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We establish an unbounded version of Stinespring’s Theorem
and a lifting result for Stinespring representations of com-
pletely positive modular maps defined on the space of
all compact operators. We apply these results to study
positivity for Schur multipliers. We characterise positive
local Schur multipliers, and provide a description of positive
local Schur multipliers of Toeplitz type. We introduce local
operator multipliers as a non-commutative analogue of local
Schur multipliers, and characterise them extending both
the characterisation of operator multipliers from [16] and
that of local Schur multipliers from [27]. We provide a
description of the positive local operator multipliers in terms
of approximation by elements of canonical positive cones.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A bounded function ϕ : N × N → C is called a Schur multiplier if (ϕ(i, j)ai,j) is the
matrix of a bounded linear operator on �2 whenever (ai,j) is such. The study of Schur
multipliers was initiated by I. Schur in the early 20th century, and a characterisation of
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these objects was given by A. Grothendieck in his Résumé [10] (see also [23]). A mea-
surable version of Schur multipliers was developed by M.S. Birman and M.Z. Solomyak
(see [3] and the references therein) and V.V. Peller [22]. More concretely, given standard
measure spaces (X,μ) and (Y, ν) and a function ϕ : X × Y → C, one defines a linear
transformation Sϕ on the space of all Hilbert–Schmidt operators from H1 = L2(X,μ) to
H2 = L2(Y, ν) by multiplying their integral kernels by ϕ; if Sϕ is bounded in the operator
norm (in which case ϕ is called a measurable Schur multiplier), one extends it to the
space K(H1, H2) of all compact operators from H1 into H2 by continuity. The map Sϕ

is defined on the space B(H1, H2) of all bounded linear operators from H1 into H2 by
taking the second dual of the constructed map on K(H1, H2). A characterisation of mea-
surable Schur multipliers, extending Grothendieck’s result, was obtained in [22] (see also
[18] and [29]). Namely, a function ϕ ∈ L∞(X ×Y ) was shown to be a Schur multiplier if
and only if ϕ coincides almost everywhere with a function of the form

∑∞
k=1 ak(x)bk(y),

where (ak)k∈N and (bk)k∈N are families of essentially bounded measurable functions such
that esssupx∈X

∑∞
k=1 |ak(x)|2 < ∞ and esssupy∈Y

∑∞
k=1 |bk(y)|2 < ∞.

A local version of Schur multipliers was defined and studied in [27]. Local Schur
multipliers are, in general, unbounded, but necessarily closable, densely defined linear
transformations on B(L2(X,μ), L2(Y, ν)). A measurable function ϕ : X × Y → C was
shown in [27] to be a local Schur multiplier if and only if it agrees almost everywhere
with a function of the form

∑∞
k=1 ak(x)bk(y), where (ak)k∈N and (bk)k∈N are fami-

lies of measurable functions such that
∑∞

k=1 |ak(x)|2 < ∞ for almost all x ∈ X and∑∞
k=1 |bk(y)|2 < ∞ for almost all y ∈ Y .
In [19], a quantised version of Schur multipliers, called universal operator multipliers,

was introduced. Universal operator multipliers are defined as elements of C∗-algebras
satisfying certain boundedness conditions, and hence are non-commutative versions of
continuous Schur multipliers. A characterisation of universal operator multipliers, gen-
eralising Grothendieck–Peller’s results, was obtained in [15].

In the present paper, we introduce and study local operator multipliers. Due to their
spatial nature, the natural setting here is that of von Neumann algebras. Pursuing the
analogue with the commutative setting, where local multipliers are measurable (not
necessarily bounded) functions of two variables, we define local operator multipliers as
operators affiliated with the tensor product of two von Neumann algebras. We charac-
terise local operator multipliers, extending both the description of local Schur multipliers
from [27] and the description of universal operator multipliers from [15]. We further
characterise the positive local Schur multipliers (Section 4), as well as the positive local
operator multipliers (Section 6). We describe positive local Schur multipliers of Toeplitz
type, and consider local Schur multipliers that are divided differences, that is, functions
of the form f(x)−f(y)

x−y . We show that such a divided difference is a positive local Schur
multiplier with respect to every standard Borel measure if and only if f is an operator
monotone function.

Our main tool for characterising positivity of multipliers is an unbounded version of
Stinespring’s Theorem (Section 2). In the literature, there are a number of versions of
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Stinespring’s Theorem for completely positive, not necessarily bounded, maps, defined
on ∗-algebras, see e.g. [13,25,26]. Our version differs from the existing ones in that the
domain is a non-unital pre-C∗-algebra, and a partial boundedness of the map is assumed
– as a result, we are able to obtain more specific conclusions regarding the (closable)
operator implementing the Stinespring representation. In Section 3, we prove a lifting
result for Stinespring representations of completely positive maps defined on the space of
compact operators (Theorem 3.4). The result, which we believe is interesting in its own
right, is used in Section 4 to obtain a lifting result for positive Schur multipliers, and
provides an alternative approach to the unbounded Stinespring Theorem from Section 2.

All Hilbert spaces appearing in the paper will be assumed to be separable. The inner
product of a Hilbert space H is denoted by (·, ·)H , if H needs to be emphasised. We let IH
denote the identity operator acting on H, and write I when H is clear from the context.
For Hilbert spaces H and K, we denote by B(H,K) (resp. K(H,K), C2(H,K)) the space
of all bounded linear (resp. compact, Hilbert–Schmidt) operators from H into K, and
let B(H) = B(H,H), K(H) = K(H,H) and C2(H) = C2(H,H). The operator norm is
denoted by ‖ · ‖op. We often use the weak∗ topology of B(H,K), which arises from the
identification of this space with the dual of the space of all nuclear operators from K

into H. The weak∗ continuous linear maps on B(H,K) will be referred to as normal
maps. If α is a cardinal number, we let Hα denote the direct sum of α copies of H, and
for x ∈ B(H), we let x ⊗ 1α be the ampliation of x acting on Hα. We let �2α be the
Hilbert space of square summable sequences of length α.

Throughout the paper, we will use notions and results from Operator Space Theory;
we refer the reader to the monographs [4,8,21,24]. If A ⊆ B(H) is a C∗-algebra, we
denote by A′ the commutant of A, and by Mn,m(A) the set of all n×m matrices with
entries in A which define bounded operators (here n or m may be ∞). For a matrix
a ∈ Mn,m(A), we denote by at its transposed matrix. If M ⊆ B(H) is a von Neumann
algebra, we will denote by Aff M the set of all densely defined operators on H that are
affiliated with M; thus, T ∈ Aff M if and only if the spectral measure of the operator
|T | = (T ∗T )1/2 takes values in M and the partial isometry in the polar decomposition of
T belongs to M. The domain of an (unbounded) operator T will be denoted by dom(T ).

If A and B are linear spaces, we will denote by A	B their algebraic tensor product; if
A and B are von Neumann algebras, their weak∗ spatial tensor product will be denoted
by A ⊗̄ B. The linear span of a subset X of a vector space will be denoted by [X ].

2. An unbounded version of Stinespring’s Theorem

The classical Stinespring Representation Theorem for completely positive maps states
that if A is a unital C∗-algebra and Φ : A → B(H) is a completely positive map, then
there exists a Hilbert space K, a unital ∗-homomorphism π : A → B(K) and a bounded
operator V : H → K with ‖Φ(1)‖ = ‖V ‖2 such that Φ(a) = V ∗π(a)V , a ∈ A. In the case
where [π(A)V H] = K, we say that (π, V,K) is a minimal Stinespring representation for
Φ (see [21]). Our aim in this section is to prove an unbounded version of Stinespring’s
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Theorem for maps defined on pre-C∗-algebras, and apply it in the special case where
the C∗-completion of the domain coincides with the C∗-algebra of all compact operators
acting on a Hilbert space.

Let A be a ∗-algebra, X be a linear (not necessarily closed) subspace of a Hilbert space
H and L(X ) be the space of all linear mappings on X . A linear mapping Φ : A → L(X )
will be called completely positive if

n∑
k,l=1

(
Φ
(
a∗kal

)
ξl, ξk

)
≥ 0

for arbitrary n ∈ N, a1, . . . , an ∈ A and ξ1, . . . , ξn ∈ X .
We denote by M(B) the multiplier algebra of a C∗-algebra B. We recall that, if B is

identified with a subalgebra of its enveloping von Neumann algebra (that is, its second
dual) B∗∗, then M(B) ∼= {x ∈ B∗∗ : xB ⊆ B,Bx ⊆ B}.

Theorem 2.1. Let B be a C∗-algebra and A ⊆ B be a dense ∗-subalgebra of the form
A =

⋃∞
k=1 pkApk, where (pk)k∈N ⊆ M(B) is an increasing sequence of projections with

pnA ⊆ A and Apn ⊆ A, n ∈ N. Let H be a Hilbert space, (qk)k∈N be an increasing
sequence of projections on H with strong limit I, and X =

⋃∞
k=1 qkH. Assume that

Φ : A → L(X ) is a completely positive map such that Φ(pkapm) = qkΦ(a)qm, k,m ∈ N,
a ∈ A. The following are equivalent:

(i) the restriction Φ|pkApk
is bounded for each k ∈ N;

(ii) there exist a Hilbert space K, a bounded ∗-representation π : A → B(K) and an
operator V : X → K, such that V |qkH is bounded for every k ∈ N, and

(
Φ(a)ξ, η

)
=

(
π(a)V ξ, V η

)
, a ∈ A, ξ, η ∈ X .

Moreover, the operator V appearing in (ii) can be chosen to be closable.

Proof. (i) ⇒ (ii) Let Ak = pkApk, Hk = qkH, and write Φk for the restriction of Φ

to Ak. Since Φk is bounded, it can be extended to a bounded map from Bk
def= Ak into

B(Hk) (where the closure is taken in the norm topology of B), which we also denote
by Φk. Let Φ∗∗

k : B∗∗
k → B(Hk)∗∗ be the second dual of Φk and Ek : B(Hk)∗∗ → B(Hk) be

the canonical projection (we point out that Ek is the dual of the inclusion of B(Hk)∗ into
B(Hk)∗ and is hence weak∗ continuous). We note that if k ≤ m then pk ∈ M(Bm) ⊆ B∗∗

m .
Set Φ̃k = Ek ◦Φ∗∗

k ; thus, Φ̃k is a weak∗ continuous completely positive map from B∗∗
k into

B(Hk) extending Φk. We note that if k ≤ m then Φ̃m|B∗∗
k

= Φ̃k. By weak∗ continuity,
Φ̃k(plxpm) = qlΦ̃k(x)qm whenever l,m ≤ k and x ∈ B∗∗

k .
We now modify the well-known Stinespring construction. Let L be the linear space

generated by A ⊗ X and all vectors of the form 1 ⊗ ξ, ξ ∈ X . We define a sesquilinear
form 〈·, ·〉1 on L: if ζ =

∑s
i=1 ai ⊗ ξi and θ =

∑t
j=1 bj ⊗ ηj , set
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〈θ, ζ〉1 =
s∑

i=1

t∑
j=1

(
Φ̃k

(
pka

∗
i bjpk

)
ηj , ξi

)
,

where k is such that ξi, ηj ∈ Hk, for all i = 1, . . . , s and all j = 1, . . . , t. We note that
〈·, ·〉1 is well-defined; indeed, if ξi and ηj ∈ Hm for some m, assuming that m ≤ k, we have(

Φ̃k

(
pka

∗
i bjpk

)
ηj , ξi

)
=

(
qmΦ̃k

(
pka

∗
i bjpk

)
qmηj , ξi

)
=

(
Φ̃k

(
pkpma∗i bjpmpk

)
ηj , ξi

)
=

(
Φ̃k

(
pma∗i bjpm

)
ηj , ξi

)
=

(
Φ̃m

(
pma∗i bjpm

)
ηj , ξi

)
.

