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Abstract

This paper addresses the problem of terminal understeer and its mit-

igation via integrated brake control. The scenario considered is when a

vehicle enters a curve at a speed that is too high for the tyre/road friction

limits and an optimal combination of braking and cornering forces is re-

quired to slow the vehicle down and negotiate the curve. Here, the driver

commands a step steering input, from which a circular arc reference path

is inferred. An optimal control problem is formulated with an objective

to minimize the maximum o�-tracking from the reference path and two

optimal control solutions are obtained. The �rst is an explicit analytic

solution for a friction-limited particle; the second is a numerically derived

open-loop brake control sequence for a nonlinear vehicle model. The parti-

cle solution is found to be a classical parabolic trajectory associated with a

constant global mass-center acceleration vector. The independent numer-

ical optimization for the vehicle model is found to closely approximate the
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kinematics of the parabolic path reference (PPR) strategy obtained for the

particle. Using the PPR strategy, a closed-loop controller is formulated

and veri�ed against the solution from numerical optimization. Results are

further compared to understeer mitigation by yaw control (YC) and the

PPR controller is found to give signi�cant improvement over YC for this

scenario.

1 Introduction

Vehicle road holding and yaw stability are both essential for safe driving. We

use the term �road holding� in the sense of path control � the ability to ad-

just the curvature of a vehicle's trajectory by regulating speed and path-lateral

acceleration. The available control actuators are assumed to be front wheel

steering commanded by the driver, plus individual wheel braking commanded

by an on-board control system. In this paper we consider the terminal under-

steer problem, where the available path-lateral acceleration is not su�cient for

the vehicle to follow a desired path. This is recognized in accident statistics

[1, 2] as a situation where curve entry speed is too high for the required path

curvature, given the prevailing tyre/road friction; as a result the vehicle follows

a wider path than desired, incurring multiple risks associated with unintended

lane or road departure. To minimize such risk, it is proposed to apply brake

forces for �optimal recovery� from terminal understeer, which we formulate as

the minimization of o�-tracking. More speci�cally, intended path curvature is

inferred from the driver's steering input and the control system is to minimize

the maximum deviation from this path. We note that while overall yaw stability

should be maintained, the control target is de�ned in terms of path deviation.
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By contrast to understeer, terminal oversteer mitigation is associated with

recovery from yaw instability, and has received a great deal of attention in the

literature [3, 4, 5, 6, 7]. Yaw instability is suppressed by the application of

braking forces to generate yaw moments acting in the opposite sense to the

direction of turn, simultaneously reducing excessive yaw rate and body sideslip.

Some authors make the assumption that understeer mitigation is the direct

opposite of oversteer mitigation, and hence the same type of yaw control (YC)

by di�erential braking is the appropriate intervention; now the yaw moment

should be applied in the same sense as the direction of turn, in order to increase

yaw rate and potentially reduce understeer [6, 7]. In this approach, while it is

true that the applied yaw moment will increase the vehicle heading angle in the

turn direction, there is no guarantee that it will also increase path curvature,

especially when operating at the limits of friction. Furthermore, there is the

potential to induce yaw instability, requiring a subsequent oversteer intervention.

Alternative approaches to understeer mitigation have been attempted by

other authors. In [8] the problem of understeer is addressed by a combination of

speed reduction and yaw moment control. The proposed control reduces vehicle

speed during the turn-in phase of the maneuver, braking being proportional

to lateral jerk. While it is reported that this control reduces the e�ects of

understeer, no formal control objective is de�ned. In an earlier study [9] the

focus was again on modulating the direction of the mass center acceleration

vector, here with a more explicit focus on using combined cornering and braking

forces to increase the path curvature.

Previous work by the authors in [10] includes initial numerical optimal con-

trol results and in [11] promising experimental results with a preliminary closed-
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loop controller for improved understeer mitigation. We seek to build on this

research and develop a new and fundamental approach to the problem of un-

dersteer mitigation. In the following we formulate the problem of combined

speed and directional control to minimize o�-tracking when curve entry speed

is too high, or equivalently the tyre/road friction is too low. While interaction

with the driver is a crucial part of a system of this kind, for clarity we focus

on fundamental performance capabilities in the case where the driver's steering

input is a step function, and where the inferred target trajectory is a circular

arc.

In Section 2 we introduce a non-linear two-track model representing the ve-

hicle dynamics characteristics of a typical passenger vehicle. Then in Section 3.1

the path tracking task is presented in terms of o�-tracking from an inferred ref-

erence path. In Section 3.2 this is formalized as an optimal control problem,

while in Section 3.3 an analytic closed-form solution is found for a simple par-

ticle motion (OCP), see Table 1 for a summary of the control strategies used in

this paper. In Section 3.4 the optimal control problem is solved numerically for

the two-track vehicle model (OCV) and comparisons are made with the particle

solution. In Section 4 a closed-loop control strategy is proposed using the parti-

cle motion as a reference (PPR), and this is applied to the non-linear two-track

vehicle model; results are then compared with the open-loop optimal controller.

