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Abstract 

Complex assembled products as an automotive car body consist of about 300 sheet metal parts joined by up to 4000 spot welds. In the body 
factory, there are several hundred robots organized into lines of welding stations. The distribution of welds between robots and the welding 
sequences have a significant influence on both dimensional quality and throughput. Therefore, this paper proposes a novel method for quality 
and throughput optimization based on a systematic search algorithm which exploits properties of the welding process. It uses approximated 
lower bounds to speed up the search and to estimate the quality of the solution. The method is successfully tested on reference assemblies, 
including detailed fixtures, welding robots and guns. 
 
© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of 5th CATS 2014 in the person of the Conference 
Chair Prof. Dr. Matthias Putz matthias.putz@iwu.fraunhofer.de. 
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1. Introduction 

Complex assembled products as an automotive car body 
consist of about 300 sheet metal parts joined by up to 4000 
spot welds. In the body factory, there is typically welding lines 
with several hundred robots organized into geometry welding 
stations and re-spot stations. The distribution of welds 
between robots and the welding sequences have a significant 
influence on both dimensional quality and throughput. 
Previous research by Segeborn et al. [1] has shown that math 
based automatic line balancing algorithms and methods for 
distributing the welds in re-spot stations, can improve cycle 
time up to 25%. In re-spot stations the geometry is considered 
to be independent of welding sequence. Furthermore, Genetic 
Algorithms (GAs) have proven to be an effective and efficient 

approach for multi-criteria (simultaneous) optimization of 
welding sequences with respect to dimensional variation and 
robot traveling time, [2,3]. However, the GA approach cannot 
easily be extended to multi-robot stations, welding 
configuration alternatives, minimizing of robot coordination 
loses, estimation of the gap to the optimal sequence.  These 
are all important aspect for optimization of geometry stations 
that are already part of the algorithms for re-spot stations. 
Therefore, this paper proposes a novel method based on a 
systematic search algorithm which exploits specific properties 
of the process behind, namely the welding operation. This 
informed algorithm allows creating approximate lower bounds 
in order to speed up the search and to estimate the quality of 
the solution obtained, in terms of gap to the optimum. Since 
the evaluations of these solutions are time consuming, the 

© 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientifi c Committee of 5th CATS 2014 in the person of the Conference 
Chair Prof. Dr. Matthias Putz matthias.putz@iwu.fraunhofer.de

Conference on Assembly Technologies and Systems



78   Johan S. Carlson et al.  /  Procedia CIRP   23  ( 2014 )  77 – 82 

algorithm also strives to minimize the number of such 
computations.  

Improving product quality and equipment utilization have 
both economic and environmental impact and thereby 
supports sustainable manufacturing. A more detailed 
discussion on sustainability measures and awareness in 
production used at Chalmers University of Technology can be 
found in Johansson et al. [4].  

This paper has the following outline; In Section 2 the effect 
on geometrical variation of welding sequence is discussed and 
a novel algorithm for optimization is presented. Section 3 
focuses on collision free path planning and optimization of 
robot traveling time. In Section 4, the algorithms are 
combined in a new way to optimize both quality and traveling 
time simultaneously. The optimization algorithm is tested on 
two reference assemblies in Section 5 and finally the 
conclusion are drawn in Section 6.      

2. Geometrical Variation and Welding Simulation   

In this Section we describe variation simulation of 
assembled products joined with discrete welding points. A 
novel method for optimizing welding sequence with respect to 
quality is presented.   
 
2.1 Variation simulation model 
 

Variation simulation aims at predicting variation and 
offsets in critical dimensions of assembled products or 
subassemblies. The inputs to such a simulation are, in the case 
of non-rigid simulation, part meshes, material properties, 
locating schemes, tolerances of the parts and fixtures, and 
information about the joining process – i.e. joining method, 
position of the joining points and joining sequence.   

 
2.2 Locating schemes and assembly fixtures 

 
Locating schemes are used to lock parts and assemblies 

theoretically in space. The theoretical locating points are in 
reality represented by locating features on the parts and the 
fixtures, i.e. holes, slots, pins and planes. For rigid analysis, 
six locating points are used to lock six degrees of freedom. 
For non-rigid assemblies, additional support points are used to 
represent clamps and supports in physical fixtures (Söderberg 
et al. [5]). Figure 1 shows a rigid location scheme, a non-rigid 
locating scheme and a welding fixture. 

