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DIACOPTICS AND CODIACOPTICS 

Two dual mixed methods for analysing elastic structures 

by 

Nils- Erik Wiberg 

.§ynopsis 
Two direct methods for analysing elastic structures are 
presented. The methods are called diacoptics and codia-
coptics and they are each other's duals. The prescribed 
load may consist of external forces, temperature changes 
and misfits. Forces and deformations are used simul-
taneously as unknowns in the fundamental equations. The 
well-known pure deformation and force methods are special 
cases of the mixed methods diacoptics and codiacoptics, 
respectively. The number of unknowns in the fundamental 
equations of a mixed method may be reduced under the 
number required in each of the pure methods. The solution 
of the fundamental equations is left factorized which offers 
computational advantages and facilitates modifications of 
the solution required by modifications of the given structure. 

Goteborg 1967 



PREFACE 

The aim of the investigation reported here is to give methods for 
analyzing elastic structures in which the fundamental equations are 
established with a more expedient choice of unknowns than in the pure 
force and deformation methods. The aim also is to obtain a solution 
in factorized form which is easy to modify when the structure is modi-
fied and which is suited to programming for a digital computer. 

My investigation into the subject started in connection with my 
"examination work" in 1964. Many of the ideas underlying the present 
paper have their origin in my study of the solution of corresponding 
problems in electrical engineering. The American engineer Gabriel 
Kron is the most important contributor- in this field. 

The research was carried out during 1964 to 1967 at the Department 
of Structural Mechanics at Chalmers University of Technology in 
Gothenburg. I have been Assistant to the Head of the Department, 
Professor Sven Olof Asplund, Tekn. D., and I am most grateful to 
him for his support. 

I wish to express my deep gratitude to Laborator Alf Samuelsson, 
Tekn. D., for introducing me into Kron 's work and for his stimulating 
interest and Pf0p osed improvements. I also want to thank Universitets-
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lektor B engt A. Akes son, Tekn. D. , for reading the final manuscript, 
and Miss Lisbeth Renhult and Miss Lisbeth Trygg for the typing. 

Gothenburg, June 1967 
Nils-Erik Wiberg 
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INTRODUCTION 

The presented solution methods for linearly elastic structures 
Two direct methods, diacoptics and its dual codiacoptics, for analyzing 

linearly elastic structures are presented. They are direct in the meaning 
that the solution is not given by some iterative proc.edure. The methods 
mentioned are mixed in the meaning that the used variables are of two 
kinds, forces and displacements. The methods contain the well-known 
force and displacement methods as special cases. The information 
from the structural network is believed to be taken care of in a better 
way than in the pure force- and displacement methods, because the num-
ber of variables used in the fundamental equations may be reduced and 
the inverse be left factorized, which gives possibilities for modifications 
in the solution. The methods are particularly well suited for calculation 
of large structures which are an assembly of identical structural parts, 
substructures, because the calculation of the substructures can be made 
once for all. These part solutions can then be used for all combinations 
of the substructures. Therefore the methods are well adapted for the 
calculation of structures built up from prefabricated elements which 
usually occur in few types. 

Development in structural analysis 
Increased size and complexity of elastic structures_ and requirements as 

to more precise design and performance have caused a demand for more 
rigorous methods of analysis. Analysis is made more mechanical so 
that the engineer can concentrate on the design. Recently, the digital 
computer has become an indispensable tool of the structural engineer 
and it has entirely altered the approach to structural analysis. Further-
more, many recent developments are derived from pertinent domains 
in mathematics. 

Solution methods in structural analysis 
The fundamental problem in the analysis of elastic structures is the 

determination of the distribution of internal forces and external dis-
placements under prescribed loads and constraints. For certain types 
of structures this problem can be solved by a direct solution of the system 
of differential equations with boundary conditions describing the elastic 
behaviour of the structure under prescribed load.· In other cases numerical 
methods, for example difference calculus, must be used. It can be used 
either for only the solution of the diff e:rential equations, or for only the 
boundary conditions, or for both of them. 

In the method which will be reported here, the structure is idealized 
into an assembly of discrete structural element~ for which the differen-
tial equation has been solved, by an exact or approximate method. This 
solution gives the connection between for.ces and deformations at the 
boundaries of the elements. The complete solution is then obtained by 
combining these individual forces and deformations at the element bo,unda-
ries in a manner which satisfies the force equilibrium and displacement 
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compatibility at the boundaries of these elements. The problem is then 
transferred to a problem of algebra. In this paper the behaviour of the 
structural element will not be treated but only the interconnection of the 
elements. 

The force and displacement methods 
Methods based on discrete element idealization have been used exten-

sively in the recent years for the analysis of structures. Such methods 
may be classified broadly into two groups: Displacement methods 
(stiffness methods) in which geometrically compatibl~ states in indivi-
dual elements are combined to give equilibrium, and force methods (flexi-
bility methods) in which equilibrium states in individual elements are 
combined to give geometrical compatibility. The optimal choice of 
method of analysis depends mainly on the type of the considered structure. 

Recently, many authors, Samuels son [ 1 ] , Fenves and Branin [2 ] . 
and Spillers [3], have studied the structural network problem and have 
given network formulations of the force and displacement methods. 

The structural network and the equations derived from it 
The physical problem is described by a fundamental equation system. 

By variable transformations the fundamental equation system can be 
transformed to an equation system which may contain fewer variables, 
and which may be easier to solve. Such a suitable variable transfor-
mation is often very difficult to.find. It is much easier to study the 
physical problem itself to find the most suitable fundamental equations. 
• The pure displacement or force method will not always give the 
simplest solution. The information of the structural network can often 
be utilized in a better way, in the meaning that the number of variables 
can be reduced, by mixing the force and displacement variables. 

The American electrical engineer G. Kron says: "Give me not only 
the equations, but the model itself, from which the equations have been 
derived and I can solve the problem more satisfactorily''. This means 
that the equations do not fully represent the model from which they have 
been derived. The model contains more information than the equations. 

The idea of tearing and interconnectingj)y G. Kron 
G. Kron has introduced a very useful method for solving large physical 

problems which he calls diacoptics. Most of his work is based on the 
idea of "tearing and interconnecting". This consists in removing "tearing 
branches" (members) from the structure in such a manner that the original 
structure is broken up in a set of independent wellbehaved substructures. 
They should be wellbehaved in the meaning that they should be grounded 
so that their stiffness matrices become nonsingular. The substructures 
contain all the joints (nodes) of the original structure. First the sub-
structures are calculated separately by the displacement method and then 
they are interconnected by use of the tearing branches to a so called inter-
section network by the force method and then the grounds must be released. 
The number of variables is here increased compared with the usual dis-
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placement method by the number of the force variables in the intersection 
network and the variabies of the temporary grounds, but other computa-
tional advantages are gained, see Kron [ 4] , [5] , [6], [7] , Roth [8 ],, 
[9], as seen in a later chapter. Kron himself has published solutions 
to electrical networks but also to a couple of structural problems in the 
way mentioned above. 

The same method for calculating elastic structures has been used by 
Spillers [ 3] , Fenves [ 10] and Kjellberg-Wiberg [ 11 ] . 

The diacoptical and codiacoptical methods 
The number of variables is increased when Kron•s method, diacoptics, 

is used in the original manner. An improvement of the method which may 
result in a decrease of the number of variables is possible, see papers 
on electrical networks by Weinzweig [12], Amari [13]. 

This improvement is here adapted to elastic structures and gives the 
solution in a mixed form by using both force and displacement variables 
which can be chosen quite freely. By special choices the number of • 
variables may be reduced below the number used in displacement and 
force methods. In Kron•s original method the substructures are solved 
with displacement variables, and they are interconnected by beams by use 
of fo;rce variables. In the improvement of the method, the substructures 
can be interconnected by an arbitrary structure. By use of self-
equilibrating forces for nongrounded substructures> an improvement 
is gained compared with Kron• s use of temporary grounds, which must 
be released, in order to get the real force distribution. There is also 
a dual method, codiacoptics, in which the substructures are solved by 
force variables and the intersection network is solved by displacement 
variables. The usual force and displacement methods are two special 
cases of diacoptics and its dual codiacoptics. A mixed method in struc-
tural analysis has earlier been presented by Asplund [14]. 

Here the exposition is restricted to frames, but by a simple genera-
lization. the methods can be used for structures composed of more 
general members as plate and shell members. 
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TOPOLOGICALMODEL OF THE FRAME STRUCTURE 

Graphs, branches, nodes, loop~ 
A topological graph or short graP,!} X, Fig. 1, see Lefschetz [15], 

is a geometrical representation of a finite set {x} of elements x0 or xo 
and of oriented elements xl or x1, with a one-one correspondence to 
an oriented open line element. The numbers O and 1 denote the dimen-
sion. The dimension of x is denoted dimx or by an index as xP, p = 0, 1. 
Between elements of different dimensions an incidence number is defined. 
The incidence number of xi and xp is denoted by [xi :xP] or Eij. 

The 0-dimensional eletrtents x0, xoare called l no1des and the !-dimen-
sional elements xl, x1 are called branches. 

D 
node xO, Xo 

oriented branch xl, x1 
loop ml A 

B 

Fig. 1. Graph X 

The orientation of the branches is given by defining the first and 
second ends of the branch and is ·visualized by an arrow, see Fig. 2. 
The choice o'f orientation is trivial. 

+ 

Fig. 2. Oriented branch 

A branch xfis said to be positively incident to a node xPif it begins 
there, and negatively incident if it ends there, see Fig. 2. The incident 
number gets the respective values 

(1) [xf :xp] = Eij = 1, -1 or 0 

In the examination of the graph oriented closed branch successions 
of nodes and branches called loops, denoted by ml play an important 
role. The orientation of a loop·is defined by a cyclic order of the nodes. 

The orientation of a loop can also be chosen arbitrarily and is shown 
by a curved arrow. 
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Incidence matrices 
The incidence relation for the graph given by the incidence numbers 

(1) can be represented by a matrix E which contains elements 

(2) Eij =+1, -1, or 0 

when branch xf is positive, negative or not incident to the node xP. 
The incidence relation between a loop and its branches can be given 

by an incidence matrix Z with elements 

(3) Zij = +1, -1, or 0 

when the branch xf is positively, negatively or not included in the loop 
mj. For the graph, Fig. 1, the following incidence matrices are 
defined 

node branch branch loop 
1 2 3 4 5 m1 m 

1(4) E= Z= 1A [-1 1 1 
C 1 3 
B -1 1 -1 2 

1 -1-~]' 
5 

-1 
-1 

D 1 -1 4 

.Qpen and closed subgraphs 
Hitherto the graph has been studied as a whole, but now parts of it 

will be examined. 
Define as an QP.en graP.h, see Fig. 3, any subgraph U of X such that 

if any element xp e U and Eij =I=0 it implies that xf e U or short 

(5) U = {xP e X} U{xf e X IEij =I=0} 

Fig. 3. Open graph 

~efine as a closed grap,h, see Fit· 4, any subgraph V of X such that 
if xj e V and Eij f Oit implies that xi e V or short 

(6) V ={xf e X} U{xf e X I Eij =I=0} 

Fig. 4. Closed graph 
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Stars. closures, boundaries 

There are three important sets associated with any element x € X. 

(7) The star of xp = Stxp = x? U{xf IEij :}: 0} 

(8) The closure of xJ = Clxr= xJ U{xpl Eij :tO} 

(9) The boundary of Xf = Bx{ = Clxf - xJ 
The notion star, closure and boundary can be generalized as fallows. 

Let Y = {xO} be any subset of nodes of X, then the star of Y, written St Y, 
is the union of the stars of all elements xO, see Fig. 5. Thus 

(10) St {xO} = {StxO} 

In a similar way, see Fig. 6, 

The boundary of an open subgraph Y is 

(12) BY= Cl Y - Y 

--

--
Fig. 6. Cl{xl} = {Clxl} 

A subgraph Y of X is said to be QP.en whenever 

(13) StY = Y 

and closed whenever 

(14) Cl Y = Y 

If one of the graphs Y and the complement of Y in X denoted X - Y is 
an open subgraph, the other is a closed subgraph. 
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DEFORMATIONS AND FORCES 

Chains and cochains 
The graph X is made use of in the following investigation of the frame 

structure. Forces and deformations are associated to the graph, see 
Samuelsson [1] and [16]. 

The load on a member xf e X is defined as a vector Nj of a vector space 
y6 over the field R of real numbers, because any load can be obtained by 
a linear combination of three independent forces and three independent 
moments. (In special cases, a vector space of lower dimension than 6 
will suffice.) As member loads we choose the forces and moments at 
the positive end of the oriented member, see Fig. 2. The state of internal 
forces can be represented by help of functions cl called chains: 

{15) cl: {xl} y6 

which are defined as 

(16) cl = xl N 

where x1 is a row matrix of the basis elements Xf for the branches and 
N is a column matrix of the c'.l!l "associated" member loads Nj. The 
functions cl are now considered as vectors of a vector space C of dimen-
sion 6 0!1· Such a vector space is called a chain group. 

In the same way the deformation of a member x1 e X can be represented 
by functions c1 called· cochains. The member deformation is uniquely 
obtained by a linear combination of 6 independent deformation components: 

(17) c1: {x1} y6 

which are defined as 

(18) c1 = x1 n 

where x1 is a row matrix of the basis elements Xlj for the branches and 
n is a column matrix of the c'.l!l member deformations nj. 

The cochains c1 considered as vectors form a vector space C of dimen-
sion 6 c'.l!l called a cochain group. 0 . The l~ad and deformations at one node X{, XQj e X, can be obtained by 
linearly 1ndependent components Pj and Pj d.nd are represented by chains 
and cochains 

(19) c0: {x0} y6 

(20) co: {xo} v6 

which are defined by 

(21) c0 = x0P 
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where xO is a row matrix of basis elements xrand Pisa column matrix 
of the ao "associated" node loads Pj, and 

{22) CQ =XQp 

where xo is a row matrix of the basis elements XQj and p is a column 
matrix of the ao associated node deformations Pj• 

The chains cD, co considered as vectors form chain groups cO, Co 
of dimension 6 ao, where ao is the number of nodes in X. 

Chain-boundaries and 1-cycles 
The boundary of a closed branch Xf, see Fig. 7, is defined by 

21 0 0 0 0 0 O(23) axl. = - xl =X2 E2- + X1 E1j =. 'E X{ Eij =x E.j
J . 1=1 

+ 

Fig. 7. The boundary of xf 

Now the chain-boundanr or merely the boundary of a 1-chain, see {16), 
by use of {23) is defined as a 0-chain 

(24) ac 1 =axlN=xOEN 

A chain cl which satisfies 

(25) ac1 =o 
is said to be a 1-cycle on X or short a ~ycle and is denoted by h1. 

Continuity conditions for forces 
All combinations of vectors of c1, c0 and C1, Co are not physically 

realizable but only those which satisfy defined continuity conditions, 
see Samuelsson [1]. 

The relation between the chains in c1 and c0, is formulated by a 
linear transformation 

12 



c0(26) a : c1 

called the boundary-9perator, which is defined in (24) as 

(27) ac 1 =xOEN=xOP=cO 

We observe that the member forces Nj must be written relative the same 
coordinate system with a common origin. 

It follows from (27) that 

{28) EN= P 

Of all elements of c0 only those are of interest which satisfy 6 in-
dependent conditions of statical compatibility for the structure as a whole. 
These elements constitute a subspace BO. Any element of BO, called 
structure load, can be prescribed if the structure is stable. For a stable 
structure holds 

(29) Ima= Bo 

{30) dim BO= 6a 0 - 6 = 6(ao-1) 

A set cl of inner forces is an element of Ker a = H1, with dim H1 = µ , 
if acl =O. These elements, called ~ycle forces are denoted hl. The 
a1 member loads Nh in a frame with zero structure load can be expressed 
as a linear combination of µ independent loads Rj. The basis of the µ 1cycles can be chosen such that it can be split into sets of oriented loops m 
Thus we write an element h1 e H as 

where 

(32) m1 =x1z 
is a basis row matrix of the µ cycles, and R is a 6 µ- column matrix of 
the Rj cycle loads. 

