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ABSTRACT
Society’s increasing dependence on information technology has resulted in the
deployment of vast compute resources. The energy costs of operating these
resources coupled with environmental concerns have made power-aware com-
puting one of the primary challenges for the IT sector. Making energy-efficient
computing a rule rather than an exception requires that researchers and system
designers use the right set of techniques and tools. These involve measuring,
modeling, and characterizing the energy consumption of computers at varying
degrees of granularity.

In this thesis, we present techniques to measure power consumption of com-
puter systems at various levels. We compare them for accuracy and sensitiv-
ity and discuss their effectiveness. We test Intel’s hardware power model for
estimation accuracy and show that it is fairly accurate for estimating energy
consumption when sampled at the temporal granularity of more than tens of
milliseconds.

We present a methodology to estimate per-core processor power consump-
tion using performance counter and temperature-based power modeling and val-
idate it across multiple platforms. We show our model exhibits negligible com-
putation overhead, and the median estimation errors ranges from 0.3% to 10.1%
for applications from SPEC2006, SPEC-OMP and NAS benchmarks. We test
the usefulness of the model in a meta-scheduler to enforce power constraint on
a system.

Finally, we perform a detailed performance and energy characterization of
Intel’s Restricted Transactional Memory (RTM). We use TinySTM software
transactional memory (STM) system to benchmark RTM’s performance against
competing STM alternatives. We use microbenchmarks and STAMP bench-
mark suite to compare RTM versus STM performance and energy behavior. We
quantify the RTM hardware limitations that affect its success rate. We show
that RTM performs better than TinySTM when working-set fits inside the cache
and that RTM is better at handling high contention workloads.

Keywords: power estimation, energy characterization, power-aware scheduling, power

management, transactional memory, power measurement
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1
Introduction

Information and Communications Technology (ICT) consumes a large and growing
amount of power. In 2007-2008, multiple independent studies calculated the global ICT
footprint to be 2% [1] of the total emissions. As per a European Commission press re-
lease in 2013 [2], ICT products and services are responsible for 8-10% of the European
Union’s electricity consumption and up to 4% of its carbon emissions. Murugesan [3]
notes that each personal computer in use in 2008 was responsible for generating about
a ton of carbon dioxide per year. Data centers consumed 1.5-2% of global electricity in
2011 and this is growing at a rate of 12% per year [4].

These statistics underscore the importance of reducing the energy we expend to avail
ICT services. Power-Aware Computing is the umbrella term that has come to describe
computing techniques that improve energy efficiency. For example, a power-aware sys-
tem may be designed and optimized to consume lower power for doing a defined set of
tasks. Alternatively, techniques can be employed to maximize the performance of the
system for a defined constraint on power consumption and/or heat dissipation. The goal
of power-aware computing is to avoid energy waste [5] by making informed decisions
about power and performance trade-offs.

We classify power-aware techniques as shown in Fig. 1.1. The power-aware strate-

2
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Power-Aware Techniques

Hardware

Static

Dual Threshold Voltage
Clock Tree Distribution

Low-power logic

Dynamic

Clock Gating
Power Gating

Voltage Scaling
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Static

Compiler Optimizations
Energy-aware Algorithms

Dynamic

CPU Resource Allocation
Server Scheduling

Temperature-aware Task Scheduling

Hybrid

Static

ISA Extensions

Dynamic

Frequency Scaling
Architectural Reconfigurations

Figure 1.1: Classification of Power-Aware Techniques

gies can be implemented in hardware, software, or as a hybrid technique. Hybrid power-
aware techniques are controlled by software with hardware support. Static power-aware
techniques are controlled at compile-time or design-time for software techniques and
during synthesis or design-time for hardware techniques. On the other hand dynamic
power-aware techniques are based on the current state of the system during execution.

Power-aware techniques need information about power consumption from the sys-
tem. The focus of this thesis is how to get this information through power measurement,
power modeling, and power characterization.

1.1 Power Measurement
The first-step in formulating power-aware techniques is to measure power consumption.
Readings from power measurement infrastructure can be used to identify energy inef-
ficiencies in hardware and software. A setup for measuring system/processor power
consumption needs to have the following properties:

• High accuracy;

• High sampling rate;

• Sensitivity to small changes in power consumption;

• Non-interference with the system-under-test;

• Low cost; and

• Ease of setup and use.

In addition to system power consumption, it may be desirable to get information
about power consumption of the processor chips. However, hardware power meters
are rarely implemented at the chip-level because of the associated hardware costs. The
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power consumption of the system can be measured in multiple ways. We compare dif-
ferent approaches to measuring the power consumption and discuss advantages and dis-
advantages of each.

1.2 Power Modeling
Depending on the requirements and costs, it may not be possible to use actual power
measurements. For example, it may be too costly to deploy the power measurement
setup at multiple machines, or the response time of the power measurement setup may
not be fast enough for a particular power-aware technique. An alternative to actual power
measurement is to estimate the power consumption using models that provide power
estimates based on events in the system. They can be implemented in either hardware or
software. Power models should have following properties:

• Small delay between input and output;

• Low overhead — low CPU usage if software model and low hardware area if
hardware model;

• High accuracy; and

• Power consumption information of individual components (like cores or microar-
chitectural components).

Based on the requirements of the power-aware technique and trade-offs among costs,
accuracy, and overhead, the system designer must decide whether to implement hard-
ware or software power model. Intel introduced a hardware power model in its Core i7
processors starting with the Sandy Bridge microarchitecture [6]. The values from this
power model are available to the software using Model Specific Registers (MSR) through
the Running Average Power Limit (RAPL) interface. Similar model-based power esti-
mates are available for AMD processors through their Application Power Management
(APM) Interface [7], and on NVIDIA GPU processors through NVIDIA Management
Library (NVML) [8]. In addition to these relatively new power models implemented
in hardware by chip manufacturers, researchers have proposed software power mod-
els [9–18].

The information gained by power metering and power modeling can be used by
resource management software to make power-aware decisions. Research studies have
made use of live power measurement to schedule tasks and allocate resources at the level
of individual processors [11,19,20,20–23] and large data centers [15,24–29]. Power/en-
ergy models have been used in many research studies to propose power-aware strategies
for controlling DVFS policies [19, 23], task scheduling in chip multiprocessors [24] and
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data centers [27,28], power budgeting [11,21], energy-aware accounting and billing [30],
and avoiding thermal hotpsots in chip multiprocessors [31, 32].

In this thesis, we develop a performance event and temperature based per-core power
model for chip multiprocessors. Our model estimates power in real time with low over-
head.

1.3 Power Characterization
Power characterization analyzes the system’s energy expenditure for varying workloads
. This can be used to devise software and hybrid power-aware strategies, optimize work-
loads for energy efficiency, and optimize system design. Some of the challenges for
energy characterization are:

• Choosing representative workloads. Workloads selected for characterization
studies should be representative of those that are likely to be run on the system.
The workloads should also exercise the full spectrum of identified system char-
acteristics for extensive analysis.

• Choosing good metrics. The selection of the metrics to characterize and compare
system energy expenditure depends on the type of characterization study and the
emphasis that the researchers wants to put on delay versus energy expenditure.
Possible metrics include total energy, average power, peak power, dynamic power,
energy-delay product, energy-delay-squared product, and power density.

• Setting up appropriate power metering infrastructure. Any energy character-
ization study requires a means to measure/estimate and log system power con-
sumption. Depending on the type of study, measurement factors like accuracy
and temporal granularity must be considered. It may be useful to be able to de-
compose power consumption figures for different system components but that
support may or may not exist. Researchers need to consider these factors and
decide between measuring actual power versus modeling the power estimates.

Researchers have used energy characterization to understand energy-efficiency of
mobile platforms [33–35] and desktop/server platforms [15, 36–38]. Energy charac-
terization can also be used to analyze the energy efficiency of specific features of the
system [39, 40]. The energy behaviors thus characterized can be used, for example, to
identify software inefficiencies [33, 34, 36], manage power [15], analyze power/perfor-
mance trade-offs [41], and compare energy efficiency of competing technologies [39].
Apart from actual power measurement, power models can prove to be useful for energy
characterization [39, 41, 42].
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In this thesis, we characterize performance and energy of Intel’s recent Haswell
microarchitecture with a focus on its support for transactional memory.

1.4 Thesis Organization
The rest of this thesis is organized as follows:

• In Chapter 2, we explain different techniques to measure power consumption
of the system, compare their intrusiveness, and give experimental results to show
their accuracy and sensitivity. We test Intel’s hardware power model for accuracy,
sensitivity, and update granularity and discuss the results.

• In Chapter 3, we present a per-core, portable, scalable power model and show
the validation results across multiple platforms. We show the effectiveness of
the model by implementing it in an experimental meta-scheduler power-aware
scheduling.

• In Chapter 4, we present performance and energy expenditure characterization
results for Restricted Transactional Memory (RTM) implementation on the Intel
Haswell microarchitecture. We use microbenchmarks and the STAMP bench-
mark suite to compare the performance and energy efficiency of RTM to TinySTM
— a software transactional memory implementation.

• In Chapter 5 we present our concluding remarks and discuss future research
directions that can be taken from the work presented in this thesis.



2
Power Measurement Techniques

2.1 Overview
Designing intelligent power-aware computing technologies requires an infrastructure
that can accurately measure and log the system power consumption and preferably that of
the system’s individual resources. Resource managers can use this information to iden-
tify power consumption problems in both hardware (e.g., hotspots) and software (e.g.,
power-hungry tasks) and then to address those problems (e.g., through scheduling tasks
to even out power or temperature across the chip) [12,43,44]. A measurement infrastruc-
ture can also be used for power benchmarking [45, 46], power modeling [12, 13, 15, 43]
and power characterization [36,47,48]. In this chapter, we compare different approaches
to measuring actual power consumption on the Intel CoreTM i7 platform. We discuss
these techniques in terms of their intrusiveness, ease of use, accuracy, timing resolution,
sensitivity, and overhead. The measurement techniques demonstrated in this chapter can
be applied to other platforms, subject to some hardware support.

In the absence of techniques to measure actual power consumption, model-based
power consumption estimation is also a viable alternative. Intel’s Running Average
Power Limit (RAPL) interface [6], AMD’s Application Power Management (APM) in-

7
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Figure 2.1: Power Measurement Setup

terface [7] and NVIDIA’s Management Library (NVML) [8] interface make model-based
energy estimates available to the operating system and user applications through model-
specific registers, thereby enabling the software to make power-aware decisions.

In the rest of this chapter, we first describe the methodology of three techniques
to measure actual power consumption, discuss their advantages and disadvantages, and
collect experimental results on an Intel CoreTMi7 870 platform to compare their accuracy
and sensitivity. We then compare one of these measurement techniques — reading power
measurement from the ATX (Advanced Technology eXtended) power rails — to Intel’s
RAPL implementation on CoreTMi7 4770 (Haswell).

2.2 Power Measurement Techniques
Power consumption can be measured at various points in a system. We measure power
consumption at three points, as shown in Fig. 2.1:

1. The first and least intrusive method for measuring the power of an entire system
is to use a power meter like the Watts up? Pro [49] plugged directly into the wall
outlet;

2. The second method uses custom sense hardware to measure the current on indi-
vidual ATX power rails; and

3. The third and most intrusive method measures the voltage and current directly at
the CPU voltage regulator.

2.2.1 At the Wall Outlet
The first method uses an off-the-shelf (Watts up? Pro) power meter that sits between the
system under test and the power outlet. Note that to prevent data logging activity from
disturbing the system under test, we use a separate machine to collect measurements for
all three techniques, as shown in Fig. 2.1. Although easy to deploy and non-intrusive,
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this meter delivers only a single system measurement, making it difficult to separate the
power consumption of different system components. Moreover, the measured power
values are inflated compared to actual power consumption due to inefficiencies in the
system power supply unit (PSU) and on-board voltage regulators. The acuity of the
measurements is also limited by the (low) sampling frequency of the power meter: one
sample per second (here on referred to as Sa/s) for the Watts up? Pro. The accuracy
of the system power readings depends on the accuracy specifications provided by the
manufacturer (±1.5% in our case). The overall accuracy of measurements at the wall
outlet is affected by the mechanism converting between alternating current (AC) to direct
current (DC) in the power supply unit. When we discuss measurement results below, we
examine the accuracy effects of the AC-DC conversion done by the PSU.

This approach is suitable for studies of total system power consumption instead of
individual components like the CPU, memory, or graphics cards [50,51]. It is also useful
in power modeling research, where the absolute value of the CPU and/or memory power
consumption is less important than the trends [43].

2.2.2 At the ATX Power Rails
The second methodology measures current on the supply rails of the ATX motherboard’s
power supply connectors. As per the ATX power supply design specifications [52], the
power supply unit delivers power to the motherboard through two connectors, a 24-pin
connector that delivers +5.5V, +3.3V, and +12V, and an 8-pin connector that delivers
+12V used exclusively by the CPU. Table 2.1 shows the pinouts of these connectors.
Depending on the system under test, the pins belonging to the same power region may
be connected together on the motherboard. In our case, all +3.3 VDC pins are connected
together, as are all +5 VDC pins and +12V3 pins. Apart from that, the +12V1 and +12V2
pins are connected together to supply current to the CPU. Hence, to measure the total
power consumption of the motherboard, we can treat these connections as four logically
distinct power rails — +3.3V, +5V, +12V3, and +12V1/2.