 

Fig. 1. Rigid and non-rigid location schemes and a welding fixture. 

Since parts and fixture elements are afflicted with variation, 
resulting in positioning errors and gaps between the parts to 
be joined, a sub-assembly will not be nominal after joining. 

Therefore, variation needs to be considered in joining 
simulation. Also the sequence in which they are joined can 
have a significant influence on the final geometrical quality, 
see Figure 2 (Wärmefjord et al. [6]). The figure shows 
geometrical variation in a number of inspection points for an 
A-pillar assembly. 

Fig. 2. The geometrical effect of different welding sequences in a number of 
inspection points. 

2.3 Variation simulation including contact modelling and 
joining sequence 

 
The variation simulation used in this paper is based on 

Monte Carlo simulation enclosed in the software RD&T, 
RD&T Technology, [7]. Here, a total sensitivity matrix is 
implicitly defined by a FEA-based simulation model 
describing all mating conditions, kinematic relations and non-
rigid behaviour. Direct Monte Carlo simulation combined 
with FEA is a standard technique for variation prediction of 
compliant parts. However, since a large number of 
replications are required for achieving satisfactory accuracy, 
the method is very time-consuming if a new FEA calculation 
is to be executed in each replication. Liu and Hu [8] presented 
a technique called Method of Influence Coefficients (MIC) to 
overcome this drawback, and this method is used in this 
paper.  

To avoid having the parts virtually penetrate each other 
during assembly, a point-based contact modelling algorithm is 
used (Wärmefjord et al. [6]). The joining sequence is also 
taken into consideration. For a non-rigid assembly, the 
following steps are necessary to take into consideration when 
predicting variation and deviation in critical dimensions of the 
final assembly:  

 Step 1: The parts are positioned/clamped in their 
fixtures, and over-constrained locating systems (i.e. 
clamps) are applied. Forces are applied to clamp non-
nominal parts. 

 Step 2: The parts are joined together in a pre-defined 
joining sequence. The gaps in the joining points are 
closed, one by one. 

 Step 3: After the last joint is set, the assembly is 
unclamped and is allowed to spring back. 

More comprehensive explanations of these steps can be found 
in Wärmefjord et al. [9, 10].  
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2.4 Optimization of welding sequence 
 
Evaluating welding sequences is even with the state of the art 
simulation method described above very time consuming. 
Therefore, in this section we present a novel method for 
welding sequence optimization which tries to keep the 
evaluations to a minimum. For moderate cases as with 7 
welds the combinatorial possibilities are 5040. The basic idea 
of the method is the experimental evidence that simultaneous 
welding gives better quality outcome than welding one point 
after another, see Figure 2 and Wärmefjord et al. [9]. This 
evidence is supported by our experimental data in many cases. 
Such a fact can be used as an assumption to provide “almost 
exact” lower bounds for the geometrical quality of a welding 
sequence. The possibility to create these lower bounds 
naturally suggests the use of branch and bound-based (B&B) 
algorithms to optimize variation in welding sequences. In 
Figure 3, a B&B tree is depicted, illustrating a small example 
with 4 welding points, where the sequences are drawn in 
black and the lower bound value in grey: the sequence 3 1, for 
example, means that first point 3 is welded, than point 1, 
thereafter points 2 and 4 are welded simultaneously. One 
value representing geometrical variation may be proportional 
to standard deviation, e.g. 6σ, or other measures can be used 
such as Mean Squared Error, MSE. 
 

Fig. 3. The geometrical effect of different welding sequences in a number of 
inspection points. 

