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We derive radiation reaction from QED in a strong background field. We identify, in general, the diagrams
and processes contributing to recoil effects in the average momentum of a scattered electron, using per-
turbation theory in the Furry picture: we work to lowest nontrivial order in α. For the explicit example
of scattering in a plane wave background, we compare QED with classical electrodynamics in the limit
h̄ → 0, finding agreement with the Lorentz–Abraham–Dirac and Landau–Lifshitz equations, and with Lar-
mor’s formula. The first quantum corrections are also presented.

© 2013 Elsevier B.V. All rights reserved.
Understanding radiation reaction presents one of the oldest
problems in electrodynamics, and has recently seen a renewal of
interest due to the potential impact, and detection, of recoil ef-
fects in high-intensity laser–matter interactions [1,2]. The years
have seen many proposals for equations which describe a classical,
radiating particle and avoid the problems of the Lorentz–Abraham–
Dirac (‘LAD’) equation [3–7], but without consensus [8].

For answers one would like to turn to (the classical limit of)
QED, and the natural place to look for radiation reaction (‘RR’) is
in photon emission from particles accelerated by background fields.
The potential use of intense lasers in measuring untested corners
of QED (and physics beyond the standard model [9]) has led to a
great deal of activity in calculating QED processes in high-intensity
laser backgrounds, an area called ‘strong field QED’. Within this
field, the one-photon emission spectrum of an electron has in-
deed been considered many times, but always found to give, in
the classical limit, the spectrum of a particle moving according
to the Lorentz equation. No recoil effects are seen [1,10,11]. Older
Hamiltonian and ‘in–in’ calculations, on the other hand, imply that
one-photon emission is the key contributor to RR [12,13]. This has
led to confusion over which Feynman diagrams do/do not contain
RR, and it has even been claimed that QED and classical electro-
dynamics are not compatible [6,14]. For a recent review of the
situation, see the comprehensive discussion in [1].

Given the great interest in this topic, and in the possibility
of measuring RR at laser facilities, we will in this Letter try to
provide much-needed answers to the following questions. 1) Why
have previous investigations of the photon spectrum not seen RR?
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2) Where is RR in the S-matrix? Which diagrams contribute?
3) How are scattering results connected to those using other ap-
proaches? 4) What is the classical limit of quantum RR effects in
QED?

Rather than pursue an equation (for which see [12] for per-
turbation theory and [15] for quantum stochastic corrections to
LAD), we will consider scattering in QED, explain in general how
RR arises, and use an explicit example to illustrate. This example
is scattering in a plane wave background. With this choice we can
treat the Lorentz force exactly to obtain a clean separation of re-
coil and non-recoil effects and perform the entire calculation with
a single approximation: the usual coupling expansion of QED.

We begin by reviewing how and where RR arises classically. We
then turn to QED and show how the electron’s momentum can be
expressed in terms of S-matrix elements. Thus we identify which
diagrams contribute to quantum RR. We then compare classical RR
with the h̄ → 0 limit of QED. We discuss related approaches, ex-
perimental implications, and applications to numerical simulations
of strong field QED, before concluding.

1. Classical radiation reaction

This first section is intended to be pedagogical, since under-
standing the physics here will help when comparing classical and
quantum results, and is enough to answer question ‘1)’ in the in-
troduction. The LAD equation for a radiating particle with orbit
xμ(τ ), proper time τ , is (c = ε0 = 1)

mẍμ = eF ext
μν(x)ẋν + 2

3

e2

4π
(
...
xμ ẋν − ẋμ

...
xν)ẋν, (1)

where F ext is an external field [16]. Retaining only the first term
on the right hand side of (1) gives the Lorentz force equation, the
second term describes RR. The runaway solutions of LAD can be
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avoided through asymptotic boundary conditions [16], performing
a reduction of order to obtain the Landau–Lifshitz (LL) equation
[3], using an alternate equation [4–6], or (since runaways are non-
perturbative in the classical electron radius r0 = e2/4πm) simply
by expanding the orbit in r0 (but see [17]).

