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1. Introduction

The q-tetrahedron algebra �q was introduced in [10]. This algebra is associative, non-
commutative, and infinite-dimensional. It is defined by generators and relations. There
are eight generators, and it is natural to identify each of these with an orientation on
an edge in a tetrahedron. From this point of view the generating set looks as follows.
In the tetrahedron, a pair of opposite edges are each oriented in both directions. The
four remaining edges are each oriented in one direction, to create a directed 4-cycle.
Thus the cyclic group Z4 acts transitively on the vertex set of the tetrahedron, in a
manner that preserves the set of edge-orientations. The relations in �q are described
as follows. For each doubly oriented edge of the tetrahedron, the product of the two
edge-orientations is 1. For each pair of edge-orientations that create a directed 2-path
involving three distinct vertices, these edge-orientations satisfy a q-Weyl relation. For
each pair of edges in the tetrahedron that are opposite and singly oriented, the two
associated edge-orientations satisfy the cubic q-Serre relations. By construction, the Z4
action on the tetrahedron induces a Z4 action on �q as a group of automorphisms.

We will be discussing the quantum enveloping algebra Uq(sl2), the loop algebra
Uq(L(sl2)) [10, Section 8], and an algebra Aq called the positive part of Uq(ŝl2) [10,
Definition 9.1]. These algebras are related to �q in the following way. Each face of the
tetrahedron is surrounded by three edges, of which two are singly oriented and one is
doubly oriented. The resulting four edge-orientations generate a subalgebra of �q that
is isomorphic to Uq(sl2) [10, Proposition 7.4], [21, Proposition 4.3]. Upon removing one
doubly oriented edge from the tetrahedron, the remaining six edge-orientations generate
a subalgebra of �q that is isomorphic to Uq(L(sl2)) [21, Proposition 4.3]. For each pair of
edges in the tetrahedron that are opposite and singly oriented, the two associated edge-
orientations generate a subalgebra of �q that is isomorphic to Aq [21, Proposition 4.1].

The above containments reveal a close relationship between the representation theories
of �q, Uq(L(sl2)), and Aq. Before discussing the details, we comment on Uq(L(sl2)).
In [1], Chari and Pressley classify up to isomorphism the finite-dimensional irreducible
Uq(L(sl2))-modules. This classification involves a bijection between the following two
sets: (i) the isomorphism classes of finite-dimensional irreducible Uq(L(sl2))-modules
of type 1; (ii) the polynomials in one variable that have constant coefficient 1. The
polynomial is called the Drinfel’d polynomial.

The representation theories for �q and Uq(L(sl2)) are related as follows. Let V denote
a �q-module. Earlier we mentioned a subalgebra of �q that is isomorphic to Uq(L(sl2)).
Upon restricting the �q action on V to this subalgebra, V becomes a Uq(L(sl2))-module.
The restriction procedure yields a map from the set of �q-modules to the set of
Uq(L(sl2))-modules. By [7, Remark 1.8] and [10, Remark 10.5], this map induces a bi-
jection between the following two sets: (i) the isomorphism classes of finite-dimensional
irreducible �q-modules of type 1; (ii) the isomorphism classes of finite-dimensional ir-
reducible Uq(L(sl2))-modules of type 1 whose associated Drinfel’d polynomial does not
vanish at 1. (We follow the normalization conventions from [21].) In [21], Miki extends
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the above bijective correspondence to include finite-dimensional modules that are not
necessarily irreducible.

The representation theories for �q and Aq are related as follows. A finite-dimensional
Aq-module is called NonNil whenever the two Aq-generators are not nilpotent on the
module [7, Definition 1.3]. Let V denote a �q-module. Earlier we mentioned a subalgebra
of �q that is isomorphic to Aq. Upon restricting the �q action on V to this subalgebra,
V becomes an Aq-module. This yields a map from the set of �q-modules to the set of
Aq-modules. By [10, Remark 10.5] this map induces a bijection between the following
two sets: (i) the isomorphism classes of finite-dimensional irreducible �q-modules of
type 1; (ii) the isomorphism classes of NonNil finite-dimensional irreducible Aq-modules
of type (1, 1).

We just related the representation theories of �q and Aq. To illuminate this relation-
ship we bring in the concept of a Leonard pair [25–30,33] and tridiagonal pair [5,6,9,15].
Roughly speaking, a Leonard pair consists of two diagonalizable linear transformations
of a finite-dimensional vector space, each of which acts in an irreducible tridiagonal
fashion on an eigenbasis for the other one [25, Definition 1.1]. The Leonard pairs are
classified [25,29] and correspond to the orthogonal polynomials that make up the termi-
nating branch of the Askey scheme [20]. A tridiagonal pair is a mild generalization of
a Leonard pair [5, Definition 1.1]. Let V denote a NonNil finite-dimensional irreducible
Aq-module of type (1, 1). Then the two Aq-generators act on V as a tridiagonal pair
[5, Example 1.7]. A tridiagonal pair obtained in this way is said to be q-geometric [15,
Section 1]. Now the bijection from the previous paragraph amounts to the following.
Let V denote a finite-dimensional irreducible �q-module of type 1. Then for any pair
of edges in the tetrahedron that are opposite and singly oriented, the two associated
edge-orientations act on V as a tridiagonal pair of q-geometric type. Moreover, every
tridiagonal pair of q-geometric type is obtained in this way. For more details on this
correspondence see [7, Section 2] and [10, Section 10]. In [2], Funk-Neubauer obtains a
similar correspondence between finite-dimensional irreducible �q-modules and certain
tridiagonal pairs of q-Hahn type.

We mention some other results concerning �q. In [11], Ito and Terwilliger characterize
the finite-dimensional irreducible �q-modules using q-inverting pairs of linear transfor-
mations. In [12], Ito and Terwilliger display an action of �q on the standard module of
any distance-regular graph that is self-dual and has classical parameters with base q2.
In [19], Joohyung Kim provides more details about this �q action. In [13], Ito and Ter-
williger obtain a similar �q action for certain distance-regular graphs of q-Racah type.

Turning to the present paper, our topic is a family of finite-dimensional irreducible
�q-modules of type 1, called evaluation modules. These modules are important for the
following reason. In [1], Chari and Pressley show that each finite-dimensional irreducible
Uq(L(sl2))-module of type 1 is a tensor product of evaluation modules. Earlier we de-
scribed how each finite-dimensional irreducible �q-module of type 1 corresponds to a
finite-dimensional irreducible Uq(L(sl2))-module of type 1. The tensor product structure
survives the correspondence [21, Theorem 8.1] and consequently each finite-dimensional
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irreducible �q-module of type 1 is a tensor product of evaluation modules [21, Sec-
tions 8, 9].

This paper contains a comprehensive description of the evaluation modules for �q.
Hoping to keep this description accessible, we avoid Hopf algebra theory and use only
linear algebra. Our description is roughly analogous to the description given in [8] con-
cerning the evaluation modules for the tetrahedron algebra.

In our description, each evaluation module for �q gets a notation of the form Vd(t).
Here d is a positive integer, and t is a nonzero scalar in the underlying field that is not
among {qd−2n+1}dn=1. The �q-module Vd(t) has dimension d+1. On Vd(t), each of the
eight �q-generators is diagonalizable with eigenvalues {qd−2n}dn=0. The �q-module Vd(t)
is determined up to isomorphism by d and t. We obtain several polynomial identities that
hold on Vd(t); these identities involve the eight �q-generators and also t.

We display 24 bases for Vd(t) that we find attractive. These bases are described as
follows. For each permutation i, j, k, � of the vertices of the tetrahedron, we define a
basis for Vd(t) denoted [i, j, k, �]. This basis diagonalizes each �q-generator involving
the vertices k and �. Moreover, the sum of the basis vectors is an eigenvector for each
�q-generator involving the vertex j. We display the matrices that represent the eight
�q-generators with respect to [i, j, k, �]. We also give the transition matrices from the
basis [i, j, k, �] to each of the bases

[j, i, k, �], [i, k, j, �], [i, j, �, k].

The first transition matrix is diagonal, the second one is lower triangular, and the third
one is the identity matrix reflected about a vertical axis.

Recall that the group Z4 acts on �q as a group of automorphisms. We show that if
Vd(t) is twisted via a generator for Z4, then the resulting �q-module is isomorphic to
Vd(t−1). Consider the element of Z4 that has order 2. If Vd(t) is twisted via this element,
then the resulting �q-module is isomorphic to Vd(t). A corresponding isomorphism of
�q-modules is called an exchanger. We describe how these exchangers act on the 24 bases
for Vd(t). We also characterize the exchangers in various ways.

Near the end of the paper we discuss how Leonard pairs of q-Racah type are related to
evaluation modules for �q. Given a Leonard pair of q-Racah type, we consider a certain
basis for the underlying vector space, called the compact basis, with respect to which
the matrices representing the pair are each tridiagonal with attractive entries. Using the
Leonard pair we turn the underlying vector space into an evaluation module for �q. On
this �q-module, each element of the Leonard pair acts as a linear combination of two
�q-generators; the associated edges in the tetrahedron are adjacent and singly oriented.
We show that the compact basis diagonalizes a pair of �q-generators that correspond to
a doubly oriented edge of the tetrahedron.

The paper is organized as follows. In Section 2 we review some preliminaries and fix
our notation. In Section 3 we recall some facts about Uq(sl2) that will be used throughout
the paper. In Sections 4–6 we describe the finite-dimensional irreducible �q-modules of
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type 1. In Sections 7, 8 we further describe these �q-modules, bringing in the dual space
and Z4-twisting. In Section 9 we define an evaluation module for �q called Vd(t), and we
obtain several polynomial identities that hold on this module. In Section 10 we describe
24 bases for Vd(t). In Section 11 we describe how the eight �q-generators act on the
24 bases. In Sections 12, 13 we describe the transition matrices between certain pairs
of bases among the 24. In Section 14 we obtain some identities that involve Vd(t) and
its dual space. Section 15 is about exchangers. In Sections 16, 17 we describe how the
evaluation modules for �q are related to Leonard pairs of q-Racah type. Appendices A
and B contain some matrix definitions and related identities.

2. Preliminaries

Our conventions are as follows. Throughout the paper F denotes an algebraically
closed field. An algebra is meant to be associative and have a 1. A subalgebra has the
same 1 as the parent algebra. Recall the natural numbers N = {0, 1, 2, . . .} and integers
Z = {0,±1,±2, . . .}. For the duration of this paragraph fix d ∈ N. Let {un}dn=0 denote a
sequence. We call un the nth component of the sequence. We call d the diameter of the
sequence. By the inversion of the sequence {un}dn=0 we mean the sequence {ud−n}dn=0.
Let V denote a vector space over F with dimension d + 1. Let End(V ) denote the
F-algebra consisting of the F-linear maps from V to V . An element A ∈ End(V ) is called
diagonalizable whenever V is spanned by the eigenspaces of A. The map A is called
multiplicity-free whenever A is diagonalizable and each eigenspace of A has dimension 1.
Let Matd+1(F) denote the F-algebra consisting of the d + 1 by d + 1 matrices that have
all entries in F. We index the rows and columns by 0, 1, . . . , d. Let {vn}dn=0 denote a
basis for V . For A ∈ End(V ) and M ∈ Matd+1(F), we say that M represents A with
respect to {vn}dn=0 whenever Avn =

∑d
i=0 Minvi for 0 � n � d. For M ∈ Matd+1(F),

M is called upper bidiagonal whenever each nonzero entry lies on the diagonal or the
superdiagonal. The matrix M is called lower bidiagonal whenever the transpose M t is
upper bidiagonal. The matrix M is called tridiagonal whenever each nonzero entry lies
on the diagonal, the subdiagonal, or the superdiagonal. Assume that M is tridiagonal.
Then M is said to be irreducible whenever each entry on the subdiagonal is nonzero and
each entry on the superdiagonal is nonzero.

Definition 2.1. (See [25, Definition 1.1].) Let V denote a vector space over F with finite
positive dimension. By a Leonard pair on V , we mean an ordered pair A,B of elements
in End(V ) that satisfy the following conditions:

(i) there exists a basis for V with respect to which the matrix representing A is diagonal
and the matrix representing B is irreducible tridiagonal;

(ii) there exists a basis for V with respect to which the matrix representing B is diagonal
and the matrix representing A is irreducible tridiagonal.

The above Leonard pair is said to be over F. We call V the underlying vector space.
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Definition 2.2. Let A,B denote a Leonard pair over F. Let A′, B′ denote a Leonard pair
over F. By an isomorphism of Leonard pairs from A,B to A′, B′ we mean an F-linear
bijection μ from the vector space underlying A,B to the vector space underlying A′, B′

such that μA = A′μ and μB = B′μ. The Leonard pairs A,B and A′, B′ are called
isomorphic whenever there exists an isomorphism of Leonard pairs from A,B to A′, B′.

Lemma 2.3. (See [27, Corollary 5.5].) Let A,B denote a Leonard pair on V , as in Defi-
nition 2.1. Then the algebra End(V ) is generated by A,B.

We refer the reader to [25–27,33] for background information on Leonard pairs.

3. The equitable presentation for Uq(sl2)

In this section we recall the quantum enveloping algebra Uq(sl2). For background
information on Uq(sl2), we refer the reader to the books by Jantzen [17] and Kassel [18].
We will work with the equitable presentation of Uq(sl2), which was introduced in [16].

Throughout the paper, fix a nonzero q ∈ F that is not a root of unity. For n ∈ Z

define

[n]q = qn − q−n

q − q−1

and for n � 0 define

[n]!q = [n]q[n− 1]q · · · [2]q[1]q.

We interpret [0]!q = 1.

Definition 3.1. (See [16, Theorem 2.1].) For the F-algebra Uq(sl2) the equitable presen-
tation has generators x, y±1, z and relations yy−1 = 1, y−1y = 1,

qxy − q−1yx

q − q−1 = 1, qyz − q−1zy

q − q−1 = 1, qzx− q−1xz

q − q−1 = 1. (1)

We call x, y±1, z the equitable generators for Uq(sl2).

In the next three lemmas we comment on the relations (1).

Lemma 3.2. Let u, v denote elements in any F-algebra, such that

quv − q−1vu

q − q−1 = 1.

Then

q(1 − uv) = q−1(1 − vu) = [u, v]
q − q−1 , (2)

where [u, v] means uv − vu.
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Proof. Routine. �
Lemma 3.3. Let u, v denote elements in any F-algebra, such that

quv − q−1vu

q − q−1 = 1.

(i) Assume u−1 exists. Then

[
u−1, [u, v]

]
=

(
q − q−1)2(u−1 − v

)
. (3)

(ii) Assume v−1 exists. Then

[
[u, v], v−1] =

(
q − q−1)2(v−1 − u

)
. (4)

Proof. (i) Using Lemma 3.2,

[u−1, [u, v]]
q − q−1 = qu−1(1 − uv) − q−1(1 − vu)u−1 =

(
q − q−1)(u−1 − v

)
.

(ii) Similar to the proof of (i) above. �
Lemma 3.4. Let u, v, w denote elements in any F-algebra, such that both

quv − q−1vu

q − q−1 = 1, qvw − q−1wv

q − q−1 = 1.

Then both

[v, uw] = q
(
q − q−1)(u− w), [v, wu] = q−1(q − q−1)(u− w). (5)

Moreover

[
v, [u,w]

]
=

(
q − q−1)2(u− w). (6)

Proof. To obtain (5), observe

[v, uw]
q − q−1 = qu

qvw − q−1wv

q − q−1 − q
quv − q−1vu

q − q−1 w = q(u− w),

and

[v, wu]
q − q−1 = q−1 qvw − q−1wv

q − q−1 u− q−1w
quv − q−1vu

q − q−1 = q−1(u− w).

We have obtained (5), and (6) follows. �



114 T. Ito et al. / Linear Algebra and its Applications 451 (2014) 107–168
In the literature on Uq(sl2) there is a certain central element called the Casimir element
[17, Section 2.7], [18, p. 130]. We now recall how the Casimir element looks from the
equitable point of view.

Definition 3.5. (See [31, Lemma 2.15].) Let Λ denote the following element in Uq(sl2):

Λ = qx + q−1y + qz − qxyz. (7)

We call Λ the (normalized) Casimir element.

Note 3.6. The element Λ(q− q−1)−2 is equal to the Casimir element of Uq(sl2) discussed
in [17, Section 2.7].

Lemma 3.7. (See [17, Lemma 2.7, Proposition 2.18].) The elements {Λn}n∈N form a
basis for the center of Uq(sl2).

Lemma 3.8. (See [31, Lemma 2.15].) The element Λ is equal to each of the following:

qx + q−1y + qz − qxyz, q−1x + qy + q−1z − q−1zyx,

qy + q−1z + qx− qyzx, q−1y + qz + q−1x− q−1xzy,

qz + q−1x + qy − qzxy, q−1z + qx + q−1y − q−1yxz.

The finite-dimensional irreducible Uq(sl2)-modules are described in [17, Section 2].
We now recall how these modules look from the equitable point of view [16,32].

Lemma 3.9. (See [16, Lemma 4.2], [17, Theorem 2.6].) There exists a family of finite-
dimensional irreducible Uq(sl2)-modules

Vd,ε ε ∈ {1,−1}, d ∈ N (8)

with the following property: Vd,ε has a basis with respect to which the matrices repre-
senting x, y, z are

x: ε

⎛
⎜⎜⎜⎜⎜⎜⎝

q−d qd − q−d 0
q2−d qd − q2−d

q4−d . . .
. . . qd − qd−2

0 qd

⎞
⎟⎟⎟⎟⎟⎟⎠

,

y: ε diag
(
qd, qd−2, qd−4, . . . , q−d

)
,
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z: ε

⎛
⎜⎜⎜⎜⎜⎝

q−d 0
q−d − q2−d q2−d

q−d − q4−d q4−d

. . . . . .
0 q−d − qd qd

⎞
⎟⎟⎟⎟⎟⎠ .

Every finite-dimensional irreducible Uq(sl2)-module is isomorphic to exactly one of the
modules (8).

Note 3.10. For Char(F) = 2 we interpret {1,−1} to have a single element.

Note 3.11. The dimension of Vd,ε is d + 1.

Definition 3.12. For Vd,ε the parameter d is called the diameter. The parameter ε is
called the type. We sometimes abbreviate Vd = Vd,1.

Note 3.13. For each of x, y±1, z the action on Vd,ε is multiplicity-free with eigenvalues
{εqd−2n | 0 � n � d}.

