FINAL PROJECT REPORT, MODULAR SIMULATION TOOL ...

*l FINAL REPORT FROM THE PROJECT:

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION
CONCERNING ENERGY CONSUMPTION AND EMISSIONS

(IN SWEDISH: MODULBASERAT SIMULERINGSVERKTYG FOR FORDONS DYNAMIK
M.A.P. ENERGIANVANDNING, EMISSIONER OCH RORELSE I FARDRIKTNINGEN,
MED STOD FRAN SVENSKA FORDONSTEKNISKA FORSKNINGSPROGRAMMET ENLIGT
PROGRAMRADETS BESLUT MED DIARIENUMMER 8531-94-8701 DATERAT 1994-11-17)

==

SUMMARY

This project was run with the objective to contribute to the possibilities to estimate energy
consumption and emissions for a system consisting of a vehicle with its driver, performing a
transportation task in urban traffic. The goal was a computer simulation tool.

The tool developed consists of both a predefined hierachically decomposed structure and basic module
library. It uses new and powerful modelling techniques for dynamic systems. Object and equation
orientation and hierarchically structured libraries are used to provide a powerful, yet flexible
instrument. Reuse of modelling knowledge has been the fundamental criterion for the design of the
simulation tool.

Modules for subsystems engines, transmission and chassis are parts of the result. Also, new modelling
concepts of roads and drivers are developed. They make prediction of the outcome of realistically
described transportation tasks possible and are useful for evaluating the influence of driver behaviour
and transportation task on energy consumption and emissions.

=

This report is edited by:

phone: int+46-(0)31 - 772 13 83

secretary: int+46-(0)31 - 772 13 60

fax; int+46-(0)31 - 772 13 75

e-mail: bejaCmvd.chalmers. se

web: http://www.mvd.chalmers.se

Bengt Jacobson (project manager)
Machine & Vehicle Design, Chalmers University of Technology,
S-412 96 GOTEBORG, Sweden

Goteborg, June, 1997

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

CONTENTS

1 AN OVERVIEW ..coneriennsnnnans cressrensenesnnnne cerestesnsssesensreasnesssessssasssenas veesrsonsone T 1
1.1 INTRODUCTION ..oooeinriticiiinic ittt creneene e ne e e s i ensaresassanenee e e e s st baesbsseansaaseanssnnsennenes 1
1.2 RESULTS sttt sttt sttt sttt st s s he bbb sa e et st e e a e trara e 1
1.3 POTENTIAL AND UNIQUENESS OF THE TOOL DEVELOPED.......ocvrueurrrerinearanerinescanseesnnaes 1
1.4 SIMULATION EXAMPLESoiiiiiiiiciii st cnesmsne st senecs e esses s st smob st e sncsenesessesnancasenns 2

2 BACKGROUND, GOAL AND PROJECT ORGANIZATION..ccccvsserssnsoronsscanascasorassrens O

3 RESULTS «cucreverensanersnesssnsessess veeseorseseseensesnenntnans cerovsssssnssenssssssssensnsssersnsasssasaserensnen O
3.1 THE SOFTWARE “VEHPROP”ccoiiiiiiiimiiie ittt st an st vas sttt s ans e 7
3.2 EVALUATION OF MODELLING TECHNIQUES AND SOFTWARE PLATFORMSocveuvee.... 10
3.3 SYSTEM DECOMPOSITION AND LIBRARY STRUCTUREorvreeerirncemirenrenenieniesieseessnnennans 13
3.4 DEMO EXAMPLES ..cccotiiiiiniiiiiiiciniiine ot sssss s sh st ot one sassc s esssmsesasasesanas 16
3.5 PUBLICATIONS .ottt ittt sttt sa s e bs s sbe s sa s s b s ae e sh e bsb e st saananeones 17

4 FUTURE WORK .ccicerussnsressasrcsnssssnssssnsassscssssssonsonsonsasssnsnssssnssssssncossssssonsassssssse 20

5 REFERENCES ..c.ooeevrensenes ceresnssasssnstssnssarsttersartnaneastnanesstesens veesnesnesnensstsnsosteanseass 22

APPENDIX A: SOFTWARE CRITERIA AND DYMOLA FULFILMENT .veccooerscecersorcrsvossss 23

APPENDIX B: DOCUMENTATION AND USER INSTRUCTIONS ..coceevevee cersesosesercasossansaare 27
B.1 FILE VEHPROP/README/README.TXT cooovoveveeevesreereessnsesssesssssssssessseesesssosomsens 28
B.2 FILE VEHPROP/README/GETSTART.TXT coeeieeeeeereeesreoeeeseeeereerererssessevsssessens 32

FINAL PROJECT REEQBI,MQDL!LAR SIMQIAT[QN TooL ...,
1 AN OVERVIEW

1.1 INTRODUCTION

The transport sector contributes to one of the most serious problems of the man kind today if not
controlled, i.e., the consumption of our energy sources and the pollution problems. These are both
local and global problems, but they are emphasized in and near large cities. Therefore, it is important
to understand and redesign transport systems in cities. The knowledge of emission generation and
energy consumption of vehicles in city traffic is not quite consolidated, especially due to the transient
propulsion which is typical for such driving, e.g. cold start.

This project was run with the objective to contribute to the estimation of energy consumption and
emissions for a system consisting of a vehicle with its driver, performing a transportation task, which
leads to a transient driving pattern. The goal was a computer simulation tool.

1.2 RESULTS

A computer tool for modelling and simulation of vehicle propulsion systems has been developed. The
system consist of driver, road and vehicle at top level as shown in Figure 1.

computer

variations, such as: driver system response, such as:
- different driver behaviour (rj[—k-n - emissions
- different engines and fuels) - energy consumption
- different transmissions Gad veh@e - transport efficiency
- different transportation tasks : |

EEEE e

St

Figure 1. The tool developed and how it is to be used

The main result is presented in Section 3.1, “The Software “VehProp””, on page 7. Additionally,
attention is called to four special topics:

* Section 3.2, “Evaluation of Modelling Techniques and Software Platforms”, on page 10
¢ Section 3.3, “System Decomposition and Library Structure”, on page 13

* Section 3.4, “Demo Examples”, on page 16

* Section 3.5, “Publications”, on page 17

1.3 POTENTIAL AND UNIQUENESS OF THE TOOL DEVELOPED

A traditional approach to vehicle propulsion simulation is inverse dynamic simulation, using a driving
cycle, i.e., speed prescribed as varying in the time domain. Instead of this approach, the project has
focused on true dynamic simulation (by means, e.g., a turbo lag in an engine can be considered instead
of trusting in steady state maps) but also focused on more realistic driver and ambience models (by
means, e.g., the road can be described in the position domain instead of the time domain). With this
approach, it is possible to answer questions such as:

* How are the emissions influenced during a cold start? What is best: a cautious driver or a aggres-
sive one? The latter one generates more emissions per time unit initially, but he reaches the warm
engine state quicker, where emissions are better taken care of by the catalyst.

* The transients in fuel accumulation in the intake manifold of the engine can be studied. What is the
difference in fuel consumption between operating the accelerator pedal smoothly and oscillating?
The same transport task can be performed both ways.

MODULAR SIMULATION TOOL FOR VEHICLE PROP I ING ENERGY PTION AND 1

* How does a stop, e.g., due to road construction work, influence emissions?
¢ How efficient is regeneration of brake energy? What control strategy is optimal?

Although the realistic ambience models strongly supports more realistic simulation of vehicles on the
road, the traditional driving cycle models have an important role. The legislative requirements for
certification of vehicles are, presently, expressed as driving cycles. Even if driving cycles can give a
somewhat unfair, or even false, judgement of a vehicle they will probably be used for certification
also in the near future. Therefore, the simulation tool also supports driving cycle based models. With
the project approach, they are defined with the same interface as the more realistic ambience model,
in order to support exchangeability.

The developed tool uses modern modelling and simulation techniques, i.e., equation and object
oriented modelling and hybrid modelling (combined continuous and discrete dynamics). These have
been found to strongly support reuse of submodels in many ways, such as, easy model library
maintenance and flexibility in model topology. The software platform used, i.e., Dymola (Reference
[5] and Reference [6]) has been developed considerably during the project and it has become more
and more likely that this kind of modelling techniques will be more widely used in the future.

1.4 SIMULATION EXAMPLES

An example of simulation result is shown in Figure 2. The model used describes a truck with a modern
turbo charged diesel engine and is visualized in Figure 3. The difference between injected fuel
demand from driver and fuel actually injected by the engine ECU (Electronic Control Unit) is plotted.
This fuel reduction takes the dynamic quantity boost pressure into account, i.e., the turbo charging
time lag. Such a study would be impossible if only steady state engine models were used. In order to
briefly describe the dynamics of the model used for this simulation, its (continuous) state variables
are listed here:

* Speed of chassis

e Speed of engine crankshaft
e Speed of engine turbo shaft
* Engine boost pressure

* Driver pedal position

In Figure 4 another example is shown, where a passenger car follows a portion of the NYC (New York
City) driving cycle. The engine model is visualized in Figure 5. The special feature of this model is
that the dynamics of the fuel accumulation in the intake manifold is taken into account. NO, emissions
are calculated with and without this accumulation and plotted in Figure 4. The publication [Egnell,
1996a] mentioned in Section 3.5: "Publications" describes more simulation examples with otto engine
models.

25

20

186

10

FINAL PROJECT REPORT, MODULAR SIMULATION TOOL ...

Simulation - Truck

T 1 T i T

Speed limit [m/s]

Speed [m/s]

Accumulated fuel consumption [mass]

T

o]
4 50 100 150 200
Time [s]
5 ! T l T T T I T T T
I
oL | | L _ |
|] I 1
1
2k L _i \T
i Clutch l I
il M Il
[s] v i i 1 {—U)] 1 H
o] 50 100 i50 200 250 300
Time [s]
300 L] 1 T] T 1
200 Engine speed [rad/g]
100
0 ¥
Fuel reduction by engine ECU [mass/stroke]
-1 oo i 1] 1 i 1
] 50 100 160 200 250 300
Time [s]

Figure 2. Example of simulation results. Truck over some minutes of driving.

MODULAR SIMULATION TQOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

Complete system level
(model top level). Submodels are
ambience, driver and vehicle.

Vehicle level. Submodels are
engine, transmission and chasgis.

et a

] [Transmissieq |

Engine s Chassis

(SimpleChassis)

H (ExptAmbierce) {ManualDriver) (ExptVehicle)
Truck
Amb Driver Veh

a 0

w p e * ~ : CE
'8 gy . ,
[E Sta .

(] C‘e), 02,

% f = : >
"U | [Pamne Vel |Vl

=) {Ambient_press{1e5

E | Ambient_temp:| 300 280 K]

& initCrank |125.6 tad/s
.Q winitTutbo | 5550 rad/s
\.; | fuelramp 50 Fuel ramp in idle governing *
»

Pedal

Dialogue window for
- parameters in the engine
model.

(Turbin2) Turb

(Engcontrol) Control

(The parameter values here
are valid only for this
instance, i.e.,this engine as
a submodel in this specific
vehicle model.)

Engine level. The engine is
built of components (base
engine, inertias, turbine, etc.)
but also equations can be
used (not shown here).
(Changes here are propagated
to all vehicle models were this
engine is used.)

Figure 3. Example of a complete system model as visible on computer screen

FINAL PROJECT REPORT. MODULAR SIMUILATION TOOL ...

PlotSpeed . Driver.PlotFPedal

10—

0.0003

0.00025—

©.0002 —

0.00015

0.0001 —

S5E-5—

T

[=] v T T T
el 50 [S1e] 7o 80 SO 100

Figure 4. Example of simulation results. Passenger car without catalyst over part of NYC driving cycle.
Dynamically calculated NO, emissions (NOx) can be compared with steady state values

(NOxSS) in mass unit per second, plotted over time in seconds.

IS InlPort (equation)

parameter SAFR=14. {Stoechione ic aixr-fuel ratio [~])
parametsxr tau=0.75 {Puddle time constant [—1}
parameter MInit=0.0001 {Initial mass of puddle}

local mdotFuelCont
local mdotFuelEng
local EngSpeed
local MPuddle=MI

TenpTot2=TempTotl
pTot2=pTotl
nmdot2=mdotl

mdotFuelCont=iol
EngSpeed=ion2
dexr (MPuddle)=if NoEvent (MPuddle<le—8) then 0 else (mdotFuelCon

x1=0.05+0.1%((pTotlr,1000)—30)-70+0.1%(1—((EngSpeed~(2%pi))—13)
w=if(x1<0) then 0 else x1
mdotFuelEng=mdotFuelCont#{l—x)+HPuddle- tau
lambda=mdot 2~ (SAFR*mdotFuelEng)

equation layer displayed

Inlet port model class,

Figure 5. An Otto engine model as visible on computer screen

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

2 BACKGROUND, GOAL AND PROJECT ORGANIZATION

In 1994 interests in vehicle propulsion simulation coincided among the coming project participants.
The field for research was defined as simulation methods and tools for vehicle propulsion, concerning
energy consumption and emissions. Although the complete system vehicle-driver-ambience was to be
treated, the vehicle was focused. The goal for the defined project was a simulation tool. The tool itself
was the primary goal, but model development was foreseen as needed for demonstrations. Validation
of these models was not declared as a goal. There were some words of honour defined:

* Dynamics: The tool should support models describing the dynamics (or transients), e.g., steady
state engine maps would not be enough.

* Modularity: The tool should facilitate modularity in order to make models reusable.

* Natural causality: The traditional driving cycle concept, especially if combined with inverse
dynamic simulation, had to be questioned. The models must allow the driver to operate the vehi-
cle based on input from the ambience (road, traffic, etc., defining a transportation task).

The project has run during the years 1995, 1996 and the first half of year 1997. Project participants,
and their tasks within the project, have been:

* Machine and Vehicle Design, Chalmers University of Technology, Goteborg, Sweden,
(project management, transmission & chassis models)

* Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden,
(otto engine models)

* Department of Traffic Planning and Engineering, Lund Institute of Technology, Lund, Sweden,
(driver and road models)

* Swedish National Road and Traffic Research Institute (VTI), Link6ping, Sweden, (driver and
road models)

* Volvo Car Corporation, (hybrid powertrain models)

* Volvo Truck Corporation, (truck diesel engine models)

¢ Saab Automobile, (measurement on otto engines)

¢ Aspen Utvecklings AB, (otto engine models)

The project was funded by the Swedish Board of Vehicle Technology Research (Svenska
fordonstekniska forskningsprogrammet), which is administered by Swedish National Board for
Industrial and Technical Development (NUTEK). These are hereby thanked for their support to
reported project.

