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Let t(n, d, s) be the optimal number of tests needed by an
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searcher must also verify that at most d defectives are present.
We start building a combinatorial theory of strict group
testing. We compute many exact t(n, d, s) values, thereby
extending known results for s = 1 to multistage strategies.
These are interesting since asymptotically nearly optimal
group testing is possible already in s = 2 stages. Besides
other combinatorial tools we generalize d-disjunct matrices
to any candidate hypergraphs, and we reveal connections to
the set basis problem and communication complexity. As a
proof of concept we apply our tools to determine almost all
test numbers for n ≤ 10 and some further t(n, 2, 2) values. We
also show t(n, 2, 2) ≤ 2.44 log2 n + o(log2 n).
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1. Introduction

In the group testing problem, a set of n elements is given, each being either defective
(positive) or non-defective (negative). Let P denote the unknown set of positive elements.
A group test takes any subset Q of elements, called a pool. The test (or pool) is positive
if Q∩ P �= ∅, and negative otherwise. In the latter case all elements in Q are recognized
as negative. The goal of a searcher is to identify P using a minimum number of tests.
A group testing strategy may be organized in s stages, where the tests applied in a stage
may depend on the outcomes of all tests in previous stages, and all tests within a stage
are executed in parallel. In adaptive strategies s is not limited, hence tests can be done
sequentially. Case s = 1 is called nonadaptive. Small s is desired in applications where
the tests take much time. The term pooling design refers to a set of pools, especially
within one stage. A pooling design can be written as a binary matrix whose rows and
columns are the pools and elements, respectively. A matrix entry is 1 if the element is
in the pool, and 0 else.

We consider the following scenario. The searcher expects |P | ≤ d for some previously
known bound d, and |P | > d is unlikely but not impossible. She wants to identify P if
|P | ≤ d, and just report “|P | > d” otherwise. This setting is called strict group testing,
in contrast to hypergeometric group testing where |P | ≤ d is “promised”. It was argued
in, e.g., [1] that strict group testing is preferable. It does not rely on the assumption
|P | ≤ d, and the searcher is sure about not having missed any defective.

For complexity results and various applications of group testing we refer to [8,9,3,
24,5,20,30,34] as entry points to further studies. For the test number in s = 1 stage,
a lower bound d2

2 log2[e(d+1]/2] log2 n + o(log2 n) was given in [13] and later refined in
[16,17]. As opposed to that, O(d log n) tests are sufficient already if s = 2, as shown by
the random coding upper bound in [14], followed by several improved constructions [15,
10,6,18,17]. However, even asymptotically optimal strategies do not necessarily entail
optimal strategies for specific input sizes n. Furthermore, pool sizes increase with n,
whereas in some applications large pools may be infeasible. Still we can split an instance
into many small instances and solve them independently, each with optimal efficiency. To
mention a practical example, screening millions of blood donations for infectious diseases
is performed at some labs in instances (“minipools”) of, e.g., 16 samples [25], and group
testing is proposed [35] to reduce the waiting times and costs. We also refer to [12] for
biological applications of 2-stage strategies, with tests in the last stage being individual
(whereas we will drop this restriction).

We define t(n, d, s) to be the optimal worst-case number of tests needed for strict group
testing for n elements, up to d defectives, and at most s stages. Some monotonicity
relations hold trivially: If n ≤ n′, d ≤ d′, and s ≥ s′ then t(n, d, s) ≤ t(n′, d′, s′). If
t(n, d, s) = t(n, d, n), we write t(n, d, s+) to indicate that more stages would not lower
the test number.

To our best knowledge, the strict group testing model and the construction of optimal
strategies for specific problem sizes in the multistage case are under-researched so far.
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Our ambition is to initiate a combinatorial theory of strict group testing that (a) connects
the problem to other fields and (b) enables us to calculate as many t(n, d, s) values as
possible, along with the corresponding optimal strategies.

We remark that t(n, d, 1) is the size of a d-disjunct matrix, also known as superim-
posed code. The first bounds were given in [27]. Exact t(n, d, 1) values follow from [26]
for all n ≤ 14 and some larger n. As we observed in [4], t(n, 1, 1) = log2 n + o(log2 n)
is the smallest k with

(
k

k/2
)
≥ n. Namely, by [31] this k is the optimal size of a com-

pletely separating set family (see Section 3), and these are exactly the pooling designs
for nonadaptive strict group testing when d = 1. Although this connection is simple,
this seems to be the first case of a combinatorial search problem where completely sep-
arating systems really appear. Next, t(n, 1, 2+) = �log2 n�+ 1 is a side result in [4], and
[21] gave partial results on adaptive strategies. The t(n, 2, 2) case is particularly inter-
esting. Note that t(n, 2, 2) ≥ 2 log2 n − 1 holds trivially, and a result from [29] implied
t(n, 2, 2) ≤ 3 log2 n. The currently best known upper bounds for t(n, d, 2) for general d
can be found in [17]. Here we will improve on t(n, 2, 2). Other work addresses optimal
test numbers in other group testing variants [33].

Here we give an overview of the paper structure and the novel contributions.

• We introduce some useful hypergraphs related to strict group testing. In particular,
the candidate hypergraph lists the candidate sets for the defective set P (Section 2).

• We show that the last stage of a problem instance, which is nonadaptive strict group
testing on a candidate hypergraph, is equivalent to the set basis problem, one of the
“oldest” NP-hard optimization problems on hypergraphs, and to the 0-cover number
in Communication Complexity (Section 3).

• Furthermore, this is equivalent to optimal coloring of a so-called conflict graph de-
rived from the candidate hypergraph. The set basis formulation enables some elegant
proofs of other facts, whereas conflict graph coloring is often more suitable calculat-
ing specific test numbers. Our characterizations also naturally generalize d-disjunct
matrices to the case of arbitrary hypergraphs (Section 3).

• We study compositions of candidate hypergraphs that are relevant in our calcula-
tions. The product formalizes independent problem instances on disjoint sets. We
disprove the natural conjecture that the test number is additive, but we prove it in
a useful special case and state a slightly weaker conjecture on additivity (Section 4).

• We collect a number of further tools for proving bounds on t(n, d, s) (Sections 5
and 6). Using all these preparations we finally manage to give optimal strategies for
almost all triples n, d, s with n ≤ 10 (Section 7). Some of the designs are surprising
and would be hard to find without our techniques. In particular, the last stage is
often not just individual testing of candidates. (We also stress that matching lower
bounds cannot be achieved naively by considering all possible pooling designs in
every stage, as their number is doubly exponential in n.) The results extend similar
work for s = 1 to s > 1 stages and thus save tests.
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• For t(n, 2, 2) we obtain optimal results also for some larger n. We also show
t(n, 2, 2) ≤ 2.44 log2 n+o(log2 n), essentially helped by the set basis characterization
(Section 8).