 
We adopt, here, an eager approach: lower bounds are 
computed only when B&B nodes are expanded, in order to 
decrease the number of simulations needed. Nodes expansion 
is usually done by depth-first strategies since they perform 
well for B&B, anyway we use here a best-first queuing 
system because we do not want to explore the entire tree. 
Note that best-first is a suitable approach regarding memory 
requirements, since in these applications the number of points 
is low. In this small case, 9 sequences out of 24 were 
evaluated to find the optimal solution. Generally for a case 
with N welds the algorithm can in best case find the optimal 
solution in O(N2) evaluations with an eager approach, and 
O(N) with a lazy one. We will come back to the efficiency 
and effectiveness of the proposed algorithm on the industrial 
reference cases in Section 5. 

3. Path Planning and Robot Traveling Time 

To program robot motions and find a time efficient 
sequence for a spot weld robot station like the one shown in 
Figure 4 is a time consuming and really challenging task. The 
programming can be done by using the real physical robot or 

by using a computer model of the robot. The former is called 
teach in programming, where an operator uses a joystick to 
control the motions of the robot in order to specify the robot 
program. The latter is a digitalized version of teach in 
programming and is called off-line programming (OLP). OLP 
has many advantages such as better equipment utilization and 
faster introduction of new product models. However, one of 
the main advantages is that by using OLP one can further 
reduce the programming time and improve the program by 
math-based algorithms for motion planning and combinatorial 
optimization.  

The overall approach for optimization of travel time in 
welding robot station consists of two major steps, (i) task 
planning to find promising configurations that can reach each 
weld and (ii) sequence optimization and motion planning to 
select one solution for each weld and connect them together 
by efficient motions and in a sequence minimizing traveling 
time. However, before this is described in more detail 
(Section 3.4) we introduce automatic collision free path 
planning and exact solving of generalized traveling sales 
problems (GTSP).    

 
3.1 Automatic Path Planning 

 
Automatic path planning addresses the problem of finding 
collision free motions of moving objects in cluttered 
environments. Complete algorithms are of little industrial 
relevance due to the complexity of the problem (PSPACE-
hard for polyhedral models (Canny, [11]). Instead, sampling 
based techniques trading completeness for speed and 
simplicity are the methods of choice. Common for these 
methods are the needs for efficient collision detection, nearest 
neighbor searching, graph searching and graph representation. 
The two most popular methods are; Probabilistic Roadmap 
Methods (PRM) and Rapidly-Exploring Random Trees 
(RRT). The PRM samples randomly among all configurations 
of an object, keeps the collision-free samples, and then 
connects those pair wise if the straight line path between them 
is collision-free (Bohlin and Kavraki, [12]). The RRT 
incrementally builds two trees from the start and the goal 
configurations respectively. In each step an attractor is 
generated at random and trees are expanded from the nearest 
node towards the attractor. The iteration stops when the trees 
overlap (LaValle and Kuffner, [13]). Inspired by both these 
probabilistic methods Fraunhofer-Chalmers Centre (FCC) has 
developed a deterministic path planner that adaptively adjusts 
a grid in the configuration space. However, the methods 
proposed in this paper can be based on any efficient path 
planner algorithm. 
 
3.2 GTSP solved by Dynamic Programming  
 
The traveling salesman problem (TSP) can be solved exactly 
by easy-to-implement algorithms, which however have high 
computational complexity. One of these is due to Held and 
Karp, see [14] and is based on dynamic programming: it 
improves the complexity of brute force search, from O(n!), to 
O(n2 2n). The Bellman equations describing the solution are: 
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  (Eq. 1) 

 
Here  is the cost to move between nodes i and j, whereas 
the function  represents the minimum cost to move 
from node 1, visiting all nodes in S and ending at node j. It is 
immediate to note that its practical use is limited to small size 
problems: on a modern PC it would run on instances of about 
20 nodes. The same approach can be used to solve exactly the 
GTSP. Only a straightforward generalization is necessary, 
leading to the following recursive formulas: 
 

 

 
Here  represents the cost to move from the lth node in 
group i to the mth node in group j. At the same strength as in 
Eq. 1,  refers to the minimum cost of visiting group 
1, all groups in S and ending at the mth node in group j, and 

 is the set of all nodes contained in group i. For small 
problems (of the same order as for the TSP, i.e. circa 20), the 
above equations allow to solve to optimality even some 
variants of the GTSP, like the ones fixing home and/or end 
group, asymmetric instances, and fixing the order of some 
parts of the tour. The latter can be used within the B&B 
framework to combine bounds for geometrical variation and 
traveling time for different welding sequences, as will be 
described in Section 4. 