3 RESULTS

The software developed within this project is communicated on digital form, as a computer directory
called “VehProp” (Vehicle Propulsion). VehProp (version 1.00) is the main project result and
contains module libraries, demonstration examples and text files for documentation, visualized as a
file browser in Figure 6. The main result is presented in Section 3.1, “The Software “VehProp””, on
page 7. Additionally, attention is called to four special topics:

¢ Section 3.2, “Evaluation of Modelling Techniques and Software Platforms”, on page 10
¢ Section 3.3, “System Decomposition and Library Structure”, on page 13

» Section 3.4, “Demo Examples”, on page 16

 Section 3.5, “Publications”, on page 17

The project has, additionally to its results, contributed to widen communication channels between
some Swedish actors in the field of vehicle propulsion, i.e., the project participants. Also, international
contacts have been established with related activities:

E P R DULAR SIMULATIO L

¢ FASIMA project at TU Stuttgart, Reference [1]

* GPA (GesamtProzessAnalyse) project at TU Miinchen, Reference [2]

 Star and Pelops projects at IKA/FKA in Aachen, Reference [3]

* EngineSim (A commercial engine model library, developed in Simulink) by simcar.com, Evan-
ston, USA, Reference [4] and Reference [8]

3.1 THE SOFTWARE “VEHPROP”

The developed software is called “VehProp” (Vehicle Propulsion) and is delivered as one separate file
directory with the same name. The software Dymola (Reference [5] and Reference [6]) has been used
as platform. It is recommended that a modern PC (e.g., Pentium 100, 30 MB RAM) with Windows 95
or Windows NT is used.

The directory structure of VehProp is shown in Figure 6. The separation in CompLib (component
library) and SysLib (system library) is explained in Section 3.3: "System Decomposition and Library
Structure".

. = D
--{55] Ambience g;mgomp
E] . VEhPI’OD -{&3 Contral -3 CompChas
. EUmDIIb ~{&EA Driver CompDies
El m CompMech
I -G Demo———— [_].,- Engine B-E3 scB .
- . Readme . - Diesel B?ofvse
- Syslib {3 Otto E-ET Italyg7?
¥ {7 Math #-{E9 Modelica
&8 Mech =-E3 Templ
..... {Z8 Chassis = - Templ
{7 Canned
“““ - Gearboyg z Templ2
Templ3
28 Templd
»»»» LB Templs
=& Ambience - Undstand
Road -8 SysAdy
{85 SysConv
{8 Stop #1-{85 SysElec
=-E3a Driver r::'i" ;sysTlruck
. =88 SysSimp
- gttltudte @0 Syshmb
perale Sysamb2
E“ Vehicle = SysChass
-8 Chassis -E8 SysDies
Enai SysDriver
nglne_ SysOtto
~{&q Transmis -- SysTrnsm

Figure 6. Directory structure in VehProp

VehProp contains approximately 5 MB data and 900 files in 8 directory levels. The file names uses
maximum 8 characters, to support Windows3.x. The following file name extensions are used:

¢ .1lib: Dymola model classes (Dymola libraries and model classes)
¢ . dym: Dymola models

e .dyc: Dymola script files for an experiment (simulation) with a model. (Often it is suitable to
have a script file xxx.dyc, which describes an experiment with the model in file xxx . dym.)

by means of the Dymola call ExternalTable.

. txt: Text file

.m: Matlab script file

e .ini:Dymola configuration file

.mat: External data file. Matrices with names on Matlab binary format. Used in Dymola models

T L FOR YEHICLE PROP N RNIN ND ISSIONS

3.1.1 DIRECTORY README

User instructions as . txt files, see further explanation in Appendix B: "Documentation and User
Instructions".

3.1.2 DIRECTORY VEHPROP

Files of interest are:

¢ Dymodraw.ini, Dymosim.ini: Proposed configuration files for Dymola. Before starting
Dymola from a new directory, it is suggested that copies of these files are fetched.

» wprotect.bat, unprotec.bat: DOS scripts for write protection and unprotecting,
respectively, files in VehProp and Dymola.

* VehProp.lib: Top level library of VehProp

* Misc.lib: Miscellaneous library of VehProp. It contains VehProp specific cut classes (“‘cut” is
a module interface), sublibrary icons etc.

3.1.3 DIRECTORY COMPLIB

In principal, there is only one file, a . 1ib file, in each subdirectory. This file contains a library and
the model classes in it, e.g., see Figure 7. There might also be . mat files, which contains external data
for some of the model classes in the library. Often, there is also .m files, which can be run in Matlab
to create the .mat files mentioned.

model class (LibBase) MechComp {* library window}
submodel (Inertia) Inertia

submodel (Elasticity) Elasticity

submodel (Damper) Damper

end

model class MechBase

local PL, PR {Power at left and right cut}
cut L (wL/TL) {Left cut, w=speed, T=torque}
cut R (wR/-TR) {Right cut}

PL=TL*wL

PR=TR*WR

end

model class (MechBase) Inertia
{* description Rotating mass inertia}
{* info A rotating inertia, or flywheel, governed by:
J*der (speed) =TorqueLeft-TorqueRight, where J=mass moment of inertia.}

parameter J=1 {Moment of mass inertia/[kg*m~2]}

parameter wInit=0 {Default inital value of speed in this instance}
parameter wScale=1 {Scale factor for integration. Approx. average speed.}
local wState=wInit/wScale

wL=wState*wScale

wR=wState*wScale

J*der (wState)=(TL-TR) /wScale

when Initial(Time) then; init(wState)=wInit/wScale; endwhen
end

Figure 7. From file VehProp/CompLib/Mech/Mech.lib. In general, a user never sees this textual format but
uses a graphical model editor. The component library (MechComp) and a component (Inertia)
with its base class (MechBase) is shown. Graphic commands etc. are removed for a better
overview.

E P R MODULAR SIMULATION TOOL

3.1.4 DIRECTORY SYSLIB

Files of interest are:

¢ Adm.1lib: Administrative model classes, i.e., library, information class, shell class, etc. for this
system structure level

¢ xxx.1lib: System models, e.g., the engine model class DieselDazzler is stored in file
DiesDazz.1lib, see Figure 8.

There might also be a .mat files and .m files, with the same role as in CompLib.

model class (EngineShell) DieselDazzler

parameter Ambient_pressure=leb {[{Pal}

parameter Ambient_temperature=300 {[K]}

parameter wInitCrank=125.6 {rad/s}

parameter wInitTurbo=5550 {rad/s}

parameter fuelramp=50 {Fuel ramp in idle governing}
constant kexhp=26496

constant Rexh=288.3

output FuelRate {kg/s}

submodel (Baseengine) Baseengine

submodel (Engcontrol) Control (fuelramp=fuelramp)

gsubmodel (Inertia) InertiaTurbo (J=3.394e-4, wInit=wInitTurbo, wScale=1000)
submodel (Inertia) InertiaCrank (J=4.2, wInit=wInitCrank, wScale=100)
submodel (EngineBoard) Board

submodel (Compr2) Compr

submodel {Turbin2) Turb

submodel (Intercooler2s) IntCool

connect Compr:Mechcutl at InertiaTurbo:L

connect Board:ToHigher at ToHigher

connect Control:iocutl at Baseengine:Flowcut

connect Baseengine:Mechcut at InertiaCrank:L

connect Control:IOcutl at Board:Pedal

connect InertiaTurbo:R at Turb:Mechcut

connect Compr:Flowcut2 at IntCool:Flowcutl

connect Baseengine:Flowcutl at IntCool:Flowcut2

connect InertiaCrank:R at Shaft

connect Baseengine:Flowcut2 at Turb:Flowcutl

Compr.p0l=Ambient_pressure {Ambient pressure, inlet [Pa]}

Turb.p04=Ambient_pressure/2+sqrt((Ambient_pressure/2)**2+ ->
kexhp*Rexh*Baseengine.mdot3**2*Turb.T03turb) {Turbine outlet pressure, [Pa]}

Compr.T0l=Ambient_temperature {Ambient temperature, inlet ([K]}

FuelRate=Raseengine.mdotqg
Board.SpeedSignal=InertiaCrank.wR
end

Figure 8. File VehProp/SysLib/Vehicle/Engine/DiesDazz.lib. Storage formatofa
system model, the engine model DieselDazzler. In general, a user never sees this textual format
but uses a graphical model editor. Graphic commands etc. are removed for a better overview.
Note that two of the submodels (those underlined) are instantiations of the models class Inertia,
seen in Figure 7.

3.1.5 DIRECTORY DEMOLIB

In general each subdirectory corresponds to a demo. In principal, there is a ReadMe . txt file in each
subdirectory, which explains the demo. See further explanation in Section 3.4: "Demo Examples".

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY PTION AND EMISSIONS

3.2 EVALUATION OF MODELLING TECHNIQUES AND SOFTWARE PLATFORMS

The project used the software Dymola as platform, see Reference [5] and Reference [6].

The simulation tool of this project could have been developed from low level computer coding (C,
Fortran, etc.) or medium level computer coding (scripts for Matlab (Reference [10]), MatrixX
(Reference [15]), Maple (Reference [16]), etc.). This way was, however, dropped of resource reasons.
Further on, a commercial software package has to be chosen since it is less guaranteed that freeware
or university software have technical support and a development in the long term.

There are high level software, such as ADAMS (Reference [12]), DADS (Reference [13]), SPICE
(Reference [14]), ARLA-SIMUL (Reference [11]), etc. All such packages were found to be very
specialized on certain physical domains (3D-mechanics, rotational mechanics, electric curcuits, etc.).
Since, the foreseen vehicle propulsion system is of a very multi disciplinary nature (mechanics,
electrics, thermodynamics, human behaviour, etc.) this way subsided for general purpose software.

General purpose software is represented by packages like SystemBuild (Reference [15]), Simulink
(Reference [10]), Simnon, ACSL (Reference [9]), Easy35, etc. Dymola is another one but it is the only
commercial software found that supports equation orientated and object orientated modelling of
dynamic systems. These features were found to be very promising for the project aims. Therefore,
there was no actual choice between different software packages but rather an evaluation of Dymola.
(If Dymola would have been found unacceptable, the choice would have been among SystemBuild,
Simulink, Simnon, ACSL, EasyS5, etc.)

Figure 9 is taken from [Eriksson & Jacobson, 1997a] (see Section 3.5: "Publications"). It shows how
different software can give support at different stages in a process of analysing a system. A more
detailed discussion on this is given in [Eriksson & Jacobson, 1997a].

METHODS FOR PROGRESS STAGES OF PROGRESS SOFTWARE SUPPORT
strategic decision for future reuse L. (real) system)

and exchangeability of submodels

2. subsystems)
knowledge of important subsystem

characteristics -
3. physical (sub-)models)

physically oriented software
(ADAMS, DADS, SPICE, etc.)

physical laws equation 0r®z’software
4. mathematical (sub-)models)~ (Dymola, Omola, etc)
merging
dae methods (f(x,x)=0)

5 mathematical (total) model " (DASSL routines, etc)

symbolic model transformation S
. ode methods (x=f(x))

6. assignment (total) model " (MATLAB, etc)
decomposition towards original AN \'
subsystems (so far it is possible) assignmen Coriented so faware

7. assignment (sub-)model _as, ted s¢
assignment (sub-models (Simulink, ACSL, Easys, ec.)

integration methods for ode .
P
. ~ T
8. numerical result =

interpretation of numerical result
9. prediction)

Figure 9. Suggested view of the process from knowledge of a (real) system to a prediction of how it works.

10

FINAL PROIECT REPORT, MODUILAR SIMULATION TQOL ...

3.2.1 EVALUATION OF MODELLING TECHNIQUES

In very short terms: Equations orientation is important for system decomposition in truly physical
modules and object orientation supports library maintenance. Among the publications listed in Section
3.5: "Publications", this is most thoroughly discussed in [Eriksson & Jacobson, 1997a]. Most of the
points in Table 1 and Table 2 are discussed in that paper. Equation oriented modelling is to be
compared with assignment oriented modelling, where all model equations has to be manually
transformed to assignment statements, often graphically represented by input-output blocks. Object
oriented modelling is to be compared with techniques based on copying, where new submodels are
copied from a library to a model without any remaining links to the originals.

Table 1. Advantages (+) and drawbacks (-) of equation orientated modelling, as opposed to assignment oriented
modelling

Modularity is supported, in the way that the same module can be used as submodel in all
models. In assignment oriented modelling, a module describing a certain physical component
is designed for certain surroundings. With other surroundings, the same physical component
often requires development of a new module.

Algebraic Ioops can be avoided. In principle, groups of simultaneous equations (corresponding
to “algebraic loops” in assignment oriented modelling) can be symbolically solved. In practice
there will always be restrictions for strongly non-linear equations, requiring numerical iteration
as in the assignment oriented case.

In principle, constraints on (continuous) state variables can be avoided, using symbolic
differentiation. As example, two masses can be rigidly connected which is impossible using
assignment oriented techniques. In practice there will always be some limitation in symbolic
differentiation.

It is easy to define very complex or even inconsistent models. When using assignment oriented
modelling techniques, the user have to define input and output variables and derive all
assignment statement from the equations manually, why he seldom ends up in these situations.
It is common that new users experience this as frustrating rather than an extra degree of
freedom in the modelling work.

Solution: The software have to give good diagnostics to help the user and/or the user must have
a good insight in the physical problem.

In general, equation oriented modelling is very suitable for physical models, since physical systems
do not actually have a predefined causality. For models of causal nature, e.g., block diagram models
of control systems, there is mostly no advantage in non-causal modelling.

By means of equation orientation, connections between submodels can be made very physically
intuitive. E.g., a physical interface for a rotating shaft may be defined in terms of speed and torque, so
that connection of three shaft ends, here numbered 1-3, generates the equations: speedl = speed?2
= speed3 and torquel + torque2 + torque3 = 0, which corresponds to the intuitive
conception of the physical connection.

11

MODULAR SIMULATION TQOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

Table 2. Advantages (+) and drawbacks (-) of object orientated modelling, as opposed to modelling techniques based on
copying

Using object orientation (mainly inheritance and instantiation) it is possible to, efficiently, build
and maintain two parallel library structures: one component structure and one system structure.
If the system decomposition is changed, the component library will still be intact and vice
versa. This is described more in Section 3.3: "System Decomposition and Library Structure"

A module have only one original, which supports library maintenance. All models using this
+ |module are automatically updated when the module is changed. Hereby, it is ensured that all
models are updated

The automatic updating, just mentioned, often results in changed characteristics for the models.
A user might experience this as an unstable model library.

Solution: There has to be a feature to save a complete model as a stand-alone model, without
links to the library. (Dymola has been equipped with such a feature.)

The automatic updating, just mentioned, often result in changed characteristics of the models.
A user might change in the model library without knowing it.

Solution: The library have to be write protected. (Dymola libraries can be write protected.)

A user has to be able to, starting from library models, experiment with minor changes in a
model. If the library is write protected, changes are not permitted.

Solution: There has to be a copy or duplicate feature to facilitate making working copies of
models. (Dymola has been equipped with such a feature.)