2. Set and hypergraph notation

A k-set (≤ k-set, ≥ k-set) is a set with exactly (at most, at least) k elements. We
use this notation also for pools, hyperedges, and other sets in special roles. A hypergraph
is a set of vertices equipped with a family of subsets called hyperedges. A graph is a
hypergraph with only ≤ 2-hyperedges, called edges. A loop is a 1-hyperedge. We allow
parallel hyperedges which are identical as sets but occur multiple times. Set A is a subset
(superset) of B if A ⊆ B (A ⊇ B). Two sets are incomparable if neither is a subset of
the other one. A family of pairwise incomparable sets is an antichain (Sperner family).
Standard graph-theoretic symbols Kn, Cn, Km,n denote the clique, cycle, and complete
bipartite graph, respectively, with the indicated vertex numbers. A forest (union of trees)
is a cycle-free graph, and a leaf is a vertex incident to only 1 edge.

Consider any moment after some stages of a group testing strategy. An element that
has not yet appeared in negative pools is called a candidate element. A candidate set is
any set of up to d candidate elements that is consistent with all previous test outcomes
(and thus, possibly the true set P ). The name is justified by a simple observation: An
element v is possibly positive until it is discarded, as a member of some negative pool,
and before that, the searcher cannot safely conclude that v is negative. Therefore we
can even have candidate elements outside all candidate sets, called dummy elements. For
example, if n = 5 and d = 2, and we test 2 disjoint 2-pools with positive outcome, then
the 5th element was in no negative pool so far, but any candidate 2-set must take one
element from both pools.

The candidate hypergraph has the candidate elements as vertices and the candidate
sets as hyperedges. For d = 2 we speak of the candidate graph, possibly with loops.
The candidate hypergraph completely describes the searcher’s instantaneous knowledge.
The definitions imply that the possible sets P are exactly the candidate sets and all
their supersets. (But note that the candidate sets do not necessarily form an antichain.)
An instance of the strict group testing problem is solved if and only if the candidate
hypergraph retains exactly one hyperedge and no dummy elements. We also remark that
the candidate sets are exactly those ≤ d-sets of candidate elements which are hitting
sets of the family of positive pools so far.

As usual in the field, some proofs use adversary arguments, where an adversary an-
swers to the tests in order to enforce a certain worst-case test number.

3. Characterizations of nonadaptive strict pooling designs

The candidate hypergraph captures the searcher’s knowledge after any number of
stages, and the question is how the searcher should efficiently finish the search in the
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remaining stages. This gives rise to the following generalization of the problem, that
we call strict group testing on a candidate hypergraph. (This should not be confused
with the different concept in [23].) A candidate hypergraph is given, and the searcher
knows already that the true set P of positive elements is one of the candidate sets or
their supersets. If P is among the candidate sets, the searcher must both identify P and
verify that all elements outside P are negative. If P is not among the candidate sets, the
searcher is only supposed to recognize this fact.

In the following we consider, in particular, the situation prior to the last (sth) stage.
We call a pooling design strict if it solves the strict group testing problem on the given
candidate hypergraph nonadaptively. Our first characterization of strict designs relates
to the algebraic notion of set basis. Let us be given a hypergraph whose hyperedges we
call target sets. A set basis is another hypergraph on the same vertices – we call its
hyperedges basis sets – such that every target set equals the union of some basis sets.

Theorem 1. A pooling design is strict if and only if the complement of every candidate
set is the union of some pools.

Proof. Suppose that the pools form a set basis for the complements of candidate sets.
Moreover, suppose that P is some candidate set. Then the complement of P is the union
of negative pools, hence all candidate elements outside P are discarded. Still P may
contain other candidate sets as subsets, let P ′ ⊂ P be any of them. The complement
of P ′ is a union of some pools as well. At least one such pool Q intersects P , hence
Q is positive. Since also P ′ ∩ Q = ∅, this test outcome rules out P ′ as a candidate
set. Since this reasoning holds for every P ′ ⊂ P , it follows that only the candidate set
P remains, and no dummy elements, as seen above. If P is not a candidate set, the
searcher recognizes this fact as follows. P is a superset of some candidate set P ′. Since
only candidate elements outside P appear in negative pools, we retain some candidate
set together with further elements, unlike the case above. Altogether, the pooling design
is strict.

For the converse, assume that the complement of some candidate set P is not a union
of pools. Then the negative pools do not exhaust the complement of P , thus, again some
candidate set together with further candidate elements remains. Now this means that
the pooling design is not strict. �

The proof also shows that decoding is trivial: Discard all elements in negative pools,
and what remains is P . Finally check that P is a candidate set. By Theorem 1, solving
nonadaptive strict group testing on candidate hypergraphs with a minimum number of
pools is equivalent to finding a set basis of minimum size (where the target sets are the
complements of the candidate sets). The latter problem NP-hard [32], but, of course, we
can still solve it for special hypergraphs of interest.

There is always a trivial set basis where the pools are the complements of all candidate
sets, thus we have:
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Corollary 2. Any candidate hypergraph of m candidate sets permits a nonadaptive strict
group testing strategy with at most m tests.

Another consequence is that dummy elements can be ignored for the test number:

Corollary 3. Let G be a candidate hypergraph obtained from another candidate hypergraph
G′ by removing all dummy elements. Let t and t′ be the optimal number of pools for
nonadaptive strict group testing on G and G′. Then t = t′.

Proof. Take an optimal pooling design for G and add the dummy elements to each of
the t pools. Since the pooling design for G is a set basis according to Theorem 1, and
the dummy elements in G′ are in the complements of all candidate sets, this yields a set
basis for G′. This shows t′ ≤ t, and the other direction t ≤ t′ is trivial. �

We add a similar statement for s stages, as we will need it in this form, too.

Lemma 4. Let G be a candidate hypergraph with n > d vertices where all candidate sets
are d-sets. Let G′ be obtained from G by adding dummy elements. Then the optimal test
number on G′ (for unchanged d, s) is the same as for G.

Proof. Add the dummy elements to every pool of an optimal strategy for G. Since
n− d > 0 elements must be discarded, in every possible application of the strategy (i.e.,
for any test outcomes), at least one pool is negative, or the searcher recognizes |P | > d.
This negative pool also discards the dummy elements. �

Theorem 1 can be rephrased as follows.

Corollary 5. A pooling design is strict if and only if, for every pair of a candidate set C
and a candidate element v /∈ C, some pool Q exists such that v ∈ Q and C ∩Q = ∅.

Remember that initially, before stage 1, the candidate sets are all ≤ d-sets. In this
special case, Corollary 5 just expresses the well-known condition for d-disjunct pooling
designs, hence t(n, d, 1) is the optimal number of rows of a d-disjunct matrix with n

columns. For d = 1, the condition in Corollary 5 is the definition of completely separating
set families: for any two elements u and v, some set Q in the family satisfies v ∈ Q and
u /∈ Q. Next we give another reformulation which is often more suitable for calculating
optimal pool numbers.

