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Abstract: In eukaryotic cells, many genes are transcribed into non-coding RNAs. Small RNAs or, more specifically,
microRNAs (miRNAs) form an abundant sub-class of such RNAs. miRNAs are transcribed as long non-
coding RNA and then generated via a processing pathway down to the 20-24-nucleotide length. The
key ability of miRNAs is to associate with target mRNAs and to suppress their translation and/or facilitate
degradation. Using the mean-field kinetic equations and Monte Carlo simulations, we analyze two aspects
of this interplay. First, we describe the situation when the formation of mRNA or miRNA is periodically
modulated by a transcription factor which itself is not perturbed by these species. Depending on the ratio
between the mRNA and miRNA formation rates, the corresponding induced periodic kinetics are shown to
be either nearly harmonic or shaped as anti-phase pulses. The second part of the work is related to recent
experimental studies indicating that differentiation of stem cells often involves changes in gene transcription
into miRNAs and/or the interference between miRNAs, mRNAs and proteins. In particular, the regulatory
protein obtained via mRNA translation may suppress the miRNA formation, and the latter may suppress in
turn the miRNA-mRNA association and degradation. The corresponding bistable kinetics are described in
detail.
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1. Introduction

To understand the mechanisms that make life possible, onemust, first of all, explore the structure and function of the
∗E-mail: zhdanov@catalysis.ru

double-stranded deoxyribonucleic acid (DNA) molecule[1]. The key function of DNA or, more specifically, of itsfragments identified as genes is to encode and control theheredity of cells. Basically, the expression of this heredityor, in other words, gene expression includes polymerase-mediated gene transcription into messenger ribonucleicacids (mRNAs),
Gene→ Gene + mRNA, (1)
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and mRNA translation by ribosomes into proteins,
mRNA→ mRNA + P. (2)

In eukaryotic cells, many genes are transcribed also intonon-coding RNAs or, more specifically, microRNAs (miR-NAs) [2–4],
Gene∗ → Gene∗ + miRNA. (3)

All these species degrade,
mRNA→ ∅, (4)

P→ ∅, (5)
miRNA→ ∅. (6)

The numerous biological functions of miRNAs are basedprimarily on their ability to associate with target mRNAsand to suppress their translation and/or facilitate degra-dation,
mRNA + miRNA→ mRNA ∗ miRNA→ ∅. (7)

Every step of gene expression represents complex bio-chemical reaction precisely regulated in one way or an-other. Despite intensive study, especially in identifyingprotein-coding genes, the understanding of the genomeand its functions is still far from complete, particularlywith regard to non-coding RNAs, alternatively splicedtranscripts and regulatory sequences [5]. The most recentexperimental studies, aimed at large-scale analysis of thegenome and regulatory factors, have enabled to assignbiochemical functions for 80% of the genome [5] and iden-tified more than one hundred transcription-related fac-tors [6].Due to abundant feedbacks in gene expression and rel-atively small populations of each specific RNA and pro-tein in a cell, the kinetics of gene expression are oftencomplex and may exhibit such inherent features as bista-bility, oscillations, and stochasticity even in the case ofthe interplay of a few genes. The kinetic models describ-ing various aspects of such kinetics are numerous. Manyworks are focused on the basic steps of gene expression,including, first of all, gene transcription (see, e.g., Refs.[7–10] and references therein) and mRNA translation (see,
e.g., Refs. [11–13] and references therein). The interplayof various steps has also been extensively studied as re-viewed with emphasis on stochastic bursts and bistability

in simple mRNA-protein networks [14–16], kinetic oscil-lations in such networks [17, 18], complex mRNA-proteinnetworks [19–22], and networks including mRNAs, pro-teins and non-coding RNAs [23].In this article, we scrutinize two novel aspects of the ki-netics of gene expression including miRNAs. Specifically,we describe external periodic regulation of the mRNA-miRNA interplay (Section 2) and P-mediated mRNA-miRNA bistability in the context of differentiation of stemcells (Section 3). The motivations of the treatments ofthese aspects of gene express are given in the beginningsof the corresponding sections.
2. Periodic external regulation

Figure 1. mRNA and miRNA populations as a function of the mRNA
synthesis rate under steady-state conditions according to
Eqs. (8) and (9) with u = 10 min−1, k = k∗ = 0.01 min−1,
and r = 10−3 min−1. (This figure is similar to Fig. 1 in
Ref. [23].)

