20 µm gate width CVD graphene FETs for 0.6 THz detection

Downloaded from: https://research.chalmers.se, 2019-09-30 05:58 UTC

Citation for the original published paper (version of record):
20 µm gate width CVD graphene FETs for 0.6 THz detection
39th International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2014.; Art. no.

N.B. When citing this work, cite the original published paper.
Abstract—We have fabricated 20 µm gate width graphene field effect transistors (GFETs) based on graphene grown by chemical vapor deposition (CVD). These GFETs are integrated with split bow-tie antennae for room temperature, direct detection of a 0.6 THz signal. Our detectors reach a maximum optical responsivity of 3.0 V/W and a minimum noise-equivalent power (NEP) of 700 pW/Hz^{0.5}. The successful demonstration of THz detection using CVD graphene introduces the possibility for scalable detector production.

I. INTRODUCTION

Progress toward bridging the so-called ‘terahertz gap’ has been thus far limited by the availability of high frequency detectors and emitters [1]. Terahertz applications require materials with high mobilities, and for practical devices, operation at room temperature is desired. Graphene, a two-dimensional semimetal, has been found to have room-temperature carrier mobilities up to 10,000 cm² V⁻¹ s⁻¹ [2] on SiO₂. The high carrier mobility of graphene coupled with the demonstration of self-mixing in materials with electrons confined to two-dimensions [3], [4] suggests that GFETs have potential as terahertz detectors.

While mechanically exfoliated graphene has been used for room-temperature terahertz detection [5], [6], graphene grown by chemical vapor deposition (CVD) has not been similarly studied. Furthermore, integration of a CVD graphene FET with a bow-tie antenna for high frequency detection is as yet unexplored with this type of GFET design [7].

Our detectors were fabricated with a split bow-tie antenna design where the antenna bows act as the GFET electrodes, simultaneously applying gate bias as well as allowing read-out of the rectified signal at the drain. Graphene is grown by CVD and transferred to Si/SiO₂ substrates. Source and drain electrodes are patterned with electron beam lithography followed by Ti/Pd/Au metallization. The graphene outside the channel area is etched away and 15 nm Al₂O₃ gate oxide is deposited by atomic layer deposition. Finally, gate metal and probing pads for device measurement are patterned. Fig. 1 shows an SEM image of a detector as well as the measurement setup. Three GFET designs were fabricated, with gate lengths of 250, 500, and 1000 nm and a gate width of 20 µm.

II. RESULTS

The overall drain-source resistance of the GFETs was measured and is shown in Fig. 2(a) for each of the three GFET designs. As expected, the GFET with the longest gate length had the highest resistance level. From the drain-source resistance R_DS the transconductance g_m was calculated as the derivative of the source-drain current with respect to the gate voltage at constant drain bias, shown in Fig. 2(c). The transconductance changes sign near the Dirac voltage (the gate voltage where R_DS is a maximum) indicating the transition between holes and electrons as majority carriers.

The optical voltage response R_V was measured using lock-in detection for a square-wave modulated (at 333 Hz), 0.6 THz beam with a measured power of 290 µW. From the voltage response, the optical voltage responsivity R_V was calculated as

\[
R_V = \frac{\pi}{\sqrt{2}} \frac{R_V}{P},
\]

where the numerical pre-factor is a consequence of lock-in detection and square-wave beam modulation, and P is the power incident on the antenna. The total beam power was considered in the calculation of the responsivity, meaning that the values calculated are conservative estimates as not all of the beam power was coupled to the GFET due to optical losses and antenna-device impedance mismatch. The responsivity of
a detector of each gate length is shown in Fig. 2(b) and is found to be independent of chopper modulation frequency in the range of 33 Hz – 3.3 kHz.

The NEP of each of the detectors is calculated as

\[
NEP = \frac{N}{\mathcal{R}_V} = \frac{\sqrt{4k_B T R_{DS}}}{\mathcal{R}_V}
\]

The noise in the detectors is assumed to be thermal Johnson noise, dependent on the temperature \(T \) and drain-source resistance, because all measurements were made with zero drain-source bias and the gate leakage current was less than 1 nA. The minimum values of the NEP for each gate length are summarized in TABLE I. As with the calculation of the responsivity, the values calculated for the NEP are upper limits.

<table>
<thead>
<tr>
<th>Gate length (nm)</th>
<th>max. (\mathcal{R}_V) (V/W)</th>
<th>min. NEP (pW/Hz^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.9</td>
<td>890</td>
</tr>
<tr>
<td>500</td>
<td>2.6</td>
<td>700</td>
</tr>
<tr>
<td>1000</td>
<td>3.0</td>
<td>760</td>
</tr>
</tbody>
</table>

TABLE I. Responsivity and NEP

Rectification of a THz signal can occur through classical resistive mixing in the FET channel, where a coupling capacitance connects the gate and drain. At high frequencies, detection can be through distributed resistive mixing [4], where the dc signal generated is enhanced by plasma wave generation [3]. Preliminary modeling of our detectors using a standard circuit simulation indicates that the operation of the devices was in the distributed mixing regime of THz detection.

The short gate length and wide gate width made efficient modulation of the drain-source resistance possible. It was expected that larger transconductance would lead to higher responsivity, but in fact this was not the case. It was instead the detector with the longest gate length (1000 nm) and the highest overall resistance that had the largest maximum responsivity even though it did not record the highest transconductance. In the calculation of NEP, the overall resistance impacts the noise, which means that there is a trade-off between the drain-source resistance and the responsivity. The GFET with a gate length of 500 nm had a low \(R_{DS} \) and good responsivity, resulting in the lowest NEP and therefore the most sensitive detection.

Using a top gated GFET integrated with the bow-tie antenna where the source-gate and gate-drain separation was only 100 nm so as to keep parasitic resistance low, our NEPs were much lower than previous work with graphene [5], [6], [8]. However, a comparison with minimum NEPs of established room temperature detector technologies shows that our detectors are still an order of magnitude higher than state-of-the-art technologies like Si MOSFETS (>10 pW/Hz^{0.5}) [9] and Schottky diodes (20 pW/Hz^{0.5}) [10].

III. SUMMARY

In summary, we have successfully fabricated sensitive, room-temperature antenna-integrated THz detectors using CVD graphene. By implementing a wide gate design with a short channel length, we realized efficient modulation of the overall resistance which resulted in good responsivity and ultimately low NEP. The use of large-area CVD graphene demonstrates the scalability of detector production.

REFERENCES