 
3.3 Task planning 
 

Due to the spin symmetry normal to the surface of the 
welding points there exists many ways to weld each point 
without affecting the quality. Also, different inverse robot 
solutions exist as elbow up or down. These alternative 
solutions play an important role in traveling time 
optimization. Therefore, in the task planning step we calculate 
all collision free alternatives with 5 degrees resolution on the 
spin angle to reach each weld, see Figure 4.   

 
Fig 4. Task planning: Highlighting 2 configurations out of 32 possible.   
 

3.4 Path Planning and Sequence optimization 
 

The next step is sequencing where it is decided in which 
order and with what alternative configuration the robot should 
perform the spot weld to minimize the cycle time. This is a 
generalization of the classical Traveling Salesman Problems 
(GTSP) since it is a grouped problem with node alternatives. 
A straight-forward algorithm would be to calculate, by path 

planning, the full cost tensor  between alternative  and 
 of spot  and  and then apply a GTSP solver to find the 

optimal solution. However, the path planning operations 
between pairs of welds are much more time consuming than 
solving the GTSP itself. Therefore, we propose a lazy method 
minimizing the number of calls to the path planner. First a 
lower bound cost matrix  is calculated 
based on linear motions between the weld configurations  
and  in the six dimensional configuration space for the 
robot. By running a GTSP algorithm on the cost matrix  a 
route  will be generated. In the next step, the cost matrix is 
updated by path planning of all pair wise configuration 
included in the route . By iteratively running these steps, the 
optimal solution can be found with minimal calls to the path 
planner. The iterative sequence optimization is illustrated on a 
schematic case in Figure 5. 

    

 

Fig. 5: A four group generalized TSP problem with obstacles. Left figure 
shows the optimal routing before path planning. Right figure shows the re-
routing after a number of iteration considering collisions with the obstacles 

(Mark et al. [15]). 

4. Minimizing Variation and Traveling Time 

One way to simultaneously measure geometrical quality, , 
and cycle time, , of a given sequence of  welding points is 
by their weighted sum. By changing the weight, different 
solutions on the Pareto front can be found. Limitations and 
extension of weighting methods for multi criterias can be 
found in e.g. Athan and Papalambros [16]. Since  and  are 
different physical entities, we normalize them by using two 
reference values: the best lower bound for geometrical 
quality, , and the best lower bound for cycle time, . Note 
that these values are obtained at the root node of the B&B 
tree, where no part of the welding sequence is assigned. The 
objective function, therefore becomes 

, 
where  gives the possibility to differently weight the 
quality measure  for that specific welding sequence and its 
correspond cycle time . Note that   and t  . This 
objective function can be used along the B&B. At each node i 
of the tree, representing a subsequence of M  
points , we have  
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where  is the quality measure obtained by sequentially 
welding , and then simultaneously welding the 
remaining N-M points, and  is the cycle time optimizing a 
GTSP where the first M points have the fixed order 

. The former is computed by variation simulation 
software, whereas the latter can be optimally computed by 
small modifications to the algorithm described in Section 3.4. 
In Figure 6 a graphical representation of a fictive B&B node 
consisting of 5 welding points is illustrated. Two points P1 
and P3 are fixed, whereas P2, P4 and P5 can be taken in any 
order, after P1 and P3. The arrows represent the sequential 
constraints between points just described. Furthermore, each 
point can be welded by several robot configurations 
alternative, depicted by the black dots within each circle in the 
Figure. In Figure 7 a possible solution is illustrated. 
 

 
 

Fig. 6. The sequential constraints for the B&B node . 
 
 

 
 

Fig. 7. A solution to the problem modeled in fig. 6. 