In a partial vector, any position either has a fixed value 0 or 1, or remains open,
indicated by the ∗ symbol. We index the candidate elements by i = 1, 2, 3, . . . and encode
every pair of a candidate set C and a candidate element v /∈ C by a partial vector as
follows. We assign 0 to all positions of elements of C, and 1 to the position of v. All other
positions are open. Two partial vectors conflict if they have 0 and 1 at the same position.
Partial vectors without conflict are compatible. We translate the candidate hypergraph
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into a conflict graph defined as follows. Vertices represent the partial vectors for all C and
v /∈ C, and two vertices are adjacent if the corresponding partial vectors conflict. Next,
any pool is represented as its indicator vector: the bit vector with 1 at all positions of
elements in the pool, and 0 elsewhere. A pool covers a partial vector if every fixed value
1 or 0 in the partial vector equals the value in the pool’s indicator vector. The number
of colors needed to color a graph G, such that adjacent vertices get distinct colors, is
known as its chromatic number χ(G). We refer to χ(G) of a conflict graph G as conflict
chromatic number.

Theorem 6. Solving the strict group testing problem nonadaptively for a given candi-
date hypergraph is equivalent to coloring the conflict graph. Consequently, the conflict
chromatic number equals the number of pools required.

Proof. The condition in Corollary 5 can also be expressed by saying that, for every pair
of a candidate set C and candidate element v /∈ C, some pool must cover its partial
vector. A set of partial vectors can be covered by a single pool, if and only if they
are pairwise compatible. In the conflict graph, compatible partial vectors correspond to
nonadjacent vertices. Thus, a set of partial vectors can be covered by a single pool if and
only if the vertices form an independent set. Since partitioning a graph into a minimum
number of independent sets is graph coloring, the assertion follows. �

Once more, NP-hardness of graph coloring does not stop us from computing χ(G) for
specific conflict graphs G.

Theorem 1 opens even more avenues. First, the set basis problem is equivalent to the
minimum biclique edge cover problem in bipartite graphs. A biclique edge cover is a
family of complete bipartite subgraphs (bicliques) such that every edge belongs to some
of them. The equivalence is seen as follows. Think of the target sets T and elements v

as vertices of a bipartite graph, with an edge between T and v if and only if v ∈ T .
A minimum set basis can always be made of intersections of the target sets only, and
intersections obviously correspond to bicliques. For every v and T , element v must appear
in some basis set contained in T , which is exactly the edge cover condition.

Next we forge a bridge to Communication Complexity. Recall that the partial vectors
forming the vertex set of the conflict graph are encodings of the pairs of candidate
elements v and candidate sets C with v /∈ C. Now we identify the vertices with these pairs.
Consider the incidence matrix M of any candidate hypergraph (that is, rows correspond
to the candidate elements, columns to the candidate sets). The vertices of the conflict
graph correspond to the 0 entries of M . There is an edge between two 0’s if and only if the
corresponding vertices have a conflict, that is, the candidate set of one of them contains
the candidate element of the other. Let x = (v, V ) and y = (w,W ) be two vertices of the
conflict graph. An edge between x and y exists if and only if the (v,W ) entry or the (w, V )
entry of M is 1. Hence some vertices of the conflict graph form an independent set if
and only if the corresponding 0 entries of M can be covered with a submatrix containing
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0’s only, also called 0-monochromatic submatrix, and now the conflict chromatic number
equals the minimum number of 0-monochromatic submatrices covering all 0 entries of M .
This is a well-known measure in Communication Complexity, called the 0-cover number.
Its logarithm is the co-nondeterministic communication complexity of M (actually, of the
corresponding function). Moreover, a clique in the conflict graph is a so-called fooling
set of M .

The 0-cover number of M equals the minimum number of bicliques covering the edges
of the bipartite graph whose adjacency matrix is E −M , where E is the all-1 matrix of
the same size as M . Due to these relationships, results in Communication Complexity
or biclique edge covering may be used to obtain results in strict group testing. It is also
possible the other way round; just as an illustration we give a two-sentence proof of the
following theorem from [7] that was rediscovered in [22,2]. Another short proof can be
found in [36]. It is well known that the 0-cover number of the n × n identity matrix
In is at most 2�log2 n� (see, e.g., [28]). It is much less known that the exact value is
determined precisely.

Theorem 7. (See de Caen et al. [7].) The 0-cover number of In is the smallest number k,
such that

(
k

k/2
)
≥ n.

Proof. Consider the strict group testing problem on n elements, and s = 1, d = 1. The
candidate hypergraph contains the 1-element sets and the empty set, thus its incidence
matrix is In plus an all zero column, whose 0-cover number is obviously the same as of In,
which is, by the above observations, the same as t(n, 1, 1) = min(k :

(
k

k/2
)
≥ n). �

4. Independent instances of nonadaptive strict group testing

A frequent situation is that a candidate hypergraph is composed of two (or more)
smaller hypergraphs on disjoint subsets of elements, and the overall candidate sets are
all combinations of candidate sets in these “independent” parts. This happens, e.g., when
two subsets of earlier positive pools (within disjoint sets) require hitting sets of at least
d1 and d2 positive elements, respectively, where d1 + d2 = d.

We formalize this case by a certain product of hypergraphs. Let G1 and G2 be any
two candidate hypergraphs on disjoint sets of vertices (elements), denoted V1 and V2.
We define their product G = G1 × G2 as the candidate hypergraph on the vertex set
V1 ∪ V2, whose candidate sets are the unions C1 ∪ C2, for all pairs of candidate sets
C1 ⊆ V1 and C2 ⊆ V2, from G1 and G2, respectively. Let ti be the optimal number of
pools for nonadaptive strict group testing on Gi (i = 1, 2), and t the optimal number
for G. We have t ≤ t1 + t2, since the pools from optimal pooling designs for both G1 and
G2 together form a set basis of G.

One might conjecture additivity: t = t1 + t2. However, the searcher could use pools
with elements from both V1 and V2 and save some tests. In fact, additivity does not
always hold true. Apparently the smallest counterexample is the candidate graph K3,4.
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Here V1 and V2 are the partite sets of the bipartite graph, with 3 and 4 elements,
respectively, and exactly 1 element on each side is positive. Then t1 = t(3, 1, 1) = 3 and
t2 = t(4, 1, 1) = 4, but for the K3,4 we need only 6 = 7−1 pools, as given in the following
incidence matrix.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Due to symmetry it suffices to check for one edge that its complement is the union
of some pools. (Remarkably, the same design appeared already in [33] in a different
context.) This and a few other, similar counterexamples seem to rely on specific numbers.
Our current conjecture is that additivity holds with some sporadic exceptions, and t ≥
t1 + t2 − 1 holds in general. Below we prove additivity in special cases that are powerful
enough for our purposes.

Theorem 8. Let G1 be the candidate hypergraph with hyperedges {v1} and {v2} (that is,
exactly one of these 2 elements is defective), and G2 be an arbitrary candidate hypergraph.
Then nonadaptive strict group testing on G1 ×G2 needs t2 + 2 tests.

