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A numerical investigation of curve squeal in

the case of constant wheel/rail friction

A. Pieringer ∗

Division of Applied Acoustics/CHARMEC, Chalmers University of Technology,
41296 Göteborg, Sweden

Abstract

Curve squeal is commonly attributed to self-excited vibrations of the railway wheel,
which arise due to a large lateral creepage of the wheel tyre on the top of the rail
during curving. The phenomenon involves stick/slip oscillations in the wheel/rail
contact and is therefore strongly dependent on the prevailing friction conditions.
The mechanism causing the instability is, however, still a subject of controversial
discussion. Most authors introduce the negative slope of the friction characteristic
as source of the instability, while others have found that squeal can also occur in
the case of constant friction due to the coupling between normal and tangential
dynamics. As a contribution to this discussion, a detailed model for high-frequency
wheel/rail interaction during curving is presented in this paper and evaluated in the
case of constant friction. The interaction model is formulated in the time domain and
includes the coupling between normal and tangential directions. Track and wheel
are described as linear systems using pre-calculated impulse response functions that
are derived from detailed finite element models. The non-linear, non-steady state
contact model is based on an influence function method for the elastic half-space.
Real measured wheel and rail profiles are used. Numerical results from the inter-
action model confirm that stick/slip oscillations occur also in the case of constant
friction. The choice of the lateral creepage, the value of the friction coefficient and
the lateral contact position on the wheel tread are seen to have a strong influence
on the occurrence and amplitude of the stick/slip oscillations. The results from
the interaction model are in good qualitative agreement with previously published
findings on curve squeal.
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friction, stick/slip
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1 Introduction1

Curve squeal is a highly disturbing tonal sound generated by a railway vehi-2

cle negotiating a sharp curve. This type of noise is commonly attributed to3

self-excited vibrations of the railway wheel [1].
4

Since Rudd [2] in accordance with an earlier paper by Stappenbeck [3] dis-5

carded longitudinal creepage and flange rubbing as relevant causes for curve6

squeal, it is widely accepted that curve squeal arises from stick/slip behaviour7

due to lateral creepage of the wheel tyre on the top of the rail. The actual8

mechanism of the instability is however still a controversial topic. Rudd [2]9

introduced the negative slope of the friction characteristic (i.e. decreasing10

friction for increasing sliding velocity) as the source of the instability and11

most subsequent models have adopted this approach [4–11]. The existence of12

a ‘falling’ regime of the friction characteristic in wheel/rail contact is experi-13

mentally well substantiated, see e.g. [8,12–16]. As friction is however difficult14

to measure, it is inevitable to make assumptions about the exact shape of15

the friction characteristic in models for curve squeal. Correspondingly, many16

different friction curves have been used in the literature.
17

From a mathematical point of view, the instability can also be explained by18

the coupling between normal and tangential dynamics, leading to the non-19

symmetry of the system’s stiffness matrix [17]. This mechanism is exemplified20

by Hoffmann et al. [18] with a model having two degrees of freedom. Glocker21

et al. [19] recently presented a curve squeal model that shows stick/slip oscil-22

lations in the case of a constant friction coefficient. They identified one axial23

mode with zero nodal circles and two radial modes of the wheel, which occur24

at similar frequencies, as essential for the squeal mechanism. Simulation re-25

sults showing stick/slip in the case of constant friction have also been reported26

by Ben Othman [20] and Brunel et al. [10]. Some experimental evidence that27

squeal occurs in the case of constant friction has been presented by Koch et28

al. [21], who performed measurements on a test rig. Also the conditions at29

some sites in the Australian railway network suggest the existence of an alter-30

native squeal mechanism [22].
31

It is possible that both squeal mechanisms coexist in practice and this might32

be one reason why some models (for certain parameter combinations and ini-33

tial conditions) show squeal in the case of a constant friction coefficient while34

others do not. Another reason is certainly that the results of all the models35

presented depend on model assumptions and the level of model complexity36

included. Curve squeal, which is an intrinsically non-linear and transient phe-37

nomenon, still poses a challenge in modelling. Frequency domain models can38

predict which modes are prone to squeal, but models aiming to predict squeal39

amplitudes have to be formulated in the time-domain. Due to the required40

computational effort of time-domain solutions, it is usually necessary to sim-41

plify wheel, rail and contact dynamics, and, by consequence, the models might42
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not include all the important features of the phenomenon.
43

As curve squeal is closely related to the excitation of wheel modes, most au-44

thors of time-domain models opt for a detailed wheel model. A modal model of45

the railway wheel or wheelset derived from a finite element (FE) model has e.g.46

been considered in the models [4,5,9,10,19,23]. The rail dynamics has, how-47

ever, only been included in a few time-domain models [4,5,23]. Huang et al. [23]48

found that the simulation results change considerably if the rail is assumed to49

be rigid, while Périard [5] concluded that there was no significant influence of50

the rail dynamics on squeal during steady-state curving. The knowledge about51

the influence of different contact models on the simulation results is still fairly52

limited. Most models use analytical formulas to represent the creep force /53

creep relation, which can only partly represent the non-linear processes in the54