For our experiments, we develop custom measurement hardware using current trans-
ducers from LEM [53]. These transducers use the Hall effect to generate an output
voltage in accordance with the changing current flow. The top-level schematic of the
hardware is shown in Fig. 2.2, and Fig. 2.3 shows the manufactured board. Note that
when designing such a printed circuit board (PCB), care must be taken to ensure that
the current capacity of the PCB traces carrying the combined current for the ATX power
rails is sufficiently high and that the on-board resistance is as low as possible. We use a
PCB with 105 micron copper instead of the more widely used thickness of 35 microns.
Traces carrying high current are at least 1 cm wide and are backed by thick-stranded wire
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(a) 24-pin ATX Connector Pinout

Pin Signal Pin Signal

1 +3.3 VDC 13 +3.3 VDC
2 +3.3 VDC 14 -12 VDC
3 COM 15 COM
4 +5 VDC 16 PS_ON
5 COM 17 COM
6 +5 VDC 18 COM
7 COM 19 COM
8 PWR OK 20 Reserved
9 5 VSB 21 +5 VDC

10 +12 V3 22 +5 VDC
11 +12 V3 23 +5 VDC
12 +3.3 VDC 24 COM

(b) 8-pin ATX Connector
Pinout

Pin Signal Pin Signal

1 COM 5 +12 V1
2 COM 6 +12 V1
3 COM 7 +12 V2
4 COM 8 +12 V2

Table 2.1: ATX Connector Pinout

connections, when required. The current transducers need +5V supply voltage, which is
provided by the +5VSB (stand by) rail from the ATX connector. Using +5VSB for the
transducer’s supply serves two purposes. First, because the +5VSB voltage is available
even when the machine is powered off, we can measure the base output voltage from the
current transducers for calibration purposes. Second, because the current consumed by
the transducers themselves (∼28mA) is drawn from +5VSB, it does not interfere with
our power measurements. We sample and log the analog voltage output from the current
transducers using a data acquisition (DAQ) unit from National Instruments (NI USB-
6210 [54]).

As per the LEM datasheet, the base voltage of the current transducer is 2.5V. Our
experiments indicate that the current transducer produces an output voltage of 2.494V
when zero current is passed through its primary turns. The sensitivity of the current
transducer is 25mV/A, hence the current can be calculated as in Eq. 2.1.

Iout =
Vout −BASE_V OLTAGE

0.025
(2.1)

We verify our current measurements by comparing against the output from a digi-
tal multimeter. The power consumption can then be calculated by simply multiplying
the current with the respective voltage. Apart from the ATX power rails, the PSU also
provides separate power connections to the hard drive, CD-ROM, and cabinet fan. To
calculate the total PSU load without adding extra hardware, we disconnect the I/O de-
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Figure 2.2: Measurement Setup on the ATX Power Rails

vices and fan, and we boot our system from a USB memory device powered by the
motherboard. The total power consumption of the motherboard can then be calculated
as in Eq. 2.2.

P = I3.3V ∗ V3.3V + I12V 3 ∗ V12V 3 + I5V ∗ V5V + I12V 1/2 ∗ V12V 1/2 (2.2)

The theoretical current sensitivity of this measurement infrastructure can be calcu-
lated by dividing the voltage sensitivity of the DAQ unit (47µV) by the current sensitivity
of the LTS-25NP current transducers from LEM (25mV/A). This yields a current sensi-
tivity of 2mA.

This approach improves accuracy by eliminating the complexity of measuring AC
power. Furthermore, the approach enjoys greater sensitivity to current changes (2mA)
and higher acquisition unit sampling frequencies (up to 250000 Sa/s). Since most mod-
ern motherboards have separate supply connectors for the CPU(s), this approach facil-
itates distinguishing CPU power consumption from that of other motherboard compo-
nents. Again, this improvement comes with increased cost and complexity: the sophis-
ticated DAQ unit is priced an order of magnitude higher than the power meter, and we
had to build a custom board to house the current transducer infrastructure.

2.2.3 At the Processor Voltage Regulator
Although measurements taken at the motherboard supply rails factor out the power sup-
ply unit’s efficiency curve, they are still affected by the efficiency curve of the on-board
voltage regulators. To eliminate this source of inaccuracy, we investigate a third ap-
proach. Motherboards that follow Intel’s processor power delivery guidelines (Voltage
Regulator-Down (VRD) 11.1 [55]) provide a load indicator output (IMON/Iout) from
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Figure 2.3: Our Custom Measurement Board

the processor voltage regulator. This load indicator is connected to the processor for use
by the processor’s power management features. This signal provides an analog voltage
linearly proportional to the total load current of the processor. We use this current sens-
ing pin from the processor’s voltage regulator chip (CHL8316, in our case) to acquire
real-time information about total current delivered to the processor. We also use the
voltage output at the V_CPU pin of the voltage regulator, which is directly connected
to the CPU voltage supply input of the processor. We locate these two signals on the
motherboard and solder wires at the respective connection points (the resistor/capacitor
pads connected to these signals). We connect these two signals and the ground point
to our DAQ unit, logging the values read on the separate test machine. This current
measurement setup is shown in Fig. 2.4.

The full voltage swing of the IMON output is 900mV for the full-scale current of
140A (for the motherboard under test). Hence, the current sensitivity of the IMON out-
put comes to about 6.42mV/A. The theoretical sensitivity of this infrastructure depends
on the voltage sensitivity of the DAQ unit (47µV) and its overall sensitivity to current
changes comes to 7mA. This sensitivity is less than that for measuring current at the
ATX power rails, but the sensitivity may vary for different voltage regulators on differ-
ent motherboards. This method provides the most accurate measurements of absolute
current feeding the processor, but it is also the most intrusive, as it requires soldering
wires on the motherboard, an invasive instrumentation procedure that should only be
performed by skilled technicians. Moreover, these power measurements are limited to
processor power consumption (we get no information about other system components).
For example, for memory-intensive applications, we can account for power consumption
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Figure 2.4: Measurement Setup on CPU Voltage Regulator

effects of the external bus transactions triggered by off-chip memory accesses, but this
method provides no means of measuring power consumed in the DRAMs. The accuracy
of the IMON output is specified by the CHL8316 datasheet to be within ±7%. This falls
far below the 0.7% accuracy of the current transducers at the ATX power rails1.

2.2.4 Experimental Results
We use an Intel CoreTMi7 870 processor to compare power measurement readings at the
wall outlet, at the ATX power rails, and directly on the processor’s voltage regulator.

The Watts Up? Pro measures power consumption of the entire system at the rate of
1 Sa/s, whereas the data acquisition unit is configured to capture samples at the rate of
40000 Sa/s from the four effective ATX voltage rails (+12V1/2, +12V3, +5V and +3.3V)
and the V_CPU and the IMON outputs of the CPU voltage regulator. We choose this rate
because the combined sampling rate of the six channels adds up to 240K Sa/s, and the
maximum sampling rate supported by the DAQ is 250K Sa/s. To remove background

1The accuracy specifications of the processor’s voltage regulator may differ for different manu-
facturers.
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Figure 2.5: Power Measurement Comparison When Varying the Number of Active Cores

noise, we average the DAQ samples over a period of 40 samples, which effectively
gives 1000 Sa/s. We use a CPU-bound test workload consisting of a 32×32 matrix
multiplication in an infinite loop.

Coarse-grain Power Variance. Fig. 2.5 shows power measurement results across
the three different points as we vary the number of active cores. Steps in the power
consumption are captured by all measurement setups. The low sampling frequency of
the wall-socket power meter prevents it from capturing short and sharp peaks in power
(probably caused by background OS activity). The power consumption changes we
observe at the wall outlet are at least 13 watts from one activity level to another. At such
coarse-grained power variation, the power readings at wall outlet are strongly correlated
with power readings at the ATX power rails and CPU voltage regulator.

Fine-grain Power Variance. Fig. 2.6 depicts measurement results when we vary
CPU frequency every five seconds from 2.93 GHz to 1.33 GHz in steps of 0.133 GHz.
The power measurement setup at the ATX power rails and the CPU voltage regulator
capture the changes in power consumption accurately, and apart from the differences in
absolute values and the effects of the CPU voltage regulator efficiency curve, there is
not much to differentiate measurements at the two points. However, the power measure-
ments taken by the power meter at the wall outlet fail to capture the changes faithfully,
even though its one-second sampling rate is enough to capture steps that last five sec-
onds. This effect is even more visible when we introduce throttling (at eight different
levels for each CPU frequency), as shown in Fig. 2.7. Here, each combination of CPU
frequency and throttling level lasts for two seconds, which should be long enough for the
power meter to capture steps in the power consumption. But the power meter performs
worse as power consumption decreases. We suspect that this effect is due to the AC to
DC conversion circuit of the power supply unit, probably due to the smoothing effect of
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Figure 2.6: Power Measurement Comparison When Varying Core Frequency

the capacitor in the PSU. These effects are not visible between measurement points at
the ATX power rails and CPU voltage regulator.

Fig. 2.8 shows the efficiency curve of the CPU voltage regulator at various load
levels. The voltage regulator on the test system employs dynamic phase control to adjust
the number of phases with varying load current to try to optimize the efficiency over a
wide range of loads. The voltage regulator switches to one-phase or two-phase operation
to increase the efficiency at light loads. When the load increases, the regulator switches
to four-phase operation at medium loads and six-phase operation at high loads. The
sharp change in efficiency visible in Fig. 2.8 is likely due to adaptation in phase control.
Fig. 2.9 shows the obtained efficiency curve of the cabinet PSU against total power
consumption calculated on the ATX power rails. The total system power never goes
below 30W, and the efficiency of the PSU varies from 60% to around 80% in the output
power range from 30W to 100W.

Fig. 2.10 shows the changes in CPU and main memory power consumption while
running gcc from SPEC CPU2006. Power consumption of the main memory varies from
around 7.5W to 22W across various phases of the gcc run. Researchers and practitioners
who wish to assess main memory power consumption will at least want to measure
power at the ATX power rails.
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Figure 2.9: Efficiency Curve of the PSU
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2.3 RAPL power estimations

2.3.1 Overview
Intel introduced Running Average Power Limit (RAPL) interface on the Sandy Bridge
microarchitecture. The programmers can use the RAPL interface for enforcing power
consumption constraint on the processor. This interface includes non-architectural Model-
specific registers (MSRs) for setting the power limit and reading the energy consumption
status of the processor power domains like processor die and DRAM2. The energy con-
sumption information provided by the RAPL interface is not based on actual current
measurement from physical sensors, but a power model based on performance events
and probably other inputs like temperature, voltage, etc. As per Intel specifications, the
RAPL energy status counter is updated approximately every 1ms, giving a maximum
sampling frequency of 1000 Sa/s. Since Intel has not specified the details of the power
model, the only way to measure the accuracy of the model is through experimentation.
In the following sections, we compare power measurement readings from RAPL and the
ATX power rails.

2.3.2 Experimental Results
We use Intel CoreTMi7 4770 processor to compare power measurement results at the
ATX power rails and Intel’s RAPL energy counter. For reading the RAPL energy
counter, we use the x86-MSR driver to read the RAPL energy counter MSR called
MSR\_PKG\_ENERGY\_STATUS. We set up a real-time timer that raises SIGALRM at
configured intervals to read the MSR. The ATX power measurement infrastructure is the
same as described for Intel CoreTMi7 870 processor. Below we describe our experiments
to validate the RAPL energy counter readings.

RAPL Overhead. One of the major differences between measuring power using
RAPL and other techniques shown in Figure 2.1 is that the RAPL measurements are
done on the same machine that is being tested. As a result, reading the RAPL energy
counter at frequent intervals adds some overhead to the system power. To test this,
we run our RAPL counter reading tool at the sampling frequency of 1 Sa/s, 10 Sa/s
and 1000 Sa/s and monitor the change in system power consumption on the ATX CPU
power rails. The results from this experiment are shown in Fig. 2.11. The spikes in
power consumption visible in the figure indicate the starting of the RAPL reading utility.
These spikes mainly result from loading dynamic libraries and can be ignored, assum-
ing that the RAPL utility is started before running any benchmark under test. These

2The DRAM energy status counter is only available on server platforms.
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Figure 2.11: Power Overhead Incurred While Reading the RAPL Energy Counter

spikes however act as useful synchronization points to overlap readings from RAPL and
the ATX power rails. For calculating the RAPL power overhead, we concentrate on the
CPU power consumption after the initial power spike. As seen from the figure, reading
the RAPL MSR every second and every 100ms adds no discernible power consump-
tion to the idle system power, but reading the RAPL counter every 1ms adds 0.1W of
power overhead. However, this small power overhead comes mainly from generating
SIGALRM every millisecond and not from reading the MSR. Hence, if the reading of
RAPL energy counter is done as part of the existing software infrastructure like a kernel
scheduler, this will not add discernible overhead to CPU power consumption.

RAPL Resolution. As per the Intel specification manual [56], the RAPL energy
counter is updated about every 1ms. To test this update frequency, we run the matrix
multiplication application described in Section 2.2.4 while reading the RAPL energy
status counter every 1ms. We sample the ATX power rails every 10µS and average over
100 samples. The results from this experiment are shown in Fig. 2.12. Although the
RAPL readings follow the same curve as those from the ATX power rails, two things
are of note here. First, the RAPL readings show more deviation from the mean than the
ATX readings. Second, there are huge deviations from the mean at periodic intervals
of around 1.6-1.7 seconds. Hähnel et al. [48] observe that the RAPL counter is not
updated exactly at 1ms. As per their experiments, there can be a deviation of a few tens
of thousands of cycles in the periodic interval at which the RAPL counter is updated on
a given platform. This explains the small deviations from the mean we see in our RAPL
readings. They also observe that when the CPU switches to System Management Mode
(SMM), the RAPL update is delayed until after the CPU comes out of SMM mode.
This results in the RAPL energy counter showing no increment between two successive
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Figure 2.12: Power Measurement Comparison for the ATX and RAPL at the RAPL

Sampling Rate of 1000 Sa/s

readings, creating a negative deviation. The next update to the counter increments the
energy value expended by the processor in last 2ms instead of 1ms, creating a positive
deviation. On our system, the CPU switches to SMM every 1.6-1.7 seconds, which
causes inaccurate energy readings.