Proof. Due to Corollary 3 we can assume without loss of generality that G2 has no
dummy elements. Let v3, v4, . . . be the elements of G2. Pools must cover all partial
vectors according to Corollary 5 and Theorem 6. First consider those candidate sets of
G1 ×G2 containing v1. Their partial vectors have the fixed value 0 at the 1st position.
Hence t2 pools are needed to cover already these partial vectors. Assume that t2+1 pools
are sufficient for G1 × G2. Every partial vector of the form [10 . . .], with further 0s at
the positions of some candidate set from G2, conflict with the t2 former pools. Hence all
partial vectors [10 . . .] must be covered by the same last pool. Since all vi, i > 2, belong
to candidate sets in G2, thus give rise to 0s, this last pool can only be {v1}. Now the
key step is that, by symmetry, the pool {v2} must also exist. But the indicator vectors
of these pools, [100 . . . 0] and [010 . . . 0], conflict with all t2 pools needed to cover the
partial vectors from G2, since each of these has a fixed value 1 at some position vi, i > 2.
Hence we need t2 + 2 pools in total. �

As one immediate consequence, the candidate graph K2,n needs t(n, 1, 1)+ t(2, 1, 1) =
t(n, 1, 1) + 2 nonadaptive tests. The power of Theorem 8 is also illustrated by the fol-
lowing example. Consider k disjoint pairs of elements, where one element of each pair
is defective. Inductive application of Theorem 8 gives the lower bound 2k (individual
testing is optimal), whereas the information-theoretic lower bound is only k.
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We add some small observation that should help attack the additivity conjecture in the
future, as it greatly restricts the structure of optimal designs. Consider a pooling design
for G = G1 × G2. We define a bipartite graph B on a vertex set X1 ∪ X2 as follows.
The edges of B represent the pools Q, and the vertices of Xi represent the different
intersections Q ∩ Vi (i = 1, 2). That is, the vertices for Q ∩ V1 and Q ∩ V2 are joined by
the edge for Q. (Note that the edges of any two pools Q and Q′ with Q ∩ Vi = Q ∩ Vi

are incident to the same vertex in Xi. Also, one of the vertices in Xi may represent the
empty set.) If all pools are entirely in V1 or V2, then B consists of two star graphs, one
with center in X1 and one in X2, and these center vertices represent the empty set. In
particular, this B is a forest. Remarkably, the latter also holds in general:

Proposition 9. There is always an optimal nonadaptive strict pooling design for G1 ×G2
whose bipartite graph B is a forest.

Proof. Assume that B has a cycle. We replace every pool Q corresponding to an edge
in this cycle with the pools Q ∩ V1 and Q ∩ V2. The total number of pools does not
increase, and the modified pooling design is still a set basis for the complements of
candidate sets in G1 × G2. Thus, by Theorem 1 we still have a strict pooling design.
For the bipartite graph this means to remove the edges of the cycle and to connect its
vertices with the empty-set vertex on the other side of B. By iterating the procedure we
destroy all cycles. �

Next we study a second fundamental operation. Let G1, . . . , Gc be c candidate hyper-
graphs on pairwise disjoint vertex sets Vi. We define their disjoint union G1 + · · · + Gc

as the candidate hypergraph on the vertex set V1 ∪ · · · ∪ Vc, whose candidate sets are
all original candidate sets Ci ⊆ Vi from the Gi. Again, let ti be the optimal number of
pools for nonadaptive strict group testing on Gi.

Theorem 10. Nonadaptive strict group testing on G1 + · · ·+Gc can be done with at most
t(c, 1, 1) + max1≤i≤x ti pools.

Proof. By Theorem 1 we only need a set basis for the complements of the sets Ci. Our
set basis comprises two types of pools. Firstly, since the c sets Vi are pairwise disjoint,
we can obviously create a set basis of t(c, 1, 1) pools for their complements. We call them
coarse pools. Secondly, we take a set basis (of subsets of Vi) for every Gi and index these
pools arbitrarily by Pi1, Pi2, Pi3, . . . , Pi,ti . To this sequence we append empty pools if ti
is not maximum. Then, for every j ≤ max ti we create the pool P1j ∪ · · · ∪ Pcj . We call
them fine pools. To see that these pools together form a set basis, consider any fixed
candidate set Ci. The complement of Vi is the union of some coarse pools. Furthermore,
Vi \ Ci is the union of some pools that participate in fine pools. By construction, the
“rests” of these fine pools are outside Vi. Hence the complement of Ci is the union of
some pools. �
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5. Further tools for lower bounds

The simple counting bound says that the number of tests is at least log2 of the number
of outcomes. In particular we have t(n, d, n) ≥ log2(1 +

∑d
i=0

(
n
i

)
) where the summand

1 accounts for the outcome “|P | > d”. First we give a more powerful lower bound which
often guarantees one more test.

Lemma 11. If m > 2r candidate sets exist which form an antichain, then strict group
testing requires at least r + 2 tests, even adaptively.

Proof. It suffices to consider m = 2r +1. We use induction on r. We first see that 2 tests
are required if r = 0, that is, m = 2. If 1 test were enough then we could do it in 1 stage.
Thus Theorem 1 applies and, obviously, 2 incomparable sets cannot be unions of pools
when only 1 pool is present. Assume that the claim is true for r, and let m = 2r+1 + 1.
In one test outcome, the majority of candidate sets remain. Therefore, after the first test
we would keep at least 2r +1 candidate sets. By the inductive hypothesis the claim holds
for r + 1. �

The next two lemmas are evident monotonicity observations, therefore the proofs are
omitted. Recall that we discuss strict group testing in a prescribed number s of stages.

Lemma 12. Suppose that the adversary, in response to a given deterministic test strategy,
applies a test answering strategy A that enforces t tests in the worst case. If the searcher
replaces some pool Q, that is negative (positive) in A, with a subset (superset) of Q, then
still at least t tests are needed in the worst case.

Lemma 13. Suppose that the adversary reveals the outcomes of some pools of a stage
to the searcher, and then allows the searcher to redesign the remaining pools of this
stage from scratch. If t further tests are not sufficient despite redesign, then they are not
sufficient for the original problem instance either.

6. Pool hypergraphs and some candidate hypergraphs

A pool hypergraph represents a pooling design, but in dual form, which will turn out
to be convenient. Its pool vertices p1, p2, p3, . . . are the pools, and its hyperedges are the
candidate elements. A vertex belongs to a hyperedge if the corresponding pool contains
the corresponding element. Those elements being in no pools are represented as loops at
a symbolic null vertex p0. We may speak of a pool graph if all hyperedges are ≤ 2-sets.

