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Approximate globally convergent algorithm with
applications in electrical prospecting

John Bondestam Malmberg∗ and Larisa Beilina∗∗

Abstract In this paper we present at the first time an approximate globally con-
vergent method for the reconstruction of an unknown conductivity function from
backscattered electric field measured at the boundary of geological medium un-
der assumptions that dielectric permittivity and magnetic permeability functions
are known. This is the typical case of an coefficient inverse problem in electrical
prospecting. We consider a simplified mathematical model assuming that geologi-
cal medium is isotropic and non-dispersive.

1 Introduction

In this work we consider a Coefficient Inverse Problem (CIP) for Maxwell equations
in time domain and derive an approximate globally convergent method for recon-
struction of an unknown conductivity function in space with data resulted from a
single measurement. This means that our boundary data are generated by a single
source location or a single direction of the propagation of an incident plane wave.
We assume that we are working in isotropic medium with known values of electric
permeability and magnetic permittivity functions. This is the typical case of electri-
cal prospecting [4] and is of great interest in the geological community.

The first generation of globally convergent algorithms developed in [6, 7, 10] is
called convexifixation algorithms. In this paper we use similar technique as in [1] to
derive an approximate globally convergent method of second generation for finding

John Bondestam Malmberg∗

Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg Uni-
versity, SE-42196 Gothenburg, Sweden, e-mail: john.bondestam.malmberg@chalmers.se

Larisa Beilina∗∗

Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg Uni-
versity, SE-42196 Gothenburg, Sweden e-mail: larisa.beilina@chalmers.se

1



2 John Bondestam Malmberg∗ and Larisa Beilina∗∗

the conductivity function. This method, first appearing in [2], uses a layer stripping
procedure with respect to the pseudo-frequency.

The main difficulty for solution of CIPs is ill-posedness and nonlinearity of these
problems. Approximate globally convergent method of [1] gives an answer to the
question: How to obtain an unknown coefficient function inside the domain of in-
terest in a small neighborhood of the exact solution without a priori knowledge of
any information about this solution? The approximate globally convergent method
of [1] is experimentally verified in recent works [3, 8]. Using our recent numerical
experience [1, 3, 8] we can conclude that approximate globally convergent method
is reliable tool for solution of CIPs using a single measurement data.

In the current work we derive an approximate globally convergent method for ex-
plicit computation of the conductivity function using iterative layer stripping proce-
dure in pseudo-frequency. We also present an approximate mathematical model for
computation of the so-called ‘tail’ function which is crucial for reliable reconstruc-
tion of an unknown conductivity function. Finally, we formulate an approximate
globally convergent algorithm which can be used in real computations for recon-
struction of an unknown function from backscattered data collected at the boundary.

2 The Maxwell equations in time domain

We consider the Maxwell equations in an isotropic, non-dispersive medium (see for
instance [5])

∂B(x, t)
∂ t

=−∇×E(x, t)−M(x, t) for (x, t) ∈ Rn× (0,T ), (1)

∂D(x, t)
∂ t

= ∇×H(x, t)− J(x, t) for (x, t) ∈ Rn× (0,T ). (2)

Here, n = 2, 3, T > 0, B = µH is the magnetic flux density, D = εE is the electric
flux density, H = (H1,H2,H3) is the magnetic field, E = (E1,E2,E3) is the elec-
tric field, µ and ε are the magnetic permeability and the dielectric permittivity of
the medium, respectively, and J and M are electric and magnetic current densities,
respectively. The electric and magnetic fields satisfy the relations

∇ · (εE) = ρ, ∇ · (µH) = 0 in Rn× (0,T ), (3)

where ρ(x, t) is a given charge density.
As it suffices for our purposes we consider the case when µ and ε are constants,

M(x, t) ≡ 0, ρ(x, t) ≡ 0, and J is generated by the electric field such that J = σE,
where σ is the conductivity of the medium. We assume that σ = σ(x) is dependent
only on the spatial variable x.

