

## Veillonella, Firmicutes: Microbes disguised as Gram negatives

Downloaded from: https://research.chalmers.se, 2024-05-01 12:28 UTC

Citation for the original published paper (version of record):

Vesth, T., Ozen, A., Andersen, S. et al (2013). Veillonella, Firmicutes: Microbes disguised as Gram negatives. Standards in Genomic Sciences, 9(2): 431-448. http://dx.doi.org/10.4056/sigs.2981345

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library

## Veillonella, Firmicutes: Microbes disguised as Gram negatives

Tammi Vesth<sup>1</sup>, Aslı Ozen<sup>1,5</sup>, Sandra C. Andersen<sup>1</sup>, Rolf Sommer Kaas<sup>1</sup>, Oksana Lukjancenko<sup>1</sup>, Jon Bohlin<sup>2</sup>, Intawat Nookaew<sup>3</sup>, Trudy M. Wassenaar<sup>4</sup> and David W. Ussery<sup>6\*</sup>

<sup>1</sup>Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark

- <sup>2</sup>Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, Oslo, Norway
- <sup>3</sup>Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- <sup>4</sup>Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany

<sup>5</sup>The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark <sup>6</sup>Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak

Ridge, Tennessee 37831, USA

\*Correspondence: Dave Ussery (dave@cbs.dtu.dk;)

The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 2.6 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pairwise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history of the Veillonella and other Negativicutes.

## Background

The genus *Veillonella*, belonging to *Negativicutes*, consists of anaerobic, non-fermentative, Gramnegative cocci, that are normally observed in pairs or short chains, and are non-sporulating and nonmotile [1]. *Veillonella* spp. are abundant in the human microbiome and are found in the oral, respiratory, intestinal and genitourinary flora of humans and animals; they can make up as much as 10% of the bacterial community initially colonizing the enamel [2] and are found throughout the entire oral cavity [3], especially on the tongue dorsum and in saliva [4]. The importance of *Veillonella* spp. in

human infections is uncertain, and they are generally considered to be of low virulence. *Veillonella* form biofilms, often with *Streptococcus* spp., and species of these genera have been found to be more abundant in the oral microflora of people with poor oral health [5]. Studies have shown that during formation of early dental plaque, the fraction of *Veillonella* spp. changes in mixed-microbial colonies with streptococci [6]. Thus, *Veillonella* spp. may play a role in caries formation as they utilize the lactic acid produced by the organisms conducive to caries [7]. *Veillonella* are also among the most common anaerobic species reported from pulmonary samples and are frequently recovered from cystic fibrosis cases [8]. The organisms are also abundant in the human gut flora, where their numbers were found to be higher in children with type I diabetes compared to healthy controls [9]. Currently, 12 species of *Veillonella* have been characterized [10,11] including *V. parvula, V. atypica* and *V. dispar*, which are found in the human oral cavity.

The *Negativicutes* are the only diderm (literally 'two skins') members of the phylum *Firmicutes* as they possess an inner and an outer membrane. Their placement within the *Firmicutes* has been widely accepted, and has been confirmed by 16S rRNA analysis [12]. However, their genomes have not been analyzed in detail to confirm their taxonomic position. This work presents a broad analysis of the *Negativicutes* with focus on the *Veillonella* spp. using comparative microbial genomics. A total of 24 genomes from the *Negativicutes* were compared to 121 genomes covering most of the taxonomic span of sequenced bacterial genomes. We investigated how the *Negativicutes* genomes compared to other bacterial genomes using three different and complementary approaches: 1) phylogenetic trees to visualize the relative distance of the *Negativicutes* genomes to other genomes; 2) amino acid composition, nucleotide tetramer frequency and metabolism analysis using 2-D clustering and heatmaps to compare genomes; and 3) proteomic comparison across the *Negativicutes* genomes.

# Materials and Methods

#### Genome sequences used for analysis

The set of 145 genomes included in this study (24 *Negativicutes* genomes and 121 other prokaryotic genomes covering 26 phyla) are listed in Table 1.

| Table 1. Genomes used in this study |  |
|-------------------------------------|--|
|-------------------------------------|--|

| Phylum         | Name of organism and strain           | Strain designation  | Type strain                      | NCBI Taxon ID | NCBI Project ID |
|----------------|---------------------------------------|---------------------|----------------------------------|---------------|-----------------|
| Acidobacteria  | Acidobacterium capsulatum             | ATCC 51196          | Yes                              | 240015        | 28085           |
| Acidobacteria  | <i>"Korebacter versatiles"</i>        | Ellin 345           |                                  | 204669        | 15771           |
| Acidobacteria  | "Solibacter usitatus"                 | Ellin6076           |                                  | 234267        | 12638           |
| Actinobacteria | Bifidobacterium bifidum               | 317B                | No                               | 1681          | 42863           |
| Actinobacteria | Catenulispora acidiphila              | ID139908, DSM 44928 | Yes                              | 479433        | 21085           |
| Actinobacteria | Corynebacterium<br>pseudotuberculosis | C231                | No                               | 681645        | 40875           |
| Actinobacteria | Segniliparus rugosus                  | ATCC BAA-974        | Yes                              | 679197        | 40685           |
| Actinobacteria | Streptomyces bingchenggensis          | BCW-1               | Name not<br>validly<br>published | 749414        | 46847           |
| Actinobacteria | Tropheryma whipplei                   | Twist               | Yes                              | 203267        | 95              |
| Aquificae      | Persephonella marina                  | EX-H1               | Yes                              | 123214        | 12526           |
| Aquificae      | Sulfurihydrogenibium sp.              | YO3AOP1             | No type<br>strain<br>available   | 436114        | 18889           |
| Aquificae      | Thermocrinis albus                    | HI 11/12, DSM 14484 | Yes                              | 638303        | 37275           |
| Bacteroidetes  | Bacteroides thetaiotaomicron          | VPI-5482            | Yes                              | 226186        | 399             |
| Bacteroidetes  | <i>Candidatus</i> Sulcia muelleri     | DMIN                |                                  | 641892        | 37785           |
| Bacteroidetes  | Chitinophaga pinensis                 | UQM 2034, DSM 2588  | Yes                              | 485918        | 27951           |
| Bacteroidetes  | Paludibacter propionicigenes          | WB4, DSM 17365      | Yes                              | 694427        | 42009           |
| Chlamydiae     | Protochlamydia amœbophila             | UWE25               | Yes                              | 264201        | 10700           |
| Chlamydiae     | Chlamydia trachomatis                 | E/Sweden2           | No                               | 634464        | 43167           |
| Chlamydiae     | Chlamydophila pneumoniae              | AR39                | No                               | 115711        | 247             |
| Chlamydiae     | Waddlia chondrophila                  | WSU 86-1044         | Yes                              | 716544        | 43761           |