Recall that our main goal is to get exact values t(n, d, s) for as many triples n, d, s

as possible. Since the t(n, 1, 1), and t(n, 1, 2+) were completely known before, we study
d ≥ 2 only. We summarize our methodology: In every possible pool (hyper)graph that
the searcher may apply in stage 1, an adversary fixes a certain subset W of vertices
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and renders all pools in W positive and the others negative. The remaining candidate
elements are precisely the (hyper)edges in the sub(hyper)graph induced by W , and the
defective (hyper)edges must cover W . Then we use our lower-bound techniques to en-
force certain test numbers in the resulting candidate (hyper)graphs. Symmetries and the
preceding lemmas reduce the amount of case inspections. As a preparation we collect
some conclusions from our theorems, as well as special cases that will be used in our
t(n, d, s) calculations.

Let d = 2. The following pool graphs enforce, by Lemma 11, the following minimum
numbers of further tests for adaptive strict group testing, provided that all pools respond
positively. (Note that candidate sets of the same size form an antichain.)

2 loops at a vertex: 2 candidate 1-sets, hence 2 tests.
2 loops at a pool vertex and 1 loop at p0: 3 candidate 2-sets, hence 3 tests.
3 loops at a vertex: 3 candidate 2-sets, hence 3 tests.
4 loops at a vertex: 6 candidate 2-sets, hence 4 tests.
2 loops at distance 1 or 2: 3 candidate 2-sets, hence 3 tests.
C3: 3 candidate 2-sets, hence 3 tests.
C4: 2 candidate 2-sets, hence 2 tests.

Next we look at some useful special candidate graphs. The candidate graph C4 = K2,2
has conflict chromatic number 4, since the partial vectors [010∗], [0∗10], [∗001], [10∗0]
conflict pairwise. Therefore, if d = 2, s = 2, and the pool graph used in stage 1 has
2 vertices with 2 loops each (which yields the candidate graph C4 when they respond
positively), then at least 4 more tests are required in stage 2.

An observation is that, for d = 2, the largest possible clique size in the conflict graph
is 5, thus, in general we need stronger arguments than the clique size in order to determine
conflict chromatic numbers. We continue with some of them, that we use later.

A nonadaptive strategy on the candidate graph K1,k requires t(k, 1, 1) tests, as the
central vertex together with either leaf is a candidate set. For instance, if d = 2, s = 2,
and the pool graph used in stage 1 has an edge p1p2 and a total of k loops at p1, p2,
and p0, then we get this situation when p1, p2 are positive.

Now let K1,k + e denote the k-star K1,k with one extra edge between two of the
leaves. We can prove the necessity of 1 more test using the conflict chromatic number,
in a similar way as in Theorem 8:

Lemma 14. A nonadaptive strict group testing strategy for the candidate graph K1,k + e

requires t(k, 1, 1) + 1 pools.

Proof. Assume that t(k, 1, 1) pools are enough. Leaving aside the candidate 2-set rep-
resented by the extra edge e, we first consider the partial vectors due to the k edges of
the k-star. (See the definitions prior to Theorem 6.) Let the first position correspond to
the center of the k-star, while the other k positions correspond to the leaves. All partial
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vectors from the k-star have the form [0 . . .], since all edges share the center vertex. The
2nd defective is either of the k leaves. Thus we need already t(k, 1, 1) pools to cover all
these partial vectors. Without loss of generality let e be the edge between the 2nd and
3rd vertex. Among the partial vectors due to e, we have in particular [100∗ . . .]. This
conflicts all earlier partial vectors with 0 at the 1st position. Thus, another color (i.e.,
pool) is needed to cover this partial vector. �

Lemma 14 captures some frequent cases, for example: Let n = 4, d = 2, s = 2, let the
pool graph in stage 1 be C3 plus 1 loop at 1 vertex, and let all these pools be positive.
Then the resulting candidate graph is K1,3 + e, hence t(3, 1, 1) + 1 = 4 tests are needed
in stage 2.

However, the candidate graph K1,3 + e can be solved with 3 tests when we allow 2
further stages: Let the candidate 2-sets be the edges v1v2, v1v3, v1v4, v2v3. We only
test {v2} in stage 1. No matter whether this pool is positive or negative, there remain 2
candidate 2-sets for stage 2, which requires only 2 more nonadaptive tests by Corollary 2.

7. Optimal strategies for small instances

Now we systematically list the optimal test numbers t(n, d, s) that we found. This
section contains only the practical part: we describe the strategies and pooling designs.
Their optimality proofs may be tedious to read, therefore we move them to Appendix A.
The reader may go through some, to get an idea how the techniques work. Results that
trivially follow from the listed ones by monotonicity (see Section 1) are omitted.

t(3,2,1+) = 3, t(4,2,1+) = 4, t(5,2,1+) = 5, t(6,2,1+) = 6: by individual test-
ing.

t(7,2,3+) = 6. Use 3 mutually disjoint 2-pools in stage 1. If at most 1 of them is
positive, at most 3 candidate elements are left, which are tested individually in stage 2.
If all 3 of the 2-pools are positive, we conclude |P | > 2. If exactly 2 are positive, then,
in stage 2, we query separately 1 element from each positive pool (2 tests). A negative
outcome means the other element is positive, whereas a positive outcome renders the
queried element positive. Thus, 1 positive element is recognized in both cases. A 6th
test in stage 3 on the remaining candidate elements confirms they are negative, or yields
|P | > 2.

t(7,2,2) = t(7,2,1) = 7, t(7,3,1+) = 7, t(8,2,1) = t(8,3,1+) = 8: by individual
testing.

t(9,2,2+) = 7. Let the pool graph in stage 1 be K4 (6 edges) plus 3 loops at p0. It
is impossible that exactly 1 pool responds positively. If all pools are negative, then so
are the edges in the K4. If exactly 2 pools are positive, then exactly the edge between
them is positive. In the above cases there remain only 3 candidates (loops) in stage 2. If
3 or 4 pools are positive, then we get exactly 3 candidate 2-sets, using edges of the K4

vertices only. Now Corollary 2 applies.
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t(9,2,1) = t(9,3,1+) = 9: by individual testing.
t(10,2,3+) = 7. Here we particularly emphasize that our pooling design is far from

being obvious, we found it after excluding other options with the help of our lower-bound
methods. The same remark applies to other cases as well.

We use the following pool graph in stage 1. Take a K4, but delete one edge, say p1p4,
and insert a loop at p1 and p4 instead. These 7 elements are complemented with 3 loops
at p0. As can be quickly checked one by one, all conceivable test outcomes yield one of
the following cases (possibly with further dummy elements): at most 3 candidate sets;
or 1 recognized defective and at most 4 candidates for a 2nd one; or the candidate graph
K1,3 + e. Using t(4, 1, 2) = 3, Corollary 2, and Lemma 4 for the next 2 stages, we can
solve all cases in 2 more stages with 3 more tests.

t(10,2,2) = 8. We use K5 as the pool graph in stage 1. It is easy to check that 3
more tests are always enough in stage 2.

t(10,2,1) = 9 follows from [26].
t(10,3,3+) = 9. Our strategy tests 3 disjoint 2-pools in stage 1. If at most 1 pool is

positive, the at most 6 candidate elements are tested individually. If 2 pools are positive,
2 tests recognize 2 defectives in stage 2 (as in the t(7, 2, 3+) strategy). To find a possible
3rd defective among the other 6 elements in stage 3 we use the strategy for t(6, 1, 1) = 4.
If all 3 pools are positive, we determine the 3 defectives by 3 tests in stage 2, and 1 final
test is used to discard the negative elements or to report |P | > 3.

t(10,4,1+) = 10: by individual testing.