Under these assumptions equations (1) and (2) are reduced to
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µ
∂H(x, t)

∂ t
=−∇×E(x, t) for (x, t) ∈ Rn× (0,T ), (4)

ε
∂E(x, t)

∂ t
= ∇×H(x, t)−σ(x)E(x, t) for (x, t) ∈ Rn× (0,T ), (5)

and since µ and ε are positive constants Gauss’s law (3) is reduced to

∇ ·E = 0, ∇ ·H = 0 in Rn× (0,T ). (6)

In addition to equations (4) and (5) we impose the following initial conditions on
the magnetic and electric fields

H(x,0) = 0, (7)
E(x,0) = (E0,1,E0,2,E0,3)δ (x− x0) =: E0δ (x− x0), (8)

where E0,k, k = 1, 2, 3 are constants, δ is the three dimensional Dirac delta, and
x0 is some specific point in Rn. This corresponds to the initialisation of an electric
pulse at the point x0 at time t = 0.

The problem described by equations (4), (5), (7), and (8) is similar to those con-
sidered in [4]. It describes the electric and magnetic fields generated in response to
an electric pulse initiated at x0 ∈ Rn and propagating through ‘the ground.’

Further we will consider the inverse problem when σ(x) is included in the equa-
tion for the electric field. Hence we eliminate the dependence on the magnetic field
from the Cauchy problem described in equations (4), (5), (7), and (8).

Applying the curl operator to equation (4) yields

∇× ∂H(x, t)
∂ t

=− 1
µ

∇×∇×E(x, t) for (x, t) ∈ Rn× (0,T ).

Using above equation and differentiating (5) with respect to t gives

ε
∂ 2E(x, t)

∂ t2 = ∇× ∂H(x, t)
∂ t

−σ(x)
∂E(x, t)

∂ t

=− 1
µ

∇×∇×E(x, t)−σ(x)
∂E(x, t)

∂ t
for (x, t) ∈ Rn× (0,T ).

Hence, after some rearrangement of the terms, and by applying the identity ∇×∇×
E = ∇(∇ ·E)−∆E together with Gauss’ law (6) we get

µε
∂ 2E(x, t)

∂ t2 + µσ(x)
∂E(x, t)

∂ t
−∆E(x, t) = 0 for (x, t) ∈ Rn× (0,T ). (9)

Letting t go to zero in (5) and using (7) and (8) we get

∂E(x,0)
∂ t

=−1
ε

σ(x)E0δ (x− x0). (10)
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Noting that the equations for each component of the electric field in equations
(8), (9) and (10) are decoupled we may write the following componentwise Cauchy
problems, for k = 1, 2, 3:

µε
∂ 2Ek(x, t)

∂ t2 + µσ(x)
∂Ek(x, t)

∂ t
−∆Ek(x, t) = 0, for (x, t) ∈ Rn× (0,T ),

Ek(x,0) = E0,kδ (x− x0), for x ∈ Rn,

∂Ek(x,0)
∂ t

=−1
ε

σ(x)E0,kδ (x− x0), for x ∈ Rn.

(11)
Further we will assume that only the first component E1 of the electric field E =
(E1,E2,E2) is initialized by the function E0 = (E0,1,0,0) and thus, by (6), the other
two components E2 and E3 are zero. This yields that the problem (11) is reduced to
the solution of the following Cauchy problem

µε
∂ 2E1(x, t)

∂ t2 + µσ(x)
∂E1(x, t)

∂ t
−∆E1(x, t) = 0, for (x, t) ∈ Rn× (0,T ),

E1(x,0) = E0,1δ (x− x0), for x ∈ Rn,

∂E1(x,0)
∂ t

=−1
ε

σ(x)E0,1δ (x− x0), for x ∈ Rn.

(12)
To reduce notations we will in the following drop the index on E1, writing E(x, t) =
E1(x, t).