| Table 1. Genon          | nes used in this study (cont.)             |                             |                                  |               |                 |
|-------------------------|--------------------------------------------|-----------------------------|----------------------------------|---------------|-----------------|
| Phylum                  | Name of organism and strain                | Strain designation          | Type strain                      | NCBI Taxon ID | NCBI Project ID |
| Chlorobi                | "Chlorobium <mark>chlorochromatii</mark> " | CaD3                        | Name not<br>validly<br>published | 340177        | 13921           |
| Chlorobi                | Chlorobium tepidum                         | TLS                         | Yes                              | 194439        | 302             |
| Chloroflexi             | Chloroflexus aggregans                     | DSM 9485                    | Yes                              | 326427        | 16708           |
| Chloroflexi             | Dehalococcoides sp                         | BAV1                        | No                               | 216389        | 15770           |
| Chloroflexi             | Herpetosiphon aurantiacus                  | ATCC 23779                  | Yes<br>No type                   | 316274        | 16523           |
| Chloroflexi             | Roseiflexus sp.                            | RS-1                        | strain<br>available              | 357808        | 16190           |
| Cyanobacteria           | Anabaena variabilis 3                      | ATCC 2941                   | No                               | 2 402 92      | 10642           |
| Cyanobacteria           | <i>Cyanothece sp</i> .                     | PCC 7822                    | No                               | 497965        | 28535           |
| Cyanobacteria           | Prochlorococcus marinus                    | MIT9301                     | No                               | 167546        | 15746           |
| Cyanobacteria           | Synechocystis <b>sp.</b>                   | PCC6803                     | No                               | 1148          | 60              |
| Deferribacteres         | Calditerrivibrio nitroreducens             | Yu37-1, DSM 19672           | Yes                              | 768670        | 49523           |
| Deferribacteres         | Deferribacter desulfuricans                | SSM1, DSM 14783             | Yes                              | 197162        | 37285           |
| Deferribacteres         | Denitrovibrio acetiphilus                  | N2460, DSM 12809            | Yes                              | 522772        | 29431           |
| Deinococcus-<br>Thermus | Oceanithermus profundus                    | 506, DSM 14977              | Yes                              | 670487        | 40223           |
| Deinococcus-<br>Thermus | Thermus thermophilus                       | HB8                         | Yes                              | 300852        | 13202           |
| Deinococcus-<br>Thermus | Truepera radiovictrix                      | RQ-24, DSM 17093            | Yes                              | 649638        | 38371           |
| Dictyoglomi             | Dictyoglomus turgidum                      | DSM 6724                    | Yes                              | 515635        | 29175           |
| Elusimicrobia           | Elusimicrobium minutum                     | Pei 191                     | Yes                              | 445932        | 19701           |
| Fibrobacteres           | Fibrobacter succinogenes                   | S85                         | Yes                              | 59374         | 32617           |
| Firmicutes              | Acetohalobium arabaticum                   | Z-7288, DSM 5501            | Yes                              | 574087        | 32769           |
| Firmicutes              | Acidaminococcus fermentans                 | VR4, DSM 20731              | Yes                              | 591001        | 33685           |
| Firmicutes              | Acidaminococcus sp.                        | D21                         | strain<br>available              | 563191        | 34117           |
| Firmicutes              | Alkaliphilus oremlandii                    | OhILAs                      | Yes                              | 350688        | 16083           |
| Firmicutes              | Bacillus subtilis subsp. subtilis          | 168                         | Yes                              | 224308        | 76              |
| Firmicutes              | Clostridium botulinum                      | F Langeland                 | No                               | 441772        | 19519           |
| Firmicutes              | Clostridium cellulolyticum                 | H10                         | Yes                              | 394503        | 17419           |
| Firmicutes              | Clostridium difficile                      | 630 (epidemic type X)       | No                               | 272563        | 78              |
| Firmicutes              | "Desulfotomaculum <b>reducens</b> "        | MI-1                        | validly<br>published             | 349161        | 13424           |
| Firmicutes              | Dialister invisus                          | DSM 15470                   | Yes                              | 592028        | 33143           |
| Firmicutes              | Dialister micraerophilus                   | Oral Taxon 843 DSM<br>19965 | Yes                              | 888062        | 53029           |
| Firmicutes              | Dialister micraerophilus                   | UPII-345-E                  | No                               | 910314        | 59521           |
| Firmicutes              | Enterococcus faecalis                      | V583                        | No                               | 226185        | 70              |
| Firmicutes              | Eubacterium cylindroides                   | T2-87                       | No                               | 717960        | 45917           |
| Firmicutes              | Eubacterium rectale                        | A1-86, DSM 17629            | No                               | 39491         | 39159           |