contact zone. Périard [5] included a modified version of Kalker’s steady-state55

contact model FASTSIM [24] in his squeal model. To the knowledge of the56

authors, so far no transient, three-dimensional contact model has been used57

in a squeal model.
58

The aim of the work presented in this paper is to contribute to the mod-59

elling and understanding of curve squeal by proposing a detailed time-domain60

model for dynamic wheel/rail interaction that considers the coupling between61

normal and tangential directions. Thus, the model covers the generation of62

squeal noise in the wheel/rail contact, which is seen as the central problem63

in squeal prediction, but does not include sound radiation from the wheel.64

The computational effort in the wheel/rail interaction model is reduced by65

representing vehicle and track by impulse response functions derived from de-66

tailed FE models, which are calculated in advance. This technique, which has67

proven efficient for instance in the area of tyre/road noise [25] and in vertical68

wheel/rail interaction [26], makes it possible to include a three-dimensional,69

non-linear and transient contact model that is solved at each time step in the70

interaction model. This interaction model has shown stick/slip oscillations in71

combination with a velocity-dependent friction coefficient [27,28]. As a contri-72

bution to the discussion about the squeal mechanism, the work presented in73

this paper is limited to constant friction. After a description of the wheel/rail74

interaction model in Section 2, a parameter study is presented in Section 3 in75

order to investigate whether instabilities occur due to the coupling between76

normal and tangential dynamics.77

2 Wheel/rail interaction model78

The wheel/rail interaction model is primarily intended for quasi-static curv-79

ing of the leading inner wheel in a railway bogie. The model relies on the80

wheel/rail contact position and the angle of attack of the wheelset (i.e. the81

lateral creepage) as given input parameters. These parameters can be pre-82
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calculated with a vehicle dynamics program.
83

Fig. 1 shows the reference frame of the wheel/rail interaction model. The84

x-direction (1-direction) is the rolling direction along the rail. The lateral di-85

rection is the y-direction (2-direction) pointing towards the field side of the86

wheel. The vertical (or normal) z-coordinate (3-coordinate) is pointing into87

the rail. This reference frame is moving with the nominal contact point along88

the rail.
89

The detailed FE models used for wheel and track include the longitudinal, lat-

F3

F3

F2

F2

F1

F1

x

y

z

Fig. 1. Reference frame of the interaction model.
90

eral and vertical dynamics. Although all three directions could also be included91

in the wheel/rail interaction model, where wheel and track are represented by92

impulse response functions calculated from these FE models, the present study93

is limited to vertical and lateral dynamics of wheel and track. The wheel/rail94

contact is however treated as fully three-dimensional.95

2.1 Wheel model96

The vehicle is represented by a single flexible wheel, which is modelled by axi-97

symmetric finite elements using a commercial finite element software. Fig. 298

shows the meshed cross-section of the selected wheel, which is a C20 metro99

wheel of diameter 780 mm. A rigid constraint is applied at the inner edge of100

the hub, where the wheel would be connected to the axle. The material data101

of the wheel are listed in Table 1.
102

103

With this FE model, the eigenfrequencies (see Table 2 and Fig. 3) and corre-104

sponding eigenmodes have been calculated up to 7 kHz. The eigenmodes are105

classified according to their predominant motion in axial, radial and circum-106

ferential modes, which have n nodal diameters and m nodal circles [1]. The107

axial modes will be denoted (n,m,a). As m > 0 does not occur for radial and108

circumferential modes in the frequency range of interest, they will be referred109

to as (n,r) and (n,c), respectively. Examples of two axial modes and one radial110
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Fig. 2. FE mesh of the C20 wheel cross-section.

Table 1
Material properties of the wheel and the continuously supported rail

Wheel Rail Pad

Young’s modulus 207 GPa 207 GPa 4.8 MPa

Poisson’s ratio 0.3 0.3 0.45

Density 7860 kg/m3 7860 kg/m3 10 kg/m3

Damping loss factor see Eq. (1) 0.01 0.25

mode are shown in Fig. 4. The omission of the axle is known to lead to errors111

in eigenfrequency and mode shape for modes with n ≤ 1, but has a negligible112

effect on higher-order modes [1]. As especially higher-order axial modes (with113

n ≥ 2) have been found to be important for curve squeal [1,9], this is not seen114

as critical for the investigation of squeal noise.
115

The eigenmodes are assigned a modal damping ratio ζ using the approximate116

values proposed by Thompson [1]:117

ζ =



























10−3 for n = 0

10−2 for n = 1

10−4 for n ≥ 2

. (1)

The mode (1,r) is assigned a damping ratio of 1, since this mode appears too118

strongly in the frequency response function, when the influence of the axle119

is disregarded [1]. These damping ratios are used as a first approximation.120

Considering the importance of wheel damping for the occurrence of squeal,121

measured modal damping ratios should be used for the investigation of a spe-122

cific squeal problem in a specific curve.
123

After determining the contact point on the wheel (see Section 2.3), the wheel124

receptances in the corresponding node are calculated by modal superposition.125

In addition to the modes of the flexible wheel calculated with the FE model,126
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Table 2
Eigenfrequencies f of the C20 wheel up to 7 kHz calculated with the FE model.
The modes are classified according to mode type, number of nodal diameters n and
number of nodal circles m.