Since Φ is completely positive, 〈·, ·〉1 is a semidefinite inner product on L.
Let N := {ζ ∈ L : 〈ζ, ζ〉1 = 0} and let

ρ(a)
(

n∑
k=1

ak ⊗ ϕk

)
=

n∑
k=1

aak ⊗ ϕk, a ∈ A;

ρ is a well-defined ∗-homomorphism. A standard application of the Cauchy–Schwartz
inequality shows that N is invariant under ρ(A). Let i : L → L/N be the quotient map.
Then (i(ξ), i(η)) def= 〈ξ, η〉1 defines a scalar product on L/N and π(a)i(η) = i(ρ(a)η) is
a well-defined ∗-representation of A on L/N . Let H be the Hilbert space completion
of L/N .

We claim that π is bounded. In fact, for ζ =
∑n

i=1 ai ⊗ ξi ∈ L, there exists k such
that ξi ∈ Hk and if ai �= 1, ai ∈ Ak, for all i = 1, . . . , n. Since Φ̃k is completely positive,
we obtain, for a ∈ Ak,

∥∥π(a)i(ζ)
∥∥2 =

〈
ρ(a)ζ, ρ(a)ζ

〉
1 =

〈
n∑

i=1
aai ⊗ ξi,

n∑
i=1

aai ⊗ ξi

〉
1

=
n∑

i,j=1

(
Φ̃k

(
pka

∗
i a

∗aajpk
)
ξi, ξj

)
≤

∥∥a∗a∥∥ n∑
i,j=1

(
Φ̃k

(
pka

∗
jaipk

)
ξi, ξj

)
= ‖a‖2

〈
n∑

i=1
ai ⊗ ξi,

n∑
i=1

ai ⊗ ξi

〉
1

= ‖a‖2∥∥i(ζ)∥∥2
,

giving the statement.
Define V : X → H by V ξ = i(1 ⊗ ξ). If ξ, η ∈ Hk then

‖V ξ‖2 =
∣∣(Φ̃k(pk)ξ, ξ

)∣∣ ≤ ‖Φk‖‖ξ‖2,
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showing that V |Hk
is bounded for each k. Moreover,

(
Φ(a)ζ, θ

)
=

〈
ρ(a)(1 ⊗ ζ), 1 ⊗ θ

〉
1 =

(
π(a)i(1 ⊗ ζ), i(1 ⊗ θ)

)
=

(
π(a)V ζ, V θ

)
. (1)

We show that V is closable. If ηn → 0 and i(1 ⊗ ηn) → f then, for each a ⊗ ξ ∈ L
with a ∈ A ∪ {1}, ξ ∈

⋃∞
k=1 Hk, we have that

(
i(a⊗ ξ), i(1 ⊗ ηn)

)
→

(
i(a⊗ ξ), f

)
.

On the other hand, if ξ ∈ Hk and ηn ∈ Hln , ln ≥ k, then

(
i(a⊗ ξ), i(1 ⊗ ηn)

)
=

(
Φ̃ln(plnapln)ξ, ηn

)
=

(
Φ̃ln(pkapk)ξ, ηn

)
=

(
Φ̃k(pkapk)qkξ, qkηn

)
→n→∞ 0.

It follows that (i(a ⊗ ξ), f) = 0, for all a ⊗ ξ ∈ L. As i(L) is dense in H, we conclude
that f = 0.

(ii) ⇒ (i) is trivial. �
Theorem 2.2. Let H be a Hilbert space, (pn)∞n=1 be an increasing sequence of projections
on H such that

∨∞
n=1 pn = I and let Hn = pnH, n ∈ N. Let A :=

⋃∞
n=1 C2(Hn) and

X =
⋃∞

n=1 Hn. Assume that Φ : A → L(X ) is a completely positive map such that
Φ(pnxpm) = pnΦ(x)pm for all n,m ∈ N, and Φn = Φ|C2(Hn) is bounded with respect to
the operator norm on B(Hn).

(i) There exists a family (Vi)∞i=1 of closable linear maps from X into H such that

(
Φ(a)ξ, η

)
=

∞∑
i=1

(aViξ, Viη), a ∈ A, ξ, η ∈ X . (2)

(ii) If D ⊆ B(H) is a unital C∗-subalgebra, (pn)∞n=1 ⊆ D and Φ is D-bimodular, then
Vi, i ∈ N, can be chosen to be closable operators affiliated with D′.

Proof. In the notation of Theorem 2.1, B = K(H), and hence the representation π arising
in Theorem 2.1 is unitarily equivalent to an ampliation of the identity representation.
At the expense of changing the operator V , we may thus assume that π(a) = a ⊗ 1,
a ∈

⋃∞
k=1 C2(Hk). Let

V = (V1, . . . , Vn, . . .)t

be the corresponding matrix of V ; identity (2) follows now trivially from Theorem 2.1.
The fact that the operators Vi are closable follows easily from the closability of V .
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We show that we can choose Vi to be affiliated with D′ when Φ satisfies condition (ii).
The arguments that follow are similar to the ones in [7, Corollary 5.9]. The modularity
of Φ gives

(
(a⊗ 1)V ξ, (r ⊗ 1)V η

)
=

(
(a⊗ 1)V ξ, V rη

)
for all r ∈ D, a ∈ A, ξ, η ∈ X .

Let ea be the projection onto (a⊗ 1)V X , a ∈ A. Then ea(r ⊗ 1)V η = eaV rη, r ∈ D,
η ∈ X . If e =

∨
a∈A ea then

e(r ⊗ 1)V η = eV rη, r ∈ D, η ∈ X .

As (r ⊗ 1)(a ⊗ 1)V η = (ra ⊗ 1)V η and ra ∈ A (r ∈ D, a ∈ A), we obtain that
e(r⊗1)e = (r⊗1)e for each r ∈ D and hence e commutes with r⊗1, r ∈ D. This implies

(r ⊗ 1)(eV )η = (eV )rη, η ∈ X , r ∈ D,

and

(
Φ(a)ξ, η

)
=

(
(a⊗ 1)eV ξ, eV η

)
, ξ, η ∈ X .

The only thing that is left to prove is that if eV = (V ′
1 , . . . , V

′
n, . . .)t then V ′

i is closable
and its closure is affiliated with D′, for every i.

In order to show that V ′
i is closable, it suffices to show that eV is closable. Suppose

that ξn → 0 and eV ξn → y, for some y ∈ H∞. Then (Φ(a)ξ, ξn) → 0. On the other
hand, given a ∈ A, ξ ∈ X ,

(
Φ(a)ξ, ξn

)
=

(
(a⊗ 1)V ξ, V ξn

)
=

(
(a⊗ 1)V ξ, eV ξn

)
→

(
(a⊗ 1)V ξ, y

)
.

Thus ((a ⊗ 1)V ξ, y) = 0 and hence (eη, y) = 0 for any η ∈ H, giving ey = 0. As
eV ξn → ey, we have ey = y = 0, showing that eV is closable.

We have rV ′
i η = V ′

i rη, for all r ∈ D and η ∈ X . By the previous paragraph, the
operator V ′

i is closable as an operator defined on X ; let us denote its closure again by V ′
i .

Then clearly r dom(V ′
i ) ⊆ dom(V ′

i ) and rV ′
i = V ′

i r. As V ′
i is closed, the equality holds

for each r in the strong closure of D. Since
∨∞

n=1 pn = I and pn ∈ D, the C∗-algebra D
is non-degenerate and hence rV ′

i = V ′
i r for all r ∈ D′′. Thus, V ′

i is affiliated with D′. �
3. Lifting for Stinespring’s representations

Our aim in this section is to obtain a lifting for Stinespring’s representations of maps
defined on the algebra of compact operators. The result will be used in Section 4 to
obtain a lifting for positive Schur multipliers, but we believe that it is interesting in its
own right as well. It also provides an independent route to Theorem 2.2.
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Let H be a Hilbert space and Φ : K(H) → B(H) be a completely positive map. Then
there exists a Stinespring representation

Φ(x) = V ∗(x⊗ 1α)V =
α∑

i=1
a∗i xai, x ∈ K(H), (3)

where 1 ≤ α ≤ ∞ and V = (a1, a2, . . .)t ∈ Mα,1(B(H)). We will say in this case that V

implements the representation (3). If Φ is moreover modular over a C∗-algebra A ⊆ B(H),
then the entries of V can be chosen from D′.

We start by characterising the minimal representations of the map Φ in terms of the
operator V (Lemma 3.1). Note that given any element (λi)αi=1 ∈ �2α, the series

∑α
i=1 λiai

is norm convergent in B(H). Following S.D. Allen, A.M. Sinclair and R.R. Smith [1], we
say that the set {ai}αi=1 is strongly independent if

∑α
i=1 λiai = 0 implies that λi = 0, for

all i. It was established in [1, Lemma 2.2] that, for the case α = ∞, the family {ai}αi=1
is strongly independent if and only if the set K = {(ω(a1), ω(a2), . . .) : ω ∈ B(H)∗} is
norm dense in �2α.

Lemma 3.1. Let Φ : K(H) → B(H) be a completely positive map and V = (ai)αi=1 ∈
Mα,1(B(H)), where α is an at most countable cardinal, implement a representation of Φ.
The following are equivalent:

(i) The operator V implements a minimal representation of Φ;
(ii) The set

F =
{(

ω(a1), ω(a2), . . .
)

: ω is a vector functional on B(H)
}

has norm dense linear span in �2α;
(iii) The set J = {(ω(a1), ω(a2), . . .) : ω ∈ B(H)∗} is norm dense in �2α;
(iv) The set {ai}αi=1 is strongly independent.

Proof. (i) ⇒ (ii) Suppose that the linear span of F is not dense and let 0 �= (λi)αi=1 ∈ F⊥.
Then

0 =
α∑

i=1
λi

(
aiξ, x

∗η
)

=
α∑

i=1
(xaiξ, λiη), ξ, η ∈ H, x ∈ K(H).

Thus, if η is a non-zero vector in H, then (λiη)αi=1 ∈ Hα is non-zero and orthogonal to
(xaiξ)αi=1 for all ξ in H and all x in K(H). As a result, the representation implemented
by V cannot be minimal.

(ii) ⇒ (i) Suppose that the representation is not minimal. Then E =
[(K(H) ⊗ 1α)V H] �= Hα. Let Q be the projection from Hα onto E ; since E is invari-
ant for K(H) ⊗ 1α, we have that Q ∈ (K(H) ⊗ 1α)′ and hence Q = IH ⊗ Q0, where
Q0 is a projection in B(�2α). Thus we have that E⊥ = H ⊗ (Q⊥

0 �
2
α). Choose a non-zero

(λi)αi=1 ∈ Q⊥
0 �

2
α. Then for every η ∈ H we have η ⊗ (λi)αi=1 ∈ E⊥ and hence
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0 =
α∑

i=1

(
x∗aiξ, λiη

)
=

α∑
i=1

λi(aiξ, xη) =
(

α∑
i=1

λiaiξ, xη

)
,

for all x ∈ K(H) and all ξ ∈ H. It follows that
∑α

i=1 λi(aiξ, η) = 0 for every η ∈ H.
Hence (λi)αi=1 is orthogonal to ((aiξ, η))αi=1, for all ξ, η ∈ H. It follows that the linear
span of F is not dense in �2α.

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (ii) follows from the inclusion J ⊆ [F ]‖·‖ whose verification is straightforward.
(iii) ⇔ (iv) The set J is not dense in �2α if and only if there exists a non-zero element

(λi)αi=1 ∈ �2α lying in the orthogonal complement of J ; that is, such that

ω

(
α∑

i=1
λiai

)
=

α∑
i=1

λiω(ai) = 0, ω ∈ B(H)∗.

