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Abstract

We consider a Bayesian nonparametric approach to a family of linear inverse problems in a separable
Hilbert space setting with Gaussian noise. We assume Gaussian priors, which are conjugate to the model,
and present a method of identifying the posterior using its precision operator. Working with the unbounded
precision operator enables us to use partial differential equations (PDE) methodology to obtain rates of con-
traction of the posterior distribution to a Dirac measure centered on the true solution. Our methods assume
a relatively weak relation between the prior covariance, noise covariance and forward operator, allowing for
a wide range of applications.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The solution of inverse problems provides a rich source of applications of the Bayesian non-
parametric methodology. It encompasses a broad range of applications from partial differential
equations (PDEs) [3], where there is a well-developed theory of classical, non-statistical, regu-
larization [8]. On the other hand, the area of nonparametric Bayesian statistical estimation and in
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particular the problem of posterior consistency has attracted a lot of interest in recent years; see
for instance [10,24,23,27,26,11,7]. Despite this, the formulation of many of these PDE inverse
problems using the Bayesian approach is in its infancy [25]. Furthermore, the development of
a theory of Bayesian posterior consistency, analogous to the theory for classical regularization,
is under-developed with the primary contribution being the recent paper [16]. This recent pa-
per provides a roadmap for what is to be expected regarding Bayesian posterior consistency, but
is limited in terms of applicability by the assumption of simultaneous diagonalizability of the
three linear operators required to define Bayesian inversion. Our aim in this paper is to make a
significant step in the theory of Bayesian posterior consistency for linear inverse problems by de-
veloping a methodology which sidesteps the need for simultaneous diagonalizability. The central
idea underlying the analysis is to work with precision operators rather than covariance operators,
and thereby to enable use of powerful tools from PDE theory to facilitate the analysis.

Let X be a separable Hilbert space, with norm ∥ · ∥ and inner product ⟨·, ·⟩, and let A: D(A)
⊂ X → X be a known self-adjoint and positive-definite linear operator with bounded inverse.
We consider the inverse problem to find u from y, where y is a noisy observation of A−1u. We
assume the model,

y = A−1u +
1

√
n
ξ, (1.1)

where 1
√

n
ξ is an additive noise. We will be particularly interested in the small noise limit where

n → ∞.
A popular method in the deterministic approach to inverse problems is the generalized

Tikhonov–Phillips regularization method in which u is approximated by the minimizer of a reg-
ularized least squares functional: define the Tikhonov–Phillips functional

J0(u) :=
1
2

C−
1
2

1 (y − A−1u)

2

+
λ

2

C−
1
2

0 u

2

, (1.2)

where Ci : X → X , i = 0, 1, are bounded, possibly compact, self-adjoint positive-definite linear
operators. The parameter λ is called the regularization parameter, and in the classical non-
probabilistic approach the general practice is to choose it as an appropriate function of the noise

size n−
1
2 , which shrinks to zero as n → ∞, in order to recover the unknown parameter u [8].

In this paper we adopt a Bayesian approach for the solution of problem (1.1), which will be
linked to the minimization of J0 via the posterior mean. We assume that the prior distribution is
Gaussian, u ∼ µ0 = N (0, τ 2 C0), where τ > 0 and C0 is a self-adjoint, positive-definite, trace
class, linear operator on X . We also assume that the noise is Gaussian, ξ ∼ N (0, C1), where C1
is a self-adjoint positive-definite, bounded, but not necessarily trace class, linear operator; this
allows us to include the case of white observational noise. We assume that the, generally un-
bounded, operators C−1

0 and C−1
1 , have been maximally extended to self-adjoint positive-definite

operators on appropriate domains. The unknown parameter and the noise are considered to be
independent, thus the conditional distribution of the observation given the unknown parameter u

(termed the likelihood) is also Gaussian with distribution y|u ∼ N


A−1u, 1
n C1


.

Define λ =
1

nτ 2 and let

J (u) = n J0(u) =
n

2

C−
1
2

1 (y − A−1u)

2

+
1

2τ 2

C−
1
2

0 u

2

. (1.3)
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In finite dimensions the probability density of the posterior distribution, that is, the distribution
of the unknown given the observation, with respect to the Lebesgue measure is proportional to
exp (−J (u)). This suggests that, in the infinite-dimensional setting, the posterior is Gaussian
µy

= N (m, C), where we can identify the posterior covariance and mean by the equations

C−1
= nA−1 C−1

1 A−1
+

1

τ 2 C−1
0 (1.4)

and

1
n

C−1m = A−1 C−1
1 y, (1.5)

obtained by completing the square. We present a method of justifying these expressions in Sec-
tion 5. We define

Bλ =
1
n

C−1
= A−1 C−1

1 A−1
+ λC−1

0 (1.6)

and observe that the dependence of Bλ on n and τ is only through λ. Since

Bλm = A−1 C−1
1 y, (1.7)

the posterior mean also depends only on λ: m = mλ. This is not the case for the posterior co-
variance C, since it depends on n and τ separately: C = Cλ,n . In the following, we suppress the
dependence of the posterior covariance on λ and n and we denote it by C.

Observe that the posterior mean is the minimizer of the functional J , hence also of J0, that is,
the posterior mean is the Tikhonov–Phillips regularized approximate solution of problem (1.1),
for the functional J0 with λ =

1
nτ 2 .

In [20,18], formulas for the posterior covariance and mean are identified in the infinite-
dimensional setting, which avoid using any of the inverses of the prior, posterior or noise
covariance operators. They obtain

C = τ 2 C0 − τ 2 C0 A−1(A−1 C0 A−1
+ λC1)

−1 A−1 C0 (1.8)

and

m = C0 A−1(A−1 C0 A−1
+ λC1)

−1 y, (1.9)

which are consistent with formulas (1.4) and (1.7) for the finite-dimensional case. In [20] this is
done only for C1 of trace class while in [18] the case of white observational noise was included.
We will work in an infinite-dimensional setting where the formulas (1.4), (1.7) for the posterior
covariance and mean can be justified. Working with the unbounded operator Bλ opens the
possibility of using tools of analysis, and also numerical analysis, familiar from the theory of
partial differential equations.

In our analysis we always assume that C−1
0 is regularizing, that is, we assume that C−1

0 dom-
inates Bλ in the sense that it induces stronger norms than A−1 C−1

1 A−1. This is a reasonable
assumption since otherwise we would have Bλ ≃ A−1 C−1

1 A−1 (here ≃ is used loosely to in-
dicate two operators which induce equivalent norms; we will make this notion precise in due
course). This would imply that the posterior mean is m ≃ A y, meaning that we attempt to invert
the data by applying the, generally discontinuous, operator A [8, Proposition 2.7].
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We study the consistency of the posteriorµy in the frequentist setting. To this end, we consider
data y = yĎ which is a realization of

yĎ = A−1uĎ
+

1
√

n
ξ, ξ ∼ N (0, C1), (1.10)

where uĎ is a fixed element of X ; that is, we consider observations which are perturbations of
the image of a fixed true solution uĎ by an additive noise ξ , scaled by 1

√
n

. Since the posterior
depends through its mean on the data and also through its covariance operator on the scaling
of the noise and the prior, this choice of data model gives as posterior distribution the Gaussian

measure µyĎ

λ,n = N (mĎ
λ, C), where C is given by (1.4) and

BλmĎ
λ = A−1 C−1

1 yĎ. (1.11)

We study the behavior of the posterior µyĎ

λ,n as the noise disappears (n → ∞). Our aim is to

show that it contracts to a Dirac measure centered on the fixed true solution uĎ. In particular, we
aim to determine εn such that

EyĎµ
yĎ

λ,n


u :

u − uĎ
 ≥ Mnεn


→ 0, ∀Mn → ∞, (1.12)

where the expectation is with respect to the random variable yĎ distributed according to the data

likelihood N


A−1uĎ, 1
n C1


.

As in the deterministic theory of inverse problems, in order to get convergence in the small
noise limit, we let the regularization disappear in a carefully chosen way, that is, we will choose
λ = λ(n) such that λ → 0 as n → ∞. The assumption that C−1

0 dominates Bλ, shows that
Bλ is a singularly perturbed unbounded (usually differential) operator, with an inverse which
blows-up in the limit λ → 0. This together with Eq. (1.7), opens up the possibility of using the
analysis of such singular limits to study posterior contraction: on the one hand, as λ → 0,B−1

λ

becomes unbounded; on the other hand, as n → ∞, we have more accurate data, suggesting that
for the appropriate choice of λ = λ(n) we can get mĎ

λ ≃ uĎ. In particular, we will choose τ as
a function of the scaling of the noise, τ = τ(n), under the restriction that the induced choice
of λ = λ(n) =

1
nτ(n)2

, is such that λ → 0 as n → ∞. The last choice will be made in a way
which optimizes the rate of posterior contraction εn , defined in (1.12). In general there are three
possible asymptotic behaviors of the scaling of the prior τ 2 as n → ∞, [26,16]:

(i) τ 2
→ ∞; we increase the prior spread, if we know that draws from the prior are more

regular than uĎ;
(ii) τ 2 fixed; draws from the prior have the same regularity as uĎ;

(iii) τ 2
→ 0 at a rate slower than 1

n ; we shrink the prior spread, when we know that draws from
the prior are less regular than uĎ.

The problem of posterior contraction in this context is also investigated in [16,9]. In [16],
sharp convergence rates are obtained in the case where C0, C1 and A−1 are simultaneously
diagonalizable, with eigenvalues decaying algebraically, and in particular C1 = I , that is, the
data are polluted by white noise. In this paper we relax the assumptions on the relations between
the operators C0, C1 and A−1, by assuming that appropriate powers of them induce comparable
norms (see Section 3). In [9], the non-diagonal case is also examined; the three operators involved
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are related through domain inclusion assumptions. The assumptions made in [9] can be quite
restrictive in practice; our assumptions include settings not covered in [9], and in particular the
case of white observational noise.

1.1. Outline of the rest of the paper

In the following section we present our main results which concern the identification of the
posterior (Theorem 2.1) and the posterior contraction (Theorems 2.2 and 2.3). In Section 3 we
present our assumptions and their implications. The proofs of the main results are built in a series
of intermediate results contained in Sections 4–7. In Section 4, we reformulate Eq. (1.7) as a weak
equation in an infinite-dimensional space. In Section 5, we present a new method of identifying
the posterior distribution: we first characterize it through its Radon–Nikodym derivative with
respect to the prior (Theorem 5.1) and then justify the formulas (1.4), (1.7) for the posterior
covariance and mean (proof of Theorem 2.1). In Section 6, we present operator norm bounds
for B−1

λ in terms of the singular parameter λ, which are the key to the posterior contraction
results contained in Section 7 and their corollaries in Section 2 (Theorems 7.1, 7.2, 2.2 and 2.3).
In Section 8, we present some nontrivial examples satisfying our assumptions and provide the
corresponding rates of convergence. In Section 9, we compare our results to known minimax rates
of convergence in the case where C0, C1 and A−1 are all diagonalizable in the same eigenbasis
and have eigenvalues that decay algebraically. Finally, Section 10 is a short conclusion.

The entire paper rests on a rich set of connections between the theory of stochastic processes
and various aspects of the theory of linear partial differential equations. In particular, since the
Green’s function of the precision operator of a Gaussian measure corresponds to its covariance
function, our formulation and analysis of the inverse problem via precision operators is very
natural. Furthermore, estimates on the inverse of singular limits of these precisions, which have
direct implications for localization of the Green’s functions, play a key role in the analysis of
posterior consistency.

2. Main results

In this section we present our main results. We postpone the rigorous presentation of our
assumptions to the next section and the proofs and technical lemmas are presented together with
intermediate results of independent interest in Sections 4–7. Recall that we assume a Gaussian
prior µ0 = N (0, τ 2 C0) and a Gaussian noise distribution N (0, C1). Our first assumption
concerns the decay of the eigenvalues of the prior covariance operator and enables us to quantify
the regularity of draws from the prior. This is encoded in the parameter s0 ∈ [0, 1); smaller s0

implies more regular draws from the prior. We also assume that C1 ≃ Cβ0 and A−1
≃ Cℓ0 , for

some β, ℓ ≥ 0, where ≃ is used in the manner outlined in Section 1, and defined in detail in
Section 3. Finally, we assume that the problem is sufficiently ill-posed with respect to the prior.
This is quantified by the parameter ∆ := 2ℓ− β + 1 which we assume to be larger than 2s0; for
a fixed prior, the larger ∆ is, the more ill-posed the problem.