Further comparisons are made to a second closed-loop controller, de�ned us-

ing the more common YC approach [7]. Section 5 provides conclusions of the

work, and appendices present supporting model parameter data as well as a full

derivation of the closed-form optimal control strategy.
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Acronym Description

YC Yaw moment control: comparative closed-loop controller

OCP Optimal Control using the Particle model (analytic solution)

OCV Optimal open-loop Control using the Vehicle model (numerical optimization)

PPR Parabolic Path Reference used for closed-loop implementation

Table 1: Summary of control strategies used in this paper

2 Vehicle System Modeling

In this section a vehicle model is presented for the study of the relevant planar

motion of a standard passenger vehicle. The target application is for a real

vehicle with active brake controls - each wheel is to be capable of individual

wheel braking, controlled through solenoid valves, as is typical in a standard

antilock braking system. The brake controller will be assumed to have full

authority of the braking torque, and have access to wheel speed sensors to

assist with low-level modulation of braking torque. Other required sensors are

for steering angle, lateral acceleration and yaw rate, all commonly available in

commercial stability control systems. Furthermore, an estimation of the road

friction is required, but only once the friction limit is reached [11].

The two-track vehicle model is shown in Figure 1. The model was previously

used in [12] and it is based on the assumptions found in references [3, 13]. It

is a planar model, with suspension motions suppressed, but with load transfer

e�ects considered. The model assumes front steering with equal angles at the left

and right wheels. The longitudinal tyre forces FXij are individually controlled;

here i is the index for the front/rear wheels and j for the left/right wheels -

see Figure 1. Lateral tyre forces, FY ij , are then determined via a nonlinear
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Figure 1: Two-track vehicle model. The arrows show the positive direction of

each angle or force.

combined-slip tyre model � see Appendix A.

The equations of motion are given below, derived from the standard Newton-

Euler theory using motion variables in the vehicle-�xed X − Y reference frame

(see Figure 1) and the inertial XE − YE reference frame (see Figure 2):

m(v̇X − vY ψ̇) =
∑

i,j

F̄Xij

m(v̇Y + vX ψ̇) =
∑

i,j

F̄Y ij

mk2ψ̈ =
∑

i,j

((−1)jsF̄Xij − (−1)iliF̄Y ij)

ẊE = vX cosψ − vY sinψ

ẎE = vX sinψ + vY cosψ

(1)

where F̄Xij and F̄Y ij are the respective longitudinal and lateral wheel forces

resolved in the local vehicle reference frame, m the total vehicle mass and k

is the radius of gyration. Vehicle data are given in Appendix B. The vertical
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forces, FZij , are a result of the static load distribution and the load transfer due

to the longitudinal and lateral acceleration [13]. This results in the following

model for the tyre vertical forces:

FZij = ζ0img + (−1)iζXmaX + (−1)jζY imaY (2)

where, g, aX and aY are the gravitational, vehicle longitudinal and lateral ac-

celeration, respectively; ζ0i = (l − li)/(2l) is the static force distribution coe�-

cient, ζX = h/(2l) is the longitudinal load transfer coe�cient, ζY i is the lateral

load transfer coe�cient of each axle and h is the height of mass center above

ground. The lateral load transfer coe�cient is a lumped parameter taking the

roll sti�ness distribution, roll center heights, etc. into account and is listed in

Appendix B.

3 Understeer Mitigation

As discussed in the introduction, in the scenario of interest the driver aims to

follow a desired path while maintaining su�cient yaw stability. First we de�ne

the inference of desired path from the driver's steering input. The optimal

recovery from terminal understeer is then de�ned as an optimal control problem.

A closed-form solution is obtained for a simple particle representation of the

vehicle, and then a more realistic solution is obtained via numerical optimization

of the vehicle model de�ned above. Comparisons are then made between the

particle and vehicle optimization results.
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3.1 Driver Interpreter and Friction Limits

It is common to interpret the desired vehicle lateral response from the driver's

steering wheel angle δH using a reference vehicle model [5, 7]. Here the driver

interpreter is based on a very simple reference � a neutral steered vehicle without

time delay; the desired path curvature κref is expressed as follows as a function

of the steering wheel input:

κref =
δH
iSl

(3)

where iS is the ratio between δH and the road wheel angle δ of the front wheels.

While it is possible to include other features in the reference model, such as a pre-

assigned understeer gradient or transient behavior, simplicity of the reference

model seems most appropriate for this fundamental analysis.

In order to track the desired path, the speed, v, must be less than the

maximum achievable speed, vlim, for a given combination of path curvature and

available combined friction, µ. This speed is obtained for this curvature when

all available friction is utilized perpendicular to the velocity vector, such that

vlim =
√
µg|κ−1ref | (4)

If braking is applied in a situation where the curve entry speed, v0, is equal

to vlim, the path curvature is reduced and the vehicle path will drift to the

outside of the desired path. This implies a degree of �loss of path control� at

the limit of friction: the driver may increase path curvature by reducing speed,

but the required deceleration implies reducing path curvature!

Consider now the case v0 > vlim, where the actual path necessarily deviates

from the desired path due to terminal understeer. While braking reduces in-

stantaneous path curvature, it also gives an opportunity to increase the mean
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Figure 2: Kinematics of o�-tracking due to terminal understeer: vehicle mass

center path (solid curve) deviates by ε(t) from the reference path (dashed curve).