RAPL Accuracy. To test the accuracy of the RAPL readings, we first repeat the
DVFS test from Fig. 2.6 in Section 2.2.4 and take the power measurement readings
from the ATX power rail and RAPL. Each DVFS operating point is maintained for five
seconds. The ATX power is sampled at 10000 Sa/s while the RAPL counter is sampled
at 10 Sa/s. The results from this test are shown in Fig. 2.13. The RAPL measurement
curve follows the ATX measurement curve faithfully, although their y-axis scales are
necessarily different. This test shows that the RAPL model works well across different
DVFS frequencies.

Next, we simulate a real-time application in which a task is started at fixed periodic
intervals. We compare power measurement from RAPL and ATX while varying the task
period. We set up a timer to raise SIGALRM signal, and a matrix multiplication task is
started at every timer interrupt. The matrix multiplication loop is configured to occupy
about 66% of the time period. We run this experiment for three different periods: 100ms,
10ms, and 1ms. We gather samples between two consecutive SMM switches. We read
the RAPL counter every 1ms. We sample the ATX power rails every 5µS and average
over 20 samples. The results from this experiment are shown in Fig. 2.14. For the
100ms and 10ms period, the RAPL readings closely follow the ATX readings, although
they are off by 1ms when the power consumption changes suddenly. As expected, for the
1ms period test, RAPL is unable to capture the power consumption curve but accurately
estimates the average power consumption.
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Figure 2.13: Power Measurement Comparison for ATX and RAPL When Varying Core

Frequency

Since the RAPL energy counter values are based on a performance event based
power model [6], we also test the RAPL accuracy using a microbenchmark that runs
integer operations, floating-point operations and memory operations in different phases.
For this experiment, we sample the RAPL energy counter at 100Sa/S. We sample the
ATX CPU power rails at 10000 Sa/s and then average over 100 samples. We also sample
the ATX 5V power rails, which on our system mainly supplies the DRAM memory.
The results are shown in Fig. 2.15. The deviations that we see in Fig. 2.12 due to CPU
switching to SMM are visible in this Fig. 2.15 as well. Because we sample the RAPL
counter every 10ms instead of 1ms, we only see 10% deviation from the mean instead
of 100%. Apart from these deviations that occur every 1.7 second (effectively one out
of 170 samples), the RAPL energy readings are accurate for all of the integer, floating-
point and memory-intensive phases. To quantify the RAPL power estimation accuracy,
we calculate Spearman’s rank correlation coefficient for RAPL and ATX CPU readings
for the microbenchmark run. The correlation coefficient is ρ=0.9858. In comparison,
the correlation coefficient between the ATX CPU power and motherboard CPU power
shown in Fig. 2.7 is ρ=0.9961. Sample values from the ATX show that DRAM power
is significant, which is not captured by the RAPL package energy counter. Power-aware
computing methodologies must take this into consideration. The RAPL interfaces on
Intel processors for server platforms include an energy counter for the DRAM domain
called MSR\_DRAM\_ENERGY\_STATUS. This can be useful for assessing the power
consumption of the DRAM memory.

Based upon our experimental results, we conclude that the RAPL energy counter
is good for estimating energy for a duration of more than 1ms. However, when the
researcher is interested in instantaneous power trends, especially peak power trends,
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Figure 2.15: Accuracy Test of RAPL for Custom Microbenchmark

sampling the actual power consumption using an accurate measurement infrastructure
(like ours) is a better choice.

2.4 Related Work
Hackenberg et al. [57] compare several measurement techniques for signal quality, ac-
curacy, timing resolution, and overhead. They use both Intel and AMD systems in their
study. Their experimental results complement our results. There have been many inter-
esting studies on power-modeling and power-aware resource management. These em-
ploy various means to measure empirical power. Rajamani et al. [11] use on-board sense
resistors located between the processor and voltage regulators to measure power con-
sumed by the processor. They use a National Instruments isolation amplifier and data ac-
quisition unit to filter, amplify, and digitize their measurements. Isci and Martonosi [58]
measure current on the 12V ATX power lines using clamp ammeters, that are hooked
to a digital multimeter (DMM) for data collection. The DMM is connected to a data
logging machine via an RS232 serial port. Contreras and Martonosi [14] use jumpers
on their Intel XScaleTM development board to measure the power consumption of the
CPU and memory separately. They feed the measurements to a LeCroy oscilloscope for
sampling. Cui et al. [59] also measure the power consumption at the ATX power rails.
They use current-sense resistors and amplifiers to generate sense voltages (instead of
using current transducers), and they log their measurements using a digital multimeter.
Bedard et al. [51] build their own hardware that combines the voltage and current mea-
surements and host interface into one solution. They use an Analog Devices ADM1191
digital power monitor to sense voltage and current values and an Atmel R© microcon-



CHAPTER 2. POWER MEASUREMENT TECHNIQUES 24

troller to send the measured values to a host USB port. Hähnel et al. [48] experiment
with the update granularity of the RAPL interface and report practical considerations for
using the RAPL energy counter for power measurement. We find their results useful in
explaining our experiments.

2.5 Conclusion
In this chapter, we demonstrate different techniques that can be employed to measure
power consumption of the full system, CPU and DRAM memory. We compare the dif-
ferent techniques in terms of accuracy, level sensitivity and temporal granularity and
discuss their advantages and disadvantages. We test Intel’s RAPL energy counter results
for overhead, accuracy, and update granularity. We conclude that the RAPL counter for
reading package energy incurs almost no power overhead and is fairly accurate for esti-
mating energy over periods of more than few tens of milliseconds. However, because of
irregularities in the frequency at which the RAPL counter is updated, it shows deviations
from the average power when it is sampled at a faster rate.



3
Per-core Power Estimation Model

3.1 Overview
Power measurement techniques described in Chapter 2 are essential for analyzing the
power consumption of systems under test. However, these measurement techniques do
not provide detailed information on the power consumption of individual processor cores
or microarchitectural units (e.g., caches, floating point units, integer execution units). To
develop resource-management mechanisms for an individual processor, system design-
ers need to analyze power consumption at the granularity of processor cores or even
the components within a processor core. This information can be provided by placing
on-die digital power meters, but that increases the chip’s hardware cost. Hence, support
for such fine-grained digital power meters is limited by chip manufacturers. Even when
measurement facilities exist — e.g., the Intel CoreTMi7-870 [60] features per-core power
monitoring at the chip-level — they are rarely exposed to the user. Indeed, power sens-
ing, actuation, and management support is more often implemented at the blade level
with a separate computer monitoring output [61, 62].

An alternative to hardware support for fine-grained digital power meters is to es-
timate the power consumption at the desired granularity using software power models.

25
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Such models can identify various power-relevant events in the targeted microarchitecture
and then track those events to generate a representative power consumption value. We
can characterize software power estimation models by the following attributes:

• Portability. The model should be easy to port from one platform to another;

• Scalability. The model should be easy to scale across varying number of active
cores and across different CPU voltage-frequency points;

• CPU Usage. The model’s CPU footprint should be negligible, so as not to pollute
the power consumption values of the system under test;

• Accuracy. The model’s estimated values should closely follow the empirically
measured power of the device that is modeled;

• Granularity. The model should provide power consumption estimates at the
granularity desired for the problem description (per core, per microarchitectural
module, etc.); and

• Speed. The model should supply power estimation values to the software at min-
imal latency (preferably within microseconds).

In this thesis, we develop a power model that uses performance counters and temper-
ature to generate accurate per-core power estimates in real time, with no off-line profiling
or tracing. We build upon the power model developed by Singh et al. [16, 63] and in-
clude some of their data for comparison. We validate their model on AMD K8 and Intel
CoreTMi7 architectures. Below we explain our choice of using performance counters and
temperature to develop the model.

Performance Counters. We use performance counters for model formation be-
cause the power models need a mechanism to track CPU activities with low overhead.
Most modern processors are equipped with a Performance Monitoring Unit (PMU) pro-
viding the ability to count the microarchitectural events of the processor. PMCs are
available individually for each core and hence can be used to create core-specific mod-
els. This allows programmers to analyze core performance, including the interaction
between programs and the microarchitecture, in real time on real hardware, rather than
relying on simplified and less accurate performance results from simulations. The PMUs
provide a wide variety of performance events. These events can be counted by mapping
them to a limited set of Performance Monitoring Counter (PMC) registers. For exam-
ple, on Intel and AMD platforms, these performance counter registers are accessible as
Model Specific Registers (MSRs). Also called Machine Specific Registers, these are
not necessarily compatible across processor families. Software can configure the perfor-
mance counters to select which events to count. The PMCs can be used to count events
like cache misses, micro-operations retired, stalls at various stages of an out-of-order
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pipeline, floating point/memory/branch operations executed, and many more. Although,
the counter values are not error-free [64,65] or even deterministic [66], if used correctly,
the errors are small enough to make PMCs suitable candidates for estimating power
consumption. The number and variety of performance monitoring events available for
modern processors are increasing with each new architecture. For example, the number
of traceable performance events available in the Intel CoreTMi7-870 processor is about
ten times the number available in the Intel Core Duo processor [67]. This comprehensive
coverage of event information increases the probability that the available performance
monitoring events will be representative of overall microarchitectural activity for the pur-
poses of performance and power analysis. This makes the use of performance counters
to develop power models for hardware platforms very popular among researchers.

Temperature. Processor power consumption consists of both dynamic and static
elements. Among these, the static power consumption is dependent on the core temper-
ature. Eq. 3.1 shows that the static power consumption of a processor is a function of
both leakage current and supply voltage. The processor leakage current is a summation
of subthreshold leakage and gate-oxide leakage current: Ileakage = Isub+Iox [68]. The
subthreshold leakage current can be derived using Eq. 3.2 [68]. The Vθ component in the
equation is thermal voltage, and it increases linearly with temperature. Since Vθ is in the
exponents, subthreshold leakage current has an exponential dependence on temperature.
With the increase in processor power consumption, processor temperature increases.
This increase in temperature increases leakage current, which, in turn, increases static
power consumption. To study the effects of temperature on power consumption, we ran
a multithreaded program executing MOV operations in a loop on our Intel CoreTMi7-
870 machine. The rate of instructions retired, instructions executed, pipeline stalls and
memory operations remains constant over the entire run of the program. We also keep
the CPU operating frequency constant and observe that CPU voltage remains constant
as well. This indicates that the dynamic power consumption of the processor does not
change over the run of the program. Fig. 3.1(a) shows that the total power consump-
tion of the machine increases during the program’s runtime, and it coincides with the
increase in chip temperature. The total power consumption increases by almost 10%.
To account for this increase in static power, it is necessary to include the temperature in
power models.

Pstatic =
∑

Ileakage ∗ Vcore (3.1)

Isub = K1We−Vth/nVθ (1− e−V/Vθ ) (3.2)



CHAPTER 3. PER-CORE POWER ESTIMATION MODEL 28

200 400 600 800

Sample Index

60

80

100

P
o

w
e
r 

(W
)

Power 40

50

60

70

T
e

m
p

e
ra

tu
re

 (C
)

Temp

(a) Temperature versus Power on Intel
CoreTMi7-870

45 50 55 60 65 70

Temperature (C)

0

2

4

6

8

In
cr

ea
se

 i
n
 S

ta
ti

c 
P

o
w

er
 (

W
)

Empirical

Exponential Curve Fit

(b) Static Power Curve

200 400 600 800

Sample Index

0

2

4

6

8

10

P
o

w
e
r 

(W
)

Increase in Static Power 40

50

60

70
T

e
m

p
e

ra
tu

re
 (C

)

Temp

(c) Temperature versus Static Power on
Intel CoreTMi7-870

Figure 3.1: Temperature Effects on Power Consumption

where Isub = Subthreshold leakage current

W = Gate width

Vθ = Thermal voltage

Vth = Threshold voltage

V = Supply voltage

K1 = Experimentally derived constant

W = Experimentally derived constant

As per Eq. 3.1, the static power consumption increases exponentially with temper-
ature. We confirm this empirically by plotting the net increase in power consumption
when the program executes at the higher temperature, as shown in the Fig. 3.1(b). The
non-regression analysis gives us Eq. 3.3 and the curve fit shown in the Fig. 3.1(b) closely
follows the empirical data points with determination coefficient R2 = 0.995.

PstaticInc = 1.4356× 1.034T , when Vcore = 1.09V (3.3)

Plotting these estimates of the increments in static power consumption, as in Fig. 3.1(c),
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explains the gradual rise in total power consumption when the dynamic behavior of a
program remains constant. Instead of using a non-linear function, we approximate the
static power increase as a linear function of temperature. This is a fair approximation
considering that the non-linear equation given in Eq. 3.3 can be closely approximated
with the linear equation given in Eq. 3.4 with determination coefficient R2 = 0.989 (for
the range in which die temperature changes occur). This linear approximation avoids the
added cost of introducing an exponential term in the power model computation.