This is equivalent to the existence of a non-zero (λi)αi=1 ∈ �2α such that
∑α

i=1 λiai = 0,
that is, to {ai}αi=1 not being strongly independent. �
Lemma 3.2. Let H be a separable Hilbert space, Ψ : K(H) → B(H) be a completely
positive map, and suppose that A ∈ M∞,1(B(H)) implements a representation of Ψ .
Then there exists an at most countable cardinal α and Λ ∈ B(�2, �2α), such that the
operator (IH ⊗ Λ)A implements a minimal representation of Ψ .

Proof. Let E = (K(H) ⊗ 1)AH. As in the proof of Lemma 3.1, the projection Q from H∞

onto E is of the form IH ⊗ Q0, where Q0 is a projection in B(�2). Since E is reducing for
K(H)⊗ 1, the map ρ : K(H) → B(E) (resp. ρ′ : K(H) → B(E⊥)) given by ρ(x) = x⊗ 1|E
(resp. ρ′(x) = x ⊗ 1|E⊥) is a ∗-representation of K(H). Thus, there exists an (at most
countable) cardinal α and a unitary operator S : E → Hα such that ρ(x) = S∗(x⊗1α)S.
Consider the operator T : H∞ → Hα given by Tξ = SQξ, ξ ∈ H∞. Then

T (x⊗ 1)T ∗ = ( S 0 )
(
ρ(x) 0

0 ρ′(x)

)(
S∗

0

)
= Sρ(x)S∗ = x⊗ 1α.

In addition,

T ∗T =
(
S∗

0

)
( S 0 ) =

(
S∗S 0
0 0

)
=

(
IE 0
0 0

)
= IH ⊗Q0.

Thus, T (x⊗ 1)(IH ⊗Q0) = (x⊗ 1α)T . Also,

T (x⊗ 1)
(
IH ⊗Q⊥

0
)

= ( S 0 )
(
ρ(x) 0

0 ρ′(x)

)(
0 0
0 IE⊥

)
= 0;

so

T (x⊗ 1) = T (x⊗ 1)(IH ⊗Q0) = (x⊗ 1α)T, x ∈ K(H).
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It follows that T = IH ⊗ Λ, for some Λ ∈ B(�2, �2α). We thus have

Ψ(x) = A∗(x⊗ 1)A = A∗ρ(x)A = A∗S∗(x⊗ 1α)SA = A∗T ∗(x⊗ 1α)TA.

Moreover,

Hα = SE = S
(
K(H) ⊗ 1

)
AH = S

(
K(H) ⊗ 1

)
|EAH

=
(
K(H) ⊗ 1α

)
SAH =

(
K(H) ⊗ 1α

)
TAH

and thus the representation of Ψ implemented by TA is minimal. �
Remark 3.3. As part of the proof of Lemma 3.2, it was shown that T ∗T = IH ⊗Q0. This
fact will be used in the sequel.

The main result of this section is the following.

Theorem 3.4. Let H2 be a separable Hilbert space, D2 ⊆ B(H2) be a unital C∗-subalgebra,
H1 ⊆ H2 be a closed subspace such that the projection p from H2 onto H1 belongs to D2,
and D1 = pD2p. Let Φ : K(H2) → B(H2) be a completely positive D2-bimodule map, and
let Ψ : K(H1) → B(H1) be the map given by Ψ(x) = Φ(x)|H1 , x ∈ K(H1). Suppose that
the operator V ∈ Mβ,1(D′

1) implements a minimal representation of Ψ . Then there exist
an at most countable cardinal γ ≥ β and an operator W ∈ Mγ,1(D′

2), which implements
a minimal representation of Φ, such that W |H1 = V .

We note that throughout the statement and the proof of the theorem, we identify Hβ
1

with Hβ
1 ⊕ 0 ⊆ Hγ

1 ; under this assumption, it will be shown that W |H1 has range in Hβ
1

and is equal to V .

Proof. Let Φ(x) = A∗(x ⊗ 1)A, x ∈ K(H2), be any representation of Φ, where A ∈
M∞,1(D′

2). Then Ψ(x) = A∗(x ⊗ 1)A|H1 , x ∈ K(H1). By Lemma 3.2, there exists a
minimal representation

Ψ(x) = A∗T ∗(x⊗ 1α)TA|H1 , x ∈ K(H1),

where T = IH1 ⊗T0 = (λijIH1) for some T0 = (λij) ∈ B(�2, �2α). Since the representation
Ψ(x) = V ∗(x⊗ 1β)V is also minimal, there exists [21] a unitary operator U : Hα

1 → Hβ
1

such that UTA|H1 = V and U(x ⊗ 1α) = (x ⊗ 1β)U , x ∈ K(H1). Hence U = IH1 ⊗ U0,
where U0 is a unitary operator in B(�2α, �2β), and thus α = β. Let Ũ = IH2 ⊗ U0, T̃ =
IH2 ⊗ T0 and B = Ũ T̃A ∈ B(H2, H

α
2 ). Then

B|H1 = Ũ T̃A|H1 = Ũ T̃ (p⊗ 1)A|H1 = UTA|H1 = V.

Let Φ′ : K(H2) → B(H2) be given by

Φ′(x) = B∗(x⊗ 1α)B, x ∈ K(H2), (4)
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and let E = (K(H1) ⊗ 1)AH1. As in Lemma 3.1, the projection Q from H∞
1 onto E has

the form IH1 ⊗Q0, where Q0 is a projection in B(�2). Since Ap = (p ⊗ 1)Ap, it follows
that

(
IH2 ⊗Q⊥

0
)
Ap =

(
p⊗Q⊥

0
)
Ap =

(
IH1 ⊗Q⊥

0
)
Ap = 0,

where the last equality follows from the fact that ApH2 ⊆ E . We thus have

(
IH2 ⊗Q⊥

0
)
A =

(
IH2 ⊗Q⊥

0
)
Ap⊥. (5)

Define Φ′′ : K(H2) → B(H2) by

Φ′′(x) = A∗(IH2 ⊗Q⊥
0
)
(x⊗ 1)

(
IH2 ⊗Q⊥

0
)
A, x ∈ K(H2). (6)

Then for every x in K(H2), we have that

Φ′(x) + Φ′′(x)

= A∗T̃ ∗Ũ∗(x⊗ 1α)Ũ T̃A + A∗(IH2 ⊗Q⊥
0
)
(x⊗ 1)

(
IH2 ⊗Q⊥

0
)
A

= A∗(x⊗ 1)T̃ ∗Ũ∗Ũ T̃A + A∗(x⊗ 1)
(
IH2 ⊗Q⊥

0
)
A

= A∗(x⊗ 1)(IH2 ⊗Q0)A + A∗(x⊗ 1)
(
IH2 ⊗Q⊥

0
)
A

= A∗(x⊗ 1)A = Φ(x),

where the third equality follows from Remark 3.3 and the fact that Ũ is unitary.
Now let Φ′′′ be the restriction of Φ′′ to K(H2 �H1) so that, for x ∈ K(H2 �H1), we

have

Φ′′′(x) = A∗(IH2 ⊗Q⊥
0
)
(x⊗ 1)

(
IH2 ⊗Q⊥

0
)
A|H2	H1

= A∗(IH2 ⊗Q⊥
0
)
(x⊗ 1)

(
IH2 ⊗Q⊥

0
)
A.

Using Lemma 3.2, find a minimal representation

Φ′′′(x) = A∗(IH2 ⊗Q⊥
0
)
R∗(x⊗ 1δ)R

(
IH2 ⊗Q⊥

0
)
A,

where R is a bounded operator from (H2 �H1)∞ into (H2 �H1)δ that can be expressed
as R = IH2 ⊗ R0 for some R0 in B(�2, �2δ), δ being an at most countable cardinal. By
construction, R(x⊗ 1)R∗ = x⊗ 1δ. Letting C = R(IH2 ⊗Q⊥

0 )A, Eq. (5) implies that

Cp⊥ = C (7)

and hence we have that for each x ∈ K(H2),
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C∗(x⊗ 1δ)C = p⊥C∗(x⊗ 1δ)Cp⊥ = C∗(p⊥xp⊥ ⊗ 1δ
)
C

= Φ′′(p⊥xp⊥) = A∗(IH2 ⊗Q⊥
0
)(
p⊥xp⊥ ⊗ 1

)(
IH2 ⊗Q⊥

0
)
A

= p⊥A∗(IH2 ⊗Q⊥
0
)
(x⊗ 1)

(
IH2 ⊗Q⊥

0
)
Ap⊥

by (5)= A∗(IH2 ⊗Q⊥
0
)
(x⊗ 1)

(
IH2 ⊗Q⊥

0
)
A = Φ′′(x).

The operators B : H2 → Hα
2 and C : H2 → (H2�H1)δ can be expressed as columns of

length α and δ, respectively; say, B = (b1, b2, . . .)t and C = (c1, c2, . . .)t, where bi, cj ∈ D′
2

for all i, j. Let U be the column operator with entries B and C, that is,

U =
(
Bt, Ct

)t
. (8)

Suppose that
∑α

i=1 λibi +
∑δ

j=1 μjcj = 0 for some (λi)αi=1 ∈ �2α, (μj)δj=1 ∈ �2δ . Then∑α
i=1 λipbi +

∑δ
j=1 μjpcj = 0. Since Cp = 0, we have that

∑α
i=1 λipbi = 0 and since

B|H1 = V implements a minimal representation, we have by Lemma 3.1 that the entries
of Bp are strongly independent and hence λi = 0 for all i. Consequently,

∑δ
j=1 μjcj = 0

and the minimality of the representation associated with C implies, again by Lemma 3.1,
that μj = 0 for all j.

Let

b′i =
{

bi, 1 ≤ i ≤ α,

0, i > α,
c′i =

{
ci, 1 ≤ i ≤ δ,

0, i > δ,

and set W = (b′1, c′1, b′2, c′2, . . .)t – note that in the case in which both cardinals are finite
the sequence has finitely many non-zero terms. In the case where both α and δ are
infinite, the series

∑∞
i=1 b

∗
i xbi + c∗i xci is easily seen to converge weak∗ to

∑∞
i=1 b

∗
i xbi +∑∞

i=1 c
∗
i xci. It now follows that Φ(x) = W ∗(x ⊗ 1α+δ)W , x ∈ K(H2). By Lemma 3.1,

the representation of Φ implemented by W is minimal. We note that

W |H1 =
(
b′1, c

′
2, b

′
2, c

′
2, . . .

)t|H1 = (b1, 0, b2, 0, . . .)|H1 = B|H1 = V,

where we used (7) to obtain the second equality and the third equality follows as a result
of the identification made at the start of the proof. �

Next we show how Theorem 3.4 can be applied to obtain a result closely related to
Theorem 2.2.

Theorem 3.5. Let D ⊆ B(H) be a unital C∗-subalgebra, (pn)∞n=1 ⊆ D be an increasing
sequence of projections such that

∨
n∈N

pn = IH , Hn = pnH and Dn = pnDpn. Let
Φ :

⋃∞
n=1 K(Hn) →

⋃∞
n=1 B(Hn) be a map such that Φ|K(Hn) is completely positive and

Dn-bimodular. Then there exists a family (ai)∞i=1 of closed operators affiliated with D′

such that Hn ⊆ dom(ai), n, i ∈ N and
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Φ(x) =
∞∑
i=1

a∗i xai, x ∈
∞⋃

n=1
K(Hn),

where the series converges in the weak∗-topology.