3.2.2 EVALUATION OF DYMOLA

Dymola is a very new product, developed by a small company. In spite of this, Dymola was tested and

found stable enough. Therefore, it became the choice of this project. More details on the project

software evaluation and choice is found in:

* Appendix A: "Software Criteria and Dymola Fulfilment"

* Text files in VehProp/ReadMe/ToDynasi, Bug reports and questions to Dynasim, i.e., the
company developing Dymola. Partly in Swedish.

Features of Dymola, additionally to equation and object orientation, are:

* Hybrid modelling (combined continuous and discrete dynamics). Dymola has an discrete event
model syntax. Some example of advantages with the way Dymola handles discrete dynamics re
given in [Eriksson & Jacobson, 1997a] and [Eriksson & Jacobson, 1997b] (see Section 3.5: "Pub-
lications"). ,

* Dymola has an open attitude to other simulation packages.

* Model output on different formats. The symbolic transformation from equations to assignments
can be directed to formats applicable for Simulink, ACSL, Simnon, etc..

* Data output on different formats. Simulation results can be written in Matlab binary data format.
Hereby, it is possible to use Matlab as a postprocessor, e.g., for better plot functionality.

* Data input on different formats. Dymola can read data on Matlab binary data format. Hereby, it
is possible to use Matlab as a preprocessor for parameters, especially useful for matrix parame-
ters. Matlab scripts can also be used for batch jobs, such as, parameter studies, parameter optimi-
zation, linearisation, etc.

* Realtime features are not in focus for the reported project, but it is noted that Dymola is developed
towards realtime applications. Dymola can generate real time code for use with Realtime Work-
shop of Simulink.

12

FINAL PROJECT REPORT, MODULAR SIMULATION TQOL....

Some interesting development topic for Dymola are:

« Dymola will support the new international standard for symbolic modelling of dynamic systems,
Modelica, see Reference [7]. Hereby, many efficient features will be added and competitive soft-
ware companies are more likely to introduce similar tools.

« Dymola will open similar connections to the tools MatrixX and Systembuild as it has to Matlab
and Simulink.

33 SYSTEM DECOMPOSITION AND LIBRARY STRUCTURE

Two library structure strategies are used: system libraries and component libraries. The first is an
example of top-down modelling where subsystems are packed together with predefined shells (or
frames) for connection to other subsystems, while the latter is an example of bottom-up modelling
where basic physical components are modelled. The system models are structured in hierarchical
libraries according to the structure in Figure 10, while the component models are structured mainly
according to their physical domains or fields of engineering. A graphic overview of both libraries and
their interaction is given in Figure 12. See also Figure 6.

system top level E

vehicle

/ \ \ a’riverﬁ /

(traffic) / \ engine
trafjic
road W @? % iy

transmission

chassis

7 7 “"0-€" grategic operative
stop part part
(attitude)

Figure 10. Proposed system decomposition. (The subsystem traffic has not been implemented in this work.)

3.3.1 BoOTTOM-UP MODELLING

Components are defined on general physical bases, independently of how they interact with their
surrounding. This means that the value of the component models remain even if the “top-down
structure” (see Section 3.3.2) changes. Examples of components are “Inertia” (a model of a flywheel
with a certain inertia) and “Volume” (a model of a gas volume). Components are defined here as
models designed to be instantiated in a superordinate model, e.g., in a system as described in the next
1tem.

3.3.2 Tor-DOWN MODELLING.

By using top-down modelling, submodel connectivity can be ensured. Figure 10 shows the hierarchi-
cal system decomposition used in this work. If the proposed structure on any level is not sufficient,
custom made models can be included as long as they have the same interface to higher levels as the
predefined structure.

When the decomposition is outlined, the top-down modelling work can progress. The “shell classes”
defining interfaces for systems on each level are essential to this effort. The system library contains
system models which fit into the proposed structure of a vehicle propulsion system, see Figure 10. All
models in the system library inherit a shell class, which assures connectivity to the next superordinate

13

DULAR SIM 1 I ERN I

level, e.g., all models in the engine system library in Figure 12 inherits the shell class EngineShell.

As in all system theory, it can be discussed what should be called component and system models
respectively. In this work, a simple rule is applied: A system model is characterized by inheriting a
shell class. Other models are component models.

A shell class is primary used to predefine interface variables, but also module icons, output
variables etc. might be subject for predefinition in a shell class. Hereby, it is possible to make all
system models of a certain kind more recognizable for a user. As example, all system models have a
grey frame in the icon and top level systems have variables such as PlotSpeed, PlotGear, etc.

In order to facilitate the inclusion of submodels in a system, a model class called “board” is defined
for each system. Figure 11 shows an example of board model class, the VehicleBoard. As seen in
Figure 11, the boards are also used to, graphically, visualize normal causality by arrows.

cut with variables: Pedal, SpeedEngine, Clutch, Gear, GearTarget, Lever,
Brake, Position, Speed Acceleration, Slope, Curve

A] |
SpeedEngine J i f'“‘““ (ﬂosltlon Speed,
A/ Cluto Aooeleratlon

— " GearTarge&t / \\
Levern ,/ ~.
Pedal Gear Brake, T \l

Slope, C:urve_7
Y v N !

Transmission Chassis

Zcuzf with variables: Pedal, SpeedEngine
cut with variables: Clutch, Gear, GearTarget, Lever

cut with variables: Brake, Position, Speed, Acceleration, Slope, Curve

Figure 11. An example of a “board” model class, the VehicleBoard, used in vehicle system models, see e.g.,
upper part of the vehicle subsystem in Figure 3 on page 4. The normal signal causality is
marked with arrows. (“Cut” is an interface, from which connections can be made graphically.)

14

FINAL PROJECT REPORT. MODULAR SIMULATION TOOL...,

Library VehProp (Vehicle Propulsion)

Library Components_

(Top level)
_ Library Systems
— — — —_ (Systems on top level)

Library VehicleSys -~
-~

~ l
o= + (Systems on
, vehicle level)
GearNolLoss Elasticity Damper
~ /
/
R=-2
MecﬁComp ’E.ll---"E /
(M/echanzcal praeriny — - -
fomponents) PlanetaryGear (SimpleEngine) (OuolAly (Etoton)
S ineitia lenuation] Library EngineSys
OftoNA1 ElMotor || (Systems on
engine level)
paranetér J= ‘{Moment of nas® inerNia/[kg*m"2]} N
paraneter winit=0 {Default in\tal v&lue of speed in this instan N
paraneter wScale=1 {Scale facfpr for % tegration. Approx. avera N
local wState=wInit/wScale N
AN
N
1yl=yStatexvScale
wR=vStatexvScale
{Ixder{wState)=(TL-TR)/vScale , \
Juhen Initial(Tine) then Redd G40 T HAGNI AERE SpeedSianel
init(wState)=vInit/wScale . \ -
endwvhen 2 J=3.384e-4 | Tuibin2 ! /
n \ |
’ L)
lnertiaiurbo H
-
=4 ‘ (ad 'l 4
Declarations and x \ N >
component equations ’ A % -
el
of component e Y ‘3‘
(or model class) Engine system A @,
q" LI §
Inertia” “DieselDazzler” b 2 0
Note that instances from %,
Base -
i inerliaCrank

the component library

are used as submodels.

Dialogue window for one 3
component inside “DieselDazzler”.
Only parameters can be changed.

tnertiaTurbo

K 1 3.3%4e4 Momert of mass ineitia/{kg*m”™2]
winit 0 windTuibo Default inital valua of spesd in this instance
wScale 1 1000 Scale factor for integration. Appiox. average speed.

15

Figure 12. Component library (bottom-up modelling) and System library (top-down modelling)

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

3.4 DEMO EXAMPLES

VehProp contains a subdirectory “Demo”, where demo examples are found. Each demo has a
ReadMe. txt file, which describes the demo. When running a demo, it is suggested that the
appropriate subdirectory is copied from VehProp/Demo to a working directory, e.g., VehPropRun.
Then Dymola is started from this copy. In most cases a library or model is automatically opened and
information can be reached as information stored in the model classes.

3.4.1 DIRECTORY DEMO/COMP (COMPONENT DEMOS)

These demos show some of the component models developed. The models included are not complete
system models (driver, ambience, vehicle), but smaller models.

¢ CompChass (Chassis components)
Examples from [Tony Sandberg, 1996], see Section 3.5: "Publications".

¢ CompDies (Diesel engines)
Examples from [Jonas Karlsson, 1996] and [Berglund & Karlsson, 1997], see Section 3.5: "Publi-
cations".

¢ CompMech (Mechanical components)
Small models, using components from CompLib/MechLib, which contains drivetrain compo-
nents, such as rotational inertias, torsional springs and clutches. Mechanical systems with ideal
dry friction models and constraints are contained.

3.4.2 DIRECTORY DEMO/MISC (MISCELLANEOUS DEMOS)

e Italy97
Models used in [Eriksson & Jacobson, 1997a] and [Andersson & Jacobson, 1997], see Section
3.5: "Publications". This is the only example where the “optimization criterion” is used. The crite-
ria is implemented as a separate model class, called Penalty, placed at system top level.

* Batch
A small system where the speed of an engine is regulated. A regulator parameter is optimized for
fastest torque step response without overspeeding the engine. The optimization is carried out with
a Matlab script. The objective is to show how batch jobs can be defined by means of Matlab.

* Browse
Starting from a copy of this directory just opens the VehProp library from the top level. It should
be used for browsing VehProp.

* Modelica
Here two stand alone models are stored (called Large and Small). There are also .mod files,
which are automatically generated stand alone models on Modelica format, see Reference [7].
Browsing these files in a text editor gives a hint of the future Modelica format.

¢ Templ (Template prepared for five complete systems)
This directory has five identical complete models, using the simplest version of systems on the
lowest level from VehProp. It is supposed to be used as a template for developing new model
classes and models. It is prepared for comparison of five vehicle propulsion concepts. There is a
Matlab m-file with plotting instructions. See also demo Templ/Templ1 (below).

* Templ/Templl (Template prepared for one complete system)
This directory has a complete model, using the simplest version of systems on the lowest level
from VehProp. It is supposed to be used as a template. The newly introduced Dymola command
DuplicateModelClass makes it easy to generate complete system models as copies of an existing
one. Hereby, the demo Templ (see above) has become less important: Templ is now a good start-
ing directory for an arbitrary number of complete systems.

* Templ/Templl/Canned
This demo contains a stand-alone (canned) version of model in Templ/Templ1, generated from

16

D Tl L

Templ/Templ1 by means of the Dymola command SaveTotalModel. Due to updates in VehProp,
the canned version is no longer identical to Templ/Templl.

¢« Undstand

A stand-alone demo concerning drive train models (rotational mechanics). The demo was origi-
nally developed for a student coarse in automotive transmissions. The models are build in two ver-
sions: one using physically oriented modelling and one using block oriented modelling.

3.4.3 DIRECTORY DEMO/SYSADV (COMPLETE SYSTEMS -- ADVANCED MODELS)

In order to show how complete vehicle propulsion systems of various kinds can be modelled and
simulated the following demo examples are given. The models use advanced models in all subsystems,
why they are quite slow to simulate, i.e., typically approximately realtime on a modern PC.

e ConvCar (Conventional Car)
This model describes a car with an otto engine and a manual fixed ratio transmission.

e SysTruck

This model describes a truck with a diesel engine and a manual fixed ratio transmission.

+ SysElec (Cars with electrical propulsion components)
Two system models with different electrically driven cars and one with a hybrid propulsion system
(combustion engine combined with energy storage in electric battery).

3.4.4 DIRECTORY DEMO/SYSSIMPL (COMPLETE SYSTEMS -- SIMPLE MODELS)

« SysAmbl (Complete models with different ambience models)

« SysAmb2 (Complete models with different ambience models)
 SysChass (Complete models with different chassis models)

« SysDies (Complete models with different diesel engine models)

+ SysDriver (Complete models with different driver models)
 SysOtto (Complete models with different otto engine models)

« SysTrnsm (Complete models with different transmission models)

3.5 PUBLICATIONS

The following publications are all, in some extent, results of scientific work within reported project.
(Other references are listed in Chapter 5: "References".)

Jacobson, 1995

Jacobson, Bengt. On Vehicle Driving Cycle Simulation, International
Congress and Exposition, Detroit, Michigan, USA, February 27 - March 2,
1995, SAE report number 950031

Dirk Fehre, 1995

Fehre, Dirk. Modelling of the Transient Behaviour of Torque Converters,
Student project report at Machine & Vehicle Design, Chalmers University of
Technology, S-412 96 GOTEBORG, Sweden, 1995.

Jacobson&
Berglund, 1995

Jacobson, Bengt and Berglund, Sixten. Optimization of Gearbox Ratios Using
Techniques for Dynamic Systems, International Truck & Bus Meeting &
Exposition, Winston-Salem, North Carolina, USA, November 13-15, 1995.
SAE report number 952604

Eriksson & Jacobson,
1996

Eriksson, A. and Jacobson, B., “A Modular Model for Gear Shifting in
Manual, Fixed Ratio Transmissions”, AVEC ‘96, International Symposium on
Advanced Vehicle Control, Aachen, Germany, June 24-28, 1996, pp. 985-1000

Andersson, 1996

Andersson, Jan. Optimum Control Strategies for Propulsion Systems in
Vehicle Simulation, International Symposium on Advanced Vehicle Control,
Aachen, Germany, 24-28 June, 1996.

17

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

Jacobson, 1996

Jacobsson, B., “Dynamic Modeling of Vehicle Propulsion Systems Using the
Software Dymola®, CESA’96 IMACS Multiconference Computational
Engineering in Systems Computations, Vol. 2, Lille, France, July 9-12, 1996,
pp. 964-969.

Tony Sandberg,
1996

Sandberg, Tony. Dynamic Models of Vehicle Chassis and Wheels in an
Equation Oriented Environment, Master thesis, Machine & Vehicle Design,
Chalmers University of Technology, S-412 96 GOTEBORG, Sweden, 1996-
08-23.

Jonas Karlsson,
1996

Karlsson, Jonas. Dynamic Models of Diesel Engines in an Equation Oriented
Environment, Master thesis, Machine & Vehicle Design, Chalmers University
of Technology, S-412 96 GOTEBORG, Sweden, 1996-10-sax.

Eva Ericsson,
1996

Eriksson, E., “Att mdta bilars kormonster”, Thesis for Licentiate of
Engineering, Department of Traffic Planning and Engineering, Lund Institute
of Technology, Lund, Sweden, 1996. In Swedish. (Approximate title in
English: How to Measure Driving Patterns of Cars).

Egnell, 1996a

Egnell, Rolf. Otto-motorer...Simulink, Department of Heat and Power
Engineering, Lund Institute of Technology, Lund, Sweden

Egnell, 1996b

Egnell, Rolf. Otto-motorer...Dymola, Department of Heat and Power
Engineering, Lund Institute of Technology, Lund, Sweden

Andersson & Jacob-
son, 1997

Andersson, J. and Jacobson, B., “A Study of Control Strategies in Hybrid
Vehicle Propulsion Systems Using Dynamic Simulation”, Accepted for
presentation at the 30th International Symposium on Automotive Technology &
Automation, Firenze, Italy, June 16-19, 1997.