Maximum o�-tracking εmax occurs at time T .

path curvature due to speed reduction, depending on the duration of the brake

intervention. Note that we are not discussing braking before the turn, but ap-

plying combined braking and corning forces during the turn. The ideal degree

of braking is related to the horizon [0, T ] over which brakes are applied to re-

duce mean curvature. Intuitively T should increase according to the degree of

overspeed, but to avoid �xing T in some ad-hoc manner, control optimization

will now be formulated in a way that T is a derived parameter.
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3.2 Recovery from Terminal Understeer as an Optimal

Control Problem

Continuing with the case v0 > vlim, the subsequent kinematics of the vehicle

path are shown in Figure 2 where the solid curve represents the path of the

vehicle mass center and the dashed curve is the circular reference path. The

coordinate origin O is chosen at the center of the circle. At time t = 0 the vehicle

is tangent to the reference path, ẊE = v0 and ẎE = 0. Since v0 > vlim, path

curvature is necessarily less than that of the reference path, and lateral deviation

ε(t) (measured radially from the origin in this case) increases monotonically from

zero for t > 0. Assuming the understeer mitigation is successful, ε(t) will be

bounded and therefore at a later time T it reaches a maximum εmax = ε(T );

at this time the radial velocity component is zero, i.e. the vehicle and reference

paths are parallel. Subsequent reductions in ε(t) are then feasible, for example

by maintaining constant speed and constant path curvature, so in terms of o�-

tracking the terminal understeer problem is e�ectively resolved at time T .

We now formalize the control objective, which is to minimize the maximum

value of ε(t) in the subsequent motion. Writing the vehicle dynamics model in

the following general form,

ẋ = f(x, t,u) (5)

the state vector x includes variables

[
XE(t) YE(t) ẊE(t) ẎE(t)

]>
for the

mass center path, and we aim to minimize the cost function

J = X2
E(T ) + Y 2

E(T ) (6)

where the �nal time T is free. The state vector is subject to the initial conditions

XE(0) = 0, YE(0) = −κ−1ref , ẊE(0) = v0, ẎE(0) = 0 (7)
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and the terminal conditions

XE(T )ẊE(T ) + YE(T )ẎE(T ) = 0. (8)

The terminal conditions in Equation (8) ensures that velocity vector at t = T

is perpendicular to the position vector of the vehicle relative to O in Figure 2.

This means that the optimal control which minimizes Equation (6), minimizes

the maximum o�-tracking distance εmax.

Friction limits are imposed as constraints on the input variables and option-

ally there are constraints on the states (e.g. to limit the excursion on sideslip

angles):

umin ≤ u ≤ umax (9)

xmin ≤ x ≤ xmax (10)

In the case of the above vehicle model, the control vector u comprises the

longitudinal tyre forces FXij , while in the next section it is reduced to the

resultant force vector acting at the mass-center. Solving the optimal control

problem means �nding a sequence of admissible control inputs such that the

objective function (6) is minimized while satisfying the equations of motion and

the initial and �nal conditions.

3.3 Optimal Control for a Particle Representation

As described in Section 3.1, one of the fundamental aspects of terminal under-

steer is the approximate friction circle exhibited at the vehicle level. Hence we

consider the corresponding particle model, where friction limits are imposed but

the yaw degree of freedom is suppressed. Although this is a gross simpli�cation

of the vehicle dynamics, the particle model o�ers further insight into under-
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steer mitigation. It also allows the optimal recovery strategy to be determined

analytically.

The equations of motion for a particle representation of the vehicle motion

are expressed in the inertial reference frame as follows:

ẌE = (F/m) cosϕ

ŸE = (F/m) sinϕ

(11)

with the set of admissible controls being the magnitude and global direction of

the resultant force vector:

U = {F ∈ [0, µmg], ϕ ∈ [0, 2π]} (12)

The optimal control problem is solved in Appendix C, where the optimal

control input (F ∗(t), ϕ∗(t)) is shown to be:

F ∗(t) = µmg

ϕ∗(t) =
π

2
+ θ

(13)

where

cos θ = cos νT =
v2lim
v20

(14)

(see also Figure 2). Further, the time of maximum o�-tracking under optimal

control is found to be

T ∗ =
v0 sin θ

µg
(15)

The speed of the particle is obtained by integrating Equation (11) with the

optimal control input Equation (13) to obtain

v(t) =
√
v20 − 2v0µgt sin θ + (µgt)2 (16)

When combined with Equation (15) this gives

v(T ∗) = v0 cos θ =
v2lim
v0

(17)
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which is a simple and useful result implying a target terminal speed at time

T ∗; this is used below to develop a candidate controller designed to emulate the

optimal PPR strategy.

As mentioned above, there exists a control input for t > T ∗ that monoton-

ically decreases the o�-tracking distance, namely to maintain constant speed

v(T ∗) and constant curvature, since v(T ∗) < vlim and the terminal path curva-

ture is greater than κref . Another option is to continue to apply Equation (13)

for t > T ∗. It can be veri�ed that this input continues the original parabola

symmetrically about (XE(T ), YE(T )), and returns the path tangentially to the

original reference circle. This converging path can be achieved at constant speed,

and hence avoid further o�-tracking when the reference path is regained. This

�nal part of the path recovery is described only for completeness; as mentioned

above, once maximum o�-tracking is reached, the intervention is considered

complete.

