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REPRODUCING KERNEL

FOR A CLASS OF WEIGHTED BERGMAN SPACES

ON THE SYMMETRIZED POLYDISC

GADADHAR MISRA, SUBRATA SHYAM ROY, AND GENKAI ZHANG

(Communicated by Richard Rochberg)

Abstract. A natural class of weighted Bergman spaces on the symmetrized
polydisc is isometrically embedded as a subspace in the corresponding weighted
Bergman space on the polydisc. We find an orthonormal basis for this sub-
space. It enables us to compute the kernel function for the weighted Bergman
spaces on the symmetrized polydisc using the explicit nature of our embedding.
This family of kernel functions includes the Szegö and the Bergman kernel on
the symmetrized polydisc.

1. Introduction

Let ϕi, i ≥ 0, be the elementary symmetric function of degree i; that is, ϕi is
the sum of all products of i distinct variables zi so that ϕ0 = 1 and

ϕi(z1, . . . , zn) =
∑

1≤k1<k2<...<ki≤n

zk1
· · · zki

.

For a fixed n ≥ 1, let s : Cn −→ Cn be the function of symmetrization given by the
formula

s(z1, . . . , zn) =
(
ϕ1(z1, . . . , zn), . . . , ϕn(z1, . . . , zn)

)
.

The image Gn := s(Dn) under the map s of the unit polydisc Dn := {z ∈ Cn :
‖z‖∞ < 1} is known as the symmetrized polydisc. The restriction s|resDn : Dn → Gn

of the map s to Dn is a proper holomorphic map [9]. The Bergman kernel for
the symmetrized polydisc is computed explicitly in [7]. It is obtained from the
transformation rule for the Bergman kernel under proper holomorphic maps [3,
Theorem 1].

Here we realize (isometrically) the Bergman space A2(Gn) of the symmetrized
polydisc as a subspace of the Bergman space A2(Dn) on the polydisc using the
symmetrization map s. Indeed, the map Γ : A2(Gn) → A2(Dn) defined by the
formula

(Γf)(z) = (f ◦ s)(z)Js(z), z ∈ D
n,
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where Js is the complex Jacobian of the map s, is an isometric embedding. The
functions in the image ranΓ ⊆ A2(Dn) are anti-symmetric:

ranΓ := {f : f(zσ) = sgn(σ)f(z), σ ∈ Σn , f ∈ A
2(Dn)},

where Σn is the symmetric group on n symbols. The image of Γ coincides with
A2

anti(D
n), the subspace of anti-symmetric functions in A2(Dn). An orthonormal

basis of A2
anti(D

n) may then be transformed into an orthonormal basis of the A2(Gn)
via the unitary map Γ∗. It is then possible to compute the Bergman kernel for the
symmetrized polydisc Gn by evaluating the sum∑

k≥0

ek(z)ek(w), z,w ∈ Gn,

for some choice of an orthonormal basis in A2(Gn).
This scheme works equally well for a class of weighted Bergman spaces A(λ)(Dn),

λ > 1, determined by the kernel function

B
(λ)
Dn (z,w) =

n∏
i=1

(1− ziw̄i)
−λ, z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ D

n,

defined on the polydisc and the corresponding weighted Bergman spaces A(λ)(Gn)
on the symmetrized polydisc.

The limiting case of λ = 1, as is well-known, is the Hardy space on the poly-
disc. We show that the reproducing kernel for the Hardy space of the symmetrized
polydisc is of the form

SGn
(s(z), s(w)) =

n∏
i,j=1

(1− ziw̄j)
−1, z,w ∈ D

n.

This is a consequence of the determinantal identity [8, (4.3), p. 63]. Indeed, along
the way, we obtain a generalization of this well-known identity. We also point out
that the Hardy kernel is not a power of the Bergman kernel unlike the case of
bounded symmetric domains.