Berglund & Karlsson,
1997

Berglund, S. and Karlsson, J., “A Modular Diesel Engine Toolbox for Studies
of Charging and Control System Influence on Emissions and Performance”,
Accepted for presentation at the 30th International Symposium on Automotive
lechnology & Automation, Firenze, Italy, June 16-19, 1997.

Eriksson & Jacobson,
1997a

Eriksson, A. and Jacobson, B., “Method for Comparison of Powertrain
Concepts Using Dynamic Simulation”, Accepted for presentation at the 30th
International Symposium on Automotive Technology & Automation, Firenze,
Italy, June 16-19, 1997.

Eriksson & Jacobson,
1997b

Eriksson, A. and Jacobson, B., Modular Modelling and Simulation Tool for
Evaluation of Powertrain Performance, Machine & Vehicle Design, Chalmers
University of Technology, S-412 96 GOTEBORG, Sweden, 1997.

Eriksson, 1997

Eriksson, Anders. Simulation Based Methods and Tools for Comparison of
Powertrain Concepts, Thesis for degree of Licentiate of Engineering, Machine
and Vehicle Design, Chalmers University of Technology, S-412 96
GOTEBORG, Sweden, 1997-06-06.

Stenlads, 1997

Stenldas, Ola. Chemical Model of Catalysts for Combustion Engines
(preliminary title), Master Thesis, Department of Heat and Power Engineering,
Lund Institute of Technology, Lund, Sweden, Autumn 1997

Andersson, 1997

Andersson, J., Models of Components for Electric Vehicle Propulsion,
Implemented in Dymola, (preliminary title), Machine and Vehicle Design,
Chalmers University of Technology, S-412 96 GOTEBORG, Sweden, Autumn
1997

[Jacobson, 1995]

Discussions to compare inverse dynamic (quasi-stationary) analysis with full dynamic analysis. Cases
where quasi-stationary analysis fails, explained in mathematical and engineering terms. Model

example.

18

[Dirk Fehre, 1995]

A student work where a dynamic model of a hydrodynamic torque converter is developed. The
modelling follows the steps: physical model, mathematical model, assignment model and
implemented model. The implementation is made in the simulation tool Simulink, but the equations
on the mathematical model step is fitted directly for implementation in Dymola.

[Jacobson& Berglund, 1995]

An application example for vehicle propulsion simulation. The gear ratios for a truck gearbox are
optimized for a certain transport task. Energy consumption and performance is weighted together.
Models are implemented and simulated in Simulink.

[Eriksson & Jacobson, 1996]
A conceptual design of driver-vehicle interaction concerning manual gearshifting described. Models
of manual transmissions implemented in Dymola are shown.

[Andersson, 1996]

Method and examples of how the ultimate control of transmissions can be found. The method is based
on “dynamic programming” and optimizes the transmission control over a whole transport task, in a
computational efficient way. This work is only partly, financed by the reported project.

[Jacobson, 1996]
Fundamental considerations on using Dymola techniques for modelling vehicle propulsion and how

Dymola supports model library structure and maintenance.

[Tony Sandberg, 1996]

Models of wheel and chassis in Dymola. Somewhat more detailed than needed for energy and emission
simulation. E.g., weight distribution between wheel axles, slip in both longitudinal and lateral
direction, centrifugal forces in curves, etc. are modelled. Of special interest for modelling techniques
are connectable modules for car and wagon.

[Jonas Karlsson, 1996]

Model of a turbocharged diesel engine for a heavy truck, implemented in Dymola. Physical modularity
achieved for base engine, turbine, compressor, intercooler, etc. Resulting in a frequently used engine
model, called DieselDazzler, in the project simulation tool.

[Eva Ericsson, 1996]
Discussion of methods to measure driving patterns. Measurements from the city Lund is analysed and
presented. This thesis work is only to a minor extent, financed by the reported project.

[Egnell, 1996a]
Otto engine model implemented in Simulink.

[Egnell, 1996b]
Otto engine model implemented in Dymola. Based on [Egnell, 1996a].

[Andersson & Jacobson, 1997]

Describes a energy buffering powertrain for a passenger car and how it is implemented in Dymola. The
mechanics of the powertrain is rather simply modelled, but the principles are good enough for the more
advanced control strategy which is implemented. The control strategy is implemented by means of
“Petri Net” techniques and placed as a submodel at the vehicle level, i.e., besides the submodels of
engine, transmission and chassis.

19

D R OIM TION TQOL FOR VEHI PULSION CONCERNING ENE MPTION AN ISSION

[Berglund & Karlsson, 1997]
A short version of [Jonas Karlsson, 1996]. Some model development are added, such as emission

models for the engine.

[Eriksson & Jacobson, 1997a]
Describes the driver and ambience models developed in reported project. The implementation in
Dymola is not in focus but the concepts behind the models.

[Eriksson & Jacobson, 1997b]

Describes the simulation tool of the reported project. Focus on modelling techniques (equation and
object oriented modelling) and motivates why these features are useful. It also shows some of the
implementations in Dymola.

[Eriksson, 1997]
The thesis comprises three papers, [Eriksson & Jacobson, 1996], [Eriksson & Jacobson, 1997a] and

[Eriksson & Jacobson, 1997b] and an summarizing text.

[Stenlaas,1997]

Models of a catalyst in Dymola. One model is a very detailed model, based on basic chemical
formulas. This model is very computational expensive and is best fitted for studies of short
phenomena in the catalyst itself. Another model is produced as a spin-off. It is also based on chemical
formulas but less detailed and reasonably calculation efficient for ordinary studies of vehicle, driver,
road-systems.

[Andersson, 1997]

Models of electric machine (motor and generator), battery, and hybrid propulsion control system in
Dymola. The electric machine is special in starting from physical laws, which makes the same model
class be used for motor and generator. The battery model is rather simple. Some demo examples are
shown, two electric cars and one hybrid car. All with driver and ambience models.

4 FUTURE WORK

VehProp was developed as a tool, why the primary future work would be to use the tool for studies
of vehicle propulsion. However, a software is never finally developed. It can subsequently be adopted
to new techniques, why a secondary work could be to develop and maintain VehProp. A suggestion
is that projects using VehProp are carried out but each project should be as open-minded as possible
to cooperate with the others, in order to (maybe) release a common updated version of VehProp.
Reasons for such cooperation can be:

¢ The research group is kept together (and maybe enlarged)
* The tool is updated (especially to support the new model format Modelica, see Reference [7])
» Model exchange between projects

Presently, there are two projects planned:

 Since the reported project not had the aim to validate the models, there is a need for such valida-
tion. A work where the model parameters are calibrated against measurements on a real vehicle,
driver and transport task is suggested. Such a project is visualized as Validation of Models in Fig-
ure 13.
The ambience models developed in the reported project do not take traffic interaction into
account. However, for urban driving such interaction is very relevant and there are ideas for how
traffic models should be included in the developed ambience models, see [Eriksson & Jacobson,
1997a] in Section 3.5: "Publications". Such an extension might be included in the planned project

20

E P LA

Validation of Models in Figure 13.

More information: Borje Thunberg, Swedish National Road and Traffic Research Institute (VTI),
S-581 95 LINKOPING, Sweden

Control system design with realtime applications (Rapid Prototyping, Hardware-in-the-loop, etc.).
New control systems, at vehicle level, are in focus. There is a special methodology concern in
using equation oriented and object oriented modelling for both simulation and generation of real
time code. Such a project is visualized as Integrated Powertrain Control in Figure 13.

More information: Bengt Jacobson, Machine & Vehicle Design, Chalmers University of Technol-
ogy, S-412 96 GOTEBORG, Sweden, E-mail: beja@mvd.chalmers.se

o VehProp 1.0()—\

driver and road models
L = = Integrated
Validation of Models J‘ b Powertrain Control

control system mo
Sy P i =

\
A

ietylinterest.
S Y

VehProp_A K/\V/ERPI"OPZ.\O/(S :) VehProp_B

Figure 13. Planned projects and possible interaction dashed.

21

MODULAR SIMULATION TQOL FOR VEHICLE PROPULSION CONCERNING ENERGY. CONSUMPTION AND EMISSIONS

5 REFERENCES

(See also Section 3.5, “Publications”, on page 17.)

[1]

[2]

(3]

(4]

[5]
[6]
[7]

8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

Sporl, T, “Modulares Fahrsimulationsprogramm fiir beliebig aufgebaute
Fahrzeugtriebstringe und Anwendung auf Hybridantriebe”, Dissertation, Institut fiir
Maschinenelemente, Universitit Stuttgart, Germany, 1996. In German.

Woschni, G., Schwarz, C. and Zeilinger, K., “Lingsdynamiksimulation von Kraftfahrzeugen
mit dieselmotorischem Antrieb”, MTZ, 56 (1995), 4 pp. 206-211.

Helling, J. et al., “Antriebsstrukuren fiir Kraftfahrzeu ge - Zielsystem, Entwicklungswerkzeuge,
Verbesserungspotentiale”, 4. Aachener Kolloquium Fahrzeug- und Motorentechnik 93,
Aachen, Germany, October 5-7, 1993, pp. 711-732.

Rubin, J.Z., Munns, S.A. and Moskwa, J.J., “The Development of Powertrain System
Modeling Methodologies: Philosophy and Implementation”, SAE Paper No. 971089, 1997.

Elmquist, H., “Dymola User’s Manual”, Dynasim AB, Lund, Sweden, 1994.
http://www.dynasim.se, information on the modelling and simulation software Dymola.

http://www.dynasim.se/modelica.html, information on an international standard of dynamic
modelling languages, Modelica.

http://www.simcar.com/products.htm, information on the engine model library EngineSim
http://www.mga.com/, information on the simulation software ACSL from MGA

http://www.mathworks.com/, information on the software Matlab and Simulink from
Mathworks

Laschet, A., Simulation von Antriebssystemen, Springer-Verlag 1987 (Theoretical base for
software ARLA-SIMUL from ARLA Maschinentechnik GmBH, Kiirten, Germany)

http://www.adams.com/, information on the simulation software ADAMS from Mechanical
Dynamics

http://www.cadsi.com/dads.html, information on the simulation software DADS from CADSI
http://sss-mag.com/spice.html, information on the simulation software SPICE

http://www.isi.com/, information on the software MatrixX and SystemBuild from Integrated
Systems

http://www.maplesoft.com/, information on the software Maple

22

FINAL PROJECT REPORT, MODUILAR SIMULATION TOOL ...

APPENDIX A: SOFTWARE CRITERIA AND DYMOLA FULFILMENT

In Table 3 - Table 6, criteria for a software platform is listed along with how Dymola fulfil them.

« Table 3, “Software criteria and Dymola fulfilment -- Practical aspects”, on page 23

« Table 4, “Software criteria and Dymola fulfilment -- Openness”, on page 24

o Table 5, “Software criteria and Dymola fulfilment -- Modelling facilities”, on page 25
« Table 6, “Software criteria and Dymola fulfilment -- Tools”, on page 26

The selection of criteria is based on comparison with other general purpose simulation software, such
as SystemBuild, Simulink, ACSL, etc. Dymola is also discussed in Section 3.2, “Evaluation of
Modelling Techniques and Software Platforms”, on page 10.

Table 3. Software criteria and Dymola fulfilment -- Practical aspects

Aim or criterion

Dymola fulfilment

The software platform should be in
use for approximately 10 years

Dymola is developed by a small company. However, Dymola uses new
promising techniques and has a good potential to stay in business for a long
time. Of special interest is the new international standard Modelica, see
Reference [7], which will make modelling efforts less dependent of a specific
software dealer.

Reasonable licence fees

Most licence fees, including Dymola, are reasonable compared to develop and
maintain own in-hose code.

Quick start for a beginner

Dymola requires rather much understanding of the user. There are a lot of
separate log files, configuration files etc. However, with well prepared demo
examples, it is possible to get the desired quick start.

Support, Manuals, On-line help

The company Dynasim, which develops and trade Dymola, is known as very
competent and seems to have a sincere wish to contribute to the world wide
front line of modelling techniques. Hereby, technical support is given as good
as possible, with respect to the modest size of the company. There is a User
Guide (Reference [5]) on paper. Dymola also has (almost) the whole User
Guide as on-line help.

23

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

Table 4. Software criteria and Dymola fulfilment -- Openness

Aim or criterion

Dymola fulfilment

Support on different computer
platforms

Dymola is primarily developed for PC with Windows95 or WindowsNT and
good processor performance. Other platforms are supported (presently SUN
and Silicon Graphics), even if new Dymola versions often are delayed some
months.

Real time applications

Dymola can generate code for Simulink (on Simstruct format). Hereby,
realtime applications has been made with Dymola models. Dymola is
developing towards more build-in support for generation of realtime code

Pre- and postprocessing of
simulation in general purpose
numerical software, e.g., Matlab.

Dymola interfaces Matlab by reading data from Matlab binary format files and
by storing simulation result on files with same format. This, together with
Matlab scripts shipped with Dymola, Matlab can be used as a batch script
format.

Dymoview is the plot tool of Dymola. It is rather primitive. However, Matlab

can be used for plotting. A development of Dymoview or an extended
connection to other software such as, Matlab or MatrixX is desired.

Incorporation of external routines in
Fortran, C, etc.

Dymola can incorporate C-functions in models.

Openness to other simulation
software

Dymola generates model output on different format, such as Simstruct (for
Matlab/Simulink), ACSL, Simnon.

Openness for the user

The model storage format and the generated c-code for simulation are fully
open and readable as text files. The built in routines, such as integration
routines, are not delivered on readable format.

Models on closed form for
distribution without revealing model
structure.,

A compiled Dymola model can be created and distributed.

24

FINAL PROJECT REPORT, MODULAR SIMULATION TOOL ...,

Table 5. Software criteria and Dymola fulfilment -- Modelling facilities

Aim or criterion

Dymiola fulfilment

Possible to create stand-alone
models (without links to the original
library)

Dymola has a SaveTotalModel command that makes a stand-alone model
(canned model), contained in one separate file.

Arbitrary description of relations
between variables. E.g., equations,
table interpolation, neural net, etc.

Dymola support equations (including multi-dimensional matrix formalism) and
table interpolation (both in Dymola internal parameter matrices and matrices
from an external file). For special features, such as neural nets, the user has to
arrange his own C-functions.

Information/documentation in
model definitions

Dymola syntax allows description (one line) for each parameter defined and a
model class information layer (several lines).

Warnings when a variable passes the

range within which a model is valid.

Dymola syntax has no such build in feature. One work-around is to write an
own c-function, error, and call it conditionally: “x=1if y<yMax then 7
else error (“message”)”. Another work-around is to construct
equations like “x=1f y<yMax then 7 else 1/0”, which makes the
simulation stop by failure when y becomes >yMax.