Axial modes

Zero nodal circles (m=0)

n [-] 0 1 2 3 4 5 6 7 8

f [Hz] 332.8 243.2 429.9 1143 2058 3071 4131 5216 6316

One nodal circle (m=1)

n [-] 0 1 2 3 4 5 6 7

f [Hz] 1924 2089 2585 3193 3881 4635 5454 6343

Two nodal circles (m=2)

n [-] 0 1 2 3 4 5

f [Hz] 4177 4237 4417 4872 5547 6406

Radial modes (m=0)

n [-] 0 1 2 3 4 5 6 7

f [Hz] 3625 1586 2243 2834 3536 4350 5268 6269

Circumferential modes (m=0)

n [-] 0 1 2

f [Hz] 722.0 3886 5228

the rigid body modes of the complete wheelset including the primary suspen-127

sion are considered. Notably translation in vertical direction (11.1 Hz), trans-128

lation in lateral direction (14.4 Hz) and rotation in the vertical/lateral plane129

(16.5 Hz) are included in the modal summation. Fig. 5 shows as examples the130

vertical and lateral point receptances and the vertical/lateral cross-receptance131

for the node at yW = −32mm on the wheel tread. This node corresponds to132

the nominal simulation case in Section 3.133

The impulse response functions (or Green’s functions) of the wheel, gWij , are134

then obtained by inverse Fourier transform from the wheel receptances, GW
ij :135

gWij (t) = F
−1

(

GW

ij (f)
)

, i, j = 2, 3 . (2)

The subscripts i and j denote the excitation and response directions, respec-136

tively. The first 0.4 s of the impulse response functions corresponding to the137

receptances from Fig. 5 are presented in Fig. 6. As the wheel is very lightly138
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Fig. 3. Eigenfrequencies of the C20 wheel up to 7 kHz calculated with the FE model:
axial modes (✷), radial modes (×) and circumferential modes (◦) with zero nodal
circles (———), one nodal circle (−−−) and two nodal circles (− · −).

(a) (b) (c)

Fig. 4. Examples of wheel modes: (a) axial mode (3,0,a); (b) axial mode (5,0,a);
(c) radial mode (1,r).

damped, the impulse responses decrease slowly and long signals have to be139

considered. The total length of the impulse response signals taken into ac-140

count is 20 s.
141

In the interaction model, the lateral and vertical displacements of the wheel at142

the contact point, ξW2 (t) and ξW3 (t), are calculated by convoluting the contact143

forces F2 and F3 with the Green’s functions144

ξWj (t) = −

∫ t

0

3
∑

i=2

Fi(τ)g
W

ij (t− τ) dτ , j = 2, 3 . (3)
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Fig. 5. Magnitudes of the wheel receptance at yW = −32mm on the tread: (a) ver-
tical point receptance, (b) lateral point receptance, (c) vertical/lateral cross recep-
tance.

The influence of wheel rotation is neglected.145

2.2 Track model146

The track model consists of one continuously supported rail of type BV50 (a147

common Swedish rail type) and is built with waveguide finite elements using148

the software package WANDS [29]. This model takes advantage of the two-149

dimensional geometry of the rail having a constant cross-section in x-direction,150

but nonetheless considers the three-dimensional nature of the vibration by as-151
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Fig. 6. Impulse response functions of the wheel calculated at yW = −32mm on the
tread : (a) vertical, (b) lateral, (c) vertical/lateral.

suming a wave-type solution along the rail. Cross-sectional deformations of152

the rail, which are important for high-frequency applications, are taken into153

account.
154

The waveguide finite element (WFE) mesh of the continuously supported rail,155

which consists of eight-noded isoparametric quadrilateral elements, is pre-156

sented in Fig. 7. The material data of rail and support, which are chosen157

similar to the data given in [29], are listed in Table 1. The vertical stiffness of158

the continuous support corresponds to soft rail supports.
159

The equations of the WFE model are presented by Nilsson et al. in [29]. Only160

a short summary is given here.
161
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Fig. 7. WFE mesh of the BV50 rail.

The basic principle of theWFEmethod is that the displacement u = [ux, uy, uz]
T

162

- in the x-, y- and z−directions - in one waveguide finite element is formulated163

as164

u = N(y, z)û(x) , (4)

where û is the vector of nodal displacements and N(y, z) are two-dimensional165

(2D) FE shape functions; i.e. a 2D mesh is sufficient to describe the three-166

dimensional structure.
167

In the same manner as for standard FE models, the complete WFE model is168

assembled from the formulation on element level. For free harmonic motion,169

the equations of the assembled WFE model represent an eigenvalue problem170

in wavenumber k at a given frequency ω. The eigenvectors Ũn correspond to171

cross-sectional wave shapes. The eigenvalues kn obtained as complex-valued172

wavenumbers describe propagation and decay of the waves along the rail.173

For an implicit time dependence eiωt, the amplitude of a free harmonic wave174

propagating in the positive x-direction is thus described by175

Ûn(x) = Ũne
−iknx , (5)

where Ûn is the global displacement vector containing all degrees of freedom176

in the cross-section. The eigenvalues are represented in Fig. 8 in the form of177

the dispersion relation. The wave shapes belonging to the different wave types178

in Fig. 8 are shown in Fig. 9 for the case kn = 1 rad/m.179

The response to forced excitation is obtained by superposing the contributions180

from the different waves. For propagation in the positive x-direction, the global181

displacement vector Û0 obtained due to a harmonic point force at x = 0182
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Fig. 8. Dispersion relation for the continuously supported rail. Wave types: (A) Lat-
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Fig. 9. Wave shapes at kn = 1 rad/m: (a) Lateral bending wave, (b) Vertical bending
wave, (c) Torsional wave, (d) Longitudinal wave, (e) Web bending wave 1, (f) Web
bending wave 2.