To compare directly with QED, it is helpful to go back to the
classical equations of motion and solve them perturbatively (rather
than eliminating the radiation field to obtain LAD), in such a way
that RR effects appear as corrections to the Lorentz force. To do
so, define f := eF ext, let F be the dynamical electromagnetic field
with potential A, and j the current. The classical equations of mo-
tion are then, schematically [16],

mẍ = f ẋ + eF ẋ, �A = ej. (2)

(We assume Aext obeys Maxwell’s equations in vacuum,
�Aext = 0.) We solve (2) perturbatively, expanding1

x = x0 + ex1 + · · · �⇒ j = j0 + ej1 + · · · ,
A = A0 + e A1 + · · · �⇒ F = F0 + eF1 + · · · . (3)

To zeroth order, we have �A0 = 0 and ẍ0 = f (x0)ẋ0, the Lorentz
force equation. So, the particle moves according to the Lorentz
force but, with appropriate initial conditions, A0 = F0 = 0 and
there is no radiation. To first order in e, we find a homogeneous
equation for x1. Since initial conditions can be fulfilled by x0, we
can set x1 to zero, and the particle’s motion is unaffected. At this
order we also have �A1 = j0, and hence a nonzero radiation field
F1 sourced by x0, i.e. by a particle moving under the Lorentz force.
Radiation is therefore created at order e, but field observables are
typically of order e2, so the lowest order radiated energy, for ex-
ample, is E2 + B2 ∼ e2 j2

0, which does not contain recoil.
At second order in e, one finds �A2 = F2 = 0 and

mẍ2 = f (x0)ẋ2 + x2∂ f (x0)ẋ0 + F1(x0)ẋ0. (4)

This inhomogeneous equation yields a nonzero x2. The particle’s
orbit is corrected due to the term F1 ẋ0, i.e. by the fact that the
particle has emitted the radiation F1; this is radiation reaction. It
appears at order e2 in the electron’s motion, as expected. At third
order, one finds that F3 �= 0, sourced by the radiating particle, i.e.
x2 contributes to the radiation field. Hence recoil effects appear in
the radiated energy first at order e4, through the F1 F3 ∼ j0 j2 cross
term.

2. Radiation reaction from QED

2.1. Classical to quantum

We have now seen that to zeroth order in e, a particle is ac-
celerated by an external field but does not emit. To first order, the
particle’s emission is accounted for. To second order, the effect of
this emission on the electron is accounted for. The observables at
this order include the corrected electron orbit, and the emission
spectrum of a particle moving according to the Lorentz equation. At
third order, the impact of recoil on the radiation field is accounted
for, and enters the field’s observables at order e4.

What are the analogous results in the quantum theory? Con-
sider QED with a background field. In the Furry picture [19], in-
teractions between quantised fields are treated perturbatively as
normal, while the background is treated as a part of the ‘free’
theory and, classically, affects the Lorentz force on the fermions

1 The UV divergence which arises in the derivation of LAD is proportional to the
acceleration, and is usually removed by renormalising the particle mass [16], but
see also [18]. We will discuss this again when we come to the quantum theory.
[20–22]. Perturbative QED in the Furry picture therefore describes
an expansion in powers of α = e2/(4π h̄) beyond a ‘free’ theory
without recoil, but with the Lorentz force. It is the quantum equiv-
alent of the expansion used above. Thus, lowest order RR correc-
tions should come from the classical limit of order e2 Furry picture
processes in QED, one of which is one-photon emission. However,
previous investigations of this process (in a certain background, see
below) found no RR effects [1,10,11]. We can solve this problem
immediately; previous investigations have focussed on the emit-
ted photon spectrum, but we saw above that RR effects are only
visible at order e2 in the electron sector. Because the probabil-
ity of emitting a photon at all is already order e2, recoil effects
can only appear in the photon spectrum at order e4 and higher,
following e.g. multiple emissions [23–25]. This solves problem 1)
from the introduction. We expect, though, that one-photon emis-
sion should contribute to lowest order electron recoil. We will now
see how.