Model parameters

The parameter handling in Dymola is well developed. Default values can be
given, parameters can be propagated between hierachic model levels, etc.

Time and state event modelling,
e.g., stick-slip phenomena for dry
friction.

Dymola has a strong support for time and state events. 1t is based on a high
level syntax with if- and when-statements.

Petri nets, State transition nets, or
similar

Dymola has a library with Petri Net blocks, which is efficiently supported by
the state event handler.

Model library support

Dymola very strongly support that the user defines their own model libraries.
There are special model classes, library classes, and the object oriented
techniques allows efficient library maintenance.

Possibility to define an arbitrary
default value for an unconnected
port (cut, interface, etc.).

Dymola sets the value zero on an unconnected cut variable of through-type.
(Through-type variables are summed to zero when connected, e.g., connecting
cut (speedl/forcel) to cut(speed2/force2) generates equations
forcel+force2=0). Other default values cannot be defined.

Data file for external tables

There has to be one external data file with a specific name, dsdata.mat, in
current directory. In order to guarantee that data from VehProp library is used, a
file must be copied from VehProp or a Matlab script for merging data from
VehProp can be run.

A better solution might be: In the model definition, default file name and
path should be given as string parameters. Then the default data could be
the data from VehProp library.

Instantiating in base class

Submodels instantiated in a base class cannot be connected in an inheriting
class. This is a major drawback, but will be dealt with in next Dymola
version (Dymola4.0).

25

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

Table 6. Software criteria and Dymola fulfilment -- Tools

Aim or criterion

Dymola fulfilment

Time efficient simulation

Since Dymola uses compiled code the simulation is relatively fast. However,
when developing models, the compilation time can be disturbingly long.

Trimming tools (for finding suitable
initial conditions)

Dymola has no trimming tools. On the other hand, the non-causal models
allows a user to change calculation order by adding constraint equations for
state derivatives, e.g., “dx/dt=0" and solving the system for x. Hereby, a
suitable initial value of x is found and the system can be solved for x through
integration of dx/dt.

Tools for linearization and
eigenvalue analyses

Dymola has no such tools. A linearization tool will be added in next Dymola
version.

Efficient and various integration
methods available.

Dymola has several methods implemented. Also, they are parameterized.
Parameters are, e.g., maximum order of integration allowed, maximum number
of iterations in each time step, etc.

Tools for Control design, System
identification, Signal processing and
Optimization

Dymola has no such tools. The closest is that Dymola is shipped with a Control
block library (similar to Simulink) and a Petri Net library.

Documentation support

Dymola has a command to generate model documentation on html format, The
command can be given from any library, model or model class. The generated
html document contains graphical icons (bitmap format) and links from
submodel instantiations to model class definition.

Debugging tools

The debugging features of Dymola is mainly output to a log file, dslog. txt.
Here, the simulation can be followed. Additionally, the models is checked for
consistence when read from file and when the models are partitioned, e.g., by
the symbolic transformation.

Iteration tolerance

Cannot be controlled (except for the inconvenient way to edit the generated c-
file, dsmodel.c)

It is desired that the iteration tolerance could be controlled from the
Dymola menu, like integration tolerance.

Write protection

The only way to write protect a model library is to use the file write protection
of the operating system. This is too fragile, since write protection information
cannot be retained when transferring a model library to a new computer.

It is desired that Dymola could administrate the write protection.

Model library administration --
Where is a model class used?

Using Windows 95, there is a feature to find files where a certain string, e.g., a
model class name, appears, Hereby, the information can be found.

It is desired that Dymola could administrate the search.

26

FINAL PROJECT REPORT, MODUILAR SIMULATION TQOL ...,

APPENDIX B: DOCUMENTATION AND USER INSTRUCTIONS

Sources of information on Dymola:

Dymola User’s Guide, Reference [5]

Dymola on-line help available during a Dymola session (approximately the same information as
Reference [5])

Text files shipped along with Dymola (for installation, news, known problems, etc.). E.g.,
Dymola/ReadMe. txt

Dynasim homepage on internet, Reference [6] _

There is a Dymola mailing list. See http://www.Dynasim.se/malinglist.

There is, or will soon be, a Dymola users forum at internet. Probably somewhere at the web site:
http://www.Dynasin. se.

There is an international Dymola User’s Group. Meetings will be announced to licensed users.

Sources of information on VehProp:

VehProp/ReadMe/ReadMe . txt This file is printed Section B.1 on page 28 and contains four
parts:

1) Installation instructions for VehProp,

2) List of information sources,

3) Overview of VehProp library structure,

4) Recommendations for models in VehProp.

VehProp/ReadMe/GetStart . txt A text file with some exercises to start with VehProp. It is
printed in Section B.2 on page 32.

Text files in VehProp/ReadMe/ToDynasi Here bugs and problems are listed. Some of them
has a solution or work-around described. It might be useful to browse these files. Some text in
Swedish.

VehProp\ReadMe\Troubble. txt -- General trouble shooting - some tips
VehProp\Demo\ReadMe . txt -- Overview of demo examples

VehProp\Demo\ .. .\ReadMe. txt -- Presentation of each demo example
VehProp\ReadMe\News . txt -- News and known problems with the present version of Veh-
Prop

VehProp\ReadMe\Adresses . txt includes addresses of the participants in the project.
Model classes in VehProp have their “information layer” and “parameter descriptions”, which can

be reached during a Dymola session.

27

L, T I ProOP M ND EMISSION,

B.1 FILE VEHPROP/README/README.TXT

= The VehProp library was developed by the project: =

= “Modular Simulation Tool for Vehicle Propulsion, =
= concerning Energy Consumption and Emissions” =

(In Swedish: =
= “Modulbaserat simuleringsverktyg f6r fordons dynamik =
= m.a.p. energianvidndning, emissioner och rérelse i fardriktningen”, =
= med stdd fran Svenska Fordonstekniska Forskningsprogrammet enligt =
= programrddets beslut med diarienummer 8531-94-8701 daterat 1994-11-17) =

This file conatins four parts:
INSTALLATION INSTRUCTIONS FOR VehProp
INFORMATION SOURCES

OVERVIEW OF VehProp LIBRARY STRUCTURE
- RECOMMENDATIONS FOR MODELS IN VehProp

1

1

0) You would probably get less problem the “better” computer you use.
Minimum recommendations:
PC, PentiumlO0 MHz, RAM30MB, 100 MB free space on hard disc, Windows95 or
WindowsNT

1) Install Dymola. See instructions from Dynasim AB.
It is recommended that Dymola3.0f is used.
(For more information on Dymola, see internet: http://www.Dynasim.se)

2) Run the delivered file VehProp.exe. It is a self-extracting file.
The directory “c:\VehProp” will be created.
(It is possible, but not recommended, to chose another directory path.)

3) Add the your location of VehProp to DYMOLAPATH in AutoExec.bat.
If VehProp is located as c:\VehProp, the following line
should be present in your Autoexec.bat:
set DYMOLAPATH=c:\VehProp

4) Using Matlab scripts shipped with Dymola

If you would like to use Matlab for pre- and postprocessing of compiled

Dymola models, you should add the path .../Dymola/Mfiles/traj (where ... in
most cases should be c:) to the path defined for Matlab in the matlab file
.../matlabrc.m (where ... in most cases shuld be c:/Matlab).

5) Using external data files on Matlab binary format with Dymola

Some models in VehProp uses external data files. Then there have to be a file
called dsdata.mat in Dymola current directory. The demos are prepared with
such files. However, if you would like to update the dsdata files by means of
Matlab, you should add the path .../VehProp to the path defined for Matlab in
the matlab file .../matlabrc.m (where ... in most cases shuld be c:/Matlab).
Hereby, you can access the external data files stored in VehProp from matlab.

28

P M TooL

It is then easy to create a matlab script, such as

VehProp/Demo/SysSimpl/SysAmb2/WriDsdat.m, which updates the file dsdata.mat,
with

the newest version of data files in VehProp.

6) UPDATES VIA INTERNET

It is possible to get updates of Dymola via Internet: www.Dynasim.se/update.
The only file not provided via internet is the licens file.

7) AUTOMATIC DOCUMENTAION IN HTML FORMAT

The automatic HTML-documentation feature of Dymola requires:
* In Autoexec.bat: set DYMOLAHTML=1
* You also need the file: Dymola\bmp2gif.exe

8) Write protection

VehProp would work best if the library files were write protected. Since some
model classes from the libraries from Dynasim (shipped with the software Dymola)
is used in VehProp, also Dymola itself should be write protected. The only
available way to write protect is to use the write protection administrated by
the operative system (e.g., Windows95). However, such write protection
disappears when VehProp is zipped and unzipped again during delivery. Therefore,
VehProp is not write protected when delivered to you. However, two script file
are delivered:
- VehProp\wprotect.bat
Click on this file in your file manager. Then, all files under c:\VehProp and
under c:\Dymola will be write protected.
- VehProp\unprotec.bat
Click on this file in your file manager. Then, the write protection done by
VehProp\wprotect.bat will be released.
Anyway it might be a good idea to store your own backup copy of the
complete VehProp. Then you can update your VehProp easily if you happen to write
in the library files.

LIST OF MORE TEXT FILES TO READ:
- VehProp\ZipIntro.txt -- Version identity file, view when unzipping
- VehProp\ReadMe\GetStart.txt -- some exercises to start with VehProp
- VehProp\Demo\ReadMe.txt -- Overview of demo examples
- VehProp\Demo\...\ReadMe.txt -- Presentation of each demo example
- VehProp\ReadMe\ToDynasim\...txt --
-- some questions and answers about Dymola, some in Swedish
- VehProp\ReadMe\Adresses.txt --
—- some adresses of the participants in the project which developed VehProp

- VehProp\ReadMe\Troubble.txt -- General troubble shooting - some tips
- VehProp\ReadMe\News.txt -- News and known problems with the present version
- VehProp\ReadMe\ToDo.txt -- Some possible future updates of VehProp

OTHER SOURCES:
- Dymola Users Guide (shipped from Dynasim AB with Dymola licens)
- Dymola -- Selected publications (shipped from Dynasim AB with Dymola licens)
- Web site of Dynasim AB: http://www.Dynasim.se
- Final project report (from the project which developed VehProp 1995-1996)
- publications (from the project which developed VehProp 1995-1996).
Listed in final project report.

29

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

- Personal contacts regarding VehProp, e.g. through the file:
VehProp\ReadMe\Adresses. txt

The file names uses maximum 8 characters, to support Windows3.x. The following
file name extensions are used:

.1lib:
.dym:
.dyc:

.mat:

Ctxt:

.ini:

VehProp

Dymola model classes (Dymola libraries and model classes)

Dymola models

Dymola script files for an experiment (simulation) with a model. (Often
it is suitable to have a script file xxx.dyc, which describes an
experiment with the model in file xxx.dym.)

External data file. Matrices with names on Matlab binary format. Used
in Dymola models by means of the Dymola call ExternalTable.

Matlab script file

Text file

Dymola configuration file

has 4 important directories: CompLib, SysLib, Demo and ExtData.

They will be described in the following.

VehProp - CompLib - Control

- Driver
- El
- Engine - Diesel
- Otto
- Ambilence
- Math
~ Mech - Gearbox
-~ Chassis
- SysLib - Driver - Attitude
- Operate
- Ambience - Road
- Stop
- Vehicle - Chassis
- Engine
- Transmis
- Demo - ...(See VehProp\Demo\ReadMe. txt)
1) VehProp\CompLib -- the component directory

Here,

components are stored. Definition of components: “Components” are building

blocks used as submodels in the “systems” on the lowest level.

In each subdirectory there is at least one file, a .lib-file with
component models (only model classes, no models). Additional files

should also be stored here, e.g., .mat-files for back-up of external data
used in the component models. Also, corresponding .m files might be
stored here for generation of the .mat files.

2) VehProp\SysLib -- the system directory

Here, systems are stored. Definition of systems: “Systems” are build for fitting
into the proposed structure of a vehicle propulsion system. Systems on the
lowest level use “components” as submodels. Systems of higher level use lower
level systems as submodels. All systems inherit a “shell class”, e.qg.,

30

FINAL PROJECT REPORT., MODULAR SIMULATION TOOL ...,

EngineShell, DriverShell, etc.

In each subdirectory there is a file called Adm.lib. This is

the administrative model classes, such as “Library”, “Interface”,
wShell”, “Board”, “Info”, etc. Other .lib-files are also present

and they each include a model class inheriting the shell class. Such
a model class is here called a system.

Files for external data as in the component library might also be stored here
(.mat and .m files).

3) VehProp\Demo -- the demo directory

This directory should have several subdirectories, each corresponding to

a demo. To run a demo, copy one of the demo directories to somewhere outside
VehProp, e.g., to c:\Test. Start Dymola from this location. There are more
information in ReadMe.txt files of each demo directory. See also
VehProp\Demo\ReadMe. txt

In general, the following recommendations is given:
* Ccuts should, preferably, be defined as physical as possible. E.g., it

is recommended to use through variables (rafter-slash-variables”) .

* A demo should be able to start without the file Dymola.lib present
* Tnfo text should be written. Here, you should try to cover all

problems that can occur, such as:

- Is there need for an external table, i.e. a .mat file. If so, document
the path where it can be found.

- Does the model need any non default Dymola settings. As default we
use the settings in file Dymola\Insert\Dymosim.ini. For instance, the
Dymola setting “DefaultConnect on” is Dymola default.

- Does the model need any Dymola commands (like “Differentiate” or
“Variable value unknown x").

- Name and date for who and when the model class was created

* All model classes and models which needs special initial values

(on continous or discrete state variables or iteration variables)

should have suitable initial value defined by a parameter.

* External data can be used by adding a .mat file. It is recommended

that also a .m file for generation of the .mat file is supplied. Both

.mat and the corresponding .m files should be stored in VehProp/CompLib

or VehProp/SysLib depending on the type of model class it is used.

= Bengt Jacobson
- Machine & Vehicle Design, Chalmers University of Technology, =
= $-412 96 GOTEBORG, Sweden =

= Phone: int+46-(0)31-772 13 83 (secretary: ...13 60) =
= Fax: int+46-(0)31-772 13 75 =
= E-mail: beja@mvd.chalmers.se

= Web: http://www.nvd.chalmers.se =

31

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

B.2 FILE VEHPROP/README/GETSTART.TXT

= GettingStarted-file for Vehicle Propulsion Library =
= File: VehProp\ReadMe\GetStart.txt =

First install Dymola and VehProp as described in VehProp\ReadMe\ReadMe. txt .
Then, you can do the following exercises.

EXERCISE 1,
Running av demo example and change parameters

1) Make your own working directory. E.g., c:\VehPropRun

2) Copy the directory VehProp\Demo\Misc\Templ\Templl\Canned to c:\VehPropRun.
Change directory name from c:\VehPropRun\Canned to c¢:\VehPropRun\Exercl.
(This change of name is not actually important, but makes it more clear

that we should work from an OWN COPY of the demo directory.)