3.4 Optimal Control for the Two-Track Model

The optimal control solution for the two-track vehicle model of Section 2 is

now considered. Because of the relative complexity of the model no analytical

solution is attempted. Instead the problem is to be solved numerically for the

brake forces, namely to �nd the optimal sequence of admissible brake inputs

FXij(t) subject to

− µ0µiFZij(t) ≤ FXij(t) ≤ 0, ∀t ∈ [0, T ∗] (18)

where µ0 is the nominal road surface friction coe�cient and µi is a friction

coe�cient speci�c to the particular axle.

The cost function Equation (6) is to be minimized, while satisfying the
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equations of motion Equation (1), the initial conditions in Equation (7) and

the constraint in Equation (8) at the �nal time t = T . The optimal control

solver engine PROPT for Matlab [14] is used for this purpose. PROPT uses a

pseudospectral Collocation method for solving optimal control problems. This

method is a direct transcription method for discretizing a continuous optimal

control problem into a nonlinear program [15]. This means that the solution

takes the form of a polynomial, and this polynomial satis�es the equations of

motion Equation (1), constraints on the input variables Equation (9) and state

variables Equation (10) at the collocation points.

The following case is considered: v0 = 20 m/s, κ−1ref = 60 m and µ = 0.4,

resulting in a limiting speed vlim = 15.3 m/s. Since the di�erence between the

initial speed v0 and the limiting speed vlim is relatively large, precise tracking of

the reference path is of course impossible. Results are shown (up to the point of

maximum path deviation) in Figures 3-4 with comparisons to the PPR particle

motion.

Figure 3 shows the trajectories in the inertial reference frame, where it can

be seen that the optimal control for the two-track vehicle closely follows the PPR

parabolic path. The maximum o�-tracking is 8.6 m for the particle solution and

8.9 m for the two-track vehicle. Since the models and optimization procedures

are entirely independent, this result con�rms the broad validity of each solution.

More signi�cantly, it suggests that the optimal response to terminal understeer

is dominated by controlling the acceleration vector at the mass center rather

than purely through yaw moment control.

The match to PPR is con�rmed from several other responses � Figure 4.

In (a) the speed pro�les are nearly identical, while in (c) and (d) it is seen the
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Figure 3: Optimal trajectories in the global XE , YE coordinate system for the

two-track vehicle (OCV) and the particle (OCP). The maximum o�-tracking is

indicated with dotted arcs concentric with the reference path (dashed).

optimal control for the vehicle (OCV) �nds the same inertially �xed acceleration

vector as the particle (OCP). In (b) we note the large excursions in body sideslip

angle β arising from vehicle optimization, a point we return to in Section 4; of

course β is not de�ned for the particle motion.

Control of the mass center acceleration vector, or equivalently the resultant

in-plane force vector, has been considered by other authors. The strategy in

[9] targets a resultant control force at a body-�xed angle of 135◦ in the vehicle-

�xed reference frame. In some scenarios this strategy may generate a greater

lateral displacement from the direction of entry, but the maximum o�-tracking

is always larger than for the PPR solution.

Another case is the �G-vectoring� control described in [8], in which brak-

ing forces are applied proportional to the rate of change of the path lateral

acceleration (lateral jerk). Here too, the mass center acceleration vector is di-

rectly adjusted according to the driver's steering input. The motivation of this

approach is more in terms of driver feedback and reducing understeer by longi-
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Figure 4: Optimal control results for the two-track vehicle (OCV) and the

particle (OCP). Subplots show time histories of (a) speed, (b) sideslip angle

(OCV only), (c) acceleration magnitude (d) the angle of the acceleration vector

in the global reference frame. Note: the large sideslip angle in (b) may be

reduced to acceptable levels without signi�cantly a�ecting the path - see Table

3.
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tudinal load transfer, and no formal criteria are de�ned. One common feature

between PPR and the two referenced approaches is that steering actions lead to

controlled changes in speed. For PPR the magnitude of this e�ect is explicitly

dependent on vehicle initial speed (v0 relative to vlim), a property the other

strategies do not share.

4 Controller Synthesis and Evaluation

The optimal control results are now used to formulate a candidate closed-loop

controller, which we simply refer to as PPR, even though it is just one possible

implementation of the general strategy. This is compared to the optimal o�-

tracking performance of the vehicle model (OCV) presented above, as well as to

the performance of a closed-loop controller based on yaw moment control (YC).

4.1 Closed-loop Implementation of PPR

It is proposed to use proportional feedback of the di�erence between the target

speed obtained from the particle solution and the actual speed of the vehicle. By

suitable tuning of the proportional gain, the speed pro�le can be �tted to that

of the PPR reference; then, if the magnitude of the mass center acceleration is

maintained at its limit, the overall acceleration vector is expected to follow the

PPR reference. The target speed for the particle solution requires knowledge

about the target curvature κref and the limit speed vlim, which in turn requires

an estimate of the surface friction. Since an intervention is only necessary when

v0 > vlim this situation also implies that the friction limit is reached soon after

the steering input has been applied. In this case µg ≈
√
a2Y + a2X , which means

that the friction coe�cient can be estimated and thereby vlim is determined

17



from Equation (4).