Note 3.14. In Lemma 3.9 the matrix representing x (resp. z) has constant row sum εqd

(resp. εq−d). This reflects the fact that xv = εqdv (resp. zv = εq−dv), where v denotes
the sum of the basis vectors.

Note 3.15. In Appendix A we define some matrices in Matd+1(F) called Eq, Kq, Z. The
displayed matrices from Lemma 3.9 that represent x, y, z for Vd are Eq, Kq, ZEq−1Z

respectively.

Lemma 3.16. (See [17, Section 2.7].) The Casimir element Λ acts on Vd as (qd+1 +
q−d−1)I.

Lemma 3.17. (See [32, Lemma 9.8].) Pick ξ ∈ {x, y, z}. There exists a basis {vn}dn=0 for
Vd such that

(i) ξvn = qd−2nvn for 0 � n � d;
(ii)

∑d
n=0 vn is a common eigenvector for the two elements among x, y, z other than ξ.

Definition 3.18. (See [32, Definition 9.5].) Pick ξ ∈ {x, y, z}. By a [ξ]row-basis for Vd we
mean a basis for Vd from Lemma 3.17.

Note 3.19. The basis for Vd in Lemma 3.9 is a [y]row-basis.

We comment on the uniqueness of the bases in Definition 3.18.
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Lemma 3.20. (See [32, Lemma 9.12].) Pick ξ ∈ {x, y, z} and let {vn}dn=0 denote a
[ξ]row-basis for Vd. Let {v′n}dn=0 denote any vectors in Vd. Then the following are equiv-
alent:

(i) the sequence {v′n}dn=0 is a [ξ]row-basis for Vd;
(ii) there exists 0 �= α ∈ F such that v′n = αvn for 0 � n � d.

Definition 3.21. (See [32, Definition 9.5].) Pick ξ ∈ {x, y, z}. By a [ξ]inv
row-basis for Vd we

mean the inversion of a [ξ]row-basis for Vd.

In Definition 3.18 and Definition 3.21 we gave the following six bases for Vd:

[x]row, [y]row, [z]row, (9)

[x]inv
row, [y]inv

row, [z]inv
row. (10)

Lemma 3.22. (See [32, Theorem 10.12].) Consider the elements x, y, z of Uq(sl2). In
the table below we display the matrices in Matd+1(F) that represent these elements with
respect to the six bases (9), (10) for Vd.

Basis x y z

[x]row Kq ZEq−1Z Eq

[x]inv
row Kq−1 Eq−1 ZEqZ

[y]row Eq Kq ZEq−1Z

[y]inv
row ZEqZ Kq−1 Eq−1

[z]row ZEq−1Z Eq Kq

[z]inv
row Eq−1 ZEqZ Kq−1

For more background information on the bases (9), (10) we refer the reader to [32].

4. The q-tetrahedron algebra ���q

In this section we recall the q-tetrahedron algebra �q and review some of its properties.
Let Z4 = Z/4Z denote the cyclic group of order 4.

Definition 4.1. (See [10, Definition 6.1].) Let �q denote the F-algebra defined by gener-
ators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2} (11)

and the following relations:

(i) For i, j ∈ Z4 such that j − i = 2,

xijxji = 1. (12)
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(ii) For i, j, k ∈ Z4 such that (j − i, k − j) is one of (1, 1), (1, 2), (2, 1),

qxijxjk − q−1xjkxij

q − q−1 = 1. (13)

(iii) For i, j, k, � ∈ Z4 such that j − i = k − j = �− k = 1,

x3
ijxk� − [3]qx2

ijxk�xij + [3]qxijxk�x
2
ij − xk�x

3
ij = 0. (14)

We call �q the q-tetrahedron algebra. The elements (11) are called the standard generators
for �q.

We have some comments.

Note 4.2. We find it illuminating to view �q as follows. Identify Z4 with the vertex set
of a tetrahedron. View each standard generator xij as an orientation i → j of the edge
in the tetrahedron that involves vertices i and j.

Lemma 4.3. There exists an automorphism ρ of �q that sends each standard generator
xij to xi+1,j+1. Moreover ρ4 = 1.

Lemma 4.4. There exists an automorphism σ of �q that sends each standard generator
xij to −xij. We have σ2 = 1 if Char(F) �= 2 and σ = 1 if Char(F) = 2.

Lemma 4.5. (See [21, Proposition 4.3].) For i ∈ Z4 there exists an F-algebra homomor-
phism κi : Uq(sl2) → �q that sends

x �→ xi+2,i+3, y �→ xi+3,i+1, y−1 �→ xi+1,i+3, z �→ xi+1,i+2.

This homomorphism is injective.

Recall the Casimir element Λ of Uq(sl2), from Definition 3.5.

Definition 4.6. For i ∈ Z4 let Υi denote the image of Λ under the injection κi from
Lemma 4.5.

The elements Υi from Definition 4.6 are not central in �q. However we do have the
following.

Lemma 4.7. For i ∈ Z4 the element Υi commutes with each of

xi+2,i+3, xi+3,i+1, xi+1,i+3, xi+1,i+2.

Proof. By Lemma 4.5 and since Λ is central in Uq(sl2). �
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5. Comparing ���q and ���q−1

In this section we compare the algebras �q and �q−1 . For both algebras we use the
same notation xij for the standard generators.

Lemma 5.1. There exists an F-algebra isomorphism ϑ : �q → �q−1 that sends

x01 �→ x01, x12 �→ x30, x23 �→ x23, x30 �→ x12,

x02 �→ x31, x13 �→ x20, x20 �→ x13, x31 �→ x02.

Proof. Routine. �
We recall the notion of antiisomorphism. Given F-algebras A, B a map γ : A → B is

called an antiisomorphism of F-algebras whenever γ is an isomorphism of F-vector spaces
and (ab)γ = bγaγ for all a, b ∈ A. An antiisomorphism can be interpreted as follows. The
F-vector space B has an F-algebra structure Bopp such that for all a, b ∈ B the product
ab (in Bopp) is equal to ba (in B). A map γ : A → B is an antiisomorphism of F-algebras
if and only if γ : A → Bopp is an isomorphism of F-algebras.

Proposition 5.2. There exists an F-algebra antiisomorphism τ : �q → �q−1 that sends
each standard generator xij to xij.

Proof. In Definition 4.1 we gave a presentation for �q by generators and relations. We
now modify this presentation by adjusting the relations as follows. For each relation in
the presentation, replace q by q−1 and invert the order of multiplication. In each case,
the adjusted relation coincides with the original one. Now on one hand, the modified
presentation is a presentation for (�q−1)opp by generators and relations. On the other
hand, the modified presentation coincides with the original one. Therefore there exists
an F-algebra isomorphism τ : �q → (�q−1)opp that sends each standard generator xij

to xij . The result follows by the sentence prior to the theorem statement. �
6. Finite-dimensional irreducible ���q-modules

In this section we review some basic facts and notation concerning finite-dimensional
irreducible �q-modules. This material is summarized from [10].

Let V denote a vector space over F with finite positive dimension. Let {sn}dn=0 denote
a sequence of positive integers whose sum is the dimension of V . By a decomposition of
V of shape {sn}dn=0 we mean a sequence {Vn}dn=0 of subspaces for V such that Vn has
dimension sn for 0 � n � d and V =

∑d
n=0 Vn (direct sum). For notational convenience

define V−1 = 0 and Vd+1 = 0.
Now let V denote a finite-dimensional irreducible �q-module. By [10, Theorem 12.3]

each standard generator xij of �q is diagonalizable on V . Also by [10, Theorem 12.3]
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there exist d ∈ N and ε ∈ {1,−1} such that for each xij the set of distinct eigenvalues on
V is {εqd−2n | 0 � n � d}. We call d the diameter of V . We call ε the type of V . Replacing
each xij by εxij the type becomes 1. So without loss of generality we may assume that
V has type 1. From now on we adopt this assumption. For distinct i, j ∈ Z4 we now
define a decomposition of V called [i, j]. First assume j − i = 1 or j − i = 2, so that xij

exists. The decomposition [i, j] has diameter d, and for 0 � n � d the nth component
of [i, j] is the eigenspace of xij with eigenvalue qd−2n. Next assume j − i = 3. In this
case the decomposition [i, j] is defined as the inversion of [j, i]. By the construction and
Definition 4.1(i), for distinct i, j ∈ Z4 the decomposition [i, j] is the inversion of [j, i].
By [10, Proposition 13.3], for distinct i, j ∈ Z4 the shape of [i, j] is independent of the
choice of i, j. Denote this shape by {ρn}dn=0 and note that ρn = ρd−n for 0 � n � d. By
the shape of V we mean the sequence {ρn}dn=0 [10, Definition 13.4].

One feature of the shape {ρn}dn=0 is that ρn−1 � ρn for 1 � n � d/2. This feature
is obtained as follows. Pick i ∈ Z4 and consider the homomorphism κi : Uq(sl2) → �q

from Lemma 4.5. Using κi we pull back the �q-module structure on V to obtain a
Uq(sl2)-module structure on V . The Uq(sl2)-module V is completely reducible; this means
that V is a direct sum of irreducible Uq(sl2)-submodules [17, Theorem 2.9]. For this sum
consider the summands. Each summand has type 1. For each summand the diameter is
at most d and has the same parity as d. For 0 � n � d/2 the following coincide: (i) the
multiplicity with which the Uq(sl2)-module Vd−2n appears as a summand; (ii) the integer
ρn−ρn−1, where ρ−1 = 0. Therefore ρn−1 � ρn for 1 � n � d/2. We just mentioned some
multiplicities. These multiplicities are independent of the i ∈ Z4 that we initially picked.
Therefore, up to isomorphism of Uq(sl2)-modules the Uq(sl2)-module V is independent
of i.

Returning to the �q-module V , for distinct i, j ∈ Z4 and each standard generator
xrs we now describe the action of xrs on the decomposition [i, j] of V . Denote this
decomposition by {Vn}dn=0. For the case s− r = 1, by [10, Theorem 14.1] the action of
xrs on Vn is described in the table below:

Decomposition Action of xr,r+1 on Vn

[r, r + 1] (xr,r+1 − qd−2nI)Vn = 0
[r + 1, r] (xr,r+1 − q2n−dI)Vn = 0

[r + 1, r + 2] (xr,r+1 − q2n−dI)Vn ⊆ Vn−1

[r + 2, r + 1] (xr,r+1 − qd−2nI)Vn ⊆ Vn+1

[r + 2, r + 3] xr,r+1Vn ⊆ Vn−1 + Vn + Vn+1

[r + 3, r + 2] xr,r+1Vn ⊆ Vn−1 + Vn + Vn+1

[r + 3, r] (xr,r+1 − q2n−dI)Vn ⊆ Vn+1

[r, r + 3] (xr,r+1 − qd−2nI)Vn ⊆ Vn−1

[r, r + 2] (xr,r+1 − qd−2nI)Vn ⊆ Vn−1

[r + 2, r] (xr,r+1 − q2n−dI)Vn ⊆ Vn+1

[r + 1, r + 3] (xr,r+1 − q2n−dI)Vn ⊆ Vn−1

[r + 3, r + 1] (xr,r+1 − qd−2nI)Vn ⊆ Vn+1
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For the case s− r = 2, by [10, Theorem 14.2] the action of xrs on Vn is described in
the table below:

Decomposition Action of xr,r+2 on Vn

[r, r + 1] (xr,r+2 − qd−2nI)Vn ⊆ V0 + · · · + Vn−1

[r + 1, r] (xr,r+2 − q2n−dI)Vn ⊆ Vn+1 + · · · + Vd

[r + 1, r + 2] (xr,r+2 − qd−2nI)Vn ⊆ Vn+1 + · · · + Vd

[r + 2, r + 1] (xr,r+2 − q2n−dI)Vn ⊆ V0 + · · · + Vn−1

[r + 2, r + 3] (xr,r+2 − q2n−dI)Vn ⊆ Vn−1

[r + 3, r + 2] (xr,r+2 − qd−2nI)Vn ⊆ Vn+1

[r + 3, r] (xr,r+2 − q2n−dI)Vn ⊆ Vn+1

[r, r + 3] (xr,r+2 − qd−2nI)Vn ⊆ Vn−1

[r, r + 2] (xr,r+2 − qd−2nI)Vn = 0
[r + 2, r] (xr,r+2 − q2n−dI)Vn = 0

[r + 1, r + 3] xr,r+2Vn ⊆ Vn−1 + · · · + Vd

[r + 3, r + 1] xr,r+2Vn ⊆ V0 + · · · + Vn+1

We recall the notion of a flag. For the moment let V denote a vector space over F with
finite positive dimension and let {sn}dn=0 denote a sequence of positive integers whose
sum is the dimension of V . By a flag on V of shape {sn}dn=0 we mean a sequence {Un}dn=0
of subspaces for V such that Un−1 ⊆ Un for 1 � n � d and Un has dimension s0+ · · ·+sn
for 0 � n � d. Observe that Ud = V . The following construction yields a flag on V . Let
{Vn}dn=0 denote a decomposition of V of shape {sn}dn=0. Define Un = V0 + · · · + Vn for
0 � n � d. Then the sequence {Un}dn=0 is a flag on V of shape {sn}dn=0. This flag is said
to be induced by the decomposition {Vn}dn=0. We now recall what it means for two flags
to be opposite. Suppose we are given two flags on V with the same diameter: {Un}dn=0
and {U ′

n}dn=0. These flags are called opposite whenever there exists a decomposition
{Vn}dn=0 of V that induces {Un}dn=0 and whose inversion induces {U ′

n}dn=0. In this case
Vn = Un ∩ U ′

d−n for 0 � n � d, and also Ur ∩ U ′
s = 0 if r + s < d (0 � r, s � d) [26,

p. 846].
We now return our attention to �q-modules. Let V denote a finite-dimensional ir-

reducible �q-module of type 1 and diameter d. By [10, Theorem 16.1] there exists a
collection of flags on V , denoted [i], i ∈ Z4, such that for distinct i, j ∈ Z4 the decompo-
sition [i, j] induces [i]. By construction, the shape of the flag [i] coincides with the shape
of V . By construction, the flags [i], i ∈ Z4 are mutually opposite. Also by construction,
for distinct i, j ∈ Z4 and 0 � n � d the nth component of [i, j] is the intersection of the
following two sets:

(i) component n of flag [i];
(ii) component d− n of flag [j].

We comment on a very special case. Up to isomorphism there exists a unique
�q-module of dimension one, on which each standard generator acts as the identity.
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This �q-module is said to be trivial. For a �q-module V the following are equivalent:
(i) V is trivial; (ii) V is finite-dimensional and irreducible, with type 1 and diameter 0.

7. The dual space

Throughout this section V denotes a finite-dimensional irreducible �q-module of
type 1 and diameter d. By definition, the dual space V ∗ is the vector space over F

consisting of the F-linear maps from V to F. The vector spaces V and V ∗ have the same
dimension. In this section we will turn V ∗ into a �q−1-module, and discuss how this
module is related to the original �q-module V .

Definition 7.1. Define a bilinear form ( , ) : V × V ∗ → F such that (u, f) = f(u) for all
u ∈ V and f ∈ V ∗. The form ( , ) is nondegenerate.

Vectors u ∈ V and v ∈ V ∗ are called orthogonal whenever (u, v) = 0.
We recall the adjoint map [22, p. 227]. Let A ∈ End(V ). The adjoint of A, de-

noted Aadj , is the unique element of End(V ∗) such that (Au, v) = (u,Aadjv) for all
u ∈ V and v ∈ V ∗. The adjoint map End(V ) → End(V ∗), A �→ Aadj is an antiisomor-
phism of F-algebras.

Recall the antiisomorphism τ : �q → �q−1 from Proposition 5.2.

Proposition 7.2. There exists a unique �q−1-module structure on V ∗ such that

(ζu, v) =
(
u, ζτv

)
u ∈ V, v ∈ V ∗, ζ ∈ �q. (15)

Proof. The action of �q on V induces an F-algebra homomorphism �q → End(V ). Call
this homomorphism ψ. The composition

�q−1
τ−1−−−→ �q ψ

−→ End(V )
adj
−−−→ End

(
V ∗)

is an F-algebra homomorphism. This homomorphism gives V ∗ a �q−1-module structure.
By construction the �q−1-module V ∗ satisfies (15). We have shown that the desired
�q−1-module structure exists. One routinely checks that this structure is unique. �
Proposition 7.3. For all ζ ∈ �q, ζτ acts on V ∗ as the adjoint of the action of ζ on V .

Proof. By (15) and the definition of adjoint from above Proposition 7.2. �
Proposition 7.4. For each standard generator xij,

(xiju, v) = (u, xijv) u ∈ V, v ∈ V ∗.
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Proof. Evaluate (15) using Proposition 5.2. �
Given a subspace W of V (resp. V ∗) let W⊥ denote the set of vectors in V ∗ (resp. V )

that are orthogonal to everything in W . The space W⊥ is called the orthogonal comple-
ment of W . For W,W⊥ the sum of the dimensions is equal to the common dimension of
V, V ∗. Note that (W⊥)⊥ = W .

Lemma 7.5. For a subspace W ⊆ V and ζ ∈ �q, W is ζ-invariant if and only if W⊥ is
ζτ -invariant.

Proof. Use (15). �
Lemma 7.6. The �q−1-module V ∗ is irreducible.

Proof. Let W denote a �q−1-submodule of V ∗. We show that W = 0 or W = V ∗.
Consider the orthogonal complement W⊥ ⊆ V . By Lemma 7.5 W⊥ is a �q-submodule
of V . The �q-module V is irreducible so W⊥ = V or W⊥ = 0. It follows that W = 0 or
W = V ∗. �
Lemma 7.7. For ζ ∈ �q the following coincide:

(i) the minimal polynomial for the action of ζ on V ;
(ii) the minimal polynomial for the action of ζτ on V ∗.

Proof. Use (15). �
Proposition 7.8. The �q−1-module V ∗ has type 1 and diameter d.

Proof. By assumption the �q-module V has type 1 and diameter d. Therefore each xij is
diagonalizable on V with eigenvalues {qd−2n | 0 � n � d}. Now by Lemma 7.7 and since
xτ
ij = xij , the element xij is diagonalizable on V ∗ with eigenvalues {qd−2n | 0 � n � d}.