2. Weighted Bergman spaces on the symmetrized polydisc

For λ > 1, let dV (λ) be the probability measure
(
λ−1
π

)n(∏n
i=1(1−r2i )

λ−2ridridθi

)
on the polydisc D

n. Let dV
(λ)
s be the measure on the symmetrized polydisc Gn

obtained by the change of variable formula. Throughout this note, by a suitable
renormalization, we ignore the constant n! that would have otherwise appeared on
the left-hand side of the equality below (cf. [2, p. 160]):∫

Gn

f dV (λ)
s =

∫
Dn

(f ◦ s) |Js|2dV (λ), λ > 1,

where Js(z) =
∏

1≤i<j≤n(zi − zj) is the complex Jacobian of the symmetrization

map s. Let ‖Js‖2λ =
∫
Dn |Js|2dV (λ) be the the norm of the Jacobian determinant Js

in the Hilbert space L2(Dn, dV (λ)). By a slight abuse of notation, we let dV
(λ)
s be

the measure ‖Js‖−2
λ dV

(λ)
s , λ > 1, on the symmetrized polydisc Gn. The weighted

Bergman space A(λ)(Gn), λ > 1, on the symmetrized polydisc Gn is the subspace of

the Hilbert space L2(Gn, dV
(λ)
s ) consisting of holomorphic functions. It coincides

with the usual Bergman space for λ = 2. The norm of f ∈ A(λ)(Gn) is given by
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‖f‖2 =
∫
Gn

|f |2dV (λ)
s . We have normalized the volume measure on Gn to ensure

‖1‖ = 1. For λ > 1, let Γ : A(λ)(Gn) −→ A(λ)(Dn) be the operator defined by the
rule:

(Γf)(z) = ‖Js‖−1
λ Js(z)(f ◦ s)(z), f ∈ A

(λ)(Gn), z ∈ D
n.

It is clear from the definition of the norm in A(λ)(Gn) that Γ is an isometry.
Since Js(zσ) = sgn(σ)Js(z), σ ∈ Σn, it follows that the image Γ

(
A

(λ)(Gn)
)
is

contained in the subspace A
(λ)
anti(D

n) of A(λ)(Dn) consisting of anti-symmetric func-

tions. Thus ranΓ ⊆ A
(λ)
anti(D

n). On the other hand, every function g in A
(λ)
anti(D

n)
being anti-symmetric admits a factorization of the form g(z) = Js(z)h(z) for some
holomorphic function h on Dn, which is symmetric. Therefore, the function J−1

s g
is well defined on the open set {(z1, . . . , zn) ∈ Dn : zi �= zj , i �= j}, where it agrees
with h. Hence it extends to all of Dn. This function h = J−1

s g is symmetric and
holomorphic. Consequently, it is of the form f ◦ s for some function f defined on

Gn. Therefore, the range of the isometry Γ coincides with the subspace A
(λ)
anti(D

n).
Now, it is easily verified that Γ∗g = ‖Js‖λ f , where f is chosen satisfying g(z) =

Js(z)(f ◦ s)(z). The operator Γ : A(λ)(Gn) −→ A
(λ)
anti(D

n) is evidently unitary.

The Hilbert spaces A(λ)(Gn), λ > 1, are the weighted Bergman spaces on the
symmetrized polydisc Gn.

Since the subspace A
(λ)
anti(D

n) is invariant under the multiplication by the ele-
mentary symmetric function ϕi, 1 ≤ i ≤ n, we see that it admits a module action
via the map

(p, f) 
→ p(ϕ1, . . . , ϕn)f, f ∈ A
(λ)
anti(D

n), p ∈ C[z]

over the polynomial ring C[z]. Transplanting this action to the Hilbert space
A(λ)(Gn) via Γ,

(p, f) 
→ p · f := Γ∗(p · (Γf)), f ∈ A
(λ)
anti(Gn),

where p is a polynomial in the symmetric variables (ϕ1(z), . . . , ϕn(z)), makes it a
module over the symmetric polynomials. Indeed, p · f is the point-wise product
of the symmetric polynomial p and the function f ∈ A(λ)(Gn). Also, it is easily
verified that the unitary operator Γ intertwines the multiplication by the elementary

symmetric functions on the Hilbert space A
(λ)
anti(D

n) with the multiplication by the

coordinate functions on A(λ)(Gn). Thus A
(λ)(Gn) and A

(λ)
anti(D

n) are isomorphic as

modules via the unitary map Γ. Moreover, since A(λ)(Gn) is a submodule of the

L2(Gn, dV
(λ)
s ), it follows that the map

(p, f) 
→ p · f, f ∈ A
(λ)(Gn), p ∈ C[z]

is contractive. It therefore extends to a continuous map of the function algebra
A(Gn) obtained by taking the completion of the symmetric polynomials with re-
spect to the supremum norm on the symmetrized polydisc Gn. The reader may
consult [5] for more details on Hilbert modules.