In a formalistic way we write the projection 

where j is defined as an inclusion transformation. Thus 

(34) cl = jhl = j(mlR)' =x1zR =xl Nh 
1(35) o= ac = ajhl = axlzR = xOEzR 

It follows from (34) that 

(36) ZR =Nh 
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For the dimensions hold 

(37) dim c 1 = dim Bo+ dim H1 

(38) dimHl = µ = 6 a1 - 6(ao - 1) = 6(a1 - ao+ 1) 

Continuity conditions for deformations 
In order to study the kinematical configuration, the dual operator to 8, 

the coboundary operator o is defined by regarding the cochains as linear 
functionals of the chains. See Samuelss.on [ 16] , Hal mos [ 17 ] , Ghenzi [ 18 ] . 

(39) o: Co C1 

For arbitrary values of cl e c1 and c0 e c0 the scalar product 

(40) [CO, 8 Cl ] = [ 0 CO, Cl ] 

is defined, see Halmos [17]. 
The value of (40) is a scalar and corresponds physically to virtual work. 

Thus (40) is the conceptual counterpart to the generalized work equation 
of Maxwell-Mohr, see Asplund [14]. 

The elements of Co are linearly dependent because of the rigid motion, 
composed of 6 linearly independent displacements of the frame which do 
not cause any deformation of the members. This corresponds to the Kernel 
of o denoted Kero with dim (Kero)= 6. 

We now define a quotient space 

(41) Bo= Co/Kero 

(42) with dim Bo= 6(010- l) 

The elements bo in Bo are called structure deformations. 
Chains h1 of member deformations which differ by chains of member 

deformations kinematically compatible with chains of joint displacement 
are considered as vectors, called £YCle deformations denoted by r, in a 
quotient space 

(43) H1 = C1/Im o 
(44) dimH1 =6(a1 - ao+ 1) 

The continuity condition for deformation is now written 

The operator j* is the dual operator to j because 

(46) [j*c1, h1 ] = [c1 + oco, h1 ] = [c1, h1 ] + (oco, h1 ] = [c1, h1 ] + 

+ [co, Bh1] = [c1, hl] + [co, O] = [c1, hl] + 0 = [c1, jh1 ] 
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The formula (46) is the conceptual formulation of the generalized 
work equation of Maxwell- Mohr for an auxiliary structure loaded with 
"gap loads" here called cycle loads. 

If h1 =0 then 

(47) o =h1 = j*c1 =j*o ho 
We now have the following sequences: 

(48) 

dim 6(0!1..;O!Q+ 1) 60!1 6(0!0- l) 
0(49) H1 C1 <l!- Bo 

It follows from (35) and (47) that for operators a, j and its duals o, j* 
hold 

(50) aj = o 

(51) j*o = o 

The sequences (50) and {51) are said to be exact. 
If we choose dual basis for corresponding spaces the dual transf or-

mations are represented by transposed matrices, see Halmos [ 17 ] . 
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DISSECTION OF A GRAPH 

Subgraphs X(0) and X(l) of a graph X. Dissection (X(0), X(l)) 
Let X(l) be a closed subgraph of X, then according to (11) 

(52) ClX(l) =X(l) 

The other part of X called X(0) is an open subgraph, the complement 
of X(l) in X, which is written 

(53) X(0) =X - X(l) 

We observe that 

(54) X(0) U X(l) =X 

(55) X(0) {) X(l) =0 

We also observe that 

(56) StX(0) =X(0) 

The pair (X(0), X(l)) is called a dissection of the graph X, see Lefschetz 
[15]. 

Physically the dissection of the graph X, see Fig. 8 where the dissec-
tion is visualized by a marked line, means that if X(l) contains a branch 
(loop) it also contains the nodes (branches) incident to it, because X(l) is 
closed. If X(0) contains a node it also contains all the branches incident 
to it because X(0) is open. Compare Figs. 5 and 6. 

Dissection of a chain 

X(1) 

I 
I 

I 
/ 

The dissection of the graph induces a dissection of an arbitrary chain 
din chain group. D, which can be cl, Cl or BO, Bo on X. The dissection 
of a chain is made by the projection and the injection operations. 

The projection 1r(i) of D(X) into D(X(i)) or short 

(57) ?T(i):D D(i); i =0, 1 

is defined by regarding the X(i) part of the chain din D as a chain d(i) in 
D(i), see Fig. 9. We write shortly 



I 

' I l 
l J 

(58) 1r(i) d = d(i) 
d d(i) =1r(i) d(i) 

--~ (i L~I,~~ ·,;
II 

Fig. 9. Projection rr(i) 

We observe that 

(59) d = d(O) © d(l) 

We can write 

(60) d = yY = '""d(Of = =y(O), y(lf :--Y(O)~
• I 

~d( 1 )J ;_Y( 1 )J 

y =x1, x1, x0 or xo; Y =N, n, P or p 

where [y(O), y(l)] is a partitioned row matrix of element basis (the 
elements in {y} e X are called an element basis) and [Y(O)*, Y(l)*] * is 
the partitioned column matrix with "associated'' matrix representatives. 

In the analysis of the dissected structure mixed vectors are needed 
and are defined as 

(61) jc1(0)l = [x1(0), x 1(1)] !n(O)l 

Lc1(1)J . LN(l)J 

and 

(62) cl(o)l = [x1(o), x1(l)] rN(Of! 
[c1(1)J Ln(l)J 

The injection o(i) of D(X(i)) into D(X) or short 

(63) o(i): D(i) ...,.. D; i = 0, 1 

is defined by regarding a chain on X(i) as a chain on X itself, see Fig. 10, 
and we write shortly 

(64) cr(i}d(i) = d; i = 0, 1 

We write by use of matrix formulation the injection operator 

(65) a = [ o(O), a(l)] 
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Fig. 10. Injection a(i) 

and the projection operator 

(66) 7T= frr(O)i 
' I 
Lrr(l)J 

It is easily seen that 

(67) a1T = [o(0), o(l)] Irr(O)~ = a(0)rr(0) + a(l)rr(l) = I 
lrr(lL 

where I is the identity operator. 

Properties of the groups on X(0) and X(l) 
Now the groups on X(i) have to be compared with those on X itself. 

By use of the identity operator (67) we can write the boundary of a 
1-chain on X 

(68) a c 1 = a (I c 1) = ao rr c 1 = a [a(o), a(1) 1 Irr ( 0) l c1 

~7T(l)J 

Since X(l) is closed a boundary of a 1-chain on X(l) 

(69) aa(l) rr (1) cl = aa(l) cl(l) 

has no part on X(0). 
It follows that a cycle on X(l) is also a cycle on X. 
Since X(0) is the open complement of a closed subgraph X(l) in X, the 

boundary of a chain on X(0) 

(70) aa(0)rr(0) cl= aa(0) cl(0) 

when regarded as a chain on X may lie partly on X(l). 
Definition: A relative 1-cycle on X modulo X(l) is a 1-chain c1 on 

X(0) the boundary of which (a 0-chain) is on X(l). 
We now also define cycle spaces for the dissection: 

Hl is the space of all the cycles and relative cycles h1{0) on X(0) 
and 

Hl(l) is the space of all cycles hl(l) on X(l) so that 

(71) Hl =Hl(o) H1(1) 
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The cycles on X and X(l) are sometimes called absolute cycles. 
In Fig. 11 cycles and relative cycles in a dissected graph are shown. 

X(l) cycles on X(l) 

hi(O) and h~{O) are relative cycles on X(O) 

h~(O) is a cycle on X(O) 

Fig. 11. Cycles on X(l) and cycles and relative cycles on X(O) 

Dissection of the boundary operator 
We need boundary operators for the dissected parts. Four such 

operators, two pure and two mixed, can be formally obtained with the 
aid of matrix algebra. 

From (27) and by use of {68) we obtain 

(72) bO = a cl= a[a(O), o(l)] [1r(O}lcl 
1T(t)J 

This equation is now operated on by the projection operator (66) from 
the left whi eh gives 

(73) bO = 1rbO= [1r(O)l bo = [bO(o}] = 1Tacl= 1Ta1cl= 1raa1rcl= 
1r(l)J bO(l) 

= [11'(0)] a [a(O), o-(1)] [7T(O)] cl= [1r(O)aa(O) 1T(O)aa(l)] [cl(O)l 
1T(1) 1r(l) 1T(l)ao(O) 1T(1) aa(l) cl(t)J 

= fa(O) a (01)7 [cl(o)] = a cl 
La{10) a (1) J cl(t) 

where new boundary operators are defined as 

(74) 1r(i) aa(k) = {a(i) when i = k i, k =0, 1 
a(ik) when i :j::k 

Since X(l) is closed the boundary, ao-(1) cl(t) has no part on X(O). Thus 

(75) 1r(O)aa(l) =a(Ol) =0 
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The subgraph X(O) is open which implies that the boundary aa{O)c1(o) 
has a part on X{l). Thus 

(76) 7T{l)aa(O)=a(lO) :f:0 

The dissected boundary operator can be written 

(77) a= 1raa= 1a(O) o 7 
la(lo) a(1)J 

The operator a(10) trahsforms cl(o) into bO(t), which means that it yields 
the X(l) part of the boundary aa(O) of cl(O) on X. ·Physically this means that 
a (10) represents the connection relation of the boundary operator between 
X(l) and X(O). The dissection of a is shown in the diagram of Fig. 12. 

1T(l)aa(1) = a(l) 

a(l) 
cl 
a(O) 

!T(l) 
---------~bO 

1r(0) 

1r(0)aa(0) = a(0) bO(Q) 

Fig. 12. Diagram representation of the dissection of a 

The dissected boundary operator a is represented by the incidence 
matrix E, see (2), which is partitioned according to 

(78) bo =x0P = [xO(o), xO(t)] [P(O)l =ac 1 =ax1N =xOEN = 
P(t)J 

= [xO(o), xD(l)] E [N(O)l = [xO(o), xO(l)] [E(O) o J7[N(O)l 
N{l)J E(lO) E(l) N(l)j 

The partitioning of the matrix E should be compared with the definitions 
of the open and closed graphs, see formulas {5) and (6). From (78) we 
find 

(79) P{O)l = [E(O) 0 JrN(on
[P(l)J E{lO) E(l) LN(l)J 

The dissected boundary operator a for the dissected structure in Fig. 13 
is represented by the matrix 
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(80) E = B 1l -12 3 1 
1 4 5 6] = LiE(O) 

~- ____ ! __-_l_l_________ E(lO) 
A -1 1 

I -1 1 
D 1 / 1 1f 

which is a topological matrix with coefficients 1, -1, O, see (2 ). 

B 1 

2 

I 

\A 
\ 5 
l 
I m 

' 4 

C IDX(O) I X(l) 

Fig. 13. Example of a dissected structure 

In the same way as above the coboundary operator ois dissected and 
new coboundary operators o(O), o(l) and o(Ol), 0(10) are defined. 

(81) o =1r6a= [1r(ofj o[a{o), o(l)] = [o{O) o{Ol)l = [o{O) o(Ol)l 
1r(l) o(lO) o{l) J O o(l) J 

The dissected coboundary operator is shown in the diagram of Fig. 14. 

o(l) =7T(l)i5a(l) bo(l) 

o(l)rr(l) 

c1 
1T(O) 

-----------bo 
o(O) 

o(O) =11'(0)oo(O) bo(O) 

Fig. 14. Diagram representation of the dissection of o 
Dissection of cycles 

For cycles hl on X we define projection and injection operations. 
The projection 

transforms cycles on X in the X(l) part to cycles on X(l) and 

(83) 1r(O) : Hl --,> Hl(O) 
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transforms cycles on X in the X(O) part to cycles or relative cycles on X{O). 
The injection 

is ob~ined by regarding the cycles on X(l) as cycles on X itself and 

is obtained by regarding cycles and relative cycles on X{O) as cycles on X 
itself. 

Dissection of the inclusion operator j 

The continuity condition (34) for the member forces when the joint 
loads are equal to zero, is 

(86) j hl =cl 

We use matrix algebra to dissect j into four parts, two pure and two 
mixed ones. 

(87) cl(o)] = 7Tj I hl =7Tj (T1T hl = [7T{O)] j [ a(O), o(l)] [1T(O)] hl = 
[ cl(l) 1r(l) 1r(l) 

= [1T(O)ja(O) 1r(0) ja(l)J [hl(o)J = [j(O) j(Ol)] [hl(o)] 
1r(l) ja(O) 1r{l) ja(l) hl(l) j(lO) j{l) h1{1) 

Since X(l) is closed a cycle jo{l) hl(l) on X(l) is a cycle on X and thus it 
has no part on X(O), which gives 

(88) 1r(O) ja(l) hl(l) = 0 or 1r(O) jo-(1) =j(Ol) =0 

A cycle on X which partly lies on X(O) is a relative cycle and contains 
1-chains both on X(O) and X(l). Thus 

(89) 1r(l) ja(O) hl(O) :{: 0 and 1r(l) ja(O) =j(lO) f:0 

The operator j(lO) takes the X(l) part of a cycle, which is a relative cycle 
on X(O), on X, see Fig. 15. 

Cl ------, ~------
X(O) / X(l) 

I 

Fig. 15. The operator j(lO) 



Now the dissected operator j is written 

(90) j = fj(O) 0 J 
U(lO) j(l). 

The operator j is shown in dissected form in the diagram of Fig. 16. 

hl(t) j(l) = 7T(l)j o-(1) cl(t) 
----illl------

j 1T(1) 
t----tio--.,...._----1c1 

7T(O) 

j(O) = 1T(O)j a(O) cl(O) 

Fig. 16. Diagram representation of the operator j 

The matrix representation of th~ dissected operator j is defined by 
the matrix z in partitioned form in 

(91) cl = c1(0)7 = [xl(o), x 1(1)] jN(O)l = jh 1 = jm 1z1 
Lc1(1~ 

= xlzR= [xl(o), xl(t)] 

lN(l)J 

[Z(O) 0 J[R(on 
Z(lO) Z(l) R(l)J 

We obtain form (91) 

(92) rN(Ofl = rz<o> o 7 rRcor1 
lN(l}J lz(to) z(t)J LR(l)J 

For the dissected structure in Fig. 13 the operator j is represented 
by the partitioned matrix 

(93) Z = [Z(O) 0 1 = 1 
Z(lO) Z(l)j 2 

3 
4 
5 
6 



Exact seguence a j = 0 in dissected form 
The exact sequence a j =0 is now dissected in a formal way by use of 

matrix algebra. 

(94) o =aj = [a(o) o l jj(O) o = [ a(O) j(O) o 7 = 
a(lO) a(l)J LJ(lO) j(lJ a(lO) j(O)+ a(l) j{lO) a{l) j{l)J 

=[~ ~] 

This implies that 

(95) a (0) j(O) =0 

(96) a(1) j(l) =0 

{97) a (10) j(O) + a (1) j(lO) =0 

In X{O) a relative cycle is a chain on X(O) the boundary a(lO) j{O) of 
which lies on X(l). Compare Fig. 17. 

Fig. 17. Diagram representation of the exact sequence aj =O. 
Operators for the relative cycle with heavy lines. 

We now want to verify the formulas (95), (96) and (97) for the dissected 
structure in Fig. 13. 