In the course of the proof we will encounter operators Vn : Hn → (Hn)αn and Vn+1 :
Hn+1 → (Hn+1)αn+1 for cardinals αn ≤ αn+1; we will identify throughout the proof
(Hn)αn with the subspace (Hn)αn ⊕ 0 of (Hn)αn+1 .

Proof. Let H0 =
⋃∞

n=1 Hn and Φn : K(Hn) → B(Hn) be the map given by Φn(x) =
Φ(x)|Hn

for x ∈ K(Hn). Using analogous notation and repeating the process used to
obtain the operator U in identity (8), we can form an operator Un : Hn →

⊕n
i=1(Hn �

Hi−1)δi , where δi is at most countable, such that Φn(x) = U∗
n((x ⊗ 1δ1) ⊕ (x ⊗ 1δ2) ⊕

· · · ⊕ (x⊗ 1δn))Un, x ∈ K(Hn), and Un|Hm
= Um for all m ≤ n. By construction, Un is

equal to (
b
(n)
1,1 , b

(n)
1,2 , · · · , b

(n)
2,1 , b

(n)
2,2 , · · · , · · · , b

(n)
n,1, b

(n)
n,2, · · ·

)t
,

where b
(t)
r,s ∈ D′pt. Since b

(n)
r,s |Hn−1 = b

(n−1)
r,s , we can form a densely defined operator br,s

by letting br,s|Hn
= b

(n)
r,s . Standard arguments show that br,s is closable and its closure

is affiliated with D′. Define an operator V : H0 → (H0)∞ by

V = (a1, a2, . . .)t
def= (b1,1, b1,2, b2,1, b1,3, b2,2, b3,1, b1,4, . . .)t,

where we have, if necessary, extended V to an infinite column operator. From this we
can obtain an operator Vn : Hn → (Hn)αn by observing that when restricted to Hn,
all terms bi,j for which i > n vanish, and each of the remaining αn terms is such that
bi,j |Hn

= bni,j . This also implies that Vn|Hm
= Vm for all m ≤ n (in the sense described

before the start of the proof). It can easily be seen that Vn is a bounded column operator
and

V ∗
n (x⊗ 1αn

)Vn = U∗
n(x⊗ 1αn

)Un.

Finally, given x ∈
⋃∞

n=1 K(Hn), fix n such that x ∈ K(Hn) and notice that

Φ(x) = Φn(x) = U∗
n(x⊗ 1αn

)Un = V ∗
n (x⊗ 1αn

)Vn = V ∗(x⊗ 1)V =
∞∑
i=1

a∗i xai.

In particular, since Vn is bounded, this series indeed converges in the weak∗ topology. �
Remark 3.6. In the course of the proof of Theorem 3.5 it was shown that br,spn = b

(n)
r,s ∈

D′pn for all r, s ∈ N, n ≥ r; thus, aipn ∈ D′pn for all i, n ∈ N. It is easily observed that
Hn ⊆ dom a∗i and that a∗i pn = (aipn)∗. This will be used in the sequel.
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4. Positive local Schur multipliers

In this section we examine positive local Schur multipliers. The main results of the
section are the characterisation contained in Theorem 4.4, the lifting established in Corol-
lary 4.7 and the characterisation result of Theorem 4.11.

We begin by recalling some definitions, known results and notational conventions. We
assume throughout the section that (X,μ) and (Y, ν) are standard (σ-finite) measure
spaces, equip X×Y with the product measure and denote by B(X) the linear space of all
measurable functions on X. If f ∈ L∞(X), we write Mf for the operator of multiplication
by f acting on L2(X), and let D = {Mf : f ∈ L∞(X)}. The characteristic function of
a measurable subset α ⊆ X will be denoted by χα. For each k ∈ L2(X × Y ), we let
Tk ∈ C2(L2(X), L2(Y )) be the operator given by

(Tkξ)(y) =
∫
X

k(x, y)ξ(x)dμ(x), ξ ∈ L2(X)

and Sϕ : C2(L2(X), L2(Y )) → C2(L2(X), L2(Y )) be the map given by Sϕ(Tk) = Tϕk,
k ∈ L2(X × Y ). Recall that the map ϕ is called a (measurable) Schur multiplier if Sϕ is
bounded in ‖ · ‖op.

We next recall some notions from [2] and [27]. Two subsets E,F ⊆ X are called
equivalent (written E ∼ F ) if their symmetric difference is a null set. A subset of X ×Y

is said to be a rectangle if it has the form α×β, where α ⊆ X and β ⊆ Y are measurable.
A subset E ⊆ X × Y is called marginally null if E ⊆ (X0 × Y ) ∪ (X × Y0), where
μ(X0) = ν(Y0) = 0. We call two subsets E,F ⊆ X × Y marginally equivalent (and
write E � F ) if their symmetric difference is marginally null. A measurable function
ϕ : X × Y → C is called ω-continuous if ϕ−1(U) is marginally equivalent to a countable
union of rectangles, for every open subset U ⊆ C. A countable family of rectangles is
called a covering family for X×Y if its union is marginally equivalent to X×Y . We say
that a function ϕ ∈ B(X×Y ) is a local Schur multiplier if there exists a covering family
{κm}∞m=1 of rectangles in X × Y such that ϕ|κm

is a Schur multiplier, for all m ∈ N.

Proposition 4.1. For a function ϕ ∈ B(X ×X), the following are equivalent:

(i) ϕ is a local Schur multiplier;
(ii) there exists an increasing sequence (Xn)∞n=1 of measurable subsets of X such that

X \ (
⋃∞

n=1 Xn) is null and ϕ|Xn×Xn
is a Schur multiplier for each n.

Proof. (i) ⇒ (ii) Suppose that ϕ is a local Schur multiplier and let {κm}m∈N be a covering
family for X ×X such that ϕ|κm

is a Schur multiplier. By [27, Lemma 3.4], there exists
a pairwise disjoint family {Yi}∞i=1 ⊆ X such that

⋃∞
i=1 Yi is equivalent to X and each

Yi × Yj is contained in a finite union of sets from {κm}∞m=1. By [27, Lemma 2.4 (ii)],
ϕ|Yi×Yj

is a Schur multiplier. Let Xn =
⋃n

i=1 Yi; then (Xn)n∈N is an increasing sequence,
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Xn ×Xn =
⋃n

i,j=1 Yi × Yj and
⋃∞

n=1 Xn ∼
⋃∞

i=1 Yi ∼ X. Again by [27, Lemma 2.4 (ii)],
ϕ|Xn×Xn

is a Schur multiplier.
(ii) ⇒ (i) The collection (Xn×Xn)∞n=1 is a covering family and thus ϕ is a local Schur

multiplier. �
We will denote by C2(H)+ the cone of all positive operators in C2(H). In view of

Proposition 4.1, it is natural to introduce the following notions.

Definition 4.2. Let (X,μ) be a standard measure space and ϕ be a measurable function
on X ×X. We say that ϕ is a

(i) positive Schur multiplier if the map Sϕ is bounded in ‖·‖op and leaves C2(L2(X))+

invariant;
(ii) positive local Schur multiplier if there exists an increasing sequence (Xn)∞n=1 of

measurable subsets of X such that X \(
⋃∞

n=1 Xn) is null and ϕ|Xn×Xn
is a positive Schur

multiplier for every n.

It is immediate that every positive Schur multiplier is a Schur multiplier and that
every positive local Schur multiplier is a local Schur multiplier.

R.R. Smith has established an automatic complete boundedness result for maps, mod-
ular over C∗-algebras with a cyclic vector [28, Theorem 2.1]. We will need the following
automatic complete positivity result; we omit its proof since it follows closely the ideas
in Smith’s proof.

Lemma 4.3. Let H be a Hilbert space, E ⊆ B(H) be an operator system, and B ⊆ B(H)
be a C∗-algebra with a cyclic vector such that BEB ⊆ E. Then every positive B-bimodule
map Φ : E → B(H) is completely positive.

We can now formulate and prove one of the main results of this section.

Theorem 4.4. A function ϕ ∈ B(X ×X) is a positive local Schur multiplier if and only
if there exists a measurable function a : X → �2 such that ϕ(x1, x2) = (a(x1), a(x2))�2
almost everywhere on X ×X.

Proof. We let H0 =
⋃∞

n=1 L
2(Xn). Suppose that ϕ is a positive local Schur multiplier and

let (Xn)∞n=1 be the sequence of subsets of X from Definition 4.2(ii). We can, moreover,
assume that μ(Xn) < ∞. Recall that D = {Mf : f ∈ L∞(X)}. The projection pn from
L2(X) onto L2(Xn), n ∈ N, is given by pn = MχXn

. We identify C2(L2(Xn)) with a
subspace of C2(L2(Xn+1)) in the natural way. Let

Sϕ :
∞⋃

C2
(
L2(Xn)

)
→

∞⋃
C2
(
L2(Xn)

)

n=1 n=1
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be the map given by Sϕ(Tk) = TχXn×Xnϕk, k ∈ L2(Xn × Xn). We have that the re-
striction Sϕ|C2(L2(Xn)) is positive, bounded and Dn-bimodular. Hence Sϕ satisfies the
conditions of Theorem 2.2 (or those of Theorem 3.5), and thus there exists a linear op-
erator V : H0 → H∞

0 of the form V = (Ma1 ,Ma2 , . . .)t, where ai ∈ B(X), i ∈ N, such
that

Sϕ(Tk) = V ∗(Tk ⊗ 1)V =
∞∑
i=1

M∗
ai
TkMai

for all Tk ∈
∞⋃

n=1
C2
(
L2(Xn)

)
.

Fix n ∈ N. We have that esssupx∈Xn

∑∞
i=1 |ai(x)|2 = ‖

∑∞
i=1 M|aiχXn |2‖ = ‖V pn‖2.

It follows that
∑∞

i=1 |ai(x)|2 < ∞ for almost all x ∈ X. Thus the function a : X → �2

given by a(x) = (ai(x))∞i=1, x ∈ X, is well-defined up to a null set.
Let ψ =

∑∞
i=1 ai ⊗ ai. Then

Tϕk = Sϕ(Tk) =
∞∑
i=1

M∗
ai
TkMai

= Tψk, k ∈ L2(Xn ×Xn), n ∈ N.

This implies ϕ = ψ almost everywhere on Xn ×Xn; as a consequence,

ϕ(x1, x2) =
∞∑
i=1

ai(x1)ai(x2) =
(
a(x1), a(x2)

)
�2
,

for almost all (x1, x2) ∈
⋃∞

n=1(Xn ×Xn), and hence for almost all (x1, x2) ∈ X ×X.
Conversely, suppose that there exists a function a : X → �2, say a(x) = (ai(x))i∈N,

x ∈ X, such that ϕ(x1, x2) = (a(x1), a(x2))�2 almost everywhere on X ×X. Let Xn =
{x ∈ X : ‖a(x)‖2

2 ≤ n} and observe that
⋃∞

i=1 Xn ∼ X. For k ∈ L2(Xn ×Xn), we have
that Sϕ(Tk) =

∑∞
i=1 M

∗
aiχXn

TkMaiχXn
and hence Sϕ|C2(L2(Xn)) is a bounded positive

map. Consequently, ϕ is a positive local Schur multiplier. �
Remark. Let (X,μ) be a standard measure space and μ′ be a measure defined on the
same σ-algebra and absolutely continuous with respect to μ. If ϕ is a positive local
Schur multiplier with respect to μ then it is so with respect to μ′. Indeed, this follows
immediately from the representation given in Theorem 4.4.

Following the proof of Theorem 4.4 and using Stinespring’s Theorem, we also note
the following, rather well-known, description of positive Schur multipliers.

