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INVESTIGATION
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ABSTRACT Lipids play a central role in cellular function as constituents of membranes, as signaling
molecules, and as storage materials. Although much is known about the role of lipids in regulating specific
steps of metabolism, comprehensive studies integrating genome-wide expression data, metabolite levels,
and lipid levels are currently lacking. Here, we map condition-dependent regulation controlling lipid
metabolism in Saccharomyces cerevisiae by measuring 5636 mRNAs, 50 metabolites, 97 lipids, and 57 13C-
reaction fluxes in yeast using a three-factor full-factorial design. Correlation analysis across eight environ-
mental conditions revealed 2279 gene expression level-metabolite/lipid relationships that characterize the
extent of transcriptional regulation in lipid metabolism relative to major metabolic hubs within the cell. To
query this network, we developed integrative methods for correlation of multi-omics datasets that elucidate
global regulatory signatures. Our data highlight many characterized regulators of lipid metabolism and
reveal that sterols are regulated more at the transcriptional level than are amino acids. Beyond providing
insights into the systems-level organization of lipid metabolism, we anticipate that our dataset and ap-
proach can join an emerging number of studies to be widely used for interrogating cellular systems through
the combination of mathematical modeling and experimental biology.

KEYWORDS
integrated
systems biology

lipid metabolism
regulation
metabolome
omics

Lipid metabolism in yeast comprises more than 300 chemical reactions
and 100 chemical species (Nookaew et al. 2008). These chemical
species include fatty acids, sterols, steryl esters, acylglycerols, phos-
pholipids, and sphingolipids. Despite a wide range of chemical and
structural diversity, all lipid species share a common carbon precursor,
namely acetyl-CoA, and only a few additional molecules, which include,
for example, dihydroxyacetone phosphate, glucose-6-phosphate, serine,

and S-adenosyl methionine, are needed to synthesize almost all lipids.
With so few precursors needed to synthesize such a large number of
diverse lipid species, a high level of genetic and cellular regulation is
required to ensure homeostasis in lipid composition. It is well-known
that lipid metabolism is tightly regulated, particularly at the level of
transcription (Nielsen 2009). For example, the transcriptional regula-
tion of sterol homeostasis by Upc2p and Ecm22p (sterol regulatory
element-binding protein in humans) uses a feedback pathway to con-
comitantly control synthesis and uptake (Vik and Rine 2001). As
another example, regulation of INO1 is well-established and serves
as a model for studying transcriptional control in general (Chen et al.
2007).

Elucidating global regulatory modules in lipid metabolism and
how they interact in response to environmental conditions has direct
implications for human health and biotechnology (Smith et al. 2007;
Brehme and Vidal 2010; Gallego et al. 2010). In humans, disorders in
lipid metabolism, transport, and trafficking are involved in the etiol-
ogy of many diseases, such as atherosclerosis, diabetes, and cancer
(Henneberry and Sturley 2005; Maxfield and Tabas 2005; Hannun
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and Obeid 2008). Thus, understanding how lipid metabolism is reg-
ulated could lead to identification of new therapeutic strategies for
treatment of some of these diseases. In biotechnology, efforts to en-
gineer lipid metabolism in microbes offer a promising route toward
the production of biodiesel (Steen et al. 2010) and dietary supplements
or food ingredients (Ruenwai et al. 2010; Ruenwai et al. 2011; Tavares
et al. 2011). Hence, mechanistic insights into cellular regulation could
help to identify novel metabolic engineering targets, and thus the
development of efficient cell factories for the production of these
lipids. Despite these interests in understanding regulation of lipid
metabolism, comprehensive studies aimed at bridging the gap between
transcriptional state and metabolic phenotype are lacking.

Although lacking in lipid metabolism, integrated systems biology
studies have been important in gaining a quantitative understanding
of complex biological systems (Sauer et al. 2007; Yamada and Bork
2009). For example, such studies have revealed DNA damage response
pathways (Workman et al. 2006), the systemic impact of growth rate
(Regenberg et al. 2006; Castrillo et al. 2007; Fazio et al. 2008), the role
of Snf1p as a global energy regulator (Usaite et al. 2009), the inter-
actions between Snf1p and TORC1 (Zhang et al. 2011), novel bio-
synthetic control mechanisms in amino acid metabolism (Moxley
et al. 2009), physiological differences between laboratory and wine
yeasts (Pizarro et al. 2008), the functional landscape of a genome-
reduced bacterium (Guell et al. 2009; Kuhner et al. 2009; Ochman and
Raghavan 2009; Yus et al. 2009), strategies metabolic networks use to
achieve robust operation (Ishii et al. 2007), the key factors involved in
programmed fruit ripening and tomato development (Rohrmann
et al. 2011), a model of sphingolipid metabolism (Gupta et al.
2011), metabolic pathways involved in environmental adaptation
(Gianoulis et al. 2009), potential gene–metabolite interactions (Bradley
et al. 2009), and general design principles controlling gene expression
levels/enzyme abundance levels (Fendt et al. 2010), among others.
The wealth of information generated from these studies emphasizes
the importance of integrating data across multiple levels of the cell
(mRNAs, proteins, metabolites, fluxes, and others) and protein in-
teraction information (Feist and Palsson 2008; Yamada and Bork
2009; Heinemann and Sauer 2011).

In this study, we set out to elucidate global regulatory structure
controlling lipid metabolism under different environmental condi-
tions (Figure 1). Toward this goal, we created a model of lipid me-
tabolism that allows for the integration of mRNA, metabolite, lipid,
and flux data with known networks of protein-DNA interactions and
metabolic reaction stoichiometry. We present the results of our mea-
surements together with integrative methods for analyzing high-
throughput experimental datasets. The condition specificity of the
measured data provides the possibility to infer some insights into
the global regulatory architecture of lipid metabolism (i.e., regulation
structure that is general and can be applied over different environ-
mental perturbations) and into how fluxes toward different lipid spe-
cies are controlled.

MATERIALS AND METHODS

Strain and chemostat cultivations
The reference laboratory strain S. cerevisiae CEN.PK113-7D (MATa) (van
Dijken et al. 2000) was grown in well-controlled 2-liter jacketed chemo-
stats (Braun Biotech) with a constant working volume of 1.0 liter. A
factorial design was pursued with three factors comprising two levels each:
carbon source [C-limited (C); N-limited (N)]; oxygen availability [aerobic
(O); anaerobic (A)]; and temperature [30� (T); 15� (t)]. Cultivations were
performed (in triplicates) at each of the eight conditions (COT, CAT,

COt, CAt, NOT, NAT, NOt, NAt) for a total of 24 experiments. Fermen-
tation conditions used a stirrer speed of 800 rpm, with pH of 5.0 (main-
tained by automatic addition of 2 N potassium hydroxide) and
a dilution rate of 0.05 hr21. Aerobic conditions were maintained
by sparging the cultures with air (1.0 liter�min21) and the concen-
tration of dissolved oxygen was measured with Mettler Toledo po-
larographic electrode. Anaerobic conditions were maintained by
sparging the medium reservoir and the fermentor with pure nitrogen
gas (0.5 liter�min21). Moreover, oxygen diffusion was minimized by
using norprene tubing and butyl septa. The bioreactors were fitted
with cooled condensers (2�–4�) and the off-gas was led to a gas
analyzer (INNOVA and NGA 2000 Rosemount) to measure the
content of CO2 and O2. Steady-state was reached when at least five
but less than seven residence times had passed since starting the
continuous cultivation and carbon dioxide evolution, dry weight
measurements, and high-performance liquid chromatography (HPLC)
measurements of extracellular metabolites were constant.