The result follows. �
Recall that V is an irreducible �q-module of type 1 and diameter d. We described

V in Section 6. In view of Lemma 7.6 and Proposition 7.8, this description (with q

replaced by q−1) applies to V ∗. In particular, for distinct i, j ∈ Z4 we may speak of the
decomposition [i, j] of V ∗, and for i ∈ Z4 we may speak of the flag [i] on V ∗.

Suppose we are given a decomposition of V and a decomposition of V ∗. These de-
compositions are said to be dual whenever (i) they have the same diameter δ; (ii) for
distinct 0 � i, j � δ the ith component of the one is orthogonal to the jth component of
the other. Each decomposition of V (resp. V ∗) is dual to a unique decomposition of V ∗

(resp. V ). Dual decompositions have the same shape.
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Proposition 7.9. For distinct i, j ∈ Z4 the decomposition [i, j] of V is dual to the decom-
position [j, i] of V ∗.

Proof. First assume j − i = 1 or j − i = 2, so that xij exists. Pick distinct integers
r, s (0 � r, s � d). Let u denote a vector in component r of the decomposition [i, j]
of V , and let v denote a vector in component s of the decomposition [j, i] of V ∗. We
show that (u, v) = 0. By Proposition 7.4 (xiju, v) = (u, xijv). By construction xiju =
qd−2ru and xijv = qd−2sv. Observe that qd−2r �= qd−2s since q is not a root of unity.
By these comments (u, v) = 0. Next assume that j − i = 3. By the first part of this
proof, the decomposition [j, i] of V is dual to the decomposition [i, j] of V ∗. Invert both
decompositions to find that the decomposition [i, j] of V is dual to the decomposition
[j, i] of V ∗. �
Proposition 7.10. The �q-module V and the �q−1-module V ∗ have the same shape.

Proof. Pick distinct i, j ∈ Z4. By definition, the shape of the �q-module V is equal to
the shape of the decomposition [i, j] of V . Similarly the shape of the �q−1-module V ∗ is
equal to the shape of the decomposition [j, i] of V ∗. All these shapes are the same, by
Proposition 7.9 and the sentence prior to it. �
Proposition 7.11. For i ∈ Z4 and 0 � n � d−1 the following are orthogonal complements
with respect to the bilinear form ( , ):

(i) component n of the flag [i] on V ;
(ii) component d− n− 1 of the flag [i] on V ∗.

Proof. Pick j ∈ Z4 with j �= i. By construction, the decomposition [i, j] of V (resp. V ∗)
induces the flag [i] of V (resp. V ∗). The decomposition [i, j] of V ∗ is the inversion of
the decomposition [j, i] of V ∗. The result follows from these comments and Proposi-
tion 7.9. �
8. Twisting

Recall the automorphism ρ of �q from Lemma 4.3. In this section we investigate what
happens when we twist a �q-module via ρ.

Definition 8.1. Let V denote a �q-module and let π denote an automorphism of �q. Then
there exists a �q-module structure on V , called V twisted via π, that behaves as follows:
for all ζ ∈ �q and v ∈ V , the vector ζv computed in V twisted via π coincides with the
vector π−1(ζ)v computed in the original �q-module V . Sometimes we abbreviate πV for
V twisted via π.
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Lemma 8.2. Referring to Definition 8.1, the �q-module V is irreducible if and only if the
�q-module πV is irreducible.

Proof. Immediate from Definition 8.1. �
Referring to Definition 8.1, we now consider the case π = ρ.

Lemma 8.3. Let V denote a �q-module. For each standard generator xij of �q, the
following are the same:

(i) the action of xij on the �q-module V ;
(ii) the action of xi+1,j+1 on the �q-module ρV .

Proof. By Lemma 4.3 and Definition 8.1. �
Lemma 8.4. Let V denote a finite-dimensional irreducible �q-module of type 1 and di-
ameter d. Then the �q-module ρV is irreducible, with type 1 and diameter d.

Proof. By Lemma 8.2 and Lemma 8.3, along with the meaning of type and diameter. �
For the following three lemmas the proof is routine and left to the reader.

Lemma 8.5. Let V denote a finite-dimensional irreducible �q-module of type 1. Then for
distinct i, j ∈ Z4 the following coincide:

(i) the decomposition [i, j] of V ;
(ii) the decomposition [i + 1, j + 1] of ρV .

Lemma 8.6. Let V denote a finite-dimensional irreducible �q-module of type 1. Then for
i ∈ Z4 the following coincide:

(i) the flag [i] on V ;
(ii) the flag [i + 1] on ρV .

Lemma 8.7. Let V denote a finite-dimensional irreducible �q-module of type 1. Then the
following coincide:

(i) the shape of V ;
(ii) the shape of ρV .
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9. Evaluation modules

We have been discussing the finite-dimensional irreducible �q-modules. We now re-
strict our attention to a special case, called an evaluation module.

Definition 9.1. By an evaluation module for �q we mean a nontrivial, finite-dimensional,
irreducible �q-module, of type 1 and shape (1, 1, . . . , 1).

Let V denote an evaluation module for �q. Since V is nontrivial the diameter d � 1.
Each standard generator xij is multiplicity-free on V , with eigenvalues {qd−2n | 0 �
n � d}. In Section 6, for each i ∈ Z4 we used the homomorphism κi : Uq(sl2) → �q

to turn V into a Uq(sl2)-module. Each of these Uq(sl2)-modules is isomorphic to Vd. In
order to recover the �q-module V from Vd, we add extra structure involving a parameter
t. This is done as follows.

Proposition 9.2. Pick an integer d � 1 and a nonzero t ∈ F that is not among
{qd−2n+1}dn=1. Then there exists an evaluation module Vd(t) for �q with the follow-
ing property: Vd(t) has a basis with respect to which the standard generators xij are
represented by the following matrices in Matd+1(F):

Generator x01 x12 x23 x30

Representing matrix ZSq−1 (t−1)Z Eq Kq ZGq−1 (t)Z

Generator x02 x13 x20 x31

Representing matrix Lq(t) (ZEq−1Z)−1 (Lq(t))−1 ZEq−1Z

(The above matrices are defined in Appendix A.)

Proof. It is routine (but tedious) to check that the above matrices satisfy the defining
relations for �q. This makes Vd(t) a �q-module. The �q-module Vd(t) is irreducible by
Note 3.15 and since the matrices Eq, Kq, ZEq−1Z are included in the above tables. By
construction the �q-module Vd(t) is nontrivial, with type 1 and shape (1, 1, . . . , 1). �

We have a comment.

Lemma 9.3. On the evaluation module Vd(t) from Proposition 9.2, the actions of the
standard generators (11) are mutually distinct.

Proof. The eight representing matrices in the tables of Proposition 9.2 are mutually
distinct. This is checked using the definitions in Appendix A. �

Consider the �q-module Vd(t) from Proposition 9.2. This module has dimension d+1.
Now let V denote any evaluation module for �q that has dimension d + 1. Shortly we
will show that the �q-module V is isomorphic to Vd(t) for a unique t.
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Lemma 9.4. On the �q-module Vd(t),

t(x01 − x23) = [x30, x12]
q − q−1 , t−1(x12 − x30) = [x01, x23]

q − q−1 . (16)

Proof. To get the equation on the right, represent the standard generators by matrices
as in Proposition 9.2. To get the equation on the left, start with the equation on the
right. In this equation take the commutator of x12 with each side, and evaluate the result
using Lemma 3.4 (with u = x01, v = x12, w = x23). �
Lemma 9.5. On the �q-module Vd(t),

t(x01 − x02) = [x30, x02]
q − q−1 , t−1(x12 − x13) = [x01, x13]

q − q−1 , (17)

t(x23 − x20) = [x12, x20]
q − q−1 , t−1(x30 − x31) = [x23, x31]

q − q−1 , (18)

and also

t−1(x30 − x20) = [x20, x01]
q − q−1 , t(x01 − x31) = [x31, x12]

q − q−1 , (19)

t−1(x12 − x02) = [x02, x23]
q − q−1 , t(x23 − x13) = [x13, x30]

q − q−1 . (20)

Proof. We first verify the equations on the left in (17)–(20). Call these equations
(17L)–(20L). To obtain (20L), represent the standard generators by matrices as in Propo-
sition 9.2. To obtain (17L), in (20L) take the commutator of x30 with each side, and
evaluate the result using Lemma 3.4 (with u = x23, v = x30, w = x02) along with the
equation on the left in (16). To obtain (19L), in (17L) take the commutator of each side
with x20, and evaluate the result using Lemma 3.3(ii). To obtain (18L), in (19L) take
the commutator of x12 with each side, and evaluate the result using Lemma 3.4 (with
u = x01, v = x12, w = x20) along with the equation on the left in (16). We have verified
the equations on the left in (17)–(20).

We now verify the equations on the right in (17)–(20). Call these equations
(17R)–(20R). To obtain (18R), represent the standard generators by matrices as in
Proposition 9.2. To obtain (20R), in (18R) take the commutator of each side with x13,
and evaluate the result using Lemma 3.3(ii). To obtain (17R), in (20R) take the com-
mutator of x01 with each side, and evaluate the result using Lemma 3.4 (with u = x30,
v = x01, w = x13) along with the equation on the right in (16). To obtain (19R), in (17R)
take the commutator of each side with x31, and evaluate the result using Lemma 3.3(ii).
We have verified the equations on the right in (17)–(20). The result follows. �
Proposition 9.6. Let V denote an evaluation module for �q that has diameter d. Then
there exists a unique t ∈ F such that:



T. Ito et al. / Linear Algebra and its Applications 451 (2014) 107–168 127
(i) t is nonzero and not among {qd−2n+1}dn=1;
(ii) the �q-module V is isomorphic to Vd(t).

Proof. We first show that t exists. In Section 6, above the first table, for each i ∈ Z4 we
used the homomorphism κi : Uq(sl2) → �q to turn V into a Uq(sl2)-module isomorphic
to Vd. Let us take i = 0. For this Uq(sl2)-module V let {vn}dn=0 denote an [x]row-basis
from Lemma 3.17 and Definition 3.18. By Lemma 3.22 and the construction, with respect
to {vn}dn=0 the matrices in Matd+1(F) that represent x12, x23, x31 are Eq, Kq, ZEq−1Z

respectively. Let G (resp. S) (resp. L) denote the matrix in Matd+1(F) that represents x30

(resp. x01) (resp. x02) with respect to the basis {vn}dn=0. Using the tables in Section 6
we find that (i) G is lower bidiagonal with (n, n)-entry q2n−d for 0 � n � d; (ii) S is
tridiagonal; (iii) L is upper bidiagonal with (n, n)-entry q2n−d for 0 � n � d. On the
above matrices we impose the defining relations for �q, and solve for G, S, L. After a
brief calculation we find that there exists a nonzero t ∈ F not among {qd−2n+1}dn=1 such
that

G = ZGq−1(t)Z, S = ZSq−1
(
t−1)Z, L = Lq(t).

Therefore the �q-module V is isomorphic to Vd(t). We have shown that t exists. The
scalar t is unique by Lemma 9.3 and either equation in (16). �
Definition 9.7. Let V denote an evaluation module for �q. By the evaluation parameter
of V we mean the scalar t in Proposition 9.6.

Lemma 9.8. Two evaluation modules for �q are isomorphic if and only if they have the
same diameter and same evaluation parameter.

Proof. Consider two isomorphic evaluation modules for �q. They have the same diame-
ter, since they have the same dimension and the dimension is one more than the diameter.
They have the same evaluation parameter by Proposition 9.6 and Definition 9.7. �

Recall the elements Υi of �q, from Definition 4.6.

Lemma 9.9. Let V denote an evaluation module for �q that has diameter d. Then for
i ∈ Z4 the element Υi acts on V as (qd+1 + q−d−1)I.

Proof. Using the homomorphism κi : Uq(sl2) → �q we give V a Uq(sl2)-module structure
as in Section 6. By Definition 4.6 and the construction, on V the element Υi agrees with
the Casimir element of Uq(sl2). The result now follows via Lemma 3.16 and since the
Uq(sl2)-module V is isomorphic to Vd. �
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Definition 9.10. Let V denote an evaluation module for �q that has diameter d. By
Lemma 9.9, for i ∈ Z4 the action of Υi on V is independent of i. Denote this common
action by Υ . Thus on V ,

Υ =
(
qd+1 + q−d−1)I. (21)

We now give some identities that involve Υ .

Lemma 9.11. Let V denote an evaluation module for �q, with evaluation parameter t.
Then on V ,

Υ = t(x01x23 − 1) + qx30 + q−1x12, Υ = t−1(x12x30 − 1) + qx01 + q−1x23,

Υ = t(x23x01 − 1) + qx12 + q−1x30, Υ = t−1(x30x12 − 1) + qx23 + q−1x01.

Proof. Pick i ∈ Z4. In (7) we defined the Casimir element Λ for Uq(sl2). In Lemma 4.5
we described the map κi : Uq(sl2) → �q. Apply κi to each side of (7), and evaluate the
result using Definition 4.6 and Definition 9.10. This shows that on V ,

Υ = qxi+2,i+3 + q−1xi+3,i+1 + qxi+1,i+2 − qxi+2,i+3xi+3,i+1xi+1,i+2

= qxi+2,i+3 + q−1xi+3,i+1 + q(1 − xi+2,i+3xi+3,i+1)xi+1,i+2. (22)

By (2) and (17), (18) the following hold on V :

q(1 − xi+2,i+3xi+3,i+1) = [xi+2,i+3, xi+3,i+1]
q − q−1

= ts(xi+3,i − xi+3,i+1),

where s = (−1)i+1. Evaluating (22) using these comments we find that on V ,

Υ = qxi+2,i+3 + q−1xi+3,i+1 + ts(xi+3,i − xi+3,i+1)xi+1,i+2

= qxi+2,i+3 + q−1xi+3,i+1 + ts(xi+3,ixi+1,i+2 − 1) + ts(1 − xi+3,i+1xi+1,i+2). (23)

By (2) and (19), (20) the following hold on V :

q(1 − xi+3,i+1xi+1,i+2) = [xi+3,i+1, xi+1,i+2]
q − q−1

= t−s(xi,i+1 − xi+3,i+1).

Evaluating (23) using these comments we find that on V ,

Υ = qxi+2,i+3 + q−1xi+3,i+1 + ts(xi+3,ixi+1,i+2 − 1) + q−1(xi,i+1 − xi+3,i+1)

= ts(xi+3,ixi+1,i+2 − 1) + qxi+2,i+3 + q−1xi,i+1.

The result follows. �
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Lemma 9.12. Let V denote an evaluation module for �q, with evaluation parameter t.
Then on V ,

Υ =
(
q + q−1)x30 + t

(
qx01x23 − q−1x23x01

q − q−1 − 1
)
, (24)

Υ =
(
q + q−1)x01 + t−1

(
qx12x30 − q−1x30x12

q − q−1 − 1
)
,

Υ =
(
q + q−1)x12 + t

(
qx23x01 − q−1x01x23

q − q−1 − 1
)
,

Υ =
(
q + q−1)x23 + t−1

(
qx30x12 − q−1x12x30

q − q−1 − 1
)
.

Proof. For each displayed equation, evaluate the parenthetical expression using Lem-
ma 9.11 and simplify the result. �
Note 9.13. Let V denote an evaluation module for �q. Among the standard generators
for �q consider the following two pairs: (i) x01 and x23; (ii) x12 and x30. Each pair acts
on V as a Leonard pair; see [5, Example 1.7] and [10, Theorem 10.3]. Lemma 9.12 shows
how each Leonard pair determines the other.

Lemma 9.14. Let V denote an evaluation module for �q, with evaluation parameter t.
Then x01, x23 satisfy the following on V :

x2
01x23 −

(
q2 + q−2)x01x23x01 + x23x

2
01

= −
(
q − q−1)2(1 + t−1Υ

)
x01 +

(
q − q−1)(q2 − q−2)t−1,

x2
23x01 −

(
q2 + q−2)x23x01x23 + x01x

2
23

= −
(
q − q−1)2(1 + t−1Υ

)
x23 +

(
q − q−1)(q2 − q−2)t−1.

Moreover x12, x30 satisfy the following on V :

x2
12x30 −

(
q2 + q−2)x12x30x12 + x30x

2
12

= −
(
q − q−1)2(1 + tΥ )x12 +

(
q − q−1)(q2 − q−2)t,

x2
30x12 −

(
q2 + q−2)x30x12x30 + x12x

2
30

= −
(
q − q−1)2(1 + tΥ )x30 +

(
q − q−1)(q2 − q−2)t.

Proof. To obtain the first equation, compute (24) times qx01 minus q−1x01 times (24),
and simplify the result using

qx30x01 − q−1x01x30

q − q−1 = 1.

The remaining equations are similarly obtained. �



130 T. Ito et al. / Linear Algebra and its Applications 451 (2014) 107–168
Note 9.15. The equations in Lemma 9.14 are the Askey–Wilson relations [33, Theo-
rem 1.5] for the Leonard pairs in Note 9.13.

We end this section with some comments about the evaluation parameter.

Lemma 9.16. Let V denote an evaluation module for �q, with evaluation parameter t.
Then the �q−1-module V ∗ is an evaluation module with evaluation parameter t.

Proof. The �q−1-module V ∗ is an evaluation module by Proposition 7.8 and Proposi-
tion 7.10. Let t′ denote the corresponding evaluation parameter. We show that t′ = t.
Applying Lemma 9.4 to V we find that on V ,

t(x01 − x23) = [x30, x12]
q − q−1 . (25)

Applying Lemma 9.4 to the �q−1-module V ∗ we find that on V ∗,

t′(x01 − x23) = [x30, x12]
q−1 − q

. (26)

Let Δ denote the left-hand side of (25) minus the right-hand side of (25). Then ΔV = 0,
so ΔτV ∗ = 0 in view of (15). By this and Proposition 5.2 we find that on V ∗,

t(x01 − x23) = [x12, x30]
q − q−1 . (27)

We now compare (26) and (27). For these equations the right-hand sides are the same,
so the left-hand sides agree on V ∗. In other words (t − t′)(x01 − x23)V ∗ = 0. But
(x01 − x23)V ∗ �= 0 by Lemma 9.3 and since V ∗ is an evaluation module. Therefore
t = t′. �
Lemma 9.17. Let V denote an evaluation module for �q, with evaluation parameter t.
Then the �q-module ρV is an evaluation module with evaluation parameter t−1.