2.1. Posterior identification

Our first main theorem identifies the posterior measure as Gaussian and justifies formulas
(1.4) and (1.7). This reformulation of the posterior in terms of the precision operator is key to our
method of analysis of posterior consistency and opens the route to using methods from the study
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of partial differential equations (PDEs). These methods will also be useful for the development
of numerical methods for the inverse problem.

Theorem 2.1. Under the Assumptions 3.1, the posterior measure µy(du) is Gaussian µy
=

N (m, C), where C is given by (1.4) and m is a weak solution of (1.7). �

2.2. Posterior contraction

We now present our results concerning frequentist posterior consistency of the Bayesian
solution to the inverse problem. We assume to have data yĎ = yĎ(n) as in (1.10), and examine the

behavior of the posterior µyĎ

λ,n = N (mĎ
λ, C), where mĎ

λ is given by (1.11), as the noise disappears

(n → ∞). The first convergence result concerns the convergence of the posterior mean mĎ
λ to the

true solution uĎ in a range of weighted norms ∥ · ∥η induced by powers of the prior covariance
operator C0. The spaces (Xη, ∥ · ∥η) are rigorously defined in the following section. The second
result provides rates of posterior contraction of the posterior measure to a Dirac centered on the
true solution as described in (1.12). In both results, we assume a priori known regularity of the
true solution uĎ

∈ Xγ and give the convergence rates as functions of γ .

Theorem 2.2. Assume uĎ
∈ Xγ , where γ ≥ 1 and let η = (1−θ)(β−2ℓ)+θ , where θ ∈ [0, 1].

Under the Assumptions 3.1, we have the following optimized rates of convergence, where ε > 0
is arbitrarily small:

(i) if γ ∈ (1,∆ + 1], for τ = τ(n) = n
−

γ−1+s0+ε

2(∆+γ−1+s0+ε)

EyĎ
mĎ

λ − uĎ
2

η
≤ cn

−
∆+γ−1−θ∆
∆+γ−1+s0+ε ;

(ii) if γ > ∆ + 1, for τ = τ(n) = n
−

∆+s0+ε

2(2∆+s0+ε)

EyĎ
mĎ

λ − uĎ
2

η
≤ cn

−
(2−θ)∆

2∆+s0+ε ;

(iii) if γ = 1 and θ ∈ [0, 1) for τ = τ(n) = n
−

s0+ε

2(∆+s0+ε)

EyĎ
mĎ

λ − uĎ
2

η
≤ cn

−
(1−θ)∆
∆+s0+ε .

If γ = 1 and θ = 1 then the method does not give convergence. �

Theorem 2.3. Assume uĎ
∈ Xγ , where γ ≥ 1. Under the Assumptions 3.1, we have the following

optimized rates for the convergence in (1.12), where ε > 0 is arbitrarily small:

(i) if γ ∈ [1,∆ + 1] for τ = τ(n) = n
−

γ−1+s0+ε

2(∆+γ−1+s0+ε)

εn =


n

−
γ

2(∆+γ−1+s0+ε) , if β − 2ℓ ≤ 0

n
−

∆+γ−1
2(∆+γ−1+s0+ε) , otherwise;

(ii) if γ > ∆ + 1 for τ = τ(n) = n
−

∆+s0+ε

2(2∆+s0+ε)

εn =


n

−
∆+1

2(2∆+s0+ε) , if β − 2ℓ ≤ 0

n
−

∆
2∆+s0+ε , otherwise.

�
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Fig. 1. Exponents of rates of contraction plotted against the regularity of the true solution, γ . The solid line represents
the sharp convergence rates obtained in the diagonal case in [16], while the dotted line the rates predicted by our method,
which applies to the more general non-diagonal case.

To summarize, provided the problem is sufficiently ill-posed and the true solution uĎ is suffi-
ciently regular we get the convergence in (1.12) for

εn = n
−

γ∧(∆+1)
2(∆+γ∧(∆+1)−1+s0+ε) .

Our rates of convergence agree, up to ε > 0 arbitrarily small, with the sharp convergence rates
obtained in the diagonal case in [16] across a wide range of regularity assumptions on the true
solution (Fig. 1); yet, our rates cover a much more applicable range of non-simultaneously di-
agonalizable problems. (The reason for the appearance of ε is that in the assumed non-diagonal
setting we can only use information about the regularity of the noise as expressed in terms of the
spaces Xρ (cf. Lemma 3.5), rather than the explicit representation of the noise.)

The rates we obtain are not as strong as in the simultaneously diagonalizable case when the
true solution is too regular; in particular our rates saturate earlier as a function of increasing
regularity, and we require a certain degree of regularity of the true solution in order to secure
convergence. It is not known if our results can be improved but it would be interesting to try.
Both of the two discrepancies are attributed to the fact that our method relies on interpolating
between rates in a strong and a weak norm of the error e = mĎ

λ − uĎ; on the one hand the rate
of the error in the weak norm saturates earlier, and on the other hand the error in the strong norm
requires additional regularity in order to converge (cf. Section 9).

3. The setting

In this section we present the setting in which we formulate our results. First, we define the
spaces in which we work, in particular, we define the Hilbert scale induced by the prior covari-
ance operator C0. Then we define the probability measures relevant to our analysis. Furthermore,
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we state our main assumptions, which concern the decay of the eigenvalues of C0 and the con-
nections between the operators C0, C1 and A−1, and present regularity results for draws from
the prior, µ0, and the noise distribution, N (0, C1). Finally we briefly overview the way in which
the Hilbert scale defined in terms of the prior covariance operator C0, which is natural for our
analysis, links to scales of spaces defined independently of any prior model.

We start by defining the Hilbert scale which we will use in our analysis. Recall that X
is an infinite-dimensional separable Hilbert space and C0: X → X is a self-adjoint, positive-
definite, trace class, linear operator. Since C0: X → X is injective and self-adjoint we have that
X = R(C0) ⊕ R(C0)

⊥
= R(C0). This means that C−1

0 : R(C0) → X is a densely defined,
unbounded, symmetric, positive-definite, linear operator in X . Hence it can be extended to a
self-adjoint operator with domain D(C−1

0 ) := {u ∈ X : C−1
0 u ∈ X }; this is the Friedrichs

extension [17]. Thus, we can define the Hilbert scale (X t )t∈R, with X t
:= M∥.∥t [8], where

M :=

∞
l=0

D(C−l
0 ), ⟨u, v⟩t :=


C−

t
2

0 u, C−
t
2

0 v


and ∥u∥t :=

C−
t
2

0 u

 .
The bounded linear operator C1: X → X is assumed to be self-adjoint, positive-definite (but
not necessarily trace class); thus C−1

1 : R(C1) → X can be extended in the same way to a self-
adjoint operator with domain D(C−1

1 ) := {u ∈ X : C−1
1 u ∈ X }. Finally, recall that we assume

that A: D(A) → X is a self-adjoint and positive-definite, linear operator with bounded inverse,
A−1: X → X .

We assume that we have a probability space (Ω ,F ,P). The expected value is denoted by E
and ξ ∼ µ means that the law of the random variable ξ is the measure µ.

Let µ0 := N (0, τ 2 C0) and P0 := N (0, 1
n C1) be the prior and noise distributions respectively.

Furthermore, let ν(du, dy) denote the measure constructed by taking u and y|u as independent

Gaussian random variables N (0, τ 2 C0) and N


A−1u, 1
n C1


respectively:

ν(du, dy) = P(dy|u)µ0(du),

where P := N


A−1u, 1
n C1


. We denote by ν0(du, dy) the measure constructed by taking u and

y as independent Gaussian random variables N (0, τ 2 C0) and N (0, 1
n C1) respectively:

ν0(du, dy) = P0(dy)⊗ µ0(du).

Let {λ2
k, φk}

∞

k=1 be orthonormal eigenpairs of C0 in X . Thus, {λk}
∞

k=1 are the singular values
and {φk}

∞

k=1 an orthonormal eigenbasis. Since C0 is trace class we have that


∞

k=1 λ
2
k < ∞. In

fact we require a slightly stronger assumption see Assumption 3.1(1) below.

3.1. Assumptions

We are now ready to present our assumptions. The first assumption enables us to quantify
the regularity of draws from the prior whereas the rest of the assumptions regard interrelations
between the three operators C0, C1 and A−1; these assumptions reflect the idea that

C1 ≃ Cβ0 and A−1
≃ Cℓ0,

for some β ≥ 0, ℓ ≥ 0, where ≃ is used in the same manner as in Section 1. This is made precise
by the inequalities presented in the following assumption, where the notation a ≍ b means that
there exist constants c, c′ > 0 such that ca ≤ b ≤ c′a.
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Assumption 3.1. Suppose there exist s0 ∈ [0, 1), β ≥ 0, ℓ ≥ 0 and constants ci > 0, i = 1,
. . . , 4 such that

1. C s
0 is trace class for all s > s0;

2. ∆ > 2s0, where ∆ := 2ℓ− β + 1;

3.

C−
1
2

1 A−1u

 ≍

Cℓ−
β
2

0 u

 , ∀u ∈ Xβ−2ℓ
;

4.

C−
ρ
2

0 C
1
2
1 u

 ≤ c1

C
β−ρ

2 u
0

 , ∀u ∈ Xρ−β , ∀ρ ∈ [⌈β − s0 − 1⌉, β − s0);

5.

C
s
2
0 C−

1
2

1 u

 ≤ c2

C
s−β

2
0 u

 , ∀u ∈ Xβ−s, ∀s ∈ (s0, 1];

6.

C−
s
2

0 C−
1
2

1 A−1u

 ≤ c3

C
2ℓ−β−s

2
0 u

 , ∀u ∈ X s+β−2ℓ, ∀s ∈ (s0, 1];

7.

C
η
2

0 A−1 C−1
1 u

 ≤ c4

C
η
2 +ℓ−β

0 u

 , ∀u ∈ X2β−2ℓ−η, ∀η ∈ [β − 2ℓ, 1].

Notice that, by Assumption 3.1(2) we have 2ℓ − β > −1 which, in combination with As-
sumption 3.1(3), implies that

C−
1
2

1 A−1u, C−
1
2

1 A−1u


+ λ


C−

1
2

0 u, C−
1
2

0 u


≤ c


C−

1
2

0 u, C−
1
2

0 u


, ∀u ∈ X1,

capturing the idea that the regularization through C0 is indeed a regularization. In fact the as-
sumption ∆ > 2s0 connects the ill-posedness of the problem to the regularity of the prior. We
exhibit this connection in the following example:

Example 3.2. Assume A, C1 and C0 are simultaneously diagonalizable, with eigenvalues having
algebraic decay k2t , k−2r and k−2α , respectively, for t, r ≥ 0 and α > 1

2 so that C0 is trace
class. Then Assumptions (1), (3)–(7) are trivially satisfied with ℓ =

t
α
, β =

r
α

and s0 =
1

2α . The
Assumption (2) ∆ > 2s0 is then equivalent to α > 1 + r − 2t . That is, for a certain degree of ill-
posedness (encoded in the difference 2t − r ) we have a minimum requirement on the regularity
of the prior (encoded in α). Put differently, for a certain prior, we require a minimum degree of
ill-posedness.

We refer the reader to Section 8 for nontrivial examples satisfying Assumptions 3.1.
In the following, we exploit the regularity properties of a white noise to determine the regu-

larity of draws from the prior and the noise distributions using Assumption 3.1(1). We consider
a white noise to be a draw from N (0, I ), that is a random variable ζ ∼ N (0, I ). Even though
the identity operator is not trace class in X , it is trace class in a bigger space X−s , where s > 0
is sufficiently large.