A coefficient inverse problem (CIP)

Let Ω ⊂ Rn be a bounded domain with a piecewise smooth boundary Γ such
that x0 /∈Ω . Let L2(Ω) be the space of square integrable functions on Ω , and define
ΩT := Ω × (0,T ), and ΓT := Γ × (0,T ). Suppose that σ(x) satisfies the Cauchy
problem (12), restricted to ΩT , for known coefficients µ and ε , and that σ(x)∈Cd,Ω ,
where

Cd,Ω := {u ∈C2(Rn) : 1≤ u(x)≤ d, x ∈ Rn, u≡ 1 in Rn \Ω} (13)

for some given d > 1. We then seek to determine σ(x), x ∈ Ω , under assumption
that the function

g(x, t) = E(x, t)
∣∣∣
ΓT

(14)

is known. In other words, σ and E satisfy the following initial boundary value prob-
lem:
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µε
∂ 2E(x, t)

∂ t2 + µσ(x)
∂E(x, t)

∂ t
−∆E(x, t) = 0, for (x, t) ∈ΩT ,

E(x, t) = g(x, t) for (x, t) ∈ ΓT

E(x,0) =
∂E(x,0)

∂ t
= 0, for x ∈Ω .

(15)

3 Approximately globally convergent method

In this section we develop an approximately globally convergent method for the co-
efficient inverse problem CIP to reconstruct the conductivity function. The method
uses the Laplace transform of the problem (15), and hence we start by deriving some
properties thereof.

3.1 Laplace transformation of the initial boundary value problem

Let
E(x,s) := L

[
E(x, ·)

]
(s) :=

∫
∞

0
E(x, t)e−st dt, s≥ s

for some fixed s > 0 be the Laplace transform of the electric field E(x, t) given
by (15). Applying the Laplace transform to the differential equation in (15) and
using the two well-known properties L [ f ′] (s) = sL [ f ] (s)− f (0) and L [ f ′′] (s) =
s2L [ f ] (s)− s f (0)− f ′(0) of the Laplace transform we get

∆E(x,s)− (µεs2 + µsσ(x))E(x,s) =−µεsE0δ (x− x0). (16)

Similarly with Theorems 2.7.1 and 2.7.2 of [1] it can be proved that E(x,s)→ 0
as |x| → ∞ and that E(x,s) > 0, hence the following function

v(x,s) :=
ln(E(x,s))

s
, x ∈Ω , s ∈ [s,s] (17)

for some s > s > 0 is well-defined.
Next, we assume that the following asymptotic behavior for the function E(x,s)

holds

Dα
x

∂ n

∂ sn E(x,s) = Dα
x

∂ n

∂ sn

(
e−sl(x,x0)

f (x,x0)

(
1+O

(
1
s

)))
, s→ ∞ (18)

where |α| ≤ 3, n = 0, 1, l(x,x0) is the length of a geodesic line, generated by the
eikonal equation corresponding to the function σ , connecting points x and x0,x 6= x0,
and f (x,x0) is a certain function, nonzero for x ∈ Ω . This Lemma follows from
Theorem 4.1 of [9]. We note that asymptotic behavior (18) is fulfilled for the general
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hyperbolic equation of the second order under the assumption that the geodesic lines
are regular, see Remarks 2.3.1 of [1].

Using (18) we get the following asymptotic behavior for the function v(x,s) of
(17): ∥∥∥∥∂ nv(·,s)

∂ sn

∥∥∥∥
C2+α (Ω)

= O
(

1
sn

)
, s→ ∞, n = 0, 1, (19)

where C2+α(Ω) is the Hölder space of order 2+α , 0≤ α < 1.