Proof. The �q-module ρV is an evaluation module by Lemma 8.4 and Lemma 8.7. To
see that ρV has evaluation parameter t−1, compare the two equations in Lemma 9.4,
and use Lemma 9.3. �
Corollary 9.18. Let V denote an evaluation module for �q. Then the following
�q-modules are isomorphic: (i) V ; (ii) V twisted via ρ2.

Proof. Apply Lemma 9.17 twice to V , and use Lemma 9.8. �
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10. 24 bases for an evaluation module

Let V denote an evaluation module for �q that has diameter d. In this section we
display 24 bases for V that we find attractive. In Section 11 we show how the standard
generators for �q act on these bases.

For i ∈ Z4 consider the flag [i] on V . We will be discussing component 0 of this flag.
This component has dimension one. It is an eigenspace for each standard generator listed
in the table below. In each case the corresponding eigenvalue is given.

Generator xi,i+1 xi,i+2 xi−1,i xi+2,i

Eigenvalue qd qd q−d q−d

Definition 10.1. Let V denote an evaluation module for �q that has diameter d. Pick
mutually distinct i, j, k, � in Z4. A basis {vn}dn=0 for V is called an [i, j, k, �]-basis when-
ever:

(i) for 0 � n � d the vector vn is contained in component n of the decomposition [k, �]
of V ;

(ii)
∑d

n=0 vn is contained in component 0 of the flag [j] on V .

We will discuss the existence and uniqueness of the bases in Definition 10.1. We start
with uniqueness.

Lemma 10.2. Let V denote an evaluation module for �q that has diameter d. Pick mutu-
ally distinct i, j, k, � in Z4 and let {vn}dn=0 denote an [i, j, k, �]-basis for V . Let {v′n}dn=0
denote any vectors in V . Then the following are equivalent:

(i) the sequence {v′n}dn=0 is an [i, j, k, �]-basis for V ;
(ii) there exists 0 �= α ∈ F such that v′n = αvn for 0 � n � d.

Proof. (i) ⇒ (ii) By assumption V has shape (1, 1, . . . , 1).
(ii) ⇒ (i) Immediate from Definition 10.1. �
Let V denote an evaluation module for �q that has diameter d. In Section 6, for

i ∈ Z4 we used the homomorphism κi : Uq(sl2) → �q to turn V into a Uq(sl2)-module
isomorphic to Vd. Six bases for this Uq(sl2)-module were displayed in (9), (10).

Lemma 10.3. Let V denote an evaluation module for �q. Pick i ∈ Z4 and consider the
corresponding Uq(sl2)-module V as above. In each row of the table below we display a
basis for the Uq(sl2)-module V from (9), (10) and a basis for the �q-module V from
Definition 10.1. These two bases are the same.



132 T. Ito et al. / Linear Algebra and its Applications 451 (2014) 107–168
Basis for V from (9), (10) Basis for V from Definition 10.1
[x]row [i, i + 1, i + 2, i + 3]
[x]inv

row [i, i + 1, i + 3, i + 2]

[y]row [i, i + 2, i + 3, i + 1]
[y]inv

row [i, i + 2, i + 1, i + 3]

[z]row [i, i + 3, i + 1, i + 2]
[z]inv

row [i, i + 3, i + 2, i + 1]

Proof. By Lemma 4.5 and the construction. �
Lemma 10.4. Let V denote an evaluation module for �q, and pick mutually distinct
i, j, k, � in Z4. Then there exists an [i, j, k, �]-basis for V .

Proof. Immediate from Lemma 10.3. �
Note 10.5. The basis for Vd(t) given in Proposition 9.2 is a [0, 1, 2, 3]-basis.

Let V denote an evaluation module for �q. In Definition 10.1 we gave 24 bases for V .
In Section 11 we will compute the matrices that represent the standard generators with
respect to these bases. We now mention some results that will facilitate this computation.

Lemma 10.6. Let V denote an evaluation module for �q, and pick mutually distinct
i, j, k, � in Z4. Then each [i, j, k, �]-basis for V is the inversion of an [i, j, �, k]-basis for V .

Proof. By Definition 10.1 and the meaning of inversion. �
Corollary 10.7. Let V denote an evaluation module for �q, and pick mutually distinct
i, j, k, � in Z4. For each standard generator xrs consider the following two matrices:

(i) the matrix that represents xrs with respect to an [i, j, k, �]-basis for V ;
(ii) the matrix that represents xrs with respect to an [i, j, �, k]-basis for V .

Each of these matrices is obtained from the other via conjugation by Z.

Proof. By Lemma 10.6 and linear algebra. �
Lemma 10.8. Let V denote an evaluation module for �q, and pick mutually distinct
i, j, k, � in Z4. Then the following are the same:

(i) an [i, j, k, �]-basis for V ;
(ii) an [i + 1, j + 1, k + 1, � + 1]-basis for ρV .

Proof. Use Lemma 8.5 and Lemma 8.6. �
Lemma 10.9. Consider the �q-module Vd(t). Pick mutually distinct i, j, k, � in Z4. Then
for each standard generator xrs the following are the same:
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(i) the matrix that represents xrs with respect to an [i, j, k, �]-basis for Vd(t);
(ii) the matrix that represents xr+1,s+1 with respect to an [i+ 1, j + 1, k + 1, �+ 1]-basis

for Vd(t−1).

Proof. Use Lemma 8.3, Lemma 9.17, and Lemma 10.8. �
Corollary 10.10. Let V denote an evaluation module for �q. Pick mutually distinct
i, j, k, � in Z4. Then for each standard generator xrs the following are the same:

(i) the matrix that represents xrs with respect to an [i, j, k, �]-basis for V ;
(ii) the matrix that represents xr+2,s+2 with respect to an [i+ 2, j + 2, k + 2, �+ 2]-basis

for V .

Proof. Apply Lemma 10.9 twice, or use Corollary 9.18 along with Lemma 10.8. �
11. The action of the standard generators on the 24 bases

Let V denote an evaluation module for �q. In Definition 10.1 we defined 24 bases
for V . In this section we display the matrices that represent the standard generators xij

with respect to these bases.
The matrices displayed in the following theorem are defined in Appendix A.

Theorem 11.1. Let V denote an evaluation module for �q, with diameter d and evaluation
parameter t. In the tables below, we display the matrices in Matd+1(F) that represent the
standard generators xij with respect to the 24 bases for V from Definition 10.1. Pick
r ∈ Z4, and first assume that r is even. Then

Basis xr,r+1 xr+1,r+2 xr+2,r+3 xr+3,r

[r, r + 1, r + 2, r + 3] ZSq−1 (t−1)Z Eq Kq ZGq−1 (t)Z
[r + 1, r, r + 2, r + 3] Sq(t−1) Gq(t) Kq ZEq−1Z

[r, r + 1, r + 3, r + 2] Sq−1 (t−1) ZEqZ Kq−1 Gq−1 (t)
[r + 1, r, r + 3, r + 2] ZSq(t−1)Z ZGq(t)Z Kq−1 Eq−1

[r, r + 2, r + 1, r + 3] Fq(t−1) Eq−1 ZEqZ ZFq−1 (t)Z
[r + 2, r, r + 1, r + 3] Eq Fq−1 (t) ZFq(t−1)Z ZEq−1Z

Basis xr,r+2 xr+1,r+3 xr+2,r xr+3,r+1

[r, r + 1, r + 2, r + 3] Lq(t) (ZEq−1Z)−1 (Lq(t))−1 ZEq−1Z

[r + 1, r, r + 2, r + 3] Eq (ZLq−1 (t)Z)−1 (Eq)−1 ZLq−1 (t)Z
[r, r + 1, r + 3, r + 2] ZLq(t)Z (Eq−1 )−1 (ZLq(t)Z)−1 Eq−1

[r + 1, r, r + 3, r + 2] ZEqZ (Lq−1 (t))−1 (ZEqZ)−1 Lq−1 (t)

[r, r + 2, r + 1, r + 3] ZMq−1 (t−1)Z Kq Mq(t) Kq−1

[r + 2, r, r + 1, r + 3] ZMq(t)Z Kq Mq−1 (t−1) Kq−1

Next assume that r is odd. Then in the above tables replace t by t−1.
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Proof. By Lemma 10.9 we may assume that r = 0. We now consider six cases. In the
following discussion all bases mentioned are for V .

Basis [0, 1, 2, 3]. By Proposition 9.2 and Note 10.5.
Basis [1, 0, 2, 3]. We first verify the data for x23, x30, x02. Using the map κ1 : Uq(sl2) →

�q we turn V into a Uq(sl2)-module isomorphic to Vd. By Lemma 10.3 the bases [1, 0, 2, 3]
and [z]row are the same. By Lemma 4.5 the equations x23 = z, x30 = x, x02 = y hold
on V . By Lemma 3.22 the matrices representing z, x, y with respect to [z]row are Kq,
ZEq−1Z, Eq respectively. By these comments the matrices representing x23, x30, x02 with
respect to [1, 0, 2, 3] are Kq, ZEq−1Z, Eq respectively. By Definition 4.1(i) the generator
x20 is the inverse of x02. Therefore the matrix representing x20 with respect to [1, 0, 2, 3]
is (Eq)−1. To get the matrix representing x01 with respect to [1, 0, 2, 3] use the equation
on the left in (17). To get the matrix representing x12 with respect to [1, 0, 2, 3] use
the equation on the left in (20). We now verify the data for x31 and x13. Let L denote
the matrix representing x31 with respect to [1, 0, 2, 3]. By the second table of Section 6,
L is lower bidiagonal with (n, n)-entry q2n−d for 0 � n � d. On this matrix we impose
the defining relations for �q. After a brief calculation we obtain L = ZLq−1(t)Z. By
Definition 4.1(i) x13 is the inverse of x31. Therefore the matrix representing x13 with
respect to [1, 0, 2, 3] is (ZLq−1(t)Z)−1.

Basis [0, 1, 3, 2]. Use Corollary 10.7.
Basis [1, 0, 3, 2]. Use Corollary 10.7.
Basis [0, 2, 1, 3]. We first verify the data for x12, x23, x31. Using the map κ0 : Uq(sl2) →

�q we turn V into a Uq(sl2)-module isomorphic to Vd. By Lemma 10.3 the bases [0, 2, 1, 3]
and [y]inv

row are the same. By Lemma 4.5 the equations x12 = z, x23 = x, x31 = y hold
on V . By Lemma 3.22 the matrices representing z, x, y with respect to [y]inv

row are Eq−1 ,
ZEqZ, Kq−1 respectively. By these comments the matrices representing x12, x23, x31

with respect to [0, 2, 1, 3] are Eq−1 , ZEqZ, Kq−1 respectively. By Definition 4.1(i) the
generator x13 is the inverse of x31. Therefore the matrix representing x13 with respect
to [0, 2, 1, 3] is (Kq−1)−1, which is equal to Kq. To get the matrix representing x01 with
respect to [0, 2, 1, 3] use the equation on the right in (19). To get the matrix representing
x30 with respect to [0, 2, 1, 3] use the equation on the right in (18). We now verify the
data for x20 and x02. Let M (resp. M ′) denote the matrix representing x20 (resp. x02)
with respect to [0, 2, 1, 3]. On this matrix we impose the defining relations for �q. After
a brief calculation we obtain M = Mq(t) and M ′ = ZMq−1(t−1)Z.

Basis [2, 0, 1, 3]. Use Corollary 10.7 and Corollary 10.10. �

12. A normalization of the 24 bases

Let V denote an evaluation module for �q. In Definition 10.1 we gave 24 bases for V .
In Section 13 we will give the transition matrices between certain pairs of bases among
the 24. Before doing this, we first normalize our bases.
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Definition 12.1. Let V denote an evaluation module for �q. For i ∈ Z4 let ηi (resp. η∗i )
denote a nonzero vector in component 0 of the flag [i] on V (resp. V ∗).

Lemma 12.2. Let V denote an evaluation module for �q that has diameter d. Then the
following (i), (ii) hold for i ∈ Z4.

(i) The vector ηi is an eigenvector for each standard generator listed in the table below.
In each case the corresponding eigenvalue is given.

Generator xi,i+1 xi,i+2 xi−1,i xi+2,i

Eigenvalue qd qd q−d q−d

(ii) The vector η∗i is an eigenvector for each standard generator listed in the table below.
In each case the corresponding eigenvalue is given.

Generator xi,i+1 xi,i+2 xi−1,i xi+2,i

Eigenvalue q−d q−d qd qd

Proof. (i) By Definition 12.1 and the paragraph above Definition 10.1.
(ii) Apply (i) above to the �q−1-module V ∗. �

Lemma 12.3. Referring to Definition 12.1 the following (i), (ii) hold.

(i) For distinct i, j ∈ Z4 we have (ηi, η∗j ) �= 0.
(ii) For i ∈ Z4 we have (ηi, η∗i ) = 0.

Proof. (i) The vector ηi is a basis for component 0 of the decomposition [i, j] for V .
The vector η∗j is a basis for component 0 of the decomposition [j, i] for V ∗. By Proposi-
tion 7.9 the decomposition [i, j] for V is dual to the decomposition [j, i] for V ∗. Therefore
(ηi, η∗j ) �= 0.

(ii) Use Proposition 7.11 with n = 0. Recall that V is nontrivial so it has diameter
d � 1. �
Lemma 12.4. Let V denote an evaluation module for �q that has diameter d. Given
mutually distinct i, j, k, � ∈ Z4 there exists a unique basis {un}dn=0 for V such that (i),
(ii) hold below:

(i) for 0 � n � d the vector un is contained in component n of the decomposition [k, �]
of V ;

(ii) ηj =
∑d

n=0 un.

We denote this basis by [i, j, k, �].
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Proof. We first show that the basis [i, j, k, �] exists. By Lemma 10.4 there exists an
[i, j, k, �]-basis for V . Denote this basis by {vn}dn=0. Define v =

∑d
n=0 vn and note that

v �= 0. By Definition 10.1 v is contained in component 0 of the flag [j] for V . By
construction ηj is a basis for component 0 of the flag [j] for V . Therefore there exists
0 �= α ∈ F such that v = αηj . Define un = α−1vn for 0 � n � d. Then {un}dn=0 is a
basis for V that satisfies the requirements (i), (ii). One checks using Lemma 10.2 that
the basis [i, j, k, �] is unique. �
Lemma 12.5. Let V denote an evaluation module for �q, and pick mutually distinct
i, j, k, � in Z4. Then the bases [i, j, k, �] and [i, j, �, k] for V are the inversion of each
other.

Proof. By Lemma 12.4 and the meaning of inversion. �
Proposition 12.6. Let V denote an evaluation module for �q that has diameter d. Pick
mutually distinct i, j, k, � in Z4 and consider the basis [i, j, k, �] of V . For this basis the
components 0 and d are given below.

Component 0 Component d

(ηj,η
∗
�
)

(ηk,η∗
�
)ηk

(ηj,η
∗
k
)

(η�,η∗
k
) η�

Proof. Denote the basis by {un}dn=0. Recall that for 0 � n � d the vector un is contained
in component n of the decomposition [k, �] of V . By construction ηk (resp. η�) is a basis
for component 0 (resp. d) of the decomposition [k, �] of V . Similarly η∗k (resp. η∗� ) is a
basis for component 0 (resp. d) of the decomposition [k, �] of V ∗. By Proposition 7.9 the
decomposition [k, �] of V is dual to decomposition [�, k] of V ∗. Therefore (un, η

∗
� ) = 0 for

1 � n � d and (un, η
∗
k) = 0 for 0 � n � d − 1. Moreover there exist α, β ∈ F such that

u0 = αηk and ud = βη�. Now using Lemma 12.4(ii),

(
ηj , η

∗
�

)
=

d∑
n=0

(
un, η

∗
�

)
=

(
u0, η

∗
�

)
= α

(
ηk, η

∗
�

)

so α = (ηj , η∗� )/(ηk, η∗� ). Similarly

(
ηj , η

∗
k

)
=

d∑
n=0

(
un, η

∗
k

)
=

(
ud, η

∗
k

)
= β

(
η�, η

∗
k

)

so β = (ηj , η∗k)/(η�, η∗k). The result follows. �
13. Transition matrices between the 24 bases

Let V denote an evaluation module for �q that has diameter d. Recall the 24 bases for
V from Lemma 12.4. In this section we compute the transition matrices between certain
pairs of bases among the 24. First we clarify a few terms.
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Suppose we are given two bases for V , denoted {un}dn=0 and {vn}dn=0. By the transition
matrix from {un}dn=0 to {vn}dn=0 we mean the matrix S ∈ Matd+1(F) such that vn =∑d

r=0 Srnur for 0 � n � d. Let S denote the transition matrix from {un}dn=0 to {vn}dn=0.
Then S−1 exists and equals the transition matrix from {vn}dn=0 to {un}dn=0.

Let {wn}dn=0 denote a basis for V and let T denote the transition matrix from {vn}dn=0
to {wn}dn=0. Then ST is the transition matrix from {un}dn=0 to {wn}dn=0.

Let A ∈ End(V ) and let M denote the matrix in Matd+1(F) that represents A with
respect to {un}dn=0. Then the matrix S−1MS represents A with respect to {vn}dn=0.

The matrix Z is defined in Appendix A. Let {vn}dn=0 denote a basis for V and con-
sider the inverted basis {vd−n}dn=0. Then Z is the transition matrix from {vn}dn=0 to
{vd−n}dn=0.

Pick mutually distinct i, j, k, � in Z4 and consider the basis [i, j, k, �] of V . We will
display the transition matrix from this basis to each of the bases

[j, i, k, �], [i, k, j, �], [i, j, �, k].

As we will see, the first transition matrix is diagonal, the second is lower triangular, and
the third one is equal to Z.

We now consider the transitions of type [i, j, k, �] → [j, i, k, �]. We will be discussing
the matrices Dq(t) and Dq(t) defined in Appendix A.

Theorem 13.1. Let V denote an evaluation module for �q, with diameter d and evaluation
parameter t. In the table below we display some transition matrices between the 24 bases
for V from Lemma 12.4. Each transition matrix is diagonal. Pick r ∈ Z4, and first
assume that r is even.