Veillonella, Firmicutes

| Table 1. Genomes used in this study (cont.) |                                      |                           |                                  |               |                 |  |
|---------------------------------------------|--------------------------------------|---------------------------|----------------------------------|---------------|-----------------|--|
| <u>Phylum</u>                               | Name of organism and strain          | Strain designation        | Type strain                      | NCBI Taxon ID | NCBI Project ID |  |
| Firmicutes                                  | Exiguobacterium sibiricum            | 255-15                    | Yes                              | 262543        | 10649           |  |
| Firmicutes                                  | Geobacillus kaustophilus             | HTA426                    | Yes                              | 235909        | 13233           |  |
| Firmicutes                                  | Lactococcus lactis                   | cremoris MG1363           | No                               | 416870        | 18797           |  |
| Firmicutes                                  | Lysinibacillus sphaericus            | C3-41                     | No                               | 444177        | 19619           |  |
| Firmicutes                                  | Megamonas hypermegale                | ART12/1                   | No                               | 158847        | 39163           |  |
| Firmicutes                                  | Megasphaera <mark>genomo s</mark> p. | type 128L                 | No type<br>strain<br>available   | 699218        | 42553           |  |
| Firmicutes                                  | Megasphaera micronuciformis          | F0359                     | No                               | 706434        | 43125           |  |
| Firmicutes                                  | Mitsuokella multacida                | A 405-1, DSM 20544        | Yes                              | 500635        | 28653           |  |
| Firmicutes                                  | Paenibacillus sp.                    | JDR-2                     | No                               | 324057        | 20399           |  |
| Firmicutes                                  | Phascolarctobacterium sp.            | YIT 12067                 | No                               | 626939        | 48505           |  |
| Firmicutes                                  | Selenomonas artemidis                | F0399                     | No                               | 749551        | 47277           |  |
| Firmicutes                                  | Selenomonas flueggei                 | ATCC 43531                | Yes                              | 638302        | 37273           |  |
| Firmicutes                                  | Selenomonas noxia                    | ATCC 43541                | Yes                              | 585503        | 34641           |  |
| Firmicutes                                  | Selenomonas sp.                      | Oral Taxon 137 F0430      | No type<br>strain<br>available   | 879310        | 52055           |  |
| Firmicutes                                  | Selenomonas sp.                      | Oral Taxon 149<br>67H29BP | No type<br>strain<br>available   | 864563        | 50535           |  |
| Firmicutes                                  | Selenomonas sputigena                | DSM 20758                 | Yes                              | 546271        | 51247           |  |
| Firmicutes                                  | Staphylococcus aureus aureus         | ED98                      | No                               | 681288        | 39547           |  |
| Firmicutes                                  | Streptococcus pneumoniae             | TIGR4                     | No                               | 170187        | 277             |  |
| Firmicutes                                  | Thermoanaerobacter <b>s</b> p.       | X514                      | Name not<br>validly<br>published | 399726        | 16394           |  |
| Firmicutes                                  | Thermosinus carboxydivorans          | Nor1                      | Yes                              | 401526        | 17587           |  |
| Firmicutes                                  | Turic ibacter sp.                    | PC909 702450 42765        | No                               |               |                 |  |
| Firmicutes                                  | Veillonella atypica                  | ACS-049-V-Sch6            | No                               | 866776        | 51075           |  |
| Firmicutes                                  | Veillonella atypica                  | ACS-134-V-Col7a           | No                               | 866778        | 51079           |  |
| Firmicutes                                  | Veillonella dispar                   | ATCC 17748                | Yes                              | 546273        | 30491           |  |
| Firmicutes                                  | Veillonella parvula                  | ATCC 17745                | No                               | 686660        | 41557           |  |
| Firmicutes                                  | Veillonella parvula                  | Te3, DSM 2008             | Yes                              | 479436        | 21091           |  |
| Firmicutes                                  | Veillonella sp.                      | 3 1 44                    | Name not<br>validly<br>published | 457416        | 41975           |  |
| Firmicutes                                  | Veillonella sp.                      | 6 1 27                    | Name not<br>validly<br>published | 450749        | 41977           |  |
| Firmicutes                                  | Veillonella sp.                      | Oral Taxon 158 F0412      | Name not<br>validly<br>published | 879309        | 52053           |  |
| Fusobacteria                                | Fusobacterium nucleatum<br>nucleatum | ATCC 25586                | Yes                              | 190304        | 295             |  |
| Fusobacteria                                | Ilyobacter polytropus                | CuHBu1, DSM 2926          | Yes                              | 572544        | 32 577          |  |
| Fusobacteria                                | Leptotrichia buccalis                | C-1013-b, DSM 1135        | Yes                              | 523794        | 29445           |  |
| Fusobacteria                                | Sebaldella termitidis                | NCTC 11300                | Yes                              | 526218        | 29539           |  |

| Table 1. Genomes used in this study (cont.) |                                       |                    |                                  |               |                 |
|---------------------------------------------|---------------------------------------|--------------------|----------------------------------|---------------|-----------------|
| Phylum                                      | Name of organism and strain           | Strain designation | Type strain                      | NCBI Taxon ID | NCBI Project ID |
| Fusobacteria                                | Streptobacillus moniliformis          | 9901, DSM 12112    | Yes                              | 519441        | 29309           |
| Planctomycetes                              | Pirellula staleyi                     | DSM 6068           | Yes                              | 530564        | 29845           |
| Planctomycetes                              | Planctomyces limnophilus              | Mu 290, DSM 3776   | Yes                              | 521674        | 29411           |
| Proteobacteria                              | Acinetobacter baumannii               | SDF                | No                               | 509170        | 13001           |
| Proteobacteria                              | Alkalilimnicola ehrlichii             | MLHE-1             | Yes                              | 187272        | 15763           |
| Proteobacteria                              | Arcobacter nitrofigilis               | DSM 7299           | Yes                              | 572480        | 32 593          |
| Proteobacteria                              | Burkholderia xenovorans               | (fungorum) LB400   | Yes                              | 266265        | 254             |
| Proteobacteria                              | Campylobacter jejuni                  | doylei 269.97      | No                               | 360109        | 17163           |
| Proteobacteria                              | Candidatus Pelagibacter ubique        | SAR11 HTCC1062     | Name not<br>validly<br>published | 335992        | 13989           |
| Proteobacteria                              | Candidatus Zinderia insecticola       | CARI               | Name not<br>validly<br>published | 871271        | 51243           |
| Proteobacteria                              | Cellvibrio japonicus                  | Ueda107            | Yes                              | 498211        | 28329           |
| Proteobacteria                              | Cupriavidus taiwanensis               | LMG19424           | Yes                              | 164546        | 15733           |
| Proteobacteria                              | Escherichia coli                      | K-12, MG1655       | No                               | 511145        | 225             |
| Proteobacteria                              | Geobacter uraniireducens              | Rf4                | Yes                              | 351605        | 15768           |
| Proteobacteria                              | Hahella chejuensis                    | KCTC 2 396         | Yes                              | 349521        | 16064           |
| Proteobacteria                              | Haliangium ochraceum                  | SMP-2, DSM 14365   | Yes                              | 502025        | 28711           |
| Proteobacteria                              | Helicobacter pylori                   | 908                | No                               | 869727        | 50869           |
| Proteobacteria                              | Lawsonia intracellularis              | PHE/MN1-00         | No<br>Name not                   | 363253        | 183             |
| Proteobacteria                              | Magnetococcus sp.                     | MC-1               | validly<br>published             | 156889        | 262             |
| Proteobacteria                              | Methylobacterium nodulans             | ORS2060            | Yes                              | 460265        | 20477           |
| Proteobacteria                              | Neisseria meningitidis                | Z2491              | No                               | 122587        | 2 52            |
| Proteobacteria                              | Neorickettsia sennetsu                | Miyayama           | Yes                              | 222891        | 357             |
| Proteobacteria                              | Nitrosomonas eutropha                 | C91 (C71)          | Yes                              | 335283        | 13913           |
| Proteobacteria                              | Photorhabdus luminescens<br>Iaumondii | TT01               | Yes                              | 243265        | 9605            |
| Proteobacteria                              | Polynucleobacter necessarius          | STIR1              | No                               | 452638        | 19991           |
| Proteobacteria                              | Pseudomonas aeruginosa                | LESB58             | No                               | 557722        | 31101           |
| Proteobacteria                              | Pseudomonas fluorescens               | SBW25              | No                               | 216595        | 31229           |
| Proteobacteria                              | Pseudomonas stutzeri                  | A1501              | No                               | 379731        | 16817           |
| Proteobacteria                              | Salmonella enterica enterica          | PT4 P12 51 09      | No                               | 550537        | 30687           |
| Proteobacteria                              | Shewanella oneidensis                 | MR-1               | Yes                              | 211586        | 335             |
| Proteobacteria                              | Sorangium cellulosum                  | So ce56            | No                               | 448385        | 28111           |
| Proteobacteria                              | Stigmatella aurantiaca                | DW4 /3-1           | No                               | 378806        | 52561           |
| Proteobacteria                              | Sulfurospirillum delevianum           | 5175, DSM 6946     | No                               | 525898        | 29529           |
| Proteobacteria                              | Vibrio cholerae                       | O395               | No                               | 345073        | 32853           |
| Spirochaetes                                | Borrelia turicatae                    | 91F135             | Yes                              | 314724        | 13597           |
| Spirochaetes                                | Brachyspira murdochii                 | 56-150, DSM 12563  | Yes                              | 526224        | 29543           |
| Spirochaetes                                | Leptospira interrogans                | lai 56601          | No                               | 189518        | 293             |
| Synergistetes                               | Thermanaerovibrio<br>acidaminovorans  | Su883, DSM 6589    | Yes                              | 525903        | 29531           |