Corollary 4.5. A function ϕ ∈ L∞(X × X) is a positive Schur multiplier if and only
if there exists a measurable function a : X → �2 such that esssupx∈X ‖a(x)‖ < ∞ and
ϕ(x1, x2) = (a(x1), a(x2))�2 almost everywhere on X ×X.

Let ϕ ∈ L∞(X ×X) be a positive Schur multiplier. Then there are potentially many
functions a : X → �2 satisfying the conclusion of Theorem 4.5; we call them representing
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functions for ϕ. For each such function, say, a(x) = (ai(x))i∈N (x ∈ X), we have a
corresponding Stinespring representation of the completely positive map Sϕ:

Sϕ(T ) =
∞∑
i=1

M∗
ai
TMai

, T ∈ K
(
L2(X)

)
. (9)

Let us call a a minimal representing function for ϕ if the representation (9) of Sϕ is
minimal.

Proposition 4.6. Let ϕ ∈ L∞(X ×X) be a positive Schur multiplier and a : X → �2 be a
representing function for ϕ. The following are equivalent:

(i) a is minimal;
(ii) for each null set M ⊆ X, the set {a(x) : x ∈ X \M} has dense linear span in �2.

Proof. Suppose that ai, i ∈ N, are the coordinate functions of a. By Lemma 3.1, a is not
a minimal representing function for ϕ if and only if {Mai

}i∈N is not strongly independent,
if and only if there exists 0 �= (λi)i∈N ∈ �2 such that

∑∞
i=1 λiMai

= 0, if and only if there
exists a null set M ⊆ X such that

∑∞
i=1 λiai(x) = 0 for all x ∈ X \ M , if and only if

there exists a null set M ⊆ X such that the linear span of {a(x) : x ∈ X \ M} is not
dense in �2. �

The following lifting result for positive Schur multipliers now follows from Theo-
rem 3.4.

Corollary 4.7. Let ϕ ∈ L∞(X × X) be a positive Schur multiplier, and let Y ⊆ X be
a measurable subset. Suppose that a : Y → �2 is a minimal representing function for
ϕ|Y×Y . Then there exists a minimal representing function b : X → �2 ⊕ �2 for ϕ such
that b(x) = a(x) ⊕ 0 for all x ∈ Y .

Let X be a set and ϕ : X ×X → C be a function. We recall that ϕ is called positive
definite if (ϕ(xi, xj))Ni,j=1 is a positive matrix for all x1, x2, . . . , xN ∈ X and all N ∈ N.
In the proof of the following proposition, we will use the following well-known fact: If
X is a locally compact Hausdorff space, μ is a regular Borel measure on X, K ⊆ X

is compact and k ∈ L2(X ×X) is continuous and positive definite on K ×K then the
(Hilbert–Schmidt) operator Tk is positive on L2(K,μ).

The motivation behind part (ii) of the next theorem is [19, Theorem 9.3], where a re-
lation between ω-continuous measurable Schur multipliers and classical Schur multipliers
is established.

Theorem 4.8. Let ϕ ∈ B(X ×X).
(i) ϕ is a positive local Schur multiplier if and only if ϕ is a local Schur multiplier

and ϕ is equivalent to a positive definite function.
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(ii) Suppose that ϕ is ω-continuous. Then ϕ is a positive local Schur multiplier if and
only if there exist a null set X0 and an increasing sequence {Yk} of measurable subsets
of X such that X \X0 =

⋃∞
k=1 Yk and ϕ|Yk×Yk

is a positive Schur multiplier with respect
to the counting measure on Yk, for every k.

Proof. (i) Suppose that ϕ is a positive local Schur multiplier. By Theorem 4.4, there
exists a measurable function a : X → �2 such that ϕ(x1, x2) = (a(x1), a(x2))�2 almost
everywhere on X ×X. On the other hand, a straightforward verification shows that the
function (x1, x2) → (a(x1), a(x2))�2 is positive definite.

Conversely, suppose that ϕ is a local Schur multiplier and a positive definite function.
We may assume that X is a σ-compact metric space and μ is a regular Borel measure.
Let (Xn)n∈N be the increasing sequence of measurable sets arising from Proposition 4.1.
Let k =

∑m
i=1 fi⊗ fi for some f1, . . . , fm ∈ L2(Xn), so that the operator Tk is a positive

and of finite rank. Fix ε > 0. A successive application of Lusin’s Theorem shows that
there exists a compact subset Kε ⊆ Xn, whose complement in Xn has measure less
than ε, such that fi|Kε

is continuous, for each i = 1, . . . ,m. On the other hand, by [27,
Proposition 3.2], ϕ is ω-continuous and by Lusin’s Theorem for ω-continuous functions
[19, Theorem 8.3], there exists a compact set Lε ⊆ X, whose complement has measure
less than ε, such that ϕ is continuous on Lε × Lε. It follows that ϕk is positive definite
on (Kε ∩Lε)× (Kε ∩Lε), and by the result stated before the statement of the theorem,
PεTϕkPε ≥ 0, where Pε is the projection of multiplication by the characteristic function
of Kε ∩ Lε. Letting ε tend to zero, we get that Tϕk ≥ 0. Since ϕ|Xn×Xn

is a Schur
multiplier, it follows that ϕ|Xn×Xn

is a positive Schur multiplier. Thus, ϕ is a positive
local Schur multiplier.

(ii) Let a : X → �2 be the measurable function from Theorem 4.4 such that
ϕ(x, y) = (a(x), a(y))�2 almost everywhere. Since both functions in the last equation are
ω-continuous, we have [27] that they are equal marginally almost everywhere. Hence,
there exists a null set Z0 such that ϕ is positive definite on (X \Z0)× (X \Z0). Letting
Zk = {x ∈ X \ Z0 : ‖a(x)‖2 ≤ k}, by [19, Theorem 9.3] we can find null sets Z0

k ⊆ Zk

such that ϕ|(Zk\Z0
k)×(Zk\Z0

k) is a Schur multiplier with respect to the counting measure.
Then, setting Y0 =

⋃∞
k=1 Z

0
k , Yk = Zk\Y0 and X0 = Z0 ∪ Y0, the sequence (Yk)k∈N is

increasing with union X\X0. Finally, by part (i) of the present theorem, ϕ|Yk×Yk
is a

positive Schur multiplier when Yk is equipped with the counting measure.
The converse follows from part (i) and [19, Theorem 9.3]. �

Example 4.9. Let ϕ(x, y) = 1/(x + y), x, y ∈ R
+, (x, y) �= (0, 0). Then ϕ ∈ B(R+ ×

R
+, λ× λ), where λ is the Lebesque measure. We have

ϕ(x, y) =
+∞∫

e−sxe−syds =
(
e−·x, e−·y)

L2(R+)

0
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and ‖e−sx‖2
L2(R+) = 1/(2x). Expressing the function e−·x in terms of an orthonormal

basis of L2(R+), we can find a measurable function a : R+ → �2 such that ϕ(x, y) =
(a(x), a(y))�2 almost everywhere and ‖a(x)‖�2 < ∞ for almost all x ∈ R

+. Hence ϕ(x, y)
is a positive local Schur multiplier. It is not a Schur multiplier since ϕ /∈ L∞(R+ ×R

+).

The previous example is taken from the theory of operator monotone functions. It is
known that if a function f is continuously differentiable on an interval (a, b) then f is
operator monotone on (a, b) if and only if the divided difference f̌ , given by f̌(x, y) =
(f(x)−f(y))/(x−y), x �= y and f̌(x, x) = f ′(x), x ∈ (a, b), is positive definite on (a, b)×
(a, b) (see, for example, [12], where a proof of this fact is given using Schur multiplier
techniques). Operator monotonicity is related to positivity of local Schur multipliers in
the following way.

Proposition 4.10. Let f : (a, b) → C be a continuously differentiable function. The divided
difference f̌ is a positive local Schur multiplier on (a, b)×(a, b) with respect to any choice
of a standard Borel measure on (a, b) if and only if f is operator monotone.

Proof. Suppose that f̌ is a positive local Schur multiplier on (a, b) × (a, b) with respect
to every standard Borel measure. Let F ⊆ (a, b) be a finite set and let μF be the measure
given by μF (α) = |α ∩ F | for a Borel set α. Our assumption implies that there exists
a Borel set Y ⊆ (a, b) with F ⊆ Y such that f̌ |Y×Y is a positive Schur multiplier with
respect to μF . It follows that f̌ |F×F is a positive Schur multiplier (with respect to μF ),
and hence f̌ |F×F is a positive matrix. Since this is true for all finite sets F ⊆ (a, b), we
have that f̌ is a positive definite function. By [12], f is operator monotone.

Conversely, suppose that f is operator monotone and let μ be a standard Borel mea-
sure on (a, b); by [12], f̌ is positive definite. Let Un = {x ∈ (a, b) : f ′(x) < n}; then⋃

n∈N
Un = (a, b). Let n ∈ N and F ⊆ Un be a finite subset. Since f̌ |F×F is a positive

matrix, the norm of its corresponding Schur multiplication is bounded by maxx∈F f ′(x),
which does not exceed n. It follows that f̌ |Un×Un

is a Schur multiplier with respect to
the counting measure. By [19, Theorem 9.3], f̌ |Un×Un

is a Schur multiplier with respect
to μ. Hence, f̌ is a local Schur multiplier with respect to μ. Now Theorem 4.8 shows that
f̌ is a positive local Schur multiplier with respect to μ. �
4.1. Positive multipliers of Toeplitz type

We conclude this section by considering positive multipliers of Toeplitz type. Let
G be a locally compact group equipped with left Haar measure and N be the map
sending a measurable function f : G → C to the function Nf : G × G → C, given by
Nf(s, t) = f(st−1); we call the functions of the form Nf functions of Toeplitz type. It was
shown in [6] that if f ∈ L∞(G) then Nf is a Schur multiplier if and only if f is equivalent
to an element of M cbA(G) (the latter being the set of all completely bounded multipliers
of the Fourier algebra A(G) of G). On the other hand, it was proved in [27] that if G is
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abelian then Nf is a local Schur multiplier if and only if f is equivalent to a function
that belongs locally to A(G) at every point of the group G. In particular, examples were
given of local Schur multipliers ϕ of Toeplitz type that are not Schur multipliers. The
following proposition shows that this cannot happen with the additional assumption that
ϕ is positive, provided G is amenable.

Theorem 4.11. Let G be an amenable locally compact group, f : G → C be a measurable
function and ϕ = Nf . The following are equivalent:

(i) ϕ is a positive Schur multiplier;
(ii) ϕ is a positive local Schur multiplier;
(iii) f is equivalent to a positive definite function from the Fourier–Stiltjes alge-

bra B(G).

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) By [27, Corollary 4.5], ϕ is equivalent to an ω-continuous function. By

[27, Proposition 7.3], f is equivalent to a continuous function g : G → C. We may thus
assume that f is itself continuous.

Let T (G) = L2(G) ⊗̂ L2(G), where by ⊗̂ we denote the projective tensor prod-
uct. The space T (G) can be naturally identified with the trace class on L2(G). We
let T (G)+ be the cone in T (G) corresponding to the positive trace class operators
under this identification; we have that T (G)+ consists of all elements of the form∑∞

i=1 ξi ⊗ ξi, with
∑∞

i=1 ‖ξi‖2
2 < ∞. Let P : T (G) → A(G) be the contraction given

by P (ξ ⊗ η)(s) = (λsξ, η), ξ, η ∈ L2(G).
Since Nf is a positive local Schur multiplier, there exists an increasing sequence

(Xn)n∈N of measurable subsets of G such that the set G \ (
⋃

n∈N
Xn) is null and

Nf |Xn×Xn
is a positive Schur multiplier. Clearly,

⋃
n∈N

L2(Xn) is dense in L2(G).
Since G is amenable, [20, Lemma 7.2] shows that there exists a net (uα)α, with
uα = P (ξα ⊗ ξα), ‖ξα‖2 ≤ 1, which converges to the constant function 1 uniformly
on compact subsets. Since P is contractive and the uniform norm is dominated by the
norm of A(G), we can replace uα by a function of the form vα = P (ηα ⊗ ηα), with ηα
having support in some Xn, n ∈ N.