Transition Transition matrix
[r, r + 1, r + 2, r + 3] → [r + 1, r, r + 2, r + 3] Dq(t)

(ηr,η
∗
r+3)

(ηr+1,η∗
r+3)

[r + 1, r, r + 2, r + 3] → [r, r + 1, r + 2, r + 3] (Dq(t))−1 (ηr+1,η
∗
r+3)

(ηr,η∗
r+3)

[r, r + 1, r + 3, r + 2] → [r + 1, r, r + 3, r + 2] (Dq−1 (t))−1 (ηr,η
∗
r+2)

(ηr+1,η∗
r+2)

[r + 1, r, r + 3, r + 2] → [r, r + 1, r + 3, r + 2] Dq−1 (t) (ηr+1,η
∗
r+2)

(ηr,η∗
r+2)

[r, r + 2, r + 1, r + 3] → [r + 2, r, r + 1, r + 3] Dq(t)
(ηr,η

∗
r+3)

(ηr+2,η∗
r+3)

[r + 2, r, r + 1, r + 3] → [r, r + 2, r + 1, r + 3] (Dq(t))−1 (ηr+2,η
∗
r+3)

(ηr,η∗
r+3)

Next assume that r is odd. Then in the above table replace t by t−1.

Proof. By Lemma 9.17 and the construction, we may assume that r = 0. We consider
six cases. In the following discussion all bases mentioned are for V .

[0, 1, 2, 3] → [1, 0, 2, 3]. Let {un}dn=0 and {vn}dn=0 denote the bases [0, 1, 2, 3] and
[1, 0, 2, 3] respectively. Let D ∈ Matd+1(F) denote the transition matrix from {un}dn=0
to {vn}dn=0. For 0 � n � d the vectors un, vn are contained in component n of the
decomposition [2, 3]. Therefore D is diagonal. By Theorem 11.1 the matrix representing
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x12 with respect to {un}dn=0 is equal to Eq, and the matrix representing x12 with respect
to {vn}dn=0 is equal to Gq(t). Therefore EqD = DGq(t). Comparing this with (51) we
find that there exists 0 �= α ∈ F such that D = αDq(t). We now find α. The (0, 0)-entry
of Dq(t) is 1, so the (0, 0)-entry of D is α. Therefore v0 = αu0. By Proposition 12.6, both

u0 = (η1, η
∗
3)

(η2, η∗3)η2, v0 = (η0, η
∗
3)

(η2, η∗3)η2.

Therefore α = (η0, η
∗
3)/(η1, η

∗
3).

[1, 0, 2, 3] → [0, 1, 2, 3]. This transition matrix is the inverse of the transition matrix
for [0, 1, 2, 3] → [1, 0, 2, 3].

[0, 1, 3, 2] → [1, 0, 3, 2]. Let {un}dn=0 and {vn}dn=0 denote the bases [0, 1, 3, 2] and
[1, 0, 3, 2] respectively. Let D ∈ Matd+1(F) denote the transition matrix from {un}dn=0
to {vn}dn=0. For 0 � n � d the vectors un, vn are contained in component n of the
decomposition [3, 2]. Therefore D is diagonal. By Theorem 11.1 the matrix representing
x30 with respect to {un}dn=0 is equal to Gq−1(t), and the matrix representing x30 with
respect to {vn}dn=0 is equal to Eq−1 . Therefore Gq−1(t)D = DEq−1 . Comparing this with
(51) we find that there exists 0 �= α ∈ F such that D = α(Dq−1(t))−1. We now find α.
The matrix Dq−1(t) is diagonal with (0, 0)-entry 1, so D has (0, 0)-entry α. Therefore
v0 = αu0. By Proposition 12.6, both

u0 = (η1, η
∗
2)

(η3, η∗2)η3, v0 = (η0, η
∗
2)

(η3, η∗2)η3.

Therefore α = (η0, η
∗
2)/(η1, η

∗
2).

[1, 0, 3, 2] → [0, 1, 3, 2]. This transition matrix is the inverse of the transition matrix
for [0, 1, 3, 2] → [1, 0, 3, 2].

[0, 2, 1, 3] → [2, 0, 1, 3]. Let {un}dn=0 and {vn}dn=0 denote the bases [0, 2, 1, 3] and
[2, 0, 1, 3] respectively. Let D ∈ Matd+1(F) denote the transition matrix from {un}dn=0
to {vn}dn=0. For 0 � n � d the vectors un, vn are contained in component n of the
decomposition [1, 3]. Therefore D is diagonal. By Theorem 11.1 the matrix representing
x01 with respect to {un}dn=0 is equal to Fq(t−1), and the matrix representing x01 with
respect to {vn}dn=0 is equal to Eq. Therefore Fq(t−1)D = DEq. Comparing this with (50)
we find that there exists 0 �= α ∈ F such that D = αDq(t). We now find α. The matrix
Dq(t) has (0, 0)-entry 1, so D has (0, 0)-entry α. Therefore v0 = αu0. By Proposition 12.6,
both

u0 = (η2, η
∗
3)

(η1, η∗3)η1, v0 = (η0, η
∗
3)

(η1, η∗3)η1.

Therefore α = (η0, η
∗
3)/(η2, η

∗
3).

[2, 0, 1, 3] → [0, 2, 1, 3]. This transition matrix is the inverse of the transition matrix
for [0, 2, 1, 3] → [2, 0, 1, 3]. �
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We now consider the transitions of type [i, j, k, �] → [i, k, j, �]. We will be discussing
the matrix Tq defined in Appendix A.

Theorem 13.2. Let V denote an evaluation module for �q. In the table below we display
some transition matrices between the 24 bases for V from Lemma 12.4. Each transition
matrix is lower triangular. Pick r ∈ Z4.

Transition Transition matrix
[r, r + 1, r + 2, r + 3] → [r, r + 2, r + 1, r + 3] Tq

(ηr+2,η
∗
r+3)

(ηr+1,η∗
r+3)

[r + 1, r, r + 2, r + 3] → [r + 1, r + 2, r, r + 3] Tq
(ηr+2,η

∗
r+3)

(ηr,η∗
r+3)

[r, r + 1, r + 3, r + 2] → [r, r + 3, r + 1, r + 2] Tq−1
(ηr+3,η

∗
r+2)

(ηr+1,η∗
r+2)

[r + 1, r, r + 3, r + 2] → [r + 1, r + 3, r, r + 2] Tq−1
(ηr+3,η

∗
r+2)

(ηr,η∗
r+2)

[r, r + 2, r + 1, r + 3] → [r, r + 1, r + 2, r + 3] Tq−1
(ηr+1,η

∗
r+3)

(ηr+2,η∗
r+3)

[r + 2, r, r + 1, r + 3] → [r + 2, r + 1, r, r + 3] Tq
(ηr+1,η

∗
r+3)

(ηr,η∗
r+3)

Proof. These transition matrices were found in [32, Theorem 15.4]. In that article the
notation is a bit different from what we are presently using. To translate between the
notations use Lemma 10.3 and [32, Definition 13.4]. �

We now consider the transitions of type [i, j, k, �] → [i, j, �, k].

Lemma 13.3. Let V denote an evaluation module for �q, and pick mutually distinct
i, j, k, � in Z4. Then the transition matrix from the basis [i, j, k, �] to the basis [i, j, �, k]
is equal to Z.

Proof. By Lemma 12.5. �
14. Comments on the bilinear form

Throughout this section V denotes an evaluation module for �q, with diameter d and
evaluation parameter t. Recall from Definition 12.1 the vectors {ηi}i∈Z4 in V , and the
vectors {η∗i }i∈Z4 in V ∗. We now consider how the scalars

(
ηi, η

∗
j

)
i, j ∈ Z4, i �= j (28)

are related.

Proposition 14.1. With the above notation,

(η0, η
∗
1)(η2, η

∗
3)

(η2, η∗1)(η0, η∗3) = tdqd(d−1),
(η1, η

∗
2)(η3, η

∗
0)

(η3, η∗2)(η1, η∗0) = t−dqd(d−1).
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Proof. Throughout this proof all bases mentioned are for V . Pick r ∈ Z4. Let {un}dn=0
and {vn}dn=0 denote the bases [r, r+2, r+1, r+3] and [r+2, r, r+1, r+3], respectively.
We relate ud, vd in two ways. By the fifth row of the table in Theorem 13.1,

vd = tdeqd(d−1) (ηr, η∗r+3)
(ηr+2, η∗r+3)

ud, (29)

where e = (−1)r. Observe that {ud−n}dn=0 is the basis [r, r+2, r+3, r+1] and {vd−n}dn=0
is the basis [r + 2, r, r + 3, r + 1]. By the sixth row of the table in Theorem 13.1 (with r

replaced by r + 2),

vd =
(ηr, η∗r+1)

(ηr+2, η∗r+1)
ud. (30)

Comparing (29), (30) we obtain

(ηr, η∗r+1)
(ηr+2, η∗r+1)

(ηr+2, η
∗
r+3)

(ηr, η∗r+3)
= tdeqd(d−1).

The result follows. �
Proposition 14.2. With the above notation,

(η0, η
∗
2)(η1, η

∗
3)

(η1, η∗2)(η0, η∗3) =
(
1 − tqd−1)(1 − tqd−3) · · · (1 − tq1−d

)
,

(η1, η
∗
3)(η2, η

∗
0)

(η2, η∗3)(η1, η∗0) =
(
1 − t−1qd−1)(1 − t−1qd−3) · · · (1 − t−1q1−d

)
,

(η2, η
∗
0)(η3, η

∗
1)

(η3, η∗0)(η2, η∗1) =
(
1 − tqd−1)(1 − tqd−3) · · · (1 − tq1−d

)
,

(η3, η
∗
1)(η0, η

∗
2)

(η0, η∗1)(η3, η∗2) =
(
1 − t−1qd−1)(1 − t−1qd−3) · · · (1 − t−1q1−d

)
.

Proof. Throughout this proof all bases mentioned are for V . Pick r ∈ Z4. Let {un}dn=0
and {vn}dn=0 denote the bases [r, r+1, r+2, r+3] and [r+1, r, r+2, r+3], respectively.
We relate ud, vd in two ways. By the first row of the table in Theorem 13.1,

vd =
(
teq1−d; q2)

d

(ηr, η∗r+3)
(ηr+1, η∗r+3)

ud, (31)

where e = (−1)r. Observe that {ud−n}dn=0 is the basis [r, r+1, r+3, r+2] and {vd−n}dn=0
is the basis [r + 1, r, r + 3, r + 2]. By the third row of the table in Theorem 13.1,

vd =
(ηr, η∗r+2)

∗ ud. (32)
(ηr+1, ηr+2)
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Comparing (31), (32) we obtain

(ηr, η∗r+2)
(ηr+1, η∗r+2)

(ηr+1, η
∗
r+3)

(ηr, η∗r+3)
=

(
teq1−d; q2)

d
.

The result follows. �
We view the following result as a �q-analog of [32, Proposition 13.11].

Corollary 14.3. With the above notation,

(η0, η
∗
1)(η1, η

∗
2)(η2, η

∗
0)

(η1, η∗0)(η2, η∗1)(η0, η∗2) = (−1)dqd(d−1),
(η1, η

∗
2)(η2, η

∗
3)(η3, η

∗
1)

(η2, η∗1)(η3, η∗2)(η1, η∗3) = (−1)dqd(d−1),

(η2, η
∗
3)(η3, η

∗
0)(η0, η

∗
2)

(η3, η∗2)(η0, η∗3)(η2, η∗0) = (−1)dqd(d−1),
(η3, η

∗
0)(η0, η

∗
1)(η1, η

∗
3)

(η0, η∗3)(η1, η∗0)(η3, η∗1) = (−1)dqd(d−1).

Proof. We verify the first equation; the others are similarly verified. Consider the first
two equations in Proposition 14.2. The right-hand side of the first one is equal to (−1)dtd
times the right-hand side of the second one. Therefore, the left-hand side of the first one
is equal to (−1)dtd times the left-hand side of the second one. In this equality eliminate
td using the first equation in Proposition 14.1. �
Note 14.4. By Propositions 14.1, 14.2 the scalars (28) are determined by the sequence

(
η0, η

∗
1
)
,

(
η0, η

∗
2
)
,

(
η0, η

∗
3
)
,

(
η1, η

∗
2
)
,

(
η2, η

∗
1
)
,

(
η3, η

∗
0
)
,

(
η3, η

∗
1
)
. (33)

The scalars (33) are “free” in the following sense. Given a sequence θ of seven nonzero
scalars in F, there exist vectors ηi, η∗i (i ∈ Z4) as in Definition 12.1 such that the sequence
(33) is equal to θ.

15. Exchangers

Throughout this section V denotes an evaluation module for �q, with diameter d and
evaluation parameter t. We investigate a type of map in End(V ) called an exchanger.

Lemma 15.1. For each standard generator xij of �q and each X ∈ End(V ), the following
are equivalent:

(i) X is invertible and XxijX
−1 = xi+2,j+2 holds on V ;

(ii) X sends the decomposition [i, j] of V to the decomposition [i + 2, j + 2] of V .

Proof. Recall from Section 6 that for 0 � n � d, component n of the decomposition [i, j]
(resp. [i + 2, j + 2]) of V is the eigenspace of xij (resp. xi+2,j+2) with eigenvalue qd−2n.
The result follows from this and linear algebra. �
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Definition 15.2. By an exchanger for V we mean an invertible X ∈ End(V ) such that
on V the equation

XxijX
−1 = xi+2,j+2

holds for each standard generator xij of �q.

We now consider the existence and uniqueness of the exchangers. We start with exis-
tence.

Lemma 15.3. For X ∈ End(V ) the following are equivalent:

(i) X is an exchanger for V ;
(ii) X is an isomorphism of �q-modules from V to V twisted via ρ2.

Proof. Recall that ρ2 sends each standard generator xij �→ xi+2,j+2. �
Lemma 15.4. There exists an exchanger for V .

Proof. By Corollary 9.18 and Lemma 15.3. �
We now consider the uniqueness of the exchangers.

Lemma 15.5. Let Ψ denote an exchanger for V . Then for all X ∈ End(V ) the following
are equivalent:

(i) X is an exchanger for V ;
(ii) there exists 0 �= α ∈ F such that X = αΨ .

Proof. (i) ⇒ (ii) The composition G = XΨ−1 commutes with each standard generator
of �q, and therefore everything in �q. Since F is algebraically closed and V has finite
positive dimension, there exists an eigenspace W ⊆ V for G. Let α ∈ F denote the
corresponding eigenvalue. Then α �= 0 since G is invertible. Since G commutes with
everything in �q, we see that W is a �q-submodule of V . The �q-module V is irreducible
so W = V . Therefore G = αI so X = αΨ .

(ii) ⇒ (i) Routine. �
We now characterize the exchangers in various ways.

Lemma 15.6. For X ∈ End(V ) the following are equivalent:

(i) X is an exchanger for V ;
(ii) for all i ∈ Z4, X sends the flag [i] for V to the flag [i + 2] for V ;
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(iii) for all distinct i, j ∈ Z4, X sends the decomposition [i, j] of V to the decomposition
[i + 2, j + 2] of V .

Proof. (i) ⇒ (ii) Let i ∈ Z4 be given. By Lemma 15.3, X sends the flag [i] for V to the
flag [i] for V twisted via ρ2. By Lemma 8.6, the flag [i] for V twisted via ρ2 is the same
thing as the flag [i + 2] for V . The result follows.

(ii) ⇒ (iii) For the flags and decompositions under discussion, their relationship is
described near the end of Section 6.

(iii) ⇒ (i) By Lemma 15.1 and Definition 15.2. �
Lemma 15.7. For X ∈ End(V ) the following are equivalent:

(i) X is an exchanger for V ;
(ii) for all mutually distinct i, j, k, � in Z4, X sends each [i, j, k, �]-basis for V to an

[i + 2, j + 2, k + 2, � + 2]-basis for V ;
(iii) there exist mutually distinct i, j, k, � in Z4 such that X sends the basis [i, j, k, �]

for V to an [i + 2, j + 2, k + 2, � + 2]-basis for V .

Proof. (i) ⇒ (ii) Let mutually distinct i, j, k, � in Z4 be given. By Lemma 15.3, X sends
each [i, j, k, �]-basis for V to an [i, j, k, �]-basis for V twisted via ρ2. By Lemma 10.8, an
[i, j, k, �]-basis for V twisted via ρ2 is the same thing as an [i+ 2, j + 2, k+ 2, �+ 2]-basis
for V . The result follows.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (i) By Lemma 15.4 there exists an exchanger Ψ for V . By the implication

(i) ⇒ (ii) above, Ψ sends the basis [i, j, k, �] of V to an [i+2, j+2, k+2, �+2]-basis of V . By
assumption, X also sends the basis [i, j, k, �] of V to an [i+2, j+2, k+2, �+2]-basis of V .
Now by Lemma 10.2, there exists 0 �= α ∈ F such that X = αΨ . Now by Lemma 15.5,
X is an exchanger for V . �
Lemma 15.8. For X ∈ End(V ) the following are equivalent:

(i) X is an exchanger for V ;
(ii) X is an exchanger for ρV .

Proof. Use Lemma 8.6 and Lemma 15.6(i), (ii). �
Lemma 15.9. Let X denote an exchanger for V . Then X−1 is an exchanger for V .

Proof. Use Lemma 15.6(i), (ii). �
We will return to exchangers shortly.
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Lemma 15.10. Consider the 24 bases for V from Lemma 12.4. In the table below we
display some transition matrices between these bases. For each transition matrix we give
the (i, j)-entry for 0 � i, j � d. Pick r ∈ Z4, and first assume that r is even.

Transition matrix (i, j)-entry
[r, r + 2, r + 1, r + 3] → [r + 2, r, r + 3, r + 1] δi+j,dt

iqi(d−1) (ηr,η
∗
r+3)

(ηr+2,η∗
r+3)

[r + 2, r, r + 1, r + 3] → [r, r + 2, r + 3, r + 1] δi+j,dt
−iqi(1−d) (ηr+2,η

∗
r+3)

(ηr,η∗
r+3)

Next assume that r is odd. Then in the above table replace t by t−1.

Proof. To find the transition matrix [r, r+2, r+1, r+3] → [r+2, r, r+3, r+1], compute
the product of transition matrices

[r, r + 2, r + 1, r + 3] → [r + 2, r, r + 1, r + 3] → [r + 2, r, r + 3, r + 1].

In this product the first transition matrix is from Theorem 13.1 and the second one is
equal to Z. To find the transition matrix [r + 2, r, r + 1, r + 3] → [r, r + 2, r + 3, r + 1],
compute the product of transition matrices

[r + 2, r, r + 1, r + 3] → [r, r + 2, r + 1, r + 3] → [r, r + 2, r + 3, r + 1].