The target speed is vT ≡ v(T ∗) = v2lim/v0 according to Equation (17). The

proportional controller is to distribute the braking forces to the wheels, and

hence there are four proportional gains, denoted γij :

FXij(t) = −γijmmax(v(t)− vT , 0) (19)

Simple parameter optimization was used to select the gains in Equation (19)

for best �t to the PPR speed pro�le; the following values were obtained: γ11 =

0.115, γ12 = 0.151, γ21 = 0.081 and γ22 = 0.114. This implies larger braking

forces at the front wheels, as would be expected. There is also a bias to increased

braking on the outer wheels, where vertical load is higher, so the direct yaw

moment from braking acts in the opposite sense to the turn direction; this is

contrary to the standard yaw control strategy discussed in Section 1 suggesting

that signi�cant di�erences will be found when comparing PPR with YC. This

turn-out yaw moment is bene�cial for the yaw stability, although additional

stabilizing yaw control would be necessary to account for disturbances.

4.2 Understeer Mitigation by Yaw Control

We consider a version of the �standard� yaw control (YC) strategy. No attempt

is made in this paper to compare to all aspects of the understeer control of

commercial stability control systems, engine intervention for instance, but only

to compare the yaw control component, something that is most commonly ref-

erenced in the literature. The reason is to make the comparison clearer; for a

comparison with an actual ESC systems we refer to experimental work reported

in [11]. The standard understeer mitigation proposed in the literature is to

apply a turn-in yaw moment by braking the inner rear wheel. However, care

18



must be taken not to over-brake the single wheel since this can lead to excessive

sideslip [5]. Initial simulations determined that braking both inner wheels was

more e�ective than braking only the inner rear wheel (which was also proposed

in reference [7]), so this modi�cation is implemented to improve the comparative

performance of YC. Thus for a left turn (ψ̇ > 0) the longitudinal force vector

is:

[
FX11 FX12 FX21 FX22

]>
= −KP0(ψ̇ref − ψ̇)

[
η0 0 (1− η0) 0

]>

(20)

where, based on a neutral steered reference vehicle,

ψ̇ref = vXκref (21)

Here KP0 > 0 and 0 ≤ η0 ≤ 1 are tuning parameters, optimized in the same way

as γij were optimized for PPR. The resulting parameter values are KP0 = 18

and η0 = 0.7, giving a controller with similar performance to that presented in

[7].

4.3 Controller Evaluation

Results for the two control strategies outlined above, together with the open-

loop OCV intervention, are shown in Figures 5 - 7. Again we consider the case

with v0 = 20 m/s, κ−1ref = 60 m and µ = 0.4. Closed-loop PPR control is seen

to give a close match to OCV in both path and speed pro�le � see Figure 5 and

Figure 6 (a) respectively. PPR is shown throughout with diamond markers,

while OCV is shown with circles. Subplots (c), (d) in Figure 6 show that the

closed-loop controller does indeed follow the PPR reference for mass center ac-

celeration, approximating an inertially �xed mass center acceleration operating
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Figure 5: Trajectories in globalXE , YE coordinates: optimized two-track vehicle

(OCV), closed-loop PPR strategy (PPR) and yaw control (YC)

at the friction limit and with the desired global direction. Thus the simple al-

gorithm based on speed tracking seems su�cient for the proposed comparisons.

While PPR does not include any speci�c yaw control strategy it is seen in

Figure 6 (e), (f) that very similar yaw accelerations exist between PPR and

OCV. Figure 6 (e) includes only the direct contributions from braking forces

FXij and the two cases give consistent negative yaw accelerations, i.e. as men-

tioned above there is a consistent turn-out yaw moment arising from braking

forces.

Individual wheel braking forces are shown in Figure 7, where again there is

a high degree of consistency between PPR and OCV; this includes the common

20



0 2 4 6
10

12

14

16

18

20

(a)
v
[m

/
s]

0 2 4 6

−20

−15

−10

−5

0

(b)

β
[d
eg
]

0 2 4 6
0

1

2

3

4

(c)

√
a
2 X
+
a
2 Y

[m
/
s2
]

OCV

PPR

YC

0 2 4 6
100

120

140

160

180

200

(d)

ϕ
[d
eg
]

0 2 4 6

−20

−10

0

10

ψ̈
F

X
[d
eg
/
s2
]

t [s]

(e)

0 2 4 6

−10

0

10

20

ψ̈
[d
eg
/
s2
]

t [s]

(f)

Figure 6: Time history responses of selected vehicle variables: (a) vehicle speed;

(b) body sideslip angle; (c) resultant acceleration magnitude; (d) direction of

the acceleration vector in global coordinates; (e) yaw acceleration due to brake

forces; (f) vehicle yaw acceleration
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bias towards front wheel braking and a slight bias towards increased force at

the outer wheels. In fact it can be seen that PPR does not require any complex

actuator inputs to achieve the desired results. The plot with greatest discrep-

ancy between PPR and OCV is in body sideslip, Figure 6 (b). In this case the

peak angle βmax is reduced from approximately 20◦ to 15◦ in the closed-loop.

The fact that other responses are hardly a�ected also suggests that βmax might

be further constrained without signi�cantly degrading the performance relative

to the PPR reference - we return to this point.

The comparison with YC (square marker) is shown in the same �gures.

Maximum o�-tracking is signi�cantly greater than for PPR, and while speed

reductions are quite similar by the end of the intervention, the mean decelera-

tion is a lot less for YC. According to Figure 6 βmax is also similar to that of

PPR. In Figure 6 (d) the angle ϕ for YC is not constant; it corresponds to an

acceleration vector that is approximately �xed with respect to the vehicle path;

while PPR (and OCV) shows a strong deceleration bias initially, transitioning

to path-lateral acceleration as the point of maximum deviation is approached,

YC persists in emphasizing path-lateral acceleration with reduced longitudinal

deceleration. As should be clear now, this extends the period of time for the

intervention and leads to larger overall o�-tracking.