According to (80) and (93) we obtain by use of matrix representation 

E = [E(O) 0 J= l1 -1 ; ]E(lO) E( 1) _____ 1__ :.1_ L___ -· _ _ _ _ 
-1 I -1 1 

1 : 1 1 

1 Z = [Z(O) 0 J= 
1 ;Z(lO) Z(l). 
1 l 

- - 1- ---1 i 1 
I 1 
i -1 
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We get 

E(O) Z(O) = [1 _! _1] m= [g} E(l) Z(l) t! 1 ] urm1 

E(10)Z(O)+E(1)Z(10)=[-1 1 ][-l]t~]+[_fi=[~]
1
JD]t~ 1 

A relative cycle.is a chain on X(O} the boundary of which, a 0-chain, 
lies on X(1). By use of (77) and (90) we find 

(98) cO(t) = a(10) cl(o) = a(lO)j(O)hl(o) 

The operators a(lO) and j(O) are found in a and j but the product a(lO) j(O) 
can be established at once by help of a so called ~quivalent structure of X(O), 
see Fig. 18, which only describes the connection relation to X(l). 

structure of X(O) 

Fig. 18. Equivalent structure 

Thus we find by help of the equivalent structure in Fig. 1ij 

m1 

E(lO) Z(O) = [-i] 
The operator j(10) takes the X(l) part of a cycle, which is a relative 

cycle on X( O ), on X. 
The boundary 

_A____ _ .,,, 
I 

equivalent 

is the boundary of the X(1) part of a cycle, which is a relative cycle on 
X(O), on X. The operator a(l)j(lO) can be established at once, see Fig. 19. 
Thus 

m1 
E(l) Z(10) = A [ 1] 

D -1 
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Fig. 19. The operator j(lO) takes the 
X(l) part of a cycle on X 

Dissection of the exact seguence j*o =0 
In a similar way as for aj =0 the exact sequence j*o =0 is formally 

dissected 

(100) 0 =j*o ='ITj* I o o = 7Tj* O''ITO a= ~*(0) o(O) j*(O) o(Ol)+ j*(Ol) o(ln = 
L 0 j*(1) o(l) J 

This means that 

(101) j*(O) o(O) = 0 

(102) j*(l) o(1) =0 

(103) j*(O) o{Ol) + j*(Ol) o(l) =0 

In Fig. 20 the exact sequence j*o =O is given in diagram form. 

Fig. 20. Diagram representation of the exact sequence j*o = 0 
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THE ELASTICITY CONDITIONS. HOOKE' S LAW 

The elastici!Y. condition in mixed form 
The elasticity condition for a structure gives the connection between 

all its. member forces and member deformations. It :isdescribed by 
functions called the member flexibility isomorf ism 

or the member stiffness isomorf ism 

(105) F: C1 c1 

The flexibility isomorfism is represented by the member flexibility 
matrix f according to 

(106) X 1 n = f X 1 N = X 1 f N 

where x1, xl are row matrices of element basis and n, N are corresEonding 
column matrices with associated matrix representatives and f = [fj] is a 
matrix with member flexibility matrices fj along the diagonal. From (106) 
we obtain 

(107) n=fN 

We state that the matrices f j should be positive definite matrices which implies 
the member stiffness matrices 

{108) Fj =fj 1 

We may split the vectors Ilj and Nj into nj = [n(0)f, n(l)j] * and Nj = 
= [Nj(0)*, Nj(l)*] *· We may regard the member deformations nj(0) and 
member forces Nj(l) as a mixed vector [n(0):'<, Nj{l) J* and member forces 
N{0)f and member deformations n(l)j as anotter mixed vector [N{?}:i, n(l)f] *. 
We can then write the elasticity condition for the member in the mixed fort.n 

(109) jn{0)j7= ~(O)j O!j J1N{0)jl 
LN(l)~ Lf3j F(l)j ln{l)jJ 

It is mixed in the meaning that it contains both flexibility and stiffness 
coefficients. Compare Fig. 21. 

[n{O)u = Ul_!lJ= [f(O)·N(lY, N L{3· J 
T J 

where t¥J= rN(O)jl 
n ln(l)j'J 
t 

Fig. 21. Beam with mixed variables 
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For a dissected structure (X(0}, X(1)} we regard a deformation vector 
c 1(0} on X(0) together with a force vector cl(l) on X(l) as a mixed vector, 
see (61), represented by a column matrix[n(0)*, N(l)*J *· The set of 
associated forces cl(0) and deformations c1(l) regarded as a mixed vector 
is represented by a column matrix [N(0)*, n(l)* J*. We define column 
matrices n(0) = [n(0)j J , N(0) = [N(0)j J, n(l) = [n(l)j) and N(l) = [N(l)j] . 

The elasticity conaition for the dissected structure can now be written 

{110) /n(0)I = lf{O) a - -N{O~11 
t_N(l)J l_{3 F(l)J !_n(lL 

where 

D denotes diagonal 

Vfe now define for the dissected structure a mixed isomorfism (f, F) 
represented by 

(111) (f, F) = ~f(O) a -; 
L(3 F(l)J 

We observe that a =(3=0 means that the variables in a branch Xf either 
are merely forces N(0)j or merely deformations n(l)j. 

In Fig. 22 the mixed isomorfism (f, F) is shown in a diagram. 

(3 

f(0) ' F(l) 

a c1(1) 

Fig. 22. Diagram representation of the mixed isomorfism (f, F) 

Here we restrict our exposition ot the special case when (f, F) is a 
linear function. A sufficient condition for this is that the member mate-
rial obeys Hooke 's law and that a first order theory member analysis is 
undertaken, see Akesson [19]. It is possible to extend the treatment to 
the case when (f, F) is given as a differential operator. Our frame prob-
lem is then translated into an initial value problem. To get a solution to 
this problem an initial value is needed and the solution can then be obtained 
by some suitable method of numerical integration, for example by the 
Runge-Kutta integration scheme, see Richard and Goldberg [20], (21]. 
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Transformation of a pure isomorfism into a mixed one 
The isomorfisms for F given for the whole structure can easily be trans-

formed to a mixed isomorfism (f, F) consistent with a chosen dissection 
(X(O), X(l)). We find by formal expansion of 

(112) cl= F c1 

(113) rrcl= 17T(O)]cl= [cl(O)] = rrFc1 = 1TFic1 = 1TFarrc1= 
L1r(l) cl(t) 

= [rr(O)l F[a(O), a(l)] [rr(O}l c1 = [rr(O)Fo-(0) 7T(O)Fa(l)l [c1(0)l = 
1r(l)J 7T(l)J rr(l) Fa(O) rr(l) Fa(l)J c1(1)J 

= IF(O) F(Ol)l [c1 (O)] 
Ur(lO) F(l) J c1 (1) 

In (113) new member stiffness matrices are defined according to the 
dissection (X(O), X(l)): 

(114) rr(i) Fo(i) =fF(i) if i =k i, k = 0, 1 
1. F(ik) if i k 

Partiversfon of (113) yields 

-F(Ot 1 F(Ol) J[cl(o}l 
F(l)-F(lO) F(Ot l F(Ol c1(1).J 

(115) 

In the same way a pure flexibility isomorfism can be transformed into 
a mixed one. 

If a ={3=0 the transformation (115) is simple because F(Ol) =F(lO) =O. 
The inversion of F(O) is only an inversion of block matrices: 

29 



THE SOLUTION OF THE FRAME PROBLEM IN DISSECTED FORM 

The partitioned system of equations 
The continuity condition for the force distribution can be written 

where 

is a particular solution of the inhomogeneous continuity equation 

{118) acl = b0 

The continuity equation (116) is dissected and we get by use of (90) and 
the notion (58) 

(119) 1Tcl= [rr(o)l cl = [1r(O) cJJ + [1r(O)Jj hl = [cl(o)l = fcl(o)p] + 
rr(l)J 1r{l)cJ 1r(l) cl(1)J Lc1(1)p 

+ [j(O) 0 ] [h l(o}l 
j(l0) j(l) h1(1U 

The continuity condition for the deformation configuration can be written 

where 

is a particular solution of the inhomogeneous continuity equation 

(122) j* c1 =hl 

The continuity equation(l20) is dissected and by use of the notion (58) 
we obtain 

(123) 7TCl = [rr(o}l c1 = [1T(O)c1pJ+ [rr(O)l obo = lc1(0)l = rc1(0)pl + 
rr(lU rr(l)clp rr(t)J Lc1(1)J Lc1(l)J 

+ ra(O) 6(01)7 !bo(O)J
Lo o(l) J Lbo(l) 

In addition to the continuity conditions we have the elasticity conditions 
given by the mixed isomorfism (f, F) in (111). 
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(124) 

Insertion of (119) and (123) into (124) gives 

(125) 

or 

(126) f(O) a ] [j(O) 0 JIhl(o)J - [o(O)
[ f3 F(l) o o(1) Lbo(l) o 

We multiply the equation (126) with [j*(O) 0 l from the left: 
0 a{l)J 

(127) "*(O) f(O) j(O) j*(O)ao(1) Jrh 1(of1-[j*(O) 6(0) j*(O) 6(01)7 lbo(O)l -ra(1) f3j(O) a(1) F(1) 6(1). Lbo(t)J o o J Lbo(l)J 

-I O O J[hl(o)] = [j*(O) 0] /[c1(0)p] -
La(1) j(l0) a(1) j(l) h1(1) o a(1) \ cl{l)p 

-[f(O) a ] [cl(O)pl~ 
(3 F(l) c 1 (l)p.] )

I 

By use of (96), (97) and (101) we get the fundamental e4'-!ation system 
of the dissected elastic structure 

(128) j*(O)f{O)j(O) -j*(O) o(Ol)+j*(O)a6(1)7 fhl(o)l = [h1(0,1)7/ 
[ a(10) j(0) +a(1) /3j(0) a(1) F(l) o(l) J Lbo(l)J b0(1,ot 

where 

(129) 
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The fundamental equations are built up in such a way that we can 
prescribe structure loads bO and cycle deformations h1, which implies 
particular solutions c1 and Clp according (117) and (121). These par-
ticular solutions entef the right hand side of the fundamental equations 
(128). The term h1(0,l), in (128), is an equivalent cycle deformation 
on X{O). It depends on cycle deformations on X{O) and influence from 
cycle deformations and structure loads on X(l). The term bO(t,O) is an 
equivalent structure load on X(l).It depends on structure loads on X(l) 
and influence from structure loads and cycle deformations on X(O). 

From the fundamental equation system (128) we can solve cycle loads 
hl(o) and structure deformations bo(l) in two special ways. In the dia-
coptical procedure cycle forces hl(O) are first solved and in the co-
diacoptical procedure structure deformations bo(l) are first solved. 

cJ 
The dissection of the particular solutions 

The particular solu!ion of ac: = bo, see (118), ~1?-ch may be written 
= a- bo where a-1 1s determined from the condition 

{130) aa-l=I 

is now dissected, see (77). 

(131) 

From the first and second rows in (131) we obtain 

(132) cl(O)p =a(otl b0(o) 

where a(otl is determined from 

(13!J) a(O)a(otl=r 

and 

{134) a(1) cl(l)p = -a (10) cl(O)p + bO(l) 

By studying the prescribed vector (129) we observe that the term 
a{l) cl(l)n is directly used. Thus a particular solution 1 for forces is 
only neecfed in the X(O) part of the structure. This particular solution 
cl(O)n must be chosen so that the structure X(l) is in equilibrium, see 
Fig. ~3, or the forces (134) on X{l) must be selfequilibrating, if the 
structure X{l) has no ground. Between these selfequilibrating forces 
there e:xJsts a condition of statical compatibility. 

By using these selfequilibrating forces a great advantage is gained 
relative to earlier work by Kron [6], [7], because in Kron 1s papers 
the structure parts corresponding to X(l) had to be grounded, and then 
the temporary grounds had to be released which resulted in extra 
variables and computational work. 

32 



-a(10) cl(O)p 
\ 

X(O) X(l) 

Fig. 23. Part of dissected structure 
X where X(l) is ungrounded 

The particular solution of j* c1 = h1, see (122) which may be written 
c1p =(j*)-1 h1 where (j*)-1 is determined from 

(135) j*(j*t 1 = I 

is now dissected: 

(136) j*cl = [j* (0) j*(Ol)] [c1(0)] = [h 1(o)J =h1 
0 j*(l) c1(l) h1(l) 

The first and second rows in (136) give 

(137) c1(l)p =j*(l)-lh1(1) 

where j*(l)-1 is determined from 

(138) j*(l) j*(l)- 1 =I 

and 

(139) j*(O) c1(0)p = -j*(Ol) c1(1)p + ht(O) 

By studying the prescribed vector (129) we observe.that a particular 
solution Clp of deformations is needed only in the X(l) part of the structure. 
This particular solution c1(l)n must be chosen so that these deformations 
are compatible with those ofj{(Q) which is described by equation (139). 

Now a couple of examples on the determination of particular solutions 
will be given. 

Example 1. The structure in Fig. 24a is acted on by structure load 
only on the part X(l) of the dissected structure, Fig. 24b. 

The particular solution N(O)p is determined by (132) and (134) which 
are here written by matrix representation 

E(O) N(O)p =P(O) = 0 

E(l) N(l)p = -E{lO) N(O)p + P(l) 



X(l) 

A 

G 13 H 

D\~~/ 
A r----f-E---~ F 6 C 

B 
2 3 

X(O} 

5
B 
4 

Fig. 24a. Loaded structure Fig. 24b. Dissection of the structure 

By studying Fig. 24b we can array the incidence matrices 

J 
1 2 3 4 5 6 1 2 3 4 5 6 

1E(lO) = D1E(O) = ill 1 
1E1 -1 

-1 F 1 
G 
H 

If N(O)p = [Nlp N2p N3p N4p N5p N6p] * we find that N(O)p=[O O N3p O O O] * 
satisfies the equation EtO)NtO)p =0. It must also make the forces 

0E(l) N(1)p = -E(lO) N(O)p+ P(l) = 

0 

E(lO) N3p 
0 

0 

+ = PD IPnj 
PE-N3plPE 

PpPp 
PGPG 
PHPH 

selfequilibrating or Po + PE - N3p + Pp + Pa + PH = O, because the struc-
ture X(1) is non-grounded. This gives the value of N3p· Thus N(O)p is a 
particular solution for forces in X(O). 

The loaded structure in Fig. 24a is now dissected so that X(l) is grounded 
according Fig. 25. 

Fig. 25. Dissection of structure in Fig. 24a 

34 



We obtain the same incidence matrices E(O) and E(lO) as above. 
In this case when X(l) is grounded the forces E(l)N(l)p = -E(lO)N(O)p + 

+ P(l) are self equilibrating. A particular solution is for example N(O)p = O, 
which means that a particular solution in X(O) need not be determined. 

Example 2. The structure in Fig. 26a has a prescribed cycle defor-
mation h1(0) in the X(O) part of the dissected structure in Fig. 26b. 

\ 

2 t c~L,..__d--,..,, 
X(O) / X(l) 

Fig. 26a. Loaded structure Fig. 26b. Dissected structure 

The particular solution according (137) and (139) written with matrix 
representation is 

Z(l)* n(l)p = r(l) = 0 

Z(O)* n(O)p = -Z(lO)* n(l)p + r(O) 

The structure in Fig. 26b has the following incidence matrices 
4 5 6 7 8 4 5 6 7 8 

Z(l)* = I[l -1 Z(Ol)* =h[-1 ] ; 
II -1 1 

The particular solution n(l)p = [n4p, n5p, n7p, nap J* having the 
simplest form is n(l)p = O, which implies that Z(O)*n(O)p = h1(0}. 

Another particular solution is for example n(l)P. = [114 0 n4p O O] *. 
If we choose to have no member deformation in X(O), n(O)p =O, then we 
obtain n4p =-h1(0). 

Another particular solution is for example n(l)p = [np4 -np4 0 -np4 0] *, 
which cause disturbances in both the cycles I and II, which is often not 
desirable because the particular solution ought to be as simple as possible. 

