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Six-dimensional (2, 0) theory on tori

Måns Henningson

Department of Fundamental Physics, Chalmers University of Technology, S-412 96 Göteborg,
Sweden

E-mail: mans@chalmers.se

Abstract. The six-dimensional (2, 0) theories are a comparatively new and rather abstract
type of quantum theory with important relations both to supersymmeric Yang-Mills theory in
lower dimensions and to string- and M -theory in higher dimensions. After a short introduction
to these theories, we focus on the case when they are considered on flat tori [1][2]. In particular,
we give an example of how their ground state degeneracies can be computed, and also briefly
discuss the spectrum of BPS-states. Finally, we comment on the automorphic transformation
properties of the partition function of such a theory under the mapping class group of a six-torus.

The maximal dimension of a space(-time) which admits superconformal symmetry is d = 1+5.
The symmetry algebra is then

osp(2, 6|2n) = so(2, 6)⊕ sp(2n)⊕ odd generators

for some n = 1, 2, . . ., where the first two terms are the conformal algebra in six-dimensions and
the R-symmetry algebra [3].

Indications for the existence of a quantum theory with such symmetry (for n = 2) follows
by considering type IIB string theory on a (1 + 9)-dimensional space-time with a codimension
four singularity of some ADE-type. A self-consistent six-dimensional theory without dynamical
gravity on the locus of the singularity then decouples from the bulk theory [4]. These so called
(2, 0) theories are highly unique: Apart from their ADE-type, they have no other discrete or
continuous parameters.

Some reasons to study the (2, 0) theories:

• They are quite different from other theories we know of, and still rather mysterious.
Understanding them is likely to lead to much new mathematics and physics.

• They give a good opportunity to learn about important aspects of string theory without
having to deal with quantum gravity.

• They are related to Yang-Mills theory in lower dimensions. In particular, they give a
geometric understanding of S-duality of N = 4 super Yang-Mills theory in four dimensions.

• The study of (2, 0) theory might be our best way towards a rigorous definition of quantum
theory with infinitely many degrees of freedom.

A way to introduce a parameter in a (2, 0) theory is to consider it on a space-time of the
form M1,5 = M1,4 × S1 with a compact direction of radius R. At longer distances, the effective
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theory is then given by maximally supersymmetric Yang-Mills theory on M1,4 with coupling
constant g = R1/2 and action

S =
1

R

∫
M1,4

Tr (F ∧ ∗F + . . .) .

The gauge group is of the form G/C, where G is simply connected with center subgroup C:

type G C
An−1 SU(n) Zn

D2k Spin(4k) Z2 × Z2

D2k+1 Spin(4k + 2) Z4

E6 E6 Z3

E7 E7 Z2

E8 E8 1.

In this way, (2, 0) theory can be seen as providing an ultra-violet completion of the Yang-Mills
theory. The negative power of R indicates that (2, 0) theory has no Lagrangian description [5].

Let M1,4 = R×M4, where the first factor denotes time. Quantum states of the Yang-Mills
theory on this space are characterized by their magnetic ’t Hooft flux

m ∈ H2(M4, C)

which determines the topological class of the gauge bundle over M4, and their electric ’t Hooft
flux

e ∈ Hom(H1(M4, C), U(1)) ' H3(M4, C)

which determines the transformation properties under ’large’ gauge transformations [6]. From
the perspective of (2, 0) theory on M1,5 = M1,4 × S1, we instead have a self-dual ’t Hooft flux

f = e+m ∈ H3(M4 × S1, C).

A particularly interesting case is to consider M1,5 = R × M4 × S1 with M4 = T 4 a flat
four-torus, since this preserves 16 supersymmetries. We can think of this as Yang-Mills theory
on R× T 4 or as (2, 0) theory on R× T 5 with

T 5 = T 4 × S1.

The quantum states are characterized by their

• self-dual ’t Hooft flux f ∈ H3(T 5, C)

• energy E ∈ R+

• spatial momentum p ∈ H1(T 5,R)
(with the fifth component given by the Yang-Mills instanton number over T 4)

• sp(4) R-symmetry representation R.

Supersymmetry implies the energy bound

E ≥ |p|.

There are three classes of states:

• Vacuum states have E = p = 0 and are annihilated by all supercharges.

• BPS states have E = |p| > 0 and are annihilated by half of the supercharges.
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• non-BPS states have E > |p|.

The spectra of vacua and BPS states are invariant under smooth deformations of the geometry
of T 5, and can thus be followed from weak to strong coupling in the Yang-Mills perspective. We
will discuss the computation of the spectrum of vacua from the Yang-Mills perspective. (Similar
reasoning may be applied to the BPS-states, although we do not yet have any non-trivial checks
on the results.)