 
 Table 1. Genomes used in this study (cont.)
Phylum Name of organism and strain Strain designation Type strain NCBI Taxon ID NCBI Project ID Tenericutes Acholeplasma laidlawii PG-8A No 441768 19259 Name not yellows witches'-broom Tenericutes *Candidatus* Phytoplasma asteris validly 13478 AY-WB 322098 published Name not Candidatus Phytoplasma mali validly 37692 Tenericutes AT 25335 published 97 Tenericutes Mycoplasma genitalium G37 Yes 243273 Mycoplasma pneumoniae Tenericutes FH No 722438 49525 Ureaplasma parvum Tenericutes sv 3. ATCC 27815 No 505682 19087 Fervidobacterium nodosum Thermotogae Rt17-B1 Yes 381764 16719 Thermotogae Kosmotoga olearia TBF 19.5.1 Yes 521045 29419 Thermotogae Petrotoga mobilis SI95 Yes 403833 17679 Thermotogae Thermotoga naphthophila **RKU-10** Yes 590168 33663 Verrucomicrobia Akkermansia muciniphila ATCC BAA-835 Yes 349741 20089 Verrucomicrobia Opitutus terrae Yes PB90-1 452637 Crenarchaeota Sulfolobus solfataricus P2 273057 108 Crenarchaeota Thermosphaera aggregans M11TL, DSM 11486 Yes 633148 36571 Halogeometricum boringuense Eurvarchaeota PR3, DSM 11551 Yes 469382 20743 Name not Methanocella sp. RC-I validly Euryarchaeota 351160 19641 published Methanothermus fervidus V24S, DSM 2088 33689 Euryarchaeota Yes 523846 Name not Candidatus Korarchaeum Korarchaeota OPF8 validly 374847 16525 cryptofilum published Name not Kin4-M validly 228908 9599 Nanoarchaeota "Nanoarchaeum equitans" published

#### 16S rRNA tree

Veillonella, Firmicutes

For this analysis, 16S rRNA sequences were predicted from the whole genome sequences of the selected organisms, using the RNAmmer algorithm [13]. These sequences were aligned using the MAFFT program, with the iterative refinement algorithm using maximum iteration (1000) and default parameters for gap penalties [14]. A distance tree was constructed using MEGA5 [15] with the Neighborjoining algorithm [16] and 1,000 bootstrap resamplings. The taxa in the resulting tree were collapsed to phyla, except for the *Negativicutes*.

### **Composition Vector Tree (CV)**

A Composition Vector Tree was constructed based on protein sequences of the 145 selected genomes using a webserver (available at <u>tlife.fudan.edu.cn/</u> <u>cvtree</u>) with the K parameter set at 6 [17]. The outcome from the program is a distance matrix based on amino acid sequence comparisons, which is then used to generate a phylogenetic tree with the neighbor-joining method. In the shown tree, the outgroup chosen was *Methanothermus fervidus* (an *Archaea*). After tree visualization with MEGA5, branches were collapsed wherever possible with the exception of the *Negativicutes* branch, which remained expanded.

#### Consensus tree of conserved genes

Using the list of universally conserved core genes, previously identified by Ciccarelli *et al.* [18], and an implementation of BLAST, a set of genes that was shared among all 145 genomes was identified. Proteins that had no match in at least one genome or showed poor E-value were eliminated. The 27

conserved core genes were extracted (Table 1) and a multiple alignment was produced using MUSCLE software [19]. A set of phylogenetic trees was constructed by PAUP [20] and a best-fit consensus tree was generated using Phylogeny Inference package (PHYLIP) as described elsewhere [21]. Bootstrap values were found after 27 resamplings, which is equal to the number of gene families conserved in all the analyzed genomes.

#### DNA tetramer analysis and amino acid usage

A tetramer frequency heatmap was constructed from the observed ratios of tetra-nucleotide frequencies divided by estimated tetra-nucleotide frequencies for each genome [22]. The estimated tetra-nucleotides were computed from the genomes' base composition. The ratio of observed over expected frequency was used for hierarchical clustering using complete linkage and Euclidean distance, which was subsequently performed with respect to both strain and tetramer frequencies.

The amino acid heatmap is based on frequencies of deduced proteomic amino acids from each genome normalized with respect to the total number of amino acids in each genome. The amino acid frequencies for each genome were clustered using complete linkage and Euclidean distance with respect to both genomes and amino acids. The heatmap was made using the R package ggplot2 [23].

#### Comparison of metabolism potential

The protein sequences of Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology categories [24] were downloaded and only the Bacterial sequences were considered. The Hidden Markov model (HMM) of each ortholog was generated using HMMER version 3 [25] based on the multiple alignment of each orthologous set of KEGG proteins, using MUSCLE software [19]. The 145 proteomes were queried against the HMMs to infer their ontology. A cutoff of  $1 \times 10^{-30}$  was used for statistical significance. A heatmap of each pathway and process derived from the database KEGG was illustrated based on normalized abundance of the enzymes present in each pathway. The heatmap and hierarchical clustering were performed in the software R [23].

# Construction of BLAST matrix and proteome comparison

Reciprocal BLAST was performed between each genome pair. The program blastall version 2.2.25 was used for BLAST implementation using default settings (BLASTp, E-value set to  $1 \times 10^{-5}$  for nonhomologs and  $1 \times 10^{-8}$  for homologs, without filtering). A hit was considered significant at a BLAST cutoff of 95% identity and 95% coverage (of the longest gene in comparison). The number of hits was then given as a percentage of the genes in the column representing the corresponding genome. The diagonal designates internal homologs, computed by blasting each genome with itself. To avoid including identical genes, the second highest scoring hits were used. Furthermore, we also performed homology reduction of the diagonal hits, using an implementation of the Hobohm algorithm [26].