The diacoptical solution 
The fundamental equation system (128) of the dissected structure is 

solved in partitioned form. We first solve for cycle forces hl(O): 

(140) bo(l) =F(l, 1)-1 [-(a(l0)j(0) + a(1){3 j(O))hl(o) + bo(l, 0)] 

(141) hl(o) =f(O, o, ot 1 h1(1, O) 
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A F(l, 1) 

I iF(l, 1)-1 
f(O, 0) W 

f(O, o,0) l f O 
/-__,;;c~t-----,1--...,._ 

c1 (1) 6(1) 
__ b o(l) 

f(O, O, 0)-11 
j*(O) 

h1 (0, l)., h1(0) ---.11---~------1 
c1(0) 

Fig. 27. Diagram representation of diacoptical solution 

a(1) 

I 
I 

F(l} 

where 

(142) f(O, 0, O) = (j*(O) 6(01) - j*(O) a 6(1)) F(l, lt 1(a(10)j(O)+ a(l) {3j(l))+f(O, 0) 

(143) F(l, 1) = a(l) F(l) o(l) 

(144) f(O, 0) = j*(O) f(O) j(O) 

(145) h1(0, 1, 0) = h1(0, 1) + (j*(O) o(Ol) - j(O)a o(l)) F(l, 1r 1bO(l, 0) 

If X is dissected in such a way that X(l) contains a number of disjoint 
parts X(l)i the matrix representing a(1) F(l) o(l) will consist of block matrices 
along the diagonal. If any disjoint part X(l)i has no ground, the loads on 
the part are chosen selfequilibrating according to (134). In every such non-
grounded part one point is chosen as reference point to which we refer the 
structure deformations. By deleting the corresponding rows and columns 
in F(l, 1), we make F(l, 1) invertable. 

Note that if X =X(l) the diacoptical method will be the same as the 
well-known displacement method. If X{O)contains only "interconnecting 
branches 11 the diacoptical method will be the same as Kron' s method, used 
in the original manner. 

The solution can be described by space diagrams, see Fig. 27, intro-
duced by Roth [8 J and developed for structures by for example Samuelsson 
(1], (16] and Akesson [22]. Compare Figs. 17, 20 and 22. 

The codiacoptical solution 
The partitioned system of equations (128) is solved in partitioned form 

and is first solved for structure deformations bO(l): 

(146) hl(Q) = f(O, 0)- 1 [ (j*(O) o(Ol) - j*(O) a o(l)) bO(l) + h1 (0, 1) 1 
(147) b0(1) =F(l, 1, lf 1 b0(1, O, 1) 
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where 

(148) F(l, 1, 1) = (a(10) j(0) + a(1) {3j(0)) f(0, ot l(j*(O) o(0l) - j*(O)a o(l)) + F(l, 1) 

(149) b0(l, 0, 1) = b0(l, 0) - (a(10) j(0) + a(1) {3j(0)) f(0, or l h1 (0, 1) 

and F(l, 1), f(0, 0) are according (143), (144). 
If X(0) is dissected into a number of disjoint parts the matrix representing 

j *(0) f (0) j (0) will consist of block matrices along the diagonal. Observe that 
if X = X(0) the codiacoptical procedure is the well-known force method. 

The codiacoptical solution is described in the diagram of Fig. 28. 

1 J·(oh (0) t---.::.------,=;-.---t---/ 

f(0, or l 

I 
f(0, 0) ! 

cl(0) 

f(0) 

F(l) 

6(1) 

j*(0)
h1 (0, 1), h1 (1) "----.._-:.....--:::;_----_, 

F(l, 1, lt l 

F(l,1,1) 

I F(l, 1)
I 

c1(0) 

Fig. 28. Diagram representation of codiacoptical solutfon 

The vectors h1(0, 1) and bO(l, 0) with diagram 
From (129) we obtain the prescribed equivalent cycle deformation 

h1(0, 1), and the equivalent structure load b0(1, 0) 

(150) h1(0, 1) = j*(0) c 1 (0)p - j*(0) f(0) cl(O)p - j*{0) a c1 (l)p 

(151) b0(1, 0) = a (1) cl(l)p - a {1) {3cl(o)p - a (1) F(l) c 1(l)p 

in which c1p and cJ are obtained from (130) to (139). The vectors h1(0, 1) 
and b0(1, 0) are represented in the diagram in Figs. 29 and 30. 

Calculation of member forces and member deformations 
When the unknown cycle forces hl(0) and structure deformations bo(l) 

have been calculated by either the diacoptical or codiacoptical method, we 
know the behaviour of the whole structure. 

By use of formulas (119) and (123) the member forces cl(0) and member 
deformations c 1 (1) can be calculated: 

(152) 
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j*(0) c1(0)p 

hl(l) j*(l) f(O) c1(1)p 

Fig. 29. Diagram representation of the equivalent cycle deformation h1(0, 1) 

h1(l) 

ht (O) j*(O) 

j*(l) 
F(l) 

c1(l)p 

Fig. 30. Diagram representation of the equivalent structure load bO(l, O) 

The member deformations c1(0) and member forces cl(l) can be calculated 
by (124) as 

(153) 

the structure deformations bo can be determined by use of {123) or 

(154) c1(0) - c1(0)pl = [o(O) 0(01)7 [bo(ofl 
[ c1(l) - c1(1)J o o{l) J bo{l)J 
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Calculation of structure deformations 
When the member deformations have been obtained by (152) and (153), 



X(l) 

We observe that if the structure deformations are required the whole 
particular solution c lp must be determined. For solving the member 
forces, only c1(l)p is needed. Thus we find from (139) that 

(155) c1(0)p = j*(O)-1 (-j*{Ol) c1{l)p + h1(0)) 

where j*{0)-1 is determined by 

(156) j*(O) j*(0)-1 = I 

We shall study two special cases. In the first case the structure X(l) is 
grounded and in the second case not grounded. 

If X(l) is grounded, see Fig. 31, the structure deformations in X(l) are 

(157) bo(l) according to (138) or (145) 

By part solution of (154) we find the structure deformations 

(158) bQ(O)= 6(0)- 1 [c 1 (0) - c 1 (O)p - o(Ol) bo(l)] 

We observe that 6(0) and a(0) are dual operators so o(O)-1 and a(o)-1 
are dual operators. The operator a(0)-1 has been determined already in 
(133) in order to get a particular solution of forces. 

X(O) 

Fig. 31. Structure with part X(l) grounded 

In the second case the part X(l) is not grounded but X(O) is, see Fig. 32. 
This implies that the structure deformations bo(l) calculated by (138) or 
(145) are structure deformations, relative to a chosen point in X{l). 

\ 
X(O) 

X(l) 
\ 

Fig. 32. Structure with part X(O) grounded 



In the equation (154) bQ{l) is split into two parts bo(l)Q and bo(l). 
The structure deformations bo(l)Q are the real structure deformations of 
point Q. This point can then be chosen as referenc.e point for the structure 
deformations in X(l). This implies that 6(01) and o(l) are dissected into 
two parts according to 

(159) c1(0) - c1(0}p] = [o{O) o(Ol)Q 6(01)] [bo(O) l 
[ c1 (1) - Cl (l)p O o(l)Q 6(1) bo(l)Qj 

bo(l) 

The structure deformations bo(O) for the grounded structure X(O) are 
determined by (159). They are uniquely determined by member deforma-
tions in X(O), which means that the term o(o)-16(01) bo(l) in (158) is zero 

(160) bo(O) =6(0)-1 [c1(0) - c1 (O)p] 

Now let bo(l) in (159) be the real structure deformations in X(l) and 
denote it by bo(l)r. From the second row in (139) it is found that 

(161) bo(l)r = 6(1)- 1 (c1(l) - c1(1)p) - 6(1)- 1 o(l)Q bo(l)Q 

where o(lt l is determined from 

(162) 6(1) 0(1)- l =I 

We observe that in (161) o(lt 1 c1(l) =bo(l) are the relative structure 
deformations ref erred to point Q found in the diacoptical or codiacoptical 
solution. Thus it is not necessary to resolve the whole deformation picture. 
The first row in (159) gives the value of bo(l)r at the boundaries of X(O). 
The equation (161) contains as many equations to solve bo(l)Q as there are 
connection points between X(O) and X(l). The term -o(l)-1 o(l)Q bo(l)Q in 
{161) is the rigid motion of part X(l) to fit to the boundaries of X(O). 

If X(O) or X(l) consists of disjoint parts and some of them are grounded, 
and some of them are not, then the calculation of structure deformations 
can be made by use of a combination of the two cases developed above. 
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ACTIONS ON THE STRUCTURE 

The solution of the differential equation describing the load deformation 
relation in a member 

The main problem in the structural analysis is to find member forces 
and structure deformations when external forces, temperature changes 
and misfits are prescribed. When a structure is to be analyzed, it is 
divided into discrete elements, members, for which the differential 
equation describing the load deformation relation is fairly easy to solve. 
The solution of the differential equation can be divided into two parts. 
The first part gives the connection between forces and deformations at 
the boundaries which is described by flexibility and stiffness transforma-
tions, see the diacoptical and codiacoptical solutions. The second part, 
a particular solution of member forces and member deformations, is 
dependent on the non-boundary action on the segment. 

The choice of particular solution 
When a non-boundary actfon on a segment is prescribed the particular 

solution of member forces cf and member deformations c1s can be chosen 
in such a way that half of the number of boundary values can be chosen 
arbitrarily. Then the continuity condition for forces and deformations 
are not satisfied, which implies that in order to obtain continuity we must 
add forces 

(163) bO =-L c~ 

at the nodes and deformations 

round each cycle. We can for example choose, compare Samuelsson (1], 
the pure cases in Fig. 33a or Fig. 33b as particular solutions. Such 
~articular solutions for beams can be found in for example Bygg (23] or 
Akesson (24]. 

1 cl clCs s sp ;:-....r- r'\ 
Vt Vt~1, i L oE 2~ f 2 

Fig. 33a. Particular solution Fig. 33b. Particular solution 
when ho =O. Load: when bol =O; ci=O 
forces P and tempe-
rature gradient Vt 
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The total member forces and member deformations 
The total member forces c} and member deformations cir are obtained 

by superposition 

(165) cl =cl + cl r s 
(166) 

where c 1 and c1 are obtained from (152) and (153). 
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MATRIX REPRESENTATION RELATIVE SUITABLE COORDINATE SYSTEMS 

Matrix representation of the elasticity condition 

(x

In order to calculate the flexibility and stiffness matrices for the straight 
elastic beam we choose linearly independent forces and moments at end 2 of 
the oriented straight beam in Fig. 34a. The load components, collected 
in a column matrix NL are written relative to a chosen coordinate system 

1 
, y', z') according to Fig. 34b. The corresponding deformations of the 

member are written as a column matrix nl =p2- Pt. If we assume that 
Pt = 0 we get the simple cantilever problem in Fig. 34b. 

1 2 

+ 

vector basis for N 

The flexibility and stiffness matrices are defined in (107) and {108) 
where 

Fig. 34a. Oriented straight beam Fig. 34b. Cantilever with chosen 

The flexibility and stiffness matrices f' and F 1 for the cantilever in 
Fig. 35 are directly cited from Samuelsson [1], pp. 66-67. 

Fig. 35. Straight beam 

(167) f I = [a (3] ' F ! = [abJ 
{3* y b* C 

where a, {3, Y, a, b, care 3 • 3-matrices. 
For a beam with constant size and form of cross-section, elementary 

theory of elastic beams yields 
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(168) a = diag [1/µ, 4w(1 + A.z/2), 4(1 + A.y/2) ] L3/12 Ely 

y = diag [1/K, 12, 12w ]L/12Eiy 

a= diag [ µ, 1/(1+2:X.z)w, 1/(1+2/\.y) ] 12Eiy/L 3 

c = diag [ K, (1 + Ay/2)/3(1 + 2:\y), (1+ >..z/2)/3w(l + 2:\z)] 12 Eiy/L 

/3= [O O O 1L 2/12Eiy, b = [O O O ] 12Eiy/L3 o o 6wl 0 0 -1/2w(l + 2:\z) 
0 -6 0 J 0 1/2(1+2Ay) 0 

where L is the length of the beam, E is Young 's modulus, Iy, Iz are the 
moments of inertia and w =Iy/Iz. Further, f.!.=A L2 /12 Iy, and Ai = 
= 6{3i Eii/L2 GA, i =y, z, express the influence of normal and shear defor-
mations where A is the area of the cross-section, G the modulus of elasti-
city in shear, and (3i a constant that depends upon the form of the cross-
section. Finally, K =yGiv/2Ely where Giv is S:t Venant's torsional rigi-
dity, and y is the warping constant. 

- - ! IFor the case of plane frames and grids the matrices f and F are redu-
ced, see Samuelsson [1 J, pp. 69-71. 

The vector basis for the load deflection characteristics Nq and nq for 
the member can be chosen quite arbitrarily at a point q. The connection 
between two vector basis is a pure coordinate transformation, see Sa-
muelsson [1 J or Fenves and Branin [2 J. Physically this transformation 
can be interpreted by insering a stiff beam, which transmits the forces 
and deformations between the points 2 and q, see Fig. 36. 

Fig. 36. Load deformation characteristics for the member 
are given relative an arbitrary vector basis at q 

The connection between the forces in the two vector basis is written 

N 1(169) =T qNq 

where T q is a 6 • 6- matrix 

( 170) Tq = [ y O] = KG 
YY Y 

with 
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,-· -1(171) K = lY 
l 01 ' ~o YJ ' 

(172) y = [Yil, Yi2, Yi3]; [Yik] = 1 fork= x, y, z 

The term Yik is the direction cosine of the i - th(i = x 1
, y 1, z ') local 

axis relative to the k - th(k = x, y, z) axis at q, and 

(173) y = [ 0 
-Yz 

Yy 

of beam end 2 in the coordinate system at q. 
For the associated deformations then 

(174) nq = Tq n' 

where T; is the transposed matrix of T q• Dual transformations 
represented by transposed matrices, see Halmos [ 17] . 

By use of (166), (169) and (174) we get the flexibility matrix 
relative the coordinate system (x, y, z) at q 

are 

fq 

where Yi are the components of the vector Y, which is the location vector 

The corresponding stiffness relation is found by inversion of (175) 

(176) Nq=fqlnq 

where we find by use of (166) 

(177) fql = Tql f '-1 (Tq)- 1 = Tql F' (Tq t 1 = Fq 

By observing that y is a unitary matrix which implies that Y* = y-1, 
and that Z is a scew-symmetric matrix, or Y* = -Y, we find that T-1 
can easily be obtained from the block matrices in Tq, see (170). q 

(178) Tc/ = (KGt 1 = a- 1K-1 = II 07 ,r-1 
l._-y I_ 0 

..., r 
Oj jY* o-: 

I 
= !1 y* 

r_l ~o y*_. '._Y*y* 

For the structure part X(O} we now collect the member deformations 
n1in a column matrix n' = [n1] and the member forces Nl in a column 
matrix N' = [Nl], see (60). In the same way we get nq = [nqi J, Nq = [Nqi], 
n' = [f' ]DN 1

, N' = [Tq]DNq and nq = [T~]Dn 1 
• 
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We now get 

(179) n(O) = nq = [T~]D[f 1 ]D[Tq]DNq = [Tqf'TqJDNq = [fq]DNq=f(O)N(O) 

For the structure part X(l) we get in the corresponding manner 

(180) N(l) = [TC:/JD[F']D[(Tq)-l]Dnq = [Tci_1F'(Tq)-l]Dnq = [Fq]Dnq = 
= F(l) n(l) 

Thus we have obtained the block matrices, f(O) and F(l) in (111). 

Representation of the boundary_gperator a by the matrix E 
The equilibrium of a loaded joint will be studied. The member forces 

n1N' and the associated deformations are given relative a local coordinate 
system. The structure loads bO are represented by a column matrix de-
noted by P = [P(O)*, P(l)*] *, according to the structural dissection, see 
(78), and the corresponding structure deformations bo by a column matrix 
p = [p(O)*, p(l )* ] *. 