2.1. Orthonormal basis and kernel function. A partition p is any finite se-
quence p := (p1, . . . , pn) of nonnegative integers in decreasing order, that is,

p1 ≥ · · · ≥ pn.
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We let [n] denote the set of all partitions of size n. If a partition p also has
the property p1 > p2 > · · · > pn ≥ 0, then we may write p = m + δ, where m
is some partition in [n] and δ = (n − 1, n − 2, . . . , 1, 0). Let [[n]] be the set of all
partitions of the form m+ δ for m ∈ [n].

Let zm := zm1
1 · · · zmn

n , m ∈ [n], be a monomial. Consider the polynomial am
obtained by anti-symmetrizing the monomial zm:

am(z) :=
∑

σ∈
∑

n

sgn(σ) zmσ ,

where zmσ = z
mσ(1)

1 · · · zmσ(n)
n . Thus for any p ∈ [[n]], we have

ap(z) = am+δ(z) =
∑

σ∈
∑

n

sgn(σ) z(m+δ)σ ,

m ∈ [n], and it follows that

ap(z) = am+δ(z) = det
(
((z

pj

i ))ni,j=1

)
, p ∈ [[n]].

The following lemma clearly shows that the functions ap, p ∈ [[n]], are orthogonal

in the Hilbert space A(λ)(Dn).

Lemma 2.1. Let m and m′ be two partitions in [[n]], that is, mi > mj, m′
i > m′

j

for all i < j. Assume that m1 > m′
1 and fix σ, ν ∈ Σn. Then the set S :=

{mσ(k) −m′
ν(k) : 1 ≤ k ≤ n} �= {0}.

Proof. If σ(k) = ν(k) = 1 for some k, 1 ≤ k ≤ n, thenmσ(k)−m′
ν(k) = m1−m′

1 �= 0.

Therefore, in this case, S �= {0}.
Now, suppose that there exists no k, 1 ≤ k ≤ n, for which σ(k) = ν(k) = 1.

In this case, if possible, let S = {0}. Then there exists k such that σ(k) = 1 and
ν(k) = j > 1. Now, mσ(k) − m′

ν(k) = m1 − m′
j . Pick k′ �= k such that σ(k′) =

j, ν(k′) = �, � �= j. Thus mσ(k′) − m′
ν(k′) = mj − m′

�. Choose k′′ �= k such that

ν(k′′) = 1, σ(k′′) = r > 1 and mσ(k′′) − mν(k′′) = mr − m′
1. However, we have

m1 − m′
j = mj − m′

� = mr − m′
1 = 0. Clearly, mr = m′

1 > m′
j = m1. Hence

mr > m1 with r > 1, which is a contradiction. �

Since the vectors zpσ are orthogonal in A(λ)(Dn), using Lemma 2.1, we see that
the anti-symmetric polynomials {ap : p ∈ [[n]]} are mutually orthogonal in it. Any
anti-symmetric polynomial p(z) can be written as p(z) = aδ(z)q(z), where q is
symmetric. But the Schur polynomials am+δ

aδ
form a linear basis in the space of all

symmetric polynomials [8, I, (3,3)]. In other words, am+δ form a linear basis of
all anti-symmetric polynomials. The anti-symmetric polynomials are dense in the

Hilbert space A
(λ)
anti(D

n). Therefore, the linear span of {ap : p ∈ [[n]]} is dense in

the Hilbert space A
(λ)
anti(D

n).
For p = (p1, . . . , pn) ∈ [[n]], the norm of the vector ap is easily calculated:

‖ap‖A(λ)(Dn) =
∥∥∥ det

(
((z

pj

i ))ni,j=1

)∥∥∥
A(λ)(Dn)

=
∥∥∥ ∑

σ∈Σn

sgn(σ)

n∏
k=1

z
pσ(k)

k

∥∥∥
A(λ)(Dn)

=

√
n!p!

(λ)p
,
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where p! =
∏n

j=1 pj ! and (λ)p =
∏n

j=1(λ)pj
. Here (λ)pj

is the Pochhammer symbol

λ(λ+ 1) · · · (λ+mj − 1). Putting cp =
√

(λ)p
n!p! , we see that

{ep = cp ap : p ∈ [[n]]}

is an orthonormal basis for A
(λ)
anti(D

n). So the reproducing kernel K
(λ)
anti for A

(λ)
anti(D

n)
is given by

K
(λ)
anti(z,w) =

∑
p∈[[n]]

ep(z)ep(w), for z,w ∈ D
n.