In this product the first transition matrix is from Theorem 13.1 and the second one is
equal to Z. �
Theorem 15.11. There exists an exchanger X for V that is described as follows. In the
table below, each row contains a basis for V from Lemma 12.4, and the entries of a
matrix in Matd+1(F). The matrix represents X with respect to the basis.

Basis (i, j)-entry for 0 � i, j � d

[0, 2, 1, 3] δi+j,dt
iq

i(d−1)−
(
d

2

)

[0, 2, 3, 1] δi+j,dt
d−iq

(
d

2

)
−i(d−1)

[2, 0, 3, 1] δi+j,dt
iq

i(d−1)−
(
d

2

)

[2, 0, 1, 3] δi+j,dt
d−iq

(
d

2

)
−i(d−1)

[1, 3, 2, 0] δi+j,d(−1)dtd−iq
i(d−1)−

(
d

2

)

[1, 3, 0, 2] δi+j,d(−1)dtiq
(
d

2

)
−i(d−1)

[3, 1, 0, 2] δi+j,d(−1)dtd−iq
i(d−1)−

(
d

2

)

[3, 1, 2, 0] δi+j,d(−1)dtiq
(
d

2

)
−i(d−1)

Proof. The above table has 8 rows. For 1 � h � 8, row h of the table contains a basis
and the entries of a matrix which we call Xh. Define Xh ∈ End(V ) such that Xh is
represented by Xh with respect to the basis in row h. We claim that Xh is an exchanger
for V . To prove the claim, first assume that h = 1. Compare row 1 of the above table
with row 1 of the table in Lemma 15.10 (with r = 0). The comparison shows that the
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matrix X1 is a scalar multiple of the transition matrix from the basis [0, 2, 1, 3] to the
basis [2, 0, 3, 1]. Therefore X1 sends the basis [0, 2, 1, 3] to a [2, 0, 3, 1]-basis. Now X1 is
an exchanger for V , in view of Lemma 15.7(i), (iii). The claim is proven for h = 1, and
for 2 � h � 8 the argument is similar. We now show that Xh is independent of h for
1 � h � 8.

We show X1 = X2. By construction the matrix X1 represents X1 with respect to
[0, 2, 1, 3]. The transition matrix from [0, 2, 1, 3] to [0, 2, 3, 1] is equal to Z. Therefore the
matrix ZX1Z represents X1 with respect to [0, 2, 3, 1]. By construction X2 represents X2
with respect to [0, 2, 3, 1]. One checks X1Z = ZX2 so ZX1Z = X2. Therefore X1 = X2.
By a similar argument

X3 = X4, X5 = X6, X7 = X8.

We show X2 = X3. By Theorem 13.1, the transition matrix from [2, 0, 3, 1] to [0, 2, 3, 1] is
a scalar multiple of Dq(t). One checks X3Dq(t) = Dq(t)X2. Therefore X2 = X3. We show
X5 = X8. By Theorem 13.1, the transition matrix from [1, 3, 2, 0] to [3, 1, 2, 0] is a scalar
multiple of Dq(t−1). One checks X5Dq(t−1) = Dq(t−1)X8. Therefore X5 = X8. We show
X1 = X6. Since each of X1, X6 is an exchanger, by Lemma 15.5 there exists 0 �= α ∈ F

such that X1 = αX6. We show α = 1. Let T denote the transition matrix from [0, 2, 1, 3]
to [1, 3, 0, 2]. By construction X1T = αTX6. We now find T . To this end, compute the
product of transition matrices

[0, 2, 1, 3] → [0, 1, 2, 3] → [1, 0, 2, 3] → [1, 0, 3, 2] → [1, 3, 0, 2].

In this product each factor is given in Section 13. The computation shows that T is a
scalar multiple of Tq−1Dq(t)ZTq−1 . Therefore

X1Tq−1Dq(t)ZTq−1 = αTq−1Dq(t)ZTq−1X6. (34)

Using the fact that Tq−1 is lower triangular and Dq(t) is diagonal, we routinely compute
the (0, d)-entry for each side of (34). Comparing these entries we find α = 1. Therefore
X1 = X6. We have shown that Xh is independent of h for 1 � h � 8. The result
follows. �
Definition 15.12. By the standard exchanger for V , we mean the exchanger X from
Theorem 15.11.

Theorem 15.13. For the standard exchanger X of V ,

X 2 = tdI.

Proof. Let M denote the matrix that represents X with respect to the basis [0, 2, 1, 3].
The matrix M is given in the first row of the table in Theorem 15.11. By matrix multi-
plication M2 = tdI. The result follows. �
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Proposition 15.14. The following coincide:

(i) the standard exchanger for ρV ;
(ii) (−1)d times the inverse of the standard exchanger for V .

Proof. Referring to Theorem 15.11, compare the matrices that represent X with respect
to the bases [0, 2, 1, 3] and [1, 3, 2, 0]. Recall from Lemma 9.17 that t−1 is the evaluation
parameter for ρV . Also, by Theorem 15.13 X−1 = t−dX . �
Corollary 15.15. The following coincide:

(i) the standard exchanger for V twisted via ρ2;
(ii) the standard exchanger for V .

Proof. Apply Proposition 15.14 twice. �
Let X denote the standard exchanger for V . We now describe what X does to the

vectors {ηi}i∈Z4 from Definition 12.1.

Proposition 15.16. Let X denote the standard exchanger for V . Then

Xη0 = q−
(d
2
) (η0, η

∗
1)

(η2, η∗1)η2, Xη1 = (−1)dq
(d
2
) (η1, η

∗
0)

(η3, η∗0)η3,

Xη2 = q−
(d
2
) (η2, η

∗
3)

(η0, η∗3)η0, Xη3 = (−1)dq
(d
2
) (η3, η

∗
2)

(η1, η∗2)η1.

Proof. We verify the first equation. Let {un}dn=0 and {vn}dn=0 denote the bases [2, 0, 3, 1]
and [0, 2, 1, 3] for V , respectively. Let T denote the transition matrix from {un}dn=0 to
{vn}dn=0; this matrix is given in Lemma 15.10. Let M denote the matrix that represents
X with respect to {un}dn=0; this matrix is given in Theorem 15.11. Comparing M and T

we obtain

M = αT, α = q−
(d
2
) (η0, η

∗
1)

(η2, η∗1) .

Therefore Xun = αvn for 0 � n � d. By Lemma 12.4(ii), η0 =
∑d

n=0 un and η2 =∑d
n=0 vn. Consequently Xη0 = αη2. The first equation is verified. The remaining equa-

tions are similarly verified. �
Let X denote the standard exchanger for V . We now describe what X does to the 24

bases for V from Lemma 12.4.

Theorem 15.17. Let X denote the standard exchanger for V . For mutually distinct i, j, k, �
in Z4, consider the bases [i, j, k, �] and [i+ 2, j + 2, k + 2, �+ 2] of V . The map X sends
[i, j, k, �] to a scalar multiple of [i+2, j +2, k+2, �+2]. The scalar is given in the tables
below.
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i j k � Scalar

0 2 1 3 q
−

(
d

2

)
(η2,η

∗
3 )

(η0,η∗
3 )

0 2 3 1 q
−

(
d

2

)
(η2,η

∗
3 )

(η0,η∗
3 )

2 0 3 1 q
−

(
d

2

)
(η0,η

∗
1 )

(η2,η∗
1 )

2 0 1 3 q
−

(
d

2

)
(η0,η

∗
1 )

(η2,η∗
1 )

i j k � Scalar

1 3 2 0 (−1)dq
(
d

2

)
(η3,η

∗
2 )

(η1,η∗
2 )

1 3 0 2 (−1)dq
(
d

2

)
(η3,η

∗
2 )

(η1,η∗
2 )

3 1 0 2 (−1)dq
(
d

2

)
(η1,η

∗
0 )

(η3,η∗
0 )

3 1 2 0 (−1)dq
(
d

2

)
(η1,η

∗
0 )

(η3,η∗
0 )

i j k � Scalar

0 1 2 3 (−1)dq
(
d

2

)
(η1,η

∗
0 )

(η3,η∗
0 )

0 1 3 2 (−1)dq
(
d

2

)
(η1,η

∗
0 )

(η3,η∗
0 )

1 0 3 2 q
−

(
d

2

)
(η0,η

∗
1 )

(η2,η∗
1 )

1 0 2 3 q
−

(
d

2

)
(η0,η

∗
1 )

(η2,η∗
1 )

i j k � Scalar

1 2 3 0 q
−

(
d

2

)
(η2,η

∗
3 )

(η0,η∗
3 )

1 2 0 3 q
−

(
d

2

)
(η2,η

∗
3 )

(η0,η∗
3 )

2 1 0 3 (−1)dq
(
d

2

)
(η1,η

∗
0 )

(η3,η∗
0 )

2 1 3 0 (−1)dq
(
d

2

)
(η1,η

∗
0 )

(η3,η∗
0 )

i j k � Scalar

2 3 0 1 (−1)dq
(
d

2

)
(η3,η

∗
2 )

(η1,η∗
2 )

2 3 1 0 (−1)dq
(
d

2

)
(η3,η

∗
2 )

(η1,η∗
2 )

3 2 1 0 q
−

(
d

2

)
(η2,η

∗
3 )

(η0,η∗
3 )

3 2 0 1 q
−

(
d

2

)
(η2,η

∗
3 )

(η0,η∗
3 )

i j k � Scalar

3 0 1 2 q
−

(
d

2

)
(η0,η

∗
1 )

(η2,η∗
1 )

3 0 2 1 q
−

(
d

2

)
(η0,η

∗
1 )

(η2,η∗
1 )

0 3 2 1 (−1)dq
(
d

2

)
(η3,η

∗
2 )

(η1,η∗
2 )

0 3 1 2 (−1)dq
(
d

2

)
(η3,η

∗
2 )

(η1,η∗
2 )

Proof. Let {un}dn=0 and {vn}dn=0 denote the bases [i, j, k, �] and [i+2, j+2, k+2, �+2],
respectively. By Lemma 10.2 and Lemma 15.7, there exists 0 �= α ∈ F such that Xun =
αvn for 0 � n � d. By Lemma 12.4(ii), ηj =

∑d
n=0 un and ηj+2 =

∑d
n=0 vn. Therefore

Xηj = αηj+2. Evaluating this using Proposition 15.16 we find that α is as shown in the
tables. �
16. Leonard pairs of q-Racah type

We now turn our attention to Leonard pairs. There is a general family of Leonard
pairs said to have q-Racah type [4, Section 5], [29, Example 5.3]. In this section, we
show that for any Leonard pair of q-Racah type, the underlying vector space becomes
an evaluation module for �q in a natural way.

Let a, b, c denote nonzero scalars in F. Recall the equitable generators x, y, z for
Uq(sl2).

Definition 16.1. Using a, b, c we define some elements in Uq(sl2):

A = ax + a−1y + bc−1 xy − yx

q − q−1 ,

B = by + b−1z + ca−1 yz − zy

q − q−1 ,

C = cz + c−1x + ab−1 zx− xz

q − q−1 .

The sequence A,B,C is called the Askey–Wilson triple for a, b, c.
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Lemma 16.2. (See [31, Proposition 1.1].) We have

A + qBC − q−1CB
q2 − q−2 = (a + a−1)Λ + (b + b−1)(c + c−1)

q + q−1 ,

B + qCA − q−1AC
q2 − q−2 = (b + b−1)Λ + (c + c−1)(a + a−1)

q + q−1 ,

C + qAB − q−1BA
q2 − q−2 = (c + c−1)Λ + (a + a−1)(b + b−1)

q + q−1 .

Note 16.3. The equations in Lemma 16.2 are a variation on the Z3-symmetric Askey–
Wilson relations [4, Theorem 10.1], [14, Section 1].

Definition 16.4. Using a, b, c we define some more elements in Uq(sl2):

A′ = ay + a−1z + cb−1 yz − zy

q − q−1 ,

B′ = bx + b−1y + ac−1xy − yx

q − q−1 ,

C′ = cz + c−1x + ba−1 zx− xz

q − q−1 .

The sequence A′,B′,C′ is called the dual Askey–Wilson triple for a, b, c.

Lemma 16.5. Let A′,B′,C′ denote the dual Askey–Wilson triple for a, b, c. Then
B′,A′,C′ is the Askey–Wilson triple for b, a, c.

Proof. Compare the equations in Definition 16.1 and Definition 16.4. �
Lemma 16.6. Let A′,B′,C′ denote the dual Askey–Wilson triple for a, b, c. Then

A′ + qC′B′ − q−1B′C′

q2 − q−2 = (a + a−1)Λ + (b + b−1)(c + c−1)
q + q−1 ,

B′ + qA′C′ − q−1C′A′

q2 − q−2 = (b + b−1)Λ + (c + c−1)(a + a−1)
q + q−1 ,

C′ + qB′A′ − q−1A′B′

q2 − q−2 = (c + c−1)Λ + (a + a−1)(b + b−1)
q + q−1 .

Proof. By Lemma 16.5 the triple B′,A′,C′ is the Askey–Wilson triple for b, a, c. Apply
Lemma 16.2 to this triple. �

Throughout this section and the next, fix an integer d � 1. Using a, b, c, d we now
define some parameters in F.
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Definition 16.7. Define

θn = aq2n−d + a−1qd−2n, θ∗n = bq2n−d + b−1qd−2n

for 0 � n � d, and

ϕn = a−1b−1qd+1(qn − q−n
)(
qn−d−1 − qd−n+1)(q−n − abcqn−d−1)

×
(
q−n − abc−1qn−d−1),

φn = ab−1qd+1(qn − q−n
)(
qn−d−1 − qd−n+1)(q−n − a−1bcqn−d−1)

×
(
q−n − a−1bc−1qn−d−1)

for 1 � n � d.

In order to avoid degenerate situations in Definition 16.7, we sometimes impose re-
strictions on how a, b, c, d are related. We now describe these restrictions.

Definition 16.8. The sequence (a, b, c, d) is called feasible whenever the following (i), (ii)
hold:

(i) neither of a2, b2 is among q2d−2, q2d−4, . . . , q2−2d;
(ii) none of abc, a−1bc, ab−1c, abc−1 is among qd−1, qd−3, . . . , q1−d.

Lemma 16.9. The following are equivalent:

(i) the sequence (a, b, c, d) is feasible;
(ii) the {θn}dn=0 are mutually distinct, the {θ∗n}dn=0 are mutually distinct, and the

{ϕn}dn=1, {φn}dn=1 are all nonzero.

Proof. This is routinely checked. �
The literature on Leonard pairs contains the notion of a parameter array [28,29]. For

our purpose we do not need the full definition; just the following feature.

Lemma 16.10. (See [4, Lemma 7.3].) The following are equivalent:

(i) the sequence (a, b, c, d) is feasible;
(iii) the sequence ({θn}dn=0; {θ∗n}dn=0; {ϕn}dn=1; {φn}dn=1) is a parameter array.

Lemma 16.11. Assume that (a, b, c, d) is feasible. Then each of the following sequences is
feasible:

(
a−1, b, c, d

)
;

(
a, b−1, c, d

)
;

(
a, b, c−1, d

)
; (b, a, c, d). (35)
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Proof. By Definition 16.8. �
In Lemma 16.11 we gave some feasible sequences. We now consider how their param-

eter arrays are related.

Lemma 16.12. Assume that (a, b, c, d) is feasible. In the table below, each row contains a
feasible sequence and the corresponding parameter array.

Feasible sequence Corresponding parameter array
(a, b, c, d) ({θn}d

n=0; {θ∗
n}d

n=0; {ϕn}d
n=1; {φn}d

n=1)
(a−1, b, c, d) ({θd−n}d

n=0; {θ∗
n}d

n=0; {φn}d
n=1; {ϕn}d

n=1)
(a, b−1, c, d) ({θn}d

n=0; {θ∗
d−n}d

n=0; {φd−n+1}d
n=1; {ϕd−n+1}d

n=1)
(a, b, c−1, d) ({θn}d

n=0; {θ∗
n}d

n=0; {ϕn}d
n=1; {φn}d

n=1)
(b, a, c, d) ({θ∗

n}d
n=0; {θn}d

n=0; {ϕn}d
n=1; {φd−n+1}d

n=1)

Proof. Use Definition 16.7. �
Lemma 16.13. (See [25, Theorem 1.9].) Assume that (a, b, c, d) is feasible. Then there ex-
ists a Leonard pair over F that is described as follows. In one basis the pair is represented
by ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ∗0 ϕ1 0
θ∗1 ϕ2

θ∗2 ·
· ·

· ϕd

0 θ∗d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

In another basis the pair is represented by⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θd 0
1 ·

· ·
· θ2

1 θ1
0 1 θ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ∗0 φ1 0
θ∗1 φ2

θ∗2 ·
· ·

· φd

0 θ∗d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Up to isomorphism the above Leonard pair is uniquely determined by (a, b, c, d).

Definition 16.14. Assume that (a, b, c, d) is feasible. The Leonard pair from Lemma 16.13
is said to correspond to (a, b, c, d).

Not every Leonard pair arises from the construction of Lemma 16.13. The ones that
do are said to have q-Racah type [4, Section 5], [29, Example 5.3].

A Leonard pair of q-Racah type corresponds to more than one feasible sequence. This
is explained in the next result.
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Lemma 16.15. Let A,B denote a Leonard pair of q-Racah type, with feasible sequence
(a, b, c, d). Then each of

(a, b, c, d);
(
a−1, b, c, d

)
;

(
a, b−1, c, d

)
;

(
a, b, c−1, d

)
; (38)(

a, b−1, c−1, d
)
;

(
a−1, b, c−1, d

)
;

(
a−1, b−1, c, d

)
;

(
a−1, b−1, c−1, d

)
(39)

is a feasible sequence for A,B. The Leonard pair A,B has no other feasible sequence.

Proof. This follows from [28, Lemma 12.2] and Lemma 16.12. �
Lemma 16.16. Let A,B denote a Leonard pair of q-Racah type, with feasible se-
quence (a, b, c, d). Then the Leonard pair B,A is of q-Racah type, with feasible sequence
(b, a, c, d).