## Results

Twenty-four Negativicutes genomes were compared to 121 other prokaryotic genomes covering 22 Bacterial and 4 Archaeal phyla. When available, at least two genomes were included for every phylum. The first analysis presented here is based on 16S rRNA alignments. A single 16S rRNA gene was extracted from each of the genomes and an alignment was produced spanning the maximum length of the gene. A phylogenetic tree was constructed based on this alignment, as shown in Figure 1. With the exception of the *Negativicutes*, branches of the tree were collapsed in those cases where the analyzed species within a phylum clustered together. With the exception of some Firmicutes, the analyzed genomes cluster according to their phylum, although the *Deferribacteres* phylum is mixed with the Proteobacteria phyla, and two members of Proteobacteria are not positioned with other members of their phylum (Lawsonia intracellularis and Magnetococcus). That most phyla could be collapsed is consistent with the weight of 16S rRNA similarities in currently accepted taxonomic descriptions of prokarvotes. The Firmicutes, however, show less consistency. Although most of the analyzed *Firmicutes* cluster together, two species are separated from the Firmicutes branch (Eubacterium cylindroides and Thermoanaerobacter sp., both members of *Clostridia*). The *Negativicutes* are positioned within the *Firmicutes* cluster, and this part of the tree is expanded in the figure for clarity. As can be seen, phylogeny of the 16S rRNA gene provides good resolution between the different genera of the analyzed *Negativicutes*. All *Veillonella* spp. are clustered within one branch of the *Negativicutes*. The Acidaminococcaceae (to which Phascolarctobacterium spp. also belong) are placed within the cluster of the Veillonellaceae, in

#### Veillonella, Firmicutes

accordance with their current classification [27]. The *Acidaminococcaceae* used to be recognized as a separate family within the *Negativicutes*, just like the *Veillonellaceae*, and during preparation of this contribution these two families were presented as such in the Taxonomy database at NCBI. Of note is the relatively close relationship between *Negativicutes* and two *Clostridium* species (*C. botulinum* and *C. cellulolyticum*), which does not

cluster with other members of the *Clostridium* genus (Figure 1). That genus displays a high degree of variation and re-classification of some of the members of this genus is in progress (see for example [27]). That two members of the *Clostridia* are even placed outside the *Firmicutes* phylum is an indication of 16S rRNA gene sequence heterogeneity within this class.



**Figure 1.** Phylogenetic neighbor-joining tree based on 16S rRNA genes extracted from 145 genomes (24 *Negativicutes* and 121 prokaryotic genomes representing 26 phyla). Bootstrap values of 50 and higher are indicated. With the exception of the *Negativicutes*, branches where all organisms belong to the same phyla are collapsed and named by the phyla they represent. The green shading indicates the position of *Firmicutes*. The collapsed branch of the *Bacilli*, marked (1), contains *Turicibacter sanguinis*, a *Firmicutes* member of the *Erysipelotrichales* as well as *Bacilli* members. An uncollapsed tree is included in the supplementary material.

Next, all protein-coding genes of the analyzed genomes were compared and a composition vector tree (CVtree) was produced, based on amino acid sequences (Figure 2). The topology of the resulting tree is generally in accordance with the 16S rRNA tree shown in the previous figure. As indicated by the collapsed branches, the CVtree grouped most genomes according to their known taxonomic phyla, although not all Spirochaetes cluster together. In contrast to the 16S rRNA tree, in this protein tree all the Firmicutes cluster together, and are distinct from other phyla. The genomes, nested within Negativicutes the Firmicutes, again have the Acidaminococcaceae placed within the *Veillonellaceae*, while all *Veillonella* spp. are found in one cluster. All *Clostridia*, this time divided into two collapsed branches, are positioned as the closest relatives to *Negativicutes*. It is of interest that among the closest relatives to *Firmicutes*, based on this analysis, are the *Fusobacteria* and the *Elusimicrobia*; these are atypical diderm bacteria that produce lipopolysaccharides [28]. However, the spirochete, *Brachyspira murdochii*, does not possess two membranes, but is nevertheless grouped with atypical diderms. On the other hand while the *Synergistetes* are atypical diderm bacteria, they are placed elsewhere in the tree (Figure 2).



**Figure 2**. Phylogenetic tree based on composition vector analysis (CVtree) of all protein coding genes (amino acid sequences) derived from the analyzed genomes. Note that the branch lengths in this plot are artificial. The coloring is the same as in Figure 1 and branches have been collapsed. The *Firmicutes* branch *Bacilli*, marked (1), contains *Turicibacter sanguinis*. An uncollapsed tree is included in the supplementary material.

A third analysis was based on a subset of proteins found conserved amongst all analyzed genomes. These conserved proteins were selected based on a protein BLAST (a cutoff of 50% identity and 50% coverage of the query length was used) and single linkage clustering. The analysis identified 29 genes that are shared among all 145 genomes [Table 2]. A consensus tree was constructed based on these 29 conserved proteins (Figure 3). The results confirm the global observations of the other two phylogenetic analyses: the *Negativicutes* cluster together and are most closely related to *Clostridia* (in this case the most closely related species are *Desulfotomaculum reducens* and *Acetohalobium arabaticum*). As before, the *Acidaminococcaceae* cluster together but within the *Veillonellaceae*. The position of *Turicibacter sanguinis* within the *Bacilli* group of *Firmicutes* is consistent with the other two trees but contrasts with its taxonomic description at NCBI as a member of the *Erysipelotrichia*.