Media
The medium composition was as previously described (Tai et al. 2005).
For N-limited cultivations, residual glucose concentration in the chemo-
stat was targeted to 17 6 2 g�liter21. This was to sustain glucose re-
pression at the same level in all cultivations. To achieve the targeted
glucose concentrations in the N-limited cultivations, the glucose feed
concentration was 46 g�liter21 for cells grown at 15� and 74 g�liter21

for cells grown at 30�. The mineral medium composition for the N-
limited cultivations was (amounts per liter) as follows: 1 g (NH4)2SO4;
3 g KH2PO4; 5.3 g K2SO4; 0.5 g MgSO4�7H2O; 1 ml Trace Metal Solution;
0.05 ml antifoaming agent; and 1 ml vitamin solution. The mineral me-
dium composition for the C-limited cultivations was (amounts per liter)
as follows: 5 g (NH4)2SO4; 3 g KH2PO4; 0.5 g MgSO4�7H2O; 1 ml Trace
Metal Solution; 0.05 ml antifoaming agent; and 1 ml vitamin solution.
The trace metal solution and vitamin solution are reported in Verduyn
et al. (1992). The anaerobic cultivation medium was supplemented with
420 mg�L21 Tween 80 and 10 mg�L21 ergosterol (Pizarro et al. 2008).
Antifoaming agent was used at a concentration of 0.15 ml/liter.

Dry weight measurements
The concentration of biomass at steady-state was determined on a dry
weight basis by filtering 5 ml of culture through a preweighed 0.45-
mm nitrocellulose filter (Gelman Sciences, Ann Arbor, MI). The filter
was washed with distilled water, dried in a microwave oven at 150 W
for 15 min, and finally weighed to determine its increase in dry weight.

RNA sampling and isolation
Samples for RNA isolation from aerobic cultivations were taken by
rapidly sampling 20 ml of culture into a tube with 35–40 ml crushed
ice to decrease the sample temperature to less than 2� in less than 10
sec. Cells were then centrifuged (4500 rpm at 0� for 3 min), instantly
frozen in liquid nitrogen, and stored at 280� until further use. Sam-
pling for RNA isolations from anaerobic cultivations was performed
as described (Piper et al. 2002). Total RNA was extracted using
FastRNA Pro RED kit (QBiogene, Inc, USA) according to manufac-
turer’s instructions after partially thawing the samples on ice. RNA
sample integrity and quality was assessed before hybridization with an
Agilent 2100 Bioanalyzer and RNA 6000 Nano LabChip kit.

Probe preparation and hybridization to arrays
mRNA extraction, cDNA synthesis, cRNA synthesis and labeling, and
hybridization to Affymetrix Yeast Genome 2.0 arrays were performed
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with a GeneChip one-cycle target labeling kit as described in the
Affymetrix user’s manual (Affymetrix 2004). Washing and staining of
arrays were performed using a GeneChip fluidics station 400 and
scanning with an Affymetrix GeneChip Scanner 3000.

Microarray data analysis
Raw microarray data (CEL files) were analyzed using R and
BioConductor (http://www.bioconductor.org). Briefly, CEL files were
normalized and the probe sets were summarized using the GeneChip
RMA (GCRMA) package (Wu et al. 2003) and the “affinities”method.
The CEL files and the normalized GCRMA table can be found in the
ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) with ac-
cession E-MEXP-3704.

Multi-way ANOVA
A linear model was applied to each gene to estimate the influence of
each experimental factor (using C, O, and T here as abbreviations for
C:N, O:A, and T:t respectively) and the potential interaction between
pairs of factors (C:O, C:T, O:T) using an ANOVA approach (multi-
way ANOVA). The model for mRNA expression each gene, i, was
defined as:

yi ¼ bi0 þ
XF

j

bijxi þ
XF

p 6¼q

bipqxi þ ei

where parameters bj were fit for each experimental factor in set F =
{C,O,T} and those for bpq were fit for interaction factors.

Flux balance analysis
Estimation of in silico fluxes for all growth conditions was performed
following a flux balance analysis (FBA) approach using the biopt
software (Cvijovic et al. 2010). The specific medium and all measure-
ments of highly secreted metabolites (e.g., ethanol, glycerol, acetate)
from our experiments were directly used as additional constraints in
addition to the stoichiometry of the iIN800 model (Nookaew et al.
2008), with the maximization of growth rate used as the objective
function. The biomass equations were formulated based on specific
lipid composition and carbon-limited or nitrogen-limited growth
from each of the eight growth conditions.

Biomass amino acid 13C enrichment analysis
13C-enriched biomass was achieved by chemostat experiments per-
formed in in-house-built reactors with a working volume of 200 ml.
Cultivations were performed at 30� or 15� with an agitation speed of
600 rpm, a dilution rate of 0.05 hr21 (to match our other experi-
ments), and pH of 5.0, and gas flow rate was kept at 1 vvm by air and
N2 for aerobic growth and anaerobic growth, respectively. Steady-state
samples were taken after five volume changes; 100% of the glucose
used was labeled in position 1 (1-13C glucose was from Omicron
Biochemicals Inc, USA). 13C-labeled biomass was harvested by

Figure 1 A systems approach to mapping condition-dependent lipid metabolism in the yeast Saccharomyces cerevisiae. (A) Cartoon represen-
tation of the 2 · 3 factorial design showing each experimental condition as a point on a cube (C-limited, C; N-limited, N; aerobic, O; anaerobic, A;
30�, T; and 15�, t). (B) For each condition (e.g., COT), mRNAs, metabolites, lipids, and reaction fluxes were measured and mapped onto
a metabolic model visualized in Cytoscape. (C–F) Integrative analyses used to query the measurement data. These included the identification
of correlation networks (C), co-regulated gene neighborhoods (D), co-regulated pathway neighborhoods (E), and transcription factor (TF) corre-
lated modules (F). (D and E) M1 represents a target metabolite in the reaction network. Node colors are meant to indicate a log2 color bar for
measurement ratios, such as aerobic vs. anaerobic conditions.
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centrifugation at 4000 rpm and 0� for 5 min. After centrifugation, the
supernatant was poured off, and the cell pellet was frozen instanta-
neously in liquid nitrogen and stored at –80�. The samples were
derivatized with both ECF derivatization and DMFDMA derivatiza-
tion (Christensen et al. 2002). Derivatized samples were injected on
a GC-MS as described previously to determine metabolite isotopes
(Christensen et al. 2002). The flux distribution of any growth condi-
tion was calculated by the adopted model of Gombert et al. (2001)
under the concept of summed fractional labeling (SFL) (Christensen
et al. 2002).

