possible that such a treatment in
fact does exist, and we therefore find it worth-while to discuss it in
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some detail. Let wu,(z) and 1,,n=1,2,3,..., be the normalized
eigenfunctions and the eigenvalues of the related problem

Lu—0,
(A2—4)
w(a)=u(b)=0.
b
With the notation (f.g)= [ o(x)f(x)g(x)da we then get by the ortho-
normality of the eigenfunctions

[O if n+k,

(un 7uk): (A.’.—5)

11 if n==~k.

Let ¢, , and ¢, , be the wanted expansion coefficients, with respect
to the eigenfunctions, for the unknown functions y,(x) and yy(x), 7. €
let us write

Yi= Cz nn s

I ;Y (Jl’ )

where i=1,2 and we have summation on 7» from one to infinity.
Multiplying the differential equations in Eq. (A2—2) by w, and
integrating over the basic interval we get

Iurt[D(I)Dyl) S0 }‘le]dl"*" wl_[gyzu,,dx:_[flu,ldx,
_['ll,,, pDJ2)+ 4 0J2]d‘z + Ylfaylunda‘ If°1‘lldx

A2—7)

Now, from Eq. (A2—4) and the boundary conditions y;(a)=y;(b)=0,
and by repeated integration by parts, we obtain

[u, D(pDy)dx=—1,(y;., w,), 1=1,2.
With the notation
Jfwdx=d, ,, i=1,2 (A2—8)
we have from (A2—7)
(A—Zn)ey 1Ly, 2 =01 ns

(;_ ;‘11)62, n+ 'VZCI, n:d2, n*
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From (A2—9) we get immediately

G, n:Hn[dl, 11()'_ }-n)_ﬁ'ldz, n]’
(:&2— 10)
62, n:Hn[dz, n( A— 2”)—-“2(11' n]’

where

H,=[(A—2,)*—oqx,] . (A2—11)

The equations (A2—10) determine the expansion coefficients ¢, ,
and ¢, , if H, is finite, . e. if

(A—4,)>— x5 0. (A2—12)

The method can without difficulty be extended to the following
Sturm-Liouville problem for » functions y;(x):

Ly;+ox; =l
Yila)=y,(b)=0,

where 1=1,2, ..., n; k=1,2, ..., n; k+?, and we have summation on
k. «; , are arbitrary real constants and L, o, f; are defined as for
problem (A2—2).

Returning to problem (A2—1) we find that this special case of
problem (A2—2) is characterized by

L=L=D*+1+0a2, 1=1+u&2, oy=x,—2ux,
(A2—13)
o(z)=1, fi(x)=Csin z, f,(x)=0.

The basic interval is [a,, a,]. The eigenvalues 7, and eigenfunctions
u,(x) of the corresponding problem Eq. (A2—4) are easily obtained,
and the determination of the expansion coefficients ¢, , and ¢, ,
result from straight-forward calculations.
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