In Figure 6 (e) we see the yaw accelerations due to longitudinal tire forces,

hence representing the direct yaw moment from brake control; the most obvious

di�erence is in the di�erence in sign of PPR , which creates a turn-in yaw

moment, as of course was prescribed. Also, Figure 7, we see that for YC, the

brake intervention has two phases, with an initial sharp brake pulse followed by

much reduced braking e�ort. This highlights the fact that YC operates mostly

23



via the passive lateral tire forces, the strong transient creating a turn-in yaw

moment to rapidly increase slip angles at the rear tires.

This is in contrast with PPR/OCV, for which deceleration is initially the

major goal, smoothly transitioning to path curvature as the priority. Figure 6

(f) shows the total yaw moment, including the e�ects of lateral tire forces; in

all cases there is an initial turn-in moment followed by a correcting turn-out

moment. For YR the e�ect is something like a switch, where a turn-in pulse

is later compensated by a small but constant turn-out in quasi-steady-state.

Figure 7 shows the same comparison with a discrete switch in YR brake forces,

compared to the progressive transition for PPR/OCV. It is worth noting that

the increased overall braking e�ort in PPR has the added advantage of increasing

the vertical load on the front tires, thus increasing the available lateral tire forces

at the front axle.

Here the YC controller does not include oversteer mitigation, as is the case

with the other controllers; this is to avoid confounding o�-tracking performance

with a possible tradeo�s due to yaw instability intervention. It could be argued

that YC performance can be improved if oversteer correction is indeed included,

leading to subsequent braking of the outer wheels and further deceleration. Since

the focus of this study is on the underlying control concepts it does not seem

appropriate to probe the extent to which the addition of further control rules

can be used to improve the o�-tracking performance of YC.

O�-tracking comparisons for multiple cases are summarized in Table 2, where

the second row is the case considered in detail above (v0 = 20 m/s, κ−1ref = 60 m,

µ = 0.4). The theoretical particle results (OCP) are included for comparison,

and in all cases the closed-loop PPR performs similar to OCV and the relative
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εmax [m]

v0 [m/s] vlim [m/s] κ−1ref [m] µ OCP OCV PPR YC

16 15.3 60 0.4 0.2 0.61 0.8 2.0

20 15.3 60 0.4 8.6 8.97 9.3 19.6

25 15.3 60 0.4 30.9 31.3 32.8 50.3

25 21.7 120 0.4 4.8 5.84 6.1 9.8

30 21.7 120 0.4 26.1 26.9 27.7 40.8

25 21.7 60 0.8 2.4 2.9 3.7 8.1

35 21.7 60 0.8 29.6 29.6 33.1 49.4

Table 2: O�-tracking results for variations in the initial speed, road friction and

target radius.

o�-tracking performance of YC is signi�cantly worse. It is also noticeable that

the vehicle results diverge signi�cantly from the OCP particle only when v0 is

close to vlim � in this case the time horizon for control is smaller, and hence the

transient delay due to yaw inertia is more in�uential.

In the above no state constraints Equation (10) were imposed, but, because

of the large body sideslip observed in the response, it was decided to rerun the

numerical optimization with the additional constraint |β(t)| ≤ 5◦. Results are

shown in Table 3. For each scenario the second entry gives the result with con-

straint applied and in every case max(|β(t)|) = 5◦, i.e. the constraint becomes

active during the intervention. This leads to large reductions in max(|β(t)|) in

many cases, but with very little e�ect on εmax. This result appears signi�cant:

yaw control may be applied in a way that does not seriously degrade the under-

lying PPR strategy, even to the point where we can consider the path control
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v0 [m/s] vlim [m/s] κ−1ref [m] εmax [m] max(|β(t)|) [◦]

16 15.3 60 0.61 5.6

0.61∗ 5.0

20 15.3 60 8.97 20.8

9.05∗ 5.0

25 15.3 60 31.3 37.8

31.4∗ 5.0

25 21.7 120 5.84 15.9

5.92∗ 5.0

30 21.7 120 26.9 29.9

27.1∗ 5.0

Table 3: O�-tracking and maximum sideslip for the optimal vehicle response

(OCV) - without and with∗ sideslip constraint imposed.

(implementation of PPR) to be largely decoupled from the required residual

yaw control (adjusting yaw moments to limit sideslip).

The reason for the relative insensitivity to maximum side-slip angle in our

simulations is understood to be due to fact that there are mulitple ways to

realize the necessary global force vector with di�erent combinations of tire lateral

and longitudinal forces. Although only braking actions are available to the

controller, provided all tires have a large enough slip angle to saturate the tire

laterally, the brake forces can in�uence the direction of the force vector on each

wheel within wide limits � from perpendicular to the wheel rolling direction

in the free rolling case, to a direction opposite to velocity vector under wheel

lockup.
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5 Conclusions

This paper has considered the problem of a vehicle overshooting a reference

trajectory due to friction limits, a situation referred to as terminal understeer.

In order to minimize the e�ects of a deviation from the desired trajectory, the

recovery task has been formulated as an optimal control problem: to minimize

the maximum o�-tracking distance from the reference trajectory.