Endometabolome analysis
Cells were rapidly quenched according to de Koning and van Dam
(1992) in 60% (v/v) buffered (12.5 mM Tricine, pH 7.4) cold methanol
at –40 to –45�. After quenching, the cells were immediately centri-
fuged at 10,000 g for 4 min in a rotor precooled to 220� to separate
the cells from the quenching solution. Chloroform:methanol:buffer
(CMB) extraction was performed (Villas-Boas et al. 2005a; Villas-Boas
et al. 2005b). After extraction, samples were freeze-dried at a low
temperature (256�) using a Christ-Alpha 1-4 freeze dryer (de Koning
and van Dam 1992). Amino and nonamino organic acid levels were
determined by HPLC on an Aminex HPX-87H column (Biorad)
according to Fazio et al. (2008) and by GC-MS analysis according
to Villas-Boas et al. (2005b), except that a Finnegan FOCUS gas
chromatograph coupled to single quadrupole mass selective detector
(EI; Thermo Electron Corporation, Waltham, MA) was used. Peak
enumeration was conducted with AMDIS (NIST, Gaithersburg, MD)
with default parameters, and identification of conserved metabolites
was conducted with SpectConnect (Styczynski et al. 2007) using de-
fault parameters and a support threshold of 3. Samples were normal-
ized by an internal standard chlorophenylalanine (30 ml of a 4 mM
solution was added before extraction) and by the biomass weight per
sample.

Exometabolome analysis
Culture samples for determination of exometabolites were immedi-
ately filtered through a cellulose acetate filter (CAMEO 25GAS 0.22;
Osmonics, Minnetonka, MN). GC-MS and HPLC analysis were
performed as indicated. Samples were normalized by the biomass
weight per sample.

Lipid analysis
Samples for lipid isolation were taken by rapidly centrifuging at 4� and
10,000 rpm. The cell pellets were rinsed twice with DI water, instantly
frozen in liquid nitrogen, and stored at280� until lipid extraction. For
quantification of lipid levels, internal standards [heptadecanoic acid,
TG (17:0/17:0/17:0); phosphatidylcholine (PC) (17:0/17:0); PS (17:0/
17:0); PI (17:0/17:0); phosphatidylethanolamine (PE) (17:0/17:0);
ceramide (d17:1/18:1); and sitostanol] were added to each sample
before extraction. The lipid extraction was performed using a modified
Folch method (Folch et al. 1957) using a shaker at 4� with an agitation
speed of 200 rpm overnight. The lipid extract was divided into three
parts for further analysis of polar lipids, neutral lipids, and sphingo-
lipid components. Using TLC, the polar lipid fraction was separated
into PC, PS, PI, and PE using a solvent system consisting of chloro-
form:methanol:HAc:boric acid [40:20:30:10:1.8g (v/v/v/v/w)] and neu-
tral lipid fraction was separated into sterols, free fatty acids (FFAs),
TG, and steryl esters using a solvent mixture of hexane:diethylether:
formic acid [80:20:1 (v/v/v)]. After development, lipid spots were
visualized using 2,7-dichlorofluorescein and silica gel in the spots

was carefully scraped off of TLC plates for analysis of fatty acid
content and distribution of each lipid class. Specifically, glycerolipids
were trans-methylated using a method combining alkaline methanol-
ysis and BFl3-catalyzed trans-methylation described by Hamilton et al.
(1992), which has been validated in-house and analyzed on a GC
equipped with a flame-ionization detector (GC-FID), as described
(Brix et al. 2010). Masses of each lipid class were calculated based
on the peak area of the heptadecanoic acid released from the internal
standards. The use of preparative TLC for separation of the different
lipid classes before quantification of fatty acid content in each class
using GC-FID analysis has been clearly established as a standard
method, and when appropriate internal standards are used relative
losses during methylation and extraction of the FAME from the silica
are fully compensated by equal losses of the internal standards. Hence,
quantification of each lipid class is highly reliable. Sterols were
extracted from TLC plates following the validated method described
previously (Zangenberg et al. 2004). The sterol extract was then deriv-
atized with the TMS method as described previously (Nielsen and
Madsen 2000) and injected into GC-MS equipped with 5% phenol
column (Zebron column) and quantified in relation to the peak area
for sitostanol. For analysis of the sphingolipid fraction, the lipid frac-
tion was hydrolyzed using the method of Aveldano and Horrocks
(1983). The long-chained base from the sphingolipids was extracted,
derivatized with o-phtalaldehyde (OPA) reagent, and then analyzed
by reverse-phase HPLC as described (Merrill et al. 1988). Sphingosine,
phytosphingosine, C-20 sphingosine, and sphinganine were identified
using authentic standards, and the content of sphingolipids was quan-
tified based on the peak area of these compounds compared to the
C17 long-chained base derived from the internal standard. Samples
were normalized by the biomass weight per sample. All lipid data are
presented as mmol/g dry cell weight (DCW), having been converted
from mass units obtained from the GC-MS using the molecular
weight for each species.

Visual metabolic map
To gain an integrated perspective of environmental growth condition
perturbations on gene, metabolite, and lipid expression, these data
were visualized in Cytoscape (Cline et al. 2007) in a topological map
based on the genome-scale metabolic model iIN800. Genes, metabo-
lites, lipids, and in silico computed reaction fluxes were defined as
nodes. These nodes were connected by one of three types of edges:
gene (enzyme)-reaction; metabolite/lipid-reaction; and lipid distribu-
tion edges. Gene (enzyme)-reaction and metabolite/lipid-reaction
edges were defined from the stoichiometry of the genome-scale model.
Lipid distribution edges mapped acyl-chain composition for different
species. For reasonable visualization, linear pathway reactions were
merged, for example, the following set of reactions, PE + SAM /
PMME + SAH, PMME + SAM / PDME + SAH, and PDME +
SAM / PC + SAH was simplified to PE + SAM / PC + SAH for
metabolites S-adenosyl-L-methionine (SAM), S-adenosyl-homocys-
teine (SAH), phosphatidylethanolamine (PE), phosphatidylmono-
methylethanolamine (PMME), phosphatidyldimethylethanolamine
(PDME), and phosphatidylcholine (PC). The simplified reaction
PE + SAM / PC + SAH had two gene reaction associations:
CHO2 (encoding the enzyme catalyzing reaction PE + SAM /
PMME + SAH ) and OPI3 (encoding the enzymes catalyzing reactions
PMME + SAM / PDME + SAH and PDME + SAM / PC +
SAH). To help parse the complexity, we found it useful to visualize
smaller networks, such as central metabolism, the TCA cycle and
amino acid biosynthesis pathways, sterol biosynthesis, phospholipid
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Figure 2 Molecular signatures of mRNAs, lipids, and metabolites for each experimental condition: C-limited, C; N-limited, N; aerobic, O;
anaerobic, A; 30�, T; and 15�, t (COT, gray; COt, cyan; CAT, purple; CAt, blue; NOT, yellow; NOt, green; NAT, red; NAt, black). (A–C) Principal
components analysis (PCA) with projections for PC 1, PC 2, and PC 3 for all mRNA, lipid, and metabolite levels, respectively. The size of the point
represents location in the PC 3 axis, which is perpendicular to the page. (D–F) Hierarchical clustering and resulting heat maps for mRNAs, lipids,
and metabolites found to be significant by ANOVA. Measurement z-scores for all data types were mapped as defined by the color bar (note that
mRNA z-scores were based on GCRMA values which are log2). For gene, lipid, and metabolite name abbreviations, see Table S6.
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biosynthesis, fatty acid biosynthesis, sphingolipid biosynthesis, and
lipase degradation.