Proof. By [25, Theorem 1.11] and Lemma 16.12. �
Proposition 16.17. (See [4, Theorem 10.1].) Let A,B denote a Leonard pair over F that
has q-Racah type. Let V denote the underlying vector space. Then there exists a unique
C ∈ End(V ) such that

A + qBC − q−1CB

q2 − q−2 = (a + a−1)(qd+1 + q−d−1) + (b + b−1)(c + c−1)
q + q−1 ,

B + qCA− q−1AC

q2 − q−2 = (b + b−1)(qd+1 + q−d−1) + (c + c−1)(a + a−1)
q + q−1 ,

C + qAB − q−1BA

q2 − q−2 = (c + c−1)(qd+1 + q−d−1) + (a + a−1)(b + b−1)
q + q−1 .

Here (a, b, c, d) denotes a feasible sequence for the Leonard pair A,B.

Definition 16.18. Referring to Proposition 16.17, we call C the Z3-symmetric completion
of the Leonard pair A, B.

Definition 16.19. Let A,B denote a Leonard pair of q-Racah type. By the dual
Z3-symmetric completion of A,B we mean the Z3-symmetric completion of the Leonard
pair B,A.

Proposition 16.20. Let A,B denote a Leonard pair of q-Racah type, with dual Z3-sym-
metric completion C ′. Then

A + qC ′B − q−1BC ′

q2 − q−2 = (a + a−1)(qd+1 + q−d−1) + (b + b−1)(c + c−1)
q + q−1 ,

B + qAC ′ − q−1C ′A
2 −2 = (b + b−1)(qd+1 + q−d−1) + (c + c−1)(a + a−1)

−1 ,

q − q q + q
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C ′ + qBA− q−1AB

q2 − q−2 = (c + c−1)(qd+1 + q−d−1) + (a + a−1)(b + b−1)
q + q−1 .

Here (a, b, c, d) denotes a feasible sequence for the Leonard pair A,B.

Proof. By Definition 16.19, C ′ is the Z3-symmetric completion of the Leonard pair B,A.
By Lemma 16.16, the Leonard pair B,A has a feasible sequence (b, a, c, d). Using these
comments, apply Proposition 16.17 to the Leonard pair B,A. �

Let A,B denote a Leonard pair that has q-Racah type. We now relate its Z3-symmetric
completion and dual Z3-symmetric completion.

Lemma 16.21. Let A,B denote a Leonard pair of q-Racah type, with Z3-symmetric com-
pletion C and dual Z3-symmetric completion C ′. Then

C ′ − C = AB −BA

q − q−1 .

Proof. Subtract the last equation in Proposition 16.17 from the last equation in Propo-
sition 16.20. �
Lemma 16.22. (See [30, Theorem 5.8].) Let A,B denote a Leonard pair over F. Let V

denote the underlying vector space. Then there exists a unique antiautomorphism † of
End(V ) that fixes each of A, B. Moreover †2 = 1.

Lemma 16.23. With reference to Lemma 16.22, assume that A,B has q-Racah type. Then
its Z3-symmetric completion C and dual Z3-symmetric completion C ′ are swapped by †.

Proof. In the last equation of Proposition 16.17, apply † to each term. Compare the
resulting equation with the last equation of Proposition 16.20. �

We now use Uq(sl2) to construct Leonard pairs of q-Racah type.

Theorem 16.24. Assume that (a, b, c, d) is feasible. Let A,B,C denote the Askey–Wilson
triple for a, b, c. Then the following (i)–(iii) hold.

(i) The pair A,B acts on the Uq(sl2)-module Vd as a Leonard pair.
(ii) This Leonard pair corresponds to (a, b, c, d).
(iii) The element C acts on Vd as the Z3-symmetric completion of this Leonard pair.

Proof. (i), (ii) The parameter array ({θn}dn=0; {θ∗n}dn=0; {ϕn}dn=1; {φn}dn=1) for (a, b, c, d)
is shown in Definition 16.7. Let {un}dn=0 denote a [y]inv

row-basis for Vd. Consider the
matrices in Matd+1(F) that represent x, y, z with respect to {un}dn=0. These matrices are
given in Lemma 3.22. The matrix representing x is lower bidiagonal, with (n, n)-entry
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qd−2n for 0 � n � d and (n, n − 1)-entry qd − qd−2n for 1 � n � d. The matrix
representing y is diagonal, with (n, n)-entry q2n−d for 0 � n � d. The matrix representing
z is upper bidiagonal, with (n, n)-entry qd−2n for 0 � n � d and (n− 1, n)-entry q−d −
qd−2n+2 for 1 � n � d. Using this data and Definition 16.1 we compute the matrices in
Matd+1(F) that represent A,B with respect to {un}dn=0. The matrix representing A is
lower bidiagonal, with (n, n)-entry θd−n for 0 � n � d and (n, n− 1)-entry

aqd
(
qn − q−n

)(
q−n − a−1bc−1qn−d−1) (40)

for 1 � n � d. The matrix representing B is upper bidiagonal, with (n, n)-entry θ∗n for
0 � n � d and (n− 1, n)-entry

b−1q
(
qn−d−1 − qd−n+1)(q−n − a−1bcqn−d−1) (41)

for 1 � n � d. We now adjust the basis {un}dn=0. For 1 � n � d let αn (resp. βn)
denote the scalar (40) (resp. (41)). We have αnβn = φn, so each of αn, βn is nonzero.
Define u′

n = α1α2 · · ·αnun for 0 � n � d. By construction {u′
n}dn=0 is a basis for Vd.

With respect to this basis the matrices representing A,B are the ones shown in (37).
Therefore the pair A,B acts on Vd as a Leonard pair that corresponds to (a, b, c, d).

(iii) Recall that Λ acts on Vd as qd+1 +q−d−1 times the identity. Using this comment,
compare the last equation in Lemma 16.2 with the last equation in Proposition 16.17. �
Lemma 16.25. Let A,B denote a Leonard pair over F of q-Racah type, with feasible
sequence (a, b, c, d). Let A,B,C denote the Askey–Wilson triple for a, b, c. Assume that
there exists a Uq(sl2)-module structure on the underlying vector space V such that A = A
and B = B on V . Then the Uq(sl2)-module V is irreducible.

Proof. By Lemma 2.3. �
Corollary 16.26. Let A,B denote a Leonard pair over F of q-Racah type, with feasible
sequence (a, b, c, d). Let A,B,C denote the Askey–Wilson triple for a, b, c. Then the
following (i), (ii) hold.

(i) There exists a unique type 1 Uq(sl2)-module structure on the underlying vector
space V such that A = A and B = B on V .

(ii) The element C acts on V as the Z3-symmetric completion of A,B.

Proof. The Leonard pair A,B corresponds to (a, b, c, d). The Leonard pair in Theo-
rem 16.24 also corresponds to (a, b, c, d). Therefore these Leonard pairs are isomorphic.
Let ζ : V → Vd denote an isomorphism of Leonard pairs from A,B to the Leonard pair
in Theorem 16.24. Via ζ we transport the Uq(sl2)-module structure from Vd to V . This
turns V into a Uq(sl2)-module that is isomorphic to Vd. By construction A = A and
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B = B on V . Also by Theorem 16.24(iii), C acts on V as the Z3-symmetric completion
of A,B. The uniqueness assertion in (i) follows from Lemma 2.3. �
Theorem 16.27. Assume that (a, b, c, d) is feasible. Let A′,B′,C′ denote the dual Askey–
Wilson triple for a, b, c. Then the following (i)–(iii) hold.

(i) The pair A′,B′ acts on the Uq(sl2)-module Vd as a Leonard pair.
(ii) This Leonard pair corresponds to (a, b, c, d).
(iii) The element C′ acts on Vd as the dual Z3-symmetric completion of this Leonard

pair.

Proof. Conceptually this proof is similar to the proof of Theorem 16.24, but as the
details are different they will be displayed.

(i), (ii) The parameter array ({θn}dn=0; {θ∗n}dn=0; {ϕn}dn=1; {φn}dn=1) for (a, b, c, d) is
shown in Definition 16.7. Let {vn}dn=0 denote a [y]row-basis for Vd. Consider the matrices
in Matd+1(F) that represent x, y, z with respect to {vn}dn=0. These matrices are given in
Lemma 3.9. The matrix representing x is upper bidiagonal, with (n, n)-entry q2n−d for
0 � n � d and (n − 1, n)-entry qd − q2n−d−2 for 1 � n � d. The matrix representing y

is diagonal, with (n, n)-entry qd−2n for 0 � n � d. The matrix representing z is lower
bidiagonal, with (n, n)-entry q2n−d for 0 � n � d and (n, n − 1)-entry q−d − q2n−d for
1 � n � d. Using this data and Definition 16.4 we compute the matrices in Matd+1(F)
that represent A′,B′ with respect to {vn}dn=0. The matrix representing A′ is lower
bidiagonal, with (n, n)-entry θd−n for 0 � n � d and (n, n− 1)-entry

b−1cq
(
qn − q−n

)(
q−n − a−1bc−1qn−d−1) (42)

for 1 � n � d. The matrix representing B′ is upper bidiagonal, with (n, n)-entry θ∗n for
0 � n � d and (n− 1, n)-entry

ac−1qd
(
qn−d−1 − qd−n+1)(q−n − a−1bcqn−d−1) (43)

for 1 � n � d. We now adjust the basis {vn}dn=0. For 1 � n � d let αn (resp. βn)
denote the scalar (42) (resp. (43)). We have αnβn = φn, so each of αn, βn is nonzero.
Define v′n = α1α2 · · ·αnvn for 0 � n � d. By construction {v′n}dn=0 is a basis for Vd.
With respect to this basis the matrices representing A′,B′ are the ones shown in (37).
Therefore the pair A′,B′ acts on Vd as a Leonard pair that corresponds to (a, b, c, d).

(iii) Recall that Λ acts on Vd as qd+1 +q−d−1 times the identity. Using this comment,
compare the last equation in Lemma 16.6 with the last equation in Proposition 16.20. �
Lemma 16.28. Let A,B denote a Leonard pair over F of q-Racah type, with feasible
sequence (a, b, c, d). Let A′,B′,C′ denote the dual Askey–Wilson triple for a, b, c. Assume
that there exists a Uq(sl2)-module structure on the underlying vector space V such that
A = A′ and B = B′ on V . Then the Uq(sl2)-module V is irreducible.
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Proof. By Lemma 2.3. �
Corollary 16.29. Let A,B denote a Leonard pair over F of q-Racah type, with feasible
sequence (a, b, c, d). Let A′,B′,C′ denote the dual Askey–Wilson triple for a, b, c. Then
the following (i), (ii) hold.

(i) There exists a unique type 1 Uq(sl2)-module structure on the underlying vector
space V such that A = A′ and B = B′ on V .

(ii) The element C′ acts on V as the dual Z3-symmetric completion of A,B.

Proof. Similar to the proof of Corollary 16.26. �
We now bring in �q. Recall the injections κi : Uq(sl2) → �q from Lemma 4.4.

Definition 16.30. Referring to Definition 16.1, we identify A,B,C with their images
under the injection κ2 : Uq(sl2) → �q. Thus

A = ax01 + a−1x13 + bc−1 [x01, x13]
q − q−1 ,

B = bx13 + b−1x30 + ca−1 [x13, x30]
q − q−1 ,

C = cx30 + c−1x01 + ab−1 [x30, x01]
q − q−1 .

Definition 16.31. Referring to Definition 16.4, we identify A′,B′,C′ with their images
under the injection κ0 : Uq(sl2) → �q. Thus

A′ = ax31 + a−1x12 + cb−1 [x31, x12]
q − q−1 ,

B′ = bx23 + b−1x31 + ac−1 [x23, x31]
q − q−1 ,

C′ = cx12 + c−1x23 + ba−1 [x12, x23]
q − q−1 .

Lemma 16.32. Assume that (a, b, c, d) is feasible, and define t = abc−1. On the �q-module
Vd(t),

A = ax01 + a−1x12 = A′, (44)

B = bx23 + b−1x30 = B′. (45)

Proof. Use Lemma 9.5 (with t = abc−1). �
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Theorem 16.33. Assume that (a, b, c, d) is feasible, and define t = abc−1. Then the fol-
lowing (i)–(iv) hold.

(i) The pair

ax01 + a−1x12, bx23 + b−1x30 (46)

acts on the �q-module Vd(t) as a Leonard pair of q-Racah type.
(ii) This Leonard pair corresponds to (a, b, c, d).
(iii) The element C from Definition 16.30 acts on Vd(t) as the Z3-symmetric completion

of this Leonard pair.
(iv) The element C′ from Definition 16.31 acts on Vd(t) as the dual Z3-symmetric

completion of this Leonard pair.

Proof. We first obtain (i)–(iii). Using the homomorphism κ2 : Uq(sl2) → �q we turn the
�q-module Vd(t) into a Uq(sl2)-module isomorphic to Vd. Apply Theorem 16.24 to this
Uq(sl2)-module, and use the equations on the left in (44), (45). This yields (i)–(iii). Next
we obtain (iv). Using the homomorphism κ0 : Uq(sl2) → �q we turn the �q-module Vd(t)
into a Uq(sl2)-module isomorphic to Vd. Apply Theorem 16.27 to this Uq(sl2)-module,
and use the equations on the right in (44), (45). This yields (iv), along with a second
proof of (i), (ii). �
Corollary 16.34. Let A,B denote a Leonard pair over F of q-Racah type, with feasible
sequence (a, b, c, d). Define t = abc−1. Then the following (i)–(iii) hold.

(i) The underlying vector space V supports a unique t-evaluation module for �q such
that on V ,

A = ax01 + a−1x12, B = bx23 + b−1x30. (47)

(ii) The element C from Definition 16.30 acts on V as the Z3-symmetric completion of
A,B.

(iii) The element C′ from Definition 16.31 acts on V as the dual Z3-symmetric comple-
tion of A,B.

Proof. The Leonard pair A,B corresponds to (a, b, c, d). The Leonard pair in Theo-
rem 16.33 also corresponds to (a, b, c, d). Therefore these Leonard pairs are isomorphic.
Let ∂ : V → Vd(t) denote an isomorphism of Leonard pairs from A,B to the Leonard
pair in Theorem 16.33. Via ∂ we transport the �q-module structure from Vd(t) to V .
This turns V into a �q-module isomorphic to Vd(t). By construction and Theorem 16.33,
Eqs. (47) hold on V , and the assertions (ii), (iii) are valid. The uniqueness assertion in
(i) follows from Lemma 2.3. �
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Note 16.35. Let A,B denote a Leonard pair of q-Racah type. Using Lemma 16.15 and
Corollary 16.34, we get eight �q-module structures on the underlying vector space.

17. The compact basis

Let A,B denote a Leonard pair over F that has q-Racah type. In this section we
introduce a certain basis for the underlying vector space, with respect to which the
matrices representing A and B are tridiagonal with attractive entries. We call this basis
the compact basis. We show how the compact basis is related to the �q-module structure
discussed in Corollary 16.34.

Proposition 17.1. Let A,B denote a Leonard pair over F of q-Racah type, with feasible se-
quence (a, b, c, d). Then there exists a basis for the underlying vector space V , with respect
to which A and B are represented by the following tridiagonal matrices in Matd+1(F):

Element (n, n − 1)-entry (n, n)-entry (n − 1, n)-entry
A c−1(1 − q−2n) (a + a−1)qd−2n c(1 − q2d−2n+2)
B q−d−1(1 − q2n) (b + b−1)q2n−d qd+1(1 − q2n−2d−2)

Proof. Recall the �q-module structure on V from Corollary 16.34. This is an evaluation
module, with evaluation parameter t = abc−1. Let {un}dn=0 denote a [1, 3, 0, 2]-basis
for V . Consider the matrices in Matd+1(F) that represent x01, x12, x23, x30 with
respect to {un}dn=0. These matrices are given in the last row of the first table in Theo-
rem 11.1 (with r = 3). Their entries are described as follows. The matrix representing
x01 is upper bidiagonal, with (n, n)-entry qd−2n for 0 � n � d and (n − 1, n)-entry
q−1t−1(1 − q2d−2n+2) for 1 � n � d. The matrix representing x12 is lower bidiagonal,
with (n, n)-entry qd−2n for 0 � n � d and (n, n − 1)-entry qt(1 − q−2n) for 1 � n � d.
The matrix representing x23 is lower bidiagonal, with (n, n)-entry q2n−d for 0 � n � d

and (n, n − 1)-entry q−d(1 − q2n) for 1 � n � d. The matrix representing x30 is upper
bidiagonal, with (n, n)-entry q2n−d for 0 � n � d and (n−1, n)-entry qd(1−q2n−2d−2) for
1 � n � d. Now consider the matrices in Matd+1(F) that represent A and B with respect
to {un}dn=0. Their entries are found using (47) and the above comments. The matrix rep-
resenting A is tridiagonal, with (n, n−1)-entry qbc−1(1−q−2n) for 1 � n � d, (n, n)-entry
(a+ a−1)qd−2n for 0 � n � d, and (n− 1, n)-entry q−1b−1c(1− q2d−2n+2) for 1 � n � d.
The matrix representing B is tridiagonal, with (n, n−1)-entry bq−d(1−q2n) for 1 � n � d,
(n, n)-entry (b + b−1)q2n−d for 0 � n � d, and (n− 1, n)-entry b−1qd(1 − q2n−2d−2) for
1 � n � d. We now adjust the basis {un}dn=0. Define vn = qnbnun for 0 � n � d. Then
{vn}dn=0 is a basis for V . With respect to this basis the matrices representing A and B

are as shown in the theorem statement. �
Example 17.2. The matrices from Proposition 17.1 look as follows for d = 3. The matrix
representing A is
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⎛
⎜⎜⎝

(a + a−1)q3 c(1 − q6) 0 0
c−1(1 − q−2) (a + a−1)q c(1 − q4) 0

0 c−1(1 − q−4) (a + a−1)q−1 c(1 − q2)
0 0 c−1(1 − q−6) (a + a−1)q−3

⎞
⎟⎟⎠ .

The matrix representing B is

⎛
⎜⎜⎝

(b + b−1)q−3 q4(1 − q−6) 0 0
q−4(1 − q2) (b + b−1)q−1 q4(1 − q−4) 0

0 q−4(1 − q4) (b + b−1)q q4(1 − q−2)
0 0 q−4(1 − q6) (b + b−1)q3

⎞
⎟⎟⎠ .

Definition 17.3. The basis discussed in Proposition 17.1 is said to be compact.

Note 17.4. Our motivation for Definition 17.3 is that the entries shown in the table of
Proposition 17.1 are rather concise.