2.2. RR from QED

Consider a scattering experiment in which an electron is col-
lided with a laser pulse, and its momentum is measured after exit-
ing the beam. The classical theory, using (1) or otherwise, predicts
that the electron will have a certain momentum. The quantum the-
ory predicts that, repeating the experiment, a distribution of final
momenta will be measured. The expectation value of this distribu-
tion can be calculated in QED; it is the expectation value of the
electron momentum operator in the final state of the scattering
process. Expectation values (unlike probabilities or S-matrix ele-
ments) have natural classical limits; this is why approaches based
on them, such as the in–in formalism [26], are common in study-
ing how classical RR arises from QED [12,13,15]. Such approaches
are, though, not as widely used in particle physics as scattering
amplitudes, so it is important to understand how RR arises in the
latter.

Since experimental measurements are unlikely to be made
within the fields of the laser, asymptotic results are sufficient. In
this case, we can relate the expectation value of interest to famil-
iar S-matrix elements and Feynman diagrams as follows. We begin
with an incoming electron state |i〉, evolve it in time through a
background field, and calculate the expectation value of the elec-
tron momentum operator, Pμ , in the evolved state. If S is the
S-matrix, the expectation value is 〈Pμ〉 = 〈i|S† PμS|i〉. Inserting a
complete set of asymptotic out states | f 〉 with P | f 〉 = p f | f 〉, we
can write 〈Pμ〉 in terms of S-matrix elements S f i = 〈 f |S|i〉 as

〈Pμ〉 =
∑

f

p f
μ|S f i|2. (5)

The sum in (5) runs over all Fock-sectors of free particle states,
and can be interpreted as a sum of amplitudes for the processes
e− → e− + anything. It was noted in [1] that obtaining the QED
equivalent of LAD would require knowledge of the S-matrix at all
orders; indeed, we see that this would be needed to perform the
sum (5) exactly.2 To show that RR effects appear in QED at all,
though, we need only show that 〈P 〉 − π̂ �= 0, where π̂μ is the
final Lorentz force momentum of a particle after passing through
the background field.

So far we have made no approximation, but to investigate in
detail, it is simplest to use an expansion in a suitable parame-
ter. We choose the coupling, since i) this is the most common

2 In fact, the situation may be even ‘worse’: one may need more than the
S-matrix, since finite time effects bring in new terms [27].
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Fig. 1. Feynman diagrams contributing to radiation reaction at lowest order. A double line is the fermion propagator in a background field.
approach to QED, ii) we do not need to assume anything about
the background field or kinematic regime and iii) it gives us, at
first nontrivial order, direct access to one-photon emission, the
role of which, recall the discussion in the introduction, needs to
be identified. (Of course, other expansions will be more suitable in
other situations, especially for deriving phenomenologically useful
results, see for example [24].)

Each differential probability |S f i |2 in (5) has a Furry–Feynman
diagram expansion in powers of e2. (How many terms in this ex-
pansion one should consider to provide reliable predictions is a
phenomenological question, which we will address elsewhere.) The
zeroth order contribution to (5) comes from the one-electron sec-
tor, and is the process e− → e− without emission, at tree level.
Classically, it describes only the effect of the Lorentz force. The
next contributions to 〈Pμ〉 come at order e2 from two processes,
see Fig. 1. First, photon emission at tree level, mod-squared. Sec-
ond, the cross term of e− → e− to one loop, describing the self-
field of the electron. Both processes are reminiscent of classical
RR, and their sum gives (as we will shortly see explicitly) a fi-
nite, nonzero contribution to the final electron momentum, and to
〈Pμ〉. This is lowest order quantum radiation reaction. We have
answered questions 2) and 3) in the introduction.