Correlation analysis
The influence of gene expression on lipid and metabolite levels, or vice
versa, was investigated using Pearson product-moment correlation
coefficient, r. Correlation coefficients were calculated between tran-
script levels for all gene expression level–lipid and gene expression
level–metabolite combinations across all 24 samples tested. The sig-
nificance of each correlation coefficient was estimated (test for no
correlation using cor.test method in R with standard “two-sided” al-
ternative hypothesis) and the resulting P values were adjusted using
the Bonferroni method to account for the number of gene expression
level–lipid or gene expression level–metabolite combinations tested.

Metabolic network gene neighborhood analysis
An extended yeast metabolic network based on iIN800 that included
acyl chain information and that contained 1754 reactions, 781 genes,
and 897 lipids and metabolites was used to investigate regions of
surprising correlation between lipids/metabolites and the mRNA of
enzymes that may generate or utilize them (Nookaew et al. 2008). The
modified reconstruction is provided in Supporting Information, Table
S1. To achieve this, a neighborhood analysis for each lipid or metab-
olite was performed as follows. For each lipid or metabolite, the
Pearson correlation coefficients to all neighboring enzyme transcripts
(lipid–gene expression level or metabolite–gene expression level
correlations) were compared to their correlation coefficients to all
non-neighbor gene expression levels using a Mann-Whitney U-test
(Wilcoxon rank-sum test). The nonparametric, two-sided hypothesis
test provided a P value for each lipid and metabolite regarding how
positively or negatively correlated it was to genes directly upstream or
downstream in the metabolic network as compared to all other non-
neighboring genes. In addition to this “first-neighbor” metabolic net-

work analysis, a similar “second-neighbor” analysis was performed
that defined neighbor correlations for all genes within two reaction
steps of the lipid/metabolite in question.

KEGG pathway analysis
Using the pathway definitions in KEGG to group sets of reactions and
sets of lipids/metabolites, we performed a Mann-Whitney analysis
similar to that applied to individual lipids/metabolites to assess the
significance of correlation within a defined pathway represented by
the mRNAs encoding the enzymes and the lipids/metabolites they
produce. This test was performed to compare the sample of
correlation values between lipids/metabolites and gene expression
levels within a pathway to all other correlations between lipids/
metabolites and gene expression levels not in the tested pathway.

RESULTS AND DISCUSSION

Profiling of mRNAs, metabolites, and lipids
in S. cerevisiae

To globally map networks that control lipid metabolism in yeast, we
applied a systems approach integrating measurements across multiple
cellular component layers (mRNAs, lipids, metabolites) and data from
protein interaction databases with metabolic network topology (Figure
1). We pursued a full factorial design in which we varied different
environmental conditions known to impact lipid metabolism (Figure
1A). Specifically, we varied the following three factors: carbon avail-
ability, known to impact fatty acid and phospholipid biosynthesis
(Tehlivets et al. 2007; Carman and Han 2011); oxygen availability,
known to impact sterol biosynthesis (Espenshade and Hughes 2007);
and temperature, known to affect membrane composition (e.g., fatty
acid desaturation) and sphingolipid metabolism (Hunter and Rose
1972; Aguilar and De Mendoza 2006; Cowart and Obeid 2007). Each
factor comprised two levels as follows: carbon source [carbon-limited

Figure 3 Metabolic map for in-
terrogating the connectivity
of mRNAs, metabolites, lipids,
and reaction fluxes based on
the genome-scale model iIN800.
This network contains gene (en-
zyme)-reaction, metabolite/lipid-
reaction, and lipid distribution
edges (see node type and edge
key). Measurement ratios can
be visualized with log2-fold
changes (see node color key;
here, shown for aerobic vs. an-
aerobic conditions) and gray
indicates the lack of a measure-
ment for that node. Individual
pathway networks (e.g., phos-
pholipid biosynthesis, sterol
biosynthesis, and amino acid
biosynthesis) are highlighted.
Findings for individual path-
ways are discussed in the text.
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(C); nitrogen-limited N)], oxygen availability [aerobic (O); anaerobic
(A)]; and temperature [30� (T); 15� (t)]. Wild-type S. cerevisiae CEN.
PK113-7D was grown in chemostat cultivations at a fixed dilution rate
D = 0.050 hr21 to avoid confounding affects associated with the
dynamic nature of batch cultures or attributable to different specific
growth rates under these conditions (Regenberg et al. 2006).

From each chemostat cultivation, we measured mRNA, metabolite,
and lipid levels (Figure 1B). We were able to detect and quantify a total
of 5636 mRNAs, 50 metabolites, and 97 lipid species. The large num-
ber of measured lipids arises from having data regarding acyl-chain
composition for different lipid species (i.e., the fatty acid composition
of phospholipid species; C12:0, C16:1, and others). Detailed physio-
logical data, carbon balances, and complete datasets are provided in
Table S2 and Table S3.

Despite similar specific growth rates, marked changes were
observed at the molecular level. For example, our lipid measurements
confirmed that lipid class levels vary based on the three types of
environmental conditions evaluated (Figure S1, Figure S2, Figure S3,
Figure S4, Figure S5, Figure S6, Figure S7, Figure S8, and Figure S9).
We used a multi-factor ANOVA to identify significant changes at the
mRNA, metabolite, and lipid levels (Table S4). In this way, the main

experimental factors tested (i.e., C:N, O:A, T:t) and, in addition, all the
possible interaction factors were tested (i.e., CN:OA, CN:Tt, OA:Tt,
and CN:OA:Tt) to identify mRNAs, metabolites, and lipids signifi-
cantly influenced by combinations of growth conditions, highlighting
the power of the full factorial design. At a threshold of P# 0.001 after
Bonferroni correction (Bonferroni 1936), we observed 1855 differen-
tially expressed genes by one or more of the tested design factors
(including interaction factors), thus showing that one-third of the
5636 measured genes were significantly affected by one or more of
the investigated factors. Interestingly, temperature and carbon avail-
ability induced a comparably large number of gene expression changes
(951 and 910, respectively, at P # 0.001). By comparison, aerobicity
appeared to influence expression of approximately half as many genes
(516 at P # 0.001). By contrast, the lipidome data were most influ-
enced by the presence or absence of oxygen. A majority of the 97
lipids measured were significantly changing due to at least one of the
tested factors (78 at P ≤ 0.001). Aerobicity accounted for changes in
two-thirds (65) of the lipids tested. C:N and T:t accounted for 47 and
30 lipid changes, respectively. Two-thirds (33) of the 50 metabolites
measured were changing because of at least one factor. C:N and O:A
each affected approximately half (24 and 21, respectively), whereas T:t

Figure 4 Condition-dependent re-
sponse of lipid metabolism. (A) The
impact of nitrogen-limited aerobic
conditions (NOx = NOT and NOt) vs.
all others on the storage depots tria-
cylglycerol (TAG) and sterylesters (SE).
TAG and SE significantly accumulate
under NOx conditions and are in-
versely correlated to ERG7 and
ERG6. (B) The impact of aerobicity on
phospholipid metabolism. We observed
significant increases in phosphotidyletha-
nolamine (PE) and phosphotidylcholine
(PC) and in phosphatidylinositol (PINS)
species under anaerobic growth. Uniquely,
the presence of di-substituted medium
acyl-chain fatty acids, which we denote
with an “S” (e.g., PCS or PINS), under
anaerobic growth suggested redox
constraints. Measurement ratios were
visualized with a log2 color bar (see
node color key). The relative node
size, thickness of each node border,
and color of each node border repre-
sents the log10(P value). See node key.
Gray indicates the lack of a measure-
ment for that node.
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Figure 5 Correlation analysis enabled data integration across multiple levels of the cellular hierarchy. Highly correlated and anti-correlated
relationships between gene expression levels–metabolites, gene expression levels–lipids, and gene expression levels–lipids as characterized by
acyl-chain length are shown. (A) Correlations with ergosterol (ERGOST) under aerobic (“O”) and anaerobic (“A”) conditions. (B) Correlations with
SE and TAG under C-limited (“C”) vs. N-limited (“N”) conditions and aerobic vs. anaerobic conditions reveal condition-independent conditions
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only influenced approximately one-third (17) of the 50 metabolites
measured. The overlaps among significant genes, lipids, and metabo-
lites are highlighted in the Supporting Information (Figure S10 and
Table S4).