| Table 2. Universally conserved COGs |                     |                                                   |  |  |  |
|-------------------------------------|---------------------|---------------------------------------------------|--|--|--|
| Group                               | Average length (aa) | Annotation                                        |  |  |  |
| COG0012                             | 380                 | Predicted GTPase, probable translation factor     |  |  |  |
| COG0016                             | 423                 | Phenylalanine-tRNA synthethase alpha subunit      |  |  |  |
| COG0048                             | 137                 | Ribosomal protein S12                             |  |  |  |
| COG0049                             | 182                 | Ribosomal protein S7                              |  |  |  |
| COG0052                             | 240                 | Ribosomal protein S2                              |  |  |  |
| COG0080                             | 154                 | Ribosomal protein L11                             |  |  |  |
| COG0081                             | 230                 | Ribosomal protein L1                              |  |  |  |
| COG0087                             | 288                 | Ribosomal protein L3                              |  |  |  |
| COG0091                             | 157                 | Ribosomal protein L22                             |  |  |  |
| COG0092                             | 240                 | Ribosomal protein S3                              |  |  |  |
| COG0093                             | 130                 | Ribosomal protein L14                             |  |  |  |
| COG0094                             | 182                 | Ribosomal protein L5                              |  |  |  |
| COG0096                             | 131                 | Ribosomal protein S8                              |  |  |  |
| COG0097                             | 177                 | Ribosomal protein L6P/L9E                         |  |  |  |
| COG0098                             | 220                 | Ribosomal protein S5                              |  |  |  |
| COG0100                             | 145                 | Ribosomal protein S11                             |  |  |  |
| COG0102                             | 167                 | Ribosomal protein L13                             |  |  |  |
| COG0103                             | 172                 | Ribosomal protein S9                              |  |  |  |
| COG0172                             | 442                 | Seryl-tRNA synthetase                             |  |  |  |
| COG0184                             | 154                 | Ribosomal protein S15P/S13E                       |  |  |  |
| COG0186                             | 122                 | Ribosomal protein S17                             |  |  |  |
| COG0197                             | 175                 | Ribosomal protein L16/L10E                        |  |  |  |
| COG0200                             | 166                 | Ribosomal protein L15                             |  |  |  |
| COG0201                             | 445                 | Preprotein translocase subunit SecY               |  |  |  |
| COG0202                             | 32 3                | DNA-directed RNA polymerase, alpha subunit        |  |  |  |
| COG0256                             | 178                 | Ribosomal protein L18                             |  |  |  |
| COG0495                             | 854                 | Leucyl-tRNA synthetase                            |  |  |  |
| COG0522                             | 199                 | Ribosomal protein S4 and related proteins         |  |  |  |
| COG0533                             | 375                 | Metal-dependent proteases with chaperone activity |  |  |  |



**Figure 3**. Consensus tree based on the phylogenetic trees of 27 genes conserved in all 145 genomes. The collapsed branch of the *Bacilli*, marked (1), contains *Turicibacter sanguinis*. An uncollapsed tree is available as a supplemental figure.

In conclusion, based on three independent phylogenetic analyses, the closest relatives to the *Negativicutes* seem to be the *Clostridiaceae*. The observed clustering of species within the *Negativicutes* is consistent with their assigned taxonomy. Furthermore, these analyses show that *Veillonella spp.* form a distinct branch, most different from the other *Negativicutes*, while the recent change of status of the *Acidaminococcaceae* (they are no longer a separate family) is confirmed by these analyses. Apart from comparing proteins and genes, genomes can also be compared based on nucleotide composition irrespective of their coding capacity. For instance, the frequency of nucleotide combinations can reveal similarities between genomes that are independent of protein-coding information. We compared the frequency of tetranucleotides for all 145 genomes. The observed frequency of all 64 tetranucleotide combinations was extracted for each genome and these frequencies were divided by the theoretically calculated, expected frequencies (corrected for differences in base composition). This ratio, which could be interpreted as a

genomic signature, was expected to reflect taxonomic divisions [29]. However, although the analysis identified a high similarity in tetranucleotide frequency for all of the analyzed Veillonella genomes, most of the clustering observed was not in accordance with known taxonomic relationships. Not only were *Negativicutes* other than *Veillonella* separated from each other and strewn across the phyla, but also several other Firmicutes were distributed over various branches (data shown as supplementary material). In fact, for most of the analyzed genomes, members of identical phyla did not cluster together and even the Archaea were mixed with *Bacteria*, although some closely related species were indeed clustered. This may explain why all Veillonella genomes grouped together. Several organisms with similar tetranucleotide frequencies did not share a common ecological niche, in contrast to previously reported observations (reviewed in [30]). Neither was the obtained clustering dictated by GC-content. The conclusion from this analysis was that tetranucleotide analysis is only taxonomically informative for closely related genomes.

We also compared whole-genome amino acid frequencies in each of the deduced proteomes. Although the results are slightly more in agreement with known taxonomy as compared with the genomic signatures discussed above, this analysis does not cluster organisms according to their phyla, and again some Archaea are mixed with Bacteria. The relevant part of the heatmap based on amino acid frequency is shown in Figure 4. All Veillonella genomes cluster together within the *Negativicutes*, with the exception of two of the three Dialister genomes, which are found most closely related to Clostridium species (See supplemental information for a version of this figure showing all the genomes). The major *Negativicutes* cluster also contains a Geobacillus (which is a Gram-positive *Firmicutes*) and a methanogenic Archaean. Interestingly, the closest relatives to this cluster are not *Clostridia*, as the previous phylogenetic trees suggest, but a number of *Proteobacteria*. It is striking that the amino acid frequency analysis detects similarities to Proteobacteria, with which the *Negativicutes* have their two membranes in common.



**Figure 4**. A zoomed heatmap of the amino acid frequency found in the deduced proteomes of all 145 genomes. A fragment of the heatmap is shown, presenting the cluster in which all but two *Negativicutes* are found. The remaining two, both *Dialister microaerophilus* genomes, are positioned elsewhere in the tree, closest to *Clostridium cellulolyticum* (not shown in this zoom). The color scale indicates highly underrepresented (orange) to highly overrepresented amino acid frequency (magentum). The full figure is available as supplementary information.

The metabolic properties encoded by the genomes were analyzed next, based on KEGG comparisons [24]. The results are again visualized in a heatmap (Figure 5). We hypothesized that this analysis could identify similarities based on niche adaptation. For simplicity, only a selected number of phyla are shown: apart from the *Firmicutes*, genomes are included that represent Bacteroidetes and Proteobacteria (both of which contain members frequently found in the oral or gut microbiome), while Cyanobacteria are included as representatives of a phylum that occupy an environmental niche. Since the genomes are compared based on predicted proteomes, their annotation was standardized in order to reduce artificial variation caused by gene annotation differences. As can be seen in Figure 5, the *Veillonella* genomes all cluster together at the right-hand side of the plot, within a larger cluster containing most of the other Negativicutes and some Firmicutes. The three Dialister species are placed outside the *Negativicutes* cluster. The other *Firmicutes* that are found combined with the *Negativicutes*, based on their metabolic potential, are Clostridium cellulolyticum, Eubacterium rectale. Lactococcus lactis, Streptococcus pneumoniae and Turicibacter sanguinis. These are all common members of the oral or intestine microbiome. As expected, the metabolic pathway for lipopolysaccharide biosynthesis is shared between the *Negativicutes* and other Gram-negative species, as indicated by the arrows in Figure 5. Interestingly, the *Cvanobacteria* form a small cluster within, not outside the tree, together with a Haliangium and a Sorangium species as their closest neighbors (both are social *Myxococcales* belonging to the Deltaproteobacteria). The exclusive ability of carbon fixation by *Cyanobacteria* is apparent from the dark red square in the block 'energy'. The lanes of *Veillonella* in Figure 5 are dominated by light colors, indicative of medium metabolic potential; that is, in contrast to some genomes where most of the pathways are present (dark red for Proteobacteria for example) or missing (dark green for other *Negativicutes*), the *Veillonella* genomes have partial pathways (based on knowledge primarily from aerobic genomes). There is no reason to believe that the Veillonella genomes should have less metabolic potential than other *Negativicutes*. Indeed, it is likely that the differences in metabolic potential of *Veillonella* are truly reflective of alternative capabilities for these bacteria.