Lemma 3.3. Under the Assumption 3.1(1) we have:

(i) Let ζ be a white noise. Then E
C

s
2
0 ζ

2
< ∞ for all s > s0.

(ii) Let u ∼ µ0. Then u ∈ X1−s µ0-a.s. for every s > s0.

Proof. (i) We have that C
s
2
0 ζ ∼ N (0, C s

0), thus E
C

s
2
0 ζ

2
< ∞ is equivalent to C s

0 being of

trace class. By the Assumption 3.1(1) it suffices to have s > s0.
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(ii) We have E
C

s−1
2

0 u

2

= E
C

s
2
0 C−

1
2

0 u

2

= E
C

s
2
0 ζ

2
, where ζ is a white noise, therefore

using part (i) we get the result. �

Remark 3.4. Note that as s0 changes, both the Hilbert scale and the decay of the coefficients of
a draw from µ0 change. The norms ∥ · ∥t are defined through powers of the eigenvalues λ2

k . If

s0 > 0, then C0 has eigenvalues that decay like k
−

1
s0 , thus an element u ∈ X t has coefficients

⟨u, φk⟩, that decay faster than k
−

1
2 −

t
2s0 . As s0 gets closer to zero, the space X t for fixed t > 0,

corresponds to a faster decay rate of the coefficients. At the same time, by the last lemma, draws
from µ0 = N (0, C0) belong to X1−s for all s > s0. Consequently, as s0 gets smaller, not only do
draws from µ0 belong to X1−s for smaller s, but also the spaces X1−s for fixed s reflect faster
decay rates of the coefficients. The case s0 = 0 corresponds to C0 having eigenvalues that decay
faster than any negative power of k. A draw from µ0 in that case has coefficients that decay faster
than any negative power of k.

In the next lemma, we use the interrelations between the operators C0, C1,A−1 to obtain
additional regularity properties of draws from the prior, and also determine the regularity of
draws from the noise distribution and the joint distribution of the unknown and the data.

Lemma 3.5. Under the Assumptions 3.1 we have:

(i) u ∈ X s0+β−2ℓ+ε µ0-a.s. for all 0 < ε < (∆ − 2s0) ∧ (1 − s0);

(ii) A−1u ∈ D(C−
1
2

1 ) µ0-a.s.;
(iii) ξ ∈ Xρ P0-a.s. for all ρ < β − s0;

(iv) y ∈ Xρν-a.s. for all ρ < β − s0.

Proof. (i) We can choose an ε as in the statement by the Assumption 3.1(2). By Lemma 3.3(ii),
it suffices to show that s0+β−2ℓ+ε < 1−s0. Indeed, s0+β−2ℓ+ε = s0+1−∆+ε < 1−s0.

(ii) Under Assumption 3.1(3) it suffices to show that u ∈ Xβ−2ℓ. Indeed, by Lemma 3.3(ii),
we need to show that β − 2ℓ < 1 − s0, which is true since s0 ∈ [0, 1) and we assume
∆ > 2s0 ≥ s0, thus 2ℓ− β + 1 > s0.

(iii) It suffices to show it for any ρ ∈ [⌈β − s0 − 1⌉, β − s0). Noting that ζ = C−
1
2

1 ξ is a white
noise, using Assumption 3.1(4), we have by Lemma 3.3(i)

E∥ξ∥2
ρ = E

C−
ρ
2

0 C
1
2
1 C−

1
2

1 ξ

2

≤ cE
C

β−ρ
2

0 ζ

2

< ∞,

since β − ρ > s0.
(iv) By (ii) we have that A−1u is µ0-a.s. in the Cameron–Martin space of the Gaussian measures

P and P0, thus the measures P and P0 are µ0-a.s. equivalent [6, Theorem 2.8] and (iii) gives
the result. �

3.2. Guidelines for applying the theory

The theory is naturally developed in the scale of Hilbert spaces defined via the prior. However
application of the theory may be more natural in a different functional setting. We explain how
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the two may be connected. Let {ψk}k∈N be an orthonormal basis of the separable Hilbert space
X . We define the spaces X̂ t , t ∈ R as follows: for t > 0 we set

X̂ t
:=


u ∈ X :

∞
k=1

k2t
⟨u, ψk⟩

2 < ∞



and the spaces X̂−t , t > 0 are defined by duality, X̂−t
:= (X̂ t )∗.

For example, if we restrict ourselves to functions on a periodic domain D = [0, L]
d and

assume that {ψk}k∈N is the Fourier basis of X = L2(D), then the spaces X̂ t can be identified
with the Sobolev spaces of periodic functions H t , by rescaling: H t

= X̂
t
d [22, Proposition 5.39].

In the case s0 > 0, as explained in Remark 3.4 we have algebraic decay of the eigenvalues of

C0 and in particular λ2
k decay like k

−
1
s0 . If C0 is diagonalizable in the basis {ψk}k∈N, that is, if

φk = ψk, k ∈ N, then it is straightforward to identify the spaces X t with the spaces X̂
t

2s0 . The
advantage of this identification is that the spaces X̂ t do not depend on the prior so one can use
them as a fixed reference point for expressing regularity, for example of the true solution.

In our subsequent analysis, we will require that the true solution lives in the Cameron–Martin
space of the prior X1, which in different choices of the prior (different s0) is a different space.
Furthermore, we will assume that the true solution lives in Xγ for some γ ≥ 1 and provide the

convergence rate depending on the parameters γ, s0, β, ℓ. The identification Xγ = X̂
γ

2s0 and
the intuitive relation between the spaces X̂ t and the Sobolev spaces, enable us to understand the
meaning of the assumptions on the true solution.

We can now formulate the following guidelines for applying the theory presented in the
present paper: we work in a separable Hilbert space X with an orthonormal basis {ψk}k∈N and
we have some prior knowledge about the true solution uĎ which can be expressed in terms of the
spaces X̂ t . The noise is assumed to be Gaussian N (0, C1), and the forward operator is known;
that is, C1 and A−1 are known. We choose the prior N (0, C0), that is, we choose the covariance
operator C0, and we can determine the value of s0. If the operator C0 is chosen to be diagonal
in the basis {ψk}k∈N then we can find the regularity of the true solution in terms of the spaces
X t , that is, the value of γ such that uĎ

∈ Xγ , and check that γ ≥ 1 which is necessary for our
theory to work. We then find the values of β and ℓ and calculate the value of ∆ appearing in
Assumption 3.1, checking that our choice of the prior is such that ∆ > 2s0. We now have all the
necessary information required for applying the Theorems 2.2 and 2.3 presented in Section 2 to
get the rate of convergence.

Remark 3.6. Observe that in the above mentioned example of periodic functions, we have the

identification X1
= H

d
2s0 , thus since s0 < 1 we have that the assumption uĎ

∈ X1 implies that
uĎ

∈ H t , for t > d
2 . By the Sobolev embedding theorem [22, Theorem 5.31], this implies that

the true solution is always assumed to be continuous. However, this is not a disadvantage of our
method, since in many cases a Gaussian measure which charges L2(D) with probability one, can
be shown to also charge the space of continuous functions with probability one [25, Lemma 6.25].

4. Properties of the posterior mean and covariance

We now make sense of the Eq. (1.7) weakly in the space X1, under the assumptions presented
in the previous section. To do so, we define the operator Bλ from (1.6) in X1 and examine its
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properties. In Section 5 we demonstrate that (1.4) and (1.7) do indeed correspond to the posterior
covariance and mean.

Consider the equation

Bλw = r, (4.1)

where

Bλ = A−1 C−1
1 A−1

+ λC−1
0 .

Define the bilinear form B: X1
× X1

→ R,

B(u, v) :=


C−

1
2

1 A−1u, C−
1
2

1 A−1v


+ λ


C−

1
2

0 u, C−
1
2

0 v


, ∀u, v ∈ X1.

Definition 4.1. Let r ∈ X−1. An element w ∈ X1 is called a weak solution of (4.1), if

B(w, v) = ⟨r, v⟩ , ∀v ∈ X1.

Proposition 4.2. Under the Assumptions 3.1(2) and (3), for any r ∈ X−1, there exists a unique
weak solution w ∈ X1 of (4.1).

Proof. We use the Lax–Milgram theorem in the Hilbert space X1, since r ∈ X−1
= (X1)∗.

(i) B: X1
× X1

→ R is coercive:

B(u, u) =

C−
1
2

1 A−1u

2

+ λ

C−
1
2

0 u

2

≥ λ∥u∥
2
1, ∀u ∈ X1.

(ii) B: X1
× X1

→ R is continuous: indeed by the Cauchy–Schwarz inequality and the
Assumptions 3.1(2) and (3),

|B(u, v)| ≤

C−
1
2

1 A−1u

 C−
1
2

1 A−1v

+ λ

C−
1
2

0 u

 C−
1
2

0 v


≤ c∥u∥β−2ℓ ∥v∥β−2ℓ + λ∥u∥1 ∥v∥1 ≤ c′

∥u∥1 ∥v∥1 , ∀u, v ∈ X1. �

Remark 4.3. The Lax–Milgram theorem defines a bounded operator S : X−1
→ X1, such that

B(Sr, v) = ⟨r, v⟩ for all v ∈ X1, which has a bounded inverse S −1
: X1

→ X−1 such that
B(w, v) =


S −1w, v


for all v ∈ X1. Henceforward, we identify Bλ ≡ S −1 and B−1

λ ≡ S . Fur-
thermore, note that in Proposition 4.2, Lemma 4.4 below, and the three propositions in Section 6,
we only require ∆ > 0 and not the stronger assumption ∆ > 2s0. However, in all our other
results we actually need ∆ > 2s0.

Lemma 4.4. Suppose the Assumptions 3.1(2) and (3) hold. Then the operator S −1
= Bλ :

X1
→ X−1 is identical to the operator A−1 C−1

1 A−1
+ λC−1

0 : X1
→ X−1, where A−1 C−1

1 A−1

is defined weakly in Xβ−2ℓ.

Proof. The Lax–Milgram theorem implies that Bλ : X1
→ X−1 is bounded. Moreover, C−1

0 : X1

→ X−1 is bounded, thus the operator K := Bλ−λC−1
0 : X1

→ X−1 is also bounded and satisfies

⟨K u, v⟩ =


C−

1
2

1 A−1u, C−
1
2

1 A−1v


, ∀u, v ∈ X1. (4.2)
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Define A−1 C−1
1 A−1 weakly in Xβ−2ℓ, by the bilinear form A : Xβ−2ℓ

× Xβ−2ℓ
→ R given by

A(u, v) =


C−

1
2

1 A−1u, C−
1
2

1 A−1v


, ∀u, v ∈ Xβ−2ℓ.

By Assumption 3.1(3), A is coercive and continuous in Xβ−2ℓ, thus by the Lax–Milgram theo-
rem, there exists a uniquely defined, boundedly invertible, operator T : X2ℓ−β

→ Xβ−2ℓ such
that A(u, v) =


T −1u, v


for all v ∈ Xβ−2ℓ. We identify A−1 C−1

1 A−1 with the bounded operator
T −1

: Xβ−2ℓ
→ X2ℓ−β . By Assumption 3.1(2) we have ∆ > 0 henceA−1 C−1

1 A−1u


−1
≤ c

A−1 C−1
1 A−1u


2ℓ−β

≤ c ∥u∥β−2ℓ ≤ c ∥u∥1 , ∀u ∈ X1,

that is, A−1 C−1
1 A−1

: X1
→ X−1 is bounded. By the definition of T −1

= A−1 C−1
1 A−1 and

(4.2), this implies that K = Bλ − λC−1
0 = A−1 C−1

1 A−1. �

Proposition 4.5. Under the Assumptions 3.1(1)–(4), (7), there exists a unique weak solution,
m ∈ X1 of Eq. (1.7), ν(du, dy)-almost surely.