The continuity condition for forces on a part of a structure, the joints 
A and D, are written in coordinate systems with origins at arbitrary points 
q and s, see Fig. 37. 

Po g 
D 

PA 
C ;J-A e 

Id ;\ 
Fig. 37. Part of a structure 

By inversion of (169) we get 

(181) Nq =Tql N' 

By summing up all vector components Ne to Nf after suitable geometric 
transformations to the joints A and D, and noticing that the forces Ne 
and Nf affect A with negative sign, we get the equilibrium equations 
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(182) = T-1 T-1 -T-1 -T-1 0 qc qd qe qf 0] NclNct~;j-T-1 T-1[~] r T-10 0 0 
L sf sg 

sh_ 

or short 

(183) P =EN 

(Observe that this E represents the boundary operator a as the incidence 
matrix E, see (78), does, but this is not the same E) 

Now we can write the structure stiffness relation 

(184) P =EFE*p 

where E* is the transposed matrix of E. 

(185) F = [Fl) D ; i =cdefgh 

(186) 

If the coordinate systems at q and s are located at A and D, we get, 
if we observe the factorization (170) of Tq, 

(187) E = [K-l K-l -T-l -T-l O O ]Ac Ad Ae Af 
0 0 0 K.:1 -T-1 -T-1 

--uf Dg Dh 
If every joint is chosen as an origin for the equilibrium equation at the 

respective joint and if the member stiffness is written for every member 
relative to a coordinate system at beam end 2, and if the direction of axes 
are the same for the whole structure, then we obtain 

(188) E = [I I -a-1 -a-1qe qf 0 0] 
0 0 0 I -a-1 -a-1 sg sh 

If the same origin•q and the same direction of axes are chosen for the 
whole structure we get 
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(190) E= uI -I -I 0 _:]0 0 I -I 

(191) F= [FqiJ D = [Tqt FUFqit 1] D; i = cdefgh 

Comparing the result in (190) with that earlier obtained in (188) we 
observe that network theory is directly applicable, by simply interpreting 
the elements of the incidence matrix (2) as identity matrices of appropriate 
order. The topological information, in E, is separated from metrics and 
mechanical properties in F according to (191). Samuelsson [1] and 
Fenves-Branin [2 ] have written the structural equations relative to such 
a global coordinate system. 

The choice of global basis may lead to ill- conditioning of the set of 
equations because the forces, the deformations and the mixed isomor-
fism must be transformed to a common origin and their influences studied 
there. This will imply that the errors are correspondingly larger for 
influences from parts of the structure, which are remote from the origin. 
If the structure is large, these errors will be too large for the choice of a 
common origin in practical calculations. The choice (187) or (188) of 
boundary operator will make the matrix EFE* better conditioned, see 
Fenves-Branin [2]. 

We observe that we can get (188) if we modify the topological trans-
formation a in such a way that all positive elements in the incidence 
matrix E are interpreted as identity matrices of appropriate order and 
all negative elements are replaced by geometric transformations G from 
positive to negative end of the members. 

The dissection of the structure implies a dissection of the boundary 
operator, see (77). For the corresponding matrix E the dissection implies 
a partitioning of the matrix, see (79). 

Representation of the operator jjJy the matrix Z 
The equilibrium of a structure with zero joint loads will now be studied. 

n1The member forces N' and the corresponding deformation are given 
relative a local coordinate system. To every cycle in a chosen basis, we 
associate a cycle force with at most six components. All cycle forces hl 
in a structure are represented by a column matrix R = [R(O)*, R(l)*] *, 
see (92), and corresponding deformations h1 called cycle deformations 
or gaps, are denoted by a column matrix r = [r(O)*, r(l)*]*. The trans-
formation between cycle forces R and member forces N are represented 
by a matrix Z, defined by 

(192) N = ZR 

For the structure part in Fig. 38 we find, if we choose a separate vector 
basis for each cycle, 
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{193) fNc 
I 

/Nd 

Ne 

Nf 

Ng 

Nh 

= Tqc 0 fRql 
-Tqd 0r lRs 

-Tqe 0 

Tqf -Tsf 
0 Tsg 
0 Tsh 

C 

Fig. 38. Part of a structure 

According to (144) we get the structure flexibility relation in matrix 
form as 

(194) r =Z*f ZR 

where 

(195) 

(196) 

We can choose one origin for each cycle and let the direction of the 
axes be the same for the whole structure. Then the member flexibility 
f 1 for every member is written relative to a coordinate system with 
origin at beam end 2. We then get by use of separation (170) of T 

(197) Z* = [Gqc -Gqd -Gqe Gqf O OJ 
o o o -a;r a;g a; 

(198) f = [Kffi KiJD 

The matrix {196) can also be written with components 
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(199) Z* = jI -I -I I 
Lo o o 

where Tqs is the geometrical transformation between q and s, and 

{200) f = [fki] D = [Tki fi Tki 1D; k =q; i =cdef 
k =s; i =gh 

If the same vector base is chosen for the whole structure we get 

(201) Z* = [ I - I - I I O O] 
0 0 0 -I I I 

(202) f = [Tqd D = [Tqi fi TqiJ D; i = cdefgh 

Here we get the direct counterpart to network theory by interpreting the 
elements of the incidence matrix, see (3), as identity matrices. 

The vector basis for the cycle forces should be chosen, so that the 
matrix Z*fZ will be as well conditioned as possible. As far as the condi-
tioning of the flexibility matrix is concerned the main aim should be to 
make the leading diagonal elements as large as possible in comparison 
with the off-diagonal elements. Physically this corresponds to choosing 
a system of cycles, a cycle basis, in which the direct flexibilities of the 
cycles are large compared with the flexibilities of the members which 
couple the members together. If the cycles have no member in common, 
the corresponding off-diagonal elements are zero. It follows that the 
cycle forces in a network should be chosen in such a way that the cycles 
are as independent of each other as possible. By a suitable choice and 
ordering of the cycles it is possible to get the matrix Z*fZ in a banded 
form. The set of equations is then correspondingly easy to solve, see 
Henderson (25] . 

The dissection of the structure implies a dissection of the operator j, 
see (90). For the corresponding matrix Z the dissection implies a parti-
tioning of the matrix, see (92). 

Elimination of constrained axes 
Hitherto the formulation is based on the assumption that each member 

in space transmits six independent force components. In the general case, 
there exist constraints among the forces and moments which means that 
one, two or three of the forces or moments (or any combination of them) 
may be zero at the end of the beam in a particular direction or plane. To 
take care of the constraints the solution procedure must be modified. As 
a first step a special coordinate system is chosen for every constrained 
beam with an orientation so assumed that one or two of the axes are directed 
along the directions or planes of constraints. Constraints can also exist 
among deformations. 
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The stiffness formulation of elimination of constraints 
The modified procedure because of the constraints implies that the 

stiffness matrix must be changed. 
Assume that there exists a constraint among_the loads N' on a beam, 

see Kron [5] . This implies that in a coordinate system with a special 
direction, the load vector NC has some zero components. The relation 
between the forces N' and Nc are described by a transformation matrix M 

(203} 

For the members the stiffness relation 

{204) N' = F'n' 

holds. By use of (203) and (204) we write the equation system in the 
partitioned form 

(205) NC =M-lN' =M-lF'(M·l)•nC = [1]= [:i~:i:J[:U 
Part-inversion of {205} yields 

(206) Ne _ (Fe _ Fe (FC )-1 pc ) c _ Fe c1 - 11 12 22 21 nl - 1 nl 
The continuity equation for forces P = EN can now be written in partitioned 
form as 

(207) 

The relation between structure deformations and loads then is 

In the case that all beams which connect at a point have the same release, 
then P = [Pi, P 2 ] * = [Pi, 0] *. From (207) and (208) follows that 

(209) P1 =Er1 Fi Eri 

Assume now that there exists a constraint among the deformations. 
Then in a coordinate system with a special orientation the deformation 
vector p has zero components and the equation system of stiffness form 
can be written in a partitioned form as 

(210) 

61 



from which 

is obtained. 

The flexibility formulation of the elimination of constraints 
Assume that for a cycle there exists a constraint among_ the c_ys;le 

fQii~~B- Let Ri be the linearly independent cycle forces in a coordinate 
system of the special orientation mentioned above. Thus 

(212) 

The relation between the cycle forces Re and the cycle forces Rq written 
at point q can be written 

The beam flexibilities are written at point q 

(214) nq = fq Nq 

and the continuity condition for the forces are 

(215) Nq = ZRq 

From (213) and (214) we find 

(216) Nq =zMRc =zc RC 

The structure flexibility equations are now written in partitioned form 

(217) 

from which we get 

(218) r e_ fc Re
1 - 11 1 

Assume that there exists a constraint among the deformations. Then 
in a special coordinate system, r has some zero components and we can 
write the structure flexibility equations 
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(219) 1rr]= 1fI1fi2l [Ri]
LO_ Lf21 f2z-l R2 

Part-inversion of (219) yields 
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STABILITY CONDITIONS. DISCUSSION OF THE DIACOPTICAL AND 
CODIACOPTICAL METHODS 

Stability conditions 
In order to get a stability condition the coefficient matrix for the 

diacoptic or codiacoptic solution is studied. Assume that the dissection 
of X is made in such a way that a ={3=0. 

The codiacoptic solution, compare (147) 

(221) F(l, 1. l)bo(l) =bO(l, 0, 1) 

is studied here. 
To get a condition of stability the eigenvalues of the coefficient matrix 

F(1, 1, 1) are studied by a method developed by Wahlstrom [26]. A neces-
sary and sufficient condition for the frame to be stable, is that the quadratic 
form bo(l)* F(1, 1, l}bo(l) is positive definite, or that the matrix F(l, 1, 1) 
of the quadratic form has only positive eigenvalues. Such an investiga-
tion consists in a study of the sign of the eigenvalues of F(1, 1, 1) which is 
carried out by use of congruent transformations of F(l, 1, 1) to diagonal 
form. The sign of the eigenvalues are invariant under such transformations. 

In the part X(0) of the structure we obtain the flexibility matrix f(0) = 
= [fq] D according to (179). According to (180) we obtain for the part X(l) 
the stiffness matrix F(1) = [F q] D. 

We assume that all fq and F q are positive definite matrices and thus 
f(0) and F(l) are positive definife. 

It holds, see Zurmi.ihl, (27], p. 133: 

If U is an n • p-matrix with the rank rand Vis a symmetric 
positive definite n • n-matrix, then the p • p-matrix U*VU is 
positive definite with the rank r. 

The coefficient matrix F(l, 1, 1) given by (148) is now studied. If we 
use {97) and {103), if we represent a(l) by a 6 a1(l) • 6(a 0(1)-1)-matrix 
E(l) with the rank 6(ao(l)- 1), and if we represent j{0) by a 6 a1(0,) • 
• 6(a1(0) - ao{0) + 1)-matrix with the rank 6(a1(0) - ao{0) + 1). Then 
we obtain 

(222) F(1, 1, 1) =E(l) Z{l0)(Z{0)* f{0) Z(o)r 1 Z(10)* E(l)* + E(l) F(l) E(l)* 

We thus find that because F{l) and f{0) are positive definite matrices 
then F(l, 1) =E(l) F{l) E{l)*, f(0, 0) =Z(0)*f(0} Z{0) and f(0, 0)-1 are 
positive definite matrices. We also find that the matrix 

(223) E(l) Z{l0) (Z{0)* f{0) Z(0)}-1 Z(l0)* E(l)* = 
= (Z(10)* E(l)*)* f{0, Ot 1 Z{10)* E(1)* 

is positive definite with a rank which is 6 times the number of the relative 
cycles on X(0). The sum F(1, 1, 1), (222), of the two positive definite ma-
trices is positive definite. 



Thus F(l, 1, 1) is positive definite if f(O) and F(l) are positive definite. 
The reverse statement does not hold. 

Discussion 
In the following the investigation is restricted to diacoptics and the case 

that a = /3= 0, but what is here said about diacoptics can directly be used 
in codiacoptics in the corresponding manner. 

From (140) to (145) we obtain 

(224) p(l) = F(l, 1)- 1 [ -E(lO) Z(O) R(O) + P(l, 0) J 

(225) R(O) =f(O, 0, or l r(O, 1, 0) 

where 

(226) f(O, 0, 0) = Z(O)* E(Ol)* F(l, 1r l E(lO) Z(O) + f(O, O) 

(227) r(0, 1, O) =r(O, 1) + Z(O)* E(Ol)* F(l, 1r l P(l, O) 

The equations (225) and (227) are inserted into (224) which yields 

(228) p(l) = F(l, 1r l P(l, 0) -

- F(l, 1)-l E(lO) Z(O) f(O, o,or l Z(O)* E(lO)* F(l, 1r l P(l, O) -

- F(l, 1)- 1 E(lO) Z(O} f(O, o,ot 1 r(O, 1) 

The constituent elements of the solution written in the factorized form (228) 
can be given in a scheme (not a matrix) of four matrices, called the facto-
rized inverse due to Kron [ 5 J . 

1(229) I f(o, o, ot Z(O)* E(lO)* 

IF(l, 1)-1 E(lO) Z(O) F(l, 1)- 1 

These four matrices take the same storage capacity as the non-factorized 
inverse. The solution is for each loading case determined by vector 
multiplication from the right, in (228). 

It is not necessary to invert the matrix f (0, O,0) in order to calculate 
R(O). As an alternative, R(O) can be calculated by for example Gaussian 
elimination applied to 

(230) f(O, 0, O) R(O) = r(O~ 1, 0) 

where the right hand side is a vector obtained by vector multiplication of 
r(O, 1, 0) from the right. One solution of a system of linear equations 
requires about one third as much work as the inversion of the corres-
ponding matrix of coefficients. By the Gaussian elimination procedure 
the coefficient matrix f(O, 0, 0) is transformed to triangular form. By 
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studying the signs of the diagonal terms a stability test is obtained as 
an additional result. The elements in the diagonal of the triangular 
matrix are the same as the elements obtained by congruent transforma-
tion to diagonal form by the method of Wahlstrom [26]. 

If by dissection X(1) consists of a number of disjoint parts X(lh, the 
matrix F(l, 1) will contain block matrices F(1, l)j along the diagonal, and 
we get 

(231) F(l, 1) = [F(l, 1h] D 

The inverse 

(232) F(l, lt 1 = [F(l, l)i 1] D 

will also have block matrices along the diagonal. The numerical work is 
reduced to a great extent if X(l) consists of identical substructures having 
identical stiffness matrices F(l, l)i. 

When the solution is given in factorized form it is easy to add new 
parts X(l)i to the structure or change the flexibility or stiffness of its 
members. The solution of the modified structure is found as the solution 
of the original structure and an additional solution due to the influence of 
the added parts. 

From a practical viewpoint diacoptics can with special advantage be 
used for solving structures, which is built from identical parts, for 
instance for structures built from few different (prefabricated) sub-
structures. The elastic behaviour of the substructures can be studied 
once for all by some suitable method, and then diacoptics can be used 
to get a rapid solution for the connected structure. 

Comparison with existing mathematical algoritms 
The mentioned factorized inverse is closely related to the recursion 

formula called K-partitioning, or elimination and backsubstitution, which 
is frequently used in literature, see for example Kron [5], Spillers [3], 
Jenkins [28], Franklin and Branin [29] and Edlund [30]. 

The recursion formula is obtained from the solution of an equation sys-
tem 

(233) Ax= y 

in partitioned form 

(234) 
~~:] [:~] = [~~] 

(235) x1 =Aii (Y1 - A12x2) 

(236) x2 = (A22 - A21AiiA12f l (Y2 - A21AiiY1) 
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If the matrix A is partitioned into more parts than four the K-
partitioning will be computationally more effective. In the limit when 
the partitioning is made along every row and column it coincides with 
the well-known Gaussian elimination, which thus is the most efficient 
way of K-partitioning. The elimination gets its most effective form if 
the variables are ordered in such a way that the coefficient matrix A 
gets a banded form. It is a combinatorial problem to order the variables 
suitably. This is shown by Spillers [31], who has studied the special 
diacoptical problem X =X(l). 