At weak coupling, vacuum states are localized at orbifold singularities of the moduli space of
flat connections over T 4. The low energy theory is given by maximally supersymmetric matrix
quantum mechanics based on the subgroup S of the gauge group G/C left unbroken by the
configuration at the singularity. This quantum mechanical model has a number nS , depending
on S, of normalizable ground states. Summing over the orbifold singularities gives the complete
spectrum of vacua, which may be decomposed according to their electric and magnetic ’t Hooft
fluxes e and m.

Covariance under the SL4(Z) mapping class group of T 4 is manifest in the Yang-Mills
formulation, but (2, 0) theory indicates covariance under the SL5(Z) mapping class group of
T 5 = T 4×S1. This leads to predictions that appear quite non-trivial from the Yang-Mills point
of view.

As an example, we consider the D2k+1 (2, 0) theories. There are 6 SL5(Z) orbits of self-
dual ’t Hooft flux f ∈ H3(T 5,Z4). But a single orbit may be realized in different ways in the
corresponding Spin(4k + 2)/Z4 Yang-Mills theory. In this way we get alternative expressions
for the generating functions

Nf (q) =
∞∑
k=0

Nf (D2k+1)q
4k+2

of the number Nf (D2k+1) of vacua with ’t Hooft flux f . (Here q is a formal parameter.) E.g.

for a certain SL5(Z) orbit of f , we have three alternative expressions (modulo q4k-terms) for
Nf (q):

Nf (q) =
1

8

(
P 8
even(q) + P 8

odd(q)
)

=
1

4
P 4
even(q)P 4

odd(q)

= Q4(q)
(
P 3
odd(q2)P 9

even(q2) + 3P 5
odd(q2)P 7

even(q2)

+3P 7
odd(q2)p5even(q2) + P 9

odd(q2)P 3
odd(q2)

)
= q6 + 10q10 + 67q14 + 350q18 + . . . .

Here

Peven(q) =
1

2

∞∏
k=1

(1 + q2k−1) +
1

2

∞∏
k=1

(1− q2k−1)

Podd(q) =
1

2

∞∏
k=1

(1 + q2k−1)− 1

2

∞∏
k=1

(1− q2k−1)

Q(q) =
∞∏
k=1

(1 + q2k).

A promising approach to understand the complete spectrum of states is to consider the
partition functions

Zf = TrHf
exp(−tE + ix · P + iAR),
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where Hf is the Hilbert space of states with self-dual ’t Hooft flux f ∈ H3(T 5, C), and t, x, and
A are some formal parameters. After continuation to Euclidean time, these partition functions
can be seen as pertaining to a particular decomposition of a flat six-torus T 6 = S1× T 5 defined
by the T 5 geometry together with t and x, where the first factor denotes the ’time’ direction.
Twisting by R-symmetry in the spatial directions determines, together with the parameters A,
a flat sp(4) connection over this T 6.

The set of partition functions Zf for f ∈ H3(T 5, C) should have automorphic properties
under the SL6(Z) mapping class group of T 6. Indeed, these partition function can be regarded
as components of an element Z of a certain vector space V . The space V furnishes an irreducible
representation of a discrete Heisenberg algebra generated by elements Φv for v ∈ H3(T 6, C)
subject to the relations

ΦvΦw = exp

(
2πi

∫
T 6

v ∧ w
)

ΦwΦv.

To construct a basis of V , we break the covariance and decompose

H3(T 6, C) 3 v = f + g ∈ H3(T 5, C)⊕H2(T 5, C).

We then have a basis Ef , f ∈ H3(T 5, C) of V . This is such that

Ef = ΦfE0

ΦgE0 = E0.

The Zf are the components of Z relative to this basis.
E.g. under a continuous shift of the ’time’ cycle of T 6 by an integer linear combination β of

the spatial cycles, Zf is multiplied by an f -dependent phase factor:

Zf 7→ Zv exp

(
πi

∫
T 5

f ∧ f [β]

)
.

The Hamiltonian interpretation is that the spatial momentum p ∈ H1(T 5,R) obeys the shifted
quantization law

p− f · f ∈ H1(T 5,Z),

where f · f ∈ H1(T 5,R/Z). The best known example of this phenomenon is the possible non-
integrality of the fifth component of p (i.e. the instanton number over T 4) for a non-trivial
G/C bundle (i.e. of non-trivial magnetic ’t Hooft flux m). Another example is the possible
non-integrality of the four spatial components of p in situations where both the electric and
magnetic ’t Hooft fluxes e and m are non-trivial.

Acknowledgments
This research is supported by grants from the Swedish Research Council and the Göran
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