8. The case of two defectives and two stages

Our t(9, 2, 2) = 7 strategy readily extends to larger n as follows. Let m be the smallest
integer with

(
m
2
)

+ 3 ≥ n. Using Km plus 3 loops at p0 (or any subset of this edge set)
as the pool graph in stage 1, the same reasoning as for t(9, 2, 2) yields t(n, 2, 2) ≤ m+3.
(See Table 1.) More formally:

Proposition 15. For n ≤
(
m
2
)

+ 3 we have t(n, 2, 2) ≤ m + 3.

Although this test number is Θ(
√
n ), it is optimal, or close to optimal, for surprisingly

many n. Below we report further exact results for t(n, 2, 2). Once more, the lower-bound
arguments are moved to Appendix A.

t(10,2,2) = t(13,2,2) = 8. Use Proposition 15 with m = 5.
t(15,2,2) = t(18,2,2) = 9. Use Proposition 15 with m = 6.
t(22,2,2) = t(24,2,2) = 10. Use Proposition 15 with m = 7.
Remarkably, the Km plus 3 loops strategy misses the simple antichain lower bound

of Lemma 11 by at most 1 test up to n = 31, and by at most 2 tests up to n = 58.
Next, instead of a pool graph being a clique plus some loops at the null vertex, we may
similarly use a pool hypergraph being the counterpart of a clique: For some fixed k > 2,
let the elements be all k-subsets of the pool vertices. The tricky question is how many
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Table 1
This table illustrates that more stages save tests, for the example of d = 2 defectives. Here, T is a budget
of tests, N1 is the maximum n that is resolved in 1 stage according to known results [26,11,10], and N2 is
the maximum n that is resolved in 2 stages in the present paper.

T 8 9 10 11 12 13 14 15 16 17 ... 20 ... 25
N1 8 12 13 17 20 26 28 42 48 68 ... 84 ... 293
N2 13 18 24 31 39 48 58 69 91 127 ... 254 ... 823

tests remain for stage 2, and whether such constructions are beneficial for certain ranges
of n. In fact, we found that k = 3 is a good choice for many n. In detail:

Let m now be the smallest integer with
(
m
3
)
+7 ≥ n. In stage 1 we use m pools, let the

elements be represented by, up to
(
m
3
)
, different 3-sets of pools in the pool hypergraph,

and represent up to 7 more elements as loops at the null vertex. We claim that 7 tests
are always sufficient in stage 2. Then it follows precisely as above:

Proposition 16. For n ≤
(
m
3
)

+ 7 we have t(n, 2, 2) ≤ m + 7.

In fact, this is currently the best upper bound on t(n, 2, 2) that we know for 70 ≤
n ≤ 823. For proving Proposition 16 it remains to prove our claim on 7 tests. If 0
pools in stage 1 are positive, only the 7 loops are candidate elements, and we test them
naively. The case of 1 or 2 positive pools is impossible. If we get 3 positive pools, then 1
defective is identified, and again we check the 7 loops individually. In all other cases the
candidate 2-sets must be pairs of 3-hyperedges. (It might be interesting to notice that the
candidate graph is then a Kneser graph.) At most 6 pools can be positive, otherwise we
instantly see |P | > 2. If exactly 4 pools are positive, we have just 4 candidate elements.
If exactly 6 pools are positive, the candidate 2-sets are 10 disjoint pairs of elements,
hence t(10, 1, 1) = 5 < 7 further tests suffice. The worst case is when exactly 5 pools
are positive. One easily verifies that the candidate graph is then the famous Petersen
graph, consisting of 2-disjoint copies of C5 connected by 5 more edges which form a
perfect matching. We do not even need the exact shape of the Petersen graph; the latter
property is enough to establish a test number at most 7, due to Theorem 1 and the
following:

Lemma 17. Let G be a graph whose vertex set can be partitioned in U and V , each with
exactly k vertices, and with exactly k edges between U and V , which are pairwise not
incident. Then the family of the complements of G’s edges (viewed as 2-sets of vertices)
has a set basis of size at most k + 2.

Proof. Our basis sets are simply U , V , and the k edges between them. For brevity we
call them cut edges. The complement of any edge e within U is the union of V and of
the k− 2 cut edges that do not touch e. By symmetry, we also serve the edges within V .
The complement of any cut edge is the union of the other k − 1 cut edges. �
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This also concludes the proof of Proposition 16. Clearly, for large enough n some
O(logn) tests strategy takes over, and it is interesting to ask what constant factor we
can achieve. Note that t(n, 2, 2) ≥ 2 log2 n− 1 is a trivial lower bound.

Theorem 18. Any 2-disjunct matrix of size z · log2 n + o(log2 n) yields an upper
bound t(n, 2, 2) ≤ (2.5 − 1

4z−6 ) log2 n + o(log2 n). In particular we achieve t(n, 2, 2) ≤
2.44 log2 n + o(log2 n).

Proof. Let b > 1 be some integer, and x, y be positive real numbers with x+y = 1. These
method parameters will be fixed later. For convenience we omit rounding brackets if in
some real expressions only integer values make sense. This does not affect the asymptotic
result.

We divide the elements in nx bags containing ny elements each, and we encode the
nx bags as vectors over an alphabet of b symbols. The code length is m := logb nx =
x logb 2 · log2 n. In stage 1 we test bx logb 2 · log2 n pools, each consisting of all elements
that share a fixed symbol at a fixed position. At most 2 of the b pools for every position
can be positive, otherwise |P | > d = 2 is confirmed. Let k be the number of positions
where we obtain 2 positive answers.

If k = 0, then the positive answers identify one bag of ny elements containing all, up
to 2, defectives. This case can be solved with any 2-disjunct matrix in stage 2. It follows
that zy log2 n further pools in stage 2 are enough.

If k > 0, then it is easy to see that the candidate 2-sets form the edges of the dis-
joint union of 2k−1 complete bipartite graphs Kny,ny . Clearly, the worst case is k = m.
Thus, applying Theorem 10 we can solve this case in stage 2 by using fewer than
t(2m, 1, 1) + 2t(ny, 1, 1) pools. (In the bipartite graphs we search for 1 defective on both
sides separately, therefore the factor 2.) Since t(c, 1, 1) = log2 c + o(log2 c) as mentioned
earlier, this pool number is x logb 2 · log2 n + 2y · log2 n + o(log2 n).