It was further investigated how conserved the predicted proteomes are within the *Negativicutes.* As a quantitative measure for homology, shared protein-coding genes were identified by pairwise BLASTP comparison and expressed as a percentage of the combined proteomes. The results are shown in a matrix (Figure 6). In addition to the proteomes of the 24 *Negativicutes*, the comparison includes *Clostrid*botulinum. ium Cl. cellulolyticum and Desulfotomaculum reducens, as these Firmicutes were shown to share characteristics with Negativicutes in previous analyses (cf. Figures 1 and 3). The proteome of *E. coli* K12 is included as an example of a Gram-negative intestinal bacterium. The BLAST matrix was constructed using reciprocal best BLAST hits to determine the presence of shared protein family between two genomes. Inspection of Figure 6 shows that the genus Veillonella is relatively homogeneous; any two members of this genus share between 67% and 90% homology (1,357 to 1,682 protein families), irrespective of the species. The genus Selenomonas is more heterogeneous, with pairwise homology varying from 42% to 82% between any two species (980 to 1659 protein families). The three proteomes of *Dialister spp.*, covering two species, share between 40% and 84% homology. The highest homologous fraction identified between two members of different genera within the Negativicutes is 43% (Mitsuokella multacida compared to Selenomonas sputigena, whereas the lowest homology is 15% (*Dialister* spp. compared to *Thermosinus carboxydivorans*). *Negativicutes* share between 9% and 33% homology with the analyzed Firmicutes, whereas slightly lower homology is detected with *E. coli* (between 7% and 24%).

Finally, we assessed the gene pool conserved within all analyzed *Negativicutes*. Using the same cutoff for protein BLAST comparison as before, a core-genome is identified that contains about 300 conserved protein families (data not shown). This is a relatively low number of conserved proteins, reflective of the extensive genetic heterogeneity within this bacterial class.



**Figure 5**. Heatmap of metabolism potential, based on Kyoto Encyclopedia of Genes and Genomes ontology (KEGG). The green color in the heatmap indicates weak metabolic potential, while red signals strong potential. The arrows to the right indicate the scores for lipopolysaccharide biosynthesis. A version summarizing the metabolism pathways and showing the species legend is available as supplementary material.



**Figure 6.** Proteome comparison represented by a BLAST matrix, based on 24 *Negativicutes* genomes with reciprocal best hits. The genomes of *Clostridium botulinum*, *Cl. cellulolyticum*, *Desulfotomaculum reducens* and *E. coli* are added for comparison. Inter-genus comparisons are indicated by black squares. A version reporting the numerical values of homology percentages is available as supplementary information.

## Discussion

The availability of complete sequences for a large and diverse set of Bacterial genomes has helped in exploring the conundrum of the genus *Veillonella*, a genus within the *Negativicutes* class, all of which are Gram negative *Firmicutes*. The 16S rRNA tree shown as Figure 1 illustrates how "close" the *Negativicutes* are to other *Firmicutes*. The closest Gram positive *Clostridium* species are actually quite distant to *Veillonella* and other *Negativicutes* genomes, as can be seen in the low fraction of shared protein families in Figure 6. The Gramnegative *Firmicutes* are even more distant to other Gram negatives, such as *Proteobacteria* (e.g., *E. coli*). It should be noted that the family *Clostridiaceae* is a largely diverse group with many members being re-classified [27]. It is therefore possible that the taxonomic description of some *Clostridium* genomes may change in future. However, our analyses did not identify one single Gram-positive *Firmicutes* (*Clostrida* or others) that consistently was identified as most closely related to *Veillonella*. As seen from three types of phylogenetic analysis, the *Negativicutes* class genomes form a distinct cluster within the *Firmicutes*, and the *Veillonella* genus forms a relatively homogeneous group of species within the *Negativicutes*, with relatively conserved metabolic properties (Figure 5). In comparison, the *Selenomonas* genus is more heterogeneous, at least based on their total gene comparison, as illustrated in Figure 6. In contrast to expectations, relatively little homology between Negativicutes and other Gramnegative genomes was detected in our analyses. Neither gene-dependent phylogenetic analysis, nor gene-independent DNA tetramer analysis identified a significant commonness between *Negativicutes* and, say, *Proteobacteria*. Only whole-genome frequency analysis of amino acid usage identified some similarity to a few *Proteobacteria*, and this might be more reflective of environment the organism is adapted to, and not phylogeny. Using KEGG pathways for metabolic comparison of the proteomes we found few pathways in common, with the exception of a shared lipopolysaccharide biosynthesis pathway. From all analyses combined, it is clear that the taxonomic placement of *Negativicutes* within the Firmicutes reflects their genetic and genomic characteristics, although the proteins encoded by

#### Author's contributions

Tammi Vesth was a main contributor to the writing of the manuscript and to the organization of the work. Trudy Wassenaar helped considerably in editing and improving the manuscript. Individual contributions: Asli Ozen (16s rRNA and CV tree), Oksana Lukjancenko (consensus tree), Sandra Andersen (initial investigations and back-

## Acknowledgements

This research was supported by grants from the Danish Research Council, and in part by a grant 09-067103/DSF from the Danish Council for Strategic Research.

## References

- Delwiche EA, Pestka JJ, Tortorello ML. The veillonellae: gram-negative cocci with a unique physiology. Annu Rev Microbiol 1985; 39:175-193. <u>PubMed</u> <u>http://dx.doi.org/10.1146/annurev.mi.39.100185.</u> 001135
- Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ, Kolenbrander PE. Molecular Characterization of Subject-Specific Oral Microflora during Initial Colonization of Enamel. *Appl Environ Microbiol* 2006; **72**:2837-2848. <u>PubMed</u> <u>http://dx.doi.org/10.1128/AEM.72.4.2837-2848.2006</u>
- 3. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the Normal *Bacteria*l Flora of the Oral Cavity. *J Clin Microbiol* 2005; **43**:5721-5732.

the *Negativicutes* genomes are quite distinct from their Gram-positive cousins. It could be speculated that the double membrane of the *Negativicutes* evolved in a lineage that used to be a singlemembrane (Gram-positive) Firmicute. Whether this event co-evolved independently of the formation of other Gram-negative phyla, or was the result of lateral gene transfer, cannot be stated for certain at present; estimations of horizontally transferred regions in Veillonella parvula DSM 2008, the only fully assembled *Veillonella* genome available, using the least conservative method on the Islandviewer web-site [31], revealed that only 2% of the genome is of foreign origin. In comparison, 9% of the E. coli K-12 subsp. MG1655 genome was predicted as horizontally transferred. Further analyses are therefore needed to assess this in more detail.

ground research, early version of the manuscript), Rolf Sommer Kaas (BLAST matrix), Jon Bohlin (tetramer and amino acid usage heatmaps), Intawat Nookaew (metabolism heatmaps). David Ussery provided the original idea for this manuscript, suggested the figures, helped in early drafts of the manuscript, and supervised the project.