2.1. Motivation
As already noted in the Introduction, the feedbacks ingene expression may result in kinetic oscillations. Thebiochemical role of such oscillations is subtle and oftenopen for debate. One class of oscillations is related tothe cell cycle (see, e.g., Refs. [24, 25] and referencestherein). At present, there are also indications that os-cillations in gene expression can be beneficial from otherperspectives, e.g., by serving as a powerful means of en-coding and transferring information both in time and inspace (reviewed in Ref. [26]).To clarify the role of genetic oscillations, one should un-derstand the mechanisms of how they may arise (reviewedin Refs. [17, 18, 23]) and also their likely effect on the ki-netics downstream. One of the scenarios here is that the
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(a) (b)

(c) (d)

(e) (f)
Figure 2. mRNA and miRNA populations as a function of time according to Eqs. (8)-(10) with ω = 0.01 min−1, u = 10 min−1, and w◦ = 5 (a), 10

(b), 12 (c), 15 (d), 20 (e), and 25 min−1 (f). The other parameters are as in Fig. 1

oscillations in one of the networks result in oscillationsin the population of a transcription factor (chemically, thetranscription factors are proteins), and the latter inducesin turn oscillations downstream via periodic regulation ofthe gene transcription there. The available studies of thiscategory are focused on periodic perturbation of bistableand oscillatory networks (see, respectively, Refs. [27, 28]and [29–31] and references therein). Complementing thosestudies, we show here the effect of periodic regulation onthe mRNA-miRNA interplay.

2.2. Model
The simplest generic scheme of the mRNA-miRNA inter-play includes steps (1), (3), (4), (6), and (7). The corre-sponding kinetic equations for the intracellular mRNA andmiRNA populations, N and N∗, are as follows

dN/dt = w − kN − rNN∗, (8)
dN∗/dt = u− k∗N∗ − rNN∗, (9)

where w and u are the transcription rates, and r, k and
k∗ are the rate constants of steps (4), (6) and (7).
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(a) (b)

(c)
Figure 3. mRNA and miRNA populations (a) as a function of u◦ for w = 10 min−1, (b) as a function of w for u◦ = 20 min−1, and (c) as a function

p. The solid and dashed lines correspond to the stable and unstable steady states, respectively. Note that with the parameters chosen
(see the text) the P population (not shown) is equal to the mRNA population.

If the association of mRNA and miRNA [step (7)] is fast,the specie produced with lower rate degrades rapidlyand almost completely via this step and accordingly itssynthesis rate simply reduces the synthesis rate of thespecie produced with a higher rate. Specifically, one has

N ' (w − u)/k and N∗ ' 0 for w > u, and N ' 0 and
N∗ ' (u − w)/k∗ for u > w . This means that the genewith lower transcription rate is effectively silenced (thiseffect was widely discussed in the literature [23]). If forexample u is fixed and w is used as a governing parame-
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ter (Fig. 1), the gene transcribed into miRNA is silencedabove the threshold, w > u.Here, we show what will happen in the scheme above ifthe rate of gene transcription into mRNA or miRNA is pe-riodically regulated by a transcription factor which itselfis not perturbed by these species. Taking into accountthat according to Eqs. (8) and (9) mRNA and miRNA arekinetically symmetric, it is sufficient to present the resultsfor regulation of the rate of the mRNA formation (the re-sults for regulation of the rate of the miRNA formation aresimilar). We describe this rate as
w = 〈w〉[1 + α sin(ωt)], (10)

where 〈w〉 is the average value of w , and α and ω are themodulation amplitude and frequency. This periodic mod-ulation of w mimics the effect of the transcription factor(this factor is assumed to be produced in the oscillatoryfashion upstream).If α � 1 and/or ω is high (compared to the degradationrate constants), the average mRNA and miRNA popula-tions are close to those predicted by Eqs. (8) and (9)in the absence of the periodic perturbation (at α = 0),while the amplitudes of oscillations of these populationsare small. Under such conditions, Eqs. (8) and (9) incombination with expression (10) can easily be integratedby using the perturbation theory. In particular, one canshow that with increasing ω the amplitudes of oscillationsof the mRNA and miRNA populations are proportional to1/ω and 1/ω2, respectively.The case when the periodic perturbation is not efficientand the amplitudes of oscillations of the mRNA andmiRNA populations are small is not of interest, because inthis limit the oscillations can easily be smeared by fluctu-ations. We are interested in the opposite situation whenthe periodic perturbation is appreciable. To focus on thiscase, we use α = 1 and rewrite expression (10) as
w = w◦[1 + sin(ωt)]/2, (11)

where w◦ ≡ 2〈w〉 is the maximum value of w .
2.3. Results of calculations
Typical results of our calculations performed by employ-ing the model described are shown in Fig. 2 for u = 10min−1, k = k∗ = 0.01 min−1, r = 10−3 min−1, and w◦ = 5,10, 12, 15, 20, and 25 min−1 (for the validation of theseparameters, see Section 3.6 in Ref. [23]). To get ap-preciable periodic perturbation of the mRNA and miRNApopulations, we use ω = 0.01 min−1 (in this case, we have
ω = k = k∗).