reads [29]183

Û0(x) =
∑

n

An(F̃0)Ũne
−iknx , (6)
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where the force vector F̃0 is formulated in the wavenumber domain. The ex-184

pression for the amplitudes An(F̃0) is given in [29].
185

For the predetermined lateral contact position on the rail (see Section 2.3),186

receptances are calculated from the result of Equation (6). Fig. 10 shows as187

examples the vertical and lateral point receptances and the vertical/lateral188

cross-receptance for the node at yR = 12mm on the rail head. This node cor-189

responds to the nominal simulation case in Section 3.
190

In the interaction model, the track is represented by a special type of Green’s191

functions denoted moving Green’s functions, gR,x0

ij,v (t), which include the mo-192

tion of the nominal contact point along the rail [28,30]. The function gR,x0

ij,v (t)193

describes, for excitation of the rail (index R) in i-direction at the position194

x0 at time t0 = 0, the displacement response of the rail in j-direction at a195

point moving with train speed v away from the excitation, thus at the nom-196

inal contact point between wheel and rail. The discrete version of the mov-197

ing Green’s function gR,x0

ij,v (t) is constructed from (ordinary) Green’s functions198

gR, x0, x0+α
ij (t), where the superscripts specify the excitation point x0 and the199

response point x0 + α on the rail. The Green’s functions gR,x0, x0+α
ij (t) are ob-200

tained from the corresponding track transfer receptances by inverse Fourier201

transform:202

gR,x0, x0+α
ij (t) = F

−1
(

GR, x0, x0+α
ij (f)

)

, i, j = 2, 3 . (7)

The lateral and vertical displacements of the track at the contact point, ξR2 (t)203

and ξR3 (t), are calculated by convoluting the contact forces with the moving204

Green’s functions205

ξRj (t) =
∫ t

0

3
∑

i=2

Fi(τ)g
R,vτ
v,ij (t− τ) dτ , j = 2, 3 . (8)

In the case of the continuously supported track used in this article, the mov-206

ing Green’s functions are independent of the excitation position x0 on the207

rail. Fig. 11 shows as example the moving Green’s functions of the track ob-208

tained for excitation at the lateral contact position yR = 12mm and a train209

speed v = 50 km/h. As the track is a waveguide and has in addition much210

higher damping than the wheel, it is well characterised by considerably shorter211

Green’s functions than the wheel. The total length of the moving Green’s func-212

tions taken into account is 0.25 s.
213

214

2.3 Contact position on wheel and rail215

Measured wheel and rail profiles are used in the wheel/rail interaction model.216

The wheel profile is a S1002 profile worn over 169 000 km. The rail profile is a217

12
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Fig. 11. Moving Green’s functions of the track calculated for a lateral contact posi-
tion on the rail yR = 12mm and a train speed v = 50km/h: −−− (grey) vertical,
− · − lateral, ——— vertical/lateral.

BV50 profile with inclination 1:40 measured at a curve in the network of Stock-218

holm metro, where severe corrugation and squeal occur [31]. For these profiles,219

the contact points on wheel and rail have been determined as a function of220

the relative lateral displacement ∆yWR of the wheelset on the rail, with a pre-221

processor of the commercial vehicle-track interaction software GENSYS [32].222

The roll angle of the wheelset and the deflection of the primary wheelset sus-223

pension for a chosen vertical preload P of 65 kN have been taken into account.224

Fig. 12 shows the results for the inner rail, which are used in the interaction225

model. For a given lateral displacement ∆yWR, the actual profiles around the226

contact point on wheel and rail are considered in the algorithm. The wheel227

and track receptances calculated in the node closest to the contact point are228

used. The wheel and track receptances presented as examples in Sections 2.1229

and 2.2 correspond to a relative lateral displacement of the wheelset on the230

rail of −15mm.231

13
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Fig. 12. Contact points for a worn wheel profile S1002 on a worn rail profile BV50
with inclination 1:40 calculated for different lateral displacements ∆yWR [mm] of
the wheelset on the rail; results given for 1mm steps.