PstaticInc = 0.359× T − 16.566, when Vcore = 1.09V (3.4)

Modern processors allow programmers to read temperature information for each
core from on-die thermal diodes. For example, Intel platforms report relative core tem-
peratures on-die via Digital Thermal Sensors (DTS), which can be read by software
through the MSRs or the Platform Environment Control Interface (PECI) [69]. This
data is used by the system to regulate CPU fan speed or to throttle the processor in case
of overheating. Third party tools like RealTemp and CoreTemp on Windows and open-
source software like lm-sensors on Linux can be used to read data from the thermal sen-
sors. As Intel documents indicate [69], the accuracy of temperature readings provided
by the thermal sensors varies, and the values reported may not always match the actual
core temperatures. Because of factory variation and individual DTS calibration, reading
accuracy varies from chip to chip. The DTS equipment also suffers from slope errors,
which means that temperature readings are more accurate near the T-junction max (the
maximum temperature that cores can reach before thermal throttling is activated) than
at lower temperatures. DTS circuits are designed to be read over reasonable operating
temperature ranges, and the readings may not show lower values than 20◦C even if the
actual core temperature is lower. Since DTS is primarily created as a thermal protection
mechanism, reasonable accuracy at high temperatures is acceptable. This affects the ac-
curacy of power models that use core temperature. Researchers and practitioners should
read the processor model datasheet, design guidelines, and errata to understand the lim-
itations of their respective thermal monitoring circuits, and they should take corrective
measures when deriving their power models, if required.

3.2 Modeling Approach
Our approach to power modeling is workload-independent and does not require appli-
cation modification. To show the effectiveness of our models, we perform two types of
studies:

• We demonstrate accuracy and portability on five CMP platforms;
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• We use the model in a power-aware scheduler to maintain a power budget

Studying sources of model error highlights the need for better hardware support for
power-aware resource management, such as fine-grained power sensors across the chip
and more accurate temperature information. Our approach nonetheless shows promise
for balancing performance, power, and thermal requirements for platforms from embed-
ded real-time systems to consolidated data centers, and even to supercomputers.

In the rest of the chapter, we first present the details of how we build our model,
and then we discuss how we validate them. Our evaluation analyzes the model’s compu-
tation overhead(Section 3.4.1) and accuracy(Section 3.4.2). We then explain the meta-
scheduler that we use as a proof-of-concept for showing the effectiveness of our model
in Section 3.5.

3.3 Methodology

3.3.1 Counter Selection
Selecting appropriate PMCs to use is extremely important with respect to accuracy of
the power model. We choose counters that are most highly correlated with measured
power consumption. The chosen counters must also cover a sufficiently large set of
events to ensure that they capture general application activity. If the chosen counters
do not meet these criteria, the model will be prone to error. The problem of choosing
appropriate counters for power modeling has been handled in different ways by previous
researchers.

Research studies that estimate power for an entire core or a processor [11, 14, 15],
use a small number of PMCs. Those that aim to construct decomposed power models to
estimate the power consumption of sub-units of a core [10, 12, 13] tend to monitor more
PMCs. The number of counters needed depends on the model granularity and the accept-
able level of complexity. Also, most modern processors allow simultaneous counting of
only a limited number (two/four/eight) microarchitectural events. Hence, using more
counters in the model requires interleaving the counting of events and extrapolating the
counter values over the total sampling period. This reduces the accuracy of absolute
counter values but allows researchers to track more counters.

To choose appropriate performance counters for developing our power-estimation
model, we divide the available counters into four categories and then choose one counter
from each category based upon statistical correlation [16,63]. This ensures that the cho-
sen counters are comprehensive representations of the entire microarchitecture and are
not biased towards any particular section. Caches and floating point units form a large
part of the chip real estate, and thus PMCs that keep track of their activity factors would
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be useful additions to the total power consumption information. Depending on the plat-
form, multiple counters will be available in both these categories. For example, we can
count the total number of cache references as well as the number of cache misses for var-
ious cache levels. For floating point operations, depending upon the processor model,
we can count (separately or in combination) the number of multiplication, addition, and
division operations. Because of the deep pipelining of modern processors, we can also
expect out-of-order logic to account for a significant amount of power. Stalls due to
branch mispredictions or an empty instruction decoder may reduce average power con-
sumption over a fixed period of time. On the other hand, pipeline stalls caused by full
reservation stations and reorder buffers will be positively correlated with power because
these indicate that the processor has extracted enough instruction-level parallelism to
keep the execution units busy. Hence, pipeline stalls indicate not just the power usage
of out-of-order logic but of the executions units, as well. In addition, we would like
to use a counter that can cover all the microarchitectural components not covered by
the above three categories. This includes, for example, integer execution units, branch
prediction units, and Single Instruction Multiple Data (SIMD) units. These events can
be monitored using the specific PMCs tied to them or by a generalized counter like to-
tal instructions/micro-operations (UOPS) retired/executed/issued/decoded. To construct
a power model for individual sub-units, we need to identify the respective PMCs that
represent each sub-unit’s utilization factors.

To choose counters via statistical correlation, we run a training application while
sampling the performance counters and collecting empirical power measurement values.
Fig. 3.2 shows simplified pseudo-code for the microbenchmark [16] that we use to de-
velop our power model. Here, different phases of the microbenchmark exercise different
parts of the microarchitecture. Since the number of relevant PMCs will most likely be
more than the limit on simultaneously monitored counters, multiple training runs are
required to gather data for all desired counters.

Once the performance counter values and the respective empirical power consump-
tion values are collected, we use a statistical correlation to establish the correlation be-
tween performance events (counter values normalized to the number of instructions ex-
ecuted) and power. This guides our selection of the most suitable events for use in the
power model. Obviously, the type of correlation method used can affect the model ac-
curacy. We use Spearman’s rank correlation [70] to measure the relationship between
each counter and power. The performance counters and power values can be linear or
non-linear. Using the rank correlation, as opposed to using correlation methods like
Pearson’s, ensures that this non-linear relationship does not affect the correlation coeffi-
cient.

For example, Table 3.1 shows the most power-relevant counters divided categori-



CHAPTER 3. PER-CORE POWER ESTIMATION MODEL 32

f o r ( i =0 ; i < i n t e r v a l ∗PHASE_CNT ; i ++) {
phase = ( i / i n t e r v a l ) % PHASE_CNT ;
sw i t ch ( phase ) {

case 0 :
/∗ do f l o a t i n g p o i n t o p e r a t i o n s ∗ /

case 1 :
/∗ do i n t e g e r a r i t h m e t i c o p e r a t i o n s ∗ /

case 2 :
/∗ do memory o p e r a t i o n s w i t h h igh

l o c a l i t y ∗ /
case 3 :

/∗ do memory o p e r a t i o n s w i t h low l o c a l i t y
∗ /

case 4 :
/∗ do r e g i s t e r f i l e o p e r a t i o n s ∗ /

case 5 :
/∗ do n o t h i n g ∗ /

.

.

.
}

}

Figure 3.2: Microbenchmark Pseudo-Code



CHAPTER 3. PER-CORE POWER ESTIMATION MODEL 33

(a) FP Operations

Counters ρ

FP_COMP_OPS_EXE:X87 0.65
FP_COMP_OPS_EXE:SSE_FP 0.04

(b) Total Instructions

Counters ρ

UOPS_EXECUTED:PORT1 0.84
UOPS_ISSUED:ANY 0.81
UOPS_EXECUTED:PORT015 0.81
INSTRUCTIONS_RETIRED 0.81
UOPS_EXECUTED:PORT0 0.81
UOPS_RETIRED:ANY 0.78

(c) Memory Operations

Counters ρ

MEM_INST_RETIRED:LOADS 0.81
UOPS_EXECUTED:PORT2_CORE 0.81
UOPS_EXECUTED:PORT234_CORE 0.74
MEM_INST_RETIRED:STORES 0.74
LAST_LEVEL_CACHE_MISSES 0.41
LAST_LEVEL_CACHE_REFERENCES 0.36

(d) Stalls

Counters ρ

ILD_STALL:ANY 0.45
RESOURCE_STALLS:ANY 0.44
RAT_STALLS:ANY 0.40
UOPS_DECODED:STALL_CYCLES 0.25

Table 3.1: Intel CoreTMi7-870 Counter Correlation

cally according to the correlation coefficients obtained from running the microbench-
mark on the Intel CoreTMi7-870 platform. Table 3.1(a) shows that only FP_COMP_

OPS_EXE:X87 is a suitable candidate from the floating point (FP) category. Ideally, to
get total FP operations executed, we should count both x87 FP operations(FP_COMP_
OPS_EXE:X87) and SIMD (FP_COMP_OPS_EXE:SSE_FP) operations. The mi-
crobenchmark does not use SIMD floating point operations, and hence we see high corre-
lation for the x87 counter but not for the SSE (Streaming SIMD Extensions) counter. Be-
cause of the limit on the number of counters that can be sampled simultaneously, we have
to choose between the two. Ideally, chip manufacturers would provide a counter reflect-
ing both x87 and SSE FP instructions, obviating the need to choose one. In Table 3.1(b),
the correlation values in the total instructions category are almost equal, and thus these
counters need further analysis. The same is true for the top three counters in the stalls
category, shown in Table 3.1(d). Since we are looking for counters providing insight into
out-of-order logic usage, the RESOURCE_STALLS:ANY counter is our best option.
As for memory operations, choosing either MEM_INST_RETIRED:LOADS or MEM_
INST_RETIRED:STORESwill bias the model towards load- or store-intensive applica-
tions. Similarly, choosing UOPS_EXECUTED:PORT1 or UOPS_EXECUTED:PORT0
in the total instructions category will bias the model towards addition- or multiplication-
intensive applications. We therefore omit these counters from further consideration.

Table 3.1 shows that correlation analysis may find counters from the same category
with very similar correlation numbers. Our aim is to make a comprehensive power model
using only four counters, and thus we must make sure that the counters chosen convey
as little redundant information as possible. We therefore analyze the correlation among
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(a) MEM versus INSTR Correlation

UOPS_EXECUTED:PORT234 LAST_LEVEL_CACHE_MISSES

UOPS_ISSUED:ANY 0.97 0.14
UOPS_EXECUTED:PORT015 0.88 0.2
INSTRUCTIONS_RETIRED 0.91 0.12
UOPS_RETIRED:ANY 0.98 0.08

(b) FP versus INSTR Correlation

FP_COMP_OPS_EXE:X87

UOPS_ISSUED:ANY 0.44
UOPS_EXECUTED:PORT015 0.41
INSTRUCTIONS_RETIRED 0.49
UOPS_RETIRED:ANY 0.43

(c) STALL versus INSTR Correlation

RESOURCE_STALLS:ANY

UOPS_ISSUED:ANY 0.25
UOPS_EXECUTED:PORT015 0.30
INSTRUCTIONS_RETIRED 0.23
UOPS_RETIRED:ANY 0.21

Table 3.2: Counter-Counter Correlation

all the counters. To select a counter from the memory operations category, we analyze
the correlation of UOPS_EXECUTED:PORT234_CORE and LAST_LEVEL_CACHE_
MISSES with the counters from the total instructions category, as shown in Table 3.2(a).
From this table, it is evident that UOPS_EXECUTED:PORT234_CORE is highly cor-
related with the instructions counters, and hence LAST_LEVEL_CACHE_MISSES is
the better choice. To choose a counter from the total-instructions category, we analyze
the correlation of these counters with the FP and stalls counters (in Table 3.2(b) and
Table 3.2(c), respectively). These correlations do not clearly recommend any particular
choice. In such cases, we can either choose one counter arbitrarily or choose a counter
intuitively. UOPS_EXECUTED:PORT015 does not cover memory operations that are
satisfied by cache accesses, instead of main memory. The UOPS_RETIRED:ANY and
INSTRUCTIONS_RETIRED counters cover only retired instructions and not those that
are executed but not retired, e.g., due to branch mispredictions. A UOPS_EXECUTED:

ANY counter would be appropriate, but since such a counter does not exist, the next best
option is UOPS_ISSUED:ANY. This counter covers all instructions issued, so it also
covers the instructions issued but not executed (and thus not retired).

We use the same methodology to select representative performance counters for all
the machines that we evaluate. Table 3.4 shows the counters we select for the different
platforms.

3.3.2 Model Formation
Having identified events that contribute significantly to consumed power, we create a
formalism to map observed microarchitectural activity and measured temperatures to
measured power draw. We re-run the microbenchmark sampling just the chosen PMCs,
collecting power and temperature data at each sampling interval. We normalize each
time-sampled PMC value, ei, to the elapsed cycle count to generate an event rate, ri.
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We then map rise in core temperature, T , and the observed event rates, ri, to core power,
Pcore, via a piece-wise model based on multiple linear regression, as in Equation 3.5.
We apply non-linear transformations to normalized counter values to account for non-
linearity, as in Equation 3.6. The normalization ensures that changing the sampling pe-
riod of the readings does not affect the weights of the respective predictors. We develop
a piecewise power model that achieves better fit by separating the collected samples into
two bins based on the values of either the memory counter or the FP counter. Breaking
the data using the memory counter value helps in separating memory-bound phases from
CPU-bound phases. Using the FP counter instead of the memory counter to divide the
data helps in separating FP-intensive phases. The selection of a candidate for break-
ing the model is machine-specific and depends on what gives a better fit. Regardless,
we agree with Singh et. [16, 63] that piecewise linear models better capture processor
behavior.

P̂core =

{
F1(g1(r1), · · · , gn(rn), T ), if condition
F2(g1(r1), · · · , gn(rn), T ), else

(3.5)

where ri = ei/(cycle count), T = Tcurrent − Tidle

Fn = p0 + p1 ∗ g1(r1) + ...+ pn ∗ gn(rn) + pn+1 ∗ T (3.6)

As an example, the piecewise linear regression model for the Intel CoreTMi7-870 is
shown in Eq. 3.7. Here, rMEM refers to the counter LAST_LEVEL_CACHE_MISSES,
rINSTR refers to the counter UOPS_ISSUED, rFP refers to the counter FP_COMP_
OPS_EXE:X87, and rSTALL refers to the counter RESOURCE_STALLS:ANY. The
piecewise model is broken based on the value of the memory counter. For the first part
of the piece-wise model, the coefficient for the memory counter is zero (due to the very
low number of memory operations we sampled).