3.2 The transformation procedure

In this section we will show how to reduce the inverse problem CIP to the solution
of a nonlinear integral differential equation. First, we write E(x,s) = esv(x,s) with v
defined in (17). Substituting this into equation (16) and noting that x0 /∈ Ω , we get
the equation

∆v(x,s)+ s(∇v(x,s))2 = µεs+ µσ(x). (20)

Given knowledge of the functions v, as well as the coefficients µ and ε , we
calculate σ(x) explicitly from (20):

σ(x) =
1
µ

(∆v(x,s)+ s(∇v(x,s))2)− εs (21)

for any s≥ s. However, v is at this point unknown. Next, denoting

q(x,s) =
∂v(x,s)

∂ s
(22)

and differentiating equation (20) with respect to s yields

∆q(x,s)+(∇v(x,s))2 +2s∇v(x,s) ·∇q(x,s) = µε. (23)

Using asymptotic behavior (19) in (22) we get

v(x,s) =−
∫

∞

s
q(x,s)ds. (24)

Next, we define the so-called ‘tail function’ V (x,s) as

V (x,s) :=
∫

∞

s
q(x,τ)dτ = v(x,s)+

∫ s

s
q(x,τ)dτ, (25)

allowing us to rewrite (23) on the form
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A(q)(x,s) :=∆q(x,s)+(∇V (x,s))2 +
(∫ s

s
∇q(x,τ)dτ

)2

−2∇V (x,s) ·
∫ s

s
∇q(x,τ)dτ +2s∇V (x,s) ·∇q(x,s)

−2s
∫ s

s
∇q(x,τ)dτ ·∇q(x,s) = µε.

(26)

In view of (14), we may write

q(x,s)
∣∣∣
Γ

=
∂

∂ s
ln(L [g(x, ·)] (s))

s
=: ϕ(x,s), (27)

which, together with (26), constitutes a non-linear problem for the unknown func-
tion q, given knowledge of the tail function V (x,s). Under assumption that V (x,s)
or some approximation thereof is known we now derive a frequency discretised
analogue of the problem (26), (27).

Define a partition s = sN < sN−1 < .. . < s1 = s with sn − sn+1 = h for n =
1, . . . ,N−1. We assume that q is a constant function of s on each interval (sn+1,sn]
and require that it satisfies equations (26) and (27) in weighted average on each such
interval. That is, q(x,s) = qn(x), s ∈ (sn+1,sn],∫ sn

sn+1

w1,n(s)A(q)(x,s)ds = µε

∫ sn

sn+1

w1,n(s)ds, n = 1 . . . , N−1, (28)

and ∫ sn

sn+1

w2,nqn(x)ds =
∫ sn

sn+1

w2,nϕ(x,s)ds, n = 1, . . . , N−1, (29)

where w1,n and w2,n are some weight functions.
Similarly with [1] we define so-called Carleman Weight Functions in pseudo-

frequency s, w1,n(s) = eλ (s−sn), for some parameter λ � 1. This will ‘reduce’ the
non-linearity of the equation (26). We take w2,n(s)≡ 1 for simplicity.

With these weight functions, and noting that

∫ s

s
∇q(x,s)ds = (sn− s)∇qn(x)+

n−1

∑
j=0

h∇q j(x) for s ∈ (sn+1,sn],

where we set q0 ≡ 0, we can now use (26) and (28) to get

∆qn(x)+Bn(λ ,h)

(
∇V (x,s)−

n−1

∑
j=0

h∇q j(x)

)
∇qn(x)

= µε−Cn(λ ,h)(∇qn(x))2−

(
∇V (x,s)−

n−1

∑
j=0

h∇q j(x)

)2

,

(30)

where
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Bn(λ ,h) = 4
I1(λ ,h)
I0(λ ,h)

+2sn, (31)

Cn(λ ,h) = 3
I2(λ ,h)
I0(λ ,h)

+2sn
I1(λ ,h)
I0(λ ,h)

, (32)

Ik(λ ,h) =
∫ 0

−h
τ

keλτ dτ = (−1)k
k!− e−λh

∑
k
j=0

k!
j! (λh) j

λ k+1 . (33)

It should be noted that as λ → ∞

Ik(λ ,h)
Il(λ ,h)

= O(λ l−k),

so that in particular the coefficient Cn(λ ,h) becomes small, O(λ−1), for large λ .
Thus, for sufficiently large values of λ we may neglect the first, non-linear, term of
the right hand side of (30).