Principle components analysis (PCA) was used to provide a non-
biased means of assessing the influence of growth factors (C:N, O:A,
and T:t) on mRNA, metabolite, and lipid levels (Figure 2). Because
this analysis considered all measured quantities of each type, it pro-
vided a more general overview than the multi-factor ANOVA analysis.
Strikingly, when the first three components of our transcriptome data
were plotted in three-dimensions, the six faces of a cube representing
our three-factor experimental design were observed (Figure 1A and
Figure 2A). Together, the first three components accounted for.75%
of the variation in the mRNA expression data (Table S5). The cube of
factor combinations was tilted and rotated in the first three PCA
dimensions, indicating that each of these dimensions was influenced
by all three factors but to differing extents. The first principle com-
ponent (37% of mRNA variance) was primarily attributable to C:N
factor; the second dimension (24% of mRNA variance) was an ap-
proximately equal balance of all experimental factors, whereas the
third dimension (15% of mRNA variance) was primarily attributable
to aerobicity (O:A). This indicates that mRNA levels were most influ-
enced by C-limitation and N-limitation, which makes sense when we
consider that few cellular process are independent of carbon and
nitrogen utilization. The PCA analysis of the metabolite data attrib-
uted .80% variance to the first two PCA dimensions (63% to PC 1),
with C:N as the primary source of variability. Metabolite PC 1 showed
similarity to mRNA PC 2 and, vice versa, PC 2 showed similarity to
mRNA PC 1. By contrast, lipidome data displayed the greatest vari-
ance along the aerobic–anaerobic split (Figure 2, A–C). Because lipid
levels are controlled by a subset of metabolic processes and enzymes,
they do not necessarily vary on aggregate as metabolites and mRNAs
do. Lipids were separated in the PC 1 between aerobic and N-limited
vs. the rest and in PC 2 by aerobic and C-limited vs. the rest. Because
the first two PCA dimensions accounted for �80% of the variance in
the lipid data, we can conclude that aerobicity had the largest influ-
ence on the lipid levels, whereas C:N was secondary. A hierarchical
clustering of these datasets showed the same trends arising from the
environmental conditions (Figure 2, D–F).

Conditional dependence of molecular players based
on environmental perturbation
To determine the conditional dependence of mRNA, metabolite, and
lipid data, we first constructed a visual map based on the genome-
scale metabolic model, iIN800 (Nookaew et al. 2008). Because we
lacked measurements for many of the metabolites in iIN800, we cen-
tered our biosynthetic network on central metabolism, the tricarbox-
ylic acid (TCA) cycle, amino acid biosynthesis, sterol biosynthesis,
steryl ester biosynthesis, triacylglyceride (TAG), biosynthesis, FFA
biosynthesis, phospholipid biosynthesis, and sphingolipid biosynthesis.
In total, our visual network map consisted of 368 gene, 174 metabolite/
lipid, and 131 reaction nodes connected by 849 gene (enzyme)-
reaction and metabolite/lipid-reaction edges (Table S6). Nine distri-
bution nodes were also included for mapping information on lipid

acyl-chain composition. A distribution node is connected to all of
the acyl-chain species involving that particular lipid or fatty acid
type. For the reaction nodes, we performed flux balance analysis
to estimate values of reaction fluxes in silico under the constraints
of maximized biomass production, a steady-state metabolic network,
and fixed protein composition (Table S7) (Nookaew et al. 2008).
Our network model linking all measurement types was visualized
in Cytoscape (Cline et al. 2007) as shown in Figure 3 [with color
mapping for measurement log-fold-changes, such as aerobic (O) vs.
anaerobic (A) conditions]. Although the interplay between different
metabolic pathways could be missed in our visualization approach,
we have previously shown that such a model provides a useful
framework for exploring the connectivity of mRNAs, metabolites,
lipids, and fluxes (Moxley et al. 2009). Additionally, subsequent in-
tegrative analyses we performed for this work were not solely based
on this visualization and contain the entire metabolic network (see
Data integration through hypothesis testing across multiple cellular
levels section).

Visualization in Cytoscape enabled the targeted and rapid
identification of changes across multiple levels of the cellular hierarchy
(Figure S11 and Figure S12). These networks provided a direct route
for querying cellular changes one at a time and validated the high
quality of our data (Figure S13). For example, we observed the down-
regulation of acetyl-CoA carboxylase (ACC1), which catalyzes the
carboxylation of acetyl-CoA to form malonyl-CoA as the first com-
mitted step of de novo fatty acid biosynthesis when comparing growth
at 30� to 15� (Figure S13E). This was positively correlated to a reduc-
tion in levels of pyruvate, alpha-ketoglutarate, malate, and citrate
(Figure S13G). Citrate is known to allosterically activate Acc1p (Martin
and Vagelos 1962).

Some of the most dramatic changes were observed for the storage
depots of the cell, TAG and steryl esters (SE) (Figure 4A and Figure
S2). Under nitrogen-limited (i.e., carbon excess) and aerobic condi-
tions, levels of TAG increased from 0.7 6 0.2 mmol/g DCW to 3.8 6
0.2 mmol/g DCW, and levels of SE increased from 0.8 6 0.6 mmol/g
DCW to 4.9 6 0.4 mmol/g DCW. When compared to all other con-
ditions (N-limited aerobic vs. others), only 26 genes, 11 lipids, and 3
metabolites were significantly changed (P# 0.01 following Bonferroni
correction) (Table S8). Within this small subset, it is striking that none
of the biosynthetic genes encoding enzymes that directly produce
diacylglycerol (DAG), TAG, ergosterol, or SEs is significantly upregu-
lated. Rather, we observed a confluence of changes that contribute to
the observed phenotype, including high levels of pyruvate and alpha-
ketoglutarate (key signaling molecules indicating high carbon levels),
more reducing power (flux through the pentose phosphate pathway
increases), downregulation of regulatory proteins (e.g., IZH4, DAN3,
HES1) (Carman and Han 2007), and a lower flux toward phosphatidic
acid (the precursor to de novo phospholipids synthesis) (Carman and
Han 2011). Consistent with the apparent shift from production of
phospholipids to the production of storage compounds, the ratio of
nonpolar lipids (sterols, TAG, SE, and FFAs) to phospholipids was
higher under nitrogen-limited aerobic conditions (Figure S14). We
also observed an inverse regulatory relationship between the expres-
sion of ERG6 and ERG7 and TAG and SE levels (Figure 4A). Erg6p

(e.g., IZH1, ERG7, and HXK1). (C) Positive correlations with phosphatidylinositol (PINS) under aerobic vs. anaerobic conditions. (D) Correlations
between gene expression levels and lipids as characterized by length under aerobic vs. anaerobic conditions. Measurement ratios were visualized
with a log2 color bar, and the color of each node border represents the log10(P value). See node and edge color key. Gray indicates the lack of
a measurement for that node. Complete networks are found in Figure S17, Figure S18, Figure S19, Figure S20, Figure S21, and Figure S22.
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and Erg7p are involved in sterol biosynthesis and are found almost
exclusively in lipid particles (Schulz and Prinz 2007) interacting with
Are1p and Are2p, respectively. Because Are1p and Are2p catalyze SE
biosynthesis, our data are consistent with the hypothesis that Erg6p
and Erg7p may play a regulatory role in SE synthesis (Czabany et al.
2007; Teske et al. 2008).