For all σ ∈ Σn, we have epσ
(z)epσ

(w) = ep(z)ep(w), z,w ∈ D
n. Therefore, it

follows that

K
(λ)
anti(z,w) =

∑
p∈[[n]]

ep(z)ep(w) =
1

n!

∑
p≥0

ep(z)ep(w),(2.1)

where p ≥ 0 stands for all multi-indices p = (p1, . . . , pn) ∈ Zn with the property
that each pi ≥ 0 for 1 ≤ i ≤ n.

Proposition 2.2. The reproducing kernel K
(λ)
anti is given explicitly by the formula

K
(λ)
anti(z,w) =

1

n!
det

(((
(1− zjw̄k)

−λ
))n

j,k=1

)
, z,w ∈ D

n.

Proof. For z,w in Dn, we have∑
p≥0

ep(z)ep(w) =
1

n!

∑
p≥0

(λ)p
p!

det
(
((z

pj

k ))nj,k=1

)
det

(
((w̄

pj

k ))nj,k=1

)
=

1

n!

∑
p≥0

(λ)p
p!

( ∑
σ∈Σn

sgn(σ)
n∏

i=1

z
pσ(i)

i

)( ∑
ν∈Σn

sgn(ν)
n∏

i=1

w̄pi

ν(i)

)
=

1

n!

∑
p≥0

(λ)p
p!

∑
σ,ν∈Σn

sgn(σ)sgn(ν)

n∏
i=1

(ziw̄νσ(i))
pσ(i)

=
1

n!

∑
σ,ν∈Σn

sgn(νσ)
∑
p≥0

(λ)p
p!

n∏
i=1

(ziw̄νσ(i))
pσ(i)

=
1

n!

∑
σ,ν∈Σn

sgn(νσ)

n∏
i=1

(1− ziw̄νσ(i))
−λ

=
1

n!

∑
ψ∈Σn

sgn(ψ)
∑
νσ=ψ

σ,ν∈Σn

n∏
i=1

(1− ziw̄νσ(i))
−λ

=
∑

ψ∈Σn

sgn(ψ)
n∏

i=1

(1− ziw̄ψ(i))
−λ

= det
(
(((1− zjw̄k)

−λ))nj,k=1

)
.

The desired equality follows from (2.1). �
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2.2. Schur function. The determinant function am+δ is divisible by each of the
differences zi − zj , 1 ≤ i < j ≤ n and hence by the product∏

1≤i<j≤n

(zi − zj) = det
(
((zn−j

i ))ni,j=1

)
= aδ(z).

The quotient Sp := am+δ/aδ, p = m + δ, is therefore well-defined and is called
the Schur function [8, p. 40]. The Schur function Sp is symmetric and defines
a function on the symmetrized polydisc Gn. Since the Jacobian of the map s :
Dn → Gn coincides with aδ, it follows from Lemma 2.1 that the Schur functions
{Sp := am+δ/aδ : p ∈ [[n]]} form a set of mutually orthogonal vectors in A

(λ)(Gn).

The linear span of these vectors is dense in A(λ)(Gn). Also, the norms of these
vectors coincide with those of ap in A

(λ)(Gn), modulo the normalizing constant

‖Js‖λ, via the unitary map Γ. Hence ‖Sp‖ =
√

n!p!
‖Js‖λ(λ)p

, p ∈ [[n]]. The set {êp =

cp Sp : p ∈ [[n]]} is an orthonormal basis for A(λ)(Gn), where cp =
√

‖Js‖λ(λ)p
n!p! .

Thus we have proved:

Theorem 2.3. For λ > 1, the reproducing kernel B
(λ)
Gn

for the weighted Bergman

space A(λ)(Gn) on the symmetrized polydisc is given by the formula:

B
(λ)
Gn

(s(z), s(w)) =
∑

p∈[[n]]

c2p Sp(z)Sp(w)(2.2)

=
‖Js‖2λ
n!

det
(
(((1− zjw̄k)

−λ))nj,k=1

)
aδ(z)aδ(w)

(2.3)

for z,w in D
n.

The case λ = 2 corresponds to the Bergman space on the symmetrized polydisc.
In this case, ‖Js‖2 = 1 and the formula for the Bergman kernel, except for the
constant factor 1

n! , was found in [7]. (The factor 1
n! appears in our formula because

we have chosen the normalization ‖1‖ = 1 for the constant function 1 in the Hilbert
space A(λ)(Gn). However, as we will see below, it disappears for the Hardy space
on the symmetrized polydisc Gn.) However, the methods of this paper are very
different from that of [7], and we hope it sheds some light on the nature of these
kernel functions.