With the parameters chosen, our model indicates that, de-pending on the ratio of u and w◦, one can distinguish thefollowing three kinetic regimes:(i) If w◦ is lower than or equal to u, the model predictsthat the miRNA population is appreciable, the oscillationsof this population are nearly harmonic, the amplitude ofthese oscillations is relatively small, while the mRNA pop-ulation is nearly negligible as shown in Figs.2(a) and 2(b)for w◦ = 5 and 10 min−1, respectively.(ii) If w◦ is slightly above u, the oscillations of the miRNApopulation remain to be nearly harmonic, the amplitude ofthese oscillations become large, while the mRNA popula-tion remains relatively small (see, e.g., Figs. 2(c) and 2(d)for w◦ = 12 and 15 min−1, respectively).(iii) If w◦ is appreciably above u, the amplitudes ofoscillations of the mRNA and miRNA population arelarge, and they are shaped as periodic anti-phase pulses(Figs. 2(e) and 2(f) for w◦ = 20 and 25 min−1, respec-tively). During the periods of large mRNA population,the miRNA population is nearly negligible, and vice versa.

3. P-mediated bistability and differ-
entiation of stem cells

Figure 4. Kinetic phase diagram in the plane of u◦ and w.

3.1. Motivation
Kinetically, differentiation of a stem cell can be viewedas a transition from one steady state to another steadystate [32]. A transition can be intrinsic, i.e., spontaneousor induced by external signals (reviewed in Refs. [32, 33]).Although in reality each steady state is characterized bya multitude of parameters, their specifics are usually be-lieved to be related to the difference in gene expression.
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Figure 5. As Fig. 3(a) for m = 4.

Mathematically, the existence of different steady statesis associated with bistability or multistability. Duringthe last decade, the bistable mean-field kinetic modelsof gene expression including mRNAs and proteins havebeen widely used to interpret the signal-induced differ-entiation [34–49]. Basically, the differentiation is viewedthere as a stepwise transition occurring with changingof one of the governing parameters. The mRNA-protein-mediated spontaneous differentiation occurring with a cer-tain probability can be described taking stochasticity intoaccount [45]More recent experimental studies indicate that the dif-ferentiation of stem cells often involves the changes ingene transcription into miRNAs and/or interplay betweenmRNAs and miRNAs (reviewed in Refs. [50–53]). Theadvantage of miRNAs is that they often have many tar-get mRNAs, and accordingly the change of the rate offormation of one of miRNAs may result in appreciablechanges in the populations of many mRNAs and corre-sponding proteins. Some of the proteins may play a roleof transcription factors and influence in turn the rate ofthe miRNA formation. During neuronal development, forexample, one of the key miRNA, miR-124, directs differ-entiating stem cells into a neuronal phenotype and blocksglia formation [54] (reviewed in Ref. [51]). This miRNA

negatively regulates one of the transcriptional repressors(the protein designated as REST) of neuronal genes in-cluding miR-124 itself. In this section, we present theresults of calculations helping to understand what mayhappen in such cases.
3.2. Model
The model we use for the formation and degradation ofmRNA, miRNA and P includes steps (1)-(7). P is as-sumed to regulate negatively the miRNA formation (asin the case of REST and miR-124 in neuronal develop-ment). The corresponding kinetic equations for the mRNA,miRNA and P populations, N , N∗ and n, in a cell are asfollows [23, 55]

dN/dt = w − kN − rNN∗, (12)
dN∗/dt = u◦

(
K

K + n

)m

− k∗N∗ − rNN∗, (13)
dn/dt = υN − κn, (14)

where w is the mRNA formation rate, u◦ is the maximummiRNA formation rate (i.e., the rate at n → 0), K and mare the parameters describing the negative regulation ofthe miRNA formation by P (m is the number of regulatorysites, and K is the P-site association constant), υ is themRNA translation rate constant, r is the rate constant ofthe mRNA-miRNA association [step (7)], and k , k∗ and
κ are the rate constants of conventional degradation ofmRNA, miRNA and P.The model outlined above predicts bistability as was ear-lier shown by using r as a governing parameter [55] (seealso Ref. [56]). This parameter is, however, not suitable inthe context of cell differentiation, because the latter pro-cess is usually believed to include regulation of gene tran-scription. For this reason, we scrutinize here the modelbehaviour by employing the transcription rates, u◦ and w ,as governing parameters.
3.3. Results of calculations
The parameters chosen to illustrate the model predictionsare: m = 2, K = 500, r = 0.001 min−1, and υ = k = k∗ =
κ = 0.01 min−1 (for the validation, see Section 3.6 in Ref.[23]). The steady-state kinetics and the correspondingkinetic phase diagram calculated with these parametersare shown in Fig. 3 and 4, respectively. In particular, Nand N∗ are exhibited as a function of u◦ in Fig. 3(a) andas a function of w in Fig. 3(b).Employing Fig. 3(a), let us consider the situation wheninitially u◦ is low, the miRNA population is small, and
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(a)