Our visual metabolic model also highlighted changes in phospho-
lipid metabolism. Phospholipid levels varied significantly with tem-
perature and oxygen availability. Globally, this trend is a result of
increased phosphotidylinositol (PINS) levels, as well as increased PC
and PE levels at lower temperatures under anaerobic conditions
(Figure S3, Figure S4, Figure S5, and Figure S7). Uniquely, the distri-
bution nodes of our model enabled mapping of quantitative acyl-
chain composition information (Figure 4B). After a shift from aerobic
to anaerobic growth, we observed the production of a population of
phospholipids with di-substituted medium acyl-chain (C10:0, C12:0)
fatty acids (Figure S3 and Figure S4). To our knowledge, this fatty acid
species has not previously been reported as a major component inside
the cell. The presence of di-substituted medium acyl-chain fatty acids,
which we denote with an “S” (e.g., PCS), under anaerobic growth
suggested redox constraints. Because the fatty acid synthase uses
two reduced NADPH for each 2C-atom added to a growing fatty acid,
we hypothesized that a decrease in reducing power would hamper
fatty acid elongation and cause a shift toward production of me-
dium-chain fatty acids. The flux through the pentose phosphate path-
way (PPP) is relatively low under anaerobic conditions, causing cells
to be redox-constrained. Previously, for example, it was shown that
NADPH is balanced under fermentative growth conditions, whereas
excess NADPH is produced under aerobic conditions (Gombert et al.
2001). In addition, our in silico flux balance analysis (Table S7)
revealed a 10-fold average decrease in the PPP flux when comparing
anaerobic to aerobic conditions. To experimentally validate this hy-
pothesis, we performed follow-up 13C-flux analysis experiments. To
experimentally determine fluxes, we cultivated cells on 1-13C-glucose
and experimentally measured isotopic labeling patterns with GC-MS.
We observed that measured flux through the PPP is reduced 3.5-fold
in anaerobic conditions (P # 0.01) (Figure S15), which is consistent
with our in silico fluxes and the previous work of Gombert et al.
(2001).

To reveal how the transcriptional network was reprogrammed
across different environmental conditions, we scored the significance
of overlap between condition-dependent genes, i.e., genes found sig-
nificant for each tested experimental factor by multi-factor ANOVA,
and known transcription factor (TF) target sets (hypergeometric test
at P# 0.01) (Harbison et al. 2004; Beyer et al. 2006; Fazio et al. 2008).
In total, this analysis revealed 13 TFs having significantly enriched
target sets for four of the six factors (C, O, T, C:O) (Figure S16). For
example, 14 of 17 known Upc2p regulatory targets (Hodges et al.
1998) were found to have significantly lower expression in aerobic
conditions relative to anaerobic conditions. Although these TFs ap-
pear to be responsible for regulating some of the differentially
expressed genes, the relative number of differentially expressed genes
targeted was less than 10% of the affected genes in all cases.

Data integration through hypothesis testing across
multiple cellular levels
Beyond interrogating data types one component at a time, we sought
to address the pluralism of causes and effects in biological networks by
developing integration strategies for observing regulatory signatures.
This is one of the grand challenges of 21st century systems biology

(Palsson and Zengler 2010; Bebek et al. 2011). To identify the most
highly correlated and anti-correlated relationships between gene ex-
pression level and metabolites, gene expression level and lipids, and
gene expression level and lipids as characterized by acyl-chain (Figure
1C), we tested whether the Pearson correlation coefficient, as esti-
mated over all triplicates in the eight conditions (24 measurements),
was significantly not zero (P # 0.001 after Bonferroni correction).
Although experimentally determined or computed fluxes were not
directly integrated into this analysis, fluxes are indirectly considered
because the lipid levels in the biomass were directly correlated to the
fluxes when we used chemostat cultures and lipid levels, which are
given per unit biomass. Our analysis revealed 831 significant correla-
tions among gene expression levels and metabolites, 245 significant
correlations among gene expression levels and lipids, and 1203 signif-
icant interactions among gene expression levels and lipid species char-
acterized by length. Relationships were then separated into positive
and negative correlations and filtered based on ANOVA significance
main effects (e.g., C-limited vs. N-limited) for visualization in Cyto-
scape. Gene expression level-metabolite and gene expression level–
lipid interactions were combined into a single network, leaving gene
expression level–lipid by acyl-chain composition correlations separate.
The organization of the network contained mainly single-connection,

n Table 1 Metabolites and lipids whose levels are most
significantly driven by expression of neighboring genes in a
bi-partite genome-scale metabolic map

MET/LIP p.BH n.MetMap.linked n.PCC.sig n.linkedANDsig

ERGOST 7.97E-08 102 76 9
PEP 4.56E-06 293 80 7
LNST 9.69E-06 105 98 7
SUCC 4.68E-05 176 5 1
MAL 4.68E-05 244 11 2
EPST 5.91E-05 69 4 0
DMZYMST 7.83E-05 70 55 2
PINS181 0.000236 203 29 2
NADPH 0.000761 480 0 0
NADP 0.000926 503 0 0
PINS160 0.00227 203 38 0
PINSS181 0.00247 172 33 1
ALA 0.00247 336 11 4
PINS 0.00304 203 56 2
SE161 0.00304 54 20 1
PYRxt 0.00332 67 32 1
TAG100 0.00401 60 58 2
PROxt 0.00401 165 18 1
TAG140 0.00401 60 91 3
LYS 0.00405 336 5 1
ZYMST 0.00521 74 0 0
PYR 0.00729 369 22 3

MET/LIP: metabolites/lipids; p.BH, P # 0.01, Benjamini Hochberg P value ad-
justment; n.MetMap.linked, number of genes linked to the specified metabolite
in the genome-scale metabolic map; n.PCC.sig, number of genes significantly
correlated to the specified metabolite (P # 0.01 Bonferroni P value adjustment);
n.linkedANDsig, number of metabolites both linked in the genome-scale met-
abolic map and significantly correlated (i.e., the overlap between the previous
two columns); ERGOST, ergosterol; PEP, phosphoenolpyruvate; LNST, lano-
sterol; SUCC, succinate; MAL, malate; EPST, episterol; DMZYMST, 4,4-dimethyl-
zymosterol; PINS181, 18:1 in phosphatidylinositol; NADPH, nicotinamide
adenine dinucleotide phosphate (reduced form); NADP, nicotinamide adenine
dinucleotide phosphate; PINS160, 16:0 in phosphatidylinositol; PINSS181, 18:1
(D9) in phosphatidylinositol; ALA, alanine; PINS, phosphatidylinositol; SE161,
steryl ester 16:1; PYRxt, pyruvate (extracellular); TAG100, 10:0 in triacylglycerol;
PROxt, proline (extracellular); TAG140, 14:0 in triacylglycerol; LYS, lysine;
ZYMST, zymosterol; and PYR, pyruvate.
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chain, and bi-fan motifs (Figure 5, Figure S17, Figure S18, Figure S19,
Figure S20, Figure S21, and Figure S22). There were 2279 significant
correlations.