We have that (Nf)(ηα ⊗ ηα) ∈μ×μ T (G)+ for each α. Applying the mapping P , we
obtain that fvα ∈ A(G)+ for each α. Let K = {s1, . . . , sn} ⊆ G. We have that(

f
(
sis

−1
j

)
vα

(
sis

−1
j

))
i,j

→α

(
f
(
sis

−1
j

))
i,j
.

Since the matrix (f(sis−1
j )vα(sis−1

j ))i,j is positive for each α, it follows that (f(sis−1
j ))i,j

is positive as well. Thus, f is a positive definite function. Since f is continuous, we have
that f ∈ B(G) (see [9]).

(iii) ⇒ (i) Since G is amenable, B(G) coincides with the algebra of all completely
bounded multipliers of A(G). The fact that Nf is a Schur multiplier follows from [6] (see
also [29]). The proof of Theorem 4.8 now shows that Nf is a positive Schur multiplier. �
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Corollary 4.12. (i) The space of all local Schur multipliers coincides with the linear span
of the cone of all positive local Schur multipliers.

(ii) The space of all local Schur multipliers of Toeplitz type is strictly larger than the
linear span of the cone of all positive local Schur multipliers of Toeplitz type.

Proof. (i) follows from [27, Theorem 3.6], Theorem 4.4 and a standard polarisation
argument.

(ii) follows from Theorem 4.11 and the fact that the space of local Schur multipliers
of Toeplitz type is strictly larger than that of Schur multipliers of Toeplitz type (see [27,
Remark 7.11]). �

It was shown in [14] that if a continuous function ϕ of Toeplitz type, defined on the
direct product G × G, where G is a locally compact group, is a Schur multiplier, then
the functions a, b : G → �2 in the representation ϕ(x, y) = (a(x), b(y))�2 , can be chosen
to be continuous. It is thus natural to ask the following questions:

Question 4.13. Let X be a locally compact topological space equipped with a regular
Borel measure. Suppose that ϕ : X ×X → C is a continuous Schur multiplier.

(i) Do there exist continuous bounded functions a, b : X → �2 such that ϕ(x, y) =
(a(x), b(y))�2 for all x, y ∈ X?

(ii) If ϕ is moreover positive, can one choose a continuous bounded function a : X → �2

such that ϕ(x, y) = (a(x), a(y))�2 for all x, y ∈ X?
(iii) Assuming that ϕ is a local (resp. positive local) Schur multiplier, can a similar

choice be made with a and b (resp. a) not necessarily bounded?

5. Local operator multipliers

In this section we introduce local operator multipliers, a non-commutative version of
local Schur multipliers, and characterise them, generalising the characterisation of local
Schur multipliers given in [27]. The suitable setting for local operator multipliers is that
of von Neumann algebras, as opposed to the setting of C∗-algebras, which was used to
define and study universal multipliers in [19] and [16]. We therefore start by collecting
some notions and results from [16] in a form convenient for our purposes.

Let H and K be Hilbert spaces and let Hd be the dual Banach space of H; note that
Hd is conjugate linear isometric to H via the map ∂ : H → Hd sending x ∈ H to the
element xd ∈ Hd given by xd(y) = (y, x), y ∈ H. If T ∈ B(H,K), we let T d ∈ B(Kd, Hd)
be the dual operator of T . If M ⊆ B(H) is a von Neumann algebra, we denote by Mo

the opposite von Neumann algebra of M; we have that Mo ⊆ B(Hd) consists of the
elements of the form ad, where a ∈ M. In particular, B(H)o = B(Hd). By H ⊗ K we
denote the Hilbert space tensor product of H and K. If M and N are von Neumann
algebras, we denote by M⊗̄N the (spatial weak∗ closed) von Neumann algebra tensor
product. Thus, B(Hd ⊗K) = B(H)o ⊗̄ B(K).
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We let θ : Hd ⊗K → C2(H,K) be the canonical isomorphism sending an elementary
tensor xd ⊗ y to the rank one operator given by θ(xd ⊗ y)(z) = (z, x)y, z ∈ H. This
allows us to equip Hd ⊗K with an “operator” norm:

‖ξ‖op
def=

∥∥θ(ξ)∥∥op, ξ ∈ Hd ⊗K.

For ϕ ∈ B(Hd ⊗K), we define Sϕ : C2(H,K) → C2(H,K) to be the mapping given
by Sϕ(θ(ξ)) = θ(ϕξ), ξ ∈ Hd ⊗ K. We call ϕ an operator multiplier if there exists
C > 0 such that ‖Sϕ(θ(ξ))‖op ≤ C‖θ(ξ)‖op, for every ξ ∈ Hd ⊗K. If ϕ is an operator
multiplier, then the mapping Sϕ extends by continuity to a mapping (denoted in the
same way) Sϕ : K(H,K) → K(H,K) and, by taking the second dual, to a mapping
S∗∗
ϕ : B(H,K) → B(H,K). An element ϕ ∈ B(Hd ⊗ K) will be called a completely

bounded operator multiplier, or a c.b. operator multiplier, if Sϕ is completely bounded
with respect to the operator space structure arising from the inclusion C2(H,K) ⊆
K(H,K). If M ⊆ B(H) and N ⊆ B(K) are von Neumann algebras, we will denote
by Mcb(M,N ) the collection of all c.b. operator multipliers in Mo ⊗̄ N and call its
elements completely bounded M, N -multipliers, or c.b. M, N -multipliers. We note that
Mcb(M,N ) is a subalgebra of Mo ⊗̄ N .

We next recall [5] that the extended Haagerup tensor product B(K)⊗ehB(H) consists
of the sums of the form

∑∞
i=1 bi ⊗ ai, where (bi)i∈N (resp. (ai)i∈N) is a bounded row

(resp. column) operator. There exists a one-to-one correspondence between the elements
of B(K)⊗ehB(H) and the normal completely bounded maps on B(H,K): to the element
u =

∑∞
i=1 bi ⊗ ai ∈ B(K) ⊗eh B(H), there corresponds the map Φu given by Φu(x) =∑∞

i=1 bixai, x ∈ B(H,K).
Let ϕ ∈ Mcb(M,N ). The mapping S∗∗

ϕ is normal and completely bounded; by the
previous paragraph, there exists a (unique) element uϕ ∈ B(K) ⊗eh B(H), called the
symbol of ϕ [15], such that S∗∗

ϕ = Φuϕ
. Moreover, [15, Proposition 5.5] shows that

uϕ ∈ N ⊗eh M. In particular, the map S∗∗
ϕ is N ′, M′-modular.

In the next proposition, we describe the elements u ∈ N ⊗eh M that are symbols of
c.b. operator multipliers.

Proposition 5.1. The mapping Λ : ϕ → Φuϕ
is a bijective homomorphism from Mcb(B(H),

B(K)) onto the space of all normal completely bounded maps on B(H,K) which leave
C2(H,K) invariant.

Proof. Suppose that ϕ ∈ Mcb(B(H),B(K)). The map Φuϕ
is the unique normal extension

of Sϕ : C2(H,K) → C2(H,K) to B(H,K). It follows that Φuϕ
preserves C2(H,K).

Conversely, suppose that Φ is a normal completely bounded map which leaves
C2(H,K) invariant. Let ϕ : Hd ⊗K → Hd ⊗K be the map given by ϕξ = θ−1(Φ(θ(ξ))).
Clearly, ϕ is a linear map. We show that it has a closed graph. Suppose ξk → 0
and ϕξk → η in the norm of Hd ⊗ K. It follows that ‖θ(ξk)‖op → 0 and hence
‖Φ(θ(ξk))‖op → 0. Thus, ‖θ(ϕξk)‖op → 0 and hence η = 0.
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It follows from the Closed Graph Theorem that ϕ ∈ B(Hd ⊗ K). By its definition,
Sϕ = Φ|C2(H,K) and it follows that ϕ ∈ Mcb(B(H),B(K)) and Φuϕ

= Φ. The fact that Λ
is a homomorphism is immediate from its definition. �

We recall that if A1 and A2 are C∗-algebras, then the Haagerup norm of an element
ω of A1 	A2 is defined by

‖ω‖h = inf
{∥∥∥∑ aia

∗
i

∥∥∥ 1
2
∥∥∥∑ b∗i bi

∥∥∥ 1
2 : ω =

∑
ai ⊗ bi

}
.

We also let [19]

‖ω‖ph = inf
{∥∥∥∑ aia

∗
i

∥∥∥ 1
2
∥∥∥∑ bib

∗
i

∥∥∥ 1
2 : ω =

∑
ai ⊗ bi

}
.

Let (ϕν)ν ⊆ B(Hd) 	 B(K) be a net and ϕ ∈ B(Hd ⊗K). We write ϕ = m− limν ϕν

if the net (ϕν)ν converges semi-weakly to ϕ (that is, 〈ϕν(h1 ⊗ k1), h2 ⊗ k2〉 →
〈ϕ(h1 ⊗ k1), h2 ⊗ k2〉 for every h1, h2 ∈ Hd and k1, k2 ∈ K), and there exists C > 0
such that ‖ϕν‖ph ≤ C for all ν.

We first note the following fact, whose proof is straightforward.

Remark 5.2. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. If (ϕν)ν∈J ⊆
M	N and ϕ = m− limν ϕν , then ϕ ∈ M⊗N .

The following characterisation of c.b. M, N -multipliers follows from [16] and [15]:

Theorem 5.3. An element ϕ ∈ Mo ⊗̄ N is a c.b. M, N -multiplier if and only if there
exists a net (ϕν)ν ⊆ Mo 	N such that ϕ = m− limν ϕν .

We now introduce local operator multipliers as a non-commutative version of local
Schur multipliers. To motivate our definition, recall that, in the commutative case, local
Schur multipliers are defined within the class of all measurable, in general unbounded,
functions on the direct product of two measure spaces. The natural non-commutative
analogue of this algebra is the set of all operators affiliated with the tensor product of
two von Neumann algebras. On the other hand, the non-commutative analogues of mea-
surable subsets are projections. We are thus naturally led to define an M′, N ′-covering
family (where M ⊆ B(H) and N ⊆ B(K) are von Neumann algebras) as a family
{pn ⊗ qm}n,m∈N, where {pn}n∈N ⊆ M′ and {qm}m∈N ⊆ N ′ are families of pairwise
commuting projections, such that

∨
n∈N

pn = I and
∨

m∈N
qm = I.

Suppose that M ⊆ B(H) is a von Neumann algebra, p is a projection in the commutant
of M, and a : dom(a) → H is a densely defined operator. We will consider pa as the
operator with domain dom(a) given by (pa)(ξ) = p(a(ξ)), ξ ∈ dom(a). By writing
pa ∈ Mp, we will mean that the operator pa is bounded on dom(a) and its extension
to H, which will again be denoted by pa, belongs to the von Neumann algebra Mp.
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Definition 5.4. Given a von Neumann algebra M ⊆ B(H) and projections {pi}i∈N ⊆ M′,
we say that a densely defined operator a : H → H is associated with M with respect to
{pi} if piH ⊆ dom(a) and pia, api ∈ Mpi for all i ∈ N.

The set of all such operators will be denoted by AssocM{pi}. It is not difficult to see
that, under the assumptions in Definition 5.4, pia = api, i ∈ N.