Henderson [25] gives methods to make the best selection of redundant 
forces with respect to the conditioning of the equations of compatibility 
by use of topology. He thus studies the special codiacoptical problem 
X = X(O). 

In such combinatorial procedures we cannot take care of the advantage 
of fewer variables, identical parts and the possibility to store parts of 
the solution as is done by use of diacoptics and codiacoptics. 

Diacoptics and codiacoptics can on a pure computational basis be 
compared with a direct method of inverting a matrix by use of successive 
modifications. This method was first described by Sherman and Morrison 
[32]. They showed how to get the inverse of a matrix, when in the original 
matrix one element at a time is modified. Householder [ 33 ] gave this 
method a more general formulation, and it can be described as follows: 

If the inverse of a matrix A is known, and if a new matrix differs 
from A additively, then the inverse of the new matrix can be ob-
tained as a result of a modification of the inverse A - l in the spe-
cific manner: 

where S must be nonsingular. 
The modifications can be made for one element at a time. The method 

is then called a "link at a time" (LAT) algoritm. It can with appreciation 
be used for small modifications in a structure, see Spillers [3]. 

The modification formula (237) has a direct counterpart in the diacop-
tical solution (228); where the inverse F(l, 1)-1 is modified. The first 
two ter-ms in (228) has a direct counterpart in the modification formula. 
The structure part X{l) is first studied by use of its stiffness matrix 
F{l, 1). It is then modified. in order to take care of the elastic conditions 
in the part X{O) of the structure.· The modification formula is only a 
computational tool and says nothing about how to dissect and modify. 
The latter information is obtained through diacoptics which thus is more 
useful than (237). 
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NOTES ON THE SELECTION OF AN EFFECTIVE DISSECTION 

The deformation and force methods 
The number of independent joint displacements, used as unknowns in 

the pure deformation method of structural analysis, is not related to the 
number of independent cycle forces. The number of independent.cycle 
forces, used as unknowns in the pure force method, is not related to 
the number of independent joint displacements. In the diacoptical and 
codiacoptical methods both the number of independent cycle forces and 
independent number of joint displacements and their location in the struc-
ture are essential. In diacoptics and codiacoptics we can choose our 
equations in such a way that the total number of variables can be reduced 
under the number used in each of the force and deformation methods. 

The computational labour is not always reduced in diacoptics or co-
diacoptics in comparison with the classical methods mentioned. The 
form of the graph and the manner of dissection are of importance in this 
respect. 

The completely connected structure 
If every two joints in the structure are connected by a -member, the 

structure is said to be completely connected, then dissection is of no 
use. The stiffness matrix will in this case be full (have no zero elements). 

In a completely connected structure with a independent joints there are 
(a+ 1)/2 members and a(a -1)/2 = v1 independent loops. The number of 
joints is less than the number of loops 

a{a - 1)(238) a 2 -- ; 0 2 a (a - 3)
2 

when a 3. 
Thus a completely connected structure should be solved by the displace-

ment method if a 3, and by the force method if a 3, see Fig. 39. 
In a structure with less members than the number which corresponds to 

the completely connected structure, the loops are fewer than said above. 
When the graph has a suitable form, the structure can with advantage be 
solved by use of mµced node and loop variables. 

Cl! =2 
Vl = 1 

Fig. 39. Some completely connected structures 
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Loop-node incidence matrix 
An appropriate dissection can be found by studying the loop-node inci-

dence matrix L which describes the topological properties of the structure. 
The matrix L is defined according to 

(239) Lij = 1 if node i is contained in loop j 
( 0 if node i is not contained in loop j 

The matrix L can also be obtained by use of the incidence matrices E 
and Z in the following way. Delete all negative signs in E and Z which gives 
the new matrices E1 and z1. By establishing the matrix product E1Z1 and 
replacing all nonzero elements in E1Z1 by the element 1, we get a matrix 
{E1 Z1)i. The matrix (El Z1h coincides with L. 

At dissection (X(O), X(l)) of the structure X, the total number a of nodes 
and m of loops are invariant, or 

(240) a (0) + a (1) = a 

(241) m(O) + m(l) = m 

The total number of unknowns in diacoptics and codiacoptics is 

{242) </>= m(O) + a (1) 

For the dissected structure we establish the matrix E 1 Z 1 in partitioned 
form as 

(243) E(O)i O l[Z(O)i i -0[E(10)1 E(l}i Z(lO)i Z(l)i 

= f E(O)i Z(O)i
lE(10)1 Z(O)i + E(lh Z(lO)l 

and m(O) 
(244) L = (E1 Z1h = a(O) [L(O) 

a (1) L{lO) 

We observ.e that the minimum number of unknowns is obtained when the 
rows and columns of Lare ordered in such a way that the sum cp= m(O)+ a(l) 
gets its minimum value and the dissection is chosen accordingly. 

A main principal of dissection 
By studying the matrix L we find that a main principal of dissection is 

that X should be dissected so that X(l) contains a part of the structure 
with many loops compared with the number of joints, and so that X(O}con-
tains a part of the structure with many nodes compared with the number of 
loops. 
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Example of a selection of an effective dissection 
We want to dissect the structure in Fig. 40 in such a way that we get 

as few unknowns as possible in the fundamental equations. 

A 5 A 

X(O) 

X{1) 

I 
I 

m13 

Fig. 40. Structure X, with joints 1 to 9 and 
independent loops m1 to m13 

In order to find the least possible number of diacoptical variables we 
study the loop-node incidence matrix L according to (244). For the struc-
ture in Fig. 40 we get, after suitable rearrangements of rows and columns, 

node/ loop 
6 7 8 1 2 3 4 5 9 10 11 12 13 ~m 

.......__,,..._ 
Parts with high node density. 
Loop variables should be used 

The sum ~a in (245) is the number of nodes in loop j and the sum ~m 
in (245) is the number of loops incident to node i. By studying these sums 
we easy find the parts of the structure which have low (or high) node or 
loop density. 

(245) =3L = (L(O) 0 ] 
4L{lO) L{l) 5 
6 
7 
1 
2 
8 
9 

~a 

11 1 2 
1 1 
1 ' 1 
1 1 
11 2f; ~u L 1 - - - - - ·- :1Parts with high 

loop density. 
1 1. 1 1 1 5 I 

I 
Node variables 

L 1 1 1 4) should be used 
3 7 3 11 1 2 1 1 1 1 2 1 1 
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We observe that if X{O) contains a node it also contains all the loops 
incident to it, and if X(l) contains a loop it also contains all the nodes 
incident to it, see tlJ.e partitioning lines in the matrix L. By studying the 
matrix L we easily see how the numbers of loops and nodes vary when 
the partitioning is changed. 

From the matrix L we also find that the dissection M, see Fig. 40, 
is one of the (two) dissections which give the minimum number 

cp=a(l) + m(O) =4 + 3 =7 

of unknowns in a solution by ~iacoptics or codiacoptics. This number 7 
should be compared with 9 which is the number of unknowns in a pure 
deformation method solution, and with 13 which is the number of unknowns 
in a pure force method solution. 
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DESCRIPTION OF DIACOPTICS AND CODIACOPTICS BY USE OF EQUIVA-
LENT STRUCTURES 

The diacoptical method. Equivalent network of node type 
The same example as in the preceding chapter is studied here. In the 

diacoptical method a cut is made in the structure, see Figs. 41a, b . 

...._....---- - --...-
X(O) 

X(l)i 

Fig. 41a. Dissected structure X Fig. 41b. The graph X 

First the stiffness matrix for each subnetwork X(lh is computed relative 
to the reference point of that substructure. Each subnetwork is then re-
placed by its equivalent radial tree (radiating from the reference point). 
The radial tree is called the equivalent subnetwork of node type. It has 
the same number of joints, see Figs. 42a, b, as the original subnetwork. 

Fig. 42a. Subnetwork X(l)1 Fig. 42b. Equivalent subnetwork 
X(l)1 of node type 

Connecting.the equivalent subnetworks of node type to X(O), we obtain 
an equivalent network of node type, see Figs. 43a, b. It has the same 
number of nodes but less loops than the original network. It is therefore 
convenient to use cycle forces as variables in the remaining analysis. 

The codiacoptical method. Equivalent network of loopj:ype 
In the codiacoptical method a short- circuiting is made in the structure 

in the meaning that some node displacements are set to zero, see Fig. 44. 
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I 
It- '- \ I /

'\ \ I /
'\\I/ 

Fig. 43a. Equivalent network of node type Fig. 43b. Equivalent graph 

X(O) 

short-circuit 

Fig. 44. Dissected structure. Part X(1) is short-circuited 

The subnetworks X(Oh (here only one) are analyzed by use of loop variab-
les. An equivalent subnetwork of loop type is obtained, see Figs. 45a, b. 

Fig. 45a. Subnetwork X(O) Fig. 45b. Equivalent subnetwork 
X(O) of loop type 

Connecting the equivalent subnetworks of loop type to X(l), we obtain 
an equivalent network of loop type, see Figs. 46a, b. It has the same 
number of loops but less number of nodes than the original network. It is 
therefore convenient to use node displacements as unknowns in the remaining 
solution. 
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____ 

Fig. 46b. Equivalent graphFig. 46a. Equivalent network X solved 
by node variables 

Choice of method 
In the diacoptical method, we obeserve that X(l) consists of two disjoint 

parts whose solution requires the inversion _of two 2 ·• 2-matrices, and that 
the interconnection of the two parts requires the inversion of a 3 • 3-matrix. 
In the codiacoptical method, the solution of X(O) requires the inversion of 
a 3 • 3- matrix and the interconnection requires the inversion of a 4 • 4- matrix. 
We observe that the number of variables is the same in the diacoptical and 
codiacoptical methods, but that their occurrence in the steps of the solution 
is different. 

The analyst 1s choice between the methods should be guided by the required 
amount of numerical work. In this example the diacoptical method is pre-
ferable, see Fig. 47. 

.. 
equivale nt net-equivalent net-given 
work of loop type work of node type networkNumber of 

.,.,_•"- ... ""•-_,_u,~, ------·--•~'>'-'><,,,-•"' --'"~.~~,,,-,,,_~,,,,.,. -·--

499 
liindependent nodes 

._....,,._.~,- ... ...,·-•"'¥-"" .. ~•·. ---
2 ° 2jnodes in the equivalent!network X(l) I ,.___...,.__,_,. 

161222Ibranches 
' I 

13 I13 3j independent loops 
·----- --1 l 

3 I! loops in the equivalent 
network X(O) 

-~~""-'""--·- -~·-

diacoptical variables 2·2+3=7 
__ ..__.,,_____- -----·-

4 + 3 = 7codiacoptical variables 
"""'~--------··""·-- .. ,-.-. .. -..,--·•-~---< --~·-"'"-

Fig. 47. Table of characteristic numbers for the structure X 

The topological invariants 
In the diacoptical solution the topological invariant is a set of points and 

in the codiacoptics it is a set of independent loops, compare Fig~ 40 with 
Fig. 43a, and Fig. 40 with Fig. 46a. 
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RECAPITULATION OF FORMULAS 

The main formulas of the diacoptical and codiacoptical methods are 
given below with matrix representation in order to facilitate their app-
lication in the solution of practical problems. The calculations are 
subdivided into eight parts which we denote by capital letters A to H. 

For a =(3= 0, the fundamental equation system of the dissected 
elastic structure the solution of which is required, is 

(126) Z(O)*f(0) Z(O) - Z(O)* E(lO)* J [R(Ofj = [r(O, l)J 
[ E(lO) Z(O) E(l) F(l) E(l)* p(O) P{l, O). 

Structure loads P = [P(0)*, P(l)*] * and cycle deformations r = [r(0)*, 
r(l)*] * are considered in (126). 

A. Choose a dissection that makes the total number of unknowns 

(242) q,=m(0) + a(l) 

a minimum. Use the node-loop incidence matrix 
m(0) 

{244) L =(E 1 Z1h = [L(O) 0 J 
a(l) { L(l0) L(l) 

B. Choose vector basis for writing the structural continuity equationso 
Array the matrices 

(92), (199) Z(O), Z(l) 

(79), (187) E(O), E(l), E(l0), E(lO) Z(O) 

(167) f', F' 

(170) 
Tq = [~ :J 

(175) fq =T4f'Tq 

{179} f(O) = [fq JD 

(144) f(O, 0) = Z(O)* f(O) Z(O) 

(177) Fq =T~l F'(Tqf l 

(178) T-1 = r Y* 0 J 
q LY*Y* Y* 
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(180) F(l) = [F q JD 

(143) F(1, 1) = E(1) F(1) E(l)* 

C. The structure action consists of cycle deformations 

r = [r(O)*, r(l)* J* 

and structure loads 

P = [P(O)*, P(l)* J* 

Transformation of structure loads and cycle deformations to an arbitrary 
coordinate system is made as follows: 

(169) Nq = Tcj_lN1 

(174) llq = Tq n' 

In case of non-boundary action, loads 

(163) P =-:E Ns 

are added to the structure loads, and deformations 

(164) r = -Z* ns 

are added to the cycle deformations r. 

D. Particular solutions for member forces are 

(132) N{O)p=E(O)- 1 P(O) 

(134) E(l) N{l)p =-E(lO) N(O)p + P(l) 

where 

(133) E(O) E(O)- 1 =I 

If the structure part X(1) is not grounded, the forces E(l)N{l)p are 
self equilibrating. 

Particular solutions for member deformations are 

{137) n(l)p =Z(l)*-1 r(l) 

(139) Z(O)* n(O)p = - Z(lO)* n(l)p + r(O) 

where 

66 



(138) Z(l)* Z(l)*-1 = I 

If structure deformations according to H, see below, are required 
we also calculate 

(155) n(O)p =Z(0)*-1 (Z(lO)* n(l)p + r(O)) 

where 

(156) Z(O)* Z(0)*-1 =I 

E. Calculate the equivalent cycle deformations r(O, 1) on X(O) and the 
equivalent structure loads P(l, 0) on X(l): 

(150) r(O, 1) = Z(O)* n(O)p - Z(O)* f(O) N(O)p 

(151) P(l, 0) = E(l) N(l)p - E(l) F(l) n(l)p 

Fa. The diacoptical solution of (126) is 

(140) p(l) =F(l, lt 1 (-E(lO) Z(O)R(O) + P(l, 0)) 

(141) R(O) = f(O, O, 0)-1 r(O, 1, O) 

where 

(142) f(O, O, 0) =f(O, 0) + Z{O)* E(lO)* F(l, 1)- 1 E(lO) Z(O) 

(145) r(O, 1, 0) =r(O, 1) + Z(O)* E(10)* F{l, 1)"" 1 P(l, 0) 

We observe that r(O, 1, 0) contains the term Z(O)* E(lO)* F(l, 1)- 1 which 
has already been calculated in f(O, O, O). 

A solution of (141) by use of Gaussian elimination gives a stability testo 

Fba 'r.he codiacoptical solution of (126) is 

(146) R(O) = f(O, 0)- 1 (Z(O)* E{lO)* p(l) + r(O, 1}) 

(147) p(l) = F(l, 1, lt 1 P{l, O,1) 

where 

(148) F(l, 1, 1) = F(l, 1) + E(lO) Z(O) f(O, Ot 1 Z(O)* E(lO)* 

(149) P(l, O, 1) =P(l, 0) - E(lO) Z(O) f(O, Ot 1 r(O, 1) 
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Go The member forces and member deformations are 

(152) N(O)=N(O)p+ Z(O) R(O) 

n(l) =n(l)p + E(l)* p(l} 

(153) n(O}=f(O) N(O) 

N(l) =F(l) n(l) 

Transformation of member .forces and member deformations to local 
coordinate systems is made as follows: 

{169) N' = Tq Nq 

(174) n' =(T4)-lnq 

The total member forces Nr and member deformations nr are 

(165) Nr =Ns + N 

(166) nr =n9 + n 

Ha. If X(l) is grounded the structure deformations are 

(158) p(O) =E(0)*· 1 (n(O) - n(O)p - E(lO)* p(l)) 

with p(l) according (140) or (147), see F above, and with E(0)*-1 =E(0)-1 * 
where E(0)· 1 is given by (131), see D above. 