Because of our full factorial design, these data offer a rich resource
for exploring correlations across mRNAs, lipids, and metabolites
influenced by broad perturbations that were not possible before
(Figure 5). Although significance of correlation was assessed across all
eight conditions, in some examples, the correlation was evident from
changes attributable to a single factor. For example, when comparing
aerobic to anaerobic conditions, ergosterol levels are correlated to nine
mRNA levels and anti-correlated to 23 mRNA levels (Figure 5A).
Identification of gene expression levels that have been previously im-
plicated in controlling sterol levels validated our approach. Erg1p, for
example, encodes for squalene synthase, an enzyme in the ergosterol
biosynthesis pathway that requires oxygen (Lees et al. 1999; Espen-
shade and Hughes 2007). Aus1p is a sterol transporter required for
growth under anaerobic conditions (Lees et al. 1999; Wilcox et al.
2002; Espenshade and Hughes 2007). As expected, Aus1p is anti-
correlated to ergosterol levels when comparing aerobic and anaerobic
conditions. In other cases, we observed more than one factor strongly
influencing the correlation. For example, nine gene expression level–
lipid correlations for TAG and SE were observed in both O:A and C:N
conditions (Figure 5B), suggesting strong regulatory control. Genes
linked to TAG and SE included HXK1, IZH4, IZH1, SRL3, ERG7,
TIP1, DSF1, SCM4, and EMI2. As discussed, Erg7p is known to in-
teract with Are1p, which contributes the major sterol esterification
activity under anaerobic conditions (Czabany et al. 2007). The family
of Izh proteins is involved in zinc ion homeostasis, which regulates
phospholipid synthesis (Carman and Han 2007).

Correlation between mRNA and metabolite levels may depend on
more than one factor, and potentially in differing ways. For example,
phosphoenolpyruvate (PEP) levels were observed to increase when
ILV2 or ARO3 levels increased in N-limiting conditions, but PEP was
negatively correlated to these genes in C-limiting conditions (Bradley
et al. 2009). To check for such condition-dependent and opposing
correlations, we performed analyses to test for gene expression level–
metabolite or gene expression level–lipid pairs that were, for example,
significantly positively correlated with C-limited trials and signifi-
cantly negatively correlated with N-limited trials, or vice versa. This
was achieved by splitting the data in half by each of the three factors,

testing both halves of each split separately and comparing the results.
No gene expression level–metabolite or gene expression level–lipid
pairs were observed to have significant and opposite correlations in
the data set halves, although some pairs with agreeing correlations
were observed.

Our correlation analysis enabled exploration of two key features
that would not have otherwise been observed by mapping data onto
our visual metabolic model alone (Figure 3 and Figure 4). First,
metabolites and lipids were linked in ways not found in traditional
metabolic maps. In other words, metabolites and lipids not sharing the
same metabolic enzymes were correlated. For example, extracellular
ethanol levels were linked to phosphatidylinositol through by IZH2
and AUS1 (Figure 5C) and phospholipid species with di-substituted
medium acyl-chain fatty acids were connected to genes known to
impact redox metabolism (Figure 5D), an observation consistent with
our 13C-flux analysis. Second, the significance of metabolic genes that
are not present in the metabolic model (Figure 3 and Figure 4) could
be identified. Although biosynthetic metabolic genes in the correlation
networks were slightly enriched relative to their percentage in yeast
(19% vs. 13%), only 5 of 2279 correlations were between first neigh-
bors and direct substrates or products (Table S9). At a quantitative
systems level, this suggests that biosynthetic enzymes that either use
metabolites and/or lipids as reactants or catalyze their formation were
not directly connected. In other words, transcriptional regulation is
not tightly controlled at the one-step level.

Integrative methods for correlation of omics data
Because lipids/metabolites and gene expression levels were not co-
regulated at the one-step level, we next sought to refine the correlation
analysis using the following three parallel and independent ap-
proaches: co-regulated gene neighborhoods (Figure 1D); co-regulated
pathway neighborhoods (Figure 1E); and TF-regulated modules
(Figure 1F). Identification of such neighborhoods and modules would
lead to a better understanding of the underlying organization of the
cellular response. For co-regulated gene neighborhoods, we created
a topology bi-partite map, whereby metabolites were connected to
genes that encode for proteins that catalyze reactions that include
a metabolite as a reactant or product. The metabolic network con-
sisted of 945 metabolites and 715 protein-coding genes in which
a median of two genes were connected to each metabolite and

Figure 6 Transcription factor
associations with genes corre-
lated to lipid or metabolite
levels. The Fisher exact test
was used to identify significant
overlaps between transcription
factor target sets and genes
significantly correlated (blue
arrows) or anti-correlated (red
arrows) to the implicated lipid
or metabolite. The relative
thickness of each arrow repre-
sents the 2log10(P value) from
the Fisher exact test.
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Figure 7 Integrative method for correlation of multi-omics datasets reveals systems-level regulatory signatures. Correlation networks for
ergosterol (A and B) and phosphatidylinositol (C and D) show first (green highlight) and second (blue highlight) significantly linked gene
neighbors. (A and C) Genes in small white boxes were not identified as significantly correlated to ergosterol or phosphatidylinositol, but they are
represented as “connector” nodes between metabolites. TFs implicated by the enrichment analysis are shown. Co-regulated gene neighborhood
networks from (A and C) were expanded to include genes and metabolites necessary to perform the metabolic transformations indicated (B and D).
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a median of four metabolites were connected to each gene. We then
determined if gene neighbors for each metabolite/lipid had a bias to be
significantly correlated (r . 0) or anti-correlated (r , 0).

We initially looked at first gene neighbors within the metabolic
network (Figure 1D). Using this approach, a significant bias would
suggest that metabolite production/consumption is driven by differ-
ential expression of upstream or downstream enzymes in the meta-
bolic network. First gene neighbors did not show any bias relative to
that expected of a random sample (Mann-Whitney U-test). However,
22 metabolites and lipid species had a significant bias when consid-
ering both first and second neighbors (P # 0.01, Benjamini Hochberg
P value adjustment) (Table 1), with ergosterol being the most highly
correlated. Our observations provide new systems-level insight, sug-
gesting that sterols, and perhaps phosphatidylinositol, are more reg-
ulated across the range of different growth conditions tested here than
amino acids at the transcriptional level (Table S10). Given that amino
acids are chiefly directed into proteins, this suggests that the cell has de-
veloped more complex methods to regulate proteins post-transcriptionally
than sterols and the entry point into phospholipid biosynthesis.
Furthermore, biosynthesis of amino acids involves far more branched
pathways than the biosynthesis of lipids; to ensure a balanced supply
of the 20 different amino acids required for protein biosynthesis, cells
have evolved complex regulation of flux at the enzyme level. This
finding is consistent with our recent work (Moxley et al. 2009)
demonstrating that amino acid biosynthesis is primarily metabolically
controlled.