P̂core =


10.9246 + 0 ∗ rMEM + 5.8097 ∗ rINSTR+

0.0529 ∗ rFP + 6.6041 ∗ rSTALL + 0.1580 ∗ T, if rMEM < 1e− 6

19.9097 + 556.6985 ∗ rMEM + 1.5040 ∗ rINSTR+
0.1089 ∗ rFP +−2.9897 ∗ rSTALL + 0.2802 ∗ T, if rMEM ≥ 1e− 6

(3.7)
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3.4 Validation
We evaluate our models by estimating per-core power for the SPEC 2006 [71], SPEC-
OMP [72, 73], and NAS [74] benchmark suites. In our experiments, we run multi-
threaded benchmarks with one thread per core, and single-threaded benchmarks with
an instance on each core. We use gcc 4.2 to compile our benchmarks for a 64-bit ar-
chitecture with optimization flags enabled, and we run all benchmarks to completion.
We use the pfmon utility from the perfmon2 library [75] to access the hardware perfor-
mance counters. Table 3.3 gives system details of the machines on which we validated
our power model. System power is based on measuring the power supply’s current draw
from the power outlet when the machine is idle. When we cannot find published val-
ues for idle processor power, we sum power draw when powered off and power saved
by turning off cdrom and hard disk drives, removing all but one memory DIMM, and
disconnecting fans. We subtract idle core power from idle system power to get uncore
(baseline without processor) power. Change in the uncore power itself (due to DRAM
or hard drive accesses, for instance) is included in the model estimations. Including tem-
perature as a model input accounts for variation in uncore static power. We always run
in the active power state (C0).

We use the sensors utility from the lm-sensors library to obtain core temperatures,
and we use the Watts Up? Pro power meter [49] described in Chapter 2 to gather power
data. This meter is accurate to within 0.1W, and it updates once per second. Although
measuring the power at wall outlet has limitations in terms of sensitivity to fine-grained
changes in power consumption, we use it for our experiments because of its low cost,
non-intrusive use, and easy portability. Moreover, we observe that for the benchmarks in
our experiments, the power consumption of the system does not change at the granularity
of less than one second, and hence sampling power consumption at the rate of 1 sam-
ple/second meets our requirement for this modeling approach. Our modeling approach
can easily be adapted to other power measurement techniques, such as those described
in Chapter 2.

We incorporate the power model into a proof-of-concept, power-aware resource
manager (a user-level meta-scheduler of Singh et al. [16, 63]) designed to maintain a
specified power envelope. The meta-scheduler manages processes non-invasively, re-
quiring no modifications to the applications or OS. It does so by suspending/resuming
processes and, where supported, applying dynamic voltage/frequency scaling (DVFS)
to alter core clock rates. For these experiments, we degrade the system power envelope
by 10%, 20%, and 30% for CoreTMi7-870 platform. Lower envelopes render cores in-
active, and thus we do not consider them. Finally, we incorporate the model in a kernel
scheduler, implementing a pseudo power sensor per core. The device does not exist



CHAPTER 3. PER-CORE POWER ESTIMATION MODEL 37

(a) Configuration Parameters for Intel Platforms

Intel Q6600 Intel Xeon E5430 Intel CoreTMi7-870
Cores/Chips 4, dual dual-core 4
Frequency (GHz) 2.4 2.0, 2.66 2.93
Process (nm) 65 45 45
L1 Instruction 32 KB 8-way 32 KB 8-way 32 KB 4-way
L1 Data 32 KB 8-way 32 KB 8-way 32 KB 8-way
L2 Cache 4 MB 16-way shared 6 MB 16-way shared 256 KB 8-way exclusive
L3 Cache N/A N/A 8 MB 16-way shared
Memory Controller off-chip, 2 channel off-chip, 4 channel on-chip, 2 channel
Main Memory 4 GB DDR2-800 8 GB DDR2-800 16 GB DDR3-1333
Bus (MHz) 1066 1333 1333
Max TDP (W) 105 80 95
Linux Kernel 2.6.27 2.6.27 2.6.31
Idle System Power (W) 141.0 180.0 54.0
Idle Processor Power (W) 38.0 27.0 10.0
Idle Temperature (◦C) 36 45 30

(b) Configuration Parameters for AMD Platforms

AMD PhenomTM9500 AMD OpteronTM8212
Cores/Chips 4 8, quad dual-core
Frequency (GHz) 1.1, 2.2 2.0
Process (nm) 65 90
L1 Instruction 64 KB 2-way 64 KB 2-way
L1 Data 64 KB 2-way 64 KB 2-way
L2 Cache 512 KB 8-way exclusive 1024 KB 16-way exclusive
L3 Cache 2 MB 32-way shared N/A
Memory Controller on-chip, 2 channel on-chip, 2 channel
Main Memory 4 GB DDR2-800 16 GB DDR2-667
Bus (MHz) 1100, 2200 1000
Max TDP (W) 95 95
Linux Kernel 2.6.25 2.6.31
Idle System Power (W) 84.1 302.6
Idle Processor Power (W) 20.1 53.6W
Idle Temperature (◦C) 36 33

Table 3.3: Machine Configuration Parameters

(a) PMCs Selected for Intel Platforms

Category Intel Q6600 Intel E5430 Intel CoreTMi7-870

Memory L2_LINES_IN LAST_LEVEL_CACHE_MISSES LAST_LEVEL_CACHE_MISSES
Instructions Executed UOPS_RETIRED UOPS_RETIRED UOPS_ISSUED
Floating Point X87_OPS_RETIRED X87_OPS_RETIRED FP_COMP_OPS_EXE:X87
Stalls RESOURCE_STALLS RESOURCE_STALLS RESOURCE_STALLS:ANY

(b) PMCs Selected for AMD Platforms

Category AMD PhenomTM9500 AMD OpteronTM8212

Memory L2_CACHE_MISS DATA_CACHE_ACCESSES
Instructions Executed RETIRED_UOPS RETIRED_INSTRUCTIONS
Floating Point RETIRED_MMX_AND_FP_INSTRUCTIONS DISPATCHED_FPU:OPS_MULTIPLY
Stalls DISPATCH_STALLS DECODER_EMPTY

Table 3.4: PMCs Selected for Power-Estimation Model
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Benchmark baseline model (10msec) model (100msec) model (1sec)

ep.A serial 35.68 35.57 36.04 35.59
ep.A OMP 4.84 4.89 4.77 4.74
ep.A MPI 4.77 4.72 4.73 4.75

cg.A serial 5.82 5.83 5.83 5.83
cg.A OMP 1.95 1.95 1.95 1.95
cg.A MPI 2.19 2.20 2.20 2.20

ep.B serial 146.53 146.52 145.52 146.77
ep.B OMP 19.45 19.33 19.35 19.54
ep.B MPI 18.95 19.41 19.12 19.18

cg.B serial 559.58 560.50 560.11 560.10
cg.B OMP 91.29 92.64 96.90 89.92
cg.B MPI 79.11 79.18 79.18 79.05

Table 3.5: Scheduler Benchmark Times for Sample NAS Applications on the AMD

OpteronTM8212 (sec)

in hardware but is simulated by the power model module. Reads to the pseudo-device
retrieve the power estimate computed most recently.

3.4.1 Computation Overhead
If computing the model is expensive, its use becomes limited to coarse timeslices. In this
experiment we study the overhead of our power model to evaluate its use in an OS task
scheduler. We use the scheduler developed by Boneti et al. [76] that is specifically tai-
lored to High Performance Computing (HPC) applications that require that the OS intro-
duce little or no overhead. In most cases, this scheduler delivers better performance with
better predictability, and it reduces OS noise [76, 77]. The model’s overhead depends
on 1) the frequency with which the per-core power is updated, and 2) the complexity
of the operations required to calculate the model. We calculate overhead by measuring
execution time for our kernel scheduler running with and without reading the PMCs and
temperature sensors. We vary the sample period from one minute to 10 msec. We time
applications for five runs and take the average (differences among runs are within nor-
mal execution time variation for real systems). Table 3.5 gives measured times for the
scheduler with and without evaluating the model. These data show that computing the
model adds no measurable overhead, even at 10ms timeslices.

3.4.2 Estimation Error
We assess model error by comparing our system power estimates to power meter out-
put (which our power meter limits to a one-second granularity). We estimate the power
consumption per core, and then sum up the power consumption for all cores with uncore
power to compare the estimated power consumption with measured values. Figure 3.3
through Figure 3.7 1 show percentage median error for the NAS, SPEC-OMP, and SPEC

1Data for Intel Q6600
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Figure 3.3: Median Estimation Error for the Intel Q6600 system
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Figure 3.4: Median Estimation Error for Intel E5430 system

2006 applications on all systems. Figure 3.8 through Figure 3.12 show standard devia-
tion of error for each benchmark suite. The occasional high standard deviations illustrate
the main problem with our current infrastructure: instantaneous power measurements
once per second do not reflect continuous performance counter activity since the last
meter reading.

Estimation error ranges from 0.3% (leslie3d) to 7.1% (bzip2) for the Intel Q6600
system, from 0.3% (ua) to 7.0% (hmmer) for the Intel E5430 system, from 1.02% (bt) to
9.3% (xalancbmk) for the AMD PhenomTMsystem, from 1.0% (bt.B ) to 10.7% (soplex
) for the AMD OpteronTM8212 system and from 0.17% (art ) to 9.07% (libquantum )
for the Intel CoreTMi7-870 system. On Intel Q6600, only five (out of 45) applications
exhibit median error exceeding 5%; on the Intel E5430, only six exhibit error exceeding
5%; on the AMD PhenomTM, eighteen exhibit error exceeding 5%; and on the AMD
OpteronTM8212, thirteen exhibit error exceeding 5%. For the Intel CoreTMi7-870, me-
dian estimations for only seven applications exceed 5% error. Table 3.6 shows the sum-
mary of power estimation errors for our model across all platforms. These data suggess
that our model works better on Intel machines compared to AMD machines.
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Figure 3.5: Median Estimation Error for the AMD PhenomTM9500
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Figure 3.6: Median Estimation Error for the AMD OpteronTM8212
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Figure 3.7: Median Estimation Error for the Intel CoreTMi7
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Figure 3.8: Standard Deviation of Error for the Intel Q6600 system
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Figure 3.9: Standard Deviation of Error for Intel E5430 system

Benchmark Intel Q660 Intel E5430 Intel CoreTMi7-870 AMD PhenomTM AMD 8212

SPEC 2006 1.1 2.8 2.22 3.5 4.80
NAS 1.6 3.9 3.11 4.5 2.55
SPEC OMP 1.6 3.5 2.02 5.2 3.35
Overall 1.2 3.6 2.07 3.8 4.38

Table 3.6: Estimation Error Summary
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Figure 3.10: Standard Deviation of Error for the AMD PhenomTM9500
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Figure 3.11: Standard Deviation of Error for the AMD OpteronTM8212
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Figure 3.12: Standard Deviation of Error for the IntelCoreTMi7
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Figure 3.13: Cumulative Distribution Function (CDF) Plots Showing Fraction of Space

Predicted (y axis) under a Given Error (x axis) for Each System
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Figure 3.14: Estimated versus Measured Error for the Intel Q6600 system

Figure 3.13 shows model coverage via Cumulative Distribution Function (CDF)
plots for the suites. On Q6600, 85% of estimates have less than 5% error, and 98%
have less than 10%. On E5430, 73% have less than 5% error, and 99% less than 10%.
On PhenomTM, 59% have less than 5% error, and 92% less than 10%. On 8212, 37%
have less than 5% error, and 76% have less than 10%. For the CoreTMi7-870, 82% of
estimates have less than 5% error and 96% have less than 10% error. The vast majority
of estimates exhibit very small error.

These errors are not excessive, but lower is better. Prediction errors are not clus-
tered, but are spread throughout application execution. Model accuracy depends on the
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Figure 3.15: Estimated versus Measured Error for Intel E5430 system
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Figure 3.16: Estimated versus Measured Error for the AMD PhenomTM9500
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Figure 3.17: Estimated versus Measured Error for the AMD OpteronTM8212
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Figure 3.18: Estimated versus Measured Error for the Intel CoreTMi7-870
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particular PMCs available on a given platform. If available PMCs do not sufficiently
represent the microarchitecture, model accuracy will suffer. For example, the AMD
OpteronTM8212 processor supports no single counter giving total floating point oper-
ations. Instead, separate PMCs track different types of floating point operations. We
therefore choose the one most highly correlated with power. Model accuracy would
likely improve if a single PMC reflecting all floating point operations were available. For
processor models supporting only two Model Specific Registers for reading PMC val-
ues, capturing the activity of four counters requires multiplexing the counting of PMC-
related events. This means that events are counted for only half a second (or half the
total sampling period), and are doubled to estimate the value over the entire period. This
approximation can introduce inaccuracies when program behavior is changing rapidly.
The model estimation accuracy is also affected by accuracy of hardware sensors. For
instance, the OpteronTM8212 temperature sensor data suffers with low accuracy [78].

Similarly, even though the microbenchmark tries to cover all scenarios of power
consumption, the resulting regression model will represent a generalized case. This is
especially true for a model that tries to estimate power for a complex microarchitecture
using limited number of counters. For example, floating point operations can consist of
add, multiply, or divide operations, all of which use different execution units and hence
consume a different amounts of power. If the application being studied uses operations
not covered by the training microbenchmark, model accuracy could also suffer.

A model can be no more accurate than the information used to build it. Performance
counter implementations display nondeterminism [66] and error [64]. All of these im-
pact model accuracy. Given all these sources of inaccuracy, there seems little need for
more complex, sophisticated mathematics when building a model.