Now we can bound the factor of log2 n in the total pool number in both stages. We
obtained bx logb 2 + zy and (b+ 1)x logb 2 + 2y in case k = 0 and k > 0, respectively. By
trying the values of b and using the monotonicity of bx logb 2 for b > 4 one can figure
out that b := 4 gives the optimal performance. Also recall that x = 1 − y. Then the
two bounds evaluate to 2x + zy = 2 + (z − 2)y and 2.5x + 2y = 2.5 − 0.5y. Clearly
their maximum is minimized if they are equal, that is, 2 + (z − 2)y = 2.5 − 0.5y, hence
y = 1

2z−3 , which yields the assertion. To our best knowledge, the best published value
of z is still 5.482 due to [19], which yields the second assertion. (We remark that x := 1
and y := 0 gives a basic strategy with factor 2.5.) �

We highlight that our strategy does not require extra time for computations, e.g.,
for decoding the test results: Excluding the non-candidate elements after stage 1 is
trivial, the candidate graph is completely described by the partite sets of the complete
bipartite subgraphs (we do not list the quadratically many edges), and stage 2 works with
either a 2-disjunct matrix or, through Theorem 10, with some composition of 1-disjunct
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matrices that simultaneously identify the right bipartite graph and the right pair of
vertices therein. (Details become evident from the construction in Theorem 10.) Finally,
it is well known that d-disjunct matrices are easy to decode.

9. Further research

Certainly, our tools can be further refined to limit the case inspections even more, and
capture more n, d, s. It would also be helpful to partly automatize the search and leave
case inspections to computer programs. However this is not straightforward. To avoid
combinatorial explosion we must generate certain set families up to symmetries. Already
the construction of smallest d-disjunct matrices is notoriously difficult. Since the number
of rows (pools) is O(d2 logn), naive exhaustive search would need 2O(d2n log n) = nO(d2n)

time. But in the realm of exact and parameterized algorithms, one could turn structural
theorems, as in [26] and in the present paper, into branching rules that fill the matrix
entries more efficiently. The same question arises for general candidate hypergraphs, i.e.,
for the NP-complete set basis problem.

Some other open questions are intriguing, too: Regarding the product of candidate
hypergraphs, in which cases is the nonadaptive test number additive, and how much
better than the sum can it be else? Similarly, how can we optimally deal with disjoint
sums of candidate hypergraphs? Such results would be useful for studying multistage
pooling designs that first separate the candidates for defectives into disjoint subsets
(as we have seen in some examples). Does there exist, for every d, some s such that
t(n, d, s) = t(n, d, n)? In [4] we got an affirmative answer only for d = 1, namely s = 2.
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Appendix A. Optimality proofs for small instances

t(3,2,1+) = 3, t(4,2,1+) = 4, t(5,2,1+) = 5 hold by the counting bound.
t(6,2,1+) = 6. It suffices to consider adaptive strategies. If we begin with a 1-pool

and it is negative, we need t(5, 2, 1+) = 5 further tests. If we begin with a 2-pool and it
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is positive, there remain 9 > 23 candidate 2-sets, hence Lemma 11 requires 5 more tests.
Due to Lemma 12 we need not consider more cases.

t(7,2,3+) = 6 follows from t(6, 2, 1+) = 6.
t(7,2,2) = 7. This is the first complicated case that needs the whole machinery pre-

pared in this paper.
We assume for contradiction that t(7, 2, 2) ≤ 6 and consider the pool hypergraph

of stage 1. Assume that some ≥ 3-hyperedge e exists. If e is positive, e explains 3
or more positive pools. Since t(6, 1, 2) = 4, the searcher needs 4 more tests for the 2nd
defective. Hence the pool hypergraph is merely a graph. Next, let p be a pool vertex with
degree 1. Let p be negative and apply Lemma 13. The edge incident to p is negative,
hence still 2 defectives among 6 elements must be found, and 1 pool is used up. Thus
t(6, 2, 2) + 1 = 6 + 1 = 7 tests are needed. Hence the minimum degree is 2. Assume
that parallel edges exist, that is, 2 pools share 2 or more elements. Declare these 2 pools
positive and apply Lemma 13 together with Lemma 11. Since still at least 11 > 23

candidate 2-sets remain, and 2 pools are used up, the searcher needs 2 + 3 + 2 pools.
Altogether, the pool hypergraph must be a graph of minimum degree 2 without parallel
edges. It has at most 5 pool vertices, since 6 pools would forbid a 2nd stage and require
t(7, 2, 1) = 6, contradicting the known result t(7, 2, 1) = 7 [26].

Next we show that cycles C3, C4, C5 in the pool graph, together with edges or loops
for the other elements, always create bad induced subgraphs that enforce too many tests
in stage 2. In detail:

A C3 with loop implies 4 more tests (by the example after Lemma 14). Thus a C3
implies that only these 3 pool vertices exist, and the other elements are 4 loops at p0.
The latter imply 4 more tests (see Section 6). Hence no C3 can be in the pool graph.
Similarly, a C4 implies 2 more tests, hence only these 4 pool vertices exist. Since a 5th
edge would create a C3, the remaining 3 elements are loops. Loops at distance 1 or 2
imply 3 more tests (see Section 6). Hence the 3 loops are (at most) at one pool vertex
p1 and at p0. Let p2 be some neighbor of p1 in the C4. If p1 and p2 are positive, the edge
p1p2 with any of the 3 loops is a candidate 2-set, thus Lemma 11 yields 3 more tests.
This excludes C4. Also a C5 prohibits both further pool vertices and further edges. The
remaining 2 loops cannot be at distance 1 or 2, hence they are at one pool vertex p1
or at p0. Using a neighbor p2 similarly as above, Lemma 11 now yields 2 more tests.
Altogether, the pool graph has no cycles.

Therefore the pool graph is a forest, perhaps with loops, and all leaves must have
loops due to the minimum degree 2. If some leaves have distance 4 (path of 5 pools
with 6 elements 2 of which are loops at the leaves), we cannot place the remaining
loop without creating a subgraph that incurs at least 2 more tests. Leaves (with loops)
at distance 2 imply 3 more tests, thus no further pool vertices may exist. Now every
conceivable placement of the loops implies 4 more tests. If some leaves have distance 3,
therefore, only these 3 edges exist, and 4 loops. We cannot add a 5th, isolated, pool
vertex, since it must have 2 loops implying 2 more tests. But with only 4 pool vertices,
every conceivable placement of the 4 loops implies 3 more tests. Leaves at distance 1
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require 3 more tests, thus at most 1 further, isolated, pool vertex may be present. Again
this isolated vertex has at least 2 loops, hence the only edge has exactly 1 loop at each
end (to avoid 2 vertices with 2 loops each). But now 4 loops are together at the isolated
vertex and p0. This allows at least 5 candidate 2-sets, and Lemma 11 yields 4 more tests.
Thus a 3rd pool vertex is ruled out. The remaining case is 1 edge and a total of 6 loops
at both ends and possibly p0. The candidate graph contains K1,6 + e. Lemma 14 implies
t(6, 1, 1) + 1 = 5 more tests.