(b)

(c)
Figure 6. Transient Monte Carlo kinetics at t > 0. The system is at steady state with u◦ = 0 at t < 0 (the other parameters are as in the case

of Fig. 3(a)). In this state, the mRNA and P populations are large. At t = 0, u◦ is increased up to 15 (a), 20 (b), or 25 min−1 (c) and
then kept constant. With increasing time, in agreement with Fig. 3(a), the system either remains in the state with large mRNA and P
populations [(a) and (b)] or transits to the state with large miRNA population (c). The interval between the data points is 5 min. The
dashed lines show the mean-field steady-state mRNA or miRNA populations [Fig. 3(a)] corresponding to the chosen values of u◦.
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the mRNA and P populations are large, and then u◦ isincreased up to a desirable value due to the regulationby external signals or by a cell-cycle-related transcrip-tion factor. The increase of u◦ corresponds to the motionalong line AB. If the desirable value of u◦ is below thatcorresponding to point B, the cell will remain in the statewith small miRNA population. If, however, the desirablevalue of u◦ is above that corresponding to point B, thesystem will first move along line AB , then jump alongline BC to the state with large miRNA population andsmall mRNA and P populations, and subsequently movealong line CD. In the context of our presentation, this jumpcorresponds to cell differentiation. If initially u◦ is high,the miRNA population is large, and the mRNA and P pop-ulations are small and then u◦ is decreased, the systemwill move along line DEFA.In reality, the signals may regulate the mRNA and miRNAformation rates simultaneously. To illustrate this case, letus consider that these rates are represented as w = pWand u◦ = pU◦, where W = 10 min−1, U◦ = 15 min−1, and0 < p ≤ 1 is a governing parameter. With these values of
W and U◦ and p = 1, the kinetics are bistable (Fig. 3(a)).The kinetics calculated as a function of p are shown inFig. 3(c). If p is small, there is a single steady state withnegligible population of mRNA. Bistability is observed if
p is appreciable (p ≥ 0.69).The results presented in Figs. 3 and 4 have been obtainedfor m = 2. With increasing m, the area of the parametervalues where one can observe bistability appreciably ex-pands and the kinetic features related to bistability aremanifested better [cf., e.g., Figs. 3(a) and 5].To complement our analysis based on the mean-field ki-netic equations (12)-(14), we have simulated the corre-sponding kinetics by using the Monte Carlo technique or,more specifically, the standard Gillespie algorithm basedon the calculation of the total rate of all the possible steps,
wtot, realization of one of the steps chosen with the proba-bility proportional to its contribution to the total rate, andthe increment of time by | ln(ρ)|/wtot, where ρ (0 < ρ ≤ 1)is a random number (for the details, see Ref. [55]). Inthe situations when the mRNA, miRNA and P popula-tions are relatively large as, e.g., in the case of Figs. 3-5,the Monte Carlo simulations are in agreement with themean-field results (see, e.g., Fig. 6). If these populationsare small (e.g., below 100), the Monte Carlo kinetics mayexhibit stochastic bursts representing transitions betweenstates which are close to the mean-filed steady states [55].In summary, our calculations illustrate the possiblechanges in the miRNA, mRNA and protein populationsduring differentiation of stem cells and may help to un-derstand and interpret this phenomenon. Our analysishas been focused on the case when miRNA has one tar-

get. As already noticed, the advantage of miRNAs is thatthey often have many targets. Our model can easily begeneralized to the latter case [57], and our main conclu-sions remain valid even if the number of targets is large.
4. Conclusion
We have scrutinized two aspects of the mRMA-miRNA in-terplay including external periodic regulation (Section2)and P-mediated bistability in the context of differentiationof stem cells (Section 3). Finally, we may note that miR-NAs may interfere with almost every function of eukaryoticcells [for example, miRNAs are expressed at a high levelin the brain in adulthood and participate in normal andabnormal brain functions (reviewed in Refs. [51, 58]; seealso a model describing the interplay of membrane volt-age and gene expression in neurons [59])]. Many aspectsof this interference are open for experimental and theo-retical studies.
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