For any given recovery from terminal understeer strategy, maximum o�-

tracking occurs when the velocity vector is tangent to the reference trajectory.

In this work, the particular case of a circular reference trajectory has been

considered, and a rigorous optimal control strategy has been found for a particle

with bounded acceleration magnitude.

It was found that minimization of maximum o�-tracking is achieved by di-

recting the force in a globally �xed direction, perpendicular to the path tangent

at the anticipated point of maximum o�-tracking. The optimal recovery from

terminal understeer to the reference trajectory is identi�ed as a parabolic mo-

tion, familiar from the motion of an ideal projectile under gravity.

It was found that the new strategy solves the vehicle understeer problem

with signi�cantly reduced maximum o�-tracking and without requiring an un-

balancing moment that may compromise yaw stability. Although yaw stability

remains an important aspect of the understeer mitigation, the results imply that

control of the mass center acceleration vector is most e�ective for limiting the

path deviations. Also, it has been found that a turn-out yaw moment from the

direct braking action can be more successful than a turn-in yaw moment as this

is associated with higher initial deceleration.

Robust implementation of the proposed control will require further develop-
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ment, especially as a closed-loop control strategy that directs the global mass

center acceleration vector according to the PPR reference. As mentioned, pre-

liminary experiments [11] show promising possibility to implement PPR within

a robust integrated chassis controller. Of course it is possible that path o�-

tracking may occur simultaneously with yaw instability, in which case coor-

dination or arbitration between PPR and yaw stabilization will be required.

Numerical solutions using a two-track model, however, indicate that similar so-

lutions in terms of maximum o�-tracking can be achieved with largerly di�erent

maximum side-slip angles. This indicates that, although important for yaw sta-

bility, controlling the side-slip angle is less critical to the path control problem

considered. This in turn may lead to the conclusion that PPR and existing yaw

stability control could be combined without seriously degrading either function.

In this paper the path curvature has been inferred from the driver input,

which is an assumption with limitations, but in the future it is possible that

vehicle sensors, digital maps and/or wireless communication can provide the

vehicle motion controller with additional information to update the reference

trajectory, so the driver interpretation function may become less critical for

path planning in certain cases. Two particularly relevant examples are: path

planning for autonomous vehicles and accident avoidance maneuvers. Although

our experimental work reported in [11] did study the e�ects of driver interaction,

especially including the e�ect of the driver applying additional corrective steer

angles as o�-tracking is perceived, more work on this topic is likely warranted.

Overall, the main contribution of this paper is that whenever vehicle speed

and surface friction are incompatible with the target path, and within the ap-

proximations used, the control strategy presented minimizes the maximum o�-
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tracking and provides for improved vehicle safety. In future work the authors

plan to implement and evaluate the new control strategy considering yaw stabil-

ity, general reference trajectories, more sophisticated vehicle dynamics models

and further tests with an experimental vehicle.
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A Tire Model

The lateral forces, FY ij , are in this paper modeled as function of the tyre slip

angles on each wheel, αij , the longitudinal forces, FXij , and vertical forces,

FZij , by using a simple saturation tyre model, where

FY ij = DY ij tanh(CYBY αij) (22)

where

DY ij =
√

(µ0µiFZij)2 − F 2
Xij , CY = 3/2, BY = 10/µ0

(23)

where i = 1, 2 for the front and rear axle respectively and where µ0 is the

nominal road friction. The slip angles, αij , are related to the longitudinal,

lateral and yaw velocity at the center of gravity as

αij = δi − arctan
vY − (−1)iliψ̇

|vX + (−1)jsψ̇|
(24)

which is the angle between direction of the tyre velocity vector and the free

rolling direction using the de�nition in [13].
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Description Symb. Value

Vehicle mass [kg] m 1675

Yaw radius of gyration [m] k 1.32

Wheel base [m] l 2.675

Distance from axle to mass center (front/rear) [m] l1/l2 0.4l/0.6l

Track width (f/r) [m] w 1.5

Mass center height [m] h 0.5

Longitudinal load transfer coe�cient [-] ζX h/(2l)

Lateral load transfer coe�cient (f/r) [-] ζY 1/ζY 2 0.17/0.16

Road friction coe�cient [-] µ0 0.4

Axle friction coe�cients (f/r) [-] µ1/µ2 0.97/1.05

Table 4: Vehicle Data

B Vehicle Data

The vehicle data shown in Table 4 that are used in the conducted simulations

represent a medium-sized passenger vehicle.

C Optimal Control Proof for the Particle Repre-

sentation

In order to aid the proof we re-write Equation (11) to state-space form:

ẋ = Ax + q(γ), ∀γ ∈ U (25)
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where the state vector, x, and input vector, γ, are

x =

[
XE YE ẊE ẎE

]>

γ =

[
F ϕ

]> (26)

The state matrix, A, and the input function, q(γ), are

A =



02×2 I2×2

02×2 02×2




q(γ) =
F

m




02,1

cosϕ

sinϕ




(27)

where 02×2 is a 2× 2 zero matrix.