Definition 5.5. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. An element
ϕ ∈ Aff(Mo⊗̄N ) will be called a local M, N -multiplier if there exists an M′, N ′-covering
family {pn ⊗ qm}n,m∈N such that ϕ(pd

n ⊗ qm) ∈ Mcb(Mpn,N qm) for all n,m ∈ N.

Lemma 5.6. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras and ϕ ∈ Mo ⊗̄N .
(i) If p1, p2 ∈ M′ and q1, q2 ∈ N ′ are projections, p1 ≤ p2, q1 ≤ q2, and ϕ(pd

2 ⊗ q2) ∈
Mcb(Mp2,N q2) then ϕ(pd

1 ⊗ q1) ∈ Mcb(Mp1,N q1).
(ii) If (ei)ni=1 ⊆ M′, (fj)mi=1 ⊆ N ′ are sequences of pairwise orthogonal projections

such that
∨n

i=1 ei = I,
∨m

j=1 fj = I and ϕ(ed
i ⊗ fj) ∈ Mcb(Mei,Nfj) for each i, j, then

ϕ ∈ Mcb(M,N ).

Proof. (i) follows from the fact that Sϕ(pd
1⊗q1) = Sϕ(pd

2⊗q2)|C2(p1H,q1K).
(ii) Since Sϕ =

∑
i,j Sϕ(pd

i ⊗qj), we have that ‖Sϕ‖cb ≤
∑

i,j ‖Sϕ(pd
i ⊗qj)‖cb. �

Proposition 5.7. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras and suppose
that {ei} ⊆ M′ and {fj} ⊆ N ′ are at most countable families of pairwise orthogonal
projections. Let E be the linear span of

⋃
i,j fjB(H,K)ei, and Φ : E → B(H,K) be a

linear map. The following are equivalent:
(i) Φ leaves fjB(H,K)ei invariant, and the restriction Φi,j

def= Φ|fjB(H,K)ei :
fjB(H,K)ei → fjB(H,K)ei is fjN ′fj, eiM′ei-modular, normal and completely
bounded;

(ii) there exist families {ak}k∈N ⊆ AssocM{ei} and {bk}k∈N ⊆ AssocN{fj} such that
(eiak)k∈N defines a bounded column operator for each i, (bkfj)k∈N defines a bounded row
operator for each j, and Φ(x) =

∑∞
k=1 bkxak, for all x ∈ E.

Proof. (ii) ⇒ (i) Suppose that x = fjxei for some i, j ∈ N. We have that ak =
∑∞

i=1 akei,
where the sum converges pointwise on

⋃∞
i=1 eiH. A similar formula holds for bk. By

assumption, for every i (resp. j) and for every k, there exists ãk,i ∈ M (resp. b̃k,j ∈ N )
such that eiak = eiãk,i (resp. bkfj = b̃k,jfj). Let c ∈ eiM′ei and d ∈ fjN ′fj . We have
that

Φ(dxc) =
∞∑
k=1

bk(fjdfjxeicei)ak =
∞∑
k=1

b̃k,j(fjdfjxeicei)ãk,i

=
∞∑

fjdfj b̃k,jfjxeiãk,i(eicei) = d

( ∞∑
bkxak

)
c.
k=1 k=1
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These identities show that Φ leaves fjB(H,K)ei invariant, and that its restriction to
fjB(H,K)ei is a normal completely bounded fjN ′fj , eiM′ei-modular map.

(i) ⇒ (ii) For each i and j, let Ai,j = (aki,j)k∈N ∈ M∞,1(Mei) be a bounded column
operator and Bi,j = (bki,j)k∈N ∈ M1,∞(Nfj) be a bounded row operator such that

Φ(x) =
∞∑
k=1

bki,jxa
k
i,j = Bi,j(x⊗ 1)Ai,j , x ∈ fjB(H,K)ei.

Assume, without loss of generality, that ‖Ai,j‖ = ‖Bi,j‖, and let αi,j = ‖Ai,j‖2. By
[27, Lemma 3.5], there exist vectors ri = (ri(l))l∈N, sj = (sj(l))l∈N ∈ �2 such that
(ri, sj)�2 = αi,j .

Let N1, N2, N3 and N4 be copies of N, set Λ = N1 × N2 × N3 × N4 and equip Λ with
the lexicographic order, where each Ns, s = 1, 2, 3, 4, is given its natural order.

Let A (resp. B) be the column (resp. row) operator given by

A =
(

iri(l)
j
√
αi,j

aki,j

)
(i,j,k,l)∈Λ

(
resp. B =

(
jsj(l)
i
√
αi,j

bki,j

)
(i,j,k,l)∈Λ

)
.

We note that A (resp. B) does not necessarily define a bounded column (resp. row)
operator, but it can be regarded as a linear operator densely defined on [

⋃
i∈N

eiH] (resp.
[
⋃

j∈N
fjK]). Note that each entry of A (resp. B) is a bounded operator on H (resp. K).

We have that the non-zero entries of ei0A are the elements of the family
( i0ri0 (l)
j
√
αi0,j

aki0,j)j,k,l∈N, and hence

‖ei0A‖ ≤ i0‖ri0‖2

( ∞∑
j=1

1
j2

)1/2

.

Similarly, each non-zero entry of B(fj0 ⊗ 1) lies in Nfj0 and

∥∥B(fj0 ⊗ 1)
∥∥ ≤ j0‖sj0‖2

( ∞∑
j=1

1
j2

)1/2

.

Suppose that x = fj0xei0 . Then

Φ(x) =
∞∑
k=1

bki0,j0xa
k
i0,j0 = Bi0,j0(x⊗ 1)Ai0,j0

=
∞∑

i,j=1

∞∑
k=1

ijαi,j
1

i
√
αi,j

bki,jx
1

j
√
αi,j

aki,j

=
∑

(i,j,k,l)∈Λ

jsj(l)
i
√
αi,j

bki,jx
iri(l)
j
√
αi,j

aki,j .

The claim now follows by choosing any enumeration of Λ. �
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Lemma 5.8. Let H and K be Hilbert spaces and ϕ ∈ B(Hd ⊗K). Then(
Sϕ

(
θ(ξ)

)
h1, h2

)
K

=
(
ϕξ, hd

1 ⊗ h2
)
Hd⊗K

, ξ ∈ Hd ⊗K, hd
1 ∈ Hd, h2 ∈ K.

Proof. Using the identity

tr
(
Tθ

(
hd

1 ⊗ h2
))

= (Th1, h2)K , T ∈ C2(H,K),

we see that(
ϕξ, hd

1 ⊗ h2
)
Hd⊗K

=
(
θ(ϕξ), θ

(
hd

1 ⊗ h2
))

C2
= tr

(
θ(ϕξ)θ

(
hd

1 ⊗ h2
))

=
(
θ(ϕξ)h1, h2

)
K

=
(
Sϕ

(
θ(ξ)

)
h1, h2

)
K
. �

We will need the following lemma; since the statement is rather well-known, the proof
is omitted.

Lemma 5.9. Let M ⊆ B(H) be a von Neumann algebra. If ϕ ∈ Aff(M) and p ∈ M′ is a
projection such that ϕp is bounded and pϕp = ϕp, then (the closure of the operator ϕp

which is again denoted by) ϕp belongs to Mp.

Theorem 5.10. Let ϕ ∈ Aff(Mo ⊗̄ N ). Then the following are equivalent:
(i) ϕ is a local M, N -multiplier;
(ii) there exist increasing sequences (pn)n∈N ⊆ M′ and (qn)n∈N ⊆ N ′ of projections

such that
∨

pn ⊗ qn = I and ϕ(pd
n ⊗ qn) ∈ Mcb(Mpn,N qn) for every n ∈ N;

(iii) there exist families (ei)i∈N ⊆ M′ and (fj)j∈N ⊆ N ′ of mutually orthogonal pro-
jections such that

∨
i∈N

ei = I and
∨

j∈N
fj = I, and a net (ϕν)ν ⊆ AssocMo ⊗̄N{edi ⊗fj}

such that ϕν(ed
i ⊗ fj) ∈ Moed

i 	Nfj and ϕ(ed
i ⊗ fj) = m− limν ϕν(ed

i ⊗ fj), for all i, j.

Proof. (i) ⇒ (iii) Let {pn ⊗ qm}n,m∈N ⊆ M′ ⊗ N ′ be a covering family of projections
such that ϕ(pd

n ⊗ qm) ∈ Mcb(Mpn,N qm) for all n and m. Let e1 = p1 and ei+1 =
pi+1(I − ei)(I − ei−1) . . . (I − e1), i ≥ 1. Define the projections fj , j ∈ N, similarly. We
have that

∨
i∈N

ei = I and
∨

j∈N
fj = I.

Fix i and j; then ei⊗ fj ≤ pi⊗ qj and by Lemma 5.6(i), ϕ(ed
i ⊗ fj) ∈ Mcb(Mei,Nfj)

for all i, j. Let E = [
⋃

i,j fjB(H,K)ei] and let Φ : E → E be the map whose restric-
tion to fjB(H,K)ei coincides with S∗∗

ϕ(edi ⊗fj)
. By Proposition 5.7, there exist operators

(ak)k∈N ⊆ AssocM{ei}i∈N
and (bk)k∈N ⊆ AssocN{fj}j∈N

such that (eiak)k∈N defines
a bounded column operator for each i, (bkfj)k∈N defines a bounded row operator for
each j, and Φ(x) =

∑∞
k=1 bkxak, for all x ∈ E .

Let ϕN =
∑N

k=1 a
d
k ⊗ bk. Then ϕN (ed

i ⊗ fj) belongs to (Moed
i ) 	 (Nfj) for all i, j,

and

sup
N∈N

∥∥ϕN

(
ed
i ⊗ fj

)∥∥
ph ≤ sup

N∈N

∥∥∥∥∥
N∑

bkfj ⊗ eiak

∥∥∥∥∥ ≤
∥∥(eiak)k∈N

∥∥∥∥(bkfj)k∈N

∥∥.

k=1 h
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For all ξ ∈ (ed
iH

d) ⊗ (fjK) and all hd ∈ Hd, k ∈ K, we have, by Lemma 5.8, that(
Φ
(
θ(ξ)

)
h, k

)
K

=
(
ϕ
(
ed
i ⊗ fj

)
ξ, hd ⊗ k

)
Hd⊗K

. (10)

On the other hand, if ΦN = S∗∗
ϕN

, then we have that

ΦN

(
θ(ξ)

)
→N→∞ Φ

(
θ(ξ)

)
weakly, for all ξ ∈

(
ed
iH

d)⊗ (fjK). (11)

It follows from (10) and (11) that (ϕN (ed
i ⊗fj))∞N=1 converges semi-weakly to ϕ(ed

i ⊗fj),
for all i, j. Thus, ϕ(ed

i ⊗ fj) = m− limN ϕN (ed
i ⊗ fj) and (iii) is established.

(iii) ⇒ (ii) By Remark 5.2 and Theorem 5.3, ϕ(ed
i⊗fj) is a c.b. Mei, Nfj-multiplier for

all i, j ∈ N. Let pn =
∨n

i=1 ei and qn =
∨n

j=1 fj . The claim now follows from Lemma 5.9
and Lemma 5.6(ii).

(ii) ⇒ (i) We have that (pn ⊗ qm)n,m∈N is a covering family. By Lemma 5.6(i),
ϕ(pd

n ⊗ qm) ∈ Mcb(Mpn,N qm) for all n,m ∈ N. �
We next include analogous versions of some of the previous results for the case where

the respective projections are central. The first one is a “local” version of the well-known
representation theorem for completely bounded bimodular maps (see [11,28]).