It was noted in [28], see also [29] and below, that loop terms
could be relevant in the classical limit. The loop contribution has
not been considered in previous investigations of quantum RR
within strong field QED. There is at least one good reason why it
cannot be dropped; without the loops, 〈P 〉 is in general infra-red
divergent. However, it is well known that the inclusive sum of the
loop and emission processes is IR finite and observable [30]; such
sums are automatically included in (5) because 〈P 〉 is an inclusive
observable. This is an advantage of considering expectation values
rather than individual diagrams or processes. (See [31] for related
comments on Schwinger pair production.)

3. Explicit example: plane waves

We now illustrate the classical and quantum discussions above,
specifying to a plane wave background depending on invariant
phase φ := kx with k2 = 0. We have kμ = ωnμ for ω an inverse-
length scale, say a central frequency, and we can choose coordi-
nates such that kx = ωx+ , lightfront time. The transverse vector a′⊥
(ka′ = 0) is the normalised electric field, a′⊥ ≡ eE⊥/ω. We consider
pulses, so that E⊥(φ) is either nonzero only in a finite φ-range, or
vanishes asymptotically, but is otherwise arbitrary.

3.1. Classical

The momentum πμ := mẋμ
0 of a particle moving under the

Lorentz force, initial momentum pμ , is [22,32],

πμ(φ) = pμ − aμ(φ) + 2pa(φ) − a2(φ)

2kp
kμ, (6)

and one has that kp is conserved, hence φ ∝ τ . (From here on,
an integral without variable is over lightfront time dφ, π ≡ π(φ)

and π̂ ≡ π(∞) is the final momentum as given by the Lorentz
force in (6).) We proceed to xμ

2 , as introduced above. LAD, LL and
the equations in [4–6], while giving different results for xμ

2 within
the background, all agree on the first RR correction to the final
momentum of a particle passing through the whole pulse3; this is
δπμ , with

δπμ = 2

3

e2

4π

kp

m4

∫
a′ 2

(
πμ − ππ̂

kp
kμ

)
. (7)

3.2. Quantum

We turn to the quantum calculation. We calculate the expec-
tation value 〈P 〉 to first nontrivial order, take the classical limit
by taking h̄ → 0 and compare with (7). As above, the zeroth or-
der contribution to 〈Pμ〉 comes from tree-level scattering without
emission, and yields 〈Pμ〉 = π̂μ [33], the Lorentz force result. We
proceed to order e2. Photon emission e−(p) → e−(p′) + γ (k′) in a
plane wave, called nonlinear Compton scattering, yields an outgo-
ing momentum p f = p′ where

p′
μ := π̂μ − k′

μ + k′π̂
k(p − k′)

kμ, (8)

and this should be inserted into the integrated probability of emis-
sion to obtain its contribution to 〈Pμ〉, see [22]. A large-(lightfront-
)time divergence appears in this derivation. It can be removed
by gauge invariance [39] or by external line renormalisation [10]
(also [22,34,35]), following the standard method in perturbative
QED [36, §9]. It is shown in [27] using lightfront perturbation the-
ory at finite time, that this first order divergence multiplies the
zeroth order (Lorentz) velocity, or momentum. The classical diver-
gence mentioned earlier is also order e2 at the level of the equa-
tions of motion, but it is proportional to the acceleration in the LAD
equation. In the perturbative solution of LAD, though, the diver-
gence first appears at order e2 multiplying the Lorentz momentum,
as in the quantum case. Thus we find the same divergence in the
classical and quantum theories to this order. One difference is that,
in QED, the divergence is removed by operator, rather than mass,
renormalisation [37,38]; it would be interesting to compare this
with the classical renormalisation procedure in [18].