3) Start Dymola from the new directory c:\VehPropRun\Exercl. (I.e., open the
directory in the explorer and chose Start/Run Dymola (in Windows95).)
There should pop up two windows:

- Dymola - Dymola Modelling Laboratory (Command window)
- Templl (The model we will simulate)

Additionaly, there are some minimized windows:

-~ Dymoview

~ Plot Window

4) In Dymola window there is a toolbar at the top of the window. Chose the
most left tool (or, chose from menu: File/RunScript). A file browser
will pop up, from which you chose file Templ.dyc.

5) Wait. In the Dymola window, you will see information that the model classes
are loaded and instaciated. The model is partitioned, compiled and simulated.
On a PC Pentiuml66MHz 32MB RAM, you have to wait about 15 seconds.

6) Now open the window Plot Window. Chose variables. From the variable list you
may chose, e.g., PlotSpeed, PlotSpeedLimit, PlotPedal and PlotGear. Klick OK,

and the simulation results will be plotted. On the x~axis, there is Time in seconds.

PlotSpeed and PlotSpeedLimit is plotted in m/s. PlotPedal is the accelerator
pedal position, meassured as a number between 0 and 10. PlotGear shows the gear,
where PlotGear=1 corresponds to lst gear, 20 to 2nd gear, etc.

-) Exercise 1 could be over now, but if you are interested in parameter
studies, please continue...

7) Dubble click on submodel Amb (Ambience) in window Templ. A dialog window
will pop up. Scroll down to parameter Speedl. Nothing but the default value
5 m/s is given (in the “default box”). Write instead 10 as value (in the
“value box”). Klick OK.

8) Now chose File/SaveAll in the Templ window. Answer yes on the question
of saving to file ¢:\VehPropRun\Exercl\Templ.dym.
(The saving will take some time, because Templ.dym is a large file.
Actually Templ.dym contains a stand-alone model (or “canned” model),
where all model classes are defined in the same file. So, there is no
references to VehProp library.)

9) Perform a new simulation as you did in point 4 and 5.

~-) Now the result should be plotted, but you are recommended to do this in
new plot window. Therefore...

10) Open the window Dymoview and chose View/PlotWindow. A new plot window
pops up and you may minimize Dymoview window again.

32

FINAL PROJECT REPORT. MODULAR SIMULATION TOOL ...,

11) Plot as you did in point 6.

--) Now you have learned how to change parameter values by really updating the
model description in its file. This was made when you choose File/SaveAll.
There is a another way to change parameter values. If you are interested go on.

12) Try another way to change parameters: Chose the tool (or button) “p=” in the
toolbar of the Dymola window. A parameter browser will pop up. Browse down
to the parameter Model/Amb/Speedl and mark this parameter. Its value (10)
will then be displayed in the upper part of the parameter browser.
Change the value to 15 (m/s) and klick OK.

13) Run a simulation again, but please try the most right tool (or button) in
the toolbar of the Dymola window (or chose Simulation/Simulate from the
menu) .

A new simulation will be runned, and we should notice that this time, it
takes shorter time, since the parameter was changed in the Dymola window
and not in the Templ window, as we did in points 7 and 8. For instance,
there was no need for a new compilation. In short, in points 7 and 8 we
changed the parameter in the model and in point 12 it was changed only in
the experiment.

14) Now, we can plot the new result. Let us try to plot it in the same plot
window. Chose, in the plot window, SetUp/AutoErase. (Maybe you have to
chose it several times to obtain that there should be no marker before
the word “AutoErase”.) Now plot PlotSpeed by chosing Variables/PlotSpeed
in the plot window.

15) Chose File/Exit either from Dymola window or from any edit windows.

EXERCISE 2,
Browsing a model and changing a subsystem

1) Do point 1, 2 and 3 in exercise 1 again, BUT with VehProp\Demo\Misc\Templ\Templl
instead of VehProp\Demo\Misc\Templ\Templl\Canned instead. It might be suitable to
rename your own working directory with a name such as Exerc2.

2) Now a window called Develop will pop up. This is a library window. Klick with your
right mouse button at Templl in this window. Select ViewClass. Then a window
called Templl will open. This window is an edit window.

3) The model class Templl will look very much like in exercise 1, but now the model
classes from VehProp (c:\VehProp) are used as submodels. (In exercise 1, only
copies from VehProp were used.) You can test this by doing ViewClass on submodel
Amb (in Templl) and then on Road (in Amb). Try to save SimpleRoad (which is the
model class of the submodel Road) by clicking Ctrl+s in the Road window. Dymola
will answer “Cannot open file ... write protected”, since you then tried to
write to a file within VehProp, which should be write protected. If Dymola CAN save,
you have probably forgot to write protect VehProp. Do this after instructions in
file VehProp\ReadMe\ReadMe.txt. Close SimpleRoad and TempllAmbience windows
before carrying on.

4) Do ViewClass on Veh in Templl. In the window TempllVehicle, you will then see the
submodel Eng, which is of the model class SimpleEngine. SimpleEngine is a very simple
engine model, so we try to change to better one.

If you like, you might view the SimpleEngine model class. When you have the edit
window for SimpleEngine, chose Edit/EquationLayer (or click on the fourth tool
(or button) from left at the top of the window). In the equation layer you can
see the variable declarations and equations of the model class SimpleEngine.

The SimpleEngine is very simple. Roughly, the torque follows a square polynom.

5) Open the VehProp library by chosing File/Library/VehiclePropulsionLibrary.
A library window VehProp will open. (It takes some time, library reading is logged

33

MODULAR SIMULATION TOOL FOR VEHICLE PROPULSION CONCERNING ENERGY CONSUMPTION AND EMISSIONS

in window Dymola, if you want to follow it online.) This is the top level of
VehProp library. You can go down to engine models by doubble-clicking with your
left mouse button on sublibraries Sys (in VehProp), then Veh (in Systems), then
Engine (in VehicleSys). Then you have the engine library with the engine models
OttoNAl, OttoNA2, etc.

6) Select the engine in TempllVehicle by clicking once on it. It then becames marked
with red “handles”. While it is still marked, chose Edit/ChangeSubmodel and write
OttoNAl. The engine model in TempllVehicle will then change to an OttoNAl instead
of a SimpleEngine.

(If we had not opened the engine library of VehProp, Dymola would have had to

ask for which file OttoNAl was to be found. The correct answer is
VehProp\SysLib\Vehicle\Engine\OttoNAl.1lib, but that might be difficult to know...)
(There is another way to change submodel: Drag OttoNAl from the engine library
into TempllVehicle. Mark and delete the SimpleEngine. Connect OttoNAl with mouse.)
(It might be a good idea to close windows Systems, VehicleSys and EngineSys

now. You have probably already noticed that there can be a lot of windows

opened. Learning to close or minimize windows helps!)

(If you like, view the model class of the OttoNAl! It is much more detailed than
SimpleEngine. It consists of physical submodels from the component library of
VehProp. If you like, you can open the relevant component library by doubble-
clicking on Comp (in VehProp), Engine (in Components), Otto (in EngineComp) .)

7) Now, try SaveAll and RunScript and Plot (See exercise 1, point 8, 9 and 6).
The simulation will not work! You will be told that “Dymosim could
not find the data file dsdata.mat”.

8) There is obviously something special with the new engine model.
Try right mouse button on OttoNAl in window TempllVehicle. Chose Info.
The information window will tell you (among other things) that the data
file VehProp\CompLib\Engine\Otto\dsdata.mat is needed. So, copy
it to your work directory.

9) Try to simulate again. Either by running the script again or, faster,
as described in excersise 1, point 13. The simulation should work now
and you should be able to plot the results.

It might be your interest to view the results from the emission model.
If so, plot the variable Veh::OttoNAl.NOx. (This variable is lifted
up to top level of the engine, which can be read in the info text

of OttoNAl. Point 8 tells you how to view this info.)

EXERCISE 3
Browse the VehProp library

1) Do point 1, 2 and 3 in exercise 1 again, BUT with VehProp\Demo\Misc\Browse
instead of VehProp\Demo\Misc\Templ\Templl\Canned. It might be suitable to
rename your own working directory with a name such as Exerc3. The VehProp top
level library opens up.

-) The points 5 and 6 contains some brief browsing of the system and component
libraries in VehProp library. In this exercise some ideas with the library
structure will be more clearly pointed out.

2) Open (by doubble-clicks) VehProp--System--VehicleSys-~EngineSys--DieselDazzler.
All engines in the engine library “inherits” the base class EngineShell. This
is why they look very much the same. The idea of this inheritance is to force
all engine models to be exchangeable in a superior model class. (A superior model
class for an engine is a vehicle. And all vehicles inherits “VehicleShell”, and
s0 on...). If you want a tidier screen, close System, VehicleSys and EngineSys.

3) Open (by doubble-clicks) VehProp——Components—~EngineComp-~Diese1Comp. Close
EngineComp. Also open VehProp-~Components--MechComp. Close Components.
Now, you are supposed to observe (or believe in) that all submodels in the
DieselDazzler engine are “instanciations” or “instances” of model classes
in the component library of VehProp. E.g., there are a compressor model class

34

E P R MODULAR SIMULATI L

sCompr2” and an inertia model class “Inertia” used. The inertia class is
instanciated twice, as the instances “InertiaTurbo” and “InertiaCrank”, but
with different parameter settings for the mass moment of inertia.

In conclusion, the VehProp library has two branches, the system library and
the component library. The system library contains models for use in vehicle
propulsion models, packed in a way that they fit together. The component
library contains models of more general physical nature for use in any type

of models, not only vehicle propulsion models. The systems uses the components
as submodels. It might be noted that components are not the only way to model
a system - also equations can be used in parallell. See, e.g., the model class
SimpleEngine with no components at all or OttoNAl with some connections made
by equations.

4) The third sublibrary in VehProp top level library, Misc, contains some miscellanous
model classes. Just open it and browse it briefly.
EXERCISE 4:

Build a new model

2)

4)

5)

6)

Do point 1, 2 and 3 in exercise 1 again, BUT with VehProp\Demo\Misc\Templ instead
of VehProp\Demo\Misc\Templ\Templl\Canned. It might be suitable to rename
your own working directory with a name such as Exerc4.

Now a window called Develop will pop up. This is a library window. Open sublibrary
MyTempl by doubble-clicking wt it with your left mouse button. Here you see five
models, Templl, ..., Templ5. All these are simple models, for use as templates when
defining new models. View model class Templl.

Open VehProp system library, by chosing File/Library/SystemLibrary. A library window
called Systems will open up.

In the same way as exercise 2, point 6, you should now change the model class
of the following submodels in Templl:
* submodel Veh/Eng (has model class SimpleEngine, change to ScaleDiesel)
* gubmodel Veh/Transm (has model class SimpleTransm, change to TransmManSimple)
* gubmodel Driver/Att (has model class SimpleAttitude, change to BlockAttitude)
* gubmodel Driver/Op (has model class SimpleOperate, change to ManOperate)
* submodel Amb/Road (has model class SimpleRoad, change to RoadTab.
Answer yes on the question “Discard such parameters...”)
* submodel Amb/Stop (has model class SimpleStop, change to StopTab)

Now, try SaveAll and RunScript (C:\VehPropRun\Exerc4\Templl.dyc) and Plot (See
exercise 1, point 8, 9 and 6).

The simulation will not work! You will be told that “Dymosim could

not find the data file dsdata.mat”. Copy VehProp\CompLib\Engine\Diesel\dsdata.mat
to VehPropRun\Exerc4 (cf exercise 3, point 8). Now the simulation will run.

Plot PlotSpeed and PlotSpeedLimit. The simulated driving issue will be poorely

fullfilled.

7)

E.g., in the beginning of the simulation, the speedlimit is 10 m/s, but the vehicle only
achieves approximately 3 m/s.

In the following points 7, 8 and 9, some troubble shooting in the model will
be shown. It points out that this kind of driver and ambience models often are
sensitive to parameter settings.

By some parameter setting in the submodels, a more realistic simulation

result can be obtained. In order to explain the models, a reasoning is first made:
Plot Veh/Transm/PlotGear. The driver do not shift to higher gear than lst gear!
Browse the model again. Doubble-click with left mouse button on Templl/Driver/Op
displays the parameter setting for the operate part of the driver. The parameter
SpeedUp is 350 rad/s, which means that the driver do not shift up until the engine
speed becomes higher than 350 rad/s. Plot Veh::Eng.Speed_. It never becomes higher
than 350 rad/s (the engine only reaches 200 rad/s). This must be the reason why the

35

DULAR SIMULATION T R _YEHICLE NCERNIN ERGY. N, PTI D EMISSIONS

driver never shifts! Plot Driver.PlotPedal. It shows that the driver pushes the
(accelerator) pedal to maximum. Why does not the engine reaches higher speeds.
Read the info of submodel Templl/Veh/Eng (hold down right mouse button and chose
Info). Reading the info, we note that this is a scales version of a large truck
diesel engine. This must be the reason why the engine does not reaches higher
speeds. OK, so our first try could be to change the scaling of the engine:
Doubble-click with left mouse button on model Templl/Veh/Eng. This action displays
the parameters of the engine model. Give the value 3 to SpeedScale and value 0.1
to TorqueScale. SaveAll and RunScript again. Now, PlotSpeed follows PlotSpeedLimit
better.

8) The plotted speed dips to zero at time 15-20 seconds. It seems like the vehicle does
not follow the speedlimit very well here. However, a stop is defined here. Plot
Amb: :Stop.Stop. It shows a step from stop number 1 to 2. This means that the
driver here passes a stop. Change independent variable by open the Dymoview
window and chose Setup/IndependentVariable and PlotPosition. Then plot PlotSpeed and
Amb::Stop.Stop. Change parameter Driver::Att.StopMargin from 5 to 0 m. Run a new
simulation and plot. Then you see that the driver is modelled in a way that he
can miss a stop and go on, if he is not given margins large enough.

9) Now, change parameter Driver::0p.SpeedEngDiseng from 150 to 50 rad/s. Try a new
simulation. The simulation will probably fail, since the driver does not release
the clutch in time resulting in that the engine decelerates and dies. To plot the
simulation results from a failed simulation, you have to open window Dymoview and
chose File/OpenResult and file dsres.mat.

10) With Driver::Att.StopMargin = 5 and Driver::0p.SpeedEngDiseng = 150, the simulation
result is descent. Note that you can plot the fuel consumption [kg/s] by plotting
Veh: :Eng.FuelRate. If you would like to plot the accumulated consumption and
consumption per distance and also lift the information to the model top level,

do as follows: Open the equation layer of window Templl (i.e., chose View/EquationLayer).
In the upper part of the equation layer you should declare:
output FuelRate, FuelAccum, FuelPerDist
In the lower part you should define:
FuelRate=Veh: :Eng.FuelRate
der (FuelAccum) =FuelRate
FuelPerDist=if Position>1 then FuelAccum/Position else 0
{If is used to avoid division by zero.}
Do SaveAll and RunScript. Now, you can plot FuelRate, FuelAccum and FuelPerDist.
(Maybe you noticed that we didn’'t need to declare the variable Position. This is
because it is defined in all models inheriting the base class, VehPropShell, which
is the case for Templl.)