Proof. It suffices to show that A−1 C−1
1 y ∈ X−1, ν(du, dy)-almost surely. Indeed, by Lemma 3.5

(iv) we have that y ∈ Xρν(du, dy)-a.s. for all ρ < β − s0, thus by the Assumption 3.1(7)C
1
2
0 A−1 C−1

1 y

 ≤ c

C
1
2 +ℓ−β

0 y

 < ∞,

since 2β − 2ℓ− 1 < β − s0, which holds by the Assumption 3.1(2). �

5. Characterization of the posterior using precision operators

Suppose that in the problem (1.1) we have u ∼ µ0 = N (0, C0) and ξ ∼ N (0, C1), where
u is independent of ξ . Then we have that y|u ∼ P = N (A−1u, 1

n C1). Let µy be the posterior
measure on u|y.

In this section we prove a number of facts concerning the posterior measure µy for u|y. First,
in Theorem 5.1 we prove that this measure has density with respect to the prior measure µ0,
identify this density and show that µy is Lipschitz in y, with respect to the Hellinger metric.
Continuity in y will require the introduction of the space X s+β−2ℓ, to which u drawn from µ0
belongs almost surely. Secondly, we prove Theorem 2.1, where we show that µy is Gaussian and
identify the covariance and mean via Eqs. (1.4) and (1.7). This identification will form the basis
for our analysis of posterior contraction in the following section.

Theorem 5.1. Under the Assumptions 3.1(1)–(6), the posterior measure µy is absolutely con-
tinuous with respect to µ0 and

dµy

dµ0
(u) =

1
Z(y)

exp(−Φ(u, y)), (5.1)

where

Φ(u, y) :=
n

2

C−
1
2

1 A−1u

2

− n


C−

1
2

1 y, C−
1
2

1 A−1u


(5.2)
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and Z(y) ∈ (0,∞) is the normalizing constant. Furthermore, the map y → µy is Lipschitz
continuous, with respect to the Hellinger metric: let s = s0 + ε, 0 < ε < (∆ − 2s0) ∧ (1 − s0);
then there exists c = c(r) such that for all y, y′

∈ Xβ−s with ∥y∥β−s,
y′

β−s ≤ r

dHell(µ
y, µy′

) ≤ c
y − y′


β−s .

Consequently, the µy-expectation of any polynomially bounded function f : X s+β−2ℓ
→ E,

where (E, ∥ · ∥E ) is a Banach space, is locally Lipschitz continuous in y. In particular, the
posterior mean is locally Lipschitz continuous in y as a function Xβ−s

→ X s+β−2ℓ.

The proofs of Theorems 5.1 and 2.1 are presented in the next two subsections. Each proof is
based on a series of lemmas.

5.1. Proof of Theorem 5.1

In this subsection we prove Theorem 5.1. We first prove several useful estimates regarding
Φ defined in (5.2), for u ∈ X s+β−2ℓ and y ∈ Xβ−s , where s ∈ (s0, 1]. Observe that, under the
Assumptions 3.1(1)–(4), for s = s0 + ε where ε > 0 sufficiently small, the Lemma 3.5 implies
on the one hand that u ∈ X s+β−2ℓµ0(du)-almost surely and on the other hand that y ∈ Xβ−s

ν(du, dy)-almost surely.

Lemma 5.2. Under the Assumptions 3.1(1), (3), (5), (6), for any s ∈ (s0, 1], the potential Φ
given by (5.2) satisfies:

(i) for every δ > 0 and r > 0, there exists an M = M(δ, r) ∈ R, such that for all u ∈ X s+β−2ℓ

and all y ∈ Xβ−s with ∥y∥β−s ≤ r ,

Φ(u, y) ≥ M − δ∥u∥
2
s+β−2ℓ;

(ii) for every r > 0, there exists a K = K (r) > 0, such that for all u ∈ X s+β−2ℓ and y ∈ Xβ−s

with ∥u∥s+β−2ℓ, ∥y∥β−s ≤ r ,

Φ(u, y) ≤ K ;

(iii) for every r > 0, there exists an L = L(r) > 0, such that for all u1, u2 ∈ X s+β−2ℓ and
y ∈ Xβ−s with ∥u1∥s+β−2ℓ, ∥u2∥s+β−2ℓ, ∥y∥β−s ≤ r ,

|Φ(u1, y)− Φ(u2, y)| ≤ L∥u1 − u2∥s+β−2ℓ;

(iv) for every δ > 0 and r > 0, there exists an c = c(δ, r) ∈ R, such that for all y1, y2 ∈ Xβ−s

with ∥y1∥β−s, ∥y2∥β−s ≤ r and for all u ∈ X s+β−2ℓ,

|Φ(u, y1)− Φ(u, y2)| ≤ exp

δ∥u∥

2
s+β−2ℓ + c


∥y1 − y2∥β−s .

Proof. (i) By first using the Cauchy–Schwarz inequality, then the Assumptions 3.1(5) and (6),
and then the Cauchy with δ′ inequality for δ′ > 0 sufficiently small, we have

Φ(u, y) =
n

2

C−
1
2

1 A−1u

2

− n


C

s
2
0 C−

1
2

1 y, C−
s
2

0 C−
1
2

1 A−1u


≥ −n

C
s
2
0 C−

1
2

1 y

 C−
s
2

0 C−
1
2

1 A−1u

 ≥ −cn∥y∥β−s∥u∥s+β−2ℓ

≥ −
cn

4δ′
∥y∥

2
β−s − cnδ′∥u∥

2
s+β−2ℓ ≥ M(r, δ)− δ∥u∥

2
s+β−2ℓ.
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(ii) By the Cauchy–Schwarz inequality and the Assumptions 3.1(3), (5) and (6), we have since
s > s0 ≥ 0

Φ(u, y) ≤
n

2

C−
1
2

1 A−1u

2

+ n

C
s
2
0 C−

1
2

1 y

 C−
s
2

0 C−
1
2

1 A−1u


≤ c

n

2
∥u∥

2
β−2ℓ + cn∥y∥β−s∥u∥s+β−2ℓ ≤ K (r).

(iii) By first using the Assumptions 3.1(5) and (6) and the triangle inequality, and then the As-
sumption 3.1(3) and the reverse triangle inequality, we have since s > s0 ≥ 0

|Φ(u1, y)− Φ(u2, y)|

=
n

2


C−

1
2

1 A−1u1

2

−

C−
1
2

1 A−1u2

2

+ 2


C
s
2
0 C−

1
2

1 y, C−
s
2

0 C−
1
2

1 A−1(u2 − u1)


≤

n

2


C−

1
2

1 A−1u1

2

−

C−
1
2

1 A−1u2

2
+ cn∥y∥β−s∥u1 − u2∥s+β−2ℓ

≤ cn∥u1 − u2∥β−2ℓ

∥u1∥β−2ℓ + ∥u2∥β−2ℓ


+ cnr∥u1 − u2∥s+β−2ℓ

≤ L(r)∥u1 − u2∥s+β−2ℓ.

(iv) By first using the Cauchy–Schwarz inequality and then the Assumptions 3.1(5) and (6), we
have

|Φ(u, y1)− Φ(u, y2)| = n

C
s
2
0 C−

1
2

1 (y1 − y2), C−
s
2

0 C−
1
2

1 A−1u


≤ n

C
s
2
0 C−

1
2

1 (y1 − y2)

 C−
s
2

0 C−
1
2

1 A−1u


≤ cn∥y1 − y2∥β−s∥u∥s+β−2ℓ

≤ exp

δ ∥u∥

2
s+β−2ℓ + c


∥y1 − y2∥β−s . �

Corollary 5.3. Under the Assumptions 3.1(1)–(3), (5), (6)

Z(y) :=


X

exp(−Φ(u, y))µ0(du) > 0,

for all y ∈ Xβ−s, s = s0 + ε where 0 < ε < (∆ − 2s0) ∧ (1 − s0). In particular, if in addition
the Assumption 3.1(4) holds, then Z(y) > 0 ν-almost surely.

Proof. Fix y ∈ Xβ−s and set r = ∥y∥β−s . Gaussian measures on separable Hilbert spaces
are full [6, Proposition 1.25], hence since by Lemma 3.5(i) µ0(X s+β−2ℓ) = 1, we have that
µ0(BX s+β−2ℓ(r)) > 0. By Lemma 5.2(ii), there exists K (r) > 0 such that

X
exp(−Φ(u, y))µ0(du) ≥


BXs+β−2ℓ (r)

exp(−Φ(u, y))µ0(du)

≥


BXs+β−2ℓ (r)

exp(−K (r))µ0(du) > 0.

Recalling that, under the additional Assumption 3.1(4), by Lemma 3.5(iv) we have y ∈ Xβ−sν-
almost surely for all s > s0, completes the proof. �
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We are now ready to prove Theorem 5.1:

Proof of Theorem 5.1. Recall that ν0 = P0(dy) ⊗ µ0(du) and ν = P(dy|u)µ0(du). By the

Cameron–Martin formula [4, Corollary 2.4.3], since by Lemma 3.5(ii) we have A−1u ∈ D(C−
1
2

1 )

µ0-a.s., we get for µ0-almost all u

dP
dP0

(y|u) = exp(−Φ(u, y)),

thus we have for µ0-almost all u

dν

dν0
(y, u) = exp(−Φ(u, y)).

By [12, Lemma 5.3] and Corollary 5.3 we have the relation (5.1).
For the proof of the Lipschitz continuity of the posterior measure in y, with respect to the

Hellinger distance, we apply [25, Theorem 4.2] for Y = Xβ−s, X = X s+β−2ℓ, using Lemma 5.2
and the fact that µ0(X s+β−2ℓ) = 1, by Lemma 3.5(i). �

5.2. Proof of Theorem 2.1

We first give an overview of the proof of Theorem 2.1. Let y|u ∼ P = N


A−1u, 1
n C1


and u ∼ µ0. Then by Proposition 4.5, there exists a unique weak solution, m ∈ X1, of (1.7),
ν(du, dy)-almost surely. That is, with ν(du, dy)-probability equal to one, there exists an m =

m(y) ∈ X1 such that

B(m, v) = by(v), ∀v ∈ X1,

where the bilinear form B is defined in Section 4, and by(v) =


A−1 C−1

1 y, v

. In the following

we show that µy
= N (m, C), where

C−1
= nA−1 C−1

1 A−1
+

1

τ 2 C−1
0 .

The proof has the same structure as the proof for the identification of the posterior in [21]. We
define the Gaussian measure N (m N , C N ), which is the independent product of a measure identi-
cal to N (m, C) in the finite-dimensional space X N spanned by the first N eigenfunctions of C0,
and a measure identical to µ0 in (X N )⊥. We next show that N (m N , C N ) converges weakly to
the measure µy which as a weak limit of Gaussian measures has to be Gaussian µy

= N (m, C),
and we then identify m and C with m, C respectively.

Fix y drawn from ν and let P N be the orthogonal projection of X to the finite-dimensional
space span{φ1, . . . , φN } := X N , where as in Section 3, {φk}

∞

k=1 is an orthonormal eigenbasis of
C0 in X . Let QN

= I − P N . We define µN ,y by

dµN ,y

dµ0
(u) =

1
Z N (y)

exp(−ΦN (u, y)) (5.3)

where ΦN (u, y) := Φ(P N u, y) and

Z N (y) :=


X

exp(−ΦN (u, y))µ0(du).
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Lemma 5.4. We have µN ,y
= N (m N , C N ), where

P N C−1 P N m N
= n P N A−1 C−1

1 y,

P N C N P N
= P N C P N , QN C N QN

= τ 2 QN C0 QN

and P N C N QN
= QN C N P N

= 0.

Proof. Let u ∈ X N . Since u = P N u we have by (5.3)

dµN ,y(P N u) ∝ exp

−Φ(P N u; y)


dµ0(P

N u).