Using similar methods, one finds that the loop in Fig. 2 leads
to the same contribution as emission, except for an overall minus
sign and that the final momentum is p f = π̂ rather than (8). The
total contribution to the final electron momentum at order e2, call
it δ〈Pμ〉, is then (π j = π(φ j), a j = a(φ j))

δ〈Pμ〉 = e2

4π h̄

p−∫
0

dk′−
k′−

∫
d2k′⊥
(2π)2

kp′

kp

(
π̂μ − p′

μ

)

×
∫

dφ1dφ2 exp

[
i

h̄

φ2∫
φ1

k′π
kp′

]

× ∂2∂1

(m2 − g( kk′
kp′ )[a2 − a1]2

k′π2k′π1

)
, (9)

3 An explanation of why all the equations agree on this asymptotic result, to this
order, is as follows. The first term in (7) can also be obtained by inserting the
Lorentz orbit x0

μ into Larmor’s formula for the total radiated momentum. The sec-
ond term in (7), representing momentum taken from the background, then follows
by momentum conservation.
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Fig. 2. Feynman diagrams contributing to radiation reaction at lowest order, in a plane wave background. In this case the tadpole vanishes.
and spin effects appear in g(u) := 1+(1+u)2

4(1+u)
. (Set g = 1/2 for scalar

QED.) The result (9) is finite, nonzero and has support on the dif-
ference between the electron’s momentum following photon emis-
sion, (8), and the Lorentz force (no recoil) result, π̂ . It is due to
combined photon emission and self-energy effects. This is quan-
tum radiation reaction in a plane wave background, and is exact in
all parameters at order e2.

To take the classical limit of δ〈Pμ〉, we note that, in a plane
wave, it is the emitted photon’s longitudinal momentum kk′ which
is important. This ‘breaks the symmetry’ of motion associated with
the Lorentz force [40], namely the conservation of kp. This is a
sign of RR, as is seen explicitly when one solves LL in a plane
wave [41]. Hence, we will rewrite (9) to highlight its dependence
on kk′ . We therefore define rμ by k′

μ = (kk′/kp)rμ and change vari-
ables k′⊥ → r⊥ . Noting that photon momentum has no classical
analogue, but is equal to h̄ × wavenumber, we introduce t , which
is the following simple combination of final (scattered) momenta,

h̄t = kk′

kp′ = kk′

kp − kk′ . (10)

Changing variable from k′− to t removes h̄ from the exponent, and
makes all dependencies on h̄ manifest. The result is that (9) is ex-
actly equal to

δ〈Pμ〉 = e2

4π

∞∫
0

dt

(1 + h̄t)2

∫
d2r⊥
(2π)2

[
rμ

1 + h̄t
− rπ̂

kp
kμ

]

×
∫

dφ1dφ2 exp

[
it

φ2∫
φ1

rπ

kp

]

× ∂2∂1

(
m2 − g(h̄t)[a2 − a1]2

rπ2rπ1

)
. (11)

δ〈Pμ〉 depends on h̄ only through the combination 1 + h̄t , so the
classical limit h̄ → 0 can be taken simply by expanding these
factors in (11). From (10), this is equivalent to assuming that
kk′ � kp′ (implying kk′ � kp), i.e. that the momentum carried
away by the photon is small compared to that of the electron. The
classical limit therefore corresponds to neglecting quantum effects
associated to emission of high energy photons. It remains to eval-
uate the t- and r⊥-integrals at h̄ = 0. Noting that δ〈Pμ〉 is real and
symmetric in φ1 ↔ φ2, the t-integral can be symmetrised and im-
mediately gives a delta function for the two φ-integrals,

1

2

∞∫
−∞

dt cos

(
t

2∫
1

rπ

kp

)
= π

kp

rπ(φ2)
δ(φ2 − φ1). (12)