5. Industrial Reference Assemblies and Results 

In this section the proposed methods for welding sequence 
optimization are evaluated on two reference assemblies.  
Reference Assembly I is an A-pillar and Reference Assembly 
II is a part of the front floor, see Figures 8 and 9. A more 
comprehensive description can be found in Segeborn et al. 
[3]. Both assemblies consist of two sheet metal parts which 
are joined by seven weld points. For Reference Assembly I, a 
number of 30 instances of Part I and Part II have been 
physically measured on single part level, using 52 inspection 
points on part I and 17 inspection points on Part II. Then, 
using the RD&T variation simulation tool, all 30x30=900 
assemblies combining Part I and Part II are virtually built. For 
Reference Case II, the variation in each contact point and 
locator is statistically simulated and a number of 3000 
assemblies are built. The output variation  is the dimensional 
variation of the resulting assembly, defined as the root mean 
square of the 6σ values of all nodes of the assembly mesh. For 
both assemblies all 5040 sequences are simulated and there 
quality are plotted in Figure 10. 

 

 
Fig. 8. Industrial Reference Assembly I. The assembly is virtually measured 

using the fixture of Part I, including only support S3. 

 
Fig. 9. Industrial Reference Assembly II. The assembly is virtually 

measured using the fixture of Part I. 
 

Fig. 10. Geometrical variation (6sigma) for all 5040 welding sequences of 
Reference Assembly I and II. 

 
The algorithm described in Section 2.4 has been applied to the 
two assemblies to calculate a welding sequence maximizing 
the global geometrical quality. Different settings for the B&B 
stop criterion have been tested and the results are reported in 
the Table 1. 
 

#evaluations Quality % above optimum Rank (out of 5040) 
100 1,739 2,2 48 
200 1,710 0,4 4 
46 1,739 2,2 48 

Table 1. Geometrical quality optimization by B&B applied to 
Reference  Assembly I. 

 
The first two rows refer to runs of the algorithm stopping after 
100, respectively 200 iterations and saving the best sequence 
obtained. In the third row, the resulting sequence corresponds 
to the first expanded leaf in the B&B tree, reached after 46 
expanded nodes. Note that this sequence is the same as the 
one stopping after 100 iterations. The quality improvement 
obtained by running the algorithm 200 iterations, against 100, 
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is clear. However, it is an open discussion whether it is worth 
the computational effort, and it will most probably depend 
from case to case. The second reference case, whose results 
are reported in Table 2, shows a larger improvement in 
quality, from running 200 against 100 iterations, with respect 
to the previous test case. 
 

#evaluations Quality % above optimum Rank (out of 5040) 
100 1,398 5,5 405 
200 1,348 1,7 100 
29 1,411 6,5 523 

Table 2. Geometrical quality optimization by B&B applied to 
Reference Assembly II. 

 
Since the method for optimizing quality works well, using 
few evaluations finding top quality sequences close to 
optimum solution on the two test cases, the next step is to test 
the multi-criteria algorithm described in Section 4.  In Figure 
11 an overview of the algorithms building blocks and their 
connections are illustrated. The optimization core consists of 
the 3 blocks: B&B, Variation Simulation (VS), and AGTSP 
Solver (GTSP). When a solution is obtained from that, path 
planning is performed, exploiting the lazy philosophy as in 
Section 3.4. Data are updated and a new iteration is run with 
the new information gathered. Note that when the VS block is 
not present, i.e. α=0, the algorithm becomes as the one in 
Section 3.4, whereas, cutting the GTSP block leads to 
optimizing with α=1. In the latter case, the groups sequence is 
fixed at any iteration: only the choice of the nodes within the 
groups is left to optimization. 

 

 
 

Fig. 11. General framework with building blocks. 
 
The results for the simultaneous optimization of geometrical 
quality and cycle time for three different values of α (the max 
number of evaluations is set to 100) are presented in Table 3. 
Simulations are stopped after 3h computing and the tradeoff 
between quality and cycle time is evident. 
 

α Geometrical quality Cycle time (s) 
1.0 1.739 7.672 
0.9 1.811 4.944 
0.0 1.859 4.441 

Table 3. Tradeoff between quality and cycle time for Assembly 1.  

6. Conclusion and Future Research 

An important first step to optimize geometry stations with 
respect to both dimensional quality and cycle time has been 
proposed and successfully applied to reference assemblies. 
Next step will be to extend to full geometry stations making it 
necessary to include load balancing and coordination of 
several robot sharing space and the welding work. 
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