The right hand side is N -dimensional Gaussian with density proportional to the exponential of
the following expression

−
n

2

C−
1
2

1 A−1 P N u

2

+ n


C−

1
2

1 y, C−
1
2

1 A−1 P N u


−

1

2τ 2

C−
1
2

0 P N u

2

, (5.4)

which by completing the square we can write as

−
1
2

(C̃ N )−
1
2 (u − m̃ N )

2
+ c(y),

where C̃ N is the covariance matrix and m̃ N the mean. By equating with expression (5.4), we find
that (C̃ N )−1

= P N C−1 P N and (C̃ N )−1m̃ N
= n P N A−1 C−1

1 y, thus on X N we have that µN ,y
=

N (m̃ N , C̃ N ). On (X N )⊥, the Radon–Nikodym derivative in (5.3) is equal to 1, hence µN ,y
=

µ0 = N (0, τ 2 C0). �

Proposition 5.5. Under the Assumptions 3.1(1)–(6), for all y ∈ Xβ−s, s = s0 + ε, where 0 < ε

< (∆ − 2s0) ∧ (1 − s0), the measures µN ,y converge weakly in X to µy , where µy is defined
in Theorem 5.1. In particular, µN ,y converge weakly in X to µy ν-almost surely.

Proof. Fix y ∈ Xβ−s . Let f : X → R be continuous and bounded. Then by (5.1), (5.3) and
Lemma 3.5(i), we have that

X
f (u)µN ,y(du) =

1
Z N


X s+β−2ℓ

f (u)e−ΦN (u,y)µ0(du)

and 
X

f (u)µy(du) =
1
Z


X s+β−2ℓ

f (u)e−Φ(u,y)µ0(du).

Let u ∈ X s+β−2ℓ and set r1 = max{∥u∥s+β−2ℓ, ∥y∥β−s} to get, by Lemma 5.2(iii), that ΦN

(u, y) → Φ(u, y), since
P N u


s+β−2ℓ ≤ ∥u∥s+β−2ℓ ≤ r1. By Lemma 5.2(i), for any δ > 0,

for r2 = ∥y∥β−s , there exists M(δ, r2) ∈ R such that f (u)e−ΦN (u,y)
 ≤ ∥ f ∥∞ eδ∥u∥

2
s+β−2ℓ−M(δ,r2), ∀u ∈ X s+β−2ℓ,

where the right hand side is µ0-integrable for δ sufficiently small by the Fernique Theorem
[4, Theorem 2.8.5]. Hence, by the Dominated Convergence Theorem, we have that


X f (u)µN ,y

(du) →


X f (u)µy(du), as N → ∞, where we get the convergence of the constants Z N
→ Z

by choosing f ≡ 1. Thus we have µN ,y
⇒ µy . Recalling, that y ∈ Xβ−s ν-almost surely

completes the proof. �
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We are now ready to prove Theorem 2.1:

Proof of Theorem 2.1. By Proposition 5.5 we have that µN ,y converge weakly in X to the mea-
sure µy, ν-almost surely. Since by Lemma 5.4, the measures µN ,y are Gaussian, the limiting
measure µy is also Gaussian. To see this we argue as follows. The weak convergence of measures
implies the pointwise convergence of the Fourier transforms of the measures, thus by Levy’s
continuity theorem [14, Theorem 4.3] all the one dimensional projections of µN ,y , which are
Gaussian, converge weakly to the corresponding one dimensional projections of µy . By the fact
that the class of Gaussian distributions in R is closed under weak convergence [14, Chapter 4,
Exercise 2], we get that all the one dimensional projections of the µy are Gaussian, thus µy is
a Gaussian measure in X , µy

= N (m, C) for some m ∈ X and a self-adjoint, positive semi
definite, trace class linear operator C. It suffices to show that m = m and C = C.

We use the standard Galerkin method to show that m N
→ m in X . Indeed, since by their

definition m N solve (1.7) in the N -dimensional spaces X N , for e = m − m N , we have that
B(e, v) = 0, ∀v ∈ X N . By the coercivity and the continuity of B (see Proposition 4.2)

∥e∥2
1 ≤ cB(e, e) = cB(e,m − z) ≤ c ∥e∥1 ∥m − z∥1 , ∀z ∈ X N .

Choose z = P N m to obtainm − m N
 ≤ c

m − P N m


1
,

where as N → ∞ the right hand side converges to zero since m ∈ X1. On the other hand, by
[4, Example 3.8.15], we have that m N

→ m in X , hence we conclude that m = m, as required.
For the identification of the covariance operator, note that by the definition of C N we have

C N
= P N C P N

+ (I − P N )C0(I − P N ).

Recall that {φk}
∞

k=1 are the eigenfunctions of C0 and fix k ∈ N. Then, for N > k and any w ∈ X ,
we have thatw, C Nφk


− ⟨w, Cφk⟩

 =

w, (P N
− I )Cφk


≤

(P N
− I )w

 ∥Cφk∥ ,

where the right hand side converges to zero as N → ∞, since w ∈ X . This implies that C Nφk
converges to Cφk weakly in X , as N → ∞ and this holds for any k ∈ N. On the other hand by
[4, Example 3.8.15], we have that C Nφk → Cφk in X , as N → ∞, for all k ∈ N. It follows that
Cφk = Cφk , for every k and since {φk}

∞

k=1 is an orthonormal basis of X , we have that C = C. �

6. Operator norm bounds on B−1
λ

The following propositions contain several operator norm estimates on the inverse of Bλ and
related quantities, and in particular estimates on the singular dependence of this operator as
λ → 0. These are the key tools used in Section 7 to obtain posterior contraction results. In all of
them we make use of the interpolation inequality in Hilbert scales, [8, Proposition 8.19]. Recall
that we consider Bλ defined on X1, as explained in Remark 4.3.

Proposition 6.1. Let η = (1−θ)(β−2ℓ)+θ , where θ ∈ [0, 1]. Under the Assumption 3.1(3) the
following operator norm bounds hold: there is c > 0 independent of θ such thatB−1

λ


L(X−η,Xβ−2ℓ)

≤ cλ−
θ
2
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and B−1
λ


L(X−η,X1)

≤ cλ−
θ+1

2 .

In particular, if β − 2ℓ ≤ 0, interpolation of the two bounds givesB−1
λ


L(X−η,X )

≤ cλ−
θ+θ0

2 ,

where θ0 =
2ℓ−β
∆ ∈ [0, 1].

Proof. Let h ∈ X−η
⊂ X−1. Then by Proposition 4.2 for r = h, there exists a unique weak

solution of (4.1), z ∈ X1. By Definition 4.1, for v = z ∈ X1, we getC−
1
2

1 A−1z

2

+ λ

C−
1
2

0 z

2

=


C
η
2

0 h, C−
η
2

0 z


.

Using the Assumption 3.1(3), and the Cauchy–Schwarz inequality, we get

∥z∥2
β−2ℓ + λ ∥z∥2

1 ≤ c

C
η
2

0 h

 ∥z∥η .

We interpolate the norm on z appearing on the right hand side between the norms on z appearing
on the left hand side, then use the Cauchy with ε inequality, and then Young’s inequality for
p =

1
1−θ

, q =
1
θ

, to get successively, for c > 0 a changing constant

∥z∥2
β−2ℓ + λ ∥z∥2

1 ≤ c

C
η
2

0 h

 ∥z∥1−θ
β−2ℓ λ

−
θ
2


λ

1
2 ∥z∥1

θ
≤

c

2ε


λ−θ

C
η
2

0 h

2


+
cε

2


∥z∥2(1−θ)

β−2ℓ


λ

1
2 ∥z∥1

2θ


≤
c

2ε


λ−θ

C
η
2

0 h

2


+
cε

2


(1 − θ) ∥z∥2

β−2ℓ + θλ ∥z∥2
1


.

By choosing ε > 0 small enough we get, for c > 0 independent of θ, λ,

∥z∥β−2ℓ ≤ cλ−
θ
2

C
η1
2

0 h

 and ∥z∥1 ≤ cλ−
θ+1

2

C
η
2

0 h

 .
Replacing z = B−1

λ h gives the result. �

Proposition 6.2. Let η = (1 − θ)(β − 2ℓ − s) + θ(1 − s), where θ ∈ [0, 1] and s ∈ (s0, 1],
where s0 ∈ [0, 1) as defined in Assumption 3.1(1). Under the Assumptions 3.1(2) and (3), the
following norm bounds hold: there is c > 0 independent of θ such thatC−

s
2

0 B−1
λ C−

s
2

0


L(Xβ−2ℓ−s ,X−η)

≤ cλ−
θ
2

and C−
s
2

0 B−1
λ C−

s
2

0


L(X1−s ,X−η)

≤ cλ−
θ+1

2 .
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In particular,C−
s
2

0 B−1
λ C−

s
2

0


L(X)

≤ cλ−
2ℓ−β+s

∆ , ∀s ∈ ({β − 2ℓ} ∨ s0, 1].

Proof. Let h ∈ X−η
= X (1−θ)∆+s−1. Then h ∈ X s−1, since ∆ > 0, thus C−

s
2

0 h ∈ X−1. By

Proposition 4.2 for r = C−
s
2

0 h, there exists a unique weak solution of (4.1), z′
∈ X1. Since for

v ∈ X1−s we have that C
s
2
0 v ∈ X1, we conclude that for any v ∈ X1−s

C−
1
2

1 A−1 C
s
2
0 z, C−

1
2

1 A−1 C
s
2
0 v


+ λ


C

s−1
2

0 z, C
s−1

2
0 v


=


C−

s
2

0 h, C
s
2
0 v

,

where z = C−
s
2

0 z′
∈ X1−s . Choosing v = z ∈ X1−s , we getC−

1
2

1 A−1 C
s
2
0 z

2

+ λ

C
s−1

2
0 z

2

= ⟨h, z⟩ .

By the Assumption 3.1(3) and the Cauchy–Schwarz inequality, we have

∥z∥2
β−2ℓ−s + λ ∥z∥2

1−s ≤ c ∥h∥−η ∥z∥η .

We interpolate the norm of z appearing on the right hand side between the norms of z appear-
ing on the left hand side, to get as in the proof of Proposition 6.1, for c > 0 independent of θ, λ
and s

∥z∥β−2ℓ−s ≤ cλ−
θ
2 ∥h∥−η and ∥z∥1−s ≤ cλ−

θ+1
2 ∥h∥−η .

Replacing z = C−
s
2

0 B−1
λ C−

s
2

0 h gives the first two rates.
For the last claim, note that we can always choose {β − 2ℓ} ∨ {s0} < s ≤ 1, since s0 < 1

and ∆ > 0. Using the first two estimates, for η = (1 − θ ′)(β − 2ℓ− s)+ θ ′(1 − s) = 0, that is
θ ′

=
2ℓ−β+s

∆ ∈ [0, 1], we have thatC−
s
2

0 B−1
λ C−

s
2

0


L(Xβ−2ℓ−s ,X )

≤ cλ−
θ ′

2

and C−
s
2

0 B−1
λ C−

s
2

0


L(X1−s ,X )

≤ cλ−
θ ′+1

2 .

Let u ∈ X . Then, for any t > 0, we have the decomposition

u =

∞
k=1

ukφk =


λ−1

k ≤t

ukφk +


λ−1

k >t

ukφk =: u + u,

where {φk}
∞

k=1 are the eigenfunctions of C0 and uk := ⟨u, φk⟩. Since 1−s ≥ 0 and β−2ℓ−s < 0,
we haveC−

s
2

0 B−1
λ C−

s
2

0 u
 ≤

C−
s
2

0 B−1
λ C−

s
2

0 u
+

C−
s
2

0 B−1
λ C−

s
2

0 u


≤ cλ−
θ ′+1

2
u


1−s + cλ−
θ ′

2 ∥u∥β−2ℓ−s
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= cλ−
θ ′+1

2

 
λ−1

k ≤t

λ2s−2
k u2

k

 1
2

+ cλ−
θ ′

2

 
λ−1

k >t

λ
2s+4ℓ−2β
k u2

k

 1
2

≤ cλ−
θ ′+1

2 t1−s
∥u∥ + cλ−

η′

2 tβ−2ℓ−s
∥u∥ .