It follows that all pool vertices are isolated and have at least 2 loops each. Since 2
such vertices imply already 4 more tests, we can have at most 2 pool vertices and p0. By
the pigeonhole principle, 2 vertices have at least 2 and 3 loops, respectively (or even 1
vertex has 5 loops). Hence the candidate graph contains K2,3. Using Theorem 8, at least
t(3, 1, 1)+2 = 5 more tests are required. Thus we can have only one pool vertex p1. Since
at least 2 loops are at p1, the candidate graph contains K2,5, and t(5, 1, 1)+2 = 4+2 = 6
more tests are needed by Theorem 8.

t(7,3,1+) = 7 follows from the 35 candidate 3-sets by Lemma 11.
t(8,2,2+) = 7. It suffices to consider adaptive strategies. If we begin with a 2-pool

and it is negative, then t(6, 2, 6) = 6 enforces 6 further tests. If we begin with a 3-pool
and it is positive, the 18 > 24 candidate 2-sets and Lemma 11 enforce 6 more tests. Due
to Lemma 12 we need not consider more cases.

t(8,2,1) = 8 is implicit in [26].
t(8,3,1+) = 8. Consider the first test of an adaptive strategy. A negative 1-pool

enforces 7 more tests since t(7, 3, 7) = 7. A positive 2-pool leaves us with 36 > 25

candidate 3-sets. Apply Lemma 11 and finally Lemma 12.
t(9,2,1) = 9 is known from [26].
t(9,3,1+) = 9. We systematically check the tree of all adaptive strategies and give

test answers + or − to the searcher’s disadvantage. For certain paths in the search tree
we find that the searcher is forced to apply too many tests, using earlier bounds and
Lemma 11. By Lemma 12 and exploring symmetric cases we can prune most of the tree.
We remark that our proof has to check just 11 paths, compared to the host of possible
strategies and answers. They are presented here:

{v1}(−): t(8, 3, 8) = 8.
{v1, v2}(+), {v1}(+): t(8, 2, 8) = 7.
{v1, v2}(+), {v3, v4}(−), {v1}(+): The searcher must find 2 defectives among

v2, v5, . . . , v9, but t(6, 2, 6) = 6.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v1}(+): The searcher must find 2 defectives among

v2, v6, . . . , v9, but t(5, 2, 5) = 5. Hence it suffices to consider a 4th pool avoiding both v1

and v2.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v6}(−): 9 candidate 3-sets are left.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v6, v7}(+): 12 candidate 3-sets are left.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v5}(+): There remain 9 candidate 2-sets. This

also rules out any 4th pool with some of v1, v2, v5, v6.
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{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8}(−), {v6}(+): The 5 > 22 candidate
2-sets for the other 2 defectives enforce 4 more tests. This also rules out any 5th pool
with some of v1, v2, v5, v6. It remains to query v9.

{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8}(−), {v9}(−): Here the counting bound
enforces 4 more tests.

{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8, v9}(+): 12 candidate 3-sets are left.
{v1, v2}(+), {v3, v4, v5}(+): The 33 > 25 candidate 3-sets enforce 7 more tests.
t(10,2,3+) = 7 holds since t(10, 2, 3) ≥ t(8, 2, 3) = 7.
t(10,2,2) = 8. Assume that t(10, 2, 2) ≤ 7. In the same way as for t(7, 2, 2) we can

show, due to t(9, 1, 2) = 5, t(7, 2, 2) = 7, and Lemma 11, that the pool hypergraph
in stage 1 is a graph without parallel edges, now with minimum degree 4. The latter
implies that at most 5 pool vertices exist. Since a C3 with loop implies 4 more tests,
no further pool vertices can exist. By minimum degree 4, each vertex has at least 2
loops. If all 3 pools are positive, the 9 candidate 2-sets yield 5 more tests by Lemma 11.
A C3 without loop would mean that any vertex of the C3 has also 2 neighbors outside,
leading to 5 pools. But the C3 requires already 3 more tests. Hence no C3 can exist.
Theorem 8 gives that 2 vertices with 2 loops each require 4 more tests. Thus, in a C4 at
least 3 vertices must be incident to further edges. To avoid C3, at least 6 pool vertices
are needed. Hence no C4 can exist either. A C5 cannot exist, since further edges create
smaller cycles, and 2 loops per vertex are too many. Hence the pool graph is a forest,
with at least 3 loops at every leaf or isolated vertex. Since 2 vertices with 3 and 2 loops
imply 5 tests (Theorem 8), at most 2 pool vertices exist. If p1 and p2 exist, we choose
2 loops at p1 and 4 loops at p2 (or possibly the edge p1p2 instead of 1 loop) to get a
candidate graph K2,4 that needs t(4, 1, 1)+2 = 6 more tests. If only p1 exists, we choose
2 loops at p1 and the 8 other loops from p1 or p0 to get a candidate graph K2,8 that
needs t(8, 1, 1) + 2 = 7 more tests, again due to Theorem 8.

t(10,2,1) = 9 follows from [26].
t(10,3,3+) = 9 holds since already t(9, 3, 1+) = 9.
t(10,4,1+) = 10. Consider the first test of an adaptive strategy. A negative 1-pool

enforces 9 more tests since t(9, 4, 9) = 9. In the case of a positive 2-pool, even revealing
a defective means that 3 defectives out of 9 elements are still to be found, but we have
t(9, 3, 9) = 9. By Lemma 12, this case distinction is complete.

t(15,2,2) = 9. The value of t(14, 2, 2) remains open. In the following we use Lemma 11
and Lemma 13. Assume that t(15, 2, 2) ≤ 8, and consider the pools in stage 1. A positive
≥ 7-pool allows 70 > 26 candidate 2-sets, hence the remaining 7 tests would not be
sufficient. A negative ≤ 5-pool together with t(10, 2, 2) = 8 yields 9 tests. Hence only
6-pools can be used. But 2 intersecting positive 6-pools allow at least 25 + 14 = 39 > 25

candidate 2-sets, and 2 disjoint positive 6-pools allow 36 > 25 candidate 2-sets, such
that the remaining 6 tests are not sufficient. Hence only one 6-pool may be used. If it
responds positively, there remain 69 > 26 candidate 2-sets, implying 8 more tests.

t(22,2,2) = 10. Here, the exact t(n, 2, 2) values for n = 19, 20, 21 remain open. As-
sume that t(22, 2, 2) ≤ 9, and consider the pools in stage 1. A positive ≥ 8-pool allows
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28 + 8 · 14 = 140 > 27 candidate 2-sets, leading to 10 tests in total. A negative ≤ 7-pool
together with t(15, 2, 2) = 9 yields 10 tests, too. Hence no pool size is usable.
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