Hb. If X(O) is grounded and X(l) is not, the structure deformations are 

(160) p(O) =E(0)*-1 (n(O) - n(O)p) 

(161) p(l)r =E(l)*-1 (n(l) - n(l)p) + E(l)*-1 E(l)*QP(l)Q 

The value of p(l)r at the boundary between X{O) and X(l} is given by 

(159) n(O) =n(O)p + E(O)*p(O) + E(lO)* p(l)Q + E(lO)*p(l)r 

where 

(162) E(l)* E(l)*-1 =I 
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NUMERICAL EXAMPLES 

The following simple Examples 1 and 2 will show the use of the 
established formulas of diacoptics and codiacoptics. In Example 3 
the minimum number of unknowns is determined. 

The examples are given only for instructive purposes. The best 
use of diacoptics and codiacoptics is in the solution of large structures 
and is not demonstrated here. 

Example 1. A straight beam with uniform stiffness EI, see Fig. 48, 
is divided into four members and submitted to a vertical concentrated 
load P at joint A. We want to calculate member forces and structure 
deformations. 

C B A X D EI E 

L L ¥I L 
z 

L 

Fig. 48 .• Loaded beam 

The diacoptical method will be applied. The subdivision of the cal-
culations given in the preceding chapter will be followed. 

A. The structural dissection (X{0), X(l)) in Fig. 49 is chosen. 

,,,,,,.----- ...... ..... 
C 1 fB 3 A 4 n, 2 E 

\. 
\ 

I 

... • - ' ., 
I 

' 
X(l), __,. ____., / 

X(O) 

Fig. 49. Structural dissection 

In the diacoptical procedure X(l) is first solved by deformation (node} 
variables. In X(l) the point A is used as reference point Q. We then 
get an equivalent structure of node type, see Fig. 50, which is solved 
by cycle forces. 

Fig. 50. Equivalent structure of node type 

We choose a global coordinate system with origin at A according to Fig. 48. 
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B. We array the matrices 
1 2 

(92) Z(O)* = m[I I] 

(79) 
3 

E(l) = A [ I 
B -I 
C 

4 1 

:lE(lO) =A~ 
B I 
D 

2

_JE(lO) Z(O) = [ ~] 

D -I 

Because we have no axial force in the beam we may discard the axial 
force as a variable in the analysis. We thus have 

The load deformation characteristics given by f 1 and F' for the members 
are given relative to the local coordinate system at beam end 2. We have 

L 12EI 
(167) f' = [2L2 -aL]----:-, F' = [ 1 2L 1La 

-3L 6 5EI 2L 3L2J 
The flexibilities of the members in X(O) relative to the global coor-

dinate system are 

(175) f(O)iA = TiA f{ TiA, i = 1, 2 

f(O)iA = [1 -LJ f1[ 1 07 = [14L2 -9Ll 6~ 
0 1 - L 1J - 9 L 6 j 

f(0)2A = [ol 2LJ f2 [ 1 ol = r14L2 9L] __!i_ 
1 2L 1J L 9L 6 5EI 

(179) f(O) = [f(O)iA]D, i = 1,2 

The structure flexibility of X(O) is 

(144) f(O, 0) = Z(O)*f(O) Z(O) = f(OhA + f{0)2A = [14L 2 07 _!:_ 
O 6j 3EI 

The stiffnesses of the members in X(l) relative to the global coordinate 
system are 

(177) F{l)iA = Til F1(T1At 1, i = 3, 4 

EI 
F(l)aA = r12 6LJ La 

L6L 4L 3 
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l EI
F(l)4A = r-1 07 F4[-l 07 = [ 12 -6L I 3

Lo 1J o 1J -6L 4L3J L 

(180) F(l) = [FiA] D, i =3, 4 

The structure stiffness of X{l) is (A is used as reference point which implies 
that the corresponding rows and columns in E(l) and E(l)* must be deleted) 

(143) F(l, 1) = E(l)F(l) E(l)*= [.-I OJ jF(l)3A ] [-I OJ -
0 -I l._ F(l)4A O -I 

= [F(Ol)3A O ] 
F(1)4A 

C. The structure action in Fig. 48 gives 

Note that the load P is situated at the reference point Q =A. 

D. Because Z(O) and P(O) do not exist the equation (132} is irrelevant. 
The particular solution for X(l) is contained in 

l
(134) E(l)N(l)p = -E(lO)N(O)p+P(l) = - ro ol [Nil + rPA] = [PA]

I ol NiJ o -N1 
0 -IJ LO N2 

These forces are selfequilibrating because X(l) is not grounded, that is 

PA - N1 + N2 =0 

We observe that this equation can be satisfied by infinitely many sets of 
values of Nt and N2. We choose Nt = PA, N2 = 0. 

From r = O follows that n(O)p = n(l)p = 0 according (137) and (139). 

E. The equivalent cycle deformation in X(l), that is the vector r(O, 1), 
is obtained by vector multiplication from the right in (150): 

(150) r(O, 1) = -Z(O)*f(O)N(O)p =-[I I] [f(OhA, f{0)2A]D [~]PA= 

PL 2 
= [-l:L] 6EI 

The equivalent structure loads P(1, 0) in X(l) are 
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(151) P(l, 0) = E(l)N(l)p = - [1]PA 

Fa. The inverse of the structure stiffness of X(l) is 
L 

2L2 -3L 0 0F(l, 1>-1 = [F<~>sl 0 ] - 6EI1 -3L 1 0 0F(lr 4A 
0 0 2L2 3L 
0 0 3L 6 

Vector multiplication from the right in (145) gives 

(145) r{O, 1, 0) = r(O, 1) + Z(O)* E(lO)* F{l, 1r l P(l, 0) = 

= r{O, 1) + [I -I] rF(1)31 0 ] [-IJ PA= 
L O F(l)41 0 

= r(O, 1) - F(l)al PA= r-8L] 
L 6 

Further 

(142) f{O, 0, 0) = f(O, 0) + Z(O)* E(lO)* F{li 1) E(lO) Z(O) = f{O, O) + 

+ r1 -1J [F<1);l o _ = f(o, o) + F(1);l + F(l)~l =] [IJ 
0 F(l)J -

2 = [16L OJ ...h._ 3EI 
0 12 

The unknown cycle forces and structure deformations in (126) thus are 

1(141) R(O) = f(O, o, or r(O, 1, 0) = 13 0 l 1!~3 1-SL] = [-PJ 
Lo 4L2J L6 . PL 

and 

(140) p(l) = F(l, 1)-1 (-E{lO) Z(O) R{O) + P(l, 0)) = F(l, lt 1 [p J = [L]~I 
-PL -3 
-P L 
PL 3 
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G. The member forces are, in the global coordinate system, 

{152) . N(O) = N(O)p + Z(O)R(O)= [::] = =rnP + rn[pi] i i [~!] 
{153) N(l)=F(l)n(l)=F(l)E(l)*p(l)= IF3A O] 1-1 l [Fal ~1]. 

Lo F4A L -rJ o F4A 

2 2•1 [-P]=.! [ PLp-PL ] 
-P p 
PL -PL 

Transformation to local coordinates yields 

(169) 

The shear force and moment diagrams for the beam are drawn in Fig. 50'. 

Shear force diagram:. 
½P--------i-----------, 

--------+½P 

Moment diagram: 
½PL ½PL-C::::::::::::: 

½PL 

Fig. 501 Section forces in beam CE• 

The member deformations are 

(153) n(O) =f(O) N(O) = [ 5LJ ?.¼~-
-3 12EI 

-5L 
-3 
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PL 2 
(152) n(l)= E(l)*p(l) =r-1 Jp{l) = [-L]--L -I 3 12EI 

-L 
-3 

Hb. The relative structure deformations p(l) were obtained in (140), see F. 
The value of the real structure deformations at the boundary between X(O) 
and X(l) is given by 

The real structure deformations are 

(161) p(l)r = E(l)*- 1 (n(l)- n(l)p) - E(l)*-1 E(l)Qp(l)Q 

p(l)r =p{l) + 0 - E(l)*-1 E(l)Q~(l)Q 

where 

The equation. (161) gives 
PL2 • PL2 

5Ll--= [Ll-+ frlp. ;;, j12EI -{j12EI LIJ Q 

We have as many equations to solve PQ as there are boundary points 
between X(O) and X(l). The two equations of the present problem have 
the solution • 

PL 3 
PQr = [ ~] 3EI-

which is the real structure deformation at point Q =A. By use of (161) 
all other real structure deformations are found from 

74 



(161) p(l)r = p(l) - E(l)*- 1 E(l)QPQ 

We observe that the term E(l)*-1 E(l)QPQ is a rigid motion of the structure 
X(l) to fit X(l) and X(O) together at the connection points. 

Example 2. The same beam, Fig. 51, as in Example 1, see Fig. 51, 
will be dissected in a different way. The same solution as in Example 1 
will be here calculated by use of the codiacoptical method. 

C 

L 

B 

: L 

p!A 

fy~ 

x D 

;,.JI( 

EI 
L 

E 

;,,t 
z 

Fig. 51. Loaded beam 

A. The structural dissection (X(O), X(l)) in Fig. 52 is chosen. 

/- - ·-'\. -
f 
I X(l) \ 

l 
1 3 I 4 2

I\ • ... - • -. -1111 ,,I \ ' ---..,,._,,.,, 
X(O) 

Fig. 52. Structural dissection 

In the codiacoptical method X(O) is first solved by cycle forces. We 
then get an equivalent structure of loop type, see Fig. 53, which is 
solved by use of structure deformations. 

B 3 A 
f .. 
'+~oopm'' • I, ......______, ' .,; 

Fig. 53. Equivalent structure of loop type 

B. We choose a global coordinate system with origin at A, see Fig. 51. 
Array the matrices 

1 2 4 
(92} Z(O)* = m[l I I] 
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3 12 4 1 2 4 
(79) E(l) = [ : ], E(lO) =! [ -lJ, E(O) = D[ -I I]

1 1 

m 
E{lO) Z{O) =![-?],I= [~ ~] 

The member flexibility matrices f(OhA, f(0)2A and F(1)3A are found in 
Example 1. Further we get 

(175) f.(0)4A= j 1 LJ f4 [1 07 = [2L2 3LJ--6
L 
EILo 1 L 1J 3L 6 

(179) f(O) = [f(OhA 1D; i = 1, 2, 4 

The structure flexibility of X(O) is 

(144) 

The stiffnesses of the members in X(l) relative to the global coordinate 
system are 

The point Q =Bis used as reference point in X(l). The structure 
stiffness of X(l) is 

EI(143) F(l, 1) = E(l)F(l)E(l)* = F(1)3A = f12 6L l- 3 
L6L 4L2J L 

C. The structure action in Fig. 51 gives 

D. The particular solution for X(l) is contained in 

(134) E(l)N(l)p=-E(lO)N(O)p+ P(l) =-[oO -IllN1l + [PAl = rN4 + PA] 
1 o oJ N2 oJ L-N1j 

N4 

Because X(l) is not grounded the forces (134) are selfequilibrating or 
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N4 + PA - N1 = 0 

A solution to this equation is for example N1 =PA; N4 = O. 
The solution N(O)p must also satisfy 

(132) P(OJ= E(O)N(Olp = [o -r r] [ :; l= -N2 =o 

which gives N2 =0, Thus 

N(O)p= !pt] 
Lo 

E. The equivalent cycle deformations r(O, 1) in X(O), that is obtained by 
vector multiplication from the right in (150): 

(150) r(0, 1) =-Z(0)*f(0)N(0lp = -[I I I] [f(0hA f(0)2A f(0)4A]D rnrA = 

PL 2 
= [-1:L]•6El 

The equivalent structure loads P{l, 0) in X(l) are 

(151) P(l, 0) =E{l)N{l)p = [I ]PA 

Fb. The inverse of the structure flexibility of X( 0) is 

f(o, or1 = [ 6 -L] 2EI_ 
59 • L3 2-L lOL 

Further 
16EI(148) F(l, 1, 1) =F(l, 1) + E(lO) Z(O)f(O, or 1 Z(O)* E{lO)* = [ 45 22LJ- 35922L 16L2 L 

F(l, 1, 1)-1 = r1aL2 -22LJ 
L 64EI 
-22L 45 

Vector multiplication from the right in (149) gives 
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(149) P{l, 0, 1) =P(l, O)- E(lO) Z{O)f(O, or 1 r(O, 1) = [I] rp]-
1...0 

2EI PL2 1 
-[-I] [ 6 

-L 
-L J-[-14LJ-359LlOL2 9 BEI 

= -[177 84P] 
104PL 

The unknown structure deformations and cycle forces in (126) thus are 

(147) p(l) = F(l, 1, 1)-1 P(l, 0, 1) = [16L2 - 22LJ __!:__• ...!...[ 84P ] = 64EI 177 
-22L 45 104PL 

= [-:JPL2 
22EI 

and 

(146) R(O) =f(O, otl(z(O)* E(10)*p(1)+ r(O, 1)) 
2 

R(O)= 16 -LJJ!l([-I] [-LJ~~+ r-14LJPL )=½[-P]
59L3 12EI 6EI PL2L-L lOL 3 9 

G. The member forces are in the global: coordinate system 

(152) N(O)=N(O~+ Z(O)R(O) = f

t~ 
(153) N(l) =F(l) E(l)*p(l) = [12 6L J-¥ 

p 
PL 
-P 
PL 
-P 
PL 

[I] [-Ll PL2 =½[Pl 
4L2 L 3 j 12EI pr.J6L 

The member forces in local coordinates are 

(169) N(O)= [TiA] D N(O)A = 1 0 ½- p =½rp
-L 1 PL 0 

1 0 -P -P 
2L 1 PL -PL 

-P -P1 0 
PL 0L tJ 

N(l) = [TiA] D N(l)A = [I] N(l) =½f P 7 
LPLJ 

This is the same result as was obtained in Exampl~ 1. 
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We get the member deformations 

(153) n(O) =f(O) N(O) = 14L2 
-9L 

-9L 
6 

L--6EI 
1 
2 

14L2 9L 
9L 6 

2L2 3L 
3L 6 

= ·5L PL2 
-3 12EI 
-5L 
-3 

L 
3 

(152) n(l) =E(l)* p(l) = r-~]

p = 
PL 
-P 
PL 
-P 
PL 

Hb. The relative structure deformations p(l} were obtained in (147), 
see Fb. In order to calculate the structure deformations p(O) we first 
calculate 

E(0)*- 1 =E(Ot 1* = [O -I O] 

The matrix E( O )- 1 satisfies 

(133) 

Thus we calculate the structure deformations 
PL2 _(160) 5L 12EI --3 

-5L 
-3 
-3L 
3 

The value of the real structure deform2..tions at the boundary between 
X(O) and X(l) is given by 

79 



(159) n(O) = E(O)*p(O)+ E(lO)Qp(l)Q + E(lO)*p(l)r 

PL2 [ ] r 7PL
2 

r 11 fp(l)rln(O)l] = r5L1--- = 0 5L - + I 0 _ 12EI _ I L3 j 12EI I O3 ~Jlp(l)~n(0)2 -5L I L-I[ 
n(0)4 -3 

l 
From the equation (159} we obtain the real structure deformations of 
point B (= Q) as 

PL 3 
p{l) = [5LJ----Q 12EI 

-3 

We observe that the equation (159) gives the real structure deformations 
p(l)r for joints at the boundaries between X(O) and X(l). We obtain the 
real structure deformation at joint A as 

PL 2 PL 3 
p(l) = [5L - LJ-- = [lJ--r 12EI 3EI 

· 3 -3 0 

If we instead use the formula (161) in order to obtain the real 
structure deformations at A we find 

(161) p(l)r = p(l) - E{l)*-l E(l)Qp(l)Q = p(l) - I(-I)p(l)Q = p(l) + p(l)Q 

·PL2 PL 3 PL 3 
p(l)r = = [~] fflr-3L] i2Ei+ [~~]12fil 

Thus we obtain the same result as in Example 1. 