-) You have now developed a new model by changing submodels in Templl. Often, one
would like more than one model, for comparison etc. This is why Templ2, ..., Templ5
is present in the library Develop. (This directory and file structure is also
suitable when several persons should cooperate in model development. Then person 1
and 2 have their own directory, Templ\Templl and Templ\Templ2. Then they both start
Dymola from Templ, but are responsible for model classes in each subdirectory.)
The models Templ2, ..., Templ5 could be changed in similar ways, maybe by using
other transmissions (automatic, CVT, etc.). Here, it should be noted that comparisons
between closely related systems can be made with the same model, but using different
“.dyc files”. Above, we have used the .dyc file Templl.dyc. If we, e.g., just want
to change gear ratio of 5th gear from 5 to 4.5, we could make a copy of Templl.dyc
and add the row:

parameter Veh::Transm.RatioVec_1 = 4.5

somewhere before the line: simulate

11) If you are satisfied with your model (Templl) you can now build a “stand-alone
model” (or “canned model”). A good idea is to make a new directory for this model.
Use the file manager of your computer to make a subdirectory Exercd/Canned. Then
choose File/SaveTotalModel in the Templl window. Give the file Canned/TotMod.dym.

12) Test the canned model by, first, exit Dymola. Then start Dymola again from your

directory Excerd/Canned. Do File/Open TotMod.dym from the window Unnamed.
You should know, that the version of Templl now is completetly stand-alone from

36

FINAL PROJECT REPORT, MODULAR SIMULATION TQOL. ...,

the VehProp library. All model classes opened are stored in the file TotMod.dym.
Any changes can be made without disturbing VehProp library and any changes in
VehProp library will not affect this canned model.

EXERCISE 5:
Define your own model classes

2)

4)

5)

6)

7)

8)

9)

10)

Do point 1, 2 and 3 in exercise 1 again, BUT with VehProp\Demo\Misc\Templ\Templl
instead of VehProp\Demo\Misc\Templ\Templl\Canned instead. It might be suitable to
rename your own working directory with a name such as Exercs.

Open edit window Templl/Veh. ViewClass on submodel Transm, i.e., view the class
SimpleTransm. We will develop a new transmission starting from a duplicate of this
model class. Choose File/New/DuplicateModelClass from window SimpleTransm. Give

it an own name, maybe MyTransm.

Save your new model class in a file by chosing File/SaveModel from window
MyTransm. A suitable file name might be MyTrans.lib. MyTransm is now an exact
duplicate of SimpleTransm.

Mark the submodel Transm in the present vehicle model. Chose Edit/ChangeSubmodelClass
and write MyTransm. It is now important to note the change in the model class
TempllVehicle. You are suggested to do File/SaveModel on TempllVehicle. Dymola will
ask you to accept storage in file Exerc5\MySys.lib. Accept it, but note that, if,

you had made a change in a vehicle model class of the VehProp library, you had not
offered to write to the file (unless you had forgot to write protect the VehProp files).
The proper way is then, NOT to release the write protection but, to duplicate also
the vehcile model class to a new model class name (e.g., MyVehicle) and saved it in a
new file (e.g., MyVehic.lib).

Now we will do some changes in MyTransm. First delete the everything in diagram layer
and equation layer. You will not be able to delete the frame in the diagram layer,
since it is inherited from the base class: TransmShell.

Now, open the VehProp component library, by chosing File/Libraries/ComponentLibrary.
Open sublibrary Mech. Drag two components into MyTransm (diagram layer): one
TorqueConvTab and one GearNoLoss. Before going further, you are suggested to give
your two components new names. (This is not really necessary, but emphasizes the
difference between model class and submodel.) Doubble-click on TorqueConvTab. In the
dialog box, change the model NAME to “Conv” (but remember, it is still of the model
CLASS TorqueConvTab). In the same manner, change the name of GearNolLoss to “gear”.
(Note that you should not use “Gear”, since “Gear” is a variable name in MyTransm.
Variable “Gear” is defined in the base class of MyTransm, i.e., TransmShell.)

Connect, by mouse and its left button:

* From the “cut” at the left side of MyTransm to left cut of Conv
* From right cut of Conv to left cut of Gear

* From right cut of Gear to right cut of MyTransm

Doubble-click on Gear. Give the parameter Ratio the value R. (We could have given it
a numerical value, but with R, we will show the principal of parameter propagation.)
The value R should be defined in MyTransm. Open the equation layer of MyTransm.
Write the following line in the upper part:

parameter R=5 {Ratio of gear transmission}

Switch to the icon layer of MyTransm. Draw something using the drawing tools in the
toolbar of MyTransm. (E.g., open the palette, mark everything in the present icon and
chose a new colour.)

Close window MyTransm. Doubble-click on Transm in TempllVehicle. Note that you now can
give another value than 5 for your parameter R, e.g., 7. Also note your comment of the
parameter “Ratio of gear transmission”.

SaveAll and RunScript Templ.dyc. It will not work. Dymola will complain that there are

more variables than equations. Add the line “Gear=1”, to the lower part of the equation
layer of MyTransm. (This is not easy to realize, but might be credible if doubble-clicking

37

D R SIMULATION T R ENER N, i ND I

on the top cut of MyTransm. Among other cut variables we find the variable “Gear”. Gear
is a variable with normal causality OUT from the transmission. Therefore, we should
define it somehow, e.g., as identical to 1.) Now, the simulation will work.

Above, we defined a “system”, i.e., a model class inheriting a shell class (in this
case a transmission, inheriting TransmShell). Below we will define a “component”, i.e.,
something of general physical character, useful also for other simulations than
vehicle prolusion siumaltions.

11) Chose File/New/ModelClass from any edit window. Give the name “Visco”, base class

“MechBase” and library “MyCompl”. Do SaveModel from window Visco, into the new file
Visco.lib. (The name of the base class is not obvious, but might be found suitable if
you browse the base class of other mechanical components, such as GearNoLoss. Neither
the library class is obvious, but it is suggested in the Info in the window Develop.)
We are about to define a simple model of a visco couppling, i.e., a picewise

linear damper.

12) Write the following lines in the upper part of the equation layer of Visco:

parameter di=2, d2=20
parameter wCrit=50
Write the following line in the lower part of the equation layer of Visco:
TL=1if abs(wL-wR)>wCrit then dl* (wL-wR) else d2* (wL-wR)
TR=TL
We use the inherited variables wL/wR (speed at left/right end) and TL/TR
(torque at left/right end).
Draw some simple icon in the icon layer of Visco.

13) Open sublibrary MyCompl from the library Develop. Drag a copy of Visco to

your model class MyTransm. Open up (delete) the connection to the right of Gear and
connect the Visco between Gear and the right cut of MyTransm.

14) SaveAll and RunScript again. You can plot the usual PlotSpeedLimit and

PlotSpeed, but note also the variables Veh::Transm::Visco.PL and Veh: :Transm: :Visco.PR.
These are the mechanical power of left and right shaft on the Visco. They are
defined in the base class MechBase, and were hereby inherited to Visco.

EXERCISE 7:
RUNNING THE VehProp DEMOS

Read the file VehProp\Demo\ReadMe.txt. There is a list of demos and a short description.

This GettingStarted intructions were developed by:

Bengt Jacobson =

Machine & Vehicle Design, Chalmers, Sweden =

Phone: int+46-(0)31-772 13 83 =
Secretary: int+46-{(0)31-772 13 60 =
Fax: int+46-(0)31-772 13 75 =

E-mail: beja@mvd.chalmers.se =

38

P R MODULAR Sim I 0oL

APPENDIX C: ECONOMY AND ORIGINAL PROJECT PLAN (i~ Swepish)

Table 7. Fran NUTEK rekvbirerade medel (kSEK). Sorterade efter kostnadsslag

Kostnadsslag budgeterat rekvirerat
loner 1980 2464
datorkostnader 240 129
resor 180 169
konsulter, mjukvara 640 248.5
administrativa palagg 960 989.5
sum 4 000 4 000

Table 8. Industribidrag (kSEK)

foretag enligt projektplan | upparbetat | innehall
400 | provbil
Volvo Car
. 1200 700 | modeller av elkomponenter
Corporation
100 | mantid
Volvo Truck 1 000 | motormodell
. 1 200
Corporation 200 | mantid

100 | motormap

300 | bankprov

150 | CVS prov

Saab Automobile 1200
50 | simulering

500 | motormap, steady state

100 | mantid

100 | datorprogram

Aspen Development 400 100 | transient korrigering

200 | mantid

summa 4 000 4000 | -

39

Table 9. Frdn NUTEK rekvbirerade medel (kSEK). Sorterade efter budgetpost

D E

Budgetpost varifran rekvirerats budgeterat | rekvirerat
mvd, Chalmers 2 000 2 000
kraft&virme, LTH 1200 1200
trafikteknik, LTH (inkl. VTT) 400 203
styrgrupp 400 597
summa 4 000 4 000

Table 10. Fran NUTEK rekvbirerade medel (\SEK). Sorterade efter mottagare

Mottagare av rekvirerade medel budgeted | rekvirerat
mvd, Chalmers 2 000 2 488
kraft&vérme, LTH 1 200 1243
trafikteknik, LTH 100 123
VTI (formellt del av Trafik) 300 146
Styrgrupp 400 0
summa 4 000 4 000

40

ORIGINAL PROJECT PLAN (IN SWEDISH)

Bilaga: Projektplan for projektet

Modulbaserat simuleringsverktyg for

fordons dynamik m. a. p. energianviandning,
emissioner och rorelse i firdriktningen

Sammanfattning

Fordons transienta korforlopp i stadstrafik kan idag inte analyseras tillfredsstéllande.
Projektet avser dirfor att utveckla ett simuleringsverktyg for analys av systemet
fordon-forare-vig-trafik, vad giller fordonets dynamik m. a. p. energianvindning,
emissioner och rorelse i fardriktningen. Grundidén é&r att arbeta modulbaserat — olika
foretag/personer ska kunna utveckla egna och anvidnda andras moduler. Projektet
kommer i forsta hand att resultera i ett programskal, med vildefinierat inre protokoll,
men #dven ett grundbibliotek med firdiga moduler. Mjukvaran gors utvecklingsbar
och anvindarvinlig for att na acceptans hos anvéndarna (industri, myndigheter,
forsknings- och undervisningsanstalter) under en lingre period.

Introduktion

Ett fordon ska samverka med forare, vig och Ovrig trafik. Omvirlden paverkas
och stiller krav pa hela situationen. Framst giller kraven avgasemissioner och
energianvindning i stadstrafik, men @ven fordonsprestanda och personsikerhet. Det
ir ofta 6nskvirt att studera situationen som ett tidsforlopp. Exempel pa sadana studier
dr simulering av korning enligt korcykel, start, viaxling, styrmandver samt krock.

Fordonsindustri, myndigheter, forsknings- och undervisningsanstalter har intresse
av att utféra simuleringar enligt ovan. Utan samarbete uppstar nackdelar som:
dubbelarbete, icke jamférbara modeller, kommunikationssvarigheter samt risk att
befintlig spetskompetens inte utnyttjas i modellens alla delar.

Ett datorbaserat simuleringsverktyg for fordonssimulering skulle kunna utgora ett
gemensamt fundament for alla som sysslar med denna typ av analyser. For att
vinna verklig framgang maste det dessutom vara modulbaserat. Att ticka in alla
typer av fordonssimuleringar dr dock knappast praktiskt mdojligt. En inriktning mot
dynamik i firdriktningen skulle kunna vara lagom omfangsrik och betjénar det
aktuella samhillsbehovet att optimera fordons framdrivning, speciellt i stadstrafik.
Meningsfulla studier av korning i stadstrafik krdver dkta transienta analyser, vilka
idag inte kan hanteras tillfredsstéllande. Att utveckla ett sadant datorverktyg dr malet
for detta projekt. Oavsett hur spridd anvéndningen av sjdlva mjukvaran blir, kommer
gemensamma synsitt och definitioner som utvecklas att underldtta kommunikation
mellan industri, myndigheter, forsknings- och undervisningsanstalter.

Bl

Mal

Projektets overgripande mal #r att skapa forutsittningar for avancerade studier av
fordons framdrivning, speciellt i stadstrafik. Som medel for detta ska ett modulbaserat
simuleringsverktyg for fordons dynamik i fardriktningen utvecklas. Som delresultat
kommer synsitt och definitioner att samordnas inom projektet. Eftersom industri,
myndigheter och hogskola finns representerade i projektgruppen kommer synsitt och
definitioner forhoppningsvis att finna acceptans dven utanfor projektet.

Foljande punkter definierar simuleringsverktygets egenskaper:

0 Ett gemensamt format for modeller av fordon, forare, vidg och trafik samt deras
samverkan ska utarbetas. Dessa modeller implementeras som moduler i dator.

[0 Simuleringsverktyget dr avsett for deterministisk analys, men ska ha ett dppet

grinssnitt mot makroprogrammering, t. ex. for studier av statistiska parametrars

inverkan och for optimering.

Simuleringsverktyget forutsitts vara datorbaserat.

Modellerna ska kunna beskrivas av moduler, med tekniskt lampliga grinssnitt.

Fordonet stills i centrum, men programskalet ska dven ta ansvar for samverkan

med forare, vdg och trafik.

O Tidsforlopp ska studeras. Utover rent algebraiska (kvasi-stationira) analyser
ska dven differentiella (transienta, begynnelsevirdesberoende) analyser kunna
genomfOras. Systemens tidskonstanter forvintas spinna Over intervallet 1-100
sekunder. Aven diskreta hindelser (tidskonstant=0) ska kunna haneras.

[0 Med dynamik i fardriktningen avses allt som har med framdrivning/bromsning
att skaffa. Styrmanovrer och vertikala sviangningar avses inte att inkluderas.
Problem med tidsskalan 1-100 sekunder ska kunna hanteras.

[0 Projektet ska i forsta hand utveckla ett programskal med véldefinierade grianssnitt
mellan moduler, i syfte att underlitta komplettering med nya moduler.

O De moduler som utvecklas inom projektet ska utgora ett grundbibliotek. Dér
ska finnas exempel pa moduler for fordon, férare, kércykler, vigar och trafik.
En fordonsmodul kommer att definieras av flera submoduler, till exempel motor-,
transmissions- och vagnsmodul. Modulerna som projektet utvecklar kan vara
enkla. Det viktigaste dr att de kan kommunicera med andra moduler och att
denna kommunikation har sadant format att den #r relevant dven for framtidens
system och fragestillningar (pa minst 10 ars sikt).