2.4 Normal contact model232

The contact model is an implementation of Kalker’s model CONTACT [33],233

which is a three-dimensional, non-steady state rolling contact model based234

on the assumption that wheel and rail can be locally approximated by elastic235

half-spaces. In addition to the parameters included in CONTACT, the contact236

model used in this article considers the combined roughness of wheel and rail237

on several parallel lines in the rolling direction and the contribution of the238

structural dynamics of wheel and rail to the creepage.
239

A potential contact area is introduced and divided into N rectangular elements240

with side lengths ∆x and ∆y in x- and y-directions, respectively. Assuming241

that wheel and rail are made of the same material, quasi-identity holds and,242

consequently, the normal and tangential contact problems can be solved sep-243

arately [33].
244

The normal contact problem consists in determining which elements of the245

potential contact area are in contact, and calculating the local vertical dis-246

placement uI3 and the contact pressure pI3 in every element I.
247

The local vertical displacement, which is the displacement difference between248

rail and wheel,249

uI3 = uR
I3 − uW

I3 , I = 1, . . . , N , (9)
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is related to the contact pressure according to250

uI3 =
N
∑

J=1

AI3J3 pJ3 , I = 1, . . . , N , (10)

where AI3J3 are influence coefficients for the elastic half-space, e.g. found251

in [33]. The total vertical contact force, F3, is obtained by summing the con-252

tributions from the different elements:253

F3 =
N
∑

I=1

pI3∆x∆y . (11)

Introducing the variable dI describing the distance between the deformed bod-254

ies in each element, the contact conditions are formulated as255

dI ≥ 0

pI3 ≥ 0 . (12)

dIpI3 = 0

If contact occurs in a surface element, the distance is zero and the contact256

pressure is positive. If contact does not occur, the distance is positive and257

the pressure is zero. Adhesion and penetration are excluded by Equation (12).258

The distance dI is obtained as259

dI = −δ + uI3 + zRI − zWI + rRI − rWI , (13)

where zRI and zWI are the profiles of rail and wheel, rRI and rWI are the roughness260

of rail and wheel, and δ is the approach of distant points261

δ = ξW3 − ξR3 . (14)

The normal contact problem is solved with an active set algorithm [33].262

2.5 Tangential contact model263

In frictional rolling contact, the contact area is divided into a stick and a slip264

area. The tangential contact problem consists in determining which elements265

are in stick and in slip, and calculating the local tangential displacements uIτ266

and tangential stresses pIτ at the surface.
267

The relation between local tangential displacements and tangential stresses is268

given by269

uIτ =
2

∑

α=1

N
∑

J=1

AIτJα pJα , τ = 1, 2 , (15)
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where AIτJα are influence coefficients for the elastic half-space, e.g. found270

in [33]. The tangential forces, Fτ , are obtained by summing the contributions271

from the different elements:272

Fτ =
N
∑

I=1

pIτ∆x∆y , τ = 1, 2 . (16)

A contact element belongs to the stick area if the local shift, SIτ , vanishes:273

SIτ = 0 , τ = 1, 2 . (17)

Otherwise the contact element belongs to the slip area. The local shift, defined274

as the relative displacement of two opposing particles of the wheel and the rail275

with respect to each other in one time step ∆t = ∆x/v, is obtained as276

SIτ = uIτ +W ∗

τ − u′

Iτ , τ = 1, 2 . (18)

The variable u′

Iτ represents the local displacement at the previous time step.277

In Kalker’s formulation, WIτ is the rigid shift calculated as278

WI1 = (ξ − yφ)∆x (19)

WI2 = (η + xφ)∆x , (20)

where ξ, η and φ are the longitudinal, lateral and spin creepages. In this paper,279

the contribution of the structural dynamics of wheel and track is added to the280

rigid shift:281

W ∗

I1 = WI1 (21)

W ∗

I2 = WI2 +
(

ξR2 − ξW2
)

−
(

ξ′R2 − ξ′W2
)

, (22)

where ξ′R2 and ξ′W2 are the lateral displacements of rail and wheel at the pre-282

vious time step.
283

In the slip area, the following relations hold:284

pIτ
√

p2I1 + p2I2
= −

SIτ
√

S2
I1 + S2

I2

, τ = 1, 2 (23)

p2I1 + p2I2 = (µpI3)
2 , (24)

where µ is the friction coefficient, which is assumed constant. Equation (23)285

ensures that the slip occurs in the direction opposite to the tangential stress.286

Equation (24) states that the tangential stress in the slip zone is equal to the287

traction bound µpI3.
288

The tangential contact problem is solved with an active set algorithm [33]289

combined with the Newton-Raphson method.290
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3 Simulation results291

In this section, the model described in Section 2 is applied to calculate high-292

frequency wheel/rail interaction during curving. First, the model is verified293

for quasi-static conditions. Second, dynamic calculations taking into account294

the wheel and track dynamics are carried out for different parameter combi-295

nations. If not stated differently in the text, the nominal parameters listed in296

Table 3 are used in the simulations. Given the coordinate system and the sign297

conventions used here, a negative value of the lateral creepage corresponds to298

an underradial position of the wheelset in the curve, which is a typical config-299

uration for the leading wheelset of the bogie [34]. In an underradial position,300

the wheelset runs towards the outside of the curve with an angle of attack301

α > 0. This situation is illustrated in Fig. 13. The contrary case with α < 0302

is called overradial position and corresponds to a positive value of the lateral303

creepage in the model. All simulations presented in this paper have been car-304

ried out for smooth wheel and rail surfaces. The inclination of the contact305

plane with regard to the horizontal plane has been neglected. Although the306

contact angle is small for the contact positions on the wheel tread/rail head, it307

should be noted that this simplification could influence the simulation results.308

Wheel flange/rail gauge corner contact has not been considered.