<u>PubMed</u> http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005

- Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. *J Clin Periodontol* 2003; **30**:644-654. <u>PubMed</u> <u>http://dx.doi.org/10.1034/j.1600-</u> 051X.2003.00376.x
- Olson JC, Cuff CF, Lukomski S, Lukomska E, Canizales Y, Wu B, Crout RJ, Thomas JG, McNeil DW, Weyant RJ, et al. Use of 16S ribosomal RNA gene analyses to characterize the bacterial signature associated with poor oral health in West Virginia. BMC Oral Health 2011; 11:7. <u>PubMed</u> http://dx.doi.org/10.1186/1472-6831-11-7

- Chalmers NI, Palmer RJ, Cisar JO, Kolenbrander PE. Characterization of a *Streptococcus sp.-Veillonella sp.* Community Micromanipulated from Dental Plaque. *J Bacteriol* 2008; **190**:8145-8154. <u>PubMed</u> http://dx.doi.org/10.1128/JB.00983-08
- Leuckfeld I, Paster BJ, Kristoffersen AK, Olsen I. Diversity of *Veillonella* spp. from subgingival plaque by polyphasic approach. *APMIS* 2010; 118:230-242. <u>PubMed</u> <u>http://dx.doi.org/10.1111/j.1600-</u> 0463.2009.02584.x
- 8. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, Wolfgang MC, Boucher R, Gilpin DF, McDowell A, Elborn JS. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. *Am J Respir Crit Care Med* 2008; **177**:995-1001. <u>PubMed</u> <u>http://dx.doi.org/10.1164/rccm.200708-1151OC</u>
- Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, Quepo-Ortuño MI. Gut microbiota in children with type I diabetes differs from that in healthy children: a case-control study. *BMC Med* 2013; **11**:46. <u>Pub-Med http://dx.doi.org/10.1186/1741-7015-11-46</u>
- Kolenbrander PE, Moore LVH. The genus Veillonella. in:H.G. Balows, M. Trüper, W. Dworkin, W. Harder, K.H. Schleifer (Eds.), The prokaryotes (2nd ed.), Springer, New York (1992), pp. 2034–2047.
- Mashima I, Nakazawa F. Identification of Veillonella tobetsuensis in tongue biofilm by using a species-specific primer pair. Anaerobe 2013; 22:77\_81.
- 12. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB. Volume 3: The *Firmicutes*. In Bergey's Manual of Systematic Bacteriology, Springer 2009.
- Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* 2007; **35**:3100-3108. <u>PubMed</u> <u>http://dx.doi.org/10.1093/nar/gkm160</u>
- 14. Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. *Bioinformatics* 2010; **26**:1899-1900. <u>PubMed http://dx.doi.org/10.1093/bioinformatics/btq224</u>
- 15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Mol Biol Evol* 2011; **28**:2731-2739.

<u>PubMed</u> <u>http://dx.doi.org/10.1093/molbev/msr121</u>

- 16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* 1987; **4**:406-425. <u>PubMed</u>
- Xu Z, Hao B. CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. *Nucleic Acids Res* 2009; **37**(suppl 2):W174-W178. <u>PubMed</u> <u>http://dx.doi.org/10.1093/nar/gkp278</u>
- Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. *Science* 2006; **311**:1283-1287. <u>PubMed</u> <u>http://dx.doi.org/10.1126/science.1123061</u>
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 2004; **32**:1792-1797. <u>PubMed</u> <u>http://dx.doi.org/10.1093/nar/gkh340</u>
- 20. Fink WL. Microcomputers and phylogenetic analysis. *Science* 1986; **234**:1135-1139. <u>PubMed</u> http://dx.doi.org/10.1126/science.234.4780.1135
- 21. Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol 2000; **132**:243-258. PubMed
- 22. Karlin S, Burge C. Dinucleotide relative abundance extremes: a genomic signature. *Trends Genet* 1995; **11**:283-290. <u>PubMed</u> <u>http://dx.doi.org/10.1016/S0168-9525(00)89076-</u> <u>9</u>
- 23. Wickham H: ggplot2: Elegant Graphics for Data Analysis (Use R!). Springer New York, 2009. ISBN-10: 0387981403 | ISBN-13: 978-0387981406
- Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. *Nucleic Acids Res* 2004; **32**:277-280. <u>PubMed</u> <u>http://dx.doi.org/10.1093/nar/gkh063</u>
- Eddy SR. BIOINFORMATICS REVIEW Profile hidden Markov models. [PubMed]. *Bioinformatics* 1998; 14:755-763. <u>PubMed</u> <u>http://dx.doi.org/10.1093/bioinformatics/14.9.755</u>
- 26. Hobohm U, Sander C. Enlarged representative set of protein structures. *Protein Sci* 1994; **3**:522-524. <u>PubMed</u> http://dx.doi.org/10.1002/pro.5560030317
- 27. Ludwig W, Schleifer KH, Whitman W. Revised road map to the phylum *Firmicutes*. In Bergey's Manual of Systematic Bacteriology, Springer 2009:1-13.

#### Veillonella, Firmicutes

- Gupta RS. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. *Antonie van Leeuwenhoek* 2011; **100**:171-182. <u>PubMed</u> http://dx.doi.org/10.1007/s10482-011-9616-8
- 29. Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ. Evolutionary implications of microbial genome tetranucleotide frequency biases. *Genome Res* 2003; **13**:145-158. <u>PubMed</u> <u>http://dx.doi.org/10.1101/gr.335003</u>
- 30. Dutta C, Paul S. Microbial lifestyle and genome signatures. *Curr Genomics* 2012; **13**:153-162. <u>PubMed</u> <u>http://dx.doi.org/10.2174/138920212799860698</u>
- Langille MG, Brinkman FS. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. *Bioinformatics* 2009; 25:664-665. <u>PubMed</u> <u>http://dx.doi.org/10.1093/bioinformatics/btp030</u>