This is the statement that interference terms drop out and only
the incoherent piece of the φ-integrals in (9) survives as h̄ → 0.
This means that while quantum RR (9) is coherent in (lightfront)
time, coming from an S-matrix element squared, classical RR is
incoherent. This is a simple aspect of the decoherence intrinsic to
quantum-to-classical transitions [42]. Using (12) to eliminate one
of the φ-integrals, the remaining r⊥-integrals become elementary,
and we obtain

lim δ〈Pμ〉 = 2 e2 kp
4

∫
a′ 2

(
πμ − ππ̂

kμ

)
= δπμ, (13)
h̄→0 3 4π m kp
recovering the classical result (7) directly from QED. Quantum
corrections are easily calculated using the same method. (The
momentum integrals in δ〈P 〉 can actually be calculated analyti-
cally, [43].) The order h̄ contribution to (11) vanishes, while to
order h̄2 one finds, for the longitudinal component k〈P 〉 for ex-
ample,

k〈P 〉
kp

= 1 + 2

3

e2

4π

kp

m4

∫
a′ 2

− 2

5

e2h̄2

4π

kp3

m10

∫
(70 + 20s)a′ 4 − (22 + 5s)m2a′′ 2, (14)

where s = {0, 1
2 } is the spin of the particle. This exhibits both

kinematic and spin corrections due to quantum effects. While the
classical term in (14) is strictly negative, the quantum term is typ-
ically positive, thus giving competing effects. We have answered
question 4) in the introduction.

3.3. Discussion

Closely related calculations appear in [51], which recovers the
dominant RR term from QED at high energy, and in [14], which
concludes that QED supports the classical equation in [6]. In per-
turbation theory, kδπ from (7) can be obtained from ordinary
Compton scattering if the incoming photon flux is equal to the
plane wave’s energy density a′ 2 [32]. That paper finds that quan-
tum and LAD results differ at large recoil. We can understand this
by observing that accounting for larger recoil requires retaining
higher powers of h̄ in the expansion of (11), and these are non-
classical effects, see (14). An entirely perturbative calculation of
the expectation value considered here appears in [12], the advan-
tage being that perturbation theory permits the consideration of
arbitrary background fields. While our Section 2 is general, and
neatly relates the expectation value to the Feynman diagrams con-
tributing to RR, our explicit example in Section 3 applies only to a
plane wave background. Nevertheless, this has the benefit of mak-
ing the classical limit simple, and giving insight into the role of the
loop diagram, to which we now return.

We see from (8) and below it that the loop does not contribute
directly to classical RR, because it cancels against a term coming
from the emission diagram. However, the cancelling terms are each
O(1/h̄). The loop therefore removes both IR and 1/h̄ singularities,
and without it we would not be able to take the classical limit
due to having a 1/h̄ divergence. In the remaining terms, recoil due
to photon emission is proportional to h̄ [1], but there is neverthe-
less a surviving classical contribution due to a cancellation with
the QED coupling α ∼ 1/h̄ as h̄ → 0. See [29,52] for related discus-
sions.

In [53], the position shift of a scattered particle was compared
between quantum and classical theories, and agreement found.
This calculation was also for ‘asymptotic’ times, i.e. measurements
were made outside of the pulse. We have calculated momenta in
this Letter, as these are the natural variables in which to discuss
scattering, but position is discussed in [27].