3.5 Management
In the previous section, we discussed our approach to estimating the power consumption
of processor resources using power modeling. In this section, we discuss the use of our
power model by resource managers that perform task scheduling.

To demonstrate one use of our on-line power model, we experiment with the user-
level meta-scheduler from Singh et al. [16, 63]. This live power management applica-
tion maintains a user-defined system power budget by power-aware scheduling of tasks
and/or by using DVFS. We use the power model to compute core power consumption
dynamically. The application spawns one process per core. The scheduler reads PMC
values via pfmon and feeds the sampled PMC values to the power model to estimate core
power consumption.

The meta-scheduler binds the affinity of the processes to a particular core to simplify
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Figure 3.19: Flow diagram for the Meta-Scheduler

task management and power estimation. It dynamically calculates power values at a set
interval (one second, in our case) and compares the system-power envelope with the sum
of power for all cores together with the uncore power.

When the scheduler detects a breach in the power envelope, it takes steps to control
the power consumption. The scheduler employs two knobs to control system-power
consumption: dynamic voltage-frequency scaling as a fine knob, and process suspension
as a coarse knob. When the envelope is breached, the scheduler first tries to lower the
power consumption by scaling down the frequency. If power consumption remains too
high, the scheduler starts suspending processes to meet the envelope’s demands. The
scheduler maintains the record of the power being consumed by the process at the time
of suspension. When the estimated power consumption is less than the target power
envelope, the scheduler checks whether any of the suspended processes can be resumed
based on the power they were consuming at the time of suspension. If the gap between
the current power consumption and the target power budget is not enough to resume a
suspended process, and if the processor is operating at a frequency lower than maximum,
the scheduler scales up the voltage-frequency. Fig. 3.19 shows the flow diagram of the
meta-scheduler.

3.5.1 Sample Policies
When the scheduler suspends a process, it tries to choose the process that will have the
least impact on completion time of all the processes. We explore the use of our power
model in a scheduler via two sample policies for process suspension.

The Throughput policy targets maximum power efficiency (max instructions/watt)
under a given power envelope. When the envelope is breached, the scheduler calculates
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Benchmark Category Benchmark Applications Peak System Power (W)

CPU-Bound ep, gamess, namd, povray 130

Moderate art, lu, wupwise, xalancbmk 135

Memory-Bound astar, mcf, milc, soplex 130

Table 3.7: Workloads for Scheduler Evaluation

the ratio of instructions/UOPS retired to the power consumed for each core and suspends
the process having committed the fewest instructions per watt of power consumed. When
resuming a process, it selects the process (if there is more than one suspended process)
that had committed the maximum instructions/watt at the time of suspension. This policy
favors processes that are less often stalled while waiting for load operations to complete.
This policy thus favors CPU bound applications.

The Fairness policy divides the available power budget equally among all processes.
When applying this policy, the scheduler maintains a running average of the power
consumed by each core. When the scheduler must choose a process for suspension,
it chooses the process having consumed the most average power. For resumption, the
scheduler chooses the process that had consumed the least average power at the time
of suspension. This policy strives to regulate core temperature, since it throttles cores
consuming the most average power. Since there is high correlation between core power
consumption and core temperature, this makes sure that the core with highest tempera-
ture receives time to cool down, while cores with lower temperature continue working.
Since memory-bound applications are stalled more often, they consume less average
power, and so this policy favors memory-bound applications.

3.5.2 Experimental Setup
For the scheduler experiments, we use an Intel CoreTMi7-870 system, using DVFS to
vary frequencies between 2.926, 2.66, 2.394, 2.128, 1.862, 1.596 and 1.33 GHz. We
form separate power models for different frequencies. The power manager can thus
better implement policy decisions by estimating power for each frequency. If all core
frequencies have been reduced but the power envelope is still breached, we suspend
processes to reduce power. We compare against runtimes with no enforced power enve-
lope. We divide our workloads into three sets based on CPU intensity. We define CPU
intensity as the ratio of instructions retired to last-level cache misses. The three sets
are designated as CPU-Bound, Moderate, and Memory-Bound workloads (in decreasing
order of CPU intensity). The workloads categorized in these sets are listed in Table 3.7.
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Figure 3.20: Runtimes for Workloads on the Intel CoreTMi7-870 (without DVFS)

3.5.3 Results
Fig. 3.20 shows the normalized runtimes for all the workloads when only process sus-
pension is used to maintain the power envelope. The Throughput policy should favor
CPU-bound workloads, while the Fairness policy should favor memory bound work-
loads, but this distinction is not always visible. This is because of the differences in the
runtimes of the various workloads. This can be seen from the execution times of the
CPU-bound benchmarks when using the Throughput policy. The CPU bound applica-
tions ep and gamess have the lowest computational intensities and execution times. As
a result, these two applications are suspended most frequently, which does not affect the
total execution time, even when the power envelope is set to 80% of peak usage.

Fig. 3.21 shows the results when the scheduler uses both DVFS and process sus-
pension to maintain the given power envelope. As noted, the scheduler uses DVFS as
a fine knob and process suspension as a coarse knob in maintaining the envelope. The
Intel CoreTMi7-870 processor that we use for our experiments supports fourteen different
voltage-frequency points. These frequency points range from 2.926 GHz to 1.197 GHz.
For our experiments, we make models for seven frequency points (2.926, 2.66, 2.394,
2.128, 1.862, 1.596 and 1.33 GHz), and we adjust the processor frequency across these
points. Our experimental results show that for CPU-bound and moderate benchmarks,
there is little difference in execution time under different suspension policies. This sug-
gests that for these applications, the scheduler hardly needs to suspend the processes and
regulating DVFS points proves sufficient to maintain the power envelope. Performance
for DVFS degrades compared to cases where no DVFS is used. The explanation for
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Figure 3.21: Runtimes for Workloads on the Intel CoreTMi7-870 (with DVFS)

this lies in the difference between runtimes of different applications within the workload
sets. When no DVFS is used, all processes run at full speed. And even when one of the
processes is suspended, if that process is not critical, it still runs at full speed later in
parallel with the critical process. But in the case of DVFS being given higher priority
over process suspension, when the envelope is breached, all processes are slowed, and
this affects total execution time.

3.5.4 Related Work
Much previous work leverages performance counters for power estimation. Our work is
based on the approach of Singh et al. [16,63]; we augment that work by porting and val-
idating the model on many platforms, improving accuracy of the model by augmenting
the microbenchmark and counter selection methodology, analyzing estimation errors,
and exploiting multiple DVFS operating points for scheduler validation.

Joseph and Martonosi [10] use PMCs to estimate power in a simulator (SimpleScalar [79])
and on real hardware (a Pentium Pro). Their hardware supports two PMCs, while they
require twelve. They perform multiple benchmark runs to collect data, forming the
model offline. Multiplexing twelve PMCs would require program behavior to be rela-
tively constant across the entire sampling interval. They cannot estimate power for 24%
of the chip, and so they assume peak power for those structures.

Contreras and Martonosi [14] use five PMCs to estimate power for different frequen-
cies on an XScale system (with an in-order uniprocessor). Like Joseph and Martonosi,
they gather data from multiple benchmark runs. They derive power weights for frequency-
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voltage pairs, and form a parameterized linear model. Their model exhibits low percent-
age error, like ours, but they test on only seven applications, and their methodology
is only demonstrated for a single platform. This methodology, like that of Joseph and
Martonosi, is not intended for on-line use.

Economou et al. [15] use PMCs to predict power on a blade server. They profile the
system using application-independent microbenchmarks. The resulting model estimates
power for the CPU, memory, and hard drive with 10% average error. Wu et al. [80] also
use microbenchmarks to develop a model using a variable number of PMCs to estimate
active power of Pentium 4 functional units. They measure CPU power with a clamp-on
ammeter. Such invasive approaches are neither applicable to systems in the field, nor
scalable to HPC clusters.

Merkel and Bellosa [81] use PMCs to estimate power per processor in an eight-way
SMP, shuffling processes to reduce overheating of individual processors. They do not
state which PMCs they use, nor how they are chosen. Their goal is not to reduce power,
but to distribute it. Their estimation method suffers less than 10% error in a linux kernel
implementation.

Lee and Brooks [18] predict power via statistical inference models. They build
correlations based on hardware parameters, using the most significant parameters to train
their model. They profile their design space a priori, and then estimate power on random
samples. This methodology requires training on the same applications for which they
want to estimate power, and so their approach depends on having already sampled all
applications of interest.

Spiliopoulos et al. [23] use instructions executed and instructions retired counter to
develop a power model. Their model shows high errors for memory-bound benchmarks
since they do not consider memory operations in their model.

Instead of applying DVFS per core, Rangan et al. [19] study thread placement and
migration among independent voltage and frequency domains. This thread motion per-
mits much finer-grain control over power management and delivers better performance
than conventional DVFS for a given power budget. Grochowski et al. [82] study four
methods to control energy per instruction (EPI), finding that a combination of VFS and
asymmetric cores offers the most promising approach to balancing latency and through-
put in an energy-constrained environment. Annavaram et al. [83] leverage this work to
throttle EPI by scheduling multithreaded tasks on an asymmetric CMP, using more EPI
in periods of low parallelism to make better use of a fixed power budget.

Rajamani et al. [11] use their power estimation model to drive a power management
policy called PerformanceMaximizer. For a given power budget, they exploit the DVFS
levels of the processor to try to maximize the processor performance. For each per-
formance state (P-state), they apply their power model to estimate power consumption
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at the current P-state. They use the calculated power value to estimate the power con-
sumption at other P-states by linearly scaling the current power value with frequency.
The scheduler increases the performance state to highest level that it estimates would be
safely below the power budget value.

Banikazemi et al. [20] use a power-aware meta-scheduler. Their meta-scheduler
monitors the performance, power and energy of the system by using performance coun-
ters and in-built power monitoring hardware. It uses this information to dynamically
remap the software threads on multi-core servers for higher performance and lower en-
ergy usage. Their framework is flexible enough to substitute the hardware power monitor
with a performance-counter based model.

Isci et al. [21] analyze global power management policies to enforce a given power
budget and to minimize power consumption for the given performance target. They
conduct their experiments on the Turandot [84] simulator. They assume the presence of
on-core current sensors to acquire core power information, while they use performance
counters to gather core performance information. They have developed a global power
manager that periodically monitors the power and performance of each core and sets the
operating mode (akin to DVFS performance states) of the core for the next monitoring
interval. They assume that the power mode can be set independently for each core. They
experiment with three policies to evaluate their global power manager. The Priority
policy assigns different priorities to different cores in a multi-core processor and tries
to speed up the core with highest priority while slowing down the lowest priority core
when the the power consumption overshoots the assigned budget. The policy called
pullHipushLo is similar to our Fairness policy from the above case study; it tries to
balance the power consumption of each core by slowing down the core with highest
power consumption when the power budget is exceeded and speeds up the core with
lowest power consumption when there is a power surplus. MaxBIPS tries to maximize
the system throughput by choosing the combination of power modes on different cores
that is predicted to provide maximum overall BIPS (Billion Instructions Per Second).

Meng et al. [22] apply a multi-optimization power saving strategy to meet the con-
straints of a chip-wide power budget on reconfigurable processors. They run a global
power manager that configures the CPU frequency and/or cache size of individual cores.
They use risk analysis to evaluate the trade-offs between power saving optimizations
and potential performance loss. They select the power-saving strategies at design time
to create a static pool of candidate optimizations. They make an analytic power and
performance model using performance counters and sensors that allows them to quickly
evaluate many power modes and enables their power manager to choose a global power
mode at periodic intervals that can obey the processor-wide power budget while maxi-
mizing the throughput.



CHAPTER 3. PER-CORE POWER ESTIMATION MODEL 51

3.6 Conclusion
We derive statistical, piece-wise multiple linear regression power models mapping PMC
values and temperature readings to power, and demonstrate their accuracy for the SPEC
2006, SPEC-OMP, and NAS benchmark suites. We write microbenchmarks to exercise
the PMCs in order to characterize the machine and run those microbenchmarks with a
power meter plugged in to generate data for building the models. For our regression
models, we select the PMCs that correlate most strongly with measured power. Be-
cause they are built on microbenchmark data, and not actual workload data, the resulting
models are application independent. We apply the models to 45 benchmarks (including
multithreaded applications) on five CMPs containing dual- or quad-core chips totaling
four or eight cores. In spite of our generality, estimation errors are consistently low
across five different systems. We observe overall median errors per machine between
1.2% and 4.4%.

We then show the effectiveness of our power model for live power management on
an Intel CoreTMsystem with and without DVFS. We suspend and resume processes based
on per-core power usage, ensuring that a given power envelope is not breached. We also
scale core frequencies to remain under the power envelope.

As numbers of cores and power demands continue to grow, efficient computing re-
quires better methods for managing individual resources. The per-core power estimation
methodology presented here extends previously published models in both breadth and
depth, and represents a promising tool for helping meet those challenges, both by pro-
viding useful information to resource managers and by highlighting opportunities for
improving hardware support for energy-aware resource management. Such support is
essential for fine-grained, power-aware resource management.



4
Characterization of Intel’s Restricted

Transactional Memory

4.1 Introduction
Transactional memory (TM) [85] simplifies some of the challenges of shared-memory
programming. The responsibility for maintaining mutual exclusion over arbitrary sets of
shared-memory locations is devolved to the TM system, which may be implemented in
software (STM) or hardware (HTM). TM presents the programmer with fairly easy-to-
use programming constructs that define a transaction — a piece of code whose execution
is guaranteed to appear as if it occurred atomically and in isolation.