Example 2b. The beam in Fig. 51 with the height hand the temperature 
gradient a is now submitted to a temperature gradient Vt. We want to 
calculate member forces and structure deformations. 

C. The temperature gradient is a non-boundary action. It implies for 
the members, that we use the particular solution in Fig. 33b. We thus 
obtain the member free deformations 

ns = rn(O)sl == rn(Ohs 
= : L~f;tln(t)J n(0)2s 

n(0)4s I 
n(l)3 I 
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Transformation of the free deformations n5 to the global coordinate 
system at A yields 

= aL -~LVt(174) 
-2 2h 
-3L 
-2 

1 L -L 
0 1 - :.2_ 

1 L 
1 -2 

D. In order to restate the deformation continuity conaitions we add defor-
mations round the cycle which yields 

(164) r= -Z*ns = [r{O~ = - 1Z(O)* Z(lO)*J 1n(0)8l =jZ(O)* Z(lO}*J l:--n(0)8l 
r(l)J LO Z{l)* ln(1)J L O Z(l)* -n(l)J 

The equation (164) gives the particular solution 

np = 1n(O)pl = [-n(O)sl 
ln(l)pJ -n(l)J 

E. The equivalent structure loads P(l, 0) in X(l) are 

(151) P(l, 0) =-E{l.) F(l) n(l)p = [I] 1,12 6L JEI LJaVtL = [ Ol aVtEI 
L3 

-I 

2h hL22 21t.9L 4L _ ....-2 -L J 

Fb. We calculate 

The unknown structure deformations and cycle forces thus are 

(147) p(l) =F{l, 1, 1r l P(l, 0, 1) =O 

(146) R(O) =f{O,otl Z(O)* E(lO)*p(l) + r(O, 1) 

= r 6 -L J2EI • [L] aVtL = .- O J2aVtLEI = [OJ aVtEI 
1I 59L3 2h 59 • 2t3h h2 2L:-L lOL 6 
, 

59L 1.... 
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G. The member forces and member deformations are in global coor-
dinate system 

(152) N(O) ::: N(O)p+ Z(O) R(O) = [I] [olaY-t~! 
I 1J h 
I 

(152) n(l) = n(l)p + Z(l)*p(l) = -n(1) 8 + 0 = -n(l)s = 1--L 7
L 2 J 

(153) N(l) =F(l) n(l) = r12 6L -j [-LJ ~!91_yt½_=lOJ-91~~~! 
3 ' hI 1 

1...6L 4L2J 2 L • 2h L1 
2(153) n(O) = f(O) N(O) = ~n(O)~ = r14L -9 L 

L·-6EI 0 
1 
0 
1 
0 
1 

The real member 

(166) = 

The equation (166) gives 
_3L(0)n r = 

2 
3L 
2 
L 
2 

6n(0)2 -9L 
14L2 9L 

n(O) j 9L 6 

aVtEI = h 

L 6L 2 3L 
3L 6 

aVtL.-9L 
6h6 

9L 
6 
3L 
6 

deformations nr are 

Ilr n + Ilg = = rn(O)l +rLnn((Ol))rr] [n(O)sl 

aVtL 
2h + 

Ln(l)J n(l)J 

3L 
-2 
-3L 
-2 
-L 
-2 

aVtL211-= 0 
0 
0 
0 
0 
0 
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Hb. The relative structure deformations p(l) = O, see Fb, are 

(140) p(O) = o(O}-1 (n(O) - n(O)p) = o(Ot 1 (n(O) + n(O)s) = 0 

The equation (139) gives the values of p(l)r at joint A, Q = B. 

(139) n(O) - n(O)p = +o(O) p(O) + o(Ol) P1Q + o(Ol) p(l)r 

0 = 0 + o(Ol)QPlQ + o(Ol) p(l)r 

ol= ro I~ [p(l)rl
[0 0 0 p(l)~ 

0 -I 0 

from {139) thus follows that 

Example 3. A plane frame, see Fig. 54, submitted to joint loads is 
divided into 6 members. All the beams have the section DIMAX 20 with 
the area A= 135,4 cm2, and moment of inertia I= 10 897 cm4 and I/ A= 
= 8,048 • 10-3 m2. 

We want to calculate member forces. 
lOMpm X 

10M 

2 30M 5 
~\ Ia 

3 m 

z 
3 53* 3I< 

Fig. 54. Loaded plane frame 

A. We choose a dissection that makes the number of unknowns <f>= 
=m(O)+ a(l) a minimum. 

We array the matrices E1 and Z1 and make the matrix product 

1 2 3 4 5 6 m1 m2 m m2 
1 1 1 =A[~lE1Z1 = i[1 1 1 1 1 B 0 0 

1 1]i 1 

1 1 C 0 0 
4 

2 1J 
1 

5 1 
6 1 
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We now obtain the node- loop incidence matrix 

m1 m2 m3 
L = (E1 Z1h =A [ 1 1 1]

B O O 1 
C O O 1 

We change the ordering of the rows and columns in order to get an 
ordering according to 

L = IL(O) 0 7 = 
LL(lO) L(llJ 

We get a(l) + m(O) =2. 
Thus we dissect the structure according to Fig. 55. Note that in the 

diacoptical or codiacoptical solution we need 2 • 3 = 6 variables, but in 
the force and displacement methods we need 3 • 3 = 9 variables. 

Fig. 55. Structural dissection 

B. We choose a global coordinate system with the origin at A, see Fig. 54. 
We array the matrices 

4 5 6 
(92) Z(O)*=m3[I I I] 

4 5 6 1 2 3 
{79) E(O) = g[I -I E(l) = A[ I I I] 

I -rJ' 
m3 4 5 6 

E(lO) Z(O) = A[ -I ] , E(lO) = A[-I 0 0] 

where 

I= 1G0 ~]0 
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The·flexibilities and stiffnesses are given relative to the local coordinate 
system at beam end 2 

(167) 0 0 7]2EIf' = [6I/A O O l 6ir-; F' = lA/12I 
l L3 

0 L2 -3L 1 0 1 2L 
0 -3L 6L_. LI 0 2L 3L2J 

The flexibilities of the members in X(0) relative to the global coor-
dinate system are 

(179) i=4, 5, 6 

where 

(170) TiA = rr 01 fr 07 
Lo yJ ly rJ 

r4= [2,276. 10-2 0 0 7..!., T4A = r1 0 0~ 
o 7,542 -4,ooojEI Jo 1 0 
o -4, ooo 2, a28J Lo2, 8284 1 

f(0)4A =T;A f4T 4A = [O, 0228 0 0 
0 7, 542 4, 000 
0 4, 000 2, 828 

f5 := [o,0424 0 0 ..!.' T5A := r o,7071 0, 7071 ol 
0 41,667 -12, 500 EI l-0, 7071 0, 7071 01)J 
0 -12, 500 5, 000 -3, 5350 6, 3640 J 

f(0)5A =T5A f5 T* I 5A = ,r 20,844 -45, 790 -8, 836 -1 
j -45, 790 110, 803 22, 975 EI 
L- 8,836 22,975 5,000 

r6= [o,0341 o o l ..!. , T6A = [ o 
0 25,455 -9,000jEI -1 
0 -9,000 4,243J -7,778 6,364 J 

f(O)eA = [ 142,126 -152, 734 -24, 000~ ..l.. 
-152,734 171,825 27~000 EI 
- 24,000 27,000 4,243 

The structure flexibility of X(0) is 

(144) f(O, 0) ==Z(O)* f(O) Z(O) = Z(O)* [f(O)iA] D Z(O) = f(0)4A + f(0)5A + f(O)aA = 
== [ 162,993 -198, 524 -32, 836] _!_ 

-198, 524 299, 006 53, 975 EI 
- 32,836 53,975 12,071 
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The stiffnesses of the members in X(l} relative to the global coordinate 
system are 

(177) 

(178) 

F(l)1A = = !29, 2872 0 0 7 EIF 1 i O o, 1571 0, 33331 
L o o,3333 o,9428J 

F 3= Fi' T 3A = lo -lo o-1 
,1 0 . 
Lo o 1J 

F(l)3A = (T3Ar l F3 (T3Af l = ro,1571 0 0, 3333] EI 
j O 29, 2872 0 
Lo,3333 o o,9428 

F2 = 1141,0418 0 0 JEI, T2A = ro,7071 -0, 7071 ol 
0,4444 +0,6667 I0,7071 0,7071 Olli 

L 0 +0, 6667 L 3333 L 0 0 j 

F(l)2A = (T2Ar l F2 (T2Ar l = [ 20, 9308 -20, 4866 0, 4714u EI 
1-20, 4866 20, 9308 0, 4714 
L 0, 4714 0, 4714 1, 3333 

The structure stiffness of X{l) is 

(143) F(l, 1) = E(l) F(1) E(l)* = E(l) [F(l)iA] D E(l)* =F(lhA + F{l)2A + F{l)3A 

F(l, 1) = f 50, 3751 -20, 4876 0, 8047] EI 
I -20,4866 50,3751 o,ao41
L o, 8047 o,ao47 3, 2189 

C. The structure action in Fig. 54 gives 

r = Jr(O)l = [ol 
lr(l)J oJ 

P=rP(o)J=[PBJ;PA=r-15-r2Mpj,PB=r 7=I Pc l 15-f2Mp l 5-f2Mp i 
tP(l) • P~ L O -10 - 2 • 10MpmJ 

= f- 7, 071 Mp Pc = [OJ1,
j 7,071 Mp 0 
L-30, 000MpmJ 0 

The load P(O) is written relative to the global coordinate system at A. 
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D. The particular solution for member forces are 

(132) 

(134) E(l} N(l)p = -E(lO) N(O)p + P(l) = - [-I O O] \ PBJ 
I 0 

La 
= [-28, 284 Mp l 

28,284 Mp l 
-30, 000 MpmJ 

where 

(133) E{O)E(Otl = [I -I 61rr rl =rr o7 
__o r -rJ !o I I Lo rJ 

Lo oJ 
The load r = 0 implies the particular solution for cycle deformations 

(137) n(l)p = 0 

(139) Z*(0) n(O)p = 0 

E. The equivalent cycle deformation r(0, 1) on X(0) is obtained by vector 
multiplication f ram the right in 

(150) r(O, 1) = - Z(0)* f(O)N(O)P= - [I I I] [f(0)4A, f(0)5A, f(0)5AJ D [p:l= 

oJ 

l
= -f(0)4A PB = r 0, 3001 ..!. 

66, 692 J EI 
56, 556J 

The equivalent structure deformations P(l, 0) on X(l} are 

(151) P(l, 0) = E(l)N(l)p = [-28, 284~ 
28,284 

-30,000 
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Fa. The inverse of the structure stiffness of X(l) is 

F(l, 1r 1 = [ 0, 02401 0, 00990 -0, 008487 J_ 
o,00990 o, 02401 -0 00848 EI' I-0,00848 -0,00848 o,31490J 

Further 

(142) f(O, O, 0) = f(O, 0) + Z(O)* E(lO)* F(l, 1r l E(lO) E(O) = 

= [163,017 198;514 -32,845~ • _!_ 
198,514 299,030 53,906 EI 
-32,845 53,906 12,385 

(145) r(O, 1, 0) = r(O, 1) + Z(O)* E(lO)* F(l, lt 1 P(l, 0) = [ 0, 30~ El + 
66,692 I_ 
56,556 

+ [ o, 145] _!_= r o,4457 .1.. 
- 0 667 EI I 66 025 i EI 

' J ' '9,447 L66, 003J 

The calculation of the unknown cycle forces in (141) is made by use of 
Gaussian elimination. 

(141) R(O} =f(O, o,ot 1 r(O, 1, 0) = 1-0,594 Mp lJ 

l-3,978Mp 
21,083 Mpm 

We calculate 

-E(lO) Z(O) R(O) + P(l, 0) = - [-I] R(O) + P(l, O) = [-0, 594] + r-28, 284~ == 
-3.978 ! 28,284 
21~083 L-30,000 

= [-28, 878]24,306 
- 8,917 

We obtain the structure deformations p(l) in X(l) as 

(140) p(l) = F(l, 1)-1 (-E(lO) Z(O)R(O) + P(l, 0)) == 

= r o,02401 0, 00990 -0, 008487 _!_[-28, 284LJ= r-o,337~ _!_ 

Lo,00990 o,02401 -0, 00848 IEI 24,306 I o, 373 EI 
-o,00848 o,ooa4s o, 3t49QJ - a,917 L-2,769 
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G. The member forces are, in the global coordinate system, 

(152) N(O) ==N(O)p + Z(O) R(O) == rN4A1== r-7, 0717 + r-0, 5947 = !-7, 6657 
1-3,978 3, 093 !N 7,071i 

5A I -30, 000 
N5A..., i 0 

l ! -3,978l-3~978 
21, 083_ L21, oa3 

21,083 -8,917j 
-0, 594 -o,594 l 
-3,978 -3,978j 
21,083 21,083! 
-0,594 -0,594j 

The forces N(0) are transformed to the local coordinate systems of each 
beam. 

(169) -7,665Mp l 
3,093 Mp 

-0, 169 Mpm 
-3, 237 Mp 
-2, 393 Mp J 

-2, 133 Mpmj 
-3, 978 Mp 

0, 594 Mp 
0,378Mpm 

As a check of the calculation of N' (0) we study the equilibrium of beam 
number 5. 

10- O, 169 = 9,831 Mpm 

'-pB . 5 1C "·'°"'i 3,237 Mp l" 

,,' .:10-(7, 665+3, 093) .f2 = 2,393 Mp _2, 393 Mpf -2, 133 Mpm 

-(7, 665 - 3, 093) • /2. = 3,232 Mp 

Horisontal force equilibrium 3~232-3,237 = -0,005·MP 
r"S.

Moment equilibrium gives D: 9,831 + 2,133 - 2,393 • 5 = 
= 11,964 - 11, 965 = 0, 001 Mpm 

Thus the equilibrium is satisfactory. 
The member forces N(l) relative to the global coordinate system are 

{153) N(l) F(l) n(l) F(l) E(l)* p(l) F(l) rnp(l) 
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I] p ( 1) = r-11, 04ll 
I I- 0,923/] r F3A I - 2,486 

Li . -16,ss8 
14,225 

- 3,692 
- 0,982 

I 10, 924 L-2,736 

Transformation to local coordinate systems yields 

T 3AJ O rN 1A1
. = r-11, 041 Mp 

1 1 - 0, 923 Mp 
N2AJ - 2,486 Mpm 
.N3A -21, 965 Mp 

- 1,848Mp
l - 3,638 Mpm 

-10, 924 Mp 
- 0,982Mp 

I 
- 2,699 Mpml

We now check the equilibrium of the joint A. --~-Moment equilibrium gives ....A : +2, 486 + 3,638 + 2,699 - 8,917 = - 0, 003 Mpm 
Horisontal force equilibrium 11,276 - 10,924 + 0, 923 + 0, 982) 0, 70.71 + 

+ 1, 848 - (7,665 - 3, 093) 0, 7071 = 0, 210 Mp 
Vertical force equilibrium : 21,965 + (10,924 + 11,276 + 0, 982 - 0, 923 -

- 3,093 - 7,665) 0, 7071 - 30,000 = 0, 103 Mp 
Thus the equilibrium is quite satisfactory. 

(169) 
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