Proposition 5.11. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras, (Pn)n∈N ⊆
M ∩ M′ and (Qn)n∈N ⊆ N ∩ N ′ be increasing sequences of projections, E =⋃

n∈N
QnB(H,K)Pn and Φ : E → B(H,K) be a linear map. The following are equivalent:

(i) the restriction of Φ to QnB(H,K)Pn is completely bounded, normal and (NQn)′,
(MPn)′-modular;

(ii) there exist families (ak)k∈N ⊆ M and (bk)k∈N ⊆ N such that (Pnak)k∈N

(resp. (bkQn)k∈N) is a bounded column (resp. row) operator for every n and Φ(x) =∑∞
k=1 bkxak, for every x ∈ E.

Proof. (i) ⇒ (ii) Let e1 = P1 (resp. f1 = Q1) and ei = Pi+1−Pi (resp. fj = Qj+1−Qj),
i ≥ 2 (resp. j ≥ 2). It is clear that Φ|fjB(H,K)ei : fjB(H,K)ei → B(H,K) is completely
bounded and N ′fj , M′ei-modular. Let

A =
(

iri(l)
j
√
αi,j

aki,j

)
(i,j,k,l)∈Λ

and B =
(

jsj(l)
i
√
αi,j

bki,j

)
(i,j,k,l)∈Λ

be the operators from the proof of Proposition 5.7. Since the projections Pn and Qn,
n ∈ N, are central, we have that the entries of A (resp. B) belong to M (resp. N ). The
estimates from the proof of Proposition 5.7 show that

‖PnA‖2 ≤
n∑

d=1

d2‖rd‖2
2

∞∑
j=1

1
j2 and

∥∥B(Qn ⊗ 1)
∥∥2 ≤

n∑
d=1

d2‖sd‖2
2

∞∑
j=1

1
j2 .

The conclusion follows.
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(ii) ⇒ (i) is immediately obtained, via the discussion prior to Proposition 5.1, from
the observation that akPn ∈ MPn and bkQn ∈ NQn, and consequently

∑∞
k=1(bkQn) ⊗

(akPn) ∈ (NQn) ⊗eh (MPn). �
Call a local M, N -multiplier central if the covering family {pn⊗ qm}n,m∈N associated

with ϕ as in Definition 5.5 can be chosen from the centre of M′ ⊗̄ N ′.

Corollary 5.12. Let ϕ ∈ Aff Mo ⊗N . Then the following are equivalent:
(i) ϕ is a central local M, N -multiplier;
(ii) there exist a net (ϕν) ⊆ Aff Mo ⊗̄ N and increasing sequences of projections

(Pn)n∈N ⊆ M∩M′ and (Qn)n∈N ⊆ N ∩N ′ such that
∨

n∈N
Pn⊗Qn = I, ϕν(P d

n ⊗Qn) ∈
MoP d

n 	NQn and ϕ(P d
n ⊗Qn) = m− limν ϕν(P d

n ⊗Qn) for every n ∈ N.

Proof. (ii) ⇒ (i) follows from Theorem 5.3 and Lemma 5.6.
(i) ⇒ (ii) It is easy to see that the operators ϕN from the proof of Theorem 5.10 can,

under the assumption of the corollary, be chosen from Mo 	N . The conclusion follows
by letting Pn =

∨n
i=1 ei and Qn =

∨n
j=1 fj , where (ei) and (fj) are the sequences of

projections from Theorem 5.10. �
6. Positive local operator multipliers

In this section, we study completely positive local operator multipliers. The main re-
sult is the characterisation Theorem 6.4. Throughout this section, we fix a von Neumann
algebra M.

Definition 6.1. Let M ⊆ B(H) be a von Neumann algebra and ϕ ∈ Mo ⊗ M. We say
that ϕ is a completely positive M-multiplier if the map Sϕ : C2(H) → C2(H), given by

Sϕ

(
θ(ξ)

)
= θ(ϕξ), ξ ∈ Hd ⊗H,

is completely positive and bounded in ‖ · ‖op.

Let

P(M) =
{

N∑
k=1

bdk ⊗ b∗k : bk ∈ M, N ∈ N.

}
⊆ Mo 	M.

It is clear that P(M) is a cone, and it is easy to verify that if ψ ∈ P(M) then the map Sψ

is bounded and completely positive; thus, every element of P(M) is a completely positive
M-multiplier. In the next theorem, we show that completely positive M-multipliers can
be approximated by elements of P(M).

Theorem 6.2. Let ϕ ∈ Mo ⊗ M. Then ϕ is a completely positive M-multiplier if and
only if there exists a net (ϕν)ν∈J ⊆ P(M) such that ϕ = m− limν ϕν .
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Proof. Suppose that ϕ is a completely positive M-multiplier. By definition, Sϕ is
bounded and completely positive and thus, by the remarks before Proposition 5.1, it
is M′-bimodular. There exists a family (ai)∞i=1 ⊆ M of operators that defines a bounded
column operator V such that

Sϕ(x) =
∞∑
i=1

a∗i xai, x ∈ K(H),

where the series converges in the weak∗ topology. Let ϕN =
∑N

i=1 a
d
i ⊗ a∗i ∈ P(M),

N ∈ N. Now

SϕN

(
θ(ξ)

)
→N→∞ Sϕ

(
θ(ξ)

)
(12)

weakly for all ξ ∈ Hd ⊗ H. It follows from Lemma 5.8 that (ϕN )N∈N converges semi-
weakly to ϕ. A standard estimate shows that

sup
N∈N

‖ϕN‖ph ≤ ‖V ‖2.

Thus, ϕ = m− limN ϕν .
Conversely, suppose that there exists a net (ϕν)ν∈J ⊆ P(M) such that (ϕν)ν∈J con-

verges semi-weakly to ϕ and D = supν ‖ϕν‖ph < +∞. As in the proof of the implication
(iii) ⇒ (ii) of Theorem 5.10, we can see that ‖Sϕ‖ ≤ D.

To obtain the complete positivity, suppose that (θ(ξij))li,j=1 is a positive element of
C2(H l), where ξij ∈ Hd 	H, i, j = 1, . . . , l. If h = (h1, . . . , hl) ∈ H l then

0 ≤
(
S(l)
ϕν

((
θ(ξij)

)l
i,j=1

)
h, h

)
Hn

=
l∑

i=1

(
l∑

j=1

Nν∑
k=1

(
aνk

)∗
θ(ξij)aνkhj , hi

)
H

=
l∑

i,j=1

(
θ

(
Nν∑
k=1

(
aνk

)d ⊗
(
aνk

)∗
ξij

)
hj , hi

)
H

=
l∑

i,j=1

(
θ

(
Nν∑
k=1

(
aνk

)d ⊗
(
aνk

)∗
ξij

)
, θ
(
hd
j ⊗ hi

))
C2(H)

=
l∑

i,j=1

(
ϕν(ξij), hd

j ⊗ hi

)
Hd⊗H

→
l∑(

ϕ(ξij), hd
j ⊗ hi

)
Hd⊗H

=
(
S(l)
ϕ

((
θ(ξij)

)l
i,j=1

)
h, h

)
H

i,j=1
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and hence the map Sϕ is completely positive on the ∗-algebra F(H) of all finite rank
operators.

If (θ(ξij))li,j=1 ∈ Ml(C2(H))+ then (θ(ξij)) can be approximated by positive matrices
of finite rank operators in the Hilbert–Schmidt norm, and hence in the operator norm.
It follows from the previous arguments that Sϕ is completely positive on C2(H). Thus ϕ
is a completely positive M-multiplier. �

We next introduce the non-commutative version of positive local Schur multipliers.

Definition 6.3. Let M ⊆ B(H) be a von Neumann algebra and ϕ ∈ Aff(Mo ⊗M). We
say that ϕ is a completely positive local M-multiplier if

(i) there exists an increasing sequence (pn)∞n=1 ⊆ M′ of projections such that∨
n∈N

pn = I and ϕ ∈ AssocMo ⊗M{pd
n⊗pn}n∈N

;
(ii) ϕ(pd

n ⊗ pn) is a completely positive Mpn-multiplier.

We note that every completely positive local M-multiplier is a local M-multiplier.
We will call the sequence (pn)n∈N of projections from Definition 6.3 an implementing
sequence for ϕ.

Suppose that T : dom(T ) → H is a densely defined, closed operator affiliated with
a von Neumann algebra M ⊆ B(H). We again let T d : dom(T d) → Hd be the Banach
space dual of T ; note that T d is closed and affiliated with the opposite von Neumann
algebra Mo, dom(T d) = (dom(T ∗))d and T dξd = (T ∗ξ)d, ξ ∈ dom(T ).

Given two densely defined, closable operators S and T , we denote by S	T the linear
operator defined on the algebraic tensor product dom(S) 	 dom(T ) by

(S 	 T )(h⊗ k) = Sh⊗ Tk, h ∈ dom(S), k ∈ dom(T ).

The operator S	T is closable [17]; by abuse of notation, we denote the closure again by
S 	 T . If P,Q ∈ B(H) are projections such that PH ⊆ dom(S) (resp. QH ⊆ dom(T )),
then

(S 	 T )(P 	Q) = SP 	 TQ

is bounded and coincides with the usual tensor product SP ⊗TQ of bounded operators.
For von Neumann algebras M,N , we define

Aff M	 Aff N =
{

m∑
k=1

Sk 	 Tk : Sk ∈ Aff M, Tk ∈ Aff N ,m ∈ N

}
.

Theorem 6.4. Let (pn)n∈N ⊆ M′ be an increasing sequence of projections such that∨
n∈N

pn = IH . An operator ϕ ∈ Aff(Mo ⊗ M) is a completely positive local
M-multiplier with implementing sequence (pn)n∈N if and only if there exists a net
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(ϕν)ν∈J ⊆ Aff Mo 	 Aff M such that, for each n ∈ N, ϕν(pd
n 	 pn) ∈ P(Mpn) and

ϕ(pd
n ⊗ pn) = m− limν ϕν(pd

n 	 pn).

Proof. Suppose that ϕ is a completely positive local M-multiplier with an implementing
sequence (pn)n∈N. By definition,

∨
n∈N

pn = I and, if Hn = pnH, the map Sϕ|C2(Hn) is
bounded, completely positive and pnM′pn-bimodular.

Since the map is bounded on C2(Hn), it can be extended to K(Hn), and this extension
preserves the bimodularity and complete positivity. Thus, by Theorem 3.5, there exists a
family {ak}∞k=1 of closable operators affiliated with M that, as noted in Remark 3.6, are
such that akpn, a∗kpn ∈ Mpn and Sϕ(x) =

∑∞
k=1 a

∗
kxak, for x ∈

⋃∞
n=1 K(Hn). Recall that

(a1pn, a2pn, . . .)t is a bounded column operator, say Vn. We define ϕN =
∑N

k=1 a
d
k 	 a∗k,

n ∈ N. Clearly, ϕN ∈ Aff Mo 	Aff M for each N ∈ N and since akpn ∈ Mpn, it follows
that ϕN (pd

n 	 pn) ∈ P(Mpn).
Analogously to (12), we see that the sequence (SϕN

|C2(Hn)(θ(ξ)))∞N=1 converges
weakly to Sϕ|C2(Hn)(θ(ξ)). By Lemma 5.8, (ϕN (pd

n 	 pn))N∈N converges semi-weakly
to ϕ(pd

n ⊗ pn). As before, one can easily see that

sup
N∈N

∥∥ϕN

(
pd
n 	 pn

)∥∥
ph ≤ ‖Vn‖2.

To prove the converse, observe that Theorem 6.2 and Remark 5.2 show that, under the
stated assumptions, ϕ(pd

n ⊗ pn) is a completely positive Mpn-multiplier for each n ∈ N.
Since

∨
n∈N

pn = I, we have that ϕ is a completely positive local M-multiplier. �
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