The research community has explored this design space in depth, and a variety of
proposed systems take advantage of transaction characteristics to simplify implementa-
tion and improve performance [86–89]. Hardware support for transactional memory has
been implemented in Rock [90] from Sun Microsystems, Vega from Azul Systems [91],
and Blue Gene/Q [92] and System z [93] from IBM. Haswell is the first Intel product to
provide such hardware support. Intel’s Transactional Synchronization Extensions (TSX)
allow programmers to run transactions on a best-effort HTM implementation, i.e., the

52
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platform provides no guarantees that hardware transactions will commit successfully,
and thus the programmer must provide a non-transactional path as a fallback mecha-
nism. Intel TSX supports two software interfaces to execute atomic blocks: Hardware
Lock Elision (HLE) is an instruction set extension to run atomic blocks on legacy hard-
ware, and Restricted Transactional Memory (RTM) is a new instruction set interface to
execute transactions on the underlying TSX hardware.

The previous chapters have highlighted the need for better hardware introspection
into power consumption. As better hardware support for such introspection becomes
available, it is important to evaluate accuracy and acuity so that users can choose among
various combinations of measurement and modeling techniques. Since Intel’s Core i7
4770 microarchitecture is among the first to support both power modeling and support
for transactional memory, it makes an interesting platform for analyzing power/perfor-
mance trade-offs.

As an initial study, we compare the Haswell RTM performance and energy of the
Haswell implementation of RTM to those of other approaches for controlling concur-
rency. We use a variety of workloads to test the susceptibility of RTM’s best-effort nature
to performance degradation and increased energy consumption. We compare RTM per-
formance to TinySTM, a software transactional memory implementation that uses time
to reason about the consistency of transactional data and about the order of transaction
commits.1 We highlight these crossover points and analyze the impact of thread scaling
on energy expenditure.

We find that RTM performs well with small to medium working sets when the
amount of data (particularly that being written) accessed in transactions is small. When
data contention among concurrent transactions is low, TinySTM performs better than
RTM, but as contention increases, RTM consistently wins. RTM generally suffers less
overhead than TinySTM for single-threaded runs, and it is more energy-efficient when
working sets fit in cache.

4.2 Experimental Setup
The Intel 4th Generation CoreTM i7 4770 processor comprises four physical cores that
can run up to eight simultaneous threads when hyper-threading is enabled. Each core
has two eight-way 32 KB private L1 caches (separate for I and D), a 256 KB private L2
cache (for combined I and D), and an 8 MB shared L3 cache, with 16 GB of physical
memory on board. We compile all microbenchmarks, benchmarks, and synchronization

1We choose TinySTM because during our experiments we find that it consistently outperforms
other STM alternatives like TL2 (to which RTM was compared in another recent study [94]).
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libraries using gcc v4.8.1 with -O3 optimization flag. We use the -mrtm flag to access
the Intel TSX intrinsics. We schedule threads on separate physical cores (unless running
more than four threads) and fix the CPU affinity to prevent migration.

We modify the task example from libpfm4.4 to read both the performance counters
and the processor package energy via the Running Average Power Limit (RAPL) [56]
interface. As we concluded in Chapter 2, RAPL is fairly accurate when the time be-
tween successive RAPL counter reads is more than tens of milliseconds. Since all our
benchmarks run for at least few seconds, we decided to use RAPL for our energy mea-
surements. We implement Intel TSX synchronization as a separate library and add RTM
definitions to the STAMP tm.h file. When transactions fail more than eight times, we
invoke reader/writer lock-based fallback code to ensure forward progress. If the return
status bits indicate that an abort was due to another thread’s having acquired the lock (in
the fallback code), we wait for the lock to be free before retrying the transaction. The
following shows pseudocode for a sample transaction.

Algorithm 1 Implementation of BeginTransaction
while true do

nretries← nretries + 1
status← _xbegin()
if status = _XBEGIN_STARTED then

if arch_read_can_lock(serialLock) then
return

else
_xabort(0)

end if
end if
{*** fall-back path ***}
while not arch_read_can_lock(serialLock) do

_mmpause()
end while
if nretries≥MAX_RETRIES then

break
end if

end while
arch_write_lock(serialLock);
return

4.3 Microbenchmark analysis

4.3.1 Basic RTM Evaluation
We first quantify RTM’s hardware limitations that affect its performance using mi-
crobenchmark studies. We detail the results of these experiments below.

RTM Capacity Test. To test the limitations of read-set and write-set capacity for
RTM, we create a custom microbenchmark, results for which are shown in Fig. 4.1. The
abort rate of write-only transactions tops out at 512 cache blocks (the size of L1 data
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Figure 4.1: RTM Read-Set and Write-Set Capacity Test
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Figure 4.2: RTM Abort Rate versus Transaction Duration

cache). We suspect this is because write-sets are tracked only in L1, and so evicting any
transactionally written cache line from L1 results in a transaction abort. For read-sets,
the abort rate saturates at 128K cache blocks (the size of L3 cache). This suggests that
evicting transactionally read cache lines from L3 (but not L1) triggers transaction aborts,
and thus RTM maintains performance for much larger read-sets than write-sets.

RTM Duration Test. Since RTM aborts can be caused by system events like in-
terrupts and context switches, we study the effects of transaction duration (measured in
CPU cycles) on success rate. For this analysis, we use a single thread, set the working-
set size to 64 bytes, and set the number of writes inside the transaction to 0. This tries to
ensure that the number of aborts due to memory events and conflicts remains insignifi-
cant. We gradually increase the duration by increasing the number of reads within the
transaction. Fig. 4.2 shows that transaction duration begins to affect the abort rate at
about 30K cycles and that durations of more than 10M cause all transactions to abort
(note that these results are likely machine dependent).

RTM Overhead Test. Next we quantify performance overheads for RTM compared
to spin locks and the atomic compare-and-swap (CAS) instruction. For this test, we cre-
ate a microbenchmark that removes elements from a queue (defined in the STAMP [95]
library). We initialize the queue to 1M elements, and threads extract elements until the
queue is empty. Work is not statically divided among threads. We first compare RTM
against the spinlock implementation in the Linux kernel (arch/x86/include/asm/
spinlock.h). We then compare against a version of the queue implementation mod-
ified to use CAS in queue\_pop(). For RTM, we simply retry the transaction on
aborts.

We perform three sets of experiments. To observe the cost of starting an RTM trans-
action in the absence of contention, we first run single-threaded experiments. We repeat



CHAPTER 4. CHARACTERIZATION OF INTEL’S RTM 56

the experiment with four threads to generate a high-contention workload. Finally, we
lower contention by making threads work on local data for a fixed number of operations
after each critical section. Table 4.1 summarizes execution times normalized to those of
the lock-based version.

Type of synchronization
Contention None Lock CAS RTM
None 0.64 1 1.05 1.45
Low N/A 1 0.64 0.69
High N/A 1 0.64 0.47

Table 4.1: Relative Overhead of RTM versus Locks and CAS

Table 4.1 shows that the cost of starting a transaction makes RTM perform worse
than the other alternatives when executing non-contended critical sections with few in-
structions. RTM suffers about a 45% slowdown compared to using locks and CAS, and
it takes over twice the time of an unsynchronized version. In contrast, our multi-threaded
experiments reveal that RTM exhibits roughly 30% and 50% lower overhead than locks
in low and high contention, respectively, while CAS is in both cases around 35% bet-
ter than locks. Note that transactions avoid hold-and-wait behavior, which seems to
give RTM an advantage in our study. When comparing locks and CAS, the higher lock
overhead is likely due in part to the ping-pong coherence behavior of the cache line
containing the lock and to cache-to-cache transfers of the line holding the queue head.

4.3.2 Eigenbench Characterization
To compare RTM and STM in detail, we next study the behaviors of Hong et al.’s Eigen-
bench [96]. This parameterizable microbenchmark attempts to characterize the design
space of TM systems by orthogonally exploring different transactional application be-
haviors. Table 4.2 defines the seven characteristics we use to compare performance and
energy expenditure of the Haswell RTM implementation and the TinySTM [97] software
transactional memory system. Hong et al. [96] provide a detailed explanation of these
characteristics and the equations used to quantify them.

Unless otherwise specified, we use the following parameters in our experiments,
results for which we average over 10 runs. Transactions are 100 memory references (90
reads and 10 writes) in length. We use one small (16KB) and one medium (256KB)
working set size to demonstrate the differences in RTM performance. Since L1 size has
no influence on TinySTM’s abort rates, we only show TinySTM results for the smaller
working set size. To prevent L1 cache interference, we run four threads with hyper-
threading disabled as our default, and we fix the CPU affinity to prevent thread migration.
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Characteristic Definition

Concurrency Number of concurrently running threads
Working-set sizea Size of frequently used memory
Transaction length Number of memory accesses per transaction
Pollution Fraction of writes to total memory accesses

inside transaction
Temporal locality Probability of repeated address inside transaction
Contention Probability of transaction conflict
Predominance Fraction of transactional cycles to total application

cycles

aWorking-set size for Eigenbench is defined per-thread.

Table 4.2: Eigenbench TM Characteristics
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Figure 4.3: Eigenbench Working-Set Size

For each characteristic, we compare RTM and TinySTM performance and energy (versus
sequential runs of the same code) and transaction-abort rates. For the graphs in which
we plot two working-set sizes for RTM, the speedups and energy efficiency given are
relative to the sequential run of the same size working set.

Working-Set Size. Fig. 4.3 shows Eigenbench results over a logarithmic scale as
we increase each thread’s working set from 8KB to 128MB. RTM performs best with
the smallest working set, and its performance gradually degrades as working-set size in-
creases. The performance of both RTM and TinySTM drops once the combined working
sets of all threads exceed the 8MB L3 cache. RTM performance suffers more because
events like L3 evictions, page faults, and interrupts trigger a transaction abort, which
is not the case for TinySTM. The speedups of both RTM and TinySTM are lowest at
working sets of 4MB: at this point, the parallelized code’s working sets (16MB in total)
exceed L3, but the working set of the sequential version (4MB) still fits. For working sets
above 4MB, the sequential version starts encountering L3 misses, and thus the relative
performances of both transactional memory implementations begins to improve. Par-
allelizing the transactional code using RTM is energy-efficient compared to sequential
version when the combined working sets of all threads fits inside the cache.
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Figure 4.4: Eigenbench Transaction Length

Transaction Length. Fig. 4.4 shows Eigenbench results as we increase the trans-
action length from 10 to 520 memory operations. When the working set (16KB) fits
within L1, RTM outperforms TinySTM for all transaction lengths. For 256KB working
sets, RTM performance drops sharply when the transaction length exceeds 100 accesses.
Recall that evicting write-set data from the L1 triggers transaction aborts, but when the
working set fits within L1, such evictions are few. As the working set grows, the ran-
domly chosen addresses accessed inside the transactions have a higher probability of
occupying more L1 cache blocks, and hence they are more likely to be evicted. In con-
trast, TinySTM shows no performance dependence on working-set size. The overhead of
starting the hardware transaction affects RTM performance for very small transactions.
As observed in the working-set analysis above, RTM is more energy efficient than both
the sequential run and TinySTM for all transaction lengths when using the smaller work-
ing set. When using the larger working set, RTM expends more energy for transactions
exceeding 120 accesses.

Pollution. Fig. 4.5 shows results when we test symmetry (with respect to handling
read-sets and write-sets) by gradually increasing the fraction of writes. The pollution
level is zero when all memory operations in the transaction are reads and one when all
are writes. When the working set fits within L1, RTM shows almost no asymmetry. But
for the larger working-set size, RTM speedup suffers as the level of pollution increases.
TinySTM outperforms RTM when the pollution level increases beyond 0.4.

Temporal Locality. We next study the effects of temporal locality on TM perfor-
mance (where temporal locality is defined as the probability of repeatedly accessing the
same memory address within a transaction). The results in Fig. 4.6 reveal that RTM
shows no dependence on temporal locality for the 16KB working set, but performance
degrades for the 256KB working set (where low temporal locality increases the number
of aborts due to L1 write-set evictions). In contrast, TinySTM performance degrades
as temporal locality increases, indicating that it favors unique addresses unless only one
address is being accessed inside the transaction (locality = 1.0).

Contention. This analysis studies the behavior of TM systems when the level of
contention is varied from low to high. We set the working-set size to 2MB for both
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Figure 4.5: Eigenbench Pollution
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Figure 4.6: Eigenbench Temporal Locality
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Figure 4.7: Eigenbench Contention
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Figure 4.8: Eigenbench Predominance

RTM and TinySTM. The level of contention is calculated as an approximate value rep-
resenting the probability of a transaction causing a conflict (as per the probability for-
mula given by Hong et al. [96]). The conflict probability figures shown in Fig. 4.7
are calculated at word granularity and hence are specific to TinySTM. Since RTM de-
tects conflicts at the granularity of cache line (64 bytes), the contention level is actually
higher for RTM with the same workload configuration. When the degree of contention
among competing threads is very low, RTM performs better than TinySTM. For low to
medium contention, TinySTM considerably outperforms RTM. However, for high con-
tention workloads, TinySTM performance degrades while RTM performance remains
almost the same.

Predominance. We study the behavior of the TM systems when varying the frac-
tion of application cycles executed within transactions to the total number of application
cycles. For this analysis, we set working-set size to 256KB for both TM systems, we set
contention to zero, and we vary the predominance ratio from 0.125 to 0.875. Fig. 4.8
shows that performance for both RTM and TinySTM suffers as the ratio of transactional
cycles to non-transactional cycles grows. This can be attributed to the overheads asso-
ciated with the TM systems: for the same level of predominance, TinySTM introduces
more overhead because it must instrument the program memory accesses.