The first term on the right hand side is increasing in t , while the second is decreasing, so we

can optimize by choosing t = t (λ) making the two terms equal, that is t = λ
1

2∆ , to obtain the
claimed rate. �

7. Posterior contraction

In this section we employ the developments of the preceding sections to study the posterior
consistency of the Bayesian solution to the inverse problem. That is, we consider a family of
data sets yĎ = yĎ(n) given by (1.10) and study the limiting behavior of the posterior measure

µ
yĎ

λ,n = N (mĎ
λ, C) as n → ∞. Intuitively we would hope to recover a measure which concen-

trates near the true solution uĎ in this limit. Following the approach in [16,10,27,9], we quantify
this idea as in (1.12). By the Markov inequality we have

EyĎµ
yĎ

λ,n


u :

u − uĎ
 ≥ Mnεn


≤

1

M2
nε

2
n
EyĎ

 u − uĎ
2
µ

yĎ

λ,n(du),

so that it suffices to show that

EyĎ
 u − uĎ

2
µ

yĎ

λ,n(du) ≤ cε2
n . (7.1)

In addition to n−1, there is a second small parameter in the problem, namely the regularization
parameter, λ =

1
nτ 2 , and we will choose a relationship between n and λ in order to optimize

the convergence rates εn . We will show that determination of optimal convergence rates follows
directly from the operator norm bounds on B−1

λ derived in the previous section, which concern
only λ dependence; relating n to λ then follows as a trivial optimization. Thus, the λ dependence
of the operator norm bounds in the previous section forms the heart of the posterior contraction
analysis. The relationship between λ and n will induce a relationship between τ and n, where
τ being the scaling parameter in the prior covariance is the relevant parameter in the current
Bayesian framework.

We now present our convergence results. In Theorem 7.1 we study the convergence of the pos-
terior mean to the true solution in a range of norms, while in Theorem 7.2 we study the concen-
tration of the posterior near the true solution as described in (1.12). The proofs of Theorems 7.1
and 7.2 are provided later in the current section. The two main convergence results, Theorems 2.2
and 2.3 follow as direct corollaries of Remark 7.3 and Theorems 7.1 and 7.2 respectively.

Theorem 7.1. Let uĎ
∈ X1. Under the Assumptions 3.1, we have that, for the choice τ = τ(n) =

n
θ2−θ1−1

2(θ1−θ2+2) and for any θ ∈ [0, 1]

EyĎ
mĎ

λ − uĎ
2

η
≤ cn

θ+θ2−2
θ1−θ2+2 ,

where η = (1−θ)(β−2ℓ)+θ . The result holds for any θ1, θ2 ∈ [0, 1], chosen so that E(κ2) < ∞,

for κ = max

∥ξ∥2β−2ℓ−η1

,
uĎ


2−η2


, where ηi = (1 − θi )(β − 2ℓ)+ θi , i = 1, 2.
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Theorem 7.2. Let uĎ
∈ X1. Under Assumptions 3.1, we have that, for τ = τ(n) = n

θ2−θ1−1
2(θ1−θ2+2) ,

the convergence in (1.12) holds with

εn = n
θ0+θ2−2

2(θ1−θ2+2) , θ0 =

2ℓ− β

∆
, if β − 2ℓ ≤ 0

0, otherwise.

The result holds for any θ1, θ2 ∈ [0, 1], chosen so that E(κ2) < ∞, for κ = max

∥ξ∥2β−2ℓ−η1

,uĎ


2−η2


, where ηi = (1 − θi )(β − 2ℓ)+ θi , i = 1, 2.

Remark 7.3. (i) To get convergence in the PDE method we need E
uĎ

2
2−η2

< ∞ for a θ2

≤ 1. Under the a priori information that uĎ
∈ Xγ , we need γ ≥ 2 − η2 = 1 + (1 − θ2)∆ for

some θ2 ∈ [0, 1]. Thus the minimum requirement for convergence is γ = 1 in agreement to
our assumption uĎ

∈ X1. On the other hand, to obtain the optimal rate (which corresponds to
choosing θ2 as small as possible) we need to choose θ2 =

∆+1−γ
∆ . If γ > 1+∆ then the right

hand side is negative so we have to choose θ2 = 0, hence we cannot achieve the optimal rate.
We say that the method saturates at γ = 1 + ∆ which reflects the fact that the true solution
has more regularity than the method allows us to exploit to obtain faster convergence rates.

(ii) To get convergence we also need E ∥ξ∥2
2β−2ℓ−η1

< ∞ for a θ1 ≤ 1. By Lemma 3.5(iii), it
suffices to have θ1 >

s0
∆ . This means that we need ∆ > s0, which holds by the Assump-

tion 3.1(2), in order to be able to choose θ1 ≤ 1. On the other hand, since ∆ > 0 and s0 ≥ 0,
we have that s0

∆ ≥ 0 thus we can always choose θ1 in an optimal way, that is, we can always
choose θ1 =

s0+ε
∆ where ε > 0 is arbitrarily small.

(iii) If we want draws from µ0 to be in Xγ then by Lemma 3.3(ii) we need 1− s0 > γ . Since the
requirement for the method to give convergence is γ ≥ 1 while 1 − s0 ≤ 1, we can never
have draws exactly matching the regularity of the prior. On the other hand if we want an
undersmoothing prior (which according to [16] in the diagonal case gives asymptotic cover-
age equal to 1) we need 1 − s0 ≤ γ , which we always have. This, as discussed in Section 1,
gives an explanation to the observation that in both of the above theorems we always have
τ → 0 as n → ∞.

(iv) When β − 2ℓ > 0, in Theorem 7.2 and in Theorem 2.3 below, we get suboptimal rates.
The reason is that our analysis to obtain the error in the X -norm is based on interpolating
between the error in the Xβ−2ℓ-norm and the error in the X1-norm. When β−2ℓ > 0, inter-
polation is not possible since the X -norm is now weaker than the Xβ−2ℓ-norm. However, we
can at least bound the error in the X -norm by the error in the Xβ−2ℓ-norm, thus obtaining a
suboptimal rate. Note, that the case β − 2ℓ > 0 does not necessarily correspond to the well
posed case: by Lemma 3.5 we can only guarantee that a draw from the noise distribution
lives in Xρ, ρ < β − s0, while the range of A−1 is formally X2ℓ. Hence, in order to have
a well posed problem we need β − s0 > 2ℓ, or equivalently ∆ < 1 − s0. This can happen
despite our assumption ∆ > 2s0, when s0 < 1/3 and for appropriate choice of ℓ and β. In
this case, regularization is unnecessary.

Note that, since the posterior is Gaussian, the left hand side in (7.1) is the Square Posterior
Contraction

S PC = EyĎ
mĎ

λ − uĎ
2

+ tr(Cλ,n), (7.2)
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which is the sum of the mean integrated squared error (MISE) and the posterior spread. Let
uĎ

∈ X1. By Lemma 4.4, the relationship (1.10) between uĎ and yĎ and the Eq. (1.11) for mĎ
λ,

we obtain

BλmĎ
λ = A−1 C−1

1 yĎ = A−1 C−1 A−1uĎ
+

1
√

n
A−1 C−1ξ

and BλuĎ
= A−1 C−1 A−1uĎ

+ λC−1
0 uĎ,

where the equations hold in X−1, since by a similar argument to the proof of Proposition 4.5 we
have mĎ

λ ∈ X1. By subtraction we get

Bλ(mĎ
λ − uĎ) =

1
√

n
A−1 C−1

1 ξ − λC−1
0 uĎ.

Therefore

mĎ
λ − uĎ

= B−1
λ


1

√
n

A−1 C−1
1 ξ − λC−1

0 uĎ

, (7.3)

as an equation in X1. Using the fact that the noise has mean zero and the relation (1.6), Eq. (7.3)
implies that we can split the square posterior contraction into three terms

S PC =

λB−1
λ C−1

0 uĎ
2

+ E
 1
√

n
B−1
λ A−1 C−1

1 ξ

2

+
1
n

tr(B−1
λ ), (7.4)

provided the right hand side is finite. A consequence of the proof of Theorem 2.1 is that B−1
λ is

trace class. Note that for ζ a white noise, we have that

tr(B−1
λ ) = E

B−
1
2

λ ζ

2

= E

ζ,B−1

λ ζ

= E


C

s
2
0 ζ, C−

s
2

0 B−1
λ C−

s
2

0 C
s
2
0 ζ


≤

C−
s
2

0 B−1
λ C−

s
2

0


L(X )

E
C

s
2
0 ζ

2
,

which for s > s0 since by Lemma 3.3 we have that E
C

s
2
0 ζ

2
< ∞, provides the bound

tr(B−1
λ ) ≤ c

C−
s
2

0 B−1
λ C−

s
2

0


L(X )

, (7.5)

where c > 0 is independent of λ. If q, r are chosen sufficiently large so that

C−
q
2 −1

0 uĎ
 < ∞

and E
C

r
2
0 A−1 C−1

1 ξ

2
< ∞ then we see that

S PC ≤ c


λ2
B−1

λ

2

L(Xq ,X )
+

1
n

B−1
λ

2

L(X−r ,X )
+

1
n

C−
s
2

0 B−1
λ C−

s
2

0


L(X )


, (7.6)

where c > 0 is independent of λ and n. Thus identifying εn in (1.12) can be achieved simply
through properties of the inverse of Bλ and its parametric dependence on λ.
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In the following, we are going to study convergence rates for the square posterior contraction,
(7.4), which by the previous analysis will secure that

EyĎµ
yĎ

λ,n


u:
u − uĎ

 ≥ εn


→ 0,

for ε2
n → 0 at a rate almost as fast as the square posterior contraction. This suggests that the

error is determined by the MISE and the trace of the posterior covariance, thus we optimize
our analysis with respect to these two quantities. In [16] the situation where C0, C1 and A are
diagonalizable in the same eigenbasis is studied, and it is shown that the third term in Eq. (7.4)
is bounded by the second term in terms of their parametric dependence on λ. The same idea is
used in the proof of Theorem 7.2.

We now provide the proofs of Theorems 7.1 and 7.2.

Proof of Theorem 7.1. Since ξ has zero mean, we have by (7.3)

E
mĎ

λ − uĎ
2

β−2ℓ
= λ2

B−1
λ C−1

0 uĎ
2

β−2ℓ
+

1
n

E
B−1

λ A−1 C−1
1 ξ

2

β−2ℓ

and

E
mĎ

λ − uĎ
2

1
= λ2

B−1
λ C−1

0 uĎ
2

1
+

1
n

E
B−1

λ A−1 C−1
1 ξ

2

1
.

Using Proposition 6.1 and Assumption 3.1(7), we get

E
mĎ

λ − uĎ
2

β−2ℓ
≤ cE(κ2)


λ2−θ2 +

1
n
λ−θ1


= cE(κ2)(nθ2−2τ 2θ2−4

+ nθ1−1τ 2θ1)

and

E
mĎ

λ − uĎ
2

1
≤ cE(κ2)


λ1−θ2 +

1
n
λ−θ1−1


=

cE(κ2)

λ
(nθ2−2τ 2θ2−4

+ nθ1−1τ 2θ1).

Since the common parenthesis term, consists of a decreasing and an increasing term in τ , we
optimize the rate by choosing τ = τ(n) = n p such that the two terms become equal, that is,
p =

θ2−θ1−1
2(θ1−θ2+2) . We obtain,

E
mĎ

λ − uĎ
2

β−2ℓ
≤ cE(κ2)n

θ2−2
θ1−θ2+2 and E

mĎ
λ − uĎ

2

1
≤ cE(κ2)n

θ2−1
θ1−θ2+2 .

By interpolating between the two last estimates we obtain the claimed rate. �

Proof of Theorem 7.2. Recall Eq. (7.4)

S PC =

λB−1
λ C−1

0 uĎ
2

+ E
 1
√

n
B−1
λ A−1 C−1

1 ξ

2

+
1
n

tr(B−1
λ ).

The idea is that the third term is always dominated by the second term. Combining Eq. (7.5) with
Proposition 6.2, we have that

1
n

tr(B−1
λ ) ≤ c

1
n
λ−

2ℓ−β+s
∆ , ∀s ∈ ({β − 2ℓ} ∨ {s0}, 1].