Corollary 2.4. The Bergman kernel on the symmetrized bidisc in C2 is given by
the formula

B
(2)
G2

(u,v) =
1

2

2(1 + u2v̄2)− u1v̄1
((1− u2v̄2)2 − (u1 − u2v̄1)(v̄1 − v̄2u1))2

,

u = (u1, u2),v = (v1, v2) ∈ G2.

This corollary gives an explicit formula for the Bergman kernel function for the
symmetrized polydisc which is independent of the symmetrization map s. It is
possible to write down similar formulae for n > 2 using the Jacob-Trudy identity
[6, p. 455].
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3. The Hardy space and the Szegö kernel

for the symmetrized polydisc

Let dΘ be the normalized Lebesgue measure on the torus Tn, where T = {α :
|α| = 1} is the unit circle. Let dΘs be the measure supported on the boundary of
the symmetrized polydisc Gn obtained by the change of variable formula∫

∂Gn

f dΘs =

∫
Tn

(f ◦ s) |Js|2dΘ,

where, as before, Js(z) is the complex Jacobian of the symmetrization map s. Let
us define the Hardy spaceH2(Gn) on the symmetrized polydisc Gn to be the Hilbert
space consisting of those holomorphic functions on Gn for which

sup 0<r<1

∫
Tn

|f ◦ s(r eiΘ)|2|Js(r eiΘ)|2dΘ < ∞, eiΘ ∈ T
n.

We set the norm of f ∈ H2(Gn) to be

‖f‖ = ‖Js‖−1
{
sup0<r<1

∫
Tn

|f ◦ s(r eiΘ)|2|Js(r eiΘ)|2dΘ
}1/2

,

where ‖Js‖2 =
∫
Tn |Js|2dΘ. This ensures, as before, ‖1‖ = 1. Let H2(Dn) be the

Hardy space on the polydisc Dn. The operator Γ : H2(Gn) −→ H2(Dn) given by
Γ(f) = ‖Js‖−1Js (f ◦ s) for f ∈ H2(Gn) is then easily seen to be an isometry.
The subspace of anti-symmetric functions H2

anti(D
n) in the Hardy space H2(Dn)

coincides with the image of H2(Gn) under the isometry Γ. Thus the operator
Γ : H2(Gn) −→ H2

anti(D
n) is onto and therefore unitary.

Following arguments identical to the one given after Lemma 2.1, we see that the
functions ap, p ∈ [[n]] continue to be an orthogonal spanning set for the subspace

H2
anti(D

n). All of the vectors ap have the same norm, namely,
√
n!. Consequently,

the set of vectors {ep(z) := 1√
n!
ap(z) : p ∈ [[n]]} is an orthonormal basis for

the subspace H2
anti(D

n) of the Hardy space on the polydisc, while the set {êp :=
‖Js‖√

n!
Sp : p ∈ [[n]]} forms an orthonormal basis for the Hardy space H2(Gn) of

the symmetrized polydisc Gn via the unitary map Γ. However, ‖Js‖ =
√
n! and

consequently, êp = Sp. Thus computations similar to the case λ > 1 yield an

explicit formula for the reproducing kernel K
(1)
anti(z,w) of the subspace H2

anti(D
n).

Indeed,

K
(1)
anti(z,w) =

1

n!
det

(
(((1− zjw̄k)

−1))nj,k=1

)
.

This is the limiting case, as λ → 1.
Let SGn

be the reproducing kernel for the Hardy space H2(Gn). It is natural to
call it the Szegö kernel for the symmetrized polydisc Gn. Clearly,

SGn
(s(z), s(w)) =

det
(
(((1− zjw̄k)

−1))nj,k=1

)
Js(z)Js(w)

, z,w ∈ D
n.

Now, using the well-known identity due to Cauchy [8, (4.3), p. 63], we have

SGn
(s(z), s(w)) =

∑
p∈[[n]]

Sp(z)Sp(w) =

n∏
j,k=1

(1− zjw̄k)
−1, z,w ∈ D

n.
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Therefore, we have a formula for the Szegö kernel of the symmetrized polydisc Gn,
which we separately record below.