α

v

Fig. 13. Underradial position of the wheelset with angle of attack α > 0.
309

3.1 Verification of the contact model against CONTACT310

Setting the wheel and track Green’s functions to zero, i.e. assuming quasi-311

static conditions, makes it possible to verify the interaction model against312

Kalker’s own implementation CONTACT of his variational theory of rolling313

contact [33,35]. As both models are implementations of the same theory, very314

similar results are expected. Differences can arise from the different solvers315
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Table 3
Nominal simulation parameters

Train speed v = 50km/h

Lateral displacement of wheel on rail ∆yWR = −15mm

Vertical static preload P = 65kN

Longitudinal creepage ξ = 0

Lateral creepage η = −1%

Spin creepage φ = 0

Friction coefficient µ = 0.3

Element length in x-direction ∆x = 0.5mm

Element length in y-direction ∆y = 1mm

Time step ∆t = 36µs

used for the non-linear problem occurring in the tangential contact problem.316

CONTACT uses a specially designed Gauss-Seidel type solver [36], while a317

Newton-Raphson method is used in the present implementation. Furthermore,318

different tolerances and round-off practices can lead to slightly different results.319

Fig. 14 shows the division of the contact area into stick and slip zones obtained320

with both models using the parameters from Table 3 and an imposed lateral321

creepage of η = −0.2%. Rolling direction is the positive x-direction. Both

-4
-4

-2

-2

0

0

2

2

4

4-6 6

y
[m

m
]

x [mm]

Fig. 14. Division of the contact zone: quasi-static case, η = −0.2%. Stick zone:
✷ CONTACT, ✷ interaction model; Slip zone: ◦ CONTACT, • interaction model.

322

models give identical divisions of the contact zone. Wheel and track particles323

enter the contact zone at the leading edge and traverse the stick zone, before324

they reach the slip zone at the trailing edge of the contact. The corresponding325

distributions of the contact pressure and the total tangential stress are pre-326

sented in Fig. 15. The tangential stress increases continuously from zero at the327
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leading edge towards the slip zone, where it reaches the traction bound µp3.328

The comparison of tangential stress and contact pressure obtained with both
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Fig. 15. Distribution of (a) contact pressure p3 and (b) total tangential stress
pt =

√

p21 + p22 in the contact zone: quasi-static case, η = −0.2%.
329

models on two selected lateral lines (Fig. 16) shows that the interaction model330

is in very good agreement with CONTACT. The relative difference between331

the stress distributions obtained does not exceed 0.75%.
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Fig. 16. Tangential stress pt (in black) and traction bound µp3 (in grey) obtained
with the interaction model (———) in comparison to CONTACT (• /◦) for the
quasi-static case, η = −0.2%: (a) on line y = 2mm, (b) on line y = −2mm.

332

3.2 Dynamic wheel/rail interaction333

The dynamic wheel/rail interaction during curving has been calculated for a334

range of different input parameters in order to investigate possible instabilities.335

In each simulation, the total simulated time is 3.5 s. The preload and the336

creepages are applied gradually in the first 0.14 s of the simulation.
337

The time-domain simulations make it possible to determine the amplitude of338

occurring stick/slip oscillations. A problem is, however, that only a finite time339

interval is analysed and stick/slip oscillations that need a long time to build340

up are difficult to detect. Against this background, a measure LF2
based on341

the rms-value of the lateral contact force signal is introduced to characterise342
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the relative instability of the simulations:343

LF2
= 20 log

F2,rms

1N
. (25)

The rms-value F2,rms of the transient part of the signal in a time period T is344

obtained as345

F2,rms =

√

1

T

∫ t1+T

t1

(

F2(t)− F̄2

)2

dt , (26)

where F̄2 is the mean value of the force in the considered time interval. The346

rms-value is calculated from the last 0.15 s of the force signal, and only fre-347

quency components above 150Hz are considered in order to exclude contri-348

butions from the wheel suspension. As the mean value is subtracted from the349

force signal, cases with no stick/slip, where the force approaches a constant350

value, give low values of LF2
. Although sound radiation from the wheel has351

not been calculated, the measure LF2
based on the lateral contact force is also352

a good indicator for the likelihood of squeal to develop, - and to a certain353

degree - is an estimator for the strength of squeal.
354

In the simulation with the nominal parameters from Table 3, denoted simula-355

tion I, a pronounced stick/stick oscillation builds up. Fig. 17 presents the time356

series of the lateral contact force and Fig. 18 the corresponding power spec-357

trum. The main frequency component in the spectrum (which, like all spectra358

presented in Section 3, has a frequency resolution of 6.8Hz) is identified as359

434Hz, which is very close to the eigenfrequency of the (2,0,a) mode of the360

wheel at 430Hz. Furthermore, the spectrum contains higher harmonics of this361

frequency. The measure LF2
according to Equation (25) is 47.0 dB. Details of362

the stick/slip cycle are depicted in Figs. 19 and 20. During most of the cycle,363

the contact area is in full slip and the lateral contact force F2 coincides with364

the traction limit µF3. Only during a short phase in each cycle, partial stick365

occurs at the leading edge of the contact zone, see Fig. 20(b) and (c), and the366

lateral force takes a value below the traction bound.
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Fig. 17. Simulation I: time series of the lateral contact force F2.
367
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Fig. 18. Simulation I: power spectrum of the lateral contact force F2. Multiples of
the main frequency component at 434Hz are indicated by vertical dashed lines.
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Fig. 19. Simulation I: zoom on time series of the contact forces; ——— lateral force
F2, −−− (grey) traction bound µF3. The division of the contact zone at the time
steps marked with Arabic numerals is depicted in Fig. 20.
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Fig. 20. Simulation I: division of contact zone in stick (✷) and slip (•) zones in the
time steps marked in Fig. 19; (a) step 1, (b) step 2, (c) step 3, (d) step 4.
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3.2.1 Influence of lateral creepage and friction coefficient368