3852 S. Agapiou et al. / Stochastic Processes and their Applications 123 (2013) 3828–3860

(i) Suppose β − 2ℓ ≤ 0, so that by Proposition 6.1 we have, where θ0 =
2ℓ−β
∆ ∈ [0, 1], using

Assumption 3.1(7)

E
 1
√

n
B−1
λ A−1 C−1

1 ξ

2

≤ c
1
n

E ∥ξ∥2
2β−2ℓ−η1

λ−θ1−θ0

and λB−1
λ C−1

0 uĎ
2

≤ c
uĎ

2

2−η2
λ2−θ2−θ0 .

Note that θ1 is chosen so that E ∥ξ∥2
2β−2ℓ−η1

< ∞, that is, by Lemma 3.5(iii), it suffices

to have θ1 >
s0
∆ . Noticing that by choosing s arbitrarily close to s0, we can have 2ℓ−β+s

∆

arbitrarily close to 2ℓ−β+s0
∆ , and since θ1 + θ0 >

2ℓ−β+s0
∆ , we deduce that the third term in

Eq. (7.4) is always dominated by the second term. Combining, we have that

S PC ≤
cE(κ2)

λθ0


λ2−θ2 +

1
n
λ−θ1


=

cE(κ2)

λθ0
(nθ2−2τ 2θ2−4

+ nθ1−1τ 2θ1).

(ii) Suppose β − 2ℓ > 0. Using Proposition 6.1 and Assumption 3.1(7) we haveλB−1
λ C−1

0 uĎ
2

≤ c
λB−1

λ C−1
0 uĎ

2

β−2ℓ
≤ c

uĎ
2

2−η2
λ2−θ2

and

E
 1
√

n
B−1
λ A−1 C−1

1 ξ

2

≤ cE
 1
√

n
B−1
λ A−1 C−1

1 ξ

2

β−2ℓ

≤ c
1
n

E ∥ξ∥2
2β−2ℓ−η1

λ−θ1 ,

where as before θ1 >
s0
∆ . The third term in Eq. (7.4) is again dominated by the second term,

since on the one hand θ1 >
s0
∆ and on the other hand, since β − 2ℓ > 0, we can always

choose {β − 2ℓ} ∨ {s0} < s ≤ 1 ∧ {s0 + β − 2ℓ} to get 2ℓ−β+s
∆ ≤

s0
∆ . Combining the three

estimates we have that

S PC ≤ cE(κ2)(nθ2−2τ 2θ2−4
+ nθ1−1τ 2θ1).

In both cases, the common term in parentheses consists of a decreasing and an increasing term
in τ , thus we can optimize by choosing τ = τ(n) = n p making the two terms equal, that is,
p =

θ1−θ2+1
2θ2−2θ1−4 , to get the claimed rates. �

8. Examples

We now present some nontrivial examples satisfying Assumption 3.1.
Let Ω ⊂ Rd , d = 1, 2, 3, be a bounded and open set. We define A0 := −1, where 1 is

the Dirichlet Laplacian which is the Friedrichs extension of the classical Laplacian defined on
C2

0(Ω), that is, A0 is a self-adjoint operator with a domain D(A0) dense in X := L2(Ω) [17].
For ∂Ω sufficiently smooth we have D(A0) = H2(Ω) ∩ H1

0 (Ω). It is well known that A0 has
a compact inverse and that it possesses an eigensystem {ρ2

k , ek}
∞

k=1, where the eigenfunctions
{ek} form a complete orthonormal basis of X and the eigenvalues ρ2

k behave asymptotically like

k
2
d [2].
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In Sections 8.1 and 8.2, we consider the inverse problem to find u from y, where

y = z +
1

√
n
ξ,

for z solving the partial differential equation

−1z + qz = u in Ω ,
z = 0 on ∂Ω ,

that is, A0z+qz = u, where q is a nonnegative real function of certain regularity. We choose prior
and noise distributions with covariance operators which are not simultaneously diagonalizable
with the forward operator. Later on, in Section 8.3, we consider more complicated examples and
in particular, we consider fractional powers of the Dirichlet Laplacian in the forward operator, as
well as more general choices of prior and noise covariance operators.

Our general strategy for proving the validity of our norm equivalence assumptions is:

(i) if needed, use Proposition 8.5 below to reduce the range of spaces required to check an
assumption’s validity to a finite set of spaces;

(ii) reformulate the assumptions as statements regarding the boundedness of operators of the
form considered in Lemma 8.6 below.

The statement of Proposition 8.5, which is a well known result from interpolation theory, and the
statement and proof of Lemma 8.6 are postponed to Section 8.4.

8.1. Example 1—non-diagonal forward operator

We study the Bayesian inversion of the operator A−1
:= (A0 + Mq)

−1 where Mq : L2(Ω) →

L2(Ω) is the multiplication operator by a nonnegative function q ∈ W 2,∞(Ω). We assume that
the observational noise is white, so that C1 = I , and we set the prior covariance operator to be
C0 = A−2

0 .
The operator C0 is trace class. Indeed, let λ2

k = ρ−4
k be its eigenvalues. Then they behave

asymptotically like k−
4
d and


∞

k=1 k−
4
d < ∞ for d < 4. Furthermore, we have that


∞

k=1 λ
2s
k ≤

c


∞

k=1 k−
4s
d < ∞, provided s > d

4 , that is, the Assumption 3.1(1) is satisfied with

s0 =

1/4, d = 1,
1/2, d = 2,
3/4, d = 3.

We define the Hilbert scale induced by C0 = A−2
0 , that is, (X s)s∈R, for X s

:= M∥·∥s , where

M =

∞
l=0

D(A2l
0 ), ⟨u, v⟩s :=


As

0u,As
0v


and ∥u∥s :=
As

0u
 .

Observe, X0
= X = L2(Ω).

Our aim is to show that C1 ≃ Cβ0 and A−1
≃ Cℓ0 , where β = 0 and ℓ =

1
2 , in the sense of the

Assumptions 3.1. We have ∆ = 2ℓ− β + 1 = 2. Since for d = 1, 2, 3 we have 0 < s0 < 1, the
Assumption 3.1(2) is satisfied. Moreover, note that since C1 = I the Assumptions 3.1(4) and (5)
are trivially satisfied.

We now show that Assumptions 3.1(3), (6), (7) are also satisfied. In this example the three
assumptions have the form
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3.
(A0 + Mq)

−1u
 ≍

A−1
0 u

 , ∀u ∈ X−1
;

6.
As

0(A0 + Mq)
−1u

 ≤ c3

As−1
0 u

 , ∀u ∈ X s−1, ∀s ∈ (s0, 1];

7.
A−η

0 (A0 + Mq)
−1u

 ≤ c4

A−η−1
0 u

 , ∀u ∈ X−η−1, ∀η ∈ [−1, 1].

Observe that Assumption (6) is implied by Assumption (7).

Proposition 8.1. The Assumptions 3.1 are satisfied in this example.

Proof. We only need to show that Assumptions (3) and (7) hold.

3. The assumption is equivalent to T := (A0 + Mq)
−1 A0 and T −1

= A−1
0 (A0 + Mq) being

bounded in X . Since T −1
= I + A−1

0 Mq which is bounded in X , we only need to show that
T is bounded. Indeed, (A0+Mq)

−1 A0 = (I +A−1
0 Mq)

−1, which is bounded by Lemma 8.6
applied for t = −1, s = 1.

7. By Proposition 8.5, it suffices to show T ∈ L(X )∩ L(X1)∩ L(X−1). We have already shown
that T ∈ L(X ). For T ∈ L(X1), note that it is equivalent to A0 T A−1

0 = (I + Mq A−1
0 )−1

∈

L(X ), which holds by Lemma 8.6 applied for t = s = 1. Finally, for T ∈ L(X−1), note
that it is equivalent to A−1

0 T A0 = (I + A−2
0 Mq A0)

−1
∈ L(X ), which holds by Lemma 8.6

applied for t = −1, s = 1. �

We can now apply Theorems 2.2 and 2.3 to get the following convergence result.

Theorem 8.2. Let uĎ
∈ Xγ , γ ≥ 1. Then, for τ = τ(n) = n

4−d−4(γ∧3)−ε
8(γ∧3)+8+2d+2ε , the convergence

in (1.12) holds with εn = n−e, where

e =


2γ

4 + d + 4γ + 2ε
, if γ < 3

6
16 + d + 2ε

, if γ ≥ 3,

for ε > 0 arbitrarily small and where d = 1, 2, 3, is the dimension. Furthermore, for t ∈ [−1, 1),

for the same choice of τ , we have E
mĎ

λ − uĎ
2

t
≤ cn−h , where

h =


4γ − 4t

4 + d + 4γ + 2ε
, if γ < 3

12 − 4t

16 + d + 2ε
, if γ ≥ 3.

For t = 1 the above rate holds provided γ > 1.

8.2. Example 2—a fully non-diagonal example

As in Section 8.1, we study the Bayesian inversion of the operator A−1
= (A0 + Mq)

−1 for a
nonnegative q ∈ W 2,∞(Ω). We assume that the observational noise is Gaussian with covariance

operator C1 :=


A

1
4
0 + Mr

−2

, where Mr : L2(Ω) → L2(Ω) is the multiplication operator

by a nonnegative function r ∈ W 4,∞(Ω). As before, we set the prior covariance operator to be
C0 = A−2

0 , thus the Assumption 3.1(1) is satisfied with the same s0 and we work in the same
Hilbert scale (X s)s∈R.
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We show that C1 ≃ Cβ0 and A−1
≃ Cℓ0 , where β =

1
4 and ℓ =

1
2 , in the sense of the

Assumptions 3.1(3)–(7). First note that we have ∆ = 2ℓ− β + 1 =
7
4 > 2s0 for d = 1, 2, 3, so

that the Assumption 3.1(2) is satisfied. The rest of the assumptions have the form

3.

(A
1
4
0 + Mr )(A0 + Mq)

−1u

 ≍

A−
3
4

0 u

 , ∀u ∈ X−
3
4 ;

4.

Aρ
0 (A

1
4
0 + Mr )

−1u

 ≤ c1

Aρ−
1
4

0 u

 , ∀u ∈ Xρ−
1
4 ,∀ρ ∈


−s0 −

3
4


, 1

4 − s0


;

5.

A−s
0 (A

1
4
0 + Mr )u

 ≤ c2

A
1
4 −s
0

 , ∀u ∈ X
1
4 −s,∀s ∈ (s0, 1];

6.

As
0(A

1
4
0 + Mr )(A0 + Mq)

−1u

 ≤ c3

As− 3
4

0 u

 , ∀u ∈ X s− 3
4 , ∀s ∈ (s0, 1];

7.

A−η

0 (A0 + Mq)
−1(A

1
4
0 + Mr )

2u

 ≤ c4

A−η− 1
2

0 u

 , ∀u ∈ X−η− 1
2 , ∀η ∈


−

3
4 , 1


.

Proposition 8.3. The Assumptions 3.1 are satisfied in this example.

Proof. We have already seen that the first two assumptions are satisfied.

3. We need to show that S :=


A

1
4
0 + Mr


(A0 + Mq)

−1 A
3
4
0 and S −1 are bounded operators in

X . Indeed, S =


I + Mr A−

1
4

0


I + A−

3
4

0 Mq A−
1
4

0

−1

which is bounded by Lemma 8.6

applied for t = s =
1
4 and t =

1
4 , s = 1. For S −1 we have, S −1

=


I + A−

3
4

0 Mq A−
1
4

0




I + Mr A−
1
4

0

−1

, which again by Lemma 8.6 is the composition of two bounded operators.

4. Since 1
4 − s0 = 0,− 1

4 ,−
1
2 for d = 1, 2, 3 respectively, it suffices to show that it holds for

all ρ ∈ [−1, 0]. By Proposition 8.5 it suffices to show that S :=


A

1
4
0 + Mr

−1

A
1
4
0 ∈

L(X ) ∩ L(X−1). This is equivalent to showing that S = (I + A−
1
4

0 Mr )
−1 and A−1

0 S A0 =
I + A−

5
4

0 Mr A0

−1

are bounded in X , which holds by Lemma 8.6.