Theorem 3.1. The Szegö kernel SGn
of the symmetrized polydisc Gn is given by

the formula

SGn
(s(z), s(w)) =

n∏
j,k=1

(1− zjw̄k)
−1, z,w ∈ D

n.

Remark 3.2. For simply connected planar domains, the Bergman kernel is a power
of the Szegö kernel. As shown in [1], the symmetrized bidisc is a star-like domain
and therefore it is simply connected. However, from the explicit computation of

these kernels given above, it follows that the Bergman kernel B
(2)
G2

is not a power
of the Szegö kernel SG2

. As far as we can tell, the symmetrized bidisc G2 seems to
be the first example of a simply-connected domain for which the Bergman kernel
is not a power of the Szegö kernel.

We point out that the kernel SG2
has appeared in a somewhat different context

earlier [4, p. 2257].

4. An alternative approach to the computation

of the kernel function

Recall that the weighted Bergman space A(λ)(Dn) on the polydisc Dn is the n-fold
tensor product

⊗n
i=1 A

(λ)(D) of the weighted Bergman spaces A(λ)(D) on the unit

disc D. The equivalence class Σ̂n of finite-dimensional irreducible representations of
the permutation group Σn on n symbols is parametrized by the partitions p ∈ [n].
Let (Vp,p) be a representation corresponding to the partition p. Then we have the
decomposition

A
(λ)(Dn) =

⊕
p∈[n]

A
(λ)(Dn,p),

where

A
(λ)(Dn,p) =

{
f ∈ A

(λ)(Dn, Vp) : τ (s)f(s
−1 · z) = f(z), s ∈ Σn

}
and A(λ)(Dn,p) ∼= A(λ)(D, V ′

p) ⊗ V ′
p. The orthogonal projection Pp : A(λ)(Dn) →

A
(λ)(Dn,p) is given by the formula

(Ppf)(z) =
χp(1)

n!

∑
τ

χp(τ )f(τ
−1 · z),

where the sum is over all τ in Σn and χp is the character corresponding to the
representation Vp. Schur orthogonality relations ensure that P2

p = Pp, and it follows
that Pp is a projection. Let Vsgn be the sign representation of the permutation group
Σn and Psgn be the corresponding projection.

Theorem 4.1. The reproducing kernel K
(λ)
sgn of the Hilbert space A

(λ)(Dn, sgn) is
given by the formula

K(λ)
sgn(z,w) =

(
Psgn ⊗ P

∗
sgn

)( n∏
i=1

(1− ziw̄i)
−λ

)
=

aδ(z)aδ(w)

n!

∑
p∈[[n]]

(λ)m+δ

(m+ δ)!
Sp(z)Sp(w),
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where Sp is the Schur function with p = m+ δ.

Proof. Recall that K(λ)(z,w) =
∑

m≥0
(λ)m
m! (zw̄)m, λ > 1, is the reproducing

kernel of the weighted Bergman spaces A(λ)(Dn). Therefore, we have(
Psgn ⊗ I

)
K(λ)

w (z) =
∑
m≥0

(λ)m
m!

w̄m
Psgn

(
zm

)
.

However, Psgn

(
zm) = 1

n! det
(
((z

mj

i ))
)
, which is zero unless m is in the orbit under

Σn of the weight p in [[n]]. So, we conclude that(
Psgn ⊗ P

∗
sgn

)
K(λ)(z,w) =

∑
m≥0

(λ)m
m!

Psgn

(
zm

)
Psgn

(
w̄m

)
=

∑
p∈[[n]]

γp
(λ)p
p!

ap(z)ap(w)

= aδ(z)aδ(w)
∑
p∈[[n]]

γp
(λ)p
(p)!

Sp(z)Sp(w).

It is easy to see that γp = 1
n! , p ∈ [[n]], completing the proof. �

Clearly, the two kernel functions K
(λ)
sgn and K

(λ)
anti are equal. As before, the kernel

function K
(λ)
sgn, via the unitary map Γ, gives a kernel function for the weighted

Bergman spaces A(λ)(Gn) on the symmetrized polydisc Gn. Furthermore, if λ = 1,
then

SGn

(
s(z), s(w)

)
=

n!

aδ(z)aδ(w)
K(1)

sgn(z,w)

=
∑
p∈[[n]]

Sp(z)Sp(w)

=

n∏
i,j=1

(1− ziw̄j)
−1, z,w ∈ D

n,

where the last equality is the formula [8, (4.3), p. 63].
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