Note 17.5. The existence of the compact basis was hinted at in [3], [23, Section 6], [24,
Section 2.3].

We comment on the uniqueness of the compact basis.

Lemma 17.6. Let A,B denote a Leonard pair over F of q-Racah type, with feasible se-
quence (a, b, c, d). Let {vn}dn=0 denote a basis for the underlying vector space V that
meets the requirements of Proposition 17.1. Let {v′n}dn=0 denote any basis for V . Then
the following are equivalent:

(i) the basis {v′n}dn=0 meets the requirements of Proposition 17.1;
(ii) there exists a nonzero α ∈ F such that v′n = αvn for 0 � n � d.

Proof. (i) ⇒ (ii) Consider the map ψ ∈ End(V ) that sends vn �→ v′n for 0 � n � d. The
matrix representing A with respect to {vn}dn=0 is equal to the matrix representing A with
respect to {v′n}dn=0. Therefore ψ commutes with A. By a similar argument ψ commutes
with B. Now by Lemma 2.3, ψ commutes with everything in End(V ). Consequently there
exists α ∈ F such that ψ = αI. We have α �= 0 since ψ �= 0. By construction v′n = αvn
for 0 � n � d.

(ii) ⇒ (i) Clear. �
Theorem 17.7. Let A,B denote a Leonard pair over F of q-Racah type, with feasible
sequence (a, b, c, d). Let {vn}dn=0 denote a basis for the underlying vector space V . Then
the following are equivalent:

(i) the basis {vn}dn=0 meets the requirements of Proposition 17.1;
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(ii) the basis {q−nb−nvn}dn=0 is a [1, 3, 0, 2]-basis of V , for the �q-module structure in
Corollary 16.34.

Proof. This follows from the proof of Proposition 17.1, together with Lemma 17.6. �
Proposition 17.8. Let A,B denote a Leonard pair over F of q-Racah type, with
Z3-symmetric completion C and dual Z3-symmetric completion C ′. Let (a, b, c, d) de-
note a feasible sequence for A,B. Consider the matrices in Matd+1(F) that represent C
and C ′ with respect to a basis from Proposition 17.1. The matrix representing C is upper
triangular, with (n, n)-entry

cq2n−d + c−1qd−2n

for 0 � n � d, (n− 1, n)-entry

(
qd−n+1 − qn−d−1)((b + b−1)cqn −

(
a + a−1)qd−n+1)

for 1 � n � d, (n− 2, n)-entry

cqd+1(qd−n+1 − qn−d−1)(qd−n+2 − qn−d−2)
for 2 � n � d, and all other entries 0. The matrix representing C ′ is lower triangular,
with (n, n)-entry

cqd−2n + c−1q2n−d

for 0 � n � d, (n, n− 1)-entry

(
qn − q−n

)((
a + a−1)q−n −

(
b + b−1)c−1qn−d−1)

for 1 � n � d, (n, n− 2)-entry

c−1q−d−1(qn − q−n
)(
qn−1 − q1−n

)
for 2 � n � d, and all other entries 0.

Proof. The matrix representing C is obtained using Proposition 17.1 and the last equa-
tion in Proposition 16.17. The matrix representing C ′ is similarly obtained using the last
equation in Proposition 16.20. �

We now summarize Proposition 17.1 and Proposition 17.8.
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Corollary 17.9. Let A,B denote a Leonard pair over F of q-Racah type. Consider a
compact basis for this pair. In the table below, for each of the displayed maps we describe
the matrix that represents it with respect to the basis.

Map Representing matrix
A Irreducible tridiagonal
B Irreducible tridiagonal
qAB − q−1BA Upper triangular
qBA − q−1AB Lower triangular
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Appendix A. Some matrix definitions

In this appendix we define and discuss the matrices that were used earlier in the
paper.

Fix an integer d � 1 and a nonzero t ∈ F that is not among {qd−2n+1}dn=1. Let I

denote the identity matrix in Matd+1(F).

Definition A.1. Let Z denote the matrix in Matd+1(F) with (i, j)-entry δi+j,d for 0 �
i, j � d. Note that Z2 = I.

Example A.2. For d = 3,

Z =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

For each lemma in this appendix, the proof is routine and left to the reader.

Lemma A.3. For B ∈ Matd+1(F) and 0 � i, j � d the following coincide:

(i) the (i, j)-entry of ZBZ;
(ii) the (d− i, d− j)-entry of B.

We now consider the matrices used in Section 13. They are

Dq(t), Dq(t), Tq. (48)

Recall the notation
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(a; q)n = (1 − a)(1 − aq) · · ·
(
1 − aqn−1) n = 0, 1, 2, . . . .

We interpret (a; q)0 = 1.

Definition A.4. Let Dq(t) denote the diagonal matrix in Matd+1(F) with (i, i)-entry
(tqd−2i+1; q2)i for 0 � i � d.

Example A.5. For d = 3,

Dq(t) = diag
(
1, 1 − tq2,

(
1 − tq2)(1 − t),

(
1 − tq2)(1 − t)

(
1 − tq−2)).

Lemma A.6. We have

(
Dq(t)

)−1 =
ZDq−1(t)Z
(tq1−d; q2)d

.

Definition A.7. Let Dq(t) denote the diagonal matrix in Matd+1(F) with (i, i)-entry
tiqi(d−1) for 0 � i � d.

Example A.8. For d = 3,

Dq(t) = diag
(
1, tq2, t2q4, t3q6).

Lemma A.9. We have

(
Dq(t)

)−1 = Dq−1
(
t−1) = t−dqd(1−d)ZDq(t)Z.

We recall some notation. For integers n � i � 0 define

[
n

i

]
q

=
[n]!q

[i]!q[n− i]!q
.

Definition A.10. Let Tq denote the lower triangular matrix in Matd+1(F) with (i, j)-entry

(−1)jqj(1−i)
[
i

j

]
q

for 0 � j � i � d.

Example A.11. For d = 3,

Tq =

⎛
⎜⎜⎝

1 0 0 0
1 −1 0 0
1 −q−1[2]q q−2 0
1 −q−2[3]q q−4[3]q −q−6

⎞
⎟⎟⎠ .
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By [32, Theorem 15.4] we have (Tq)−1 = Tq−1 .
We are done discussing the matrices (48). We now consider the matrices used in

Section 11. They are

Kq, Eq, Fq(t), Gq(t), Lq(t), Sq(t), Mq(t). (49)

Definition A.12. Let Kq denote the diagonal matrix in Matd+1(F) with (i, i)-entry qd−2i

for 0 � i � d.

Example A.13. For d = 3,

Kq = diag
(
q3, q, q−1, q−3).

Lemma A.14. We have

(Kq)−1 = Kq−1 = ZKqZ.

Definition A.15. Let Eq denote the upper bidiagonal matrix in Matd+1(F) with (i, i)-entry
q2i−d for 0 � i � d and (i − 1, i)-entry qd − q2i−2−d for 1 � i � d. Note that Eq has
constant row sum qd.

Example A.16. For d = 3,

Eq =

⎛
⎜⎜⎝

q−3 q3 − q−3 0 0
0 q−1 q3 − q−1 0
0 0 q q3 − q

0 0 0 q3

⎞
⎟⎟⎠ .

Lemma A.17. We have Eq = X−1KqX where X = TqZ.

In Section 11 we refer to (Eq)−1.

Lemma A.18. The matrix (Eq)−1 is upper triangular with (i, j)-entry

(
q2(d−j+1); q2)

j−i
qd−2j

for 0 � i � j � d.

Example A.19. For d = 3,

(Eq)−1 =

⎛
⎜⎜⎝

q3 (1 − q6)q (1 − q4)(1 − q6)q−1 (1 − q2)(1 − q4)(1 − q6)q−3

0 q (1 − q4)q−1 (1 − q2)(1 − q4)q−3

0 0 q−1 (1 − q2)q−3

0 0 0 q−3

⎞
⎟⎟⎠ .
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Definition A.20. Let Fq(t) denote the upper bidiagonal matrix in Matd+1(F) with
(i, i)-entry q2i−d for 0 � i � d and (i− 1, i)-entry (qd − q2i−2−d)q1−dt for 1 � i � d.

Example A.21. For d = 3,

Fq(t) =

⎛
⎜⎜⎝

q−3 (q3 − q−3)q−2t 0 0
0 q−1 (q3 − q−1)q−2t 0
0 0 q (q3 − q)q−2t

0 0 0 q3

⎞
⎟⎟⎠ .

Lemma A.22. We have

Fq(t) = Dq

(
t−1)Eq

(
Dq

(
t−1))−1 (50)

and also

Fq(t) = Kq−1 − t
[Eq−1 ,Kq−1 ]

q − q−1 .

Definition A.23. Let Gq(t) denote the upper bidiagonal matrix in Matd+1(F) with
(i, i)-entry q2i−d for 0 � i � d and (i − 1, i)-entry (qd − q2i−2−d)(1 − tqd−2i+1) for
1 � i � d.

Example A.24. For d = 3,

Gq(t) =

⎛
⎜⎜⎝

q−3 (q3 − q−3)(1 − tq2) 0 0
0 q−1 (q3 − q−1)(1 − t) 0
0 0 q (q3 − q)(1 − tq−2)
0 0 0 q3

⎞
⎟⎟⎠ .

Lemma A.25. We have

Gq(t) =
(
Dq(t)

)−1
EqDq(t) (51)

and also

Gq(t) = Eq −Kq + Fq−1(t).

Definition A.26. Let Lq(t) denote the upper bidiagonal matrix in Matd+1(F) with
(i, i)-entry q2i−d for 0 � i � d and (i − 1, i)-entry (qd − q2i−2−d)(1 − tqd−2i+1)−1 for
1 � i � d.
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Example A.27. For d = 3,

Lq(t) =

⎛
⎜⎜⎜⎝

q−3 q3−q−3

1−tq2 0 0
0 q−1 q3−q−1

1−t 0
0 0 q q3−q

1−tq−2

0 0 0 q3

⎞
⎟⎟⎟⎠ .

Lemma A.28. We have

Lq(t) = Dq(t)Eq

(
Dq(t)

)−1
.

In Section 11 we refer to (Lq(t))−1.

Lemma A.29. The matrix (Lq(t))−1 is upper triangular with (i, j)-entry

(q2(d−j+1); q2)j−i

(tqd−2j+1; q2)j−i
qd−2j

for 0 � i � j � d.

Example A.30. For d = 3,

(
Lq(t)

)−1 =

⎛
⎜⎜⎜⎜⎜⎝

q3 (1−q6)q
1−tq2

(1−q4)(1−q6)q−1

(1−t)(1−tq2)
(1−q2)(1−q4)(1−q6)q−3

(1−tq−2)(1−t)(1−tq2)

0 q (1−q4)q−1

1−t
(1−q2)(1−q4)q−3

(1−tq−2)(1−t)

0 0 q−1 (1−q2)q−3

1−tq−2

0 0 0 q−3

⎞
⎟⎟⎟⎟⎟⎠ .

Definition A.31. Let Sq(t) denote the tridiagonal matrix in Matd+1(F) with (i−1, i)-entry
(qd − q2i−d−2)(1 − tq2i−d−1) for 1 � i � d, (i, i − 1)-entry (q2i−d − q−d)q2i−d−1t for
1 � i � d, and (i, i)-entry

qd −
(
q2i−d − q−d

)
q2i−d−1t−

(
qd − q2i−d

)(
1 − tq2i−d+1)

for 0 � i � d. Note that Sq(t) has constant row sum qd.

Example A.32. For d = 3,

Sq(t)

= Eq + t

⎛
⎜⎜⎝

q − q−5 q−5 − q 0 0
q−3 − q−5 (q − q−1)(q2 + 1 − q−4) q−1 − q3 0

0 q − q−3 (q − q−1)(q4 − 1 − q−2) q3 − q5

0 0 q5 − q−1 q−1 − q5

⎞
⎟⎟⎠ .
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Lemma A.33. We have

Sq(t) = TqGq−1(t)Tq−1

and also

Sq(t) = Eq − t
[Eq, ZEq−1Z]

q − q−1 .

Definition A.34. We define Mq(t) ∈ Matd+1(F) as follows. For 0 � i, j � d the (i, j)-entry
of Mq(t) is given in the table below.

Case (i, j)-entry of Mq(t)
i − j > 1 0
i − j = 1 q−1−q2i−1

t−1−q2i−d−1

j � i, i �= 0, j �= d 1−tqd+1

1−tq2j−d+1
1−tq−d−1

1−tq2i−d−1
(q2i−2d;q2)j−i

(tq2i−d+1;q2)j−i

1
qd−2j

i = 0, j �= d 1−tqd+1

1−tq2j−d+1
(q−2d;q2)j
(tq1−d;q2)j

1
qd−2j

i �= 0, j = d 1−tq−d−1

1−tq2i−d−1
(q2i−2d;q2)d−i

(tq2i−d+1;q2)d−i
qd

i = 0, j = d (q−2d;q2)d
(tq1−d;q2)d

qd

Example A.35. For d = 3,

Mq(t)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1−tq4

q3(1−tq−2)
(1−tq4)(1−q−6)
q(1−tq−2)(1−t)

q(1−tq4)(1−q−4)(1−q−6)
(1−tq−2)(1−t)(1−tq2)

q3(1−q−2)(1−q−4)(1−q−6)
(1−tq−2)(1−t)(1−tq2)

q−1−q
t−1−q−2

(1−tq4)(1−tq−4)
q(1−tq−2)(1−t)

q(1−tq4)(1−tq−4)(1−q−4)
(1−tq−2)(1−t)(1−tq2)

q3(1−tq−4)(1−q−2)(1−q−4)
(1−tq−2)(1−t)(1−tq2)

0 q−1−q3

t−1−1
q(1−tq4)(1−tq−4)

(1−t)(1−tq2)
q3(1−tq−4)(1−q−2)

(1−t)(1−tq2)

0 0 q−1−q5

t−1−q2
q3(1−tq−4)

1−tq2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Lemma A.36. We have

Mq(t) = Tq−1
(
Lq(t)

)−1
Tq.

Appendix B. Some matrix identities

In this section we record some miscellaneous facts about the matrices listed
in (48), (49).

Lemma B.1. We have

t
(
ZEqZ − Fq

(
t−1)) =

[Eq−1 , ZFq−1(t)Z]
q − q−1 ,

t
(
Gq

(
t−1)− ZEq−1Z

)
= [Sq(t),Kq]

q − q−1 ,

t
(
Kq − Sq

(
t−1)) =

[Gq(t), ZEq−1Z]
q − q−1 .
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Proof. These equations express how the relations from Lemma 9.4 look in the 24 bases
for Vd(t) from Lemma 12.4. �
Lemma B.2. We have

t
(
ZEqZ −Mq(t)

)
=

[Eq−1 ,Mq(t)]
q − q−1 , t−1(Fq−1(t) −Kq

)
= [Eq,Kq]

q − q−1 ,

t(Eq−1 −Kq) = [Fq(t),Kq]
q − q−1 ,

t−1(ZGq−1(t)Z −
(
Lq(t)

)−1) =
[(Lq(t))−1, ZSq−1(t−1)Z]

q − q−1 ,

t
(
Kq − (Eq)−1) = [Gq(t), (Eq)−1]

q − q−1 , t−1(Sq(t) − Eq

)
=

[ZEq−1Z,Eq]
q − q−1 ,

t
(
Sq

(
t−1)− ZLq−1(t)Z

)
=

[ZLq−1(t)Z,Gq(t)]
q − q−1 , t

(
Gq

(
t−1)− Eq

)
= [Eq,Kq]

q − q−1 ,

t
(
ZEq−1Z − (Eq)−1) = [(Eq)−1, Sq(t)]

q − q−1 , t
(
Kq −

(
Lq(t)

)−1) = [Eq, (Lq(t))−1]
q − q−1 ,

t−1(Eq − Lq(t)
)

= [Lq(t),Kq]
q − q−1 , t−1(ZFq−1(t)Z −Mq(t)

)
= [Mq(t), Fq(t−1)]

q − q−1 .

Proof. These equations express how the relations from Lemma 9.5 look in the 24 bases
for Vd(t) from Lemma 12.4. �
Lemma B.3. We have

TqZTqZTqZ = (−1)dq−d(d−1)I,

TqDq(t)TqDq−1
(
t−1)Tq−1

(
Dq(t)

)−1 = I.

Proof. For n ∈ N, let B0, B1, . . . , Bn denote a sequence of bases for Vd(t) such that
B0 = Bn. For 1 � i � n let Ti denote the transition matrix from Bi−1 to Bi. Then
T1T2 · · ·Tn = I. Both equations in the lemma statement are obtained in this way, using
an appropriate sequence of bases from the 24 given in Lemma 12.4. �
Lemma B.4. We have

ZTqZGq(t) = Fq(t)ZTqZ, Eq−1 = Tq−1EqTq,

Lq(t)ZTq−1ZLq−1
(
t−1)ZTqZ = I, Sq(t) = ZTq−1Fq−1(t)TqZ,

Dq

(
t−1)Sq(t)

(
Dq

(
t−1))−1 = ZSq−1(t)Z, Mq(t) = ZTqLq−1

(
t−1)Tq−1Z,

Mq−1
(
t−1) =

(
Dq(t)

)−1
Mq(t)Dq(t), Mq(t)ZMq−1

(
t−1)Z = I.
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Proof. These are all applications of the linear algebra principle from the fourth paragraph
of Section 13. �
Lemma B.5. In the table below we list some 3-tuples u, v, w of matrices in Matd+1(F).
For each case

quv − q−1vu

q − q−1 = I,
qvw − q−1wv

q − q−1 = I,
qwu− q−1uw

q − q−1 = I.

u v w

Eq Kq ZEq−1Z

Lq(t) Kq ZGq−1 (t)Z
Sq−1 (t) (Eq−1 )−1 Gq−1 (t−1)
Eq (Lq(t−1))−1 ZSq−1 (t)Z
ZGq(t)Z Kq−1 Lq−1 (t)
Gq(t−1) (Eq)−1 Sq(t)
ZSq(t)Z (Lq−1 (t−1))−1 Eq−1

Fq(t−1) Eq−1 Mq(t)
Mq−1 (t) Eq Fq−1 (t−1)
Fq(t−1) Kq ZFq−1 (t)Z

Proof. The relations (13) hold in �q. The equations in the present lemma express how
these relations look in the 24 bases for Vd(t) from Lemma 12.4. �
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