5. By Proposition 8.5 it suffices to show that S :=


A

1
4
0 + Mr


A−

1
4

0 ∈ L(X ) ∩ L(X−1).

Indeed, S = I + Mr A−
1
4

0 ∈ L(X ). On the other hand, to show S ∈ L(X−1) it is equivalent

to show that A−1
0 S A0 ∈ L(X). Indeed, A−1

0 S A0 = I + A−1
0 Mr A

3
4
0 which is bounded by

Lemma 8.6.

6. By Proposition 8.5 it suffices to show that S :=


A

1
4
0 + Mr


(A0 + Mq)

−1 A
3
4
0 ∈ L(X ) ∩

L(X1). Indeed, we have already shown in part (3) of the current proof that S ∈ L(X ). To

show S ∈ L(X1) it is equivalent to show that A0 S A−1
0 ∈ L(X ). Indeed, A0 S A−1

0 =


I +

A0 Mr A−
5
4

0


I + A

1
4
0 Mq A−

5
4

0

−1

which by Lemma 8.6 is the composition of two bounded

operators in X .
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7. By Proposition 8.5 it suffices to show that S := (A0 + Mq)
−1


A
1
4
0 + Mr

2

A
1
2
0 ∈ L(X )

∩ L(X−1) ∩ L(X1). We start by showing S ∈ L(X ). Indeed, we have S = (I + A−1
0 Mq)

−1
I + A−1

0 Mr A
3
4
0


I + A−

3
4

0 Mr A
1
2
0


, which by Lemma 8.6, is the composition of three

bounded operators. For showing S ∈ L(X−1) it is equivalent to show that A−1
0 S A0 ∈

L(X ). Indeed, A−1
0 S A0 = (I + A−2

0 Mq A0)
−1


I + A−2
0 Mr A

7
4
0


I + A−

7
4

0 Mr A
3
2
0


,

which by Lemma 8.6, is the composition of three bounded operators. Finally, we show that
S ∈ L(X1) or equivalently A0 S A−1

0 ∈ L(X ). Indeed we have A0 S A−1
0 = (I + Mq A−1

0 )−1
I + Mr A−

1
4

0


I + A

1
4
0 Mr A−

1
2

0


, which again by Lemma 8.6, is the composition of three

bounded operators. �

We can now apply Theorems 2.2 and 2.3 to get the following convergence result.

Theorem 8.4. Let uĎ
∈ Xγ , γ ≥ 1. Then, for τ = τ(n) = n

4−d−(4γ∧11)−ε
(8γ∧22)+6+2d+2ε , the convergence

in (1.12) holds with εn = n−e, where

e =


2γ

3 + d + 4γ + 2ε
, if γ <

11
4

11
28 + 2d + 2ε

, if γ ≥
11
4
,

for ε > 0 arbitrarily small and where d = 1, 2, 3, is the dimension. Furthermore, for t ∈
−

3
4 , 1


, for the same choice of τ , we have E

mĎ
λ − uĎ

2

t
≤ cn−h , where

h =


4γ − 4t

3 + d + 4γ + 2ε
, if γ <

11
4

22 − 8t

28 + 2d + 2ε
, if γ ≥

11
4
.

For t = 1 the above rate holds provided γ > 1.

8.3. Example 3—more general lower order perturbations case

The same methodology can be applied to more general examples, for instance, in the case

where A = Aℓα
0 + Mq , C1 =


A

βα
2

0 + Mr

−2

and C0 = A−α
0 , for nonnegative functions q ∈

W aq ,∞(Ω) and r ∈ W ar ,∞(Ω), where ℓ, β > 0 and α > d
2 such that ∆ > 2s0 =

d
α

. The values
of ar , aq are chosen as sufficiently large even integers depending on the values of α, β, ℓ. Note
that we require ℓ, β > 0 for our compactness arguments to work, however, the cases β = 0
and/or ℓ = 0 also work using a slightly modified proof. The proof is omitted for brevity but the
interested reader may consult [1] for details.

8.4. Technical results from interpolation theory

Let (Y s)s∈R be the Hilbert scale induced by a self-adjoint positive definite linear operator
Q ∈ L(X ) (cf. Section 3). The following result holds [19, Theorems 4.36, 1.18, 1.6]:
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Proposition 8.5. For any t > 0, the couples (X , Y t ) and (X , Y −t ) are interpolation couples
and for every θ ∈ [0, 1] we have (X , Y t )θ,2 = Y θ t and (X , Y −t )θ,2 = Y −θ t . In particular, for
any s ∈ R, if T ∈ L(X ) ∩ L(Y s) then T ∈ L(Y θs) for any θ ∈ [0, 1].

Let w ∈ W aw,∞(Ω) be a nonnegative function and define the multiplication operator Mw:
X → X . Note that by the Hölder inequality the operator Mw is bounded. The last proposition,
implies the following lemma.

Lemma 8.6. For any t ∈ R,At
0 MwA−t

0 is a bounded operator in X , provided aw ≥ 2⌈|t |⌉.
Furthermore, for any s > 0 the operators K1 := At

0 MwA−t−s
0 and K2 := At−s

0 MwA−t
0 are

compact in X and (I + Ki )
−1, i = 1, 2, are bounded in X .

Proof. We begin by showing that At
0 MwA−t

0 ∈ L(X ), for t ∈ [−1, 1]. By the last proposition
applied for Q = A−2

0 , T = Mw, and since Mw is bounded, it suffices to show that A−1
0 MwA0

and A0 MwA−1
0 are bounded in X . In fact it suffices to show that A0 MwA−1

0 is bounded sinceA−1
0 MwA0

 =

(A−1
0 MwA0)

∗

 =

A0 MwA−1
0

 . Indeed, since A0 = −1,A0 MwA−1
0 φ

 =

1MwA−1
0 φ

 =

(1w)A−1
0 φ + 2(∇w) · (∇A−1

0 φ)+ w1A−1
0 φ


≤ ∥w∥W 2,∞(Ω)

A−1
0 φ

+

∇A−1
0 φ

+ ∥φ∥


≤ c ∥w∥W 2,∞(Ω) ∥φ∥ .

For general t ∈ R, let κ = ⌈|t |⌉ ∈ N, then as before it suffices to show that Aκ
0 MwA−κ

0 is
bounded in X . Again, using the fact that A0 = −∆, we have by the product rule for derivatives
that Aκ

0 MwA−κ
0 is bounded, provided w ∈ W 2κ,∞(Ω).

The operators Ki are compact in X , since they are compositions between the compact operator
A−s

0 and the bounded operator At
0 MwA−t

0 . Positivity of the operator A0 and nonnegativity
of the operator Mw show that −1 cannot be an eigenvalue of Ki , so that by the Fredholm
Alternative [13, Section 27, Theorem 7] we have that (I + Ki )

−1, i = 1, 2, are bounded in
X . �

9. The diagonal case

In the case where C0, C1 and A, are all diagonalizable in the same eigenbasis our assumptions
are trivially satisfied, provided ∆ > 2s0. In [16], sharp convergence rates are obtained for the
convergence in (1.12), in the case where the three relevant operators are simultaneously diago-
nalizable and have spectra that decay algebraically; the authors only consider the case C1 = I
since in this diagonal setting the colored noise problem can be reduced to the white noise one.
The rates in [16] agree with the minimax rates provided the scaling of the prior is optimally
chosen, [5]. In Fig. 1 (cf. Section 2) we have in the dotted line the rates of convergence predicted
by Theorem 2.3 and in the solid line the sharp convergence rates from [16], plotted against the
regularity of the true solution, uĎ

∈ Xγ , in the case where β = ℓ =
1
2 and C0 has eigenvalues

that decay like k−2. In this case s0 =
1
2 and ∆ =

3
2 , so that ∆ > 2s0.

As explained in Remark 7.3, the minimum regularity for our method to work is γ = 1 and our
rates saturate at γ = 1 + ∆, that is, in this example at γ = 2.5. We note that for γ ∈ [1, 2.5] our
rates agree, up to ε > 0 arbitrarily small, with the sharp rates obtained in [16], for γ > 2.5 our
rates are suboptimal and for γ < 1 the method fails. In [16], the convergence rates are obtained
for γ > 0 and the saturation point is at γ = 2∆, that is, in this example at γ = 3. In general the
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PDE method can saturate earlier (if 2ℓ − β > 0), at the same time (if 2ℓ − β = 0), or later (if
2ℓ−β < 0) compared to the diagonal method presented in [16]. However, the case 2ℓ−β < 0 in
which our method saturates later, is also the case in which our rates are suboptimal, as explained
in Remark 7.3(iv).

The discrepancies can be explained by the fact that in Proposition 6.1, the choice of θ which
determines both the minimum requirement on the regularity of uĎ and the saturation point, is the
same for both of the operator norm bounds. This means that on the one hand to get convergence

of the term
λB−1

λ C−1
0 uĎ

 in Eq. (7.4) in the proof of Theorem 7.2, we require conditions which

secure the convergence in the stronger X1-norm and on the other hand the saturation rate for this
term is the same as the saturation rate in the weaker Xβ−2ℓ-norm. For example, when β−2ℓ = 0
the saturation rate in the PDE method is the rate of the X -norm hence we have the same saturation
point as the rates in [16]. In particular, we have agreement of the saturation rate when β = ℓ = 0,
which corresponds to the problem where we directly observe the unknown function polluted by
white noise (termed the white noise model).

10. Conclusions

We have presented a new method of identifying the posterior distribution in a conjugate
Gaussian Bayesian linear inverse problem setting (Sections 2 and 5). We used this identification
to examine the posterior consistency of the Bayesian approach in a frequentist sense (Sections 2
and 7). We provided convergence rates for the convergence of the expectation of the mean error
in a range of norms (Theorems 7.1, 2.2). We also provided convergence rates for the square
posterior contraction (Theorems 7.2, 2.3). Our methodology assumed a relation between the
prior covariance, the noise covariance and the forward operator, expressed in the form of norm
equivalence relations (Assumptions 3.1). We considered Gaussian noise which can be white. In
order for our methods to work we required a certain degree of ill-posedness compared to the
regularity of the prior (Assumption 3.1(2)) and for the convergence rates to be valid a certain
degree of regularity of the true solution. In the case where the three involved operators are all
diagonalizable in the same eigenbasis, when the problem is sufficiently ill-posed with respect
to the prior, and for a range of values of γ , the parameter expressing the regularity of the true
solution, our rates agree (up to ε > 0 arbitrarily small) with the sharp (minimax) convergence
rates obtained in [16] (Section 9).

Our optimized rates rely on rescaling the prior depending on the size of the noise, achieved
by choosing the scaling parameter τ 2 in the prior covariance as an appropriate function of the

parameter n−
1
2 multiplying the noise. However, the relationship between τ and n depends on the

unknown regularity of the true solution γ , which raises the question how to optimally choose τ
in practice. An attempt to address this question in a similar but more restrictive setting than ours
is taken in [9], where an empirical Bayes maximum likelihood based procedure giving a data
driven selection of τ is presented. A different approach is taken in [15] in the simultaneously
diagonalizable case. As discussed in [16], for a fixed value of τ independent of n, the rates are
optimal only if the regularity of the prior exactly matches the regularity of the truth. In [15], an
empirical Bayes maximum likelihood based procedure and a hierarchical method are presented
providing data driven choices of the regularity of the prior, which are shown to give optimal rates
up to slowly varying terms. We currently investigate hierarchical methods with conjugate priors
and hyperpriors for data driven choices of both the scaling parameter of the prior τ and the noise

level n−
1
2 .
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The methodology presented in this paper is extended to drift estimation for diffusion pro-
cesses in [21]. Future research includes the extension to an abstract setting which includes both
the present paper and [21] as special cases. Other possible directions are the consideration of
nonlinear inverse problems, the use of non-Gaussian priors and/or noise and the extension of the
credibility analysis presented in [16] to a more general setting.
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