Another way to refine the correlation analysis is to look for
transcriptional regulation across genes in pathways (Figure 1E), rather
than first-order or second-order gene neighbors (Figure 1D). We
therefore tested to see if gene neighbors for sets of metabolites in
a KEGG pathway, regardless of reaction direction (Kanehisa et al.
2012), have a bias to be significantly correlated or anti-correlated. This
approach, therefore, is testing which pathways contain metabolites
that tend to correlate with all transcripts in the pathway, as a group,
rather than our gene neighbor analysis, which reveals specific metab-
olites that tend to correlate with their neighboring genes. Although
KEGG pathways could be isolated from global metabolic networks
that were captured in our gene neighborhood analysis because of
choices of database curators, the results were consistent with our
co-regulated gene neighborhood analysis (which is unbiased). For
example, we observed that the sterol biosynthesis KEGG pathway
was significantly co-regulated (P # 0.01, Benjamini Hochberg P value
adjustment) (Table S11), validating the utility of using a systems per-
spective to integrate omics information.

In an effort to identify factors controlling co-regulated correlation
networks, smaller sets of significantly changing genes identified as
significantly correlated to specific metabolites or lipids were analyzed
for enrichment of TF targets (Figure 1F). This analysis identified 16
TFs significantly associated with four metabolites and 15 different
lipid species through the gene sets levels to which they were signifi-
cantly correlated. Positively and negatively correlated gene expression
level–lipid and gene expression level–metabolite sets were analyzed
separately. Figure 6 shows the significant (hypergeometric P # 0.01)
TF gene expression level–lipid and TF gene expression level–metabolite
enrichments capture a global regulatory model of lipid metabolism.
The Hap family of TFs and, particularly, Hap4p and Hap1p were

found associated with genes negatively correlated to a number of lipid
levels. Interestingly, Upc2p and Rox1p targets were enriched for genes
positively correlated to PINS, PINSS, PC, and PCS, and were nega-
tively correlated to ergosterol. These regulators are known players in
sterol regulation (Espenshade and Hughes 2007; Nielsen 2009).

Finally, we built correlation networks for ergosterol and phospha-
tidylinositol based on the overlap between first and second gene
neighbors from the co-regulated gene neighborhoods and the
genome-scale metabolic map (Figure 7). The key idea was to identify
areas of metabolism that are closely connected with significant and
coordinated response to genetic or environmental perturbations. For
ergosterol, we identified 76 significant gene expression level–ergosterol
interactions in the correlation analysis (Figure S23) and mapped 102
genes linked to ergosterol in the genome scale metabolic model. By
taking the intersection of these two groups, we identified nine metab-
olites that were both linked as a first and second gene neighbors to
ergosterol in the metabolic map and were significantly correlated (e.g.,
ergosterol/ ARE1/ acylCoA/ FAA1). This topological map was
then integrated with the TF-regulated modules implicated in the en-
richment analysis to provide a global regulatory picture (Figure 7A).
One TF, Upc2p, is known to activate the expression of sterol bio-
synthetic genes in sterol-depleted cells (Espenshade and Hughes 2007;
Gaspar et al. 2007) and could be directly linked to Erg2p and Aus1p.
The identification of Upc2p as significant when comparing aerobic vs.
anaerobic conditions validates our undirected approach. Notably, our
results suggest that Upc2p functions by controlling the enzyme levels
at the transcriptional level and that this results in altered fluxes toward
ergosterol. This points to Upc2p playing a similar function as the
SREBP-1 transcription factor in mammals (Nielsen 2009; Nookaew
et al. 2010). Our analysis also identified a significant link between
ergosterol and 1-acyl-sn-glycerol-3-phosphate acyltransferase (SLC1),
which is responsible for the synthesis of phosphatidic acid (PA). PA
is the central precursor for glycerophospholipids, DAG, and TAG,
and it is also a signaling lipid and key transcriptional regulator of
lipid biosynthesis (Carman and Henry 2007). Our correlation net-
work from the co-regulated gene neighborhoods was expanded to
provide context within the scope of the genome-scale metabolic map
(Figure 7B). Follow-up studies are expected to use the systems inter-
actions here to bring new understanding to lipid metabolism.

For phosphatidylinositol species identified in the co-regulated gene
neighborhood analysis (PINS, PINS160, PINS181, PINSS181), we
observed that Lsb6p, Faa1p, and Pan6p were significantly correlated
and directly linked as first or second neighbors to PINS (Figure 7, C
and D). These data suggest that global regulatory points centered at
this hub include precursor synthesis (e.g., coenzyme A synthesis,
PAN6; long chain fatty acyl-CoA synthesis, FAA1) and PINS utiliza-
tion (phosphatidylinsoitol phosphate biosynthesis, LSB6). We also
analyzed the storage depots of the cell, noting that steryl esters
(se161) and triacylglycerol (tag100 and tag140) were significantly cor-
related and linked in the metabolic network to PLB2, FAA2, FAT1,
LRO1, POT1, and CAT2 (Figure S24).

In summary, we provide a new integrative method for mapping
condition-dependent regulation in cells through the integrated
analysis of multi-omics datasets and genome-scale metabolic models
given previous knowledge (e.g., known network topology or results
from the analysis of other omics datasets such as transcription factor

This provides a more integrated perspective of cellular regulation. Measurement ratios for aerobic vs. anaerobic conditions were visualized with
a log2 color bar, and the color of each node border represents the log10(P value). See node and edge color key. Gray indicates the lack of
a measurement for that node.
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Figure 7 Continued
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interactions). Specifically, we leveraged a full factorial design to build
a visual metabolic model of the regulatory architecture controlling
lipid metabolism in S. cerevisiae. Simple analysis led to the identifica-
tion of genetic and metabolic changes involved in TAG and SE accu-
mulation under carbon excess. From an adaptive perspective, yeast
and, more broadly, eukaryotes make use of TAG as the major storage
unit for energy and fatty acids used in membrane biosynthesis. Our
results from growth conditions with high levels of residual glucose are
entirely consistent with this phenomena and much is known about the
synthesis, turnover, and regulation of nonpolar lipids in yeast (Raja-
kumari et al. 2008). We further revealed a major shift toward the
synthesis and utilization of di-substituted medium acyl chain fatty
acids under anaerobic conditions and then used 13C-reaction flux data
to demonstrate this was attributable to redox constraints.

We also developed integrative methods for data analysis that use
correlation analysis, metabolic topology, and transcription factor
enrichment to interrogate and characterize the complex relationships
that arise between gene expression levels, metabolite levels, lipid levels,
and reaction fluxes across multiple conditions. Our approach quan-
titatively revealed that transcriptional regulation is not tightly con-
trolled at the one-step level. Strikingly, only 22 metabolites and lipids
were tightly correlated to their first and second gene neighbors. In the
case of ergosterol, our analysis identified Upc2p as the key regulator
(Espenshade and Hughes 2007; Nielsen 2009). Our systems approach
also quantitatively shows that sterol biosynthesis is more regulated at
the transcriptional level than amino acid biosynthesis. Looking for-
ward, our work will serve as a rich data resource for studying lipid
metabolism, opening the door to new hypothesis-driven targeted
experiments. In addition, we expect that it will contribute meaningfully
to further efforts to use genome-scale metabolic models for contextu-
alizing information obtained in systems-level data for bridging the gap
between transcriptional state and metabolic phenotype.
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