Concurrency. Next we study how the performance and energy of RTM and TinySTM
scale when concurrency is increased from one thread to eight. Fig. 4.9 shows that RTM
scales well up to four threads. At eight threads, the L1 cache is shared between two
threads running on the same core. This cache sharing degrades performance for the
larger working set more than for the smaller working set because hyper-threading effec-
tively halves the write-set capacity of RTM. In contrast, TinySTM scales well up to eight
threads. For the small working set, RTM proves to be more energy-efficient than either
TinySTM or the sequential runs.

The results from the Eigenbench analysis help us in identifying a range of workload
characteristics for which either RTM or TinySTM is better performing or more energy
efficient. We next apply the insights gained from our microbenchmark studies to analyze
the performance and energy numbers we see for the STAMP benchmark suite.
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Figure 4.9: Eigenbench Concurrency

4.4 HTM versus STM using STAMP
Next we use the STAMP transactional memory benchmark suite [95] to compare the per-
formance and energy efficiency of RTM and TinySTM. We use the lock-based fallback
mechanism explained in Section 4.2 and run the applications with input sizes that create
large working sets and high contention. We average all results over 10 runs. Fig. 4.10
shows STAMP execution times for RTM and TinySTM normalized to the average ex-
ecution time of sequential (non-TM) runs. Fig. 4.11 shows the corresponding energy
expenditures, again normalized to the average energy of the sequential runs. Results for
single-threaded TM versions of the benchmarks illustrate the TM system overheads.

bayes has a large working set and long transactions, and thus RTM performs worse
than TinySTM. This corresponds to our findings in the Eigenbench transaction-length
analysis in Fig. 4.4. As expected, RTM does not improve the performance of bayes as
the number of threads scales, and TinySTM performs better overall. Since the time the
bayes’s algorithm takes to learn the network dependencies depends on the computation
order, we see significant deviations in learning times for multi-threaded runs.

genome has medium transactions, a medium working-set size, and low contention.
Most transactions have fewer than 100 accesses. Recall that in the working-set analysis
shown in Fig. 4.3(a) (for transaction length 100), RTM slightly outperforms TinySTM
for working-set sizes up to 4MB. On the other hand, TinySTM outperforms RTM when
contention is low (Fig. 4.7(a)). The confluence of these two factors within genome

yields similar performances for RTM and TinySTM up to four threads. For eight threads,
as expected, TinySTM’s performance continues to improve, whereas RTM’s suffers from
increased resource sharing among hyper-threads.

intruder is also a high-contention benchmark. As with genome, RTM perfor-
mance scales well from one to four threads. Since intruder executes very short
transactions, scaling to eight threads does not cause as much resource contention as for
genome, and thus RTM and TinySTM perform similarly. Even though this application
has a small to medium working set — which might otherwise give RTM an advantage
— its performance is dominated by very short transaction lengths.
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kmeans is a clustering algorithm that groups data items in N-dimensional space into
K clusters. As with bayes, our 10 runtimes deviate significantly for the multi-threaded
versions. On average, RTM performs better than TinySTM. The short transactions ex-
perience low contention, and the small working set has high locality, all of which give
RTM a performance advantage over TinySTM. Even though both TM systems show
speedups over the sequential runs, synchronizing the kmeans algorithm in TinySTM
expends more energy at all thread counts.

labyrinth routes a path in a three-dimensional maze, where each thread grabs a
start and an end point and connects them through adjacent grid points. Fig. 4.10 shows
that labyrinth does not scale in RTM. This is because each thread makes a copy of the
global grid inside the transaction, triggering capacity aborts that eventually cause the
fallback to using a lock. Energy expenditure increases for the RTM multi-threaded runs
because the threads try to execute the transaction in parallel but eventually fail, wasting
many instructions while increasing cache and bus activity.

ssca2 has short transactions, a small read-write set, and low contention, and thus
even though it has a large working set, it scales well to higher thread counts. Performance
for eight threads is good for both RTM and TinySTM. In general, RTM performs better
(with respect to both execution time and energy expenditure) but not by much, as is to
be expected for very short transactions.

vacation has low to medium contention among threads and a medium working set
size. The transactions are of medium length, locality is medium, and contention is low.
Like genome, vacation scales well up to four threads, but performance degrades for
eight threads because its read-write set size is large enough that cache sharing causes
resource limitation issues.

yada has big working set, medium transaction length, large read-write set, and
medium contention. All these conditions give TinySTM a consistent performance ad-
vantage over RTM at all thread counts.

Our results in Fig. 4.11 indicate that the energy trends of applications do not always
follow their performance trends. Applications like bayes, labyrinth, and yada

expend more energy as they are scaled up, even when performance changes little (or
even improves, in the case of yada). Only intruder, kmeans, and ssca2 benefit
from hyper-threading under RTM. In contrast, most STAMP applications benefit from
hyper-threading under TinySTM, and those that do not suffer only small degradations.

Fig. 4.12 shows the overall abort rates for all benchmarks, including the contribu-
tions of different abort types. Based on our observations of hardware counter values,
the current RTM implementation does not seem to distinguish between data-conflict
aborts and aborts caused by read-set evictions from L3 cache, and thus both phenomena
are reported as conflict aborts. When a thread incurs the maximum number of failed
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Figure 4.10: RTM versus TinySTM Performance for STAMP Benchmarks
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Figure 4.11: RTM versus TinySTM Energy Expenditure for STAMP Benchmarks

transactions and acquires the lock in the fallback path, it forces all currently running
transactions to abort. We term this a lock abort. These aborts are reported either as con-
flict aborts, explicit aborts (i.e., deliberately triggered by the application code), or both
(i.e., the machine increments multiple counters). Lock aborts are specific to the fallback
mechanism we use in our experiments. Other fallback mechanisms that do not use se-
rialization locks within transactions (they can be employed in non-transactional code)
do not incur such aborts. Note that avoiding lock aborts does not necessarily result in
better performance since the lock aborts mask other type of aborts (i.e., that would have
occurred subsequently). This can be seen in abort contributions shown in the figure. As
applications are scaled, the fraction of aborts caused by locks increases because every
acquisition potentially triggers N -1 lock aborts (where N is the number of threads).

The RTM_RETIRED:ABORTED_MISC3 performance counter reports aborts due
to events like issuing unsupported instructions, page faults, and page table modifica-
tions. The RTM_RETIRED:ABORTED_MISC5 counter includes miscellaneous aborts
not categorized elsewhere, such as aborts caused by interrupts. Table 4.3 gives an
overview of these abort types. In addition to these counters, three more performance
counters represent categorized abort numbers: RTM_RETIRED:ABORTED_MISC1 counts
aborts due to memory events like data conflicts and capacity overflows; RTM_RETIRED:
ABORTED_MISC2 counts aborts due to uncommon conditions; and RTM_RETIRED:
ABORTED_MISC4 counts aborts due to incompatible memory types (e.g., due to cache
bypassing or I/O accesses). In our experiments, RTM_RETIRED:ABORTED_MISC4
counts are always less than 20, which we attribute to hardware error (as per the Intel
specification update [98]). In all our experiments, RTM_RETIRED:ABORTED_MISC2
is zero.
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Abort Type Description

Data-conflict/
Read-capacity

Conflict aborts and read-set capacity aborts

Write-capacity Write-set capacity aborts
Lock Conflict and explicit aborts caused by serialization locks
Misc3 Unsupported instruction abortsa

Misc5 Aborts due to none of the previous categoriesb

a includes explicit aborts and aborts due to page fault/page table modification
b interrupts, etc.

Table 4.3: Intel RTM Abort Types

Figure 4.12: RTM Abort Distributions for STAMP Benchmarks

4.5 Related Work
Hardware transactional memory systems must track memory updates within transac-
tions and detect conflicts (read-write, write-read, or write-write conflicts across concur-
rent transactions or non-transactional writes to active locations within transactions) at
the time of access. The choice of where to buffer speculative memory modifications
has microarchitectural ramifications, and commercial implementations naturally strive
to minimize modifications to the the cores and on-chip memory hierarchies on which
they are based. For instance, Blue Gene/Q [92] tracks updates in the 32MB L2 cache,
and the IBM System z [93] series and the canceled Sun Rock [90] track updates in their
store queues. Like the Haswell RTM implementation that we study here, the Vega Azul
Java compute appliance [91] uses the L1 cache to record speculative writes. The size of
transactions that can benefit from such hardware TM support depends on the capacity of
the chosen buffering scheme. Like us, others have found that rewriting software to be
more transaction-friendly improves hardware TM effectiveness [91].

Previous studies investigate the characteristics of hardware transactional memory
systems. Wang et al. [92] use the STAMP benchmarks to evaluate hardware transactional
memory support on Blue Gene/Q, finding that the largest source of TM overhead is loss
of cache locality from bypassing or flushing the L1 cache.
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Yoo et al. [94] use the STAMP benchmarks to compare Haswell RTM with the TL2
software transactional memory system [99], finding significant performance differences
between TL2 and RTM. We perform a similar study and find that TinySTM consistently
outperforms TL2, and thus we choose the former as our STM point of comparison. Our
RTM scaling results for STAMP benchmark concur with their results.

Wang et al. [100] evaluate RTM performance for concurrent skip list scalability,
comparing against competing synchronization mechanisms like fine-grained locking and
lock-free linked-lists. They use the Intel RTM emulator to model up to 40 cores, corrob-
orating results for one to eight cores with Haswell hardware experiments. Like us, they
highlight RTM performance limitations due to capacity and conflict misses and propose
programmer actions that can improve RTM performance.

Others have also studied power/performance trade-offs for TM systems. For in-
stance, Gaona et al. [101] perform a simulation-based energy characterization study of
two HTM systems: the LogTM-SE Eager-Eager system [86] and the Scalable TCC
Lazy-Lazy system [102]. Ferri et al. [103] estimate the performance and energy implica-
tions of using TM in an embedded multiprocessor system-on-chips (MPSoCs), providing
detailed energy distribution figures from their energy models.

In contrast to the work presented here, none of these studies analyzes energy expen-
diture for a commercial hardware implementation.

4.6 Conclusions
The Restricted Transactional Memory support available in the Intel Haswell microar-
chitecture makes programming with transactions more accessible to parallel computing
researchers and practitioners. In this study, we compare RTM and TinySTM, a soft-
ware transactional memory implementation, in terms of performance and energy. We
highlight RTM’s hardware limitations and quantify their effects on application behavior,
finding that performance degrades for workloads with large working sets and long trans-
actions. Enabling hyper-threading worsens RTM performance due to resource sharing at
the L1 level. We give details about the sources of aborts in a TM application and a way to
quantiy these aborts. Using the knowledge presented in this thesis, parallel programmers
can optimize TM applications to better utilize the Haswell support for RTM.



5
Conclusion

The significance of power-aware computing technologies is rapidly increasing because
of the expanding carbon footprint of ICT sector. Analyzing the power consumption
of a system is a fundamental step in formulating power-aware techniques. This thesis
proposes methodologies to better enable power-aware research through power measure-
ment, power modeling, and power characterization.

5.1 Contributions
This thesis makes following contributions:

Power Measurement (Chapter 2). We develop an infrastructure to measure power con-
sumption at three points in voltage supply path of the processor: at the wall out-
let, at the ATX power rails and at the CPU voltage regulator. We do a qualitative
comparison for the measurements sampled from the three points for accuracy and
sensitivity. We discuss the advantages and disadvantages of each sampling point.
We show that sampling power at the wall outlet is easiest but also least accurate.
We test Intel’s digital power model (available to the software through Running
Average Power Limit (RAPL) interface) for accuracy, overhead and temporal

66
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granularity. We demonstrate that the RAPL model estimates power with good
mean accuracy but suffers with infrequent high deviations from the mean.

Power Modeling (Chapter 3). We build upon the power model developed by Singh et
al. [16, 63] that estimates power consumption of individual cores in chip mul-
tiprocessors. We port and validate the model across many platforms, improve
model accuracy by augmenting microbenchmark and counter selection method-
ology, provide analysis for model estimation errors, and show the effectiveness of
the model for the meta-scheduler that uses multiple DVFS operating points and
process suspension to enforce power budget.

Characterization of Intel’s Restricted Transactional Memory (Chapter 4). We present
a detailed evaluation of Intel’s Restricted Transactional Memory (RTM) perfor-
mance and energy expenditure. We compare RTM behavior to that of the TinySTM
software transactional memory system, first by running microbenchmarks, and
then by running the STAMP benchmark suite. We quantify the RTM hardware
limitations concerning its read/write-set size, duration and overhead. We find that
RTM performs well when transaction working-set fits inside cache. RTM also
handles high contention workloads better than TinySTM.

5.2 Future Work
The methodologies presented in this thesis give rise to many future research directions.

The RTM characterization we presented in Chapter 4 is an initial study. We plan to
expand this study by exploring techniques to perform energy profiling for transactional
benchmarks to help the programmers who will like to do energy-aware code optimiza-
tions. The orthogonal characterization used in our work is useful in visualizing the
effects of an individual transactional property on the energy expenditure of the system.
However, hybrid transactional memory schemes that use both hardware and software
transactional memory would need to evaluate all the transactional properties simulta-
neously, which will be difficult because of huge number of operating points involved.
We plan to explore machine learning techniques for helping such hybrid TM schemes in
making an HTM versus STM decision.

The STAMP results in Chapter 4 show that energy consumption of benchmarks with
large working sets increases even when the performance remains the same or decreases.
We intend to explore this further and devise remedial measures, if possible.

Datacenters are major power consumers in the ICT sector and present many op-
portunities in power-aware computing. We plan to expand our power modeling and
characterization approaches to datacenter workloads and explore how datacenter spe-
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cific characteristics like data replication, data placement, and data volumes affect overall
energy expenditure.
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