C.1 Problem

The optimal recovery from terminal understeer to minimize the �rst maximum

value of ε is formulated as a free-time optimal control problem [16]. This prob-

lem is to �nd the admissible control γ∗ and a feasible trajectory x∗ that min-

imizes the maximum squared radial distance from the center of the reference

circle. As in Section 3, this in turn is formulated as minimizing the terminal

cost

J = X2
E(T ) + Y 2

E(T )

Additionally the solution is subject to the initial and terminal conditions

x0 =

[
0 −κref v0 0

]>

XE(T )ẊE(T ) + YE(T )ẎE(T ) = 0

(28)

Admissible control inputs (12) are γ ∈ U and admissible trajectories satis�es the

dynamic model (25) and initial/terminal conditions (28). The control γ∗ is the
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optimal control and the corresponding trajectory x∗ is the optimal trajectory.

The terminal condition ensures that the terminal cost J minimizes themaximum

o�-tracking, not the o�-tracking at an arbitrary �nal time T .

C.2 Method

The optimal control problem for the particle representation is solved by extend-

ing the dynamical model (25) to an augmented Hamiltonian system




ẋ = ∂H/∂λ

λ̇ = −∂H/∂x
(29)

where λ is the co-state vector and where the Hamiltonian function is

H = λ>(Ax + q(γ)) (30)

According to Pontryagin's minimum principle the Hamiltonian must be min-

imized over the set of all permissable controls, U , satisfying all constraints. If

γ∗ ∈ U is the optimal control for the problem, then the principle states that

H(x∗, γ∗, λ∗) ≤ H(x, γ, λ) (31)

Additionally the transversality conditions require that

λ∗(T ) =
∂J

∂x

∣∣∣∣
t=T

(32)

When a solution that minimizes Equation (6) is found for an arbitrary T ,

the �nal step is to separately determine T ∗, such that the terminal condition in

Equation (28) is satis�ed.

C.3 Solution

From the Hamiltonian (30) we obtain that

H = λ1x1 + λ2x2 + F/m(λ3 cosϕ+ λ4 sinϕ) (33)
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Since F appears linearly in Equation (33), and taking Equation (12) into ac-

count, we have from [16] that H is minimized if

F ∗ ≡ µmg, (34)

noting that the direction of the force is only determined by the angle ϕ. The

optimal angle, ϕ∗, is found by knowing that at the extremal of H

∂H

∂ϕ
= F/m(λ3 sinϕ− λ4 cosϕ) = 0 (35)

which gives that

tanϕ∗ =
λ4
λ3

(36)

In order to determine λ3 and λ4, we obtain from Equation (29) that

λ̇ = −Aλ =

[
0 0 −λ1 −λ2

]>
(37)

which, after integration, gives that

λ(t) =

[
C1 C2 −C1t+ C3 −C2t+ C4

]>
(38)

where C1, C2, C3 and C4 are integration constants. From Equation (32) we

have that

λ(T ) =

[
XE(T ) YE(T ) 0 0

]>
(39)

When Equation (39) is combined with Equation (38) the integration constants

are determined to

[
C1 C2 C3 C4

]
=

[
XE(T ) YE(T ) TXE(T ) TYE(T )

]
(40)

which, when combined with Equation (38), gives that

λ(t) =

[
XE(T ) YE(T ) (T − t)XE(T ) (T − t)YE(T )

]>
(41)
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Combining Equations (36) and (41) we obtain that

ϕ∗ = − arctan
YE(T )

XE(T )
+ π (42)

The optimal control (34) and (42) is valid for any arbitrary �nal time T

that yields a feasible solution. Since we would like to minimize the maximum

o�-tracking, we will choose the �nal time, T , such that the terminal condition

given in Equation (28) is satis�ed. Therefore, by combining Equations (28) and

(42), we obtain that

ϕ∗ = νT + π/2 (43)

where νT = ν(T ).

It follows from the terminal condition (28) that the velocity perpendicular

to a plane de�ned by the angle νT is zero at t = T . The optimal �nal time, T ∗,

is obtained by integration of the model (25) in the direction perpendicular to

this νT -plane and initial values (7), such that

T ∗ =
v0
µg

sin νT (44)

The angle νT can now be determined by the distance traveled parallel to the νT -

plane and the radius of the reference circle. This parallel distance is determined

by double integration of the model (25) with initial values (7) and Equation (44),

from which we obtain that

cos νT = v0Tκref sin νT =
v2lim
v20

(45)

Summarizing, we �nd by combining Equations (34), (42), (44) and (45), that

the optimal control input γ∗ is

γ∗ =




µmg

arccos
(
v2lim/v

2
0

)
+ π/2


 ∀t ∈ [0, T ∗]
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The optimal �nal time, T ∗, expressed in the initial values is found by combining

Equations (44) and (45), such that

T ∗ =
v0

κrefv2lim

√
1−

v4lim
v40

�

37


	Abstract
	1 Introduction
	2 Vehicle System Modeling
	3 Understeer Mitigation
	3.1 Driver Interpreter and Friction Limits
	3.2 Recovery from Terminal Understeer as an Optimal Control Problem
	3.3 Optimal Control for a Particle Representation
	3.4 Optimal Control for the Two-Track Model

	4 Controller Synthesis and Evaluation
	4.1 Closed-loop Implementation of PPR
	4.2 Understeer Mitigation by Yaw Control
	4.3 Controller Evaluation

	5 Conclusions
	References
	A Tire Model
	B Vehicle Data
	C Optimal Control Proof for the Particle Representation
	C.1 Problem
	C.2 Method
	C.3 Solution