Similarly, from (29) with wn,2(s)≡ 1 we get

qn(x)
∣∣∣
Γ

=
1
h

∫ sn−1

sn

ϕ(x,s)ds =: ϕn(x). (34)

If V (x,s) or some approximation thereof is known, we can use the boundary
value problem (30), (34) to successively compute qn for n = 1, 2, . . . , N.

3.3 Modeling of the tail function V (x,s)

Let the function σ∗(x) be the exact solution of our CIP for the exact data g∗ in (14)
with the known exact functions µ and ε , and let E∗(x,s) be the Laplace transform
of the corresponding solution to (15). We define the exact tail function

V ∗ (x,s) =
ln(E∗ (x,s))

s
. (35)

Let q∗ (x,s) and ϕ∗ (x,s) be the exact functions corresponding to q(x,s) and ϕ(x,s)
in (26), respectively, defined from the following nonlinear integral differential equa-
tion

A(q∗)(x,s) :=∆q∗(x,s)+(∇V ∗(x,s))2 +
(∫ s

s
∇q∗(x,τ)dτ

)2

−2∇V ∗(x,s) ·
∫ s

s
∇q∗(x,τ)dτ +2s∇V ∗(x,s) ·∇q∗(x,s)

−2s
∫ s

s
∇q∗(x,τ)dτ ·∇q∗(x,s) = µε

(36)

with
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q∗(x,s)
∣∣∣
Γ

= ϕ
∗(x,s). (37)

Using (19) assume that the functions V ∗ and q∗ have the following asymptotic
behavior

V ∗ (x,s) = p∗(x)+
f ∗ (x)

s
+O

(
1
s2

)
≈ p∗(x)+

f ∗ (x)
s

, s→ ∞,

q∗ (x,s) = ∂sV ∗ (x,s) =− f ∗ (x)
s2 +O

(
1
s3

)
≈− f ∗ (x)

s2 , s→ ∞.

(38)

We take s = s in (36)-(37) to get

∆q∗+2s∇q∗∇V ∗+(∇V ∗)2 = µε in Ω ,

q∗ (x, s̄) = ψ
∗ (x, s̄) for x ∈ Γ .

(39)

Then we use the first two terms in the asymptotic behavior (38) for the exact tail
V ∗ (x,s) = p∗(x)+ f ∗(x)

s and for the exact function q∗ (x,s) =− f ∗(x)
s2 to obtain

−∆ f ∗

s2 −2s̄
(

∇p∗+
∇ f ∗

s

)
· ∇ f ∗

s2 +
(

∇p∗+
(∇ f ∗)

s

)2

= µε in Ω ,

− f ∗(x)
s2 = ψ

∗ (x, s̄) for x ∈ Γ .

Multiplying the above equation by−s̄2 we obtain the following approximate Dirich-
let boundary value problem for the functions p∗, f ∗ ∈C2+α

∆ f ∗+(∇ f ∗)2− s̄2(∇p∗)2 =−s̄2
µε in Ω , (40)

f ∗(x) =−s2
ψ
∗ (x,s) for x ∈ Γ . (41)

The function p∗(x) in (40) can be determined by taking only the first term in the
asymptotic behavior in (38) assuming that

V ∗ (x,s) = p∗(x),
q∗(x, s̄) = 0.