Finally, consider higher orders terms. The sum in (5) is incoher-
ent in particle number, just as in [24], but each process is coherent
in time in general. n-photon emission contributes to RR at or-
der e2n , along with all other processes of the same order, e.g. pair
production, loop corrections, counterterms and so on. In general,
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these cannot be neglected from the outset. First, for consistency.
Second, they remove IR and UV divergences. Third (and related),
unitarity is violated without them: it was correctly noted in [24]
that exclusive photon emission probabilities in plane waves eas-
ily exceed unity, but that unitarity could be restored by using a
re-normalisation of the probabilities, following [45]. Both problem
and solution here are typical of the IR in QED [30,44,46,47]. IR di-
vergences only arise in ‘probabilities’ which are not actually ob-
servable, due to the presence of indistinguishable processes. (Such
‘probabilities’ can even be finite, but exceed unity, as for a class of
plane wave backgrounds [43].) Physical observables, however, are
always automatically IR finite. To remove IR divergences in QED (to
all orders) one can either sum over degenerate processes [30,44,
47], calculate with physical rather than free asymptotic states [48,
49], or calculate inclusive rather than exclusive observables [30].
The latter solution is automatic in our approach, since 〈P 〉 is an in-
clusive observable. The terms which would otherwise violate uni-
tarity are removed by the consistent, automatic inclusion of, e.g.
the above loop. See the classic paper [50] for the case of Compton
scattering in QED.

Having provided our answers to the RR problems in the intro-
duction, we now outline some applications and extensions of our
results.

3.4. Experimental implications

Our results suggest that it may be easier to see RR effects in
electron spectra, rather than in photon spectra. This is supported
by recent numerical simulations [54]. In particular, this means that
multi-photon emission experiments are not, strictly, necessary to
observe RR. One needs only collide an electron with a laser, and
measure the momentum of the scattered electron. To lowest or-
der, one retains all events in which either zero or one photons are
emitted (the photon momentum itself is not required), and com-
pares this with (9) or the appropriate numerical extension to more
realistic fields. Whether this method is more suitable for measur-
ing quantum or classical RR will be discussed elsewhere [55].

3.5. Classical equations

Asymptotic results following from the S-matrix, as used here,
are sufficient for comparison with experiments aiming to observe
radiation reaction, since scattering products will be measured far
from interaction volumes. Nevertheless, the extension of our cal-
culation to finite time and higher orders can distinguish between,
and therefore rule out, different classical equations which pre-
dict different motion within the background.4 Our results appear
in [27], and address the incompatibility between quantum and
classical electrodynamics claimed in [6].

3.6. Numerical simulations

The use of powerful, large scale numerical models in strong
field QED is increasingly popular [1,6,51,54,56]. These approaches
do not represent a nonperturbative discretisation of QED (as in
lattice gauge theory), but instead are based on addition of pertur-
bative cross-sections (primarily nonlinear Compton and stimulated
pair production) to classical PIC codes. Despite this shared base,
the codes differ in many aspects, for example in their implemen-
tation of RR. Some claim that RR must be included classically,

4 In geometries more complicated than a plane wave, both classical orbits and
dressed quantum states will have a dependence on e.g. impact parameters, not just
initial momenta as in a plane wave. To recover a particular classical orbit from QED,
one must then begin with a wavepacket peaked in both momentum and position.
since it does not occur in the photon emission diagram. We have
shown that such implementations can double count the (classical)
RR contribution, for photon wavelengths which are resolved by the
numerical code. Given that interest lies in regimes where recoil
effects are important, this could potentially be a serious overcount-
ing. Our result (9) provides a new, fully quantum benchmark with
which to test that numerical codes correctly reproduce RR effects.
We are currently investigating this [57].

4. Conclusions

We have addressed several questions related to radiation re-
action in strong field QED. We have identified the processes and
diagrams contributing to radiation reaction at lowest nontrivial or-
der in α, i.e. in the usual Furry picture perturbative expansion of
strong field QED. Specifying to a plane wave background, we were
able to evaluate the diagrams exactly to this order, thus eliminat-
ing potential ambiguities, and recovered classical radiation reaction
in the h̄ → 0 limit.

In this approach, RR arises as a small effect, i.e. as a correction
to a leading order term which is the Lorentz force contribution.
Our approach can of course be extended to higher orders, but we
note that, apart from a few exact solutions [41,58], there does not
seem to be a fully nonperturbative approach to RR available in
strong field QED. A potential option for investigating nonpertur-
bative QED is offered by real-time lattice approaches, see [59].
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