HEERE

Simuleringverktyget kommer i forsta hand att medge studier av emissioner och
energianvindning vid fird enligt korcykel. Det ska vara enkelt att jimféra olika
situationer och framdrivningskoncept: till exempel olika korcykler, olika motorer,
olika véxlingsstrategier, olika transmissioner och olika former av energilagring.

Nagra ovriga fragestillningar som kommer att kunna hanteras r:

U Bromsforlopp, till exempel strategier for motor- och/eller drivlinebromsning.
(] Startforlopp med beddmning av komfort och prestanda.
[J Beddmning av véxlingskvalitet under vixlingsforlopp.

B2

[0 Studier av tekniska detaljer, till exempel hallfasthet, slitage och virmeutveckling.
O Motorspecifika forlopp, sasom uppvirmning, emissionsbildning och avgasrening.

For de flesta studier kommer anvidndaren dock att behova utveckla egna moduler.

Presentation, overforing och anvindning av resultat

Projektets mjukvara kommer att héllas inom projektgruppen under de tva aren som
denna projektplan omfattar samt tva ar ddrefter. Resultat av forskningskaraktir
kan komma att presenteras pa konferenser och i tidskrifter 4ven under projekttiden,
forutsatt att projektdeltagarna godtar offentliggérande av innehallet i det som
presenteras.

Efter projekttiden kommer mjukvaran att utvecklas hos respektive projektdeltagare.
I forsta hand kommer detta att innebara modulutveckling. Resultatet kommer att
anvindas i produktutveckling, utredningar och forskning/undervisning.

Se #dven projektavtal, punkterna 9 Sekretess och 10 Publicering.

Projektdeltagare och deras ansvarsomraden

Projektets mal #r ett programskal. For att ge skalet limpliga former maste
modulernas innehall forutses, vilket praktiskt sett krdver att en grunduppsittning
av moduler utvecklas inom projektet och att framtida, mer avancerade, moduler
skisseras. Arbetsinsatser av tva typer behovs saledes. Dessa kan bendmnas
utveckling av programskal och definition av delsystem. Projektdeltagarna och deras
ansvarsomraden framgar av totalbudgeten. Dessutom forutses projektledning och
inkop av specialistkompetens som separata ansvarsomraden, enligt totalbudgeten.

De industriellt verksamma deltagarna samt VTI behovs framférallt for att bidra med
praktisk produkt- och problemkénnedom samt provdata. Industrin stéller 4ven en del
fardiga berdkningsmodeller till projektets férfogande.

Projektdeltagarna anges i foljande tabell. Ordforande i projektets styrgrupp &r Mart
Migi. Projektledare dr Bengt Jacobson, Maskin & fordon, CTH, tel: 031 — 772 13 83,
fax: 031 — 772 13 75.

deltagare kontaktperson |telefon fax

Maskin & fordon, CTH Mart Magi 031-772 13 62 {031-772 13 75
Forbranningsmotorer, LTH Rolf Egnell 046-10 45 64 | 046-10 47 17
Trafikteknik, LTH Borje Thunberg | 046-10 45 70 | 046-12 32 72
VTI Borje Thunberg | 013-20 43 07 | 013-20 40 82
Volvo Lastvagnar AB Goran Axbrink 031-66 42 31 |031-23 89 78
Volvo Personvagnar AB Stephen Wallman | 031-59 56 77 |031-59 63 70
Saab Automobile AB Stefan Dunert 0520-780 10 | 0520-780 01
Aspen Utveckling AB Rolf Egnell 046-18 96 20 | 046-18 96 25

B3

Totalbudget
Total projektbudget [kkr totalt under projektet]

ansvarsomrade ansvarstagare kostnad
projektledning och programskal | Maskin & fordon, CTH 800
delsystemet motor Forbranningsmotorer, LTH 1200
delsystemet transmission och vagn | Maskin & fordon, CTH 1200
delsystemet trafik, viig och forare | Trafikteknik, LTH 400
specialistkompetens etc. projektets styrgrupp 400

Subtotalt 4000

Industristdd, lika delar fran Volvo LV, Volvo PV och Saab Automobile 3600
Industristéd fran Aspen Utvecklings AB 400
Stéd fran VTI 700
Totalt 8700

Institutionernas kostnader fordelar sig jimnt 6ver kalenderiren 1995 och 1996.
Styrgruppens post om 400 kr fordelas enligt styrgruppens delbudget nedan. Det ger
foljande fordelningen av sokta medel per statliga budgetar:

.) . budgetar
For projektet sokta medel [kkr] 94/95 950701-961231

Maskin & fordon, CTH 500 1500
Forbranningsmotorer, LTH 300 900
Trafikteknik, LTH 100 300
Projektets styrgrupp 100+75 225

Totalt 1075 2925

Summa sékta medel 4000

Fran Svenskt fordonstekniskt forskningsprogram soks alltsa totalt 4000 Kkkr.
Mot denna summa svarar industristodet (exkl. VTI) pa lika mycket. Av de sokta
medlen utgdr ca 2/3 16ner och resten kringkostnader (datorer, resor, lokaler och
administration).

Delbudgetar

Totalbudgeten 4r forankrad i projektets styrgrupp. For varje delbudget ansvarar
respektive ansvarstagare gentemot styrgruppen. Nedan visade delbudgetar, visar ett
realistiskt alternativ for hur respektive ansvarstagare kan anvidnda sina medel for
att uppfylla sina ataganden.

B4

Budget for Maskin & fordon, CTH [kkr totalt]

Lonekostnad for projektledning och skalutveckling 630
Lonekostnad for kompetens inom transmission och vagn 550
Datorkostnader 120
Resekostnader 100
Subtotalt 1400
Paslag for administration och lokaler 600
Totalt 2000
Budget for Forbrinningsmotorer, LTH [Kkkr totalt]
Lonekostnad for kompetens inom férbranningsmotorer 500
Datorkostnader 60
Resekostnader 40
Kompetens inom katalytisk avgasrening
(kopes troligen av kemi-institution) 340
Kompetens inom elmotorer och elektrisk energilagring
(kopes troligen av elektromaskin-institution)
Subtotalt 940
Paslag for administration och lokaler 260
Totalt 1200
Budget for Trafikteknik, LTH [kKkr totalt]
Lonekostnad for kompetens inom vég, trafik och forare 200
Datorkostnader 60
Resekostnader 40
Subtotalt 300
Paslag f6r administration och lokaler 100
Totalt 400
Budget for specialistkompetens etc. [kkr] tid
host 1994 resten
Institutionernas kostnader for loner, resor, etc. under 100 -
definitionsfasen (juli-dec. 1994)
Matematik-, numerik- och datorkompetens -
Mjukvaru-licenser och/eller programmeringshjélp - 300
Reserv -
Totalt 100 300

B5

Budget for industristod (eller motsvarande) [kKkr totalt]
Volvo 20% ingenjor (varav 10% industridoktorand) 200
Lastvagnar AB | provdata och modeller 1000
Volvo 10% ingenjor 100
Personvagnar AB | provdata och modeller 1100
Saab 10% ingenjor 100
Automobile AB | provdata och modeller 1100
Aspen 20% ingenjor 200
Utvecklings AB | provdata och modeller 200
Subtotalt | 4000
VTI 20% ingenjor (kompetens inom vig, trafik och forare) 200
provdata och modeller 500
Totalt| 4700

Industristodet bestar, med bendmningar enligt appendix, visentligen av foljande tva
typer av stod:

[0 Posterna ingenjor (ca 15 % av industristddet) svarar mot den kommunikation

som hogskolorna kommer att behdva med industrin for att styra arbetet 1 en
praktiskt anvindbar riktning.

Posterna provdata och modeller (ca 85 % av industristodet) vdrderas med den
kostnad projektet skulle haft for att producera motsvarande. Endast de delar av
bidragen som har direkt relevans for projektet vérderas.

Provdata, och visst utbud pa berdkningsmodeller, for konventionella fordon,
bade personbilar och lastbilar, kommer att stillas till projektets forfogande.
Stor vikt kommer att ldggas vid att fa med delsystemens transienta karaktir,
sasom motorers eftersldpning p.g.a. turboladdning, uppvéirmning fran kallstart,
katalysatorns troghet. Det giller dock att projektet inte far tillgang till information
om mycket konkurrenskidnsliga produkter och resultat.

Foljande grova uppdelning mellan foretagen har gjorts:

e Saab Automobile: Mitdata som underlag for modellering av motorns transienta
beteende.

e Volvo PV: Underlag for modellering av typiska hybriddriftkomponenter
och hjdlpaggregat (t.ex. elektriska energilagrare, elmotorer/-generatorer och
luftkonditioneringsanlédggningar).

* Volvo LV: Berdkningsmodeller for dieselmotorer, inkluderande transient
beteende m.a.p. emissioner och bréinslefdrbrukning.

* Aspen: Berikningsmodeller for forbranningsmotorer, inkluderande stationért
beteende samt ett berdkningsprogram for fordon for kvasistationdr (icke-
transient) analys av hela korcykler.

B6

Diarutover ser foretagen det som sjilvklart att tillféra projektet littillgingliga
fordonsdata sdsom vagnsmassor, luft- och rullmotstandskoeeficienter, utviaxlingar
och forluster i transmissionen, konverterdata, etc.

Tidplan

tid verksamhet

1 o . o
programskalsniva modulniva

juli-dec. 1994 Definition av projektinnehall*

Modellering av referensmodell

jan.-mars 1995 Specifikati srders (enkelt exempel), i
pecifikation, utvérdering av programvaran Simulink*

alternativ och slutligen val av Al 7 6l Simulink
mijukvara* ternativ till Simulink provas

april-juni 1995 for samma modell
(referensmodellen)*

Definition av praktiskt
lampligt modulinnehall och
-granssnitt.***

Generella regler for

juli-dec. 1995 modulinnehall och -grinssnitt*

Forfining av programskalet, Utveckling av grundbibliotek

jan.-juni 1996 t.ex. m.a.p. anvindarvinlighet* | med moduler***

Slutdokumentation, i form av skriftliga rapporter samt en

juli-dec. 1996 datorimplementation av simuleringsverktyget*

Vid skalutvecklingen madste samtliga deltagares kunskaper och synpunkter
sammanforas, varfor projektledningen (Maskin & fordon, CTH) kommer att samla
en arbetsgrupp med representanter fran alla deltagare. Denna arbetsgrupp &r aktiv i
rutorna markerade med * i tidplanen ovan.

Momenten markerade med *** i tidplanen ovan, beddms att kunna delas upp i
tre arbetsgrupper:

0 Motor omfattande motorns mekanik, energianviandning och emissioner
Huvudintressenter: Forbrianningsmotorer, Aspen

[0 Transmission och vagn omfattande vixellada/CVT, energiforbrukande
kringutrustning, energilagrare och vagn med firdmotstand
Huvudintressenter: Maskin & fordon

[J Vig, trafik och forare omfattande beskrivning av forarbeteende och korsituation
Ovrig trafik
Huvudintressenter: Trafikteknik och VTI

B7

Fordonsindustrin, d.v.s. Volvo LV, Volvo PV och Saab Automobile, har ett
helhetsansvar for fordonet som produkt och kommer dérfor att vara intressenter i
alla dessa delprojekt, men frimst de tva forsta.

Delrapportering till styrgruppen sker skriftligt i informella rapporter, och muntligt vid
moten i samband med avslutandet av varje ruta i tidplanen. Styrgruppen informeras
ocksa via de artiklar som forskarna publicerar for sin egna akademiska meritering.

Projektets relevans for svensk fordonsindustri

Projektets resultat kommer direkt att paverka verksamheten inom var och en
av de industrier, foretag, hogskolor och institut som &r involverade i projektet.
Produktutveckling, utredningar och forskning/undervisning kommer att utvecklas
positivt. Det kan dessutom underlédtta kontakter mellan deltagarna. Troligtvis
kommer projektets resultat ocksd att uppmirksammas utanfor projektet — bade
nationellt och internationellt.

Simuleringsverktyget utvecklas med ambitionen att stindigt kunna forfinas genom
att grundmodulerna modifieras eller nya moduler skapas. T. ex. kan inverkan
av alternativa framdrivningssystem och forarbeteenden/trafiksituationer studeras.
Projektet utgor diarfor ett direkt stod till utveckling och utvérdering av framtida
fordon.

Projektet har ett brett stod fran svensk fordonsindustri.

Annan verksamhet av betydelse for projektet

Projektet ligger tyngdpunkten pa utveckling av programskalet. De moduler som
projektet ansvarar for kommer framst att vara implementationer av befintliga teorier.
Utveckling av nya teorier for delsystem kan vara en aktuell sidoverksamhet. Sadana
nya teorier kan knytas till projektet genom att de implementeras i form av nya
moduler.

En vision av projektets resultat

Figuren nedan visar ett exempel pd moduluppbyggd modell. Moduler finns pa olika
hierarkiska nivaer, modulen fordon innehaller submodulerna motor, driviina&hjul
etc. Modulerna binds samman av grinssnittsvariabler, som ska ha en direkt fysikalisk
tolkning. Till exempel har modulen motor grinssnittsvariablerna emissioner,
hastighet, moment och gaspddrag.

Innehallet i varje modul #r i princip en matematisk beskrivning av ingdende
komponenter. Beskrivningen ska kunna innehalla dynamiska egenskaper, det vill
siga differentialekvationer som definierar problemet som ett transient problem
(matematiskt sett: ett begynnelseviardesproblem). Eftersom detta dr gomt inuti
modulerna, blir programmet hanterligt dven for andra &n simuleringsexperter.

B8

Modulerna ska vara enkelt utbytbara. Till exempel ska man kunna géra motsvarande
simulering f6r en annan motor, som darfor ska ha samma grinssnittsvariabler.

Det ska vara enkelt att definiera nya moduler. For att sorja for framtida teknik, ska
dven grianssnittsvariablerna kunna varieras, bade till fysikalisk tolkning och antal.
Som exempel kan man tinka sig att en framtida motor har ytterligare en styrsignal,
utdver gaspddrag. Om denna styrsignal ska ges av foraren, maste naturligtvis
férarmodulen forses med motsvarande grinssnittsvariabel, men 6vriga moduler kan
hallas intakta.

MODELL: /’ emissioner

positions-

gaspadrag fel -
: - £ kor-
hastlghet
\\\‘
moment

&hjul

position

\\moment
fordon”” s’ughet
w, kraft
e kor-
motstand
|RESULTAT:| ¢ -~) hastighet enligt
_koreykel
hastighet
--------- ~ackumulerade
P emissioner
// ———k [——vaxellage
paan
7 s : emissioner
/ _________________________ per tidsenhet
e T - tid

B9

Bengt Jacobson (projektledare)
Maskin- och fordonskonstruktion
Chalmers tekniska hogskola

412 96 GOTEBORG

Tel: 031 - 772 13 83

Fax: 031 - 772 13 75