(42)

Then substituting (42) in (39) we get the following equation for the function p∗(x):

(∇p∗)2 = µε in Ω ,

p∗ = 0 on Γ ,
(43)

where the boundary condition is obtained from the asymptotics for the function
q∗(x, s̄) = 0.
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3.4 New Approximate Mathematical Model

In this subsection we will present the new approximate mathematical model for so-
lution of our CIP using a new representation of the tail function V (x,s). Let condi-
tions (13) and (14) hold. Then there exists functions p∗(x), f ∗(x) ∈C2+α

(
Ω
)

such
that the exact tail function V ∗ (x) has the form

V ∗ (x,s) := p∗(x)+
f ∗ (x)

s
(44)

for s≥ s. Here we used assumption that

V ∗(x,s) = p∗(x)+
f ∗ (x)

s
=

ln(E∗ (x,s))
s2 . (45)

Using definition q∗ (x,s) = ∂sV ∗ (x,s) for s≥ s, we get from (44)

q∗ (x,s) =− f ∗ (x)
s2 . (46)

Then we can obtain the following explicit formula for reconstruction of the co-
efficient σ∗ (x)

σ
∗(x) =

1
µ

(∆v∗(x,s)+ s(∇v∗(x,s))2)− εs, (47)

where

v∗ =−
s∫

s

q∗ (x,τ)dτ + p∗(x)+
f ∗(x)

s
.

Using the new mathematical model above we can obtain the first guess for the
tail function V (x,s) in (26) as

V0,0 (x) := p(x)+
f (x)

s
. (48)

Here, the function p(x) is determined by solution of the problem (43), and the func-
tion f (x) is the solution of the problem (40), (41) with the computed function p(x).

3.5 The algorithm

We are now ready to present an approximately globally convergent algorithm for
CIP.

Step 0. Construct the initial approximation V0,0 of the tail function V (x,s). This
can be done by first solving (15) with σ ≡ 1, or applying (48) using the new
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mathematical model of section 3.4. Set q0 ≡ 0, and set counters n and i to 1, and
i0 and m to 0.

Step 1. Calculate an approximation qm
n,i of qn from (30), (34) with V = Vn,i−1 if

i > 1 or V = Vn−1,in−1 if i = 1, and (∇qn)2 = (∇qm−1
n,i )2 if m > 0 or (∇qn)2 = 0 if

m = 0.
Step 2. If m = 0, set m = 1 and return to Step 1. Otherwise, calculate

dm
n,i =

‖qm
n,i−qm−1

n,i ‖L2(Ω)

‖qm−1
n,i ‖L2(Ω)

.

If either dm
n,i < η1 for some predefined tolerance η1, or dm

n,i > dm−1
n,i , set qn,i = qm

n,i
and m = 0, then proceed to Step 3. Otherwise, increase m by 1 and return to Step
1.

Step 3. Calculate vn,i = −hqn,i−h∑
n−1
j=0 q j, then σn,i using (21) with v = vn,i and

s = sn, and extend σn,i to all of Rn so that σn,i ∈Cd,Ω . Compute En,i by solving
(15) with σ = σn,i, then En,i by applying the Laplace transform to En,i for s = s.
Update the approximation of the tail function V by setting

Vn,i =
ln(En,i)

s
.

Step 4. If i = 1 set i = 2 and return to Step 1. Otherwise, calculate

en,i =
‖σn,i−σn,i−1‖L2(Ω)

‖σn,i−1‖L2(Ω)
.

If either en,i < η2 for some predefined tolerance η2, or en,i > en,i−1, set qn = qn,i,
Vn+1,0 = Vn,i, σn = σn,i, in = i, then set i = 0 and proceed to Step 5. Otherwise,
increase i by 1 and return to Step 1.

Step 5. If n = 1, return to Step 1. Otherwise, compute

fn =
‖σn−σn−1‖L2(Ω)

‖σn−1‖L2(Ω)
.

If either fn < η3 for some predefined tolerance η3, fn > fn−1, or n = N − 1
we accept σ = σn as an approximate solution of CIP and stop the calculations.
Otherwise, we increase n by 1 and return to Step 1.
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