The dynamic simulation I has been repeated for different values of lateral369

creepage and friction coefficient. The results are presented in Fig. 21 in terms370

of the measure LF2
calculated from the lateral force signal. Both parameters,371

the imposed lateral creepage and the friction coefficient, are seen to have a372

strong influence on the occurrence and amplitudes of stick/slip oscillations.373

High levels LF2
are only observed on the left side of Fig. 21 corresponding to374

negative values of the lateral creepage (i.e. underradial position of the wheelset375

in the curve). Another observation from Fig. 21 is that small changes in the376

parameters can lead to a sudden appearance (or disappearance) of pronounced377

stick/slip oscillations.
378

Simulations with LF2
> 0 dB, which have been denoted by Roman numerals in
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Fig. 21. Results of the dynamic simulations as function of the imposed lateral creep-
age η and the friction coefficient µ: force level LF2

calculated according to Equa-
tion (25); simulations with LF2

> 0 dB are denoted by Roman numerals.

379

Fig. 21, have been analysed in more detail. Among those, two groups can be380

identified according to the main frequency component; see the first two rows381

in Table 4. A third stick/slip frequency is found, when changing the lateral382

contact position; see Section 3.2.2 and Table 4. In the first group, which com-383

prises simulations I-X, the main frequency component occurs at 434Hz, which384

corresponds to the (2,0,a) mode of the wheel. This group has already been ex-385

emplified by the results of simulation I in Figs. 17 to 20. The second group386

consists of simulations XI and XII, where stick/slip develops at a frequency of387
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5235Hz. This frequency is close to the eigenfrequencies of the (7,0,a) and (2,c)388

modes of the wheel, which are 5216Hz and 5228Hz, respectively. This second389

group of simulations is exemplified by the results from simulation XI presented390

in Figs. 22 to Fig. 25. The time signal of the lateral contact force (Fig. 22)391

reveals that the build-up of the stick/slip oscillation takes about three times392

as long as in the case of simulation I (Fig. 17). The change of mean value of393

the lateral force in Fig. 22 is explained by a lateral shift of the wheel on the394

rail. In the stick/slip oscillation of simulation XI, the lateral force stays below395

the traction limit µF3 at all times (Fig. 24) and the division of the contact396

zone oscillates between the two extremes depicted in Fig. 25.397

Table 4
Main frequency component in simulations with LF2

> 0 dB.

Frequency [Hz] Closest wheel modes Simulations

434 (2,0,a) I-X, XIV

5235 (7,0,a), (2,c) XI, XII

1146 (3,0,a) XIII
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Fig. 22. Simulation XI: time series of the lateral contact force F2.
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Fig. 23. Simulation XI: power spectrum of the lateral contact force F2.
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Fig. 24. Simulation XI: zoom on time series of the contact forces; ——— lateral force
F2, −−− (grey) traction bound µF3. The division of the contact zone at the time
steps marked with Arabic numerals is depicted in Fig. 25.
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Fig. 25. Simulation XI: division of contact zone in stick (✷) and slip (•) zones;
(a) minimum size of the stick zone (corresponding to time step 1 in Fig. 24) and
(b) maximum size of the stick zone (corresponding to time step 2 in Fig. 24).

3.2.2 Influence of the lateral contact position398

Simulation I has also been repeated for four different values of the relative399

lateral displacement ∆yWR of the wheel on the rail (Fig. 26). In addition to400

simulation I, where ∆yWR is −15mm, pronounced stick/slip oscillations occur401

also for −10mm (simulation XIII) and −5mm (simulation XIV), but not for402

0mm and 5mm, where the contact on the wheel tread occurs more towards403

the wheel flange (Fig. 12).
404

Simulation XIV belongs to the group of simulations with a main frequency405

component at 434Hz, while the stick/slip oscillation in simulation XIII occurs406

at 1146Hz, which corresponds to the (3,0,a) mode of the wheel at 1143Hz. The407

results of simulation XIII are presented in Figs. 27 to 30. The stick/slip oscil-408

lation (Fig. 27) develops twice as fast as compared to simulation I (Fig. 17),409

and interacts initially with the initial oscillations of the wheel suspension. The410

first few higher harmonics in the power spectrum of the lateral contact force411

(Fig. 28) have similar magnitudes to the fundamental tone at 1146Hz. This412
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Fig. 26. Results of the dynamic simulations as function of the relative lateral dis-
placement ∆yWR of the wheel on the rail: force level LF2

according to Equation (25);
simulations with LF2

> 0 dB are denoted by Roman numerals. Colour bar as in
Fig. 21.

highlights the strongly non-linear character of curve squeal. Remarkable in413

the case ∆yWR = −10mm is the shape of the contact zone, which is split into414

three separate zones (Fig. 30).
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Fig. 27. Simulation XIII: time series of the lateral contact force F2.
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Fig. 28. Simulation XIII: power spectrum of the lateral contact force F2. Multiples
of the main frequency component at 1146Hz are indicated by vertical dashed lines.

415

3.3 Discussion416

The presented simulation results confirm that stick/slip during curving (and417

consequently curve squeal) is possible not only in the case of a falling friction418
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Fig. 29. Simulation XIII: zoom on time series of the contact forces; ——— lateral
force F2, −−− (grey) traction bound µF3. The division of the contact zone at the
time steps marked with Arabic numerals is depicted in Fig. 30.
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Fig. 30. Simulation XIII: division of contact zone in stick (✷) and slip (•) zones;
(a) minimum size of the stick zone (full slip corresponding to time step 1 in Fig. 29)
and (b) maximum size of the stick zone (corresponding to time step 2 in Fig. 29).

coefficient, but also in the case of constant friction. The occurrence of stick/slip419

is attributed to the coupling between vertical and tangential dynamics. The420

time-domain simulations, however, give only limited insight into the precise421

underlying mechanism. In the case of stick/slip at 5235Hz, two wheel modes,422

the axial (7,0,a) mode and the circumferential (2,c) mode, could be shown to423
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participate. If any of the two modes is assigned a very high modal damping424

ratio (e.g. 1), the stick/slip oscillation ceases to exist. For stick/slip at 434Hz425

and 1146Hz, only one mode could be shown to participate in each case, which426

is respectively the (2,0,a) axial mode and the (3,0,a) axial mode. In these427

two cases, the elimination of neighbouring modes from the frequency response428

function of the wheel did not have any influence on the stick/slip oscillation.
429

The validity of the simulations presented is limited by the model assumptions.430

The surface roughness of wheel and rail (which could be included as described431

in Section 2.4) and the slight inclination of the contact plane have not been432

considered. Both simplifications could influence the occurrence of stick/slip433

oscillations. It has been assumed that the lateral creepage and the lateral434

contact position do not change during the simulation, which is a reasonable435

assumption for quasi-static curving only. Furthermore, the friction coefficient436

was assumed to remain constant along the track, which is a questionable as-437

sumption for real conditions.
438

The simulation results are, however, in good qualitative agreement with gen-439

eral observations about squeal noise and results reported in the literature.440

Squeal is known to occur predominantly at frequencies corresponding to axial441

modes of the wheel with zero nodal circles (m = 0) [1], which agrees with442

what is found here. The parameters investigated - the lateral creepage, the443

lateral contact position and the frictional properties - are key parameters for444

the occurrence of curve squeal [1,37] and they show a significant influence445

on the simulation results presented. de Beer et al. [8] found in a laboratory446

test that squeal occurs only above a threshold value of the angle of attack447

(i.e. the lateral creepage). This behaviour is clearly reflected in the results of448

Fig. 21. Based on the model of de Beer [8], Thompson [1] reports that squeal449

is most likely to occur if the contact on the wheel tread occurs towards the450

field side of the tread. The same result is seen in Fig. 26. Finally the results451

from Fig. 21, where pronounced stick/slip does not occur below friction values452

of 0.3, also agree with the well-known fact that low friction conditions (wet453

weather, lubrication) reduce the likelihood of squeal.454

4 Conclusions455

In this paper, a detailed time-domain model for the dynamic wheel/rail inter-456

action was proposed. In order to keep computational effort in the wheel/rail457

interaction model as low as possible, vehicle and track were represented by458

impulse response functions derived from detailed FE models, which are cal-459

culated in advance. As contact model a transient, three-dimensional and non-460

linear contact model has been implemented based on Kalker’s theory.
461

The implementation of the contact model has been validated for quasi-static462
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conditions against Kalker’s implementation CONTACT and showed very good463

agreement.
464

One essential feature of the simulation model is that the coupling between nor-465

mal and tangential directions is taken into account. This was a main condition466

for being able to investigate the occurrence of squeal for constant friction val-467

ues instead of falling friction curves.
468

In the rather limited parameter study presented in this paper, certain cases469

could be identified where strong unstable tangential contact forces appeared.470

In all cases, the exhibiting frequencies were close to wheel resonances corre-471

sponding to axial modes of the wheel with zero nodal circles (m = 0). In472

this study, the lateral creepage, the lateral contact position and the frictional473

properties proved to be key parameters for the occurrence of curve squeal. In474

general, it was found that the conditions prevailing at the leading inner wheel475

(underradial position, contact towards field side of tread) promote squeal. All476

these findings are in good qualitative agreement with previously published477

findings on curve squeal.
478

In addition, the simulation results show that squeal can be observed even for479

a constant friction coefficient as suggested by previous publications.
480

Although the results shown in this paper are samples rather than due to an481

exhaustive parameter study, the results are promising and suggest that the482

model might be a good tool for carrying out well-controlled numerical ex-483

periments in order to increase the understanding of the mechanisms behind484

curve squeal. Especially noteworthy is that the model allows more realistic485

simulations taking into account the roughness of the wheel and rail running486

surfaces. However, for simulating real situations and perhaps even using such487

cases for validation, a better knowledge of the friction